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Abstract: We show integrality of instanton numbers in several key
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1. Introduction

The motivation for this paper comes from the striking work [8] of Candelas,
de la Ossa, Green and Parkes in the study of mirror symmetry of quintic
threefolds from 1991. The story has been told many times, so we will give
only a very brief description. For more details, we like to refer to Duco van
Straten’s excellent [20] and the many references therein. Our short story starts
with the differential operator

L = θ4 − 5t(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4),

where θ denotes t d
dt . The unique holomorphic solution to L(y) = 0 is of

hypergeometric type and given by

F0 =
∑
n≥0

(5n)!
(n!)5 t

n.

Received September 21, 2021.
2010 Mathematics Subject Classification: Primary 14N35, 12H25; sec-

ondary 14F30.
∗Work of Frits Beukers was supported by the Netherlands Organisation for Sci-

entific Research (NWO), grant TOP1EW.15.313.
†Work of Masha Vlasenko was supported by the National Science Centre of

Poland (NCN), grant UMO-2020/39/B/ST1/00940.

7

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


8 Frits Beukers and Masha Vlasenko

The equation L(y) = 0 has a unique basis of solutions of the form

y0 = F0, y1 = F0 log t + F1, y2 = 1
2F0 log2 t + F1 log t + F2,

y3 = 1
6F0 log3 t + 1

2F1 log2 t + F2 log t + F3,

where F0 is given above and F1, F2, F3 ∈ tQ�t�. Straightforward computation
shows that the coefficients of F1 are certainly not integral. The surprise is
that q(t) := t exp(F1/F0), expanded as power series in t, does have integer
coefficients. The function q(t) is called the canonical coordinate. The inverse
power series t(q) is called the mirror map. Using this inverse series one can
rewrite the solutions yi as functions of q. In particular,

y1/y0 = log q, y2/y0 = 1
2 log2 q + V (q)

for some V (q) ∈ qQ�q�. Let θq = q d
dq . Then K(q) := 1 + θ2

qV is called
the Yukawa coupling for reasons coming from theoretical physics. In [8] the
Yukawa coupling is expanded as a so-called Lambert series in the form

K(q) = 1 +
∑
n≥1

Anq
n

1 − qn
.

Candelas et al. conjectured that the numbers an = 5An/n
3 are integers which

are equal to the (virtual) number of degree n rational curves on a generic
quintic threefold in P3. This counting relation is now a part of the mirror
symmetry theory from theoretical physics. The numbers an are called instan-
ton numbers. In this paper, we shall concentrate on their integrality.

It turns out that there are many other examples of differential equations,
similar to the example above, which display integrality properties of the asso-
ciated instanton numbers. Motivated by this, Almkvist, van Enckevort, van
Straten and Zudilin [1] compiled an extensive list of so-called Calabi-Yau
operators. For each entry in the list, the authors give experimental evidence
that the instanton numbers are p-adically integral for almost all primes p, with
some obvious exceptions. The quintic example that we started with belongs
to this list. Presumably, each equation in the list is a so-called Picard-Fuchs
equation corresponding to a one parameter family of Calabi-Yau threefolds.

Around 1995 Giventhal [10] showed that instanton numbers can be re-
lated to the geometrical Gromov-Witten invariants of Calabi-Yau threefolds.
However, the integrality of these invariants is not a priori clear. Around 1998
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Gopakumar and Vafa introduced the so-called BPS-numbers for Calabi-Yau
threefolds, which include the instanton numbers as g = 0 case, see [7, Def 1.1].
In 2018, Ionel and Parker [11] proved that these BPS-numbers are integers
by using methods from symplectic topology. So this opens up a path towards
proving integrality of instanton numbers.

Another approach to the integrality of instanton numbers was the use of
Dwork’s ideas in p-adic cohomology. This was started by Jan Stienstra [19] in
2003 with partial success and later Kontsevich, Schwarz and Vologodsky [15],
[21] laid out the ideas for a completely general approach. However, since [21]
is not published yet, it is not clear to us what the status of the final results
is.

One of the main goals of the present paper is to show by elementary
means that for the quintic example and a few related examples the an are
p-adic integers for almost all p. The method showed up as a by-product of
our prior work in the paper Dwork crystals III, [5], which is a continuation of
the preceding papers Dwork crystals I, II ([3], [4]).

We begin by sketching an outline of our approach. To study p-integrality
we let p be an odd prime. Let σ : Zp�t� → Zp�t� be a p-th power Frobenius lift,
which is a ring endomorphism such that h(t)σ := σ(h(t)) ≡ h(tp)(mod p) for
all h ∈ Zp�t�. In this paper, we shall take it to be of the form tσ = tp(1+ptu(t))
with u(t) ∈ Zp�t�. We start with a linear differential equation L(y) = 0 where

L = θn + an−1(t)θn−1 + · · · + a1(t)θ + a0(t) ∈ Zp�t�[θ], θ = t
d

dt
.

We also assume that it is of MUM-type (maximal unipotent monodromy)
at the origin, i.e ai(0) = 0 for i = 0, . . . , n − 1. The main examples of such
equations are the Picard-Fuchs equations which are associated to certain one
parameter families of algebraic varieties. We shall give a more precise def-
inition later on. For a MUM-type equation there is a unique basis of local
solutions y0, y1, . . . , yn−1 of the form

(1) yi = F0
logi t
i! + F1

logi−1 t

(i− 1)! + · · · + Fi−1 log t + Fi, i = 0, . . . , n− 1,

and Fi ∈ Qp�t�, F0(0) = 1 and Fi(0) = 0 if i > 0. We extend the Frobenius
lift σ to the solutions yσi in the obvious way, i.e. by taking F σ

i = Fi(tσ) and

log tσ = p log t−
∑
m≥1

1
m

(−p t u(t))m.
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A familiar property of Picard-Fuchs equations is the presence of a Frobe-
nius structure for almost all p. We give a closely related concrete definition
in terms of its solutions.

Definition 1.1 (Frobenius structure). The equation L(y) = 0 is said to have
a p-adic Frobenius structure if there exists an operator

A =
n−1∑
i=0

Ai(t)θi ∈ Zp�t�[θ]

with A0(0) = 1 such that for every solution y(t) of L(y) = 0 the composition
A(y(tσ)) is again a solution of this differential equation.

In this paper, we will call the numbers αi = Ai(0) the Frobenius constants.

Remark 1.2. In the standard basis of solutions (1) the operator A acts by
the formula

A(yi(tσ)) = pi
i∑

j=0
αj yi−j(t), i = 0, . . . , n− 1.

This will be shown in Section 2.

Remark 1.3. Our definition of Frobenius structure is adapted to the inte-
grality questions considered in this paper. First of all, a Frobenius structure
is usually defined over a ring R, which is a (sub)ring of so-called analytic ele-
ments. These are p-adic limits of rational functions. Granted that we take
a Frobenius structure over Zp�t�, this would give us piAi(t) ∈ Zp�t� for
i = 0, . . . , n − 1. This is weaker than Ai(t) ∈ Zp�t�, which is in our def-
inition. The latter condition is crucial in our paper. We believe that this
condition holds in families of Calabi-Yau varieties which possess sufficiently
many symmetries.

Recall the canonical coordinate q(t) = t exp(F1/F0) and the inverse series
t(q) which we called the mirror map. It is expected that for Picard-Fuchs
equations of MUM-type these series are in Zp�t� for all but finitely many
primes p. So far this has been shown for a large number of special cases, e.g
[17], [16], [18], [9]. In Section 2, we prove the following.

Theorem 1.4 (p-integrality of the mirror map). Suppose that L(y) = 0 has
a p-adic Frobenius structure. Then exp(F1/F0) ∈ Zp�t�.

Let us now suppose that exp(F1/F0) ∈ Zp�t� and n ≥ 3. Take q =
t exp(F1/F0) ∈ t + t2Zp�t�. We choose the special Frobenius lift given by
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qσ = qp, called the excellent lift in [5]. Define θq = q d
dq . Then the operator θ2

q

annihilates the functions y1/y0 = log q and y0/y0 = 1.

Definition 1.5. The function K(q) = θ2
q(y2/y0) is called the Yukawa cou-

pling associated to the operator L. It is equal to 1 + θ2
qV , where we consider

V = F2/F0 − 1
2(F1/F0)2 as function of q.

As in the quintic example, we expand

K(q) = 1 +
∑
r≥1

Arq
r

1 − qr
.

In the following theorem, we require that the Frobenius constant α1 is 0. In
general, the Frobenius constants αi are notoriously difficult to compute, but
fortunately we need only α1. This is dealt with in the proof of Corollary 1.9,
which in its turn uses [5, Proposition 7.7].

Theorem 1.6. Suppose that L(y) = 0 has a p-adic Frobenius structure with
α1 = 0. Then Ar/r

2 ∈ Zp for all r ≥ 1.

The p-integrality of Ar/r
3 follows if the differential equation has order 4

and is self-dual. This is precisely the type of operators that is studied in [1]
and which are named Calabi-Yau operators. There we find that an operator
L = θ4 + a3θ

3 + a2θ
2 + a1θ + a0 is called self-dual if

a1 = 1
2a2a3 −

1
8a

3
3 + θ(a2) −

3
4a3θ(a3) −

1
2θ

2(a3).

There are more intrinsic characterizations of self-duality but what matters
for us is that in the case of self-duality we have∣∣∣∣∣ y0 y3

θy0 θy3

∣∣∣∣∣ =
∣∣∣∣∣ y1 y2
θy1 θy2

∣∣∣∣∣ .
Theorem 1.7 (p-integrality of instanton numbers). Suppose that the operator
L of order n = 4 is self-dual and the differential equation L(y) = 0 has a p-
adic Frobenius structure with α1 = 0. Then Ar/r

3 ∈ Zp for all n ≥ 1.

We remark that the theorem is sensitive to the normalization of t. In other
words, if we replace t by 2t for example, the theorem is not true anymore.
The value α1 has become non-zero. It is worth mentioning that the instanton
numbers and the Frobenius structure behave nicely under the change of vari-
ables t → tw. One can easily check that the new Yukawa coupling is given
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by K(qw) and the new constants αi of the Frobenius structure are given by
αi/w

i, i = 0, 1, . . .
Theorems 1.4, 1.6 and 1.7 are proven in Section 4.
Let us now sketch the set up which we use to construct the Frobenius

structure for differential operators. We start with a Laurent polynomial f(x)
in x = (x1, . . . , xn) with coefficients in Z[t]. Let Δ be the Newton polytope
of f and Δ◦ its interior. Let R be a ring containing Z[t]. By Ωf we denote
the R-module generated by the functions (k− 1)!A/fk, where A is a Laurent
polynomial with coefficients in R and support in kΔ and k ≥ 1. We define Ω◦

f

similarly, consisting of rational functions as above, but with support of A in
kΔ◦. In the notation of Dwork crystals I, II we use Ωf := Ωf (Δ) and Ω◦

f :=
Ωf (Δ◦). By dΩf we define the module spanned by the partial derivatives of
the form xi

∂
∂xi

(ω) with ω ∈ Ωf and i = 1, . . . , n. We will denote the partial
derivations xi

∂
∂xi

by θi.
When f has suitable regularity properties, there exists a polynomial

Df (t) ∈ Z[t] such that the quotient Ω◦
f/dΩf is a free module over R =

Z[t, 1/Df ] of finite rank. It can roughly be identified with the (n − 1)-st De
Rham cohomology of the zero set of f (although we shall not use this).

The derivation θ = t d
dt on Z[t] can be extended to Ωf in the obvious

way. On easily checks that θ sends Ω◦
f to itself as well as dΩf . Hence, θ

maps Ω◦
f/dΩf to itself. This gives us the so-called Gauss-Manin connection

on Ω◦
f/dΩf .

Our basic example is

f = 1 − t

(
x1 + x2 + x3 + x4 + 1

x1x2x3x4

)
.

Then Ω◦
f/dΩf is a free Z[t, 1/((5t)6 − 5t)]-module of rank 4 with a basis

given by θi(1/f) with i = 0, 1, 2, 3. Clearly θ4(1/f) depends on these and the
relation is given by L(1/f) ∈ dΩf , where L is the linear differential operator

L = θ4 − (5t)5(θ + 1)(θ + 2)(θ + 3)(θ + 4).

This operator is related to the hypergeometric operator with which we began
our introduction via the change of variable t → t5. We call it the quintic
example.

Our second main example illustrates the use of symmetries of f . Let G
be a finite group of monomial substitutions under which f is invariant. A
monomial substitution has the form xi → xai , i = 1, . . . , n where ai are
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vectors of integers which form a basis of Zn. We denote the submodule of
invariant rational functions by (Ω◦

f )G . Consider

f = 1 − t

(
x1 + 1

x1
+ x2 + 1

x2
+ x3 + 1

x3
+ x4 + 1

x4

)
.

It turns out that Ω◦
f/dΩf has rank 10 as module over Z[t, (2t(1 − 80t2 +

1024t4))−1]. However, f is invariant under the group G of monomial trans-
formations generated by the permutations of x1, x2, x3, x4 and xi → x±1

i

for all i. We denote the G-invariant elements of Ω◦
f by (Ω◦

f )G . The quotient
module (Ω◦

f )G/dΩf turns out to have rank 4 and is generated by θi(1/f) for
i = 0, 1, 2, 3. Then L(1/f) ∈ dΩf with

L = (1024t4 − 80t2 + 1)θ4 + 64(128t4 − 5t2)θ3

+16(1472t4 − 33t2)θ2 + 32(896t4 − 13t2)θ + 128(96t4 − t2).

This is #16 in the database of Calabi-Yau equations [1] with z = t2. We call
it the diagonal example.

Prompted by these examples we now restrict the Laurent polynomial f(x)
to a polynomial of the form f = 1 − tg(x), where g is a Laurent polynomial
in the variables x = (x1, . . . , xn) with coefficients in Z. We also assume that
its Newton polytope Δ ⊂ Rn is reflexive.

We remind the reader that a lattice polytope Δ ⊂ Rn is reflexive if it
is of maximal dimension, contains 0 and each of its codimension 1 faces can
be given by an equation

∑n
i=1 aixi = 1 with coefficients ai ∈ Z. It follows

from this definition that 0 is the unique lattice point in Δ◦. Reflexivity is a
requirement needed for the p-adic considerations later on.

Let us remark that in Dwork crystals II [4] we prove congruences of Dwork
type for the power series y0(t)=

∑
m≥0 gmt

m, with gm=constant term ofg(x)m,
which are associated to Ωf for these particular f . The above relation L(1/f) ∈
dΩf implies that y0(t) is a power series solution to the differential equation
L(y) = 0. This follows from the properties of the period map constructed in
[4, §2]. See also the explicit families in [5, §7].

Another property of reflexive polytopes which we will use is that to every
lattice point u ∈ Zn there is a unique integer d ≥ 0 such that u lies on
the boundary of dΔ. We call this integer d the degree of both u and its
respective monomial xu. For a Laurent polynomial A ∈ R[x±1

1 , . . . , x±1
n ] its

degree deg(A) is the maximum degree of the monomials it contains. Suppose
that R has the form Z[t, 1/Df (t)] as above with Df (t) ∈ Z[t] and Df (0) �=
0. A Laurent polynomial A(x) =

∑
u auxu with coefficients in R is called
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admissible if for every monomial xu in A the t-adic order of its coefficient au
is greater or equal to deg(xu). For example, f(x) = 1 − tg(x) is admissible.

Throughout the paper, we will work with the submodule

Of =
{

(k − 1)! A(x)
f(x)k

∣∣∣ k ≥ 1, A is admissible, Supp(A) ⊂ kΔ
}
⊂ Ωf .

We will call elements of Of admissible rational functions. The submodule
O◦

f ⊂ Of is defined by the stronger condition Supp(A) ⊂ kΔ◦. The sub-
module of derivatives dOf ⊂ Of is the R-module generated by xi

∂
∂xi

(ω) for
ω ∈ Of and i = 1, . . . , n.

The main motivation for choosing Of is that in our examples the quotient
module O◦

f/dOf is of finite rank over the ring R = Z[t, 1/Df (t)] for some
Df (t) ∈ Z[t] with Df (0) �= 0. So when p does not divide Df (0), this ring can
be embedded in Zp�t�, which is convenient for our p-adic considerations.

Letting G be a group of monomial automorphisms of f(x), we denote the
submodule of G-invariant admissible rational functions by (O◦

f )G . It is not
hard to verify that γ ◦ θ = θ ◦ γ for all γ ∈ G. In particular, this implies that
θ maps (O◦

f )G/dOf to itself. We now assume that M := (O◦
f )G/dOf is free of

finite rank n and is generated by the elements θi(1/f) for i = 0, 1, . . . , n− 1.
We actually need more refined assumptions to be satisfied, in which case we
call M a cyclic θ-module of MUM-type. See Definition 4.1 for the precise
formulation. Just as in the above two examples we can associate to a cyclic
θ-module of MUM-type an n-th order linear differential operator L of MUM-
type such that L(1/f) ∈ dOf . We call L(y) = 0 the Picard-Fuchs differential
equation associated to M . These equations are precisely the type of differential
equations that we want to consider.

To introduce the Frobenius structure on the Picard-Fuchs equation we
choose an odd prime p and assume that Z[t, 1/Df (t)] can be embedded in
Zp�t�. Let σ be a Frobenius lift of Zp�t� satisfying the assumption tσ ∈ tp(1+
ptZp�t�) which was introduced earlier. We recall the Cartier operator Cp which
was introduced in Dwork crystals I, [3]. Using a vertex b of Δ we can expand
any element of Of as a formal Laurent series with support in the cone spanned
by Δ − b. On such Laurent series the Cartier operator acts as

(2) Cp :
∑

k∈C(Δ−b)
akxk 	→

∑
k∈C(Δ−b)

apkxk.

We extend σ to Of by applying it to the coefficients of rational functions.
For example, fσ(x) = 1 − tσg(x). Let Ofσ be the Zp�t�-module generated
by the σ-images of the elements of Of . The numerators of these images are
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admissible with respect to tσ instead of t. Then, in [5, Proposition 2.7] it is
shown that Cp maps Ô◦

f to Ô◦
fσ , where Ô◦

f denotes the p-adic completion of
O◦

f and similarly for Ô◦
fσ . Moreover, when

p � #G

our Cartier operator maps G-symmetric functions (Ô◦
f )G into (Ô◦

fσ)G . This can
be seen by observing that the symmetrization operator ω 	→ 1

#G
∑

γ∈G γ(ω)
commutes with Cp.

One can easily deduce from (2) that Cp ◦ θi = p θi ◦ Cp for i = 1, . . . , n,
from which it follows that our Cartier operation maps derivatives dÔf into
dÔfσ . Hence, Cp descends to a Zp�t�-linear map

Cp : (Ô◦
f )G/dÔf → (Ô◦

fσ)G/dÔfσ .

When (O◦
f )G/dOf are cyclic θ-modules of rank n, this implies existence of

power series λ0, . . . , λn−1 ∈ Zp�t� such that

Cp(1/f) =
n−1∑
i=0

λi(t)(θi(1/f))σ(mod dÔfσ).

We shall explicitly construct a p-adic Frobenius structure A for the Picard-
Fuchs differential equation L(y) = 0 using the series λi(t) in this formula.
It is crucial for our construction to know that the derivatives θi(1/f), i =
0, . . . , n − 1 are linearly independent not just modulo dOf but also modulo
dÔf . This would particularly imply that the coefficients λi(t) in the above
formula are defined uniquely. Unfortunately, we were only able to show in-
dependence of derivatives modulo dÔf under the so-called n-th Hasse–Witt
condition, which is recalled in Section 3.

Proposition 1.8. Suppose f = 1 − tg(x) has a reflexive Newton polytope
Δ and let G be a group of monomial automorphisms of g. Suppose that
(O◦

f )G/dOf is a cyclic θ-module of MUM-type of rank n. Suppose p � #G ×
Df (0) and p > n. Then, if the n-th Hasse–Witt condition holds, the corre-
sponding Picard-Fuchs equation L(y) = 0 has a p-adic Frobenius structure
with αi = p−iλi(0), 0 ≤ i ≤ n.

We give a proof of this proposition in Section 4. In the literature, one sees
that existence of a p-adic Frobenius structure for Picard-Fuchs equations is
a well-known phenomenon. But as we said before, we need something a bit
stronger in the form of Definition 1.1. We believe that families of Calabi-Yau
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varieties with sufficient symmetry have a Frobenius structure that satisfies
this definition, but we are only able to give a few explicit examples. Below
we give two examples to which Proposition 1.8 applies.

Simplicial family Let

g(x) = x1 + · · · + xn + 1
x1 · · · xn

.

We call the corresponding family of varieties 1 − tg(x) = 0 the simplicial
family, refering to the shape of the Newton polytope. For G we take the
group generated by the permutations of x1, . . . , xn and x1 → (x1 · · · xn)−1. It
is isomorphic to Sn+1. In Section 5 we show this family gives rise to a cyclic
θ-module of rank n with Df (t) = (n+1)(1−((n+1)t)n+1). The corresponding
Picard-Fuchs operator reads

θn − ((n + 1)t)n+1(θ + 1) . . . (θ + n),

which is of hypergeometric origin and of MUM-type. This family is related
to the so-called Dwork families Xn+1

0 + · · · + Xn+1
n = 1

tX0 · · ·Xn which one
often finds in the literature. Simply replace xi in the simplicial family by
Xn+1

i /(X0 · · ·Xn) for every i. The case n = 4 is of course the quintic family.

Hyperoctahedral family Let

g(x) = x1 + 1
x1

+ x2 + 1
x2

+ · · · + xn + 1
xn

.

The corresponding family of varieties 1− tg(x) = 0 is called the hyperoctahe-
dral family, also after the shape of its Newton polytope. For the group G we
take the group generated by the permutations of x1, . . . , xn and xi → x±1

i for
i = 1, . . . , n. In Section 6 we will show that there exists a polynomial Df (t)
such that over the ring Z[t, 1/Df (t)] the module (O◦

f )G/dOf is generated by
θi(1/f) for i = 0, . . . , n− 1. There we also construct a Picard-Fuchs operator
L, which turns out to be of MUM-type. If L were irreducible in Q(t)[θ] then
(O◦

f )G/dOf would be a rank n cyclic θ-module of MUM-type of rank n. When
n = 4 we recover the diagonal family introduced earlier.

In Section 3, we will show that the n-th Hasse–Witt condition holds for
the simplicial and hyperoctahedral families. As a consequence of all this, we
find the following.
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Corollary 1.9. In the simplicial family the numbers Ar/r
2 are p-adically

integral for all p > n + 1.
In the hyperoctahedral case, we have the same result for all p > n but

under the condition that the Picard-Fuchs operator is irreducible in Q(t)[θ].
In the ‘quintic example’ and the ‘diagonal example’ above the instanton

numbers are p-integral for every prime p > 5 in the quintic case and p ≥ 5 in
the diagonal case.

Remark 1.10. We conjecture that in the hyperoctahedral case the Picard-
Fuchs operator is irreducible for all n ≥ 2. We are indebted to Jacques-Arthur
Weil and Alexandre Goyer who verified the irreducibility when 2 ≤ n ≤ 30
by various computer methods.

Proof of Corollary 1.9. In Sections 5 and 6, we find that both examples pro-
duce cyclic θ-modules of MUM-type and rank n. A quick check shows that the
Newton polytopes satisfy the conditions of Theorem 3.3, which then tells us
that the n-th Hasse–Witt condition holds. Hence, by Propostion 1.8 both ex-
amples have Picard-Fuchs equations with a Frobenius structure. In Section 7,
we show that α1 = 0. Namely, by Lemma 7.2 we have α1 = p−1λ1(0) =
p−1λ̃1(0), where λ̃1(0) is the quantity computed in [5, Proposition 7.7]. If G
acts transitively on the vertices of Δ, tσ/tp ∈ 1 + ptZp�t� and the vertex
coefficient of g(x) is 1, this proposition gives λ̃1(0) = 0. The Corollary now
follows from Theorems 1.6 and 1.7.

By the time the present paper was finished, we realized that the numbers
Ar/r

2 in the case n = 5 of the simplicial family are the so-called g = 0
BPS-numbers corresponding to this family of Calabi-Yau fourfolds. See [14,
§6.1]. This partly answers a question posed to us by Martijn Kool about
BPS-numbers for Calabi-Yau fourfolds in one instance.

2. Proof of Remark 1.2 and Theorems 1.4, 1.6, 1.7

We start with a classical lemma.

Lemma 2.1 (Dieudonné-Dwork lemma). Let g ∈ tQp�t�. Then g(t)−1
pg(t

σ) ∈
Zp�t� if and only if exp(g) ∈ Zp�t�.

For a proof see [5, Lemma 7.10]. The following criterion allows us to decide
p-integrality of the numbers Ar/r

2 or Ar/r
3.

Lemma 2.2. Let G(q) ∈ 1 + qQp�q�. Consider its Lambert series expansion

G(q) = 1 +
∑
n≥1

hnq
n

1 − qn
.
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Suppose there exists s ≥ 1 and φ ∈ Zp�q� such that G(qp)−G(q) = θsqφ. Then
hn/n

s ∈ Zp for all n ≥ 1.

Proof. Write G(q) = 1 +
∑

n≥1 gnq
n. Then G(qp) − G(q) = θsqφ implies that

gn ≡ gn/p(mod nsZp) for all n ≥ 1 (use the convention gn/p = 0 if p does
not divide n). One has gn =

∑
d|n hd and its Möbius inversion reads hn =∑

d|n μ(d)gn/d, where μ(n) is the Möbius function. Write

hn =
∑
d|n

μ(d)gn/d

=
∑

d|(n/p),d�≡0(p)
μ(dp)gn/pd + μ(d)gn/d

=
∑

d|(n/p),d�≡0(p)
μ(d)(gn/d − gn/pd)

The latter sum is in nsZp because of the congruences for gn.

The following lemma gives a criterion to recognize elements of Zp�t�.

Lemma 2.3. Let u(t) ∈ 1+ tQp�t� and suppose there exists a linear operator
A ∈ Zp�t�[θ] such that A(uσ) = u. Then u ∈ 1 + tZp�t�.

Proof. Write A =
∑

i≥0 Ai(t)θi. Then, by setting t = 0 in A(uσ) = u we see
that A0(0) = 1. Consider the recursion ui+1 = A(uσi ), i ≥ 0 and u0 = 1. Since
A0(0) = 1 we get that ui ∈ 1 + tZp�t� for all i ≥ 0.

By induction on i we now prove that ui ≡ u(mod tp
i) for all i ≥ 0.

For i = 0 this is trivial. For i ≥ 0 we see that ui ≡ u(mod tp
i) implies

uσi ≡ uσ(mod tp
i+1). Application of A on both sides gives ui+1 ≡ u(mod tp

i+1).
We conclude that u ∈ 1 + tZp�t�.

Proof of Remark 1.2. Choose i. Then A(yσi ) is a solution of L(y) = 0. So
there exist constants b0, . . . , bn−1 such that

(3) A(yσi ) = b0y0 + b1y1 + · · · + bn−1yn−1.

This is an equality in the ring Qp�t�[log t]. When we say that we take the
constant term of an element of Qp�t�[log t] we simply mean that we evaluate
the Qp�t�-coefficients at t = 0 but keep de powers of log t. This gives us a
ring homomorphism from Qp�t�[log t] to Qp[log t]. In particular, the constant
term of yi is 1

i! logi t and the constant term of yσi is pi

i! logi t. It is not hard to
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see that the operation of taking the constant terms commutes with θ. Hence,
if we take constant terms on both sides of (3) we get

n−1∑
j=0

Aj(0)θj
(
pi

logi t
i!

)
=

n−1∑
l=0

bl
logl t
l! .

Elaboration of the left hand side gives us

pi
i∑

j=0
Aj(0) logi−j t

(i− j)! =
r−1∑
l=0

bl
logl t
l! .

We conclude that bl = piAi−l(0) if l ≤ i and bl = 0 if l > i. We put αi =
Ai(0).

Proof of Theorem 1.4. Due to Remark 1.2 there exists A ∈ Zp�t�[θ] such
that A(yσ0 ) = y0. By Lemma 2.3 we have y0 ∈ 1 + tZp�t�. We also have that
A(yσ1 ) = p(y1 + α1y0). Let us define v = y1/y0 and rewrite A(yσ1 ) as

A(vσyσ0 ) = vσA(yσ0 ) + A1(θ(vσ))

for some operator A1 ∈ Zp�t�[θ]. Since A(yσ0 ) = y0 we get

(4) vσy0 + A1(θ(vσ)) = p(v + α1)y0.

Divide on both sides by y0 and apply θ. We get, after division by p,

A2(
1
p
θ(vσ)) = θv

for some operator A2 ∈ Zp�t�[θ]. Write 1
pθ(v

σ) = 1
p
θ(tσ)
tσ (θv)σ and note that

z(t) := 1
p
θ(tσ)
tσ ∈ Zp�t�. Hence, A2(z(t)(θv)σ) = θv. Moreover, (θv)(0) = 1.

Hence, θv ∈ 1+ tZp�t� by Lemma 2.3. This also implies θ(vσ) = pz(t)(θv)σ ∈
pZp�t�. Using this in (4) and division by py0 yields

1
p
vσ − v ∈ Zp�t�,

hence
1
p

F σ
1

F σ
0
− F1

F0
∈ Zp�t�.

The Dwork-Dieudonné lemma then implies that exp(F1/F0) ∈ Zp�t�.
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Proof of Theorem 1.6. By Theorem 1.4 we have q = exp(y1/y0) ∈ t+t2Zp�t�.
We then have Zp�q� = Zp�t�. Consider the special Frobenius lift given by
qσ = qp. Since L has a Frobenius structure, the same holds for the operator
L◦y0 which has 1 = y0/y0, y1/y0, . . . as solutions. Simply replace the operator
A in Definition 1.1 by 1

y0
◦ A ◦ yσ0 . This change does not affect the value of

α1, which is still 0. We write these functions in terms of q. We have y0/y0 =
1, y1/y0 = log q, y2/y0 = 1

2 log2 q + V2(q). Frobenius structure with α1 = 0 for
this operator implies that there is a A ∈ Zp�q�[θq] such that

(5)
A (1) = 1, A (log q) = log q,

A
(1

2 log2(qp) + V2(qp)
)

= p2
(1

2 log2 q + V2(q) + α2

)
.

It follows from the first two identities that A = 1 +A2θ
2
q with some operator

A2 ∈ Zp�q�[θq]. The second identity above then turns into

(6) V2(qp) + A2(p2 + p2(θ2
qV2)(qp)) = p2(V2(q) + α2).

Apply θ2
q , divide by p2 and add 1 on both sides. We obtain(

1 + θ2
qA2

)
(1 + (θ2

qV2)(qp)) = 1 + (θ2
qV2)(q).

Using Lemma 2.3 we find that K(q) = 1+(θ2
qV2)(q) ∈ Zp�q�. Using this in (6)

we obtain
1
p2V2(qp) − V2(q) ∈ Zp�q�.

Denote this function by φ(q). Apply θ2
q to get K(qp) − K(q) = θ2

qφ(q).
Lemma 2.2 with G(q) = K(q) and s = 2 then implies our theorem.

Proof of Theorem 1.7. We again work over the ring Zp�q� and Frobenius lift
given by qσ = qp. Again, the operator L ◦ y0 has a Frobenius structure with
α1 = 0. As functions of q its first four solutions are given by the trivial
y0/y0 = 1 and

y1/y0 = log q, y2/y0 = 1
2 log2 q+V2(q), y3/y0 = 1

6 log3 q+V2(q) log q+V3(q).

The self-duality relation ∣∣∣∣∣ y0 y3
θqy0 θqy3

∣∣∣∣∣ =
∣∣∣∣∣ y1 y2
θqy1 θqy2

∣∣∣∣∣
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evaluates to 2V2 +θqV3 = 0. Existence of the Frobenius structure with α1 = 0
the operator L ◦ y0 implies that there exists A ∈ Zp�q�[θq] such that the
identities (5) hold along with the additional identity

A
(1

6 log3(qp) + V2(qp) log(qp) + V3(qp)
)

= p3
(1

6 log3 q + V2(q) log q + V3(q) + α2 log q + α3

)
.

Here α2, α3 ∈ Zp. Following the arguments from the proof of Theorem 1.6
we can write A = 1 +A2θ

2
q with some differential operator A2 satisfying (6).

Our additional identity now becomes

pV2(qp) log q + V3(qp) + A2
[
p3 log q + 2p2(θV2)(qp) + p3(θ2V2)(qp) log q

+p2(θ2V3)(qp)
]

= p3 (V2(q) log q + V3(q) + α2 log q + α3) .

Use the relation 2θqV2 + θ2
qV3 = 0, which follows from the duality relation

2V2 + θqV3 = 0. We get after division by p3,

1
p3V3(qp) + 1

p2V2(qp) log q +A2(K(qp) log q) = (V2(q) +α2) log q + V3(q) +α3.

We know from Theorem 1.6 that K(q) ∈ Zp�q�. Terms with log q cancel due
to the identity (6) and the remaining terms yield

1
p3V3(qp) − V3(q) ∈ Zp�q�.

We denote this function by ψ(q) and apply θ3
q to get (θ3

qV3)(qp)− (θqV3)(q) =
θ3
qψ. Hence, K(qp)−K(q) = −1

2θ
3
qψ. Lemma 2.2 with G(q) = K(q) and s = 3

then implies our theorem.

3. Checking higher Hasse–Witt conditions

We recall our setup which was introduced starting on page 13. We have a
Laurent polynomial f(x) = 1 − tg(x) with g(x) ∈ Z[x±1

1 , . . . , x±1
n ] and such

that its Newton polytope Δ ⊂ Rn is reflexive. We pick a prime p and work
over the ring R = Zp�t� with a fixed Frobenius lift tσ ∈ tp(1 + ptZp�t�). The
R-module Of consists of rational functions of the form (k − 1)!A(x)/f(x)k
with k ≥ 1 and admissible polynomials A(x) supported in kΔ. We have the
R-linear Cartier operator on the p-adic completions Cp : Ôf → Ôfσ , where
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fσ(x) = 1 − tσg(x). In [5, §3] we introduced for k ≥ 1 the so-called k-th
formal derivates in Ôf by

Fk := {ω ∈ Ôf |C s
p (ω) ∈ pksÔfσs for all s ≥ 1}.

The main result in [5] is Theorem 4.2 together with its Corollary 5.9, which
state that if k < p and the Hasse–Witt determinants hw(�) are in R× for

 = 1, . . . , k, then

(7) Ôf
∼= Of (k) ⊕ Fk,

where Of (k) is the R-module generated by the rational functions tdeg(u)xu

f(x)k

with u ∈ kΔ. Similarly, we have Ôfσ ∼= Ofσ(k) ⊕ F σ
k , where

F σ
k := {ω ∈ Ôfσ |C s

p (ω) ∈ pksÔfσs+1 for all s ≥ 1}.

For a set S ⊂ Rn we denote by SZ the set of integral points in S, SZ =
S ∩ Zn. The Hasse–Witt determinants hw(k) are defined as follows.

Definition 3.1. Let 1 ≤ k < p. The kth Hasse–Witt matrix HW (k) is the
square matrix indexed by u,v ∈ (kΔ)Z, the (u,v)-entry being the coefficient
of xpv−u in the polynomial

(8) F (k)(x) = f(x)p−k
k−1∑
r=0

(fσ(xp) − f(x)p)rfσ(xp)k−1−r

divided by tp deg(v)−deg(u).

We note that the entries of HW (k) are in Zp�t�. This is because F (k)(x) is
admissible and deg(pv−u) ≥ p deg(v)−deg(u). We introduced these matrices
in [5, §5]. They arise naturally when one wants to decribe the Cartier action
on admissible rational functions modulo pk. Namely, for any u ∈ (kΔ)Z one
has

Cp
tdeg(u)xu

f(x)k =
∑

v∈(kΔ)Z

HW (k)
uv

tpdeg(v)xv

fσ(x)k (mod pkÔfσ),

see [5, (11)]. It follows from [5, Proposition 5.7] that det(HW (k)) is divisible
by pL(k) where

L(k) =
k∑

�=1
(#(kΔ)Z − #(
Δ)Z) =

∑
u∈(kΔ)Z\{0}

(deg(u) − 1) .
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Definition 3.2. We say that the k-th Hasse–Witt condition holds when

(9) hw(�) := p−L(�) det(HW (�)) ∈ Zp�t�
×

for each 1 ≤ 
 ≤ k.

The present section is devoted to proving the following theorem. We say
that a proper face τ of Δ is a simplex of volume 1 if it has dim(τ) + 1
vertices and all lattice points in the R≥0-cone generated by τ are integer
linear combinations of the vertex vectors.

Theorem 3.3. Suppose p > n. If all proper faces of Δ are simplices of
volume 1 and all coefficients of g(x) are in Z×

p then the k-th Hasse–Witt
condition holds for any k < p.

One easily verifies that the condition of the theorem is fullfilled by the
simplicial and octahedral Newton polytopes Δ. The proof will be given at the
end of this section. We start with some preparations. Note that for w ∈ Rn one
has deg w = maxτ 
τ (w), where the maximum is taken over all codimension
one faces τ ⊂ Δ and 
τ is the linear functional which takes value 1 on τ . We
will use the following properties of the degree function:

Lemma 3.4. Let w,w1,w2 ∈ Rn. For a face τ of any dimension we denote
by C(τ) the positive R≥0-cone spanned by τ . Then,

(a) for any codimension 1 face τ we have deg(w) = lτ (w) ⇔ w ∈ C(τ)
(b) deg(w1 + w2) ≤ deg w1 + deg w1
(c) the condition deg(w1 + w2) = deg w1 + deg w1 is equivalent to the fact

that for all proper faces τ one has: w1 + w2 ∈ C(τ) ⇒ w1,w2 ∈ C(τ).

Proof. (a) Let us assume w �= 0 and set λ = deg w. It follows from the
definition of deg that w/λ ∈ Δ. Suppose that deg w = 
τ (w). Then 1 =
deg(w/λ) = 
τ(w/λ). Since w/λ ∈ Δ we see that it must lie in the face τ .
Hence w ∈ λτ ⊂ C(τ). Conversely, if w ∈ C(τ), choose λ′ and w′ ∈ τ such
that w = λ′w′. For all codimension one faces τ ′ we have 
τ ′(w′) ≤ 
τ (w′) = 1.
After multiplication by λ′ we get 
τ ′(w) ≤ 
τ (w) = λ′. Hence deg w = λ′.

(b) Choose τ such that 
τ (w1 + w2) = deg(w1 + w2). Then,

deg(w1 + w2) = 
τ (w1 + w2) = 
τ (w1) + 
τ (w2) ≤ deg w1 + deg w2.

(c)“⇒” It suffices to prove the condition on the right side for all codimension
one faces τ . Choose τ of codimension 1 such that w1 + w2 ∈ C(τ). Then, by
(a), deg(w1 +w2) = 
τ (w1 +w2) = 
τ (w1) + 
τ (w2) ≤ deg w1 + deg w2. It is
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also given that deg(w1+w2) = deg w1+deg w1. Hence, we must conclude that
deg w1 = 
τ (w1) and deg w2 = 
τ (w2). Hence, again by (a), w1,w2 ∈ C(τ).

“⇐” Take any codimension 1 face τ such that w1 + w2 ∈ C(τ). Then
w1,w2 ∈ C(τ) and it follows from (a) that deg(w1 + w2) = 
τ (w1 + w2) =

τ (w1) + 
τ (w2) = deg w1 + deg w2.

For a subset S ⊂ Δ we denote by HW (k)(S) the square submatrix of
HW (k) indexed by u,v ∈ (kS)Z. For a proper face τ � Δ we denote by P (τ)
the pyramid over τ , that is the convex hull of τ and 0. The interior of τ is
denoted by τ ◦, this is the set of points of τ which do not lie in a subface of
τ , except when τ is a vertex. In that case, we take the convention τ ◦ = τ . In
what follows, we will denote

P (τ ◦) = the pyramid over τ ◦ with 0 removed.

One can obtain this set from the polytope P (τ) by removing all its proper
faces which contain 0. We remark that the (disjoint) union of P (τ ◦) over all
proper subfaces τ of Δ is precisely Rn \ {0}.

Proposition 3.5. With notations as above, one has

detHW (k)|t=0 =
∏
τ�Δ

detHW (k)(P (τ ◦))|t=0,

where the product is over all proper subfaces τ of Δ. By convention, when
(kP (τ ◦))Z = ∅ the respective factor for τ in the above product is 1.

Proof. We show that the matrix H := HW (k)|t=0 has an upper triangular
block structure where the blocks are indexed by 0 and the points in kP (τ ◦)
for all proper subfaces τ of Δ. We assume the indexes ordered according to
increasing dimension of τ , starting with 0.

Choose v,u ∈ (kΔ)Z. Let us first deal with v = 0. The coefficient of x−u

in F (k) divided by t− degu becomes 0 after setting t = 0, unless u = 0. So the
matrix column of H corresponding to v = 0 consists of zeroes, except for the
entry H0,0 = F (k)|t=0. Using (8) and f = 1− tg we easily find that H0,0 = 1.

In general, let τ be the face such that v lies in P (τ ◦). The entry Hu,v
can be non-zero only if deg(pv − u) = p deg(v) − deg(u). Application of
Lemma 3.4(c) with w1 = u and w2 = pv − u shows that u ∈ C(τ). Hence,
either u ∈ kP (τ ◦), or u ∈ kP ((τ ′)◦) for some proper subface τ ′ ⊂ τ , or u = 0.
This gives us the upper triangular block structure and the factorization of the
determinant follows.

In the following lemma, we use the assumption tσ/tp ∈ 1 + ptZp�t�.



On p-integrality of instanton numbers 25

Lemma 3.6. Let τ be a proper face of Δ. For u,v ∈ (kP (τ ◦))Z the (u,v)-
entry in the matrix HW (k)(P (τ ◦))|t=0 equals the coefficient of xpv−u in the
polynomial

(10) F
(k)
h (x) = h(x)p−k

k−1∑
r=0

(h(xp) − h(x)p)rh(xp)k−1−r,

where h(x) = 1 −∑
w∈τZ gw xw. Here gw is the coefficient of xw in g(x).

Proof. Write 
τ (w) =
∑n

i=1 
iwi with 
i ∈ Z. Let us replace xi by xi/t
�i for

i = 1, . . . , n. Observe that the monomial xw gets replaced by xw/t�τ (w) =
tδxw/tdegw, where δ ≥ 0 and δ = 0 if and only if w ∈ C(τ) as a consequence
of Lemma 3.4(a). Carrying out this substitution in the polynomials f(x),
fσ(xp) and (8) and setting t = 0 we obtain respectively h(x), h(xp) and (10).
Our claim immediately follows from this.

From now on we will consider the situation when the proper subfaces of
Δ are simplices of volume 1.

Proposition 3.7. Let τ be a simplicial face of volume 1 spanned by vertices
v1, . . . ,vs. Let h(x) = 1 −∑s

i=1 hixvi be a Laurent polynomial with hi ∈ Z×
p

for 0 ≤ i ≤ s.
Then the set (kP (τ ◦))Z is empty when k < s. When k ≥ s let H be the

matrix indexed by u,v ∈ (kP (τ ◦))Z, with entries given by the coefficient of
xpv−u in the polynomial F (k)

h (x) given by formula (10). Then the p-adic order
of det(H) equals ∑

u∈(kP (τ◦))Z

(deg(u) − 1) .

Proof. Let us introduce the coordinates yi = xvi for i = 1, . . . , s. Since
v1, . . . ,vs are generators of a volume 1 simplex, every xw with w ∈ C(τ ◦)
can be written as a a monomial in y1, . . . , ys (with exponents > 0). Thus we
see that we can restrict ourselves to a polynomial h̃(y) = 1−h1y1−· · ·−hsys.
Then F

(k)
h̃(y) = F

(k)
h(x). Furthermore, the degree of the monomial xu is now sim-

ply the usual total degree of the corresponding monomial in y1, . . . , ys. The
monomials xu ∈ (kP (τ ◦))Z simply become the monomials yw with w ∈ Qk

where Qk := {w|w1, . . . , ws > 0, w1+· · ·+ws ≤ k}. In particular, Qk is empty
k < s, so we see that H(k)

h̃(y) = 1 if k < s, as asserted in our proposition.
Now assume that k ≥ s. Observe that

F
(k)
h̃(y) = (h̃(yp) − h̃(y)p)k − h̃(yp)k

−h̃(y)k
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≡ h̃(yp)k

h̃(y)k
≡ (1 − h1y

p
1 − · · · − hsy

p
s)k

(1 − h1y1 − · · · − hsys)k
(mod pk).

Expand the right hand side as power series in y1, . . . , ys.

(11)
k∑

j=0
(−1)j

(
k

j

)
(h1y

p
1 + · · · + hsy

p
s)j

k∑
i=0

(
i + k − 1
k − 1

)
(h1y1 + · · · + hsys)i.

Let H ′ ≡ H(mod pk) be the matrix with entries

H ′
u,v = coefficient of ypu−v in (11),

where u,v ∈ Qk.
In what follows, we will compute the Smith normal form of H ′. To every

r × r matrix M with coefficients in Zp there exist matrices S, T ∈ GLr(Zp)
such that SMT = diag(pk1 , . . . , pks) with k1 ≤ k2 ≤ . . . ≤ kr. This is the
Smith normal form of M . The entries pki are uniquely determined and known
as elementary divisors of M .

Let us make an observation. Suppose that the elementary divisors of M
satisfy k� < k for all 
 and H ≡ M(mod pk). Then the p-adic order of det(H)
equals

∑r
�=1 k�. To prove this fact consider SHT = diag(pk1 , . . . , pks)+O(pk)

and multiply on both sides by the inverse of the Smith normal matrix. Since
k� < k for all 
 we get diag(pk1 , . . . , pks)−1SHT = Id + O(p) and take the
determinant on both sides.

We will show that the elementary divisors of H ′ are given by

(12) p|u|−1, u ∈ Qk,

where |u| = u1 + · · ·+us. The statement of the proposition then follows from
this fact due to the observation made above.

Consider u,v ∈ Qk. The entry H ′
u,v is the coefficient of ypv−u in the right-

hand side of (11). The contributions to this coefficient come from products of
the form (

∑
r hry

p
r )j(

∑
r hryr)i, where pj + i = p deg v − deg u. Take a term

with ypw in (
∑

r hry
p
r )j and a term with yw′ in (

∑
r hryr)i. Then pw + w′ =

pv − u, hence w′ + u ≡ 0(mod p). Since w′ + u has positive entries there
exists an integer vector v′ with positive entries such that w′ +u = pv′, hence
v′ = v − w. Since v ∈ Qk we conclude that v′ ∈ Qk. Moreover, w = v − v′
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and w′ = pv′ − u. Consequently, H ′
u,v equals the sum of the products

coeff of yp(v−v′) in(−1)|v−v′|
(

k

|v − v′|

)(∑
r

hry
p
r

)|v−v′|

× coeff of y(pv′−u) in
(
|pv′ − u| + k − 1

k − 1

)(∑
r

hryr

)|pv′−u|

taken over v′ ∈ Qk. The coefficient of yz in (
∑

r hryr)|z| equals hz times(
|z|
z

)
= |z|!

z1! . . . zs!
,

where hz = hz1
1 · · ·hzs

s . In the following, we use the convention that
(|z|

z
)

= 0
if one of the components of z is negative.

We obtain the expression

H ′
u,v = hpv−u ∑

v′∈Qk

(−1)|v−v′|
(

k

|v − v′|

)(
|v − v′|
v − v′

)

×
(
|pv′ − u| + k − 1

k − 1

)(
|pv′ − u|
pv′ − u

)

Therefore, we can write H ′ = G−1MNGp where all matrices have the same
indexing set Qk, G = diag(hu)u∈Qk

, and

Mu,v =
(
|pv − u| + k − 1

k − 1

)(
p|v − u|
pv − u

)

and Nu,v = (−1)|v−u|( k
|v−u|

)(|v−u|
v−u

)
. If we order indices with non-decreasing

degree then N will be upper triangular with 1’s on the diagonal, so N is also
invertible. Therefore, the elementary divisors of H ′ are the same as of M . To
compute them let us introduce

φv = 1
(k − 1)!

(p|v| − 1)!
(pv1 − 1)! . . . (pvs − 1)! , v ∈ Qk.

Since p > k and |v| ≤ k, one easily sees that φv is exactly divisible by ps−1.
We have

(13) Mu,v/φv = (p|v|)k−|u|

s∏
i=1

[pvi − 1]ui−1,
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where
(x)n = x(x + 1) . . . (x + n− 1)

is the usual Pochhammer symbol and

[x]n = x(x− 1) . . . (x− n + 1)

is its descending version. Denote by M ′
u,v the expression in (13). We have

M = M ′ diag(φv). The entry M ′
u,v is polynomial of total degree k − s in

pv1, . . . , pvs. Even better, as u runs over Qk these polynomials form a basis
in the Zp-module of all polynomials of total degree ≤ k− s. This assertion is
proved below in Lemma 3.8(a). Therefore, there exists a matrix S, invertible
in Zp, such that each column of M ′′ = SM ′ consist of all monomials of degree
≤ k − s in pv1, . . . , pvs in the same ordering:

M ′′
w,v = (pv)w = pdegwvw,

where w runs over the integer with positive coordinates and |w| ≤ k− s. We
note that this set is in a bijective correspondence with Qk via the map

w → u = w + (1, . . . , 1).

Lemma 3.8(b) shows that the square matrix (vw) is invertible over Zp. There-
fore the elementary divisors of M ′′ and M ′ are given by pw| and the elementary
divisors of M and H ′ are p|w|+s−1 = p|u|−1, as was claimed in (12).

We now prove two auxiliary statements which were used in the last para-
graph of the above proof.

Lemma 3.8. Let s ≥ 1 and m ≥ 0.

(a) Consider the set of polynomials in s variables z = (z1, . . . , zs) of total
degree m defined as

Pm,w(z) = (z1 + . . . + zs)m−
∑s

i=1 wi

s∏
i=1

[zi − 1]wi ,

where w = (w1, . . . , ws) runs over the set of vectors

w ∈ Zs
≥0 with

s∑
i=1

wi ≤ m.

When p ≥ m+ s these polynomials form a basis in the Zp-module of all
polynomials of total degree ≤ m.
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(b) Consider the square matrix (vw), where rows are indexed by w running
over the same set as in part (a) and columns are indexed by

v ∈ Zs
≥1 with

s∑
i=1

vi ≤ m + s.

When p > m one has det(vw) ∈ Z×
p .

Proof. (a) We fix p and s and prove the statement by induction in m. When
m = 0 we have one polynomial P0,0(z) = 1 and the claim is obvious. Let
m > 0 and suppose that the statement is true for m − 1. Let A denote the
Zp-module spanned by Pm,w(z) for all w with

∑m
i=1 wi ≤ m. Let e1, . . . , es

be the standard basis vectors in Zs. Take any w with
∑m

i=1 wi < m and note
that

s∑
i=1

Pm,w+ei(z) =
(

(z1 + . . . + zs)m−1−
∑s

i=1 wi

s∏
i=1

[zi − 1]wi

)
s∑

i=1
(zi − wi − 1)

= Pm,w(z) − (m + s− 1)Pm−1,w(z).

Since 0 < m + s− 1 < p we deduce from the above formula that polynomial
Pm−1,w(z) belongs to A. Now it follows from our inductional assumption that
zw ∈ A for any w with

∑s
i=1 wi < m. It remains to consider monomials zw

with
∑s

i=1 wi = m. For such w we have

Pm,w(z) =
s∏

i=1
[zi − 1]wi = zw + terms of total degree < m.

Since the terms of smaller degree belong to A, we have zw ∈ A. This finishes
the proof of the step of induction.

(b) When w runs over the indexing set from part (a), polynomials

Qw(z) =
s∏

i=1
[zi − 1]wi = zw + terms of smaller total degree

form a basis in the Zp-module of all polynomials of total degree ≤ m. The
transition matrix from the monomial basis to this basis has determinant 1, and
therefore det(vw) = det(Qw(v)). Note that Qw(v) = 0 when wi ≥ vi for some
i. Let e = (1, . . . , 1). We then have Qw(v) = 0 when

∑s
i=1 wi >

∑s
i=1(vi − 1)

or
∑s

i=1 wi =
∑s

i=1(vi − 1) but w �= v − e. If we arrange both indexing sets
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so that the sum of coordinates is non-decreasing, then

det(Qw(v)) = ±
∏
v
Qv−e(v) = ±

∏
v

s∏
i=1

(vi − 1)!.

In the set indexing columns the maximal value of vi−1 is m, hence the above
determinant is not divisible by p when p > m.

Proof of Theorem 3.3. Let k ≤ n. We use Proposition 3.5 to decompose
det(HW (k))|t=0 into a product the Hasse–Witt determinants corresponding
to P (τ ◦) for proper faces τ ⊂ Δ of all dimensions. Let τ be a proper face. By
Lemma 3.6 the Hasse–Witt matrix H = HW (k)(P (F ◦)|t=0 can be computed
from the coefficients of the polynomial F (k)

h (x) with h = 1 − ∑
w∈FZ

gwxw.
Since vol(F ) = 1 and all gw ∈ Z×

p we can apply Proposition 3.7 and conclude
that the p-adic order of detH equals

∑
u∈(kP (F ◦))Z(deg u − 1). It remains to

note that Δ \ {0} is the disjoint union of sets P (F ◦) for all proper faces F .
Multiplying by k and taking sets of integral points, we find that (kΔ)Z \ {0}
is the disjoint union of sets (kP (F ◦))Z. Hence

ordp det(HW (k))|t=0 =
∑
F�Δ

∑
u∈(kP (F ◦))Z

(deg u − 1)

=
∑

u∈(kΔ)Z\{0}
(deg u − 1) = L(k).

It follows that p−L(k) det(HW (k)) ∈ Zp�t�
×. Since k < p is arbitrary, our

claim follows.

Remark 3.9. The fact that f(x) = 1− tg(x) is not essential in Theorem 3.3.
With little modifications, a similar claim can be proved for any admissible
f(x) =

∑
u fuxu such that f0|t=0 ∈ Z×

p and (fu/t)|t=0 ∈ Z×
p for all u �= 0.

4. Construction of the Frobenius structure

Now we turn to the proof of Proposition 1.8. Let us recall our basic setup that
we introduced starting on page 13. We have a Laurent polynomial f(x) =
1 − tg(x) with g ∈ Z[x±1

1 , . . . , x±1
n ] such that its Newton polytope Δ ⊂ Rn

is reflexive. We start with the ring R = Z[t, 1/Df (t)] where Df (t) ∈ Z[t]
is some polynomial with Df (0) �= 0. The R-modules of admissible rational
functions Of and O◦

f consist of elements of the form (k−1)!A(x)/f(x)k where
k ≥ 1 and A is an admissible polynomial with coefficients in R and support
in kΔ and kΔ◦ repectively. Recall that dOf is a submodule generated by θiω
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for ω ∈ Of and i = 1, . . . , n. We also have a finite group G of monomial
substitutions which preserve f(x).

Definition 4.1. We shall say that M = (O◦
f )G/dOf is a cyclic θ-module of

rank n if

(i) for every m ≥ 0 and for every G-invariant admissible Laurent polyno-
mial A(x) supported in mΔ we have

m! A(x)
f(x)m+1 ≡

min(m,n−1)∑
j=0

bj(t)θj(1/f) (mod dOf )

with bj(t) ∈ Z[t, 1/Df (t)] for all j.
(ii) The monic order n differential operator L such that L(1/f) ∈ dOf is

irreducible in Q(t)[θ].

Note that existence of L in (ii) follows from (i). We call L the Picard-
Fuchs differential operator associated to M . Write L = θn +

∑n−1
j=0 aj(t)θj

with aj(t) ∈ Z[t, 1/Df (t)] for all j. We shall say that M is of MUM-type
(maximally unipotent local monodromy) if aj(0) = 0 for all j < n.

For any prime p not dividing #G×Df (0) and p ≥ n we embed Z[t, 1/Df (t)]
in Zp�t� and fix a Frobenius lift σ on Zp�t�. We assume it is given by tσ =
tp(1 + p t u(t)) for some u ∈ Zp�t�.

Proposition 4.2. Let M = (O◦
f )G/dOf be a cyclic θ-module of rank n.

Suppose that p ≥ n. Then there exist λi(t) ∈ piZp�t� such that

(14) Cp(1/f) ≡
n−1∑
i=0

λi(t)(θi(1/f))σ (mod dÔfσ).

Proof. From specialization of [5, (3)] to m = 1, A = 1 we get the following
explicit formula

(15) Cp(1/f) =
∑
k≥0

pk

k! × k! Qk(x)
(fσ)k+1 ,

with Qk(x) = Cp(G(x)kf(x)p−1) and

G(x) = 1
p
(fσ(xp) − f(x)p).
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The discussion preceding [5, (3)] assures us that the Laurent polynomials
Qk(x) are admissible with respect to tσ. So we can carry out Dwork-Griffiths
reduction modulo dOfσ using Definition 4.1(i) with f replaced by fσ. The
terms k!Qk(x)/(fσ)k+1 are equivalent modulo dOfσ to a Zp�t�-linear combi-
nation of (θi(1/f))σ, i = 0, 1, . . . , n−1. Thus the existence of the λi(t) ∈ Zp�t�
follows.

For any 0 ≤ i < n the contributions to λi(t) come from terms in (15)
with k ≥ i. Since p ≥ n we have that ordp(pk/k!) ≥ i if k ≥ i. This implies
that λi(t) is divisible by pi for all 0 ≤ i < n.

Remark 4.3. Consider the p-adic completion R = Z[t, 1/Df (t)]̂ ⊂ Zp�t�.
Though we will not use this fact, let us remark that if tσ ∈ R then λi(t)
constructed in the above proof also belong to R.

Remark 4.4. In the proof of Proposition 1.8 we need independence of θi(1/f),
i = 0, . . . , n− 1 modulo dÔf over Zp�t�. It should follow from the irreducibil-
ity in Q(t)[θ] of the Picard-Fuchs operator. Unfortunately, we have seen no
easy way do deduce this. Instead, we need to invoke the n-th Hasse–Witt
assumption and the following lemmas.

Lemma 4.5. Let (O◦
f )G/dOf be a cyclic θ-module of rank n. Then the ele-

ments θi(1/f), i = 0, 1, . . . , n − 1 are linearly independent modulo dOf over
Q(t).

Proof. Rational functions ω = A(x)/f(x)m ∈ Of can be expanded as power
series as follows:

A(x)/(1 − tg(x))m = A(x)
∞∑
k=0

(
k + m− 1
m− 1

)
tmg(x)m =

∑
u∈Z

cuxu

with some coefficients cu ∈ Zp�t�. Note that the constant term c0 = c0(ω)
vanishes when ω ∈ dOf . For this reason the map c0 : Of → Zp�t� was called a
period map in §2 of Dwork crystals II. Note that this map is Zp�t�-linear and
commutes with θ. The constant term c0(1/f) shall be denoted by F0(t), this is
precisely the power series solution to the Picard-Fuchs operator L normalized
so that F0(0) = 1. Suppose that there exist b0, . . . , bn−1 ∈ Q(t) not all zero
such that

∑n−1
j=0 bjθ

j(1/f) ∈ dOf . Then F0(t) is also annihilated by the lower
order operator L′ =

∑n−1
j=0 bjθ

j . Using the right Euclidean algorithm in Q(t)[θ]
we then find a right common divisor L′′ of L and L′. This operator of smaller
order also annihilates F0. Hence, L′′ �= 0, which contradicts irreducibility of
L in Q(t)[θ].
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Lemma 4.6. Let (O◦
f )G/dOf be a cyclic θ-module of rank n. Then the ele-

ments θi(1/f), i = 0, 1, . . . , n − 1 are linearly independent modulo dOf over
Zp�t�.

Proof. Suppose we have cj(t) ∈ Zp�t� such that

n−1∑
j=0

cj(t)θj(1/f) ∈ dOf .

Then there exists an integer k and Laurent polynomials hi(x), i = 1, . . . , n
with support in kΔ and coefficients in Zp�t� such that

n−1∑
j=0

cj(t)θj(1/f) =
n∑

i=1
xi

∂

∂xi

hi(x)
f(x)k .

We can rewrite this equality as a system of linear equation in the cj and the
coefficients of the hi with coefficients in Q(t). The existence of a solution in
Zp�t� with at least one non-zero cj implies the existence of a similar solution in
Q(t). Hence, the θi(1/f) would be linearly dependent over Q(t), contradicting
Lemma 4.5.

Remark 4.7. In the same way, one can show that the elements θi(1/f)σ,
i = 0, . . . , n− 1 are linearly independent modulo dOfσ over Zp�t�.

Lemma 4.8. Let (O◦
f )G/dOf be a cyclic θ-module of rank n. Suppose also

that the n-th Hasse–Witt condition holds. Then the elements θi(1/f), i =
0, 1, . . . , n− 1 are linearly independent modulo dÔf over Zp�t�.

Proof. Let c0, . . . , cn−1 ∈ Zp�t� be such that
∑n−1

j=0 cjθ
j(1/f) ∈ dÔf . Let us

write this element as
n∑

i=1
xi

∂

∂xi
νi

for some νi ∈ Ôf . Using the decomposition (7) for k = n − 1 we write
νi = ωi + δi with ωi ∈ Of (n− 1) and δi ∈ Fn−1 for each i. It follows that

n−1∑
j=0

cjθ
j(1/f) −

n∑
i=1

xi
∂

∂xi
ωi ∈ O(n) ∩ Fn.

As we have the decomposition (7) for k = n it follows that this element is 0.
Hence,

∑n−1
j=0 cjθ

j(1/f) ∈ dOf . Lemma 4.6 then implies that cj(t) = 0 for all
j.
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Remark 4.9. In the same way, using decompositions (7) in Ôfσ , one can
show that the elements θi(1/f)σ, i = 0, . . . , n − 1 are linearly independent
modulo dÔfσ over Zp�t�.

Proof of Proposition 1.8. Let L be the Picard-Fuchs operator associated to
M . Let Lσ be the operator obtained from L by applying σ to its coefficients
and replacing θ by θσ = tσ

θ(tσ)θ. We then normalize so that the coefficient of
θn becomes 1. Clearly the operator Lσ annihilates yσi for i = 0, . . . , n− 1 and
we have Lσ(1/fσ) ∈ dOfσ .

Consider (14) and replace (θi(1/f))σ = (θσ)i(1/fσ) by
(

tσ

θtσ θ
)i

(1/fσ).
Note that θtσ

tσ = p(1 + u(t)) for some u(t) ∈ tZp�t�. Since λj(t) is divisible by
pj for all j we can rewrite (14) as

(16) Cp(1/f) ≡ A(1/fσ) (mod dÔfσ),

where

A = A0(t) + A1(t)θ + · · · + An−1(t)θn−1 ∈ Zp�t�[θ].

We have Ai(0) = p−iλi(0) for 0 ≤ i < n because
(
p tσ

θtσ θ
)i

≡ θi modulo
tZp�t�[θ]. Apply L to (16) from the left and observe that, by the commutation
Cp ◦ θ = θ ◦ Cp, we have

L(Cp(1/f)) = Cp(L(1/f)) ⊂ Cp(dÔf ) ⊂ dÔfσ .

Hence L ◦ A(1/fσ) ∈ dÔfσ . Using the right Euclidean algorithm in Zp�t�[θ]
we can find differential operators B and N of order less than n such that
L ◦ A = B ◦ Lσ + N . Since Lσ(1/fσ) ∈ dOfσ and B sends dOfσ to itself, it
follows that N (1/fσ) ∈ dÔfσ . Using Remark 4.9 we conclude that N = 0.
Hence, Lσ is a right divisor of L ◦ A. In particular, this implies that for any
solution y(t) of L(y) = 0 the composition A(yσ) lies in the kernel of L.

Finally, we must show that A0(0) = 1. For this we will use the period map
c0 : Ôfσ → Zp�t� which was defined in the proof of Lemma 4.5 by taking
the constant term of the t-adically convergent formal expansion. This map
is Zp�t�-linear, commutes with θ and vanishes on dÔfσ . Applying the period
map c0 to the identity Cp(1/f) ≡ A(1/fσ)(mod dÔfσ) we get F0(t) = A(F σ

0 ),
where F0(t) = c0(1/f) is a power series with F0(0) = 1. Setting t = 0 on both
sides gives us 1 = A0(0), as desired.
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5. Simplicial family

Let

f(x) = 1 − t

(
x1 + · · · + xn + 1

x1 · · ·xn

)
.

Proposition 5.1. Let Df (t) = (n + 1)(1 − ((n + 1)t)n+1). Then the module
O◦

f/dOf over the ring Z[t, 1/Df (t)] is a cyclic θ-module of MUM-type. The
Picard-Fuchs operator reads

L = θn − ((n + 1)t)n+1(θ + 1) · · · (θ + n).

Note that if we take the constant term (in x1, . . . , xn) in each summand
of the series expansion 1/f(x) =

∑
k≥0 t

kg(x)k we get in the simplicial case
the power series ∑

k≥0

((n + 1)k)!
(k!)n+1 ,

which is the power series solution of our Picard-Fuchs equation L(y) = 0.
Notice that in the following proof we do not have to invoke the sym-

metry group of g(x), which was denoted in the Introduction by G ∼= Sn+1.
Proposition 5.1 tells us that the module O◦

f/dOf is generated by G-symmetric
functions, and therefore we can conclude that (O◦

f )G/dOf
∼= O◦

f/dOf .

Proof of Proposition 5.1. In order to make the symmetric background of g(x)
more manifest we introduce x0 = 1/(x1 · · ·xn) and write any monomial xu in
the form xw = xw0

0 xw1
1 · · ·xwn

n with w0, . . . , wn ∈ Z≥0. Of course the exponent
vector (w0, . . . , wn) is only determined up to a shift by integer multiples of
(1, . . . , 1). Let us write |w| = w0 + · · ·+wn. Then deg(xw) ≤ |w| and we have
equality if and only if mini wi = 0. We also rewrite f(x) as 1−t(x0+ · · ·+xn).
Observe that for i = 1, . . . , n,

(17) θi
xw

f(x)m = (wi − w0)
xw

f(x)m + m(xi − x0)
xw

f(x)m+1 .

Take the sum over i = 1, . . . , n and multiply by (m− 1)!t|w|.

0 ≡ (|w| − (n + 1)w0)(m− 1)! t
|w|xw

f(x)m

+ t(x0 + · · · + xn − (n + 1)x0)m! t|w|xw

f(x)m+1 (mod dOf ).
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Now replace t(x0 + · · ·+xn) by 1− f(x) and we get, after rearranging terms,

(18)
m! t

|w|+1xwx0

f(x)m+1 ≡ m! 1
n + 1

t|w|xw

f(x)m+1

+ (m− 1)!
( |w| −m

n + 1 − w0

)
t|w|xw

f(x)m (mod dOf ).

Combining this with (17) we find

(19)
m! t

|w|+1xwxi
f(x)m+1 ≡ m! 1

n + 1
t|w|xw

f(x)m+1

+ (m− 1)!
( |w| −m

n + 1 − wi

)
t|w|xw

f(x)m (mod dOf )

for i = 0, 1, . . . , n. Using these reduction formulae one easily sees by induction
that any term m! tdeg(u)xu

f(x)m+1 with deg(u) ≤ m is equivalent modulo dOf to a
Z[(n + 1)−1]-linear combination of k!

f(x)k+1 with k = 0, . . . ,m.
To finish the verification of part (i) of Definition 4.1 we must write θn(1/f)

as a Z[t, 1/Df (t)]- linear combination of θi(1/f), i = 0, 1, . . . , n− 1. To that
end we observe that x0x1 · · · xn = 1. So

(20) n! t
n+1x0 · · · xn
f(x)n+1 = n! tn+1

f(x)n+1 = tn+1(θ + 1) · · · (θ + n)
( 1
f(x)

)
.

We now show that the left hand side equals (n + 1)−n−1θn(1/f(x)) modulo
dOf . Set i = n,m = n,xw = x0x1 · · · xn−1 in (19). We find

(21) n! t
n+1x0 · · · xn
f(x)n+1 ≡ n! 1

n + 1
tnx0 · · · xn−1

f(x)n+1 (mod dOf ).

Choose any 1 ≤ m ≤ n and set i = m− 1,xw = x0 · · ·xm−2 in (19). If m = 1
we take xw = 1. We get

m! t
mx0 · · · xm−1

f(x)m+1 ≡ m!
n + 1

tm−1x0 · · · xm−2

f(x)m+1 − (m− 1)!
n + 1

tm−1x0 · · · xm−2

f(x)m

≡ 1
n + 1θ

(
(m− 1)! t

m−1x0 · · · xm−2

f(x)m

)
(mod dOf ).

By recursive application for m = n, n− 1, . . . , 1 and finally (21), (20) we find
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that

(n + 1)−n−1θn
( 1
f(x)

)
≡ tn+1(θ + 1) · · · (θ + n)

( 1
f(x)

)
(mod dOf ),

which verifies part (i) of Definition 4.1. It also establishes the MUM-property
of L.

To verify part (ii) we remark that the hypergeometric equation with pa-
rameters k

n+1 , k = 1, . . . , n and 1, 1, . . . , 1 has the property that the parameter
sets are disjoint modulo Z. This is the well-known irreducibility criterion for
hypergeometric differential equations, see [6]. Our equation L(y) = 0 arises
from this hypergeometric equation after the substitution t → ((n + 1)t)n+1.
The monodromy of the hypergeometric equation is generated by a maximally
unipotent matrix U coming from the monodromy at 0 and a pseudo reflection
S from the local monodromy at 1. Then the monodromy group of L(y) = 0
contains Un+1 and S. It is straightforward to see that if U and S generate
a matrix group that acts irreducibly, then the same holds for Un+1 and S.
Hence, the monodromy group of L(y) = 0 is irreducible, which implies in
particular that L is irreducible in Q(t)[θ].

6. Hyperoctahedral family

Let

f(x) = 1 − t

(
x1 + 1

x1
+ · · · + xn + 1

xn

)
and let G ∼= Sn × (Z/2Z)n be the symmetry group generated by the permu-
tations of x1, . . . , xn and xi → x±1

i .

Proposition 6.1. There exists Df (t) ∈ n!Z[t] with Df (0) = n! such that
over the ring Z[t, 1/Df (t)] the module (O◦

f )G/dOf satisfies property (i) of
Definition 4.1. There exists a monic operator L of order n with coefficients
in this ring and of MUM-type such that L(1/f) ∈ dOf .

Proof of Proposition 6.1. For the beginning we will work over the ring R =
Z[1/n!][t]. Define Xi = xi + 1

xi
and Yi = xi − 1

xi
for i = 1, . . . , n. Any element

in Z[x±1
1 , . . . , x±1

n ]G is a symmetric function in X1, . . . , Xn. Notice also that
θiXi = Yi and θiYi = Xi.

We first reduce m! A(x)
f(x)m+1 as a linear combination of θi(1/f) for i =

0, 1, . . . ,m. We shall reduce this problem to the case when A is an elementary
symmetric function of X1, . . . , Xn.
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For any i = 1, . . . , n, and polynomial B in the Xi consider

θi

(
YiB

fm

)
= XiB

fm
+ YiθiB

fm
+ mt

Y 2
i B

fm+1

= XiB

fm
+ YiθiB

fm
+ mt

X2
i B

fm+1 −mt
4B
fm+1

Multiply on both sides by (m− 1)!tdegB+1. We get

m!tdegB+2 X
2
i B

fm+1 ≡ m!tdegB+2 4B
fm+1 − (m− 1)!tdegB+1XiB

fm

−(m− 1)!tdegB+1YiθiB

fm
(mod dOf ).

So we see that any admissible term of the form m! t
deg(A)A(x)
f(x)m+1 , where A is

divisible by the square of some Xi, is equivalent modulo dOf to a Z[t]-linear
combination of an admissible term with denominator fm+1 and a numerator
of degree deg(A) − 2 and admissible terms with denominator fm.

Thus m! t
deg(A)A(x)
f(x)m+1 is equivalent modulo dOf to a linear combination of

terms with admissible numerators which have degree at most 1 in each vari-
able and denominator f(x)k+1 with 0 ≤ k ≤ m. So far we have not used
the symmetry of A in the Xi, but for the next step this will be important.
Since #G = n!2n is invertible in our ring, we can apply symmetrization with
respect to the action of G and conclude that m! t

deg(A)A(x)
f(x)m+1 is equivalent to

a linear combination of terms k!trsr(X)/f(x)k+1 where 0 ≤ r ≤ k ≤ m
and sr(X) is the elementary symmetric polynomial in X1, . . . , Xn of de-
gree r. When r = 0 we define s0 = 1. In the following computation, we
use the identities

∑n
i=1

∂
∂Xi

sr = (n + 1 − r)sr−1,
∑n

i=1 Xi
∂

∂Xi
sr = rsr and∑n

i=1 X
2
i

∂
∂Xi

sr = s1sr− (r+1)sr+1. These hold for r = 0, 1, . . . , n if we define
s−1 = sn+1 = 0. We make the following computation.

∑
i

θi

(
Yi

∂
∂Xi

sr

fm

)
=

∑
i

Xi
∂

∂Xi
sr

fm
+ mt

(X2
i − 4) ∂

∂Xi
sr

fm+1

= rsr
fm

+ mt
s1sr − (r + 1)sr+1

fm+1 − 4mt
(n + 1 − r)sr−1

fm+1

= (r −m) sr
fm

+ m
sr

fm+1 −mt(r + 1) sr+1

fm+1

−4mt(n + 1 − r) sr−1

fm+1 .
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In the first equality, we used that ∂2

∂X2
i
sr = 0 and Y 2

i = X2
i − 4. In the third

equality, we used ts1 = 1 − f .
After multiplication by r!(m− 1)!tr we get

(22)
m! (r + 1)!tr+1sr+1

fm+1 ≡ (r −m)(m− 1)!r!t
rsr

fm
+ m!r!t

rsr
fm+1

− 4m!t2(n + 1 − r)r (r − 1)!tr−1sr−1

fm+1 (mod dOf ).

Thus we see that modulo dOf every term m!(r + 1)!tr+1sr+1/f
m+1 with 0 ≤

r < n equals a Z[t]-linear combination of similar terms whose numerator or
denominator have lower degree. By induction we can continue this reduction
procedure until we end with a linear combination of terms k!/fk+1 with 0 ≤
k ≤ m.

To finalize the proof we show that θn(1/f) is a linear combination of
θi(1/f), i = 0, . . . , n− 1.

To that end, we reduce (n!)2tnsn/fn+1 in two ways as linear combination
of r!/f r+1 with r = 0, . . . , n and show that they are different.

First, set r = m = n in (22). Using our definition sn+1 = 0 we find that

n!n!tnsn
fn+1 ≡ 4n!nt2 (n− 1)!tn−1sn−1

fn
(mod dOf ).

Using (22) we see that the right hand side reduces to t2 times a Z[t]-linear
combination of terms r!/f r+1 with r = 0, . . . , n − 1 modulo dOf . For the
second reduction use the left hand side and reduce again with the aid of (22).
This time we get a result that is not a multiple of t2 and therefore not the
same as the first reduction. This shows the existence of a non-trivial relation
between θi(1/f), i = 0, 1, . . . , n. We make this relation more explicit.

Note that the last term on the right hand side of (22) reduces to t2 times
a Z[t]-linear combination of k!/fk+1 for k = 0, . . . ,m. We now consider (22)
modulo t2,

m! (r + 1)!tr+1sr+1

fm+1 ≡ (r −m)(m− 1)!r!t
rsr

fm
+ m!r!t

rsr
fm+1 (mod t2, dOf ).

We assert that

(m− 1)!r!t
rsr

fm
≡ θr(θ + 1)m−r−1

( 1
f

)
(mod t2, dOf )
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for all r < m. An easy verification shows that this formula is a solution
of our recursion modulo (t2, dOf ) and it also satisfies the starting condition
(m− 1)!/fm = (θ + 1)m−1(1/f).

We now conclude that

n!n!tnsn
fn+1 ≡ θn

( 1
f

)
(mod t2, dOf ).

This reduction is distinct from our first reduction because it is not zero modulo
t2. Furthermore, we know that n!n!tnsn

fn+1 is a Z[t]-linear combination of terms
r!/f r+1 with r = 0, . . . , n. By the relation r!/f r+1 = (θ + 1) . . . (θ + r)(1/f)
it is also a Z[t]-linear combination of θr(1/f) for r = 0, . . . , n. Using the
above congruence modulo t2, dOf we see that the coefficient of θn(1/f) equals
1(mod t2). Thus we find that there exist ai(t) ∈ Z[t] such that

n∑
i=0

ai(t)θn−i(1/f) ∈ dOf ,

with a0(0) = 1 and ai(0) = 0 for all i > 0. We take Df (t) = n!a0(t) (to
account for inversion of n!) and our proposition is proven.

7. Vanishing of α1

In Sections 3-6, we constructed the p-adic Frobenius structure for the Picard–
Fuchs differential equations L(y) = 0 of order n < p corresponding to the
simplicial and hyperoctahedral families in n dimensions. By Proposition 1.8,
the respective Frobenius constants are given by αi = p−iλi(0), where λi ∈
Zp�t� are the coefficients in the formula

(23) Cp(1/f) =
n−1∑
i=0

λi(t)(θi(1/f))σ(mod dÔfσ).

Let n ≥ 2. The fact that α1 = 0 is crucial for Corollary 1.9. In the proof
of this corollary in the introductory section, we said that vanishing follows
from [5, Proposition 7.7]. In this concluding Section, we would like to explain
how to apply this result to our situation. We work over the ring Zp�t�.

Lemma 7.1. For the simplicial and hyperoctahedral families in dimension
n ≥ 2 we have

(i) the quotient (Ô◦
f )G/F2 is the free Zp�t�-module with basis 1/f and

θ(1/f);
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(ii) dÔf ∩ (Ô◦
f )G ⊂ F2.

Proof. Recall that in the cases under consideration the nth Hasse–Witt con-
dition holds due to Theorem 3.3. By the results in Section 5 and 6 and
Lemma 4.8 we have that (Ô◦

f )G/dÔf is a free Zp�t�-module with the ba-
sis θi(1/f), 0 ≤ i ≤ n − 1. Hence, (ii) would follow from (i). We now prove
(i). The nth Hasse-Witt condition implies in particular the second Hasse-Witt
condition. Therefore, we have the direct sum decomposition Ô◦

f
∼= O◦

f (2)⊕F2.
Note that O◦

f (2)G is spanned by 1/f and θ(1/f) because G acts transitively
on the set of vertices of the Newton polytope Δ and the only integral points
in 2Δ◦ are 0 and the vertices. Using the above direct sum decomposition and
doing symmetrization with respect to G we obtain (i).

In [5, §7] we considered the series A,B, λ̃0, λ̃1 ∈ Zp�t� such that

(24)
θ2(1/f) = A(t)/f + B(t)θ(1/f)(mod F2),
Cp(1/f) = λ̃0(t)/f + λ̃1(t)(θ(1/f))σ(mod F σ

2 ).

In loc.cit. we denote them by λ0 and λ1, but here we need to change the
notation to avoid collision with the coefficients in (23). Though we don’t use
this fact, let us remark that θ2−Bθ−A is a right divisor of our Picard-Fuchs
operator L in Zp�t�[θ] as it follows from (ii) above. Here

A(0) = B(0) = 0, λ̃0(0) = 1 and λ̃1(0) = 0

by Propositions 7.6 and 7.7 in loc.cit. respectively. Their proofs are based on
congruences for expansion coefficients of the functions in the identities (24).
The desired vanishing result follows from the next lemma.

Lemma 7.2. In the above notations we have λ1(0) = λ̃1(0).

Proof. Using induction For each i ≥ 2 we construct the series Ai, Bi ∈ Zp�t�

such that θi(1/f) = Ai(t)/f + Bi(t)θ(1/f)(mod F2). Indeed, for i = 2 we
take A2 = A,B2 = B and apply θ consecutively to obtain the coefficients for
higher i. It is not hard to show by induction that Ai(0) = Bi(0) = 0 for each
i. Due to Lemma 7.1(ii) identity (23) also holds modulo F σ

2 . For every i ≥ 2
we substitute (θi(1/f))σ with Ai(tσ)/fσ +Bi(tσ)(θ(1/f))σ and conclude that
λ̃1 = λ1 +

∑n
i=2 Bi(tσ)λi. Our claim follows from this because Bi(0) = 0 for

all i.
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