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1 Introduction

The perturbative approach to quantum field theory provides the basis of our understanding
of the fundamental laws governing high-energy processes. Experimental observables are
computed in an asymptotic formalism as a power series in a coupling whose value should
be small. The coefficients of this perturbative series are represented in terms of Feynman
diagrams. The practical computation of such observables is most often performed within
a covariant approach in momentum space, in which each diagram is manifestly invariant
under the action of the Poincaré group. Nevertheless, since the early days of quantum
electrodynamics, other, non manifestly covariant approaches have been used, such as the
venerable time-ordered perturbation theory (TOPT), which can be derived analogously to
quantum mechanical perturbation theory (see refs. [1, 2] for a review).

TOPT involves three-dimensional momentum space loop integrals, with time-ordered
vertices, and is well-suited for a local singularity analysis. Similarly, more recent formula-
tions as loop-tree duality [3–8] and manifestly-causal loop-tree duality [9–14], have led to an
advance in the understanding of the large distance singularity structure of Feynman inte-
grals. In particular the denominator structures that arise therein are usually more directly
identified with formal graph-theoretic constructs [15–18], which makes the generalization
of the singularity analysis considerably easier.

Parametric Feynman integration is still the present-day standard for the numerical
evaluation of multi-loop integrals [19–22], especially in Euclidean kinematic regimes. In this
context practically all relevant Feynman diagrams can be integrated readily [23]. However,
numerical methods based on four-dimensional [24–31] and especially three-dimensional rep-
resentations [14, 15, 32–36] offer a promising alternative due to their manifest IR singularity
cancellation features, and their native adaption to Minkowski space kinematics. Moreover,
these three-dimensional representations allow for more efficient and robust treatment of
integrals near thresholds.

In contrast to the momentum space formulation, coordinate space methods have re-
ceived considerably less attention. Indeed, while field theories are almost always phrased
in terms of coordinate space Lagrangians, scattering theory is naturally formulated in mo-
mentum space. Nevertheless, many fundamental physical principles find a beautiful and
revealing formulation in coordinate space. Unitarity, for example, can be concisely en-
coded through the largest time equation [37, 38]. Coordinate space methods also have a
prominent role in axiomatic formulations of Quantum Field Theory [39]. In the context of
renormalization group invariants at higher loop coordinate space methods are more pow-
erful than their momentum space counterpart [40–44]. Recently, cutting rules for eikonal
diagrams [45, 46] have also been generalized using coordinate space Green’s functions,
showing that these rules express and emphasize causality. Other interesting developments
include light-cone ordered perturbation theory and work on the coordinate space analysis
of infrared divergences of Feynman diagrams [47–50].

In this paper we develop a new representation of coordinate space Green’s functions
based on the concept of energy flow: flow-oriented perturbation theory (FOPT). Much like
TOPT, FOPT is canonical, in the sense that there is a well-defined Feynman integral for
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each energy-flow-oriented graph, without ambiguity. We derive the FOPT representation
in section 2 from four dimensional covariant coordinate space rules, starting with the
derivation of the FOPT representation for the scalar triangle diagram, followed by the
general treatment, which holds for any massless scalar diagram, independent of the number
of edges incident to each internal vertex. We then summarise the FOPT representation in
a concise set of Feynman rules and show that it has the UV behaviour which is expected
from covariant analyses.

However, the FOPT representation comes with two inherent caveats: the external
data is given in coordinate space, but, ultimately, a momentum space encoding of such
data is needed for the computation of scattering cross-sections. Additionally, as we will
explain in section 3, finite distance singularities play a quite intricate role in the FOPT
representation and the presence of IR singularities is not manifest. Motivated by this,
we adjust perspective in section 4: we (partially) transform the FOPT representation
back to momentum space. We call the resulting hybrid representation, which effectively
describes S-matrix elements, the p-x S-matrix representation. It is hybrid in the sense
that external kinematics are given in momentum space while internal integrations are
performed in three-dimensional coordinate space. These internal coordinate space integrals
are covariant three-dimensional Feynman integrals, modulated by the Fourier transform of
a certain polytope associated to the underlying flow-oriented Feynman diagram.

This polytope turns out to be an instance of the well-studied flow polytope. This type of
polytope has close connections to the representation theory of arithmetic groups, diagonal
harmonics, to Schubert polynomials and other mathematical structures [51–56]. Here, we
add a new application of the flow polytope to this list: the study of Feynman integrals. This
paper is hence an addition to the growing literature on the use of polytopes in the study of
analyticity properties and evaluation techniques in quantum field theory [23, 57–65]. The
inherent finiteness of such polytopes’ Fourier transforms gives a concise explanation for the
cancellation of spurious singularities in our new p-x S-matrix representation. In general,
the cancellation of such spurious singularities is a not a well-understood phenomenon as
we will discuss in section 4.7. Additionally, the Fourier transform of the flow polytope
expresses the oscillating behaviour of the S-matrix integrand which, especially at large
distances, becomes crucial for determining the singular structure of the S-matrix itself.

Equipped with the necessary knowledge of the flow polytope’s properties, we discuss IR
singularities in the p-x representation of the S-matrix in section 5 and identify a coordinate
space analogue of collinear and soft singularities. Subsequently, we detail the factorization
properties of these singular regions for diagrams contributing to the S-matrix. Our ob-
servation is that, in the p-x S-matrix representation, IR factorization, which is expected
from physical amplitudes [66], is in fact already present at the diagram level. The general
discussion is again supported by the pedagogical treatment of the triangle diagram.

Finally, we observe that the original FOPT representation has some interesting fea-
tures in the context of unitarity-cut integrals and Cutkosky’s theorem and the largest time
equation [37, 67]. For instance, virtual and real contributions to cross sections can readily
be put under the same integration measure. We leave an in-depth analysis of these ob-
servations for a future work, hence we relegate these aspects to appx. A, where we sketch
some of these ideas for the interested reader.

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
2

2 Flow-oriented perturbation theory

We start by introducing flow-oriented perturbation theory (FOPT) for a massless scalar
quantum field theory, and derive the FOPT Feynman rules. To motivate them, we discuss
the one-loop triangle diagram in some detail. A number of useful concepts for FOPT
graphs, such as their completion, cycles and routes are introduced and explained.

2.1 Scalar QFT in coordinate space

The massless coordinate-space Feynman propagator for a scalar field in D = 4 dimensional
space time (with the mostly-minus metric) reads

∆F (z) =
∫ d4p

(2π)4 e
−ip·z i

p2 + iε
= 1

(2π)2
1

−z2 + iε
. (2.1)

As usual, the Feynman rules provide a recipe to translate a graph G with sets of edges
E, internal vertices V int and external vertices V ext into an integral. Recall that external
vertices are defined by the requirement that there is only one adjacent vertex to each of
them. The usual coordinate-space Feynman rules (see for instance [68, Ch. 10.1] or [69,
Ch. 6.1]) read

1. Associate a coordinate vector to each internal or external vertex. We label the lo-
cation of external vertices with xa, a ∈ V ext, and that of internal vertices with yv,
v ∈ V int.

2. For each internal edge e = {v, v′} multiply by a Feynman propagator ∆F (ze) =
∆F (−ze), where ze is the difference of the coordinates of the vertices to which the
edge e is incident. For example, if e is an internal edge (none of the two vertices
defining it is external), then ze = yv − yv′ . If v is instead an external vertex, then
ze = xv − yv′ .

3. For each interaction vertex multiply by a factor −ig.

4. For each internal vertex v ∈ V int integrate over all values of the components of yv, i.e.
over all possible locations of the internal vertex in 4-dimensional Minkowski space.

The resulting expression is a function of the external coordinates {xa}a∈V ext . To be explicit,
the application of the coordinate-space Feynman rules to a generic graph G contributing
to a Green’s function of a massless scalar theory gives

AG(x1, . . . , x|V ext|) = (−ig)|V int|

(2π)2|E|

 ∏
v∈V int

∫
d4yv

 ∏
e∈E

1
−z2

e + iε
. (2.2)

One integrates over the four dimensional Minkowski space location of each internal vertex.
Accounting for symmetry factors results in an expression for the scalar n-point correlation
function,

Γ(x1, . . . , x|V ext|) =
〈

0|T (ϕ(x1) · · ·ϕ(x|V ext|))|0
〉

=
∑
G

1
SymG

AG(x1, . . . , x|V ext|), (2.3)

where we sum over all graphs G from a given scalar QFT with the given, fixed external
vertices V ext.

– 3 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
2

2.2 The triangle diagram in FOPT

In this section we treat the FOPT representation of the triangle. It will serve as a prototype
for later derivations in this paper, because it is simple enough to show all details, while
also exhibiting most of the subtleties associated with the general arguments. In coordinate
space the triangle diagram can be drawn as

x1

x2

x3

y1

y2

y3

e1

e2

e3

e4

e5

e6

.

We labelled the external vertex locations with the variables x1, x2 and x3 and their adjacent
internal vertices’ locations with y1, y2 and y3 respectively. To each edge we associate a
label ei, i = 1, . . . , 6. Given this labelling, the coordinate-space triangle diagram, according
to the Feynman rules presented in section 2.1, reads

AG(x1, x2, x3) =

(−ig)3

(2π)12

∫  ∏
v∈V int

d4yv

 1
(x1 − y1)2(x2 − y2)2(x3 − y3)2(y1 − y2)2(y2 − y3)2(y1 − y3)2 ,

(2.4)

where a negative iε prescription is assumed for all propagators. The expression AG is a
function of the three external coordinates x1, x2, x3.

Our first aim is to perform the time integrations
[∫

dy0
v

]
in eq. (2.4) explicitly. We will

do so by employing the residue theorem together with a series of distributional identities,
which will allow us to cast the result in an especially elegant form. This approach works
analogous to TOPT, and results in an expression that is entirely combinatorial and canon-
ical, i.e. we can read off the expression from modified, flow-oriented Feynman graphs, and
there is a unique canonical expression for each such Feynman graph. The main result of
this section will then be the associated flow-oriented Feynman rules.

We aim for an expression for the following partially integrated version of AG, which
we denote by aG:

aG(x1, x2, x3, ~y1, ~y2, ~y3) =

(−ig)3

(2π)12

∫  ∏
v∈V int

dy0
v

 1
(x1 − y1)2(x2 − y2)2(x3 − y3)2(y1 − y2)2(y2 − y3)2(y1 − y3)2 .

(2.5)

Henceforth, we omit the variable dependence of aG, but emphasize that it depends on the
4-vector coordinates of the external vertices and the 3-vector coordinates of the internal
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vertices. To evaluate eq. (2.5) using the residue theorem it is convenient to introduce
auxiliary variables z0

e , for each e ∈ E, set equal to the time-difference between the vertices
connected through e via a delta function. These variables will be integrated from −∞ to
∞. Thus we have the representation

aG =(−ig)3

(2π)12

∫  ∏
v∈V int

dy0
v

[∏
e∈E

dz0
e

−z2
e + iε

]

×
[ 3∏
i=1

δ(z0
i − x0

i + y0
i )
]
δ(z0

4 − y0
12)δ(z0

5 − y0
13)δ(z0

6 − y0
23), (2.6)

where we reintroduced the iε prescription and uses the shorthand notation y0
ab = y0

a − y0
b .

Note that we implicitly broke a symmetry of the original integrand; by fixing for instance
z0

1 < 0 if y0
1 > x0

1 we implicitly chose an orientation of the edge e1. The reintroduction of
this symmetry will be important for the statement of the FOPT Feynman rules.

For each edge, we can use the integral representation of the delta function, δ(z) =∫∞
−∞

dE
2π e

iEz, to write aG as integrals of oscillating exponentials

aG = (−ig)3

(2π)12

∫ [∏
e∈E

dz0
edEe/(2π)
−z2

e + iε

] [ 3∏
i=1

dy0
i e
iEi(z0

i−x
0
i+y

0
i )
]

×eiE4(z0
4−y

0
12)+iE5(z0

5−y
0
13)+iE6(z0

6−y
0
23). (2.7)

Eventually, we will interpret the auxiliary variables Ee as the amount of energy that flows
through the edge e in the chosen orientation (notice the mass dimension of the Ee). We are
now ready to carry out the integration in the auxiliary variables z0

e of eq. (2.7). Reordering
eq. (2.7) gives

aG = (−ig)3

(2π)12

∫ [∏
e∈E

dEe
2π

] [ 3∏
i=1

dy0
i e
iEi(−x0

i+y
0
i )
]
e−iE4y0

12−iE5y0
13−iE6y0

23
∏
e∈E

∫
dz0

e

eiz
0
eEe

−z2
e + iε

.

(2.8)
The integrals over z0

e can be performed using the residue theorem. As the denominators
read−z2

e+iε = −(z0
e )2+|~ze|2+iε, the integrand has two poles, located at z0

e = ±
√
|~ze|2 + iε.

For Ee > 0, we close the contour of integration in the upper-half of complex plane, while
for Ee < 0, we close it in the lower half. In the former case, the pole contained in the
integration contour is z0

e =
√
|~ze|2 + iε, while in the latter case it is z0

e = −
√
|~ze|2 + iε.

Therefore, we have∫
dz0

e

eiz
0
eEe

−z2
e + iε

= −2πi
2|~ze|

(
ei(|~ze|+iε)EeΘ(Ee) + e−i(|~ze|+iε)EeΘ(−Ee)

)
, (2.9)

where we respected the iε-prescription by adding a small imaginary part to |~ze|. The above
expression means that we should treat negative and positive-energy flows through an edge
differently. This is the first key step in the flow-oriented perturbation theory formalism.
We will make this aspect explicit by writing the product of the sums of two terms as a sum
over 2|E| terms. Each resulting term can be interpreted as an assignment of flow directions
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to each edge of the graph. We will denote such an assignment as σ that assigns σe = ±1
to an edge e to indicate a positive or negative energy flow. Hence, we write the product as,

∏
e∈E

∫
dz0

e

eiz
0
eEe

−z2
e + iε

=
∑

σ∈{±1}6

∏
e∈E

−2πi
2|~ze|

eiσe(|~ze|+iε)EeΘ(σeEe), (2.10)

where σ runs over all vectors of length 6 with ±1 entries. Inserting this in the expression
for aG gives

aG = (−ig)3

(2π)12

∑
σ∈{±1}6

∫ [∏
e∈E

dEe
2i|~ze|

eiσe(|~ze|+iε)EeΘ(σeEe)
]

×
[ 3∏
i=1

dy0
i e
iEi(y0

i−x
0
i )
]
e−iE4y0

12−iE5y0
13−iE6y0

23 . (2.11)

Note that the iε ensures convergence of the Ee integrals. We can rearrange the exponentials
and resolve the integration over the y0

i variables by using the integral representation of the
delta function, but in reverse:

aG = (−ig)3

i6(2π)9

∑
σ∈{±1}6

∫ [∏
e∈E

dEe
2|~ze|

eiσe(|~ze|+iε)EeΘ(σeEe)
] [ 3∏

i=1
e−iEix

0
i

]

× δ(E1 − E4 − E5)δ(E2 + E4 − E6)δ(E3 + E5 + E6) . (2.12)

We observe that each of the delta functions is associated to an internal vertex y0
v and

that they enforce energy-conservation at each internal vertex. Performing the change of
variables Ee → σeEe, and resolving the theta functions gives

aG = (−ig)3

i6(2π)9

∑
σ∈{±1}6

[∏
e∈E

∫ ∞
0

dEe
2|~ze|

ei(|~ze|+iε)Ee

] [ 3∏
i=1

e−iσiEix
0
i

]

× δ(σ1E1 − σ4E4 − σ5E5)δ(σ2E2 + σ4E4 − σ6E6)δ(σ3E3 + σ5E5 + σ6E6).
(2.13)

Whenever the sign vector σ is such that the argument of a delta function is either a
strictly negative or positive sum of energies, then the integral is zero, as such sums cannot
vanish under the constraint Ee > 0. This implies that only a subset of the vectors σ
contribute. We will make heavy use of a diagrammatic interpretation of this integral in
order to correctly understand which such vectors lead to a non-zero contribution. When
we introduced in eq. (2.6) the auxiliary variables that correspond to time differences, we
implicitly chose an orientation for the graph. If z0

j = x0
j−y0

j , then we choose the orientation
of the j-th edge such that energy flows from the vertex yj to the vertex xj . Analogously, if
z0

4 = y0
1 − y0

2, then the 4-th edge orientation flows from y2 to y1. We can depict this chosen
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orientation as a directed graph, or digraph,

x1

x2

x3

y1

y2

y3

e1

e2

e3

e4

e5

e6

(2.14)

The sign vector σ can now be interpreted as flipping the orientations of edges in this
digraph. For example, if σ = (−1, . . . ,−1), then the corresponding digraph would have
all edge orientations flipped. If instead σ = (1,−1,−1, 1, 1,−1), then the corresponding
digraph is

x1

x2

x3

y1

y2

y3

e1

e2

e3

e4

e5

e6

(2.15)

As we can see from this example, the sum over all vectors σ is actually equal to the sum over
all possible orientations of the triangle graph. The energy-conservation conditions imposed
by the delta functions in eq. (2.13) can then be interpreted as enforcing the conservation
of energies at any internal vertex. As an example, let us look at the contribution of the
sign vector σ = (1, . . . , 1) orientation to eq. (2.14),

E1 − E4 − E5 = 0

−E6 + E2 + E4 = 0

E3 + E5 + E6 = 0

x1

x2

x3

y1

y2

y3

e1

e2

e3

e4

e5

e6

(2.16)

where we included the conditions imposed by the delta functions into the graphical rep-
resentation. The energy conservation condition in orange of the bottom right vertex is a
sum of positive energies. Such an energy conservation condition can never be satisfied.
It follows that this orientation gives no contribution to the FOPT representation of the
triangle. It is actually quite easy to see that the solution to the delta function constraint
coincides with the physically intuitive picture of a realizable energy flow through the dia-
gram along the indicated directions. A digraph gives a non-zero contribution if edges are
followed in the positive orientation, and two conditions are fulfilled: (i) we must be able to
reach each vertex by starting from some external vertex, and (ii) we must be able to reach
some external vertex if we start form any vertex. Even though the y3 vertex in the digraph
in eq. (2.16) can be reached from many external vertices by following a positive route, we
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cannot reach any external vertex if we start from it. Hence, there is no proper energy-flow
possible with the assigned orientation. The orientation of eq. (2.15) can be depicted with
its associated delta function arguments as

E1 − E4 − E5 = 0

E6 − E2 + E4 = 0

−E3 + E5 − E6 = 0

x1

x2

x3

y1

y2

y3

e1

e2

e3

e4

e5

e6

(2.17)

In this case, the combinatorial condition is fulfilled and we can comply with the previously
problematic condition imposed by the delta function from the bottom right vertex. Hence,
this orientation provides a non-zero contribution.

This utility of the graphical representation suggests a definition of the Feynman integral
aG,σ associated to a single digraph (i.e. a graph G with an orientation σ). We define

aG,σ(x1, x2, x3, ~y1, ~y2, ~y3) = (−ig)3

i6(2π)9

[∏
e∈E

∫ ∞
0

dEe
2|~ze|

ei(|~ze|+iε)Ee

] [ 3∏
i=1

e−iσiEix
0
i

]
× δ(σ1E1 − σ4E4 − σ5E5)δ(σ2E2 + σ4E4 − σ6E6)δ(σ3E3 + σ5E5 + σ6E6) ,

(2.18)

such that
aG(x1, x2, x3, ~y1, ~y2, ~y3) =

∑
σ

aG,σ(x1, x2, x3, ~y1, ~y2, ~y3) , (2.19)

where the sum runs over all possible orientations of the graph G. Each such orientation
gives rise to a digraph (G,σ).

We will derive a compact representation for the functions aG,σ(x1, x2, x3, ~y1, ~y2, ~y3),
and illustrate the derivation for this compact representation with an example. Take the
orientation from eq. (2.15) and set σ = (1,−1,−1, 1, 1,−1). In this case we have

aG,σ = (−ig)3

i6(2π)9

[∏
e∈E

∫ ∞
0

dEe
2|~ze|

ei(|~ze|+iε)Ee

] [ 3∏
i=1

e−iσiEix
0
i

]
× δ(E1 − E4 − E5)δ(−E2 + E4 + E6)δ(−E3 + E5 − E6).

(2.20)

To resolve the delta functions we need to choose a set of linearly independent energies. We
choose E3, E4, E6, which gives as linearly dependent energies

E1 = E3 + E4 + E6, E2 = E4 + E6, E5 = E3 + E6. (2.21)

We see that our choice has the property of expressing the dependent energies E1, E2, E5
as strictly positive sums of independent energies E3, E4, E6. This is an important property
that shall feature prominently in our derivation. In order to achieve a diagrammatic un-
derstanding of this property, let us look at the completed graph for this orientation. Graph
completion plays an important role within the theory of (dual)-conformal four-point Feyn-
man integrals and graphical functions (see e.g. [44]). The completed graph is obtained from
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the original one by gathering all external vertices into one special vertex ◦. For a graph G
with an orientation σ, i.e. (G,σ), we denote the associated completed digraph as (G,σ)◦.
For our present triangle example from eq. (2.17), the completed graph looks as follows:

. (2.22)

The condition that a proper energy-conserving flow exists on the original graph translates
to a graph-theoretical property of the completed graph, viz. the requirement that the com-
pleted graph is strongly connected (see e.g. [70, Ch. 10]). A digraph is strongly connected
if we can reach each vertex from any other vertex by taking some positively oriented route.
The contribution of a digraph in FOPT will only be non-zero if the associated completed
graph is strongly connected. Furthermore, a strongly connected digraph has a unique set
of cycles. A cycle is defined as a subset of edges of an oriented graph that compose a
positive-energy oriented path starting at a vertex and coming back to that same vertex.

In the running example of the triangle, this graph has exactly three oriented cycles
{p1, p2, p3} (depicted with coloured edges):

p1 : p2 : p3 : . (2.23)

Each of these three cycles has exactly one edge that is not contained in any other cycle.
For p1, using the original labels, it is e4. For p2, it is e3 and for p3, it is e6. This
choice of edges gives exactly the basis of energies that we used to write eq. (2.21), namely
E3, E4, E6. It turns out that for any strongly connected orientation such a choice can be
made. Furthermore, the three cycles above are canonical. We can only find exactly these
three cycles of the graph if we insist on the property of positive-energy flow. This is in
contrast to the usual covariant momentum representation, where we have many choices to
route the momenta through the diagram. In more mathematical terms, there is (up to
permutation) a unique basis of the first homology1 of G◦ in which each basis vector is a
simple, positively oriented cycle. Opening up the ◦-vertex leads to an interpretation of
p1, p2, p3 as three paths through the diagram that connect different external vertices,

−→

p1 p2 p3

(2.24)

1The first homology of a graph is the vector space spanned by all its loops.
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With our chosen basis, we are now ready to solve the delta functions in eq. (2.20). Carrying
out the E1, E2, E5 integrals we obtain

aG,σ = (−ig)3

i6(2π)9

[∫ ∞
0

dE3dE4dE6∏
e∈E 2|~ze|

]
×

× eiE4(|~z1|+|~z2|+|~z4|+x0
2−x

0
1+iε)eiE3(|~z1|+|~z3|+|~z5|+x0

3−x
0
1+iε)eiE6(|~z1|+|~z2|+|~z5|+|~z6|+x0

2−x
0
1+iε).

(2.25)

The remaining integrations are readily performed, which gives

aG,σ = (−ig)3

i6(2π)9
i3∏

e∈E 2|~ze|
1

(γp1 + x0
12 + iε)(γp2 + x0

13 + iε)(γp3 + x0
12 + iε) (2.26)

where γp1 , γp2 , γp3 are the path lengths associated to the cycles p1, p2, p3,

γp1 = |~z1|+ |~z4|+ |~z2|,
γp2 = |~z1|+ |~z5|+ |~z3|,
γp3 = |~z1|+ |~z5|+ |~z6|+ |~z2|.

(2.27)

Eq. (2.26) is the full FOPT expression associated to the digraph (2.15).

2.3 Derivation of the general FOPT Feynman rules

Having discussed the triangle diagram in detail, we can proceed to the general derivation
of the FOPT Feynman rules.

2.3.1 Cauchy integrations

We will perform the integrals over the time components y0
v of eq. (2.2) analytically via the

residue theorem. In fact, we are only interested in the partially integrated version aG of
AG which we already discussed in the triangle example:

aG(x1, . . . , x|V ext|, ~y1, . . . , ~y|V int|) = (−ig)|V int|

(2π)2|E|

 ∏
v∈V int

∫
dy0

v

 ∏
e∈E

1
−z2

e + iε
, (2.28)

with the relation AG(x1, . . . , x|V ext|) =
[∏

v∈V int
∫
d3~yv

]
aG(x1, . . . , x|V ext|, ~y1, . . . , ~y|V int|).

To perform the integration in eq. (2.28) in full generality, it is convenient to introduce
some additional notation. The edge displacement four-vectors zµe can be written as

zµe =
∑

v∈V int

Ee,v yµv +
∑

a∈V ext

Re,a xµa , (2.29)

where Ee,v and Re,a are incidence matrices of the graph G. To calculate these matrices,
we have to pick some arbitrary orientation of the edges of the underlying graph and set
Ee,v = +1 (−1) if the edge e is directed away from (towards) the internal vertex v. A
matrix entry Ee,v is 0 if the edge e is not incident to the vertex v. The matrix Re,a
is defined analogously, but only for external vertices labeled by the a index. The initial

– 10 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
2

choice of an orientation of the edges, which is necessary to define these matrices, is arbitrary
and the value of the integral does not depend on this choice.

Slightly abusing the previous notation, we can introduce one auxiliary integration
variable z0

e for each edge, fixed to be the time difference between its incident vertices,

aG = (−ig)|V int|

(2π)2|E|

 ∏
v∈V int

∫
dy0

v

(∏
e∈E

∫ ∞
−∞

dz0
e

δ
(
z0
e − Ee,v y0

v −Re,a x0
a

)
−z0

e
2 + ~z 2

e + iε

)
, (2.30)

where we implicitly sum over the indices v and a in the argument of the delta function.
We then again use the integral representation of the δ function, δ(z) =

∫∞
−∞

dE
2π e

iEz (where
E is an auxiliary variable with dimensions of energy), to arrive at

aG = (−ig)|V int|

(2π)2|E|

 ∏
v∈V int

∫
dy0

v

∏
e∈E

∫ ∞
−∞

dz0
e

∫ ∞
−∞

dEe
2π

eiEe(z0
e−Ee,v y0

v−Re,a x0
a)

−z0
e

2 + ~z 2
e + iε

 . (2.31)

Carrying out the z0
e integrations using Cauchy’s theorem is now straightforward (see

eq. (2.9)). It gives rise to the sum of two terms that we will interpret as a positive (clos-
ing the contour in the upper half-plane) and a negative energy contribution (closing the
contour in the lower half-plane):

aG = (−ig)|V int|(−i)|E|
(2π)|E|

 ∏
v∈V int

∫
dy0

v


×
[∏
e∈E

∫ ∞
−∞

dEe
2|~ze|

e−iEe(Ee,v y0
v+Re,a x0

a)
(
Θ(Ee)eiEe(|~ze|+iε) + Θ(−Ee)e−iEe(|~ze|+iε)

)]
, (2.32)

where the iε can be dropped in the denominators as it only matters if ~ze = 0, which is an
end-point singularity.

2.3.2 Energy flows and digraphs

We now interpret the terms of the integral in eq. (2.32) as energy flows and split the integral
into 2|E| terms:

aG(x1, . . . , x|V ext|, ~y1, . . . , ~y|V int|) =
∑

σ∈{±1}|E|
aG,σ(x1, . . . , x|V ext|, ~y1, . . . , ~y|V int|) , (2.33)

where (with suppressed dependence on the arguments of aG,σ),

aG,σ = (−ig)|V int|

(2π)|E|
∫  ∏

v∈V int

dy0
v

[∏
e∈E

∫ ∞
−∞

dEe
2i|~ze|

eiEe(−Ee,v y0
v−Re,a x0

a+σe(|~ze|+iε))Θ(σeEe)
]
.

(2.34)
We can identify the y0

v integrations with Fourier representations of the δ function. These δ
functions give rise to energy conservation constraints at each internal vertex and cast aG,σ
into the form

aG,σ = (−2πig)|V int|

(2π)|E|
∫ ∏

e∈E

[ dEe
2i|~ze|

eiEe(−Re,a x
0
a+σe(|~ze|+iε))Θ(σeEe)

] ∏
v∈V int

δ

(∑
e∈E

Ee Ee,v

)
.

(2.35)
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x1

x2

x3

x|V ext|

x|V ext|−1

x|V ext|−2

• • •G

→

• • •G◦

Figure 1. Illustration of the completed graph G◦ that is obtained after adding the artificial vertex
◦ at infinity.

The change of variables σeEe → Ee resolves the Θ function, and because σ2
e = 1 we get

aG,σ = (−2πig)|V int|

(2π)|E|
∫
R|E|+

∏
e∈E

[ dEe
2i|~ze|

eiEe(−σeRe,a x
0
a+|~ze|+iε)

] ∏
v∈V int

δ

(∑
e∈E

σeEe Ee,v

)
,

(2.36)
where we integrate over all positive energies Ee. Note that the σe only appears in front of
incidence matrices Ee,v or Re,a. Flipping the sign of some e-indexed row in these incidence
matrices just changes the previously chosen arbitrary orientation by flipping the direction
of the e-th edge. It is clear that the starting orientation does not matter, as we eventually
sum over all orientations by flipping each edge in all possible ways. Therefore, we can forget
about the σe-sums and sum over all different overall orientations of the graph instead by
always changing the E and R-matrices accordingly. Such an orientation of the graph shall
be denoted by σ, in the obvious way. For each orientation σ, we have different E and
R-matrices. The data of the integrand is therefore combinatorially encoded in the graph G
with an assigned orientation σ. As before we will denote the resulting digraph as (G,σ).
We can thus rewrite the integral in eq. (2.36) as

aG,σ = (−2πig)|V int|

(2π)|E|
∫
R|E|+

[∏
e∈E

dEe
2i|~ze|

eiEe(−Rσ
e,a x

0
a+|~ze|+iε)

] ∏
v∈V int

δ

(∑
e∈E

Ee Eσe,v

)
, (2.37)

where we absorbed the entire dependence on σ into the incidence matrices. That means
Eσe,v is +1 if under the orientation σ the edge e is pointing away from the vertex v, −1 if
it points towards v and 0 if e is not incident to v, Rσe,a is defined analogously.

Standard symmetry factor arguments (i.e. by the orbit-stabilizer theorem) also allow
us to rewrite eq. (2.33) as

aG(x1, . . . , x|V ext|, ~y1, . . . , ~y|V int|)
SymG

=
∑
〈σ〉

aG,σ(x1, . . . , x|V ext|, ~y1, . . . , ~y|V int|)
Sym(G,σ) , (2.38)

where we sum over all nonequivalent orientations σ of the graph G. Sym(G,σ) is the
symmetry factor of the digraph (G,σ). The calculation of a digraph symmetry factor is
the same as for covariant diagrams if all edges were associated to charged particles. There
is a positive-energy flow on each edge of the graph in the dictated direction, which is
conserved at each vertex by the δ-functions in eq. (2.37). Due to this conservation law,
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not all possible orientations of a graph give a non-trivial contribution as we illustrated in
detail in the last section and will expand upon next.

2.3.3 Canonical cycle basis and admissible paths

Recall that for each graph G we can form the associated completed graph G◦ by joining all
the external vertices into a new vertex ◦. This process is illustrated in figure 1 and works
analogously for digraphs. A digraph is strongly connected if there is a positively oriented
path between any ordered pair of vertices [70, Ch. 10]. Such a strongly connected digraph
comes with a canonical cycle basis, which we can find as follows: start with some directed
edge e(1)

1 pointing from some vertex va to another vertex vb. If va = vb, we have a tadpole
cycle, which we take as one of our canonical base cycles. If we assume that va 6= vb, then,
by strong connectivity, there must be some oriented path in (G,σ)◦ that we can follow
to go back from vb to va in a full oriented cycle. Moreover, we can require that such a
cycle consisting of a set of edges p = {e(p)

1 , e
(p)
2 , . . .} does not visit any vertex twice. We

can pick such a path and declare it to be our first independent oriented cycle p1. Next,
we pick some edge that was not in this first cycle and construct another closed oriented
cycle that contains this edge. For this second cycle p2 we are allowed to revisit edges that
have been in p1, but clearly p1 6= p2 as p2 contains at least one edge that has not been
in p1. Continuing this, we start again with another edge that has neither been visited
by the oriented cycle p1, nor p2, to find a third cycle and so on until no edges are left.
In each step, we are guaranteed to find a closed oriented cycle by the strong connectivity
requirement. The remarkable observation is that the resulting set of cycles p1, . . . , pL is
unique up to renumbering of the path labels.

The contribution of the directed graph (G,σ) will only be non-zero if the associated
completed digraph (G,σ)◦ is strongly connected. We will denote the canonical cycle basis
of the completed digraph (G,σ)◦ as Γ = {p1, . . . , p|Γ|} where we omit the explicit reference
to the digraph (G,σ) if it is clear from the context. Opening up the completed graph again,
gives rise to a set of paths in the (uncompleted) digraph (G,σ). In this context we will
also call the elements of Γ the set of admissible paths of (G,σ). Note that every admissible
path is either a completely internal and closed cycle in G, which does not pass any external
vertex, or it is a path that starts and ends at external vertices without passing another
external vertex in-between. We will call such open paths routes through the graph.

Since the graph (G,σ)◦ has |V int| + 1 vertices including the special vertex ◦, and
|E| edges, one can conclude, using the graph’s Euler characteristic, that the digraph has
at most |E| − |V int| − 1 + 1 = |E| − |V int| independent cycles. That means there are
|E| − |V int| admissible paths of the digraph (G,σ). The energy integral in eq. (2.37)
is effectively |E| − |V int| dimensional, due to the |V int| delta functions. This calculation
suggests therefore that we can associate each admissible path of (G,σ) with an independent
energy integration.

It is instructive to compare this to the way usual momentum space Feynman integrals
are written as unconstrained integrals over a set of independent loops. In the case of
momentum space Feynman integrals it is known that there is a lot of ambiguity in the way
the loop momenta can be routed through the graph. In this sense, the momentum Feynman
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space integral is thus a highly ‘non-canonical’ object. This can cause a severe problem, as
it quickly becomes hard to tell if one integral is equal to another one: there are non-trivial
relations between these integrals. Fixing this problem is challenging and is usually done by
solving complicated systems of integration by parts (IBP) relations between the integrals.
Our observation indicates that this IBP problem could be much milder in our coordinate
space framework.

Just as in the momentum space loop integral case, we can resolve the δ functions in
eq. (2.37) by introducing one integration variable Ep for each admissible path p ∈ Γ. The
delta functions are resolved with the choice of coordinates

Ee =
∑
p∈Γ

s.t. e∈p

Ep , (2.39)

where we sum over all admissible paths of (G,σ), that contain the edge e. This is still
analogous to the loop momentum integral case, except for the fact that we have a dictated
orientation that we need to follow in our cycles. Using these energy variables in eq. (2.37)
resolves the delta functions and gives

aG,σ = (−2πig)|V int|

(2πi)|E|
∫
R|Γ|+

∏
p∈Γ

dEp

[∏
e∈E

1
2|~ze|

]
×

exp

i∑
e∈E

∑
p∈Γ

s.t. e∈p

Ep
(
−Rσe,a x0

a + |~ze|+ iε
) .

(2.40)

Recall that there is an implicit summation over a. Changing the order of summation in
the exponential renders integration in the remaining energy variables straightforward, and
gives a product of trivial oscillatory integrals

aG,σ = (−2πig)|V int|

(2πi)|E|

[∏
e∈E

1
2|~ze|

] ∏
p∈Γ

∫ ∞
0

dEp exp

iEp
∑
e∈p

(
−Rσe,a x0

a + |~ze|+ iε
) .

(2.41)
We can now perform the Ep integrations. The ∞ boundary term is going to vanish by the
ε > 0 assumption. The final expression for the FOPT representation of a digraph (G,σ)
is remarkably simple and amounts to

aG,σ = (2πg)|V int|

(−2π)|E|

[∏
e∈E

1
2|~ze|

] ∏
p∈Γ

1∑
e∈p

(
−Rσe,a x0

a + |~ze|+ iε
) . (2.42)

The term Rσe,a x0
a is only non-zero if the admissible path p goes from external to external

vertex. It can be identified with the time difference of the two corresponding vertices. The
other term in the denominator is the total Euclidean path length of the admissible path.
We will discuss this entirely combinatorial formula in the next section.
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2.4 FOPT Feynman rules

The procedure illustrated in the last section generalizes to all Feynman diagrams. It
provides an alternative perturbative decomposition of correlation functions:

Γ(x1, . . . , x|V ext|) =
〈

0|T (ϕ(x1) · · ·ϕ(x|V ext|))|0
〉

=
∑

(G,σ)

1
Sym(G,σ)AG,σ(x1, . . . , x|V ext|),

(2.43)
where we sum over all topologically different digraphs (G,σ), i.e. graphs G from the given
scalar QFT with a specified energy flow orientation on the propagators. Note that in
contrast to ‘old-fashioned’, or time-ordered perturbation theory, where each covariant inte-
gral is replaced by |V int|! time-ordered integrals, we get at most 2|E| energy-flow-oriented
integrals in our coordinate-space focused approach.

By eq. (2.38), the FOPT Feynman rules provide a way of decomposing an individual
covariant Feynman integral into its different flow-oriented components:

1
SymG

AG(x1, . . . , x|V ext|) =
∑
〈σ〉

1
Sym(G,σ)AG,σ(x1, . . . , x|V ext|), (2.44)

where we sum over all nonequivalent ways to orient the graph G via σ.
An integral expression for AG,σ(x1, . . . , x|V ext|) can be found using the following, en-

tirely combinatorial recipe:

1. AG,σ = 0 if the completed directed graph (G,σ)◦ is not strongly connected.

2. Multiply by a factor of −ig for each interaction vertex.

3. For each edge e of G multiply by a factor −i
(8π2)|~ze| where ~ze = ~yv − ~yu and ~yv, ~yu are

the coordinates of the internal or external vertices to which the edge e is incident.

4. For each admissible path p of (G,σ) (i.e. for each cycle in the canonical cycle basis
of (G,σ)◦) multiply by a factor of i/ (γp + τp + iε) , where

γp =
∑
e∈p
|~ze| (2.45)

is the sum over all edge lengths that are in the cycle and τp is either the time passed
between the starting and ending external vertices of the path or vanishes if the cycle
does not go through the ◦ vertex.

5. For each internal vertex v of the graph G integrate over three-dimensional space∫
d3~yv and multiply by 2π.

Note that the iε can be dropped for cycles that do not go through the special vertex ◦ as
the denominator is only positive and the corresponding pole is an end-point singularity.
We can summarize these Feynman rules as follows. For a given digraph (G,σ) with cycle
basis Γ, where all interaction vertices in G are internal vertices and vice-versa, we have

AG,σ(x1, . . . , x|V ext|) = (2πg)|V int|

(−4π2)|E|

 ∏
v∈V int

∫
d3~yv

(∏
e∈E

1
2|~ze|

) ∏
p∈Γ

1
γp + τp + iε

. (2.46)
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2.5 A simple example: the bubble graph

We now treat the simple example of the bubble graph to show the use of the FOPT
Feynman rules. It will also show how UV singularities are conveniently isolated in FOPT.
The graph is

x1 x2
y1 y2

1

2

3 4 (2.47)

The traditional coordinate-space Feynman integral associated to this diagram reads,

AG(x1, x2) = (−ig)2

(4π2)4

∫
d4y1d4y2

1
−z2

1 + iε

1
−z2

2 + iε

1
−z2

3 + iε

1
−z2

4 + iε
. (2.48)

The symmetry factor of the graph is 2, because we can permute both edges of the bubble.
Adding the ◦ vertex that joins the external vertices results in

y1 y2

1

2

3 4

x1 x2

(2.49)

There are 12 topologically distinguished ways to give an orientation to the edges of this
graph:

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(2.50)

Note that we are not allowed to permute the edges that are incident to the ◦ vertex as this
would correspond to a permutation of the external vertices of the original graph. We can
think of the ◦ vertex and the edges that are incident to it as fixed while computing the
symmetry factor. The edge-oriented graphs (1), (3), (4), (6), (7), (9), (10), (12) have there-
fore a symmetry factor of 2 and the other graphs have a trivial symmetry factor of 1. Of
these directed graphs only (1), (2), (8) and (9) are strongly connected as one can easily
check. In the remaining directed graphs, we can always find a vertex (including ◦) that has
only in-going or out-going incident edges. These graphs are forbidden as a consequence
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of energy conservation and positivity. At this point it is good to remark that there are
also non-strongly connected graphs that do not have a vertex with only in- or out-going
incident edges. Examples are graphs that consist of two cycles, each with positive cyclic
energy flow, which are connected by edges only pointing from cycle 1 to cycle 2.

The completed directed graph (1) has two independent cycles, 314 and 324, with the
edge numbering as indicated in (2.47).

−→

(1) p1 p2

(2.51)

Both cycles pass the ◦ vertex. We find by the FOPT Feynman rules from section 2.4 that

AG,σ(1)(x1, x2) =
(2πg)2

(8π2)4

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4|

1
|~z3|+ |~z1|+ |~z4|+ τ + iε

1
|~z3|+ |~z2|+ |~z4|+ τ + iε

,
(2.52)

where we defined τ = x0
2 − x0

1. The graph (2) has the independent cycles 314 and 12. The
latter cycle does not pass the ◦ vertex. Therefore,

AG,σ(2)(x1, x2) = (2πg)2

(8π2)4

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4|

1
|~z3|+ |~z1|+ |~z4|+ τ + iε

1
|~z1|+ |~z2|

. (2.53)

For the graph G we have ~z1 = ~z2. By changing integration variables from ~y1, ~y2 to ~y1, ~z1 =
~y2 − ~y1, we find that

AG,σ(2)(x1, x2) = (2πg)2

(8π2)4

∫ d3~y1d3~z1
|~z3||~z4|

1
|~z3|+ |~z1|+ |~z4|+ τ + iε

1
2|~z1|3

. (2.54)

Basic power counting reveals that the integrand features a UV singularity for ~z1 → 0. The
cycle that loops between the vertices ~y1 and ~y2 is associated to such a singularity. The
intuitive explanation of this in the FOPT formalism is that the energy that flows through
this cycle is unbounded and can lead to a UV divergence.2

The directed graph (8) has exactly the flipped orientation of (2). Therefore

AG,σ(8)(x1, x2) = (2πg)2

(8π2)4

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4|

1
|~z3|+ |~z1|+ |~z4| − τ + iε

1
|~z1|+ |~z2|

. (2.55)

Analogously the graph (9) has the flipped orientation of (1)

AG,σ(9)(x1, x2) =

= (2πg)2

(8π2)4

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4|

1
|~z3|+ |~z1|+ |~z4| − τ + iε

1
|~z3|+ |~z2|+ |~z4| − τ + iε

.
(2.56)

2We do not address the issue of regularization of divergent FOPT graphs in this paper. We comment
on possible approaches to UV renormalisation in the conclusions.
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Observe that flipping the complete orientation only results in a sign change of all external
time differences. By collecting the overall and individual symmetry factors, we have

1
2A(x1, x2) = 1

2AG,σ(1) +AG,σ(2) +AG,σ(8) + 1
2AG,σ(9) . (2.57)

The digraphs (G,σ(2)) and (G,σ(8)) feature UV singularities, as expected as G is a UV
singular graph in D = 4; the other contributions are finite.

2.6 Routes, cycles and UV singularities

As seen in the last section, UV singularities in the FOPT representation follow the intuition
expected from momentum space: they can be associated with a set of internal vertices
collapsing to a single point. In the FOPT representation, these limits correspond to the
vanishing of denominators corresponding to closed cycles in (G,σ). These in turn lead to
a divergence of the integrand. A basic power counting argument helps decide whether the
resulting singularity is integrable or not.

In this section we will briefly explain the general power counting procedure in the FOPT
representation. To do so, we first recall that the admissible paths Γ of a digraph (G,σ)
(having a strongly connected completed digraph (G,σ)◦) fall into two sets: routes Γext,
which connect two external vertices and pass internal vertices in between, and cycles Γint,
which are closed simple cycles that consist of internal vertices only. We have Γ = Γext∪Γint.

Even though the FOPT representation can also deal with the more general case, we
assume from now on that external vertices of our graph are attached to one edge only. Note
that in this case we can also separate the external vertices of our digraphs (G,σ) into two
subsets: the set of in-going external vertices V ext

in and the set of out-going external vertices
V ext

out such that V ext
in ∪V ext

out = V ext. They are defined such that in/out-going external vertices
have energy flowing in/out of them.

Because all admissible paths in the canonical cycle basis Γ are oriented, each route in
Γext has to connect an in-going external vertex with an out-going external vertex. For a
given route r ∈ Γext, we will denote with i(r) its initial in-going external vertex and with
f(r) its final out-going external vertex. These notions are illustrated in figure 2.

With this notation, we write the FOPT representation as

AG,σ(x1, . . . , x|V ext|) =

= (2πg)|V int|

(−4π2)|E|
∫ ∏

v∈Vint d3~yv

(∏e∈E 2|~ze|) (∏c∈Γint γc)
[∏

r∈Γext(γr − x0
i(r) + x0

f(r) + iε)
] , (2.58)

where we drop the iε for the cycles, as γc = ∑
e∈c |~ze| and γc → 0 is an end-point singularity,

which cannot be regulated via analytic continuation. Only the contribution from the factor∏
v∈Vint d3~yv

(∏e∈E 2|~ze|) (∏c∈Γint γc)
(2.59)

is relevant for the short distance behaviour of the integrand, since the denominators cor-
responding to routes in eq. (2.58) will not vanish if the time difference between in- and
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x1 x5

x2 x3

x4

(a) Route, r ∈ Γext.

x1 x5

x2 x3

x4

(b) Cycle, c ∈ Γint.

Figure 2. Admissible paths of different types through a digraph (G,σ): a route and a cycle.
The illustrated graph has in-going external vertices V ext

in = {1, 2} and out-going external vertices
V ext

out = {3, 4, 5}. The route r connects the in-going vertex 1 to the out-going vertex 5. Hence,
i(r) = 1 and f(r) = 5.

out-vertices is finite. This fact makes the divergent terms in FOPT either having a UV
or IR (i.e. long distance) divergent nature, but not both at the same time. This feature
allows us to analyze UV and IR divergences separately.

In this section, we are interested in the UV case, i.e. limits in which the coordinates of a
collection of internal vertices V ′ ∈ V int, which we can assume to be connected, coincide. We
can approach this limit by picking a reference vertex w ∈ V ′ and changing to the relative
coordinates d3~yv → d3~zwv for all v ∈ V ′ with v 6= w, where ~zwv = ~yv − ~yw. Rescaling
~zwv → λ~zwv and considering λ→ 0 corresponds to the desired UV limit.

The power counting procedure for the integrand above is now straightforward. The
part of the measure with nontrivial scaling behaviour becomes ∏v∈V ′,v 6=w d3~zwv. Each edge
e that connects any pair of vertices in V ′ gives a nontrivial scaling in the denominator, as
|~ze| scales like λ. Furthermore, γc scales as λ if the cycle c traverses only vertices in V ′.

Let E′ be the set of edges between the vertices V ′, and Γint′ the set of cycles that only
contain vertices in V ′. The relevant part of the integrand scales as λ3(|V ′|−1)−|E′|−|Γint′| and
we find that the degree of divergence of the integral reads,

(degree of divergence) = 3(|V ′| − 1)− |E′| − |Γint′|. (2.60)

We will encounter a UV singularity only if the degree of divergence is ≤ 0. We find the
FOPT version of Weinberg’s theorem [71]: a FOPT Feynman integral is UV-finite, if for
each subset of internal vertices V ′ ⊂ V int, we have 3(|V ′|− 1)−|E′|− |Γint′| > 0. Likewise,
the degree of divergence of a coordinate-space covariant Feynman integral as in eq. (2.2)
is given by 4(|V ′| − 1) − 2|E′| for an induced subgraph given by V ′ and E′ (see e.g. [43,
Proposition 11] for a more detailed statement).

We can now make a connection between the FOPT and covariant UV divergences.
The claim is that if the subgraph of a digraph (G,σ) induced by V ′ (i.e. the subgraph
given by the vertices in V ′ and all edges connecting them) is strongly connected, then the
degree of divergence coincides with the usual Feynman integral degree of divergence. To see
this, observe that for a strongly connected graph we have the maximum number of cycles
allowed in it and every edge of the graph is part of some cycle. Strong connectivity implies
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connectivity and hence we can apply Euler’s formula to determine the number of its cycles
as |Γint′| = |E′|−|V ′|+1. From this we find that 3(|V ′|−1)−|E′|−|Γint′| = 4(|V ′|−1)−2|E′|,
coinciding with the covariant power counting of eq. (2.2). Therefore, the full UV scaling
of the original Feynman integral is only realized if the subgraph is strongly connected. A
non-strongly connected subgraph has less singular UV scaling than a strongly connected
orientation of the same subgraph, since it has fewer cycles. Briefly summarized, we find
that the fewer cycles a FOPT diagram has, the more moderate its UV behaviour is.

3 Finite and long distance singularity structure of FOPT diagrams

In this section we proceed to discuss the finite and long distance singularities within the
FOPT representation. We do so in order to compare with previous studies of the coordinate
space singularities of Green’s functions, as well as to provide a motivation for a study of
the singular structure at the S-matrix level in the next section. Our findings are as follows:

• The vanishing of denominators corresponding to routes, γr with r ∈ Γext, leads to
singularities that are located at finite values of the distance between vertices in the
graph. They are compatible with the studies performed in refs. [47–49]. However,
their relation with momentum space infrared singularities is not direct. We present
two examples in which the behaviour of the integrand at these finite distance singu-
larities does not conform to the common expectation based on a momentum space
analysis.

• The FOPT expression of the triangle diagram is mostly well-behaved at large values
of the distances between vertices. The only non-integrable singularity we find does
not have a direct interpretation in terms of the usual collinear and soft singularities
of the triangle.

3.1 Finite distance singularities

The finite distance singularity structure of coordinate space diagrams has been extensively
studied in refs. [47–49]. In particular, the authors identify pinched singularities that are fi-
nite distance in nature (that is, neither short distance nor long distance). The investigation
of ref. [49], in particular, is based on a coordinate space analogue of the Landau pinching
conditions (a complete proof of the latter conditions can be found in [72]). Consider the
integral

I =
∫ [ n∏

i=1
dwi

]
N({wj}nj=1)∏m
i=1Di({wj}nj=1) , (3.1)

where N is an entire function. For the purposes of this discussion, we work with a sufficient
condition for pinching: an n-vector ~w ? is said to be located on a pinch singularity if, for
some index i,

Di({wj}nj=1)
∣∣
~w=~w ? = 0

∇~wDi({wj}nj=1)
∣∣
~w=~w ? = 0 . (3.2)
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Eq. (3.2) implies the impossibility of regulating the singularity through a contour defor-
mation.3 Since the FOPT representation of eq. (2.46) has denominators that are in direct
correspondence with oriented paths of the graph, reproducing the result of ref. [49] is rather
straightforward. We consider the denominator ∏r∈Γext(γr−x0

i(r) +x0
f(r) + iε) so that, using

eq. (3.2), we obtain for any route r ∈ Γext

γr({~yv}v∈V int) = −x0
f(r) + x0

i(r)

∇~yv′γr({~yv}v∈V int) = 0, ∀v′ ∈ V int . (3.3)

Labelling the vertices according to their order of appearance in the path, we have

γr = |~xi(r) − ~y1|+ |~xf(r) − ~yn|+
n−1∑
j=1
|~yj − ~yj+1|, (3.4)

the solution eq. (3.3) is

~y ?j = ~xi + αj(~xf(r) − ~xi(r)), αj > αj−1, αj ∈ [0, 1], j = 1, . . . , n .
−x0

f(r) + x0
i(r) = |~xf(r) − ~xi(r)|. (3.5)

The first condition establishes that all the vertices in the route r must lie on a line, and
that their order of appearance on that line must be the same as the order of appearance in
the route. The second condition requires the four-distance between an initial vertex xi(r)
and a final vertex xf(r) to be light-like. Assuming eq. (3.5) holds, we then find that the
behaviour of γr around its pinch points is quadratic

γr({~y ?j + δ~yj}nj=1)− |~xi(r) − ~xf(r)| = O(|δ~yj |2). (3.6)

While this seems a promising candidate for collinear singularity, a few wrinkles in the
previous argument give pause:

1. We expect IR singularities of momentum space Feynman integrals to be associated
to long distance singularities in coordinate space. The singular location of eq. (3.5)
describes a finite distance singularity, as no integration variable is set to be large.

2. There is no reason why −x0
f(r) +x0

i(r) = |~xf(r)−~xi(r)| should hold; since we know that,
in momentum space, external momenta are localised on their mass-shell, we would
expect external vertices not to be localised, since the two are related by a Fourier
transform (or equivalently, by the uncertainty principle).

Let us look at two examples which highlight the ambiguous nature of such finite distance
singularities:

1. The hen’s claw. We consider the FOPT diagram
x1

x2x3
y

=
∫

d3~y
1[∏3

j=1 2|~y − ~xj |
]∏3

`=2(|~x` − ~y|+ |~y − ~x1| − |~x` − ~x1|)
. (3.7)

3Note that pinching conditions take different forms in different formalisms (i.e. covariant perturbation
theory including Feynman parameters, three-dimensional representations, TOPT, etc).
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According to eq. (3.5), there is a pinched singularity when ~y ? = ~x3 + α(~x1 − ~x3),
α ∈ [0, 1] (and analogously when substituting 2 with 3). Using the parameterization
~y ? = ~x3 + α(~x1 − ~x3) + ~y⊥, we see that the measure contributes with two powers
of the transverse variable ~y⊥, while eq. (3.6) makes it clear that the denominator
also contributes with two powers. Overall, this gives a logarithmically divergent
behaviour in this limit. This finding is odd: in momentum space, such a diagram
would be completely finite and, for a cubic scalar theory, it would (after truncation
of external propagators) amount to a constant.

2. The triangle: we look specifically at the orientation

x1

x2

x3

y1

y2

y3 (3.8)

and at the pinched singular surface identified by the implicit equation

γr − |~x1 − ~x2| = |~x2 − ~y2|+ |~y2 − ~y1|+ |~y1 − ~x1| − |~x1 − ~x2| = 0,

which has the solution

~y ?1 (α1) = ~x1 + α1(~x2 − ~x1), ~y ?2 (α2) = ~x1 + α2(~x2 − ~x1), α1, α2 ∈ [0, 1], α2 > α1.

In order to approach the limit, we consider the parameterization ~y1 = ~y ?1 (α1) + ~y⊥1 ,
~y2 = ~y ?2 (α2) + ~y⊥2 . A simple power-counting procedure leads us to conclude that
the integration measure scales as d2~y⊥2 d2~y⊥1 while the singular surface only gives a
contribution of two powers in the denominator. Overall, this gives an integrable
degree of divergence. Carrying out the same argument for all other pinched surfaces
of all triangle orientations as well as the intersections of pinched surfaces, one finds
that the triangle has no finite distance singularity.4

The fact that these two diagrams do not reproduce the expectations concerning their IR
structure invites us to change our perspective, and shift our attention to the S-matrix.
First, we note that the S-matrix is constructed from truncated Green’s functions, while
here we considered FOPT expressions for non-truncated Green’s functions. Indeed this is
the reason that the hen’s claw has singular denominators in the first place. On top of this,
we must set x0

i(r) − x
0
f(r) = |~xf(r) − ~xi(r)|, which is at odds with localization of momenta

on the mass-shell. These two observations lead us to examine the S-matrix to correctly
identify IR singularities in the FOPT formalism. The S-matrix is a truncated object and
involves integration over the external coordinates x0

a, for all a ∈ V ext, via the Fourier
transform to momentum space.

4In contrast, in ref. [49], a logarithmic finite distance singularity is found for the triangle. However, in
their derivation, one of the three internal vertices is set to be at the origin, and the corresponding external
leg is truncated.
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3.2 Long distance singularities

We now briefly discuss long distance singularities of FOPT orientations, which we would
expect to map one-to-one to their momentum space analogues. In order to do so, let us
look again at the orientation of eq. (3.8) in the triangle diagram, and comment on the
absence of such long distance singularities. In particular, consider the following limits

1. Single limits: the limit ~y1 →∞ has the measure scaling as |~y1|2d~y1 and the denomi-
nator scaling as |~y1|6, giving integrable behaviour. The limit ~y2 →∞ has the measure
scaling as |~y2|2d~y2 and the denominator scaling as |~y1|5, giving integrable behaviour.
Finally, the limit ~y3 →∞ has the measure scaling like |~y3|2d~y3 and the denominator
scaling as |~y1|5, giving integrable behaviour.

2. Double limits: consider taking the limit ~y1, ~y2 → ∞. The scaling is indepen-
dent from ~y1 and ~y2 being collinear, as |~y1 − ~y2| is finite in the collinear case.
But the angle between ~y1 and ~y2 has to be fixed too, giving an extra suppress-
ing power from the integration measure. Thus, let us study the non-collinear case:
we have the measure scaling as |~y1|2|~y2|2d~y1d~y2, while the denominator scales as
|~y1 − ~y2||~y1|3|~y2|2max(|~y1|2, |~y2|2), giving integrable behaviour. Analogous integrable
behaviour can be found in the remaining two double limits.

The only limit that yields non-integrable behaviour is the one in which all three vertices
of the triangle approach infinity in different directions, which has no clear analogue in
momentum space.

The observations pointed out above motivate changing focus to the S-matrix in order
to correctly analyze IR singularities in FOPT diagrams. We will do this by using the FOPT
representation from the last section to construct a hybrid representation for the S-matrix,
where external parameters are given in momentum space, while internal integrations are
performed in coordinate space.

4 The S-matrix and its p-x representation

The FOPT representation, derived in section 2.3, gives a canonical representation of QFT
correlation functions in terms of three-dimensional integrals. However, its external data is
given in coordinate space, which makes it ill-suited for the direct computation of realistic
collider observables. This is reflected in the absence of a clear counterpart to IR singularities
in the FOPT representation, which in turn has repercussions on how manifestly physical
principles such as parton degeneracy and collinear mass factorization are realised within it.

In this section we will address this problem by constructing a new perturbative repre-
sentation of the S-matrix in momentum space. It is expressed as an integral over spatial
coordinates, even though the external data is given in momentum space. We therefore call
it the p-x representation of the S-matrix, as a reference to its hybrid nature.
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Recall that the retarded and advanced propagators in momentum space can be writ-
ten as

∆̃R
A

(p) = i

(p0 ± iε)2 − ~p2 = 1
2πi

∫
R4

d4zeiz·pδ(±)(z2) = 1
2πi

∫
R3

d3~z

2|~z |e
±i|~z|p0−i~z·~p . (4.1)

To give an expression for the S-matrix, we have to fix in- and out-going momenta. In
anticipation of our FOPT treatment of the S-matrix we index the in-going momenta by
V ext

in , {pi}i∈V ext
in

and the out-going momenta by V ext
out , {pf}f∈V ext

out
. The S-matrix element in

terms of the in- and out-going momenta is given by

S({pi}i∈V ext
in
, {pf}f∈V ext

out
) = Z |Vext|/2Γ̃T ({pa}a∈V ext) , (4.2)

where Γ̃T is the truncated Green’s function, with the typical convention that energy directed
towards the graph is positive, such that p0

i > 0 and p0
f < 0, and Z |Vext|/2 is the factor

accounting for the truncation of external self-energies, as established by the LSZ formula.
The external momenta should be set on-shell eventually, i.e. p0

i → |~pi|, for i ∈ V ext
in and

p0
f → −|~pf |, for f ∈ V ext

out . The truncated Green’s function can be obtained from the
ordinary Green’s function with no external self-energy insertions by the rule

Γ̃T ({pa}a∈V ext) =
[ ∏
i∈V ext

in

∆̃R(pi)
]−1[ ∏

f∈V ext
out

∆̃A(pf )
]−1

Γ̃({pa}a∈V ext). (4.3)

Notice that we use advanced and retarded propagators for in- and out-going particles re-
spectively, instead of the Feynman propagator ∆̃F . This is justified by the simple equation
∆̃F (p) = Θ(p0)∆̃R(p)+Θ(−p0)∆̃A(p) and the fact that in-coming (out-going) particles are
taken to have positive (negative) energy p0. We stress that Γ̃ has no external self-energy
insertions, but it does have external propagators. Γ̃ can then be obtained by Fourier trans-
forming its coordinate space counterpart, which we can express using FOPT. In particular,
we have

Γ̃({pa}a∈V ext) =
∫  ∏

a∈V ext

d4xa e
ixa·pa

Γ({xa}a∈V ext), (4.4)

where Γ({xa}a∈V ext) is the coordinate space correlation function in eq. (2.3) and, in agree-
ment to the combinatorial notation of section 2.6, V ext = V ext

in ∪ V ext
out .

4.1 Derivation of the p-x representation

In this section we derive the p-x representation of the S-matrix. It is a representation of
eq. (4.3) in terms of coordinate space integrals that are modulated by the Fourier trans-
formation of a certain polytope. We will show that this polytope is a variant of the flow
polytope (see e.g. [73]).

We use the FOPT representation of the correlation function in eq. (2.43) to express
the Fourier transformed correlation function in eq. (4.4):

Γ̃({pa}a∈V ext) =
∑

(G,σ)

1
Sym(G,σ)ÃG,σ({pa}a∈V ext), (4.5)
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where the Fourier transform of a FOPT orientation is given by

ÃG,σ({pa}a∈V ext) =
∫  ∏

a∈V ext

d4xa e
ixa·pa

AG,σ({xa}a∈V ext). (4.6)

We can use the FOPT representation with explicit separation of external and internal
paths, i.e. cycles and routes, in eq. (2.58) to write ÃG,σ({pa}a∈V ext) as

ÃG,σ({pa}a∈V ext) =

(2πg)|V int|

(−4π2)|E|
∫ (∏

a∈V ext d3~xae
−i~xa·~pa

) (∏
v∈V int d3~yv

)
(∏e∈E 2|~ze|) (∏c∈Γint γc)

fG,σ({p0
a}a∈V ext , {γr}r∈Γext),

(4.7)

where we split off the nontrivial time integration, which we plan on performing analytically,
through the definition

fG,σ({p0
a}a∈V ext , {γr}r∈Γext) =

∫ ∏
a∈V ext dx0

ae
ix0
ap

0
a∏

r∈Γext(γr − x0
i(r) + x0

f(r) + iε) . (4.8)

Let us perform the energy integrations over the external time variables x0
a analytically. To

this end we follow steps analogous to those performed in the derivation of section 2.3. We
introduce one auxiliary integration variable z0

r for each route r, parameterizing the time
difference between the external vertices i(r) and f(r),

fG,σ =
∫  ∏

a∈V ext

dx0
a e

ix0
ap

0
a

 ∏
r∈Γext

dz0
r
δ(z0

r − x0
i(r) + x0

f(r))
γr − z0

r + iε
. (4.9)

We then rewrite the delta functions using their Fourier representation, thus introducing an
extra integration in the energy Er,

fG,σ =
∫  ∏

a∈V ext

dx0
a e

ix0
ap

0
a

 ∏
r∈Γext

dz0
r dEr
2π

e
iEr

(
z0

r−x0
i(r)+x

0
f(r)

)
γr − z0

r + iε
. (4.10)

Integration over z0
r is performed trivially using the residue theorem. For Er > 0, we close

the contour in the upper-half of complex plane, where the pole z0
r = γr + iε is located. For

Er < 0, we close the contour in the lower-half of complex plane, where no pole is located.
In summary, this gives

fG,σ = (−i)|Γext|
∫  ∏

a∈V ext

dx0
a e

ix0
ap

0
a

 ∏
r∈Γext

dEre
iEr

(
γr−x0

i(r)+x
0
f(r)+iε

)
Θ(Er). (4.11)

To perform the integration over x0
a, we may write

fG,σ = (−i)|Γext|
∫ ∏

r∈Γext

[
dEre

iEr(γr+iε)Θ(Er)
]

×

 ∏
i∈V ext

in

∫
dx0

i exp
(
ix0
i p

0
i − i

∑
r3i

Erx
0
i

) ∏
f∈V ext

out

∫
dx0

f exp

ix0
fp

0
f + i

∑
r3f

Erx
0
f

 ,
(4.12)
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where we sum over all routes that include the indicated in- or out-going vertex in the last
two exponentials. Using the Fourier representation of the δ function, we can resolve the
integrals over the x0

a variables, yielding

fG,σ = (−i)|Γext|

(2π)|V ext|

∫  ∏
r∈Γext

dEre
iEr(γr+iε)Θ(Er)


×

 ∏
i∈V ext

in

δ

(
p0
i −

∑
r3i

Er

) ∏
f∈V ext

out

δ

p0
f +

∑
r3f

Er

 .
(4.13)

The Θ and δ functions in the above integral describe a polytope in the |Γext| dimensional
space of the energy integrations. This polytope is a variant of the flow polytope which
has various applications in combinatorics. We conclude that fG,σ is an evaluation of the
Fourier transform of this polytope, as we integrate exp (i∑r∈Γext Er(γr + iε)). The full
form of the p-x S-matrix representation is most conveniently given using this polytope.
For this reason, we will describe this polytope in detail in the next section.

4.2 The flow polytope

To every digraph (G,σ) with a given set of in- and out-going energies {p0
i }i∈V ext

in
and

{p0
f}f∈V ext

out
, we associate a polytope, F{p

0
a}

G,σ ⊂ R|Γext|. The polytope is defined by linear
equalities and inequalities that are given in the energy coordinates Er associated to the
routes r ∈ Γext. For each path, the respective energy represents the amount of energy that
flows through the specified path. Accordingly, the delta functions in eq. (4.13) enforce
energy conservation at each external vertex. In summary, F{p

0
a}

G,σ is swept out by all tuples
(Er)r∈Γext which fulfill

Er ≥ 0 for all r ∈ Γext ,∑
r3i

Er = p0
i for all i ∈ V ext

in ,

∑
r3f

Er = −p0
f for all f ∈ V ext

out .

(4.14)

The inequalities ensure a positive energy flow through each route and the two sets of
equalities ensure energy conservation at in- and out-going external vertices. Note that
the equations above imply overall energy conservation for the external data: summing
all the equalities with i ∈ V ext

in and subtracting those with f ∈ V ext
out , one obtains that∑

a∈V ext p0
a = 0, since each path has exactly one in- and one out-going vertex.

The eqs. (4.14) define a convex polytope, obtained from the intersection of the positive
orthant {(Er)r∈Γext ∈ R|Γext| : Er ≥ 0} with the |V ext| hyperplanes given by energy con-
servation constraints at the external vertices. It is moreover bounded, since the energies
are contained in the hypercube, 0 ≤ Er ≤ min

(
p0
i(r),−p

0
f(r)

)
. We can also find, depending

on the value of the external data, configurations of external energies where the eqs. (4.14)
cannot be fulfilled. In those cases, the flow polytope has no support and the contribution
of the digraph (G,σ) to the S-matrix is zero.
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x1 x5

x2 x3

x4

r r′

(a) Two routes r and r′.

y1

y2 y3

y5

y4

rt (r′)t

(b) Respective truncated routes.

Figure 3. Illustration of the truncation of routes.

To simplify the notation, in the following we denote vectors in the route space R|Γext|

with bold letters. The tuples (Er)r∈Γext ∈ R|Γext| are denoted as E ∈ R|Γext| and tuples
of path lengths (γr)r∈Γext ∈ R|Γext| as γ ∈ R|Γext|. We also can define the standard scalar
product E · γ = ∑

r∈Γext Erγr. We may use the definition of the polytope and the boldface
notation to rewrite eq. (4.13) in a more compact form,

fG,σ({p0
a}a∈V ext ,γ) = (−i)|Γext|

(2π)|V ext| δ

 ∑
a∈V ext

p0
a

 F̂{p0
a}

G,σ (γ + iε1) (4.15)

where 1 = (1, . . . , 1) is the all-ones-vector in R|Γext|. The Fourier transform, F̂{p
0
a}

G,σ (γ) of
the polytope F{p

0
a}

G,σ is given by

F̂{p
0
a}

G,σ (γ + iε1) =
∫
F{p

0
a}

G,σ

dE eiE·(γ+iε1). (4.16)

The integration over the bounded domain F{p
0
a}

G,σ , allows us to drop the iε prescription in
the generic case. We will however keep it in place now to study singular configurations
later on. The Fourier transform of a polytope enjoys many remarkable properties. For
instance it is bounded by the volume of the polytope. In our case we have∣∣∣F̂{p0

a}
G,σ (γ + iε1)

∣∣∣ ≤ Vol
(
F{p

0
a}

G,σ

)
for all γ ∈ R|Γ

ext|. (4.17)

Equality is only attained for γ = 0. Fourier transforms of polytopes are always linear
combinations of rational functions with phase factors as coefficients. An analytic expression
for such Fourier transforms can always be obtained algorithmically by computing a facet
presentation of the associated polytope (see e.g. [74]).

4.3 Truncated routes

In this section we will relate FOPT integrals to truncated FOPT integrals. This relation
is a special case of a general factorization property of the Fourier transform of the flow
polytope.

Let r be a route joining the external vertices i(r) ∈ V ext
in and f(r) ∈ V ext

out . Furthermore,
let i(r) and f(r) denote the only vertices adjacent to i(r) and f(r), respectively. The
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truncated version of the route r is given by all edges of r except for the initial and final
one. We will denote the length of the truncated route of a route r as γt

r (see figure 3). The
relation between the length γr of the original route and the truncated route is

γr = γt
r + |~xi(r) − ~y i(r)|+ |~xf(r) − ~y f(r)|. (4.18)

It also follows that the length of the truncated route, γt
r , does not depend on the position

of the external vertices ~xa, a ∈ V ext. Using this new notation we get, for scalar products
in route space,

E · γ =
∑

r∈Γext

Erγr =
∑

r∈Γext

Er
(
|~xi(r) − ~y i(r)|+ |~xf(r) − ~y f(r)|

)
+

∑
r∈Γext

Erγ
t
r . (4.19)

We can require that E ∈ F{p
0
a}

G,σ and use the constraints in eqs. (4.13) to get

∑
r∈Γext

Er|~xi(r) − ~y i(r)| =
∑

i∈V ext
in

|~xi − ~y i|
∑
r3i

Er =
∑

i∈V ext
in

p0
i |~xi − ~y i|, (4.20)

and similarly, ∑r∈Γext Er|~xf(r) − ~y f(r)| = −
∑
f∈V ext

in
p0
f |~xf − ~y f |. Hence,

E · γ =
∑

i∈V ext
in

p0
i |~xi − ~y i| −

∑
f∈V ext

in

p0
f |~xf − ~y f |+E · γ

t . (4.21)

Applying these observations to eq. (4.15) and using the definition of the Fourier transform
of the flow polytope in eq. (4.16) gives

fG,σ = (−i)|Γext|

(2π)|V ext| δ

 ∑
a∈V ext

p0
a

 ∏
i∈V ext

in

eip
0
i |~xi−~y i|

 ∏
f∈V ext

out

e
−ip0

f |~xf−~y f |

 F̂{p0
a}

G,σ (γt). (4.22)

We can now use the definition of the retarded and advanced propagators in eq. (4.1) to
relate the oscillating exponentials that we manifestly extracted from the Fourier transform
of the polytope to advanced and retarded propagators. In particular, we have

1
2πi

∫ d3~xa
2|~xa − ~y a|

e±ip
0
a|~xa−~y a|−i~xa·~pa = e−i~y a·~pa∆̃R

A
(p). (4.23)

Substituting eq. (4.22) into eq. (4.7), and using eq. (4.23), results in

ÃG,σ({pa}) = (2πg)|V int|i|V
ext|

(−4π2)|E|i|Γext|

[ ∏
i∈V ext

in

∆̃R(pi)
][ ∏

f∈V ext
out

∆̃A(pf )
]
δ

 ∑
a∈V ext

p0
a


×
∫ [∏

v∈V int d3~yv
] [∏

a∈V ext e−i~y a·~pa
]

[∏e∈Eint 2|~ze|] [∏c∈Γint γc]
F̂{p

0
a}

G,σ (γt + iε1), (4.24)

where Eint is the set of internal edges of (G,σ).
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Similar factorization of the Fourier transform of the flow polytope arises when the
underlying graph has a separating edge, i.e. an edge whose removal disconnects the graph.
It can be checked that in these cases, the Fourier transform of the whole graph factors into
the Fourier transforms of the flow polytopes associated to the 1PI components of the graph
and a couple of trivial phase factors. For instance, for a tree-level graph, the conditions
in eq. (4.14) have at most one solution. This solution is uniquely determined by enforcing
energy conservation at all vertices of the tree. Hence, the associated Fourier transform
then consists exclusively of phase factors.

4.4 The p-x S-matrix representation

The p-x representation of the S-matrix follows by comparing eq. (4.24) with the FOPT
expansion of the correlation function in eq. (4.5) and the definition of the S-matrix in
eq. (4.3):

S({pi}i∈V ext
in
, {pf}f∈V ext

out
) =

∑
(G,σ)

1
Sym(G,σ)SG,σ({pi}i∈V ext

in
, {pf}f∈V ext

out
), (4.25)

where we sum over all FOPT graphs. Following the partition of in- and out-going ex-
ternal vertices as indicated by the in- and out-going energies {p0

a}, the S-matrix element
SG,σ({pi}i∈V ext

in
, {pf}f∈V ext

out
) is given by

SG,σ =Z |V
ext|/2(2πg)|V int|i|V

ext|

(−4π2)|E|i|Γext| δ

 ∑
a∈V ext

p0
a


×
∫ [∏

v∈V int d3~yv
] [∏

a∈V ext e−i~y a·~pa
]

[∏e∈Eint 2|~ze|] [∏c∈Γint γc]
F̂{p

0
a}

G,σ (γt + iε1). (4.26)

Except for the oscillating exponential term, the integral above is invariant under joint trans-
lations of all internal coordinates. We may pick some root vertex w ∈ V int of the graph and
shift all other ~y-vectors as ~yv → ~yw + ~yv. This way, we remove all nontrivial dependence of
the ~yw vector from the integrand. The integration over ~yw gives a momentum-conservation-
ensuring δ function. In equations,

SG,σ = Z |V
ext|/2(2π)3(2πg)|V int|i|V

ext|

(−4π2)|E|i|Γext| δ(4)

 ∑
a∈V ext

pa

 sG,σ({pi}i∈V ext
in
, {pf}f∈V ext

out
), (4.27)

where sG,σ = ({pi}i∈V ext
in
, {pf}f∈V ext

out
) is the reduced S-matrix element without trivial pref-

actors

sG,σ =
∫ [∏

v∈V int\{w} d3~yv∏
e∈Eint 2|~ze|

] [∏
a∈V ext e−i~y a·~pa

[∏c∈Γint γc]
F̂{p

0
a}

G,σ (γt + iε1)
] ∣∣∣∣∣
~yw=0

. (4.28)

Note that this formula is, up to the contribution of the cycles, a 3-dimensional coordinate
space Feynman integral that is modulated by a Fourier transformation of the flow poly-
tope. We stress that this is a hybrid representation for the S-matrix contributions: the
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external kinematics are given in momentum space, but internal integrations are performed
in coordinate space. We will call eq. (4.27) the p-x representation of the S-matrix in order
to emphasise this fact. This hybrid aspect is crucial for our investigation of collinear and
soft singularities.

4.5 Example: the p-x representation of a triangle diagram

To illustrate the p-x representation of the S-matrix we discuss here the contribution to the
S-matrix from our recurring example, the oriented triangle diagram

p1

p2

p3

y1

y2

y3

e4

e5

e6

, (4.29)

where we now label the external vertex xi with its Fourier conjugate momentum pi. In
accordance with the all-in-going momentum convention we require that p0

1 > 0 and p0
2, p

0
3 <

0. The routes of this digraph have been illustrated in eq. (2.24). It has the three truncated
routes rt

1 = {e4}, rt
2 = {e5} and rt

3 = {e5, e6}. Hence, γt
1 = |~z4|, γt

2 = |~z5|, γt
3 = |~z5| + |~z6|.

Let E1, E2 and E3 be the energies that flow through the respective route.
The flow polytope F{p

0
a}

G,σ for this digraph is cut out by the conditions,

E1, E2, E3 ≥ 0 ,
E1 + E2 + E3 = p0

1 ,

E1 + E3 = −p0
2 ,

E2 = −p0
3 ,

(4.30)

where one of the last three equations is redundant by overall momentum conservation,
which is assumed. We can give an interpretation to the energy-conservation condition of
eq. (4.30) as follows: for each external vertex v ∈ V ext, enumerate the paths that start
or end at that vertex, and correspondingly sum their energies. Then, set the sum of such
energies to be p0

v if the vertex is the starting vertex for such paths or −p0
v if it is an ending

vertex. For the triangle example, we can represent such constraints graphically as follows:

E1 + E2 + E3 = p0
1

E1 + E3 = −p0
2

E2 = −p0
3

E1

E2

E3

(4.31)

We can parameterize the polytope by setting (E1, E2, E3) = (E,−p0
3,−p0

2 − E) and let E
vary between 0 and −p0

2. The polytope F{p
0
a}

G,σ is therefore a 1-dimensional polytope, i.e.
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a line segment. Its volume is obviously Vol(F{p
0
a}

G,σ ) = −p0
2 (recall that p0

2 < 0). Using
this parameterization, we can explicitly evaluate the Fourier transformation of the flow
polytope associated to the digraph above,

F̂{p
0
a}

G,σ (γt+iε1) =
∫
F{p

0
a}

G,σ

dE eiE·(γt+iε1) =
∫ −p0

2

0
dEeiE(γt

1+iε)−ip0
3(γt

2+iε)−i(p0
2+E)(γt

3+iε)

= e−i(p
0
3+p0

2)(γt
2+iε)

∫ −p0
2

0
dEeiE(γt

1−γ
t
3) =−ie−i(p0

3+p0
2)(γt

2+iε) e
−ip0

2(γt
1−γ

t
3)−1

γt
1−γt

3

=−p0
2e
−ip0

3(γt
2+iε)−ip0

2(γt
2+ 1

2γ
t
1−

1
2γ

t
3+iε) sinc

(
p0

2(γt
1−γt

3)
2

)
, (4.32)

where sinc(x) = sin(x)
x . This expression is manifestly bounded as sinc(x) ≤ 1. The prefactor

−p0
2 is the volume of the flow polytope as expected. The reduced S-matrix contribution of

the digraph above is,

sG,σ({p1}, {p2, p3}) =
∫ [∏

v∈{2,3} d3~yv
] [
e−i~y2·~p2−i~y3·~p3

]
8|~z4||~z5||~z6|

F̂{p
0
a}

G,σ (γt + iε1)
∣∣∣
~y1=0

, (4.33)

where we used the freedom, guaranteed by translation invariance, to fix one vertex position
at the origin, in this case ~y1 = 0.

4.6 Example: the flow polytope of a pentagon digraph

The previous example already illustrates that the only nontrivial part of the p-x S-matrix
representation is the Fourier transform of the flow polytope. The Fourier transform of a
polytope is a perfect invariant, i.e. it characterizes the polytope completely. Geometric
understanding of the shape of this polytope is equivalent to knowledge of the associated
Fourier transform.

It is a straightforward, algorithmic task to compute the shape of this polytope – even
for rather intricate FOPT diagrams. To illustrate this point we compute the flow polytope
of an oriented pentagon digraph:

x2

x3

x1

x4

x5

y2

y3

y1

y4

y5

e2

e3

e1

e4

e5

e6

e7

e8

e9

e10

. (4.34)

The Fourier transform is parametric in the five external energies p0
1, . . . , p

0
5. We choose the

energy signs such that they coincide with the FOPT orientation shown above, that is

p0
1, p

0
2, p

0
3 > 0, p0

4, p
0
5 < 0. (4.35)
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The six routes in Γext through the diagram are

r1 = {e4, e6, e3}, r2 = {e4, e6, e9, e2},
r3 = {e5, e8, e6, e3}, r4 = {e5, e8, e6, e9, e2}, (4.36)
r5 = {e5, e7, e1}, r6 = {e5, e7, e10, e2},

and the Fourier transform of the flow polytope reads

F̂{p
0
a}

G,σ (γ) =
∫
F{p

0
a}

G,σ

dE eiγ·E , (4.37)

with F{p
0
a}

G,σ being the polytope defined by the following constraints

Ei > 0, i = 1, . . . , 6
E1 + E3 = p0

3, E5 = p0
1, E2 + E4 + E6 = p0

2 , (4.38)
E1 + E2 = −p0

4, E3 + E4 + E5 + E6 = −p0
5 .

Due to overall momentum conservation, one of the five equalities is linearly dependent on
the others. The route space R|Γext| is obviously six dimensional. Hence, the flow polytope
is a two dimensional object embedded in six-dimensional space. To be able to draw it, we
will project it on the plane spanned by the variables E1 and E4. In this E1-E4-plane, the
linear inequalities defining the positive orthant read

p0
3 − E1 > 0, −p0

4 − E1 > 0, p0
2 + p0

4 − E4 + E1 > 0, E1 > 0, E4 > 0 . (4.39)

The domain identified by these linear inequalities is a bounded polytope in the E1-E4-plane,
as expected, and is drawn as follows

min(p0
3,−p0

4)

p0
2 + p0

4

p0
2 + p0

4 + min(p0
3,−p0

4)

E1

E4

The geometric properties of the polytope, such as the number of distinct edges and vertices,
depend on the values of the external energies. If p0

2+p0
4 > 0, the polytope is a quadrilateral,

a triangle if −min(p0
3,−p0

4) < p0
2 + p0

4 ≤ 0, a point if p0
2 + p0

4 + min(p0
3,−p0

4) = 0, and the
empty set otherwise.
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4.7 Polytopes and spurious singularities

The p-x S-matrix representation involves the Fourier transform of the flow polytope, an
object that is both elegant and allows to use the existing mathematical literature on the
subject to study its properties. One particular advantage is the absence of the spurious
singularities that typically arise from contour integration of an integrand with multiple
poles. A simple example of the appearance of spurious singularities is the following integral
which depends on the parameters a1, . . . , an ∈ C,∮

dz f(z)∏n
i=1(z − ai)

= 2πi
n∑
i=1

f(ai)∏
j 6=i(ai − aj)

, (4.40)

where the contour of integration shall contain all poles. The integral is defined whenever
ai 6= aj for all i 6= j. One might expect the right-hand side of eq. (4.40) to be singular
if two or more a-parameters coincide. However, if we make a subset of these parameters
approach the same limit, i.e. ai → a ∈ C, for all i ∈ I ⊆ {1, . . . , n}, then the right-hand
side of eq. (4.40) remains finite as long as f is |I|−1 times differentiable at a. For instance,
in the case n = 2, we have

f(a1)
a1 − a2

+ f(a2)
a2 − a1

→ f ′(a), when a1, a2 → a, (4.41)

showing that the singularity for a1, a2 → a is spurious.
This simple model exemplifies the common occurrence of spurious cancellations in the

study of IR singularities of amplitudes. Such cancellations are present in any method
that is based on operating cuts or performing contour integration of Feynman integrals,
including dual cancellations in the LTD formalism, and KLN cancellations [75, 76] (see [34]
for a study of KLN cancellations in terms of divided differences and [77, 78] for an original
approach on the KLN theorem) of IR singularities at the cross-section level. It is also not
surprising that one of the motivating arguments in the amplituhedron approach [58, 79–82]
is its manifest realization of the cancellation of spurious singularities that are generated by
the application of the BCFW recursion relation [83, 84]. Spurious poles are also present
in the p-x representation of the S-matrix, as exemplified by the sinc-function in eq. (4.32),
in the limit γr1 → γr3 . In the general formulation, we have carefully avoided introducing
spurious poles by directly casting our expressions in terms of the Fourier transform of
the flow polytope. Had we been less careful in the derivation in section 4.4, where we
introduced one helper variable zr for each route and, instead, introduced one variable
zij for each difference x0

i − x0
f , we would have obtained an expression with the following

oscillating part for the reduced S-matrix element,

sG,σ ∝
∫

∆′

∏
(i,f)∈V ext

in ×V ext
out

|Γext
if |6=0

dEif
∑

r∈Γext
if

eiγrEif∏
r′∈Γext

if

r′ 6=r

(γr − γr′)
, (4.42)

where ∆′ is a polytope similar to the flow polytope and Γif is the set of routes connecting the
external vertices i and f . This alternative expression for the oscillating part features many
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spurious singularities and a complicated pattern of cancellations for them. For the example
of eq. (4.40), it is possible to make the cancellation of spurious singularities manifest by
using the Hermite-Genocchi representation of divided differences∮

dz f(z)∏n
i=1(z − ai)

= 2πi
∫

Σn
drf (n−1)(r · a) , (4.43)

which is expressed in terms of an integral over the standard simplex. The right hand side of
this expression is obviously bounded. The simplex accommodates the simplest cancellation
pattern of spurious singularities. More complicated patterns can be constructed by looking
at generic polytopes. As an example of such cancellation patterns, let us consider the closed
form expression for the Fourier transform of a simple d-dimensional polytope ∆ [74]:∫

∆
dr eiξ·r = 1

(2πi)d
∑

v vertex
of ∆

eiv·ξ |detMv|∏d
j=1wj(v) · ξ

, (4.44)

where wk(v) is the k-th edge vector emanating from the vertex v (since the polytope
is simple, there are exactly d edge vectors emanating from each vertex), not necessarily
normalised, and Mv is the matrix containing all such vectors as columns. Much like the
right-hand side of eq. (4.40), the right-hand side of eq. (4.44) exhibits spurious cancellation
of singularities: if, for a summand corresponding to the vertex v, the denominator wj(v) ·ξ
vanishes, and if v′ is the vertex that the edge vector wj(v) points to, then the summand
corresponding to the vertex v′ also contains the same singular denominator and the sum of
the two terms is finite. Such complicated considerations are, however, completely absent
when one looks at the left-hand side of eq. (4.44), which is manifestly bounded. In this
way, mathematical identities that relate quantities with spurious poles to integrals over
polytopes prove to be a powerful theoretical tool.

5 IR singularities in the p-x representation

Having found a representation for the S-matrix as an integral over the spatial coordinates,
we can now investigate where the infrared singularities of the S-matrix are located in the
space of integration variables. This will yield a precise coordinate space equivalent of
infrared singularities. We will start in section 5.1 by deriving the collinear singularities for
the triangle diagram, motivated by the intuition that collinear singularities in momentum
space should correspond to long distance singularities in coordinate space that also embed a
notion of collinearity. We then derive a diagram-level factorization formula for the leading
behaviour in the singular limit. This is then generalised in section 5.2 to arbitrary graphs.
In section 5.3 we discuss the soft singularity of the triangle diagram.

5.1 Collinear singularity on the triangle digraph

We begin with a description of collinear singularities of the triangle diagram in the hybrid
formalism. Following the intuition provided by momentum space, we expect the collinear
singularity to appear when the length of the two edges adjacent to an external vertex
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becomes infinite. Furthermore, we expect that such distance vectors become collinear to
p2 in this limit. Indeed, we find a collinear singularity if the coordinate ~y2 goes to infinity
in the direction of ~p2:

y1

y2

y3

p1

p2

p3

→
y1

y2

y3

p1

p2

p3

(5.1)

Note that both edges of the graph that have infinite length in this limit have energy flowing
into the vertex y2. This is a necessary condition for the non-integrability of this singularity
in the FOPT representation. The total energy flowing through both edges must be equal
to the energy flowing out of the y2 vertex by energy conservation. This observation will
play a role in the factorization of the integral in the soft and collinear limits.

A useful parameterization for the collinear limit is

~y2 = λ~p2/|~p2|2 +
√
|λ|~y⊥2 , ~y3 = ~y3 , (5.2)

where the variable λ that measures the distance in the direction ~p2 and the perpendicular
part of ~y2 is parameterized by ~y⊥2 . We find from eq. (4.33),

sG,σ({p1}, {p2, p3}) =
∫ ∞
−∞

dλ sG,σ(λ; {p1}, {p2, p3}) , (5.3)

sG,σ(λ; {p1}, {p2, p3}) = |λ|
|~p2|

e−iλ
∫ [

d2~y⊥2 d3~y3
] [
e−i~y3·~p3

]
8|~z4||~z5||~z6|

F̂{p
0
a}

G,σ (γt + iε1)
∣∣∣
~y1=0

, (5.4)

where we isolated the integration over λ. Let us study the behaviour of the expression
under the λ integration in the λ→∞ limit. We remark that the λ→ −∞ limit could also
be considered, but it does not give a singular contribution. The reason for this is that the
oscillating exponent −iλ in eq. (5.4) is not canceled and retains its dampening role for the
integration. We have

|~z4| = |~y2 − ~y1| = |~y2| =
√
λ2/|~p2|2 + λ(~y⊥2 )2 = λ

|~p2|
+ 1

2 |~p2|(~y⊥2 )2 +O(λ−1) ,

|~z5| = |~y3| , (5.5)

|~z6| =
λ

|~p2|
+ 1

2 |~p2|(~y⊥2 )2 − ~p2 · ~y3
|~p2|

+O(λ−
1
2 ) ,

and hence

E · γt = E1γ
t
1 + E2γ

t
2 + E3γ

t
3 = E1|~z4|+ E2|~z5|+ E3(|~z5|+ |~z6|)

= (E1 + E3) λ

|~p2|
+ 1

2(E1 + E3)|~p2|(~y⊥2 )2 + (E2 + E3)|~y3| − E3
~p2 · ~y3
|~p2|

+O(λ−
1
2 )

= −p0
2
λ

|~p2|
− 1

2p
0
2|~p2|(~y⊥2 )2 + (−p0

3 + E3)|~y3| − E3
~p2 · ~y3
|~p2|

+O(λ−
1
2 ) , (5.6)
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where we applied the constraints from the flow polytope description in eq. (4.30) in the
second line. Note that due to the total amount of energy flowing through the two infinite-
length lines being equal to −p0

2, the leading term in λ does not have any dependence on
the coordinates in the flow polytope. This is a general feature which always occurs if a
subset of vertices, which are only connected to the rest of the graph via two edges, are sent
to spatial infinity in the way described above.

Substitution into the λ dependent integrand sG,σ(λ; {p1}, {p2, p3}) gives

sG,σ(λ; {p1}, {p2, p3}) = |~p2|
4λ e

−iλ−ip0
2( λ
|~p2|

+iε)
∫

d2~y⊥2 e
− 1

2 ip
0
2(|~p2|(~y⊥2 )2+iε)

×
∫ d3~y3e

−ip0
3|~y3|−i~y3·~p3

2|~y3|

∫
F{p

0
a}

G,σ

dEe
iE3

(
|~y3|−

~p2·~y3
|~p2|

)
+O(λ−

1
2 ).

(5.7)

Let us examine this integrand in the limit p2
2 → 0. Recall that p0

2 < 0. Hence, in this limit
−p0

2 → |~p2|. The first term involving λ leads to a logarithmically divergent integrand from
the λ→∞ part of the integration. The oscillatory part vanishes if we set p0

2 = −|~p2| and
we lose the dampening of the divergence due to the oscillation. Explicitly, the divergent
part in the on-shell limit is produced by the exponential integral,

∫ ∞
1

dλe
i

(
−

p02
|~p2|
−1
)
λ

λ
. (5.8)

Changing the lower boundary if this integral only results in a finite change of the integral in
the singular limit −p0

2 → |~p2|. By standard asymptotic expansions [85] of the exponential
integral we find

∫ ∞
1

dλe
i

(
−

p02
|~p2|
−1
)
λ

λ
= − log

(
− p0

2
|~p2|
− 1

)
+ (terms finite when p2

2 → 0)

= − log
(
p2

2
p2

1

)
+ (terms finite when p2

2 → 0) , (5.9)

where we normalized the argument of the logarithm using p2
1. The remaining part of the

integral in eq. (5.3) remains finite in the p2
2 → 0 limit.

In eq. (5.7) we find a Gaussian integral over the perpendicular contribution in the
collinear limit. We may interpret this Gaussian as the interaction event at ~y2 being localized
in a cylinder of radius 1/|p0

2| around the collinear direction. The precise distribution is given
by an imaginary Gaussian distribution with standard deviation given by this radius. The
total contribution from the perpendicular part reads, after using p0

2 = −|~p2|,

∫
d2~y⊥2 e

1
2 i((p

0
2)2(~y⊥2 )2+iε) = 2πi

(p0
2)2 . (5.10)
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Using the evaluation of these two integrals in eqs. (5.9) and (5.10), and dropping terms
that vanish in the limit p2

2 → 0, the reduced S-matrix in eq. (5.7) takes the form

sG,σ({p1}, {p2, p3}) = − 2πi
4|~p2|

log
(
p2

2
p2

1

)∫ d3~y3e
−ip0

3|~y3|−i~y3·~p3

2|~y3|

×
∫
F{p

0
a}

G,σ

dEe
iE3

(
|~y3|−

~p2·~y3
|~p2|

)
+ (terms finite when p2

2 → 0). (5.11)

We can recast this expression in a more illuminating form. Since dependence on both
E1 and E2 dropped out of the Fourier transform, we can integrate over them, changing
variables to x = E3/p

0
2 for the remaining integration. The variable x parameterizes the

proportion of energy that flows through the lower infinite line in (5.1) in the collinear limit.
As a result we obtain

sG,σ({p1}, {p2, p3}) = −2πi
4 log

(
p2

2
p2

1

)∫ 1

0
dx
∫ d3~y3e

−ip0
3|~y3|+ix|~y3||~p2|

2|~y3|
e−i~y3·~p3−ix~p2·~y3

+(terms finite when p2
2 → 0).

(5.12)

The integral over ~y3 can be identified with an integral over the reduced S-matrix element
of the hard graph (G,σ)hard. More precisely, consider the diagram

y1

y3

p1

p3

(1− x)p2

xp2

(5.13)

which is the lower left part of the triangle diagram in eq. (5.1), which stays hard, i.e. bounded,
in the singular limit. The S-matrix element corresponding to the hard graph is, by similar
reasoning as above,

s(G,σ)hard({p1}, {(1− x)p2, xp2, p3}) =
∫ d3~y3e

−i~y3·~p3−ix~y3·~p2

2|~y3|
F̂{p

0
a}

(G,σ)hard
(γt + iε1)

∣∣∣
~y1=0

.

(5.14)
The diagram allows for three paths, starting at the incoming leg labelled by p1 and ending
up at the external legs labelled by (1−x)p2, xp2 and p3. The paths have length 0, |~y3| and
|~y3|, respectively (recall that for the reduced S-matrix, we have shifted ~y1 to be located at
the origin). Evaluating the Fourier transform of the corresponding flow polytope gives

F̂{p
0
a}

(G,σ)hard
(γt + iε1)

∣∣∣
~y1=0

= exp
(
−i(xp0

2 + p0
3)|~y3|

)
, (5.15)

where the reduced flow polytope is just a single point given by E2 = p0
1 + (1 − x)p0

2 =
−p0

3 − xp0
2. We labeled both the energy and the relevant coordinates in accordance with
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the labeling of the full digraph (G,σ). Hence,

s(G,σ)hard({p1}, {(1− x)p2, xp2, p3}) =
∫ d3~y3e

−i~y3·~p3−ix~y3·~p2

2|~y3|
e−i(p

0
3+xp0

2)(|~y3|+iε) . (5.16)

It follows by substitution of eq. (5.16) into (5.12) that

sG,σ({p1}, {p2, p3}) = −2πi
4 log p

2
2
p2

1

∫ 1

0
dx s(G,σ)hard({p1}, {(1− x)p2, xp2, p3}) +Op2

2→0(1) .

(5.17)

We hence resolved the collinear singularity p2
2 → 0 of the oriented triangle explicitly. This

simple example shows that the leading singular part of the S-matrix in the collinear limit
under inspection can be expressed in a factorised manner. We can actually evaluate the
hard S-matrix explicitly

s(G,σ)hard({p1}, {(1− x)p2, xp2, p3}) = −π
(p0

3 + xp0
2)2 − |~p3 + x~p2|2

. (5.18)

For massless on-shell, non-exceptional, values of p2 and p3 the S-matrix is only singular
when x → 0, with a logarithmic divergence. In section 5.3 we will see that x → 0 corre-
sponds to the soft singularity. We can now generalize the analysis of collinear singularities
to more complicated integrals.

We emphasise that the collinear singularity required the two collinear edges e4, e6 to
have the same flow direction. If, for instance, we would have considered the limit where
~y3 is sent to infinity in the direction of ~p3 instead, then we would not have encountered a
singularity. The reason is that the Fourier transform of the flow polytope does not factor in
this case and the integral remains finite due to the rapid oscillation of the Fourier transform.

5.2 General collinear singularities in the p-x S-matrix representation

For a general FOPT graph, a collinear singularity is present whenever there exists a two-
edge cut that divides the graph into two separate, connected components, such that each
component has at least one in- or out-going momentum. Furthermore, the two edges being
cut are required to have the same orientation. More precisely, suppose we are interested
in sG,σ({p1, . . . , pk}, {pk+1, . . . , pn}), the reduced S-matrix element as defined in (4.28),
associated to the digraph (G,σ). Then, consider the following bipartition into components
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(G,σ)col and (G,σ)hard,

(G,σ)hard

(G,σ)col

· · ·
· · ·

p1

p2

pk
pk+1

pn−1

pn

(5.19)

which features an admissible two-cut, indicated by the orange line. For non-exceptional
external momenta, the collinear singularity is attained when (G,σ)col contains only one
external leg (in- or out-going), as in the picture above. As illustrated in the last section,
the collinear singularity appears when the vertices of the (G,σ)col part of the graph move
to infinity in the direction of ~pn. By energy conservation, the total energy flow through
the cut is equal to the value of p0

n.

Elementary power counting along the lines of the previous section shows that only
two-cuts yield non-integrable collinear singularities. Three- and n-cuts are integrable in
the single (i.e. when no multiple overlapping collinear singularities are considered) collinear
limit: to see this, observe that all the inverse distances associated with the cut edges lead
to a cumulative scaling of −n, while the measure will scale the same as that for the
parameterization of eq. (5.2), i.e. like two powers, independently of n, and consistently
with the fact that we are considering a single limit. This gives an overall scaling of 2− n,
from which the power-counting argument follows.

In the limit where the split momenta goes on-shell, in our case p2
n → 0, we have the

diagrammatic factorization law:

sG,σ({p1, . . . , pk}, {pk+1, . . . , pn}) = −2πi
4 log p2

n

Q2

∫ 1

0
dx s(G,σ)hards(G,σ)col +Op2

n→0(1) ,

(5.20)

where Q is an arbitrary external momentum scale (for example, Q = p1 + . . . + pk) and
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s(G,σ)hard and s(G,σ)col are the reduced S-matrix elements associated to the subgraphs, i.e.

(G,σ)hard

· · ·
· · ·

p1

p2

pk
pk+1

pn−1

(1− x)pn

xpn

and (G,σ)col

−xpn

−(1− x)pn

pn

(5.21)

with the dependence on the external momenta as indicated. Note that in the previous
example the contribution from the collinear part of the diagram was trivial as it just
consisted of a single vertex.

5.3 Soft-collinear singularity of the triangle diagram

We will illustrate the appearance of soft singularities in the triangle diagram of eq. (4.29).
This soft singularity will be a nested singularity, in the sense that it is contained in the
previous collinear limit.

By eqs. (5.16) and (5.17) we have the following expression for the S-matrix element in
the collinear limit:

sG,σ({p1}, {p2, p3}) =

−2πi
4 log p

2
2
p2

1

∫ 1

0
dx

∫ d3~y3e
−i~y3·~p3−ix~y3·~p2

2|~y3|
ei(−p

0
3−xp

0
2)(|~y3|+iε) +Op2

2→0(1) .
(5.22)

The soft singularity is associated with the limit in which, in addition to the vertex ~y2, the
vertex ~y3 in the diagram below is sent to infinity along the direction ~p3 as indicated.

y1

y2

y3

p1

p2

p3

(5.23)

The soft singularity only appears if both p2, p3 are on-shell, i.e. p2
2, p

2
3 → 0. The large

distance limit can be parameterized as follows in the integrand of eq. (5.22)

~y3 = λ~p3/|~p3|2 +
√
|λ|~y⊥3 , x = 1

|λ|
x′ , (5.24)

where, considering λ → ∞, we send ~y3 to infinity and let the energy flow through the
bottom right edge in (5.23), which is parameterized by the energy fraction parameter x,
go to zero. That means this edge is becoming soft. In the limit λ→∞ we find

|~z5| =
λ

|~p3|
+ 1

2 |~p3|(~y⊥3 )2 +O(λ−1). (5.25)
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Applying this to the relevant part of eq. (5.22), we obtain

sG,σ({p1}, {p2, p3}) = −2πi
8 log p

2
2
p2

1

×
∫ ∞

1

dλ
λ

∫ λ

0
dx′

∫
d2~y⊥3 e

−iλ−ix′ ~p3·~p2
~p23
−i

p03
|~p3|

λ−i 1
2p

0
3|~p3|(~y⊥3 )2−ix′(

p02
|~p3|
−iε)

+Oλ→∞(λ−
1
2 ),


+Op2

2→0(1) .
(5.26)

In the p2
3 → 0 limit, the integration over x′ results in,

∫ λ

0
dx′ e

−ix′
(
~p3·~p2
~p23

+
p02
|~p3|
−iε
)

= i(p0
3)2

p0
2p

0
3 − ~p2 · ~p3

+Oλ→∞(e−ελ). (5.27)

The other parts of the integral have already been evaluated in the last section and we
obtain

sG,σ({p1}, {p2, p3}) = −i(2π)2

8
log p2

2
p2

1
log p2

3
p2

1

p2 · p3
+Op2

2→0
p2

3→0
(1). (5.28)

This expression gives the full contribution to the reduced S-matrix element of the oriented
triangle diagram (4.29) in the limit p2

2, p
2
3 → 0. We find the expected double-log Sudakov

structure. The expression stays well-defined as long as p2 · p3 = p0
2p

0
3 − ~p2 · ~p3 6= 0. This is

expected as p2
1 = (p2+p3)2 = 2p2 ·p3 is required to be non-vanishing by energy conservation.

Similar soft-factorization phenomena can be observed for the p-x S-matrix representations
of other FOPT diagrams. We will leave the detailed analysis of general soft singularities
to a future work.

6 Conclusion

In this paper we introduced a new version of diagram-based perturbation theory in quantum
field theory: flow-oriented perturbation theory. Instead of the usual covariant momentum
space perturbation theory in four-dimensional Minkowski space, it is effectively a three-
dimensional coordinate space integral representation in which the time integrations are
resolved via the residue theorem. This representation is dual to time-ordered perturbation
theory. The main features of this new representation are that it is combinatorial and
canonical, and that the iε dependence simplified. Our derivation of the canonical FOPT
Feynman rules in section 2, which associate a unique integral expression to each FOPT
diagram, is illustrated by detailed examples.

We described UV singularities within the FOPT formalism and showed that it yields
equivalent power-counting to the covariant picture. Interestingly, UV and IR singularities
turn out to be more isolated within FOPT than in the covariant framework. It would be
interesting to study this phenomenon in more detail by analyzing the nested structure of
FOPT divergences e.g. by using Hopf algebra or lattice techniques [86–89].
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Our derivation relied on the underlying QFT being formulated in four-dimensional
Minkowski spacetime. Especially, while treating gauge theories it is desirable to be able
to use dimensional regularization, i.e. to work in 4 − 2ε dimensions. We leave the for-
mulation of dimensionally regularized FOPT to a future work. An immediate alternative
to dimensional regularization, which removes UV singularities and which can be used in
conjunction with FOPT is a BHPZ subtraction scheme as it has been applied for three-
dimensional momentum-space representations in [35].

The FOPT representation also features finite distance singularities whose structure we
discussed in section 3, where we also compared them to analyses put forward in [47–49].
We concluded that these singularities are somewhat different from the usual collinear and
soft IR divergences that are observed in momentum space.

This observation led us to derive a new representation for the perturbative expansion
of the S-matrix in section 4. This p-x S-matrix representation is of hybrid momentum
and coordinate space nature, as external parameters are given in terms of momenta, but
internal integrations are performed in coordinate space. This representation produces an
effectively three-dimensional coordinate space integral, which is modulated by the Fourier
transform of the flow polytope. The flow polytope has many remarkable properties [51–56].
We exposed the explicit resolution of spurious singularities within this Fourier transform.
We provided some general remarks on such resolutions in section 4.7.

As expected from the covariant picture, the p-x S-matrix representation features soft
and collinear divergences. We illustrated their appearance in section 5 and showed the
central role of the flow polytope and its Fourier transform. Moreover, we explained how
manifest collinear factorization at the diagram level is attained in the p-x S-matrix repre-
sentation. Even though we also illustrate how soft divergences appear, we postpone the
derivation of a general per-diagram factorization law for soft singularities to future work.

It would be interesting to study these singular structures with respect to their nesting
e.g. as in ref. [90], and it might be possible to design a new IR subtraction scheme along the
lines of refs. [91, 92] using the p-x S-matrix representation. As we illustrated in section 5,
these singularities are naturally regularized with the value of the external kinematics and
computations in singular limits are comparatively easy.

As we show in the appendix, an interesting application of the FOPT representation in
the context of explicit computations are phase space unitarity-cut integrals. The FOPT
representation applied to these, turns out to have the same dimension for all cut diagrams
in contrast to covariant momentum space, where the integration measure effectively has a
different dimension for each cut diagram. Over all cut diagrams we expect cancellation of
IR divergences by the KLN theorem and within the FOPT representation this cancellation
should be local. In appendix A, we illustrate the application of the FOPT approach to
unitarity-cut integrals and summarize the associated Feynman rules, but also here we
leave the exploration of potential local cancellation properties with possible applications
for numerical evaluations of cross-sections to a future work.
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A Unitarity, cut integrals and Cutkosky’s Theorem

The FOPT representation that we derived in section 2 takes an interesting form for
unitarity-cut based phase space integrals. In this appendix, we discuss this viewpoint
along the lines of a classic exposition of phase space integrals focused on the largest time
equation [37]. The result is also related to Cutkosky’s theorem [67]. The following ap-
plication of the Cutkosky rules to the FOPT representation brings us close to results on
the general analyticity properties of Feynman integrals, as described in [8, 93, 94]. This
FOPT-cut representation has some remarkable properties in this regard. For instance the
integrals associated to virtual and real corrections turn out to have the same dimension, so
that both can be put on the same measure. Hence, the following considerations might be
useful to pursue explicit computations of phase space integrals with manifest cancellation
of real and virtual singularities.

Here, we briefly present this FOPT-based representation of cut integrals. Given a
subset of vertices V ⊂ VG of a graph G, the subgraph induced from V is the subgraph of
G that contains all edges whose both end-vertices lie in V . A cut C of a Feynman graph
Γ is partition of the vertices VG into two parts V☼, V� such that the respective induced
subgraphs with edges E☼, E� from both parts are connected and each contains at least
one external vertex. The edges that have one end in V☼ and one in V� are cut edges, EC.
Intuitively, we think of energy flowing from the ☼-side to the �-side.

Recall that the cut propagator is given by

∆±(z) =
∫ d4p

(2π)4 2πδ(p2)θ(±p0)e−ip·z = − 1
(2π)2

( 1
(z0 ∓ iε)2 − |~z |2

)
.

It follows, from an argument due to Veltman [37], that the real part5 of a Feynman integral
can be expressed in terms of a sum over cut integrals (see [38, Ch. 8] or [68, Ch. 10.4] for
a detailed derivation):

AG(x1, . . . , x|V ext|) +A∗G(x1, . . . , x|V ext|) = −
∑

cuts C of G
AG,C(x1, . . . , x|V ext|) , (A.1)

5Due to an extra conventional factor of i this real part of the integral contributes to the imaginary part
of the Feynman amplitude.
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where the cut integrals AG,C(x1, . . . , x|V ext|) are given by the expression

AG,C(x1, . . . , x|V ext|) =

= (−ig)|V
int
☼
|(ig)|V

int
�
|

 ∏
v∈V int

∫
d4yv

 ∏
e∈E☼

∆F (ze)

 ∏
e∈EC

∆+(ze)

 ∏
e∈E�

∆∗F (ze)

 .
(A.2)

In contrast to the original Feynman integral, the propagators on the cut are replaced with
the positive frequency ∆+ cut propagator and the Feynman propagators on the �-side of
the cut are replaced with the complex conjugate Feynman propagator.

We have the following expressions for the Fourier transform of the coordinate space
propagator

∫ ∞
−∞

dz0
ee
iEez0

e∆+(ze) = − 1
(2π)2

∫ ∞
−∞

dz0
e

eiEez
0
e

(z0
e − iε)2 − ~z2

e

= − 1
(2π)2

∫ ∞
−∞

dz0
e

eiEez
0
e

2|~ze|

( 1
z0
e − |~ze| − iε

− 1
z0
e + |~ze| − iε

)
= − 1

(2π)2
2πi
2|~ze|

θ(Ee)
(
eiEe(|~ze|+iε) − eiEe(−|~ze|+iε)

)
,

(A.3)

with the analogous Cauchy integrals∫ ∞
−∞

dz0
ee
iEez0

e∆F (ze) = − 1
(2π)2

2πi
2|~ze|

(
θ(Ee)eiEe(|~ze|+iε) + θ(−Ee)e−iEe(|~ze|+iε)

)
,∫ ∞

−∞
dz0

ee
iEez0

e∆∗F (ze) = − 1
(2π)2

−2πi
2|~ze|

(
θ(Ee)eiEe(−|~ze|+iε) + θ(−Ee)e−iEe(−|~ze|+iε)

)
.

(A.4)

Repeating the derivation in section 2.3, now for the cut integral in eq. (A.2), while using
the Fourier transforms of the respective propagators, results in a representation of a cut
integral as a sum over FOPT-cut integrals.

FOPT Feynman rules for cut integrals. The result is the following set of FOPT-cut
integral Feynman rules for a digraph (G,σ) with a cut C.

1. The integral is 0 if the closed directed graph (G,σ)◦ is not strongly connected or if
the admissible paths on the cut do not go from the ☼-side to the �-side of the graph.

2. Multiply a factor of −ig (ig) for each ☼-side (�-side) interaction vertex.

3. For each internal vertex v ∈ V int of the digraph (G,σ) integrate over 3-dimensional
space with the measure 2π

∫
d3~yv.

4. For each edge e of the graph multiply a factor of ∓i
8π2|~ze| with a − sign for a ☼-side

or a cut edge, and a + sign for a �-side edge.
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5. For each entirely uncut directed admissible path, p`, of (G,σ)◦ multiply a factor of
i∑

e∈p` |~ze|+ τp` + iε
if p` consists entirely of ☼-side edges

i

−
∑
e∈p` |~ze|+ τp` + iε

if p` consists entirely of �-side edges

where the sum in the denominator goes over all edges that are in the admissible path
p` and τp` is the time difference that has passed while going through the ◦ vertex, or
0 if the admissible path does not go through the ◦ vertex, i.e. is a cycle.

6. For each directed admissible path p` of (G,σ)◦ that passes the cut C, multiply a
factor of

−2i|~zeC |(∑
e∈p☼

`

|~ze| −
∑
e∈p�

`
|~ze|+ τp` + iε

)2
− ~z 2

eC

,

where we sum over the uncut ☼-side and �-side edges in p`, p☼` and p�` , and where
eC denotes the unique edge of the admissible path that is on the cut. The edge is
unique because, once the path passes over the cut edge, the energy cannot flow back
through the cut.

Example. We consider the cut integrals associated to the following graph.

x1 x2

y1

y2

1

2 3

4

5 (A.5)

Note that x1 and x2 are both external and interaction vertices. The associated completed
graph is

y1

y2

1
2

4
3

5

x1 x2

(A.6)

and we have the following three different admissible cuts as permutations of the internal
vertices result in topologically indistinguishable graphs,

☼

�

☼ � ☼ � . (A.7)
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Recall that in addition to the positivity requirements only energy flows from ☼ to � are
allowed on cut edges. Therefore only the following energy flows are compatible with the
cuts and the positive energy requirement:

(A.8)

(1a) (1b) (1c)

(A.9)

(2b) (2c)

In the depiction above, each row features only one orientation of the graph and each column
a possible cut. In this example, there are only two admissible paths that are compatible
with a cut. The cut diagram (1a) has the following three routes

−→

(1a) p1 p2 p3

Hence, applying the FOPT-cut Feynman rules from above to the cut diagram (1a) results
in the following expression

A(σ,C)(1a) = −8(2π)2g4

(8π2)5

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4||~z5|

× |~z2|
(−|~z3|+ τ + iε)2 − ~z 2

2

|~z5|
(|~z1| − |~z3|+ τ + iε)2 − ~z 2

5

|~z4|
(|~z1|+ τ + iε)2 − ~z 2

4
.

(A.10)

where we accounted for the admissible paths through the cut, 23, 153 and 14 via the
appropriate denominators, and τ = x0

2 − x0
1. Analogously, applying the Feynman rules to

the FOPT-cut graphs (1b) and (1c) results in

A(σ,C)(1b) = 8(2π)2g4

(8π2)5

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4||~z5|

× |~z1|
(−|~z4|+ τ + iε)2 − ~z 2

1

|~z1|
(−|~z5| − |~z3|+ τ + iε)2 − ~z 2

1

|~z2|
(−|~z3|+ τ + iε)2 − ~z 2

2
,

(A.11)

A(σ,C)(1c)(x1, x2) = −8(2π)2g4

(8π2)5

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4||~z5|

× |~z4|
(|~z1|+ τ + iε)2 − ~z 2

4

|~z3|
(|~z1|+ |~z5|+ τ + iε)2 − ~z 2

3

|~z3|
(|~z2|+ τ + iε)2 − ~z 2

3
.

(A.12)
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These three FOPT-cut integrals all correspond to the same directed graph with different
cuts on it. Each integrand features three factors in the denominator, which each corre-
sponding to a unique route from the left-most to the right-most vertex.

For the other possible flow orientations of the graph, we only have two routes through
the diagram and one closed cyclic energy flow:

A(σ,C)(2b)(x1, x2) = −4(2π)2g4

(8π2)5

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4||~z5|

× |~z1|
(−|~z5| − |~z3|+ τ + iε)2 − ~z 2

1

|~z2|
(−|~z3|+ τ + iε)2 − ~z 2

2

1
−|~z5| − |~z3| − |~z4|

,

(A.13)

A(σ,C)(2c)(x1, x2) = 4(2π)2g4

(8π2)5

∫ d3~y1d3~y2
|~z1||~z2||~z3||~z4||~z5|

× |~z4|
(|~z1|+ τ + iε)2 − ~z 2

4

|~z3|
(|~z1|+ |~z5|+ τ + iε)2 − ~z 2

3

1
|~z2|+ |~z5|+ |~z1|

.

(A.14)

The energy-flow-oriented cut graph (2b) has the cycle 534 and the graph (2c) the cycle 152.
Even though, e.g., (1a) and both (1b) and (1c) have differently sized cuts, the corre-

sponding integrands are of the same dimension. This is a convenient situation from the
perspective of the numerical evaluation of these integrals, as we can put all (1a), (1b) and
(1c) under the same integral sign. We expect IR singularities to cancel locally in our pro-
posed representation, but we postpone the detailed analysis of this conjecture to a future
work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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