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1 Introduction

Spontaneous breaking of supersymmetry in supergravity can be realized via Scherk-Schwarz
reductions on a circle with a twist by a supergravity duality symmetry [1–3]. The string
theory uplifts of these are typically reductions of string theories with a duality twist [4]
which can in some cases be viewed as compactifications on torus bundles over a circle but in
general can give reductions on non-geometric T-folds or U-folds [5]. For the case in which
the duality twist is a T-duality, these become freely acting orbifolds at special points of the
moduli space [4]. (For some early references on such orbifolds see e.g. [6–10].) Our interest
here lies mostly in partial supersymmetry breaking, which can easily be accommodated
with the Scherk-Schwarz mechanism and its stringy uplift. This yields a variety of string
theories in lower dimensions with various amounts of supersymmetry. Complete breaking
of supersymmetry without the presence of tachyons can be achieved as well, and we will
present some new examples of such string theories. Typically they suffer from known
problems of generating either a cosmological constant that is too large, or extra dimensions
that are too large. This renders these models not realistic for phenomenology, though still
interesting for present purposes, as we shall discuss.

Scherk-Schwarz reductions over a circle S1 from D ` 1 to D dimensions arise when
the fields in D ` 1 dimensions pick up a monodromy around the circle contained in the
continuous duality symmetry group G of the D ` 1 dimensional supergravity. The ansatz
for the fields is

ψpxµ, yq “ gpyqrψpxµqs , gpyq “ exp
ˆ

My

2πR

˙

, (1.1)

where g P G, y is the coordinate on S1 with radius R and M is an element of the Lie algebra
of G. The fields then pick up a monodromy matrix eM going around the S1.

To fully specify the reduction, we need to also choose a spin structure on the circle; this
will be discussed in more detail later on. Scherk-Schwarz reductions of supergravity theories
yield gauged supergravities in D dimensions, and when the (classical) moduli space in D` 1
dimensions is a coset G{K with K compact, the scalar potential on the moduli space in D
dimensions is positive definite. If furthermore the monodromy matrix is G-conjugate to
a rotation matrix in K, there exist stable or at least marginally stable Minkowski vacua
that may preserve some of the supersymmetry [4]. The quadratic fluctuations around the
vacuum then yield the mass spectrum with masses determined by the parameters in the
monodromy matrix.

Scherk-Schwarz reductions can be generalised to string theory [4, 11]. In string theory
the global symmetry group G of the low-energy effective action is broken to the discrete
U-duality group GpZq which is a symmetry of the non-perturbative string theory [12] and
the monodromy is required to be in GpZq [4, 11] giving non-linear quantization conditions
on the mass matrix. Now, if the quantized monodromy is conjugate to a rotation, the
construction is an orbifold [4]. Each choice of a monodromy matrix corresponds to a choice
of orbifold and yields a particular quantization condition on the masses. From the point of
view of the string landscape, it is therefore important to study the mass spectra allowed by
these quantization conditions. When the scalar potential in supergravity leads to a mass
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spectrum that does not obey these quantization conditions, it belongs to the swampland.
One of the aims of our paper is to study this question in detail for a large class of freely
acting orbifolds.

For the purposes of this paper, we will consider monodromies contained in the T-duality
subgroup of GpZq. Such supergravity vacua can be realized in string theory as freely acting
orbifolds. We focus on the case of type IIB string theory on T 5 and the orbifold actions we
discuss here involve a T-duality action on T 4 together with a shift along the remaining S1.
The six-dimensional supergravity theory obtained by compactification on T 4 has symmetries
given by G “ Spinp5, 5q and K “ rSpinp5q ˆ Spinp5qs{Z2. The U-duality symmetry is
then GpZq “ Spinp5, 5;Zq and the T-duality subgroup in which the monodromy lies is
Spinp4, 4;Zq. In addition to the Spinp5, 5;Zq U-duality, the string theory compactified on T 4

also has a local symmetry given by the double cover K̃ of K, K̃ “ rSpinp5q ˆ Spinp5qs [13]:
while the local symmetry acts through K on the bosons, the double cover is needed for
the action on the fermions, requiring a generalized spin structure [13]. We will work in a
gauge in which the local symmetry is fixed, so that the U-duality transformations act on
the fermions through compensating K̃ transformations.

If the monodromy acts as a diffeomorphism on T 4, this corresponds to a symmetric
orbifold of the IIB string, so that the compactification geometry is a T 4 bundle over
S1 [5]. If the monodromy acts as a T-duality on T 4, this constructs a T-fold background
which is realized as an asymmetric orbifold at a special point in the moduli space [4, 14].
Asymmetric orbifolds are interesting for moduli stabilization because more of the moduli
are fixed than in the symmetric case. Furthermore, by combining the T-duality action on
T 4 with a shift on S1 one ensures that no extra moduli arise from the twisted sector. (See
e.g. [15–18] for some references.) The original references for symmetric and asymmetric
orbifolds are [19, 20] and [21, 22] respectively. These references mainly focus on the lattice
approach, which is particularly useful when constructing partition functions, as we will
discuss. However, for making contact with the Scherk-Schwarz reductions the language of
monodromies and duality twists is more useful. These reductions correspond to orbifolds
by symmetries which are freely acting and these have some important differences with the
non-freely acting ones. In this paper, we will use these two complementary approaches and
discuss their relationship.

The T-duality transformations on T 4 can be realised as diffeomorphisms of a doubled
torus T 8, so that the T-fold construction described above can be viewed as a bundle of the
doubled torus T 8 over a circle [5]. More general constructions are possible in which the
dependence on the momentum on the circle introduced by the monodromy is generalised
to include dependence on the string winding number on the circle. String theory on the
circle can be formulated by introducing a dual coordinate conjugate to the winding number
so that the circle is promoted to a doubled circle. Then the general construction has
separate monodromies which are introduced on both the circle and the dual circle; these
two monodromies are given by two commuting T-duality transformations [23]. This gives a
construction that is not even locally geometric and can be understood in terms of a doubled
torus bundle over the doubled circle [24, 25]. (Such constructions are sometimes referred to
as having “R-flux”.) The corresponding orbifolds involve a shift on both the circle and the
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dual circle, introducing phases depending on both momentum and winding [23]. Further
possibilities arise with shifts on several circles, see e.g. [26]. In this paper we will focus on
the cases in which there is a shift on just one circle and no shift on the dual circle.

We will carefully discuss the orbifold action on the fermions. The theory has further
discrete symmetries such as p´1qFs where Fs is the spacetime fermion number, together
with refinements of this into chiral fermion numbers. We will see that we need to consider
monodromies such as Mp´1qFs where M is in Spinp4, 4;Zq. Note that for a monodromy
p´1qFs (with M “ 1), the orbifold by this together with a shift on the circle amounts
to choosing the anti-periodic spin structure for the circle. This corresponds to a non-
supersymmetric string compactification which can be made free of tachyons. We will discuss
explicit examples of such compactifications in this paper.

The choice of T 5 was motivated by our earlier study of black holes in type IIB string
theory with a duality twist [14], in which supersymmetry is (partially) broken in the vacuum
already in the absence of the black hole. In that paper, we studied in detail the supergravity
arising from the reduction with a duality twist. In this paper we analyse the string vacua in
their own right, and postpone the further discussion of D-branes and black holes to a future
study [27]. The compactifications we study here are closely related to those of [28, 29]
which involved a similar construction with K3 instead of T 4, and their heterotic duals.

It turns out that the landscape of freely acting orbifolds is rather rich and connects
to questions that arise in the string landscape programme. One issue is mentioned above,
namely finding the quantization conditions on the masses. Moreover, for the massless
sector, there are constraints on the moduli spaces that may appear. One example of such a
constraint is that we always find an odd number of abelian massless vectors in the class
of orbifolds we consider, independent of the number of supersymmetries. For orbifolds
preserving 16 supersymmetries, this implies that only an odd number of abelian vector
multiplets arises. This is much in line with the analysis in higher dimensions [30, 31].

We also study the case of N “ 2 (eight supersymmetries), and find that only some of
the magic square supergravities [32, 33] arise in the orbifold landscape, while the others do
not arise in this way. It is important to stress that we have not studied all possible duality
twists here, but only those with monodromy matrices that are conjugate to Spinp4qˆSpinp4q
rotations in the T-duality group. These are the ones that lead to stable Minkowski vacua
with spontaneously broken supersymmetry. Even in this class, there are surprises. As it
was recently shown in [34], asymmetric orbifolds of the type pT 4 ˆ S1q{Zp with N “ 6 (24
supersymmetries) only exist for p “ 2, 3 but lead to problems with the partition function for
p “ 4, 6. These partition functions are modular invariant, but have non-integral coefficients
in the qq̄-expansion in the twisted sectors and hence appear to be unphysical.1 This
integrality constraint was analyzed in the original papers [21, 22], and it was satisfied
by all the models presented there. Later, models based on the idea of quasicrystalline
compactification violating the integrality constraint were discussed in [35]. Here, we will
review the aforementioned N “ 6 models and find new examples with less supersymmetry
where the integrality condition is violated.

1The same integrality problem in fact also arises for the non-freely acting asymmetric orbifolds T 4
{Z4,6.
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The following two sections deal with the orbifold constructions in the closed string
sector. In section 2 we discuss the various possible orbifolds, the relation with duality
twists and the quantization conditions on the mass parameters. In section 3 we present
the orbifold action on the world-sheet fields and the general formalism for constructing
modular invariant orbifold partition functions. In section 4 we present the details of some
examples, including asymmetric Z2 orbifolds that preserve N “ 6 or N “ 2 supersymmetry,
as well as a symmetric Z4 orbifold and an asymmetric Z2 orbifold that preserve N “ 4
supersymmetry. As an example with completely broken supersymmetry we discuss a
symmetric Z3, N “ 0 orbifold, and find the conditions for the absence of tachyons that
appear in the twisted sectors. In section 5 we relate the freely acting orbifolds with the
supergravity Scherk-Schwarz reductions presented in [14], we analyse the moduli spaces
of massless scalars that can appear and find complete agreement of the low-lying massive
spectrum. Furthermore, we discuss the supertrace formulae for the N “ 0 supergravity
models, and show that the first non-vanishing supertrace is StrM8 ą 0, leading to negative
corrections to the scalar potential. This is consistent with earlier predictions from string
theory [6], and similar to the supergravity results in four dimensions obtained in [3, 36].
Finally, in section 6 we give some explicit examples of swampland models and end with
some conclusions and our outlook in section 7.

2 Orbifolds and duality twists

2.1 The orbifolds

The orbifolds we are interested in have target spaces of the form

R1,4 ˆ S1 ˆ T 4 , (2.1)

identified under the action of a Zp symmetry. This requires being at a point in the moduli
space in which the fields on T 4 are invariant under the action of Zp. We then orbifold by a
Zp given by this T 4 symmetry combined with a shift by 2πR{p on the circle S1 with radius
R which makes the orbifolds freely acting. Freely acting orbifolds have no fixed points and
at generic points in the moduli space, all states coming from the twisted sectors are massive.
Furthermore, as compared to non-freely acting orbifolds, supersymmetry is spontaneously
broken instead of being explicitly broken, manifested by the fact that gravitini become
massive instead of being projected out.

The symmetric orbifolds arise when the Zp action on T 4 is a geometric discrete symmetry
of T 4, generated by a diffeomorphism on T 4, i.e. by an element in GL(4;Z); this generator is
the monodromy of the corresponding duality twist. The requirement that the monodromy
is in the discrete group GL(4;Z) restricts the rank p of the group Zp. All possible values of
p have been classified in [37] and for T 4 these are p “ 2, 3, 4, 5, 6, 8, 10, 12 and 24. Not all
values of p yield supersymmetric string theories, and it is worth mentioning that symmetric
orbifolds of T 4 of rank p “ 5, 8, 10, 12 and 24 break all supersymmetry.

For the asymmetric orbifolds, the Zp group acts as a T-duality transformation on the T 4

CFT. The T-duality group for superstrings on T 4 is Spinp4, 4;Zq, a discrete subgroup of the
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double cover Spinp4, 4q of SOp4, 4q, as the D-brane states transform as a spinor representation
of Spinp4, 4q [12]. Then, in this case, the monodromy matrix lies in Spinp4, 4;Zq.2 The
background fields, namely the torus metric G and the two-form B-field, can be combined
into a matrix E “ G ` B. T-duality transforms E to a new background E1 through a
fractional linear transformation.3 Consistency of the asymmetric orbifold then requires
that the Zp transformation is a symmetry under which E1 “ E. This can be achieved
only for special values of the moduli, which are therefore stabilized in these non-geometric
constructions. Requiring modular invariance puts severe constraints on which asymmetric
orbifolds are allowed and in particular restricts the values of p. Nevertheless, asymmetric
orbifolds allow for more possibilities compared to the symmetric ones (see also [35, 41]).
We will return to these issues when we discuss specific examples.

2.2 Moduli space and quantization conditions

For a coset space G{K, the points are cosets: rgs “ gK, where g P G. The stabilizer of the
origin r1s “ K is a subgroup K0 Ă G, so that the stabilizer of a point rgs is the conjugate
subgroup Kg “ gK0g

´1. We are interested in those points rḡs for which there is a Zp
symmetry preserving rḡs which is also in the duality group GpZq, so that GpZq X Kḡ is
non-trivial and contains the Zp. This is a hard condition to solve in general, and GpZqXKḡ

is non-trivial only for special points. Such a fixed point is necessarily at a minimum of the
associated Scherk-Schwarz potential and gives a stable Minkowski vacuum [4].

If the generator of the Zp symmetry is M P GpZq, then

M “ ḡM̃ḡ´1 ; M̃ P K0 Ă G , ḡ P G . (2.2)

At a point in the moduli space fixed under the action of such a Zp symmetry, the corre-
sponding background field configuration on T 4 ˆ S1 is preserved by the Zp symmetry. If
M “ eM

1 , then
M̃ “ eM , (2.3)

where
M “ ḡ´1M 1ḡ (2.4)

will be referred to as the mass-matrix: it is the matrix of masses that appear in the effective
action. In this way, a monodromy M P GpZq satisfying Mp “ 1 defines a matrix M̃ P K0
that also satisfies M̃p “ 1 and so generates a Zp subgroup of K. The action on fermions
is through an element of the double cover K̃ of K and this in general can generate a Z2p
subgroup of K̃.

Monodromies M,M1 that are GpZq-conjugate, i.e.

M1 “ gMg´1 , g P GpZq , (2.5)
2When the monodromy matrix is not in the T-duality subgroup of the U-duality group, one has generalized

orbifolds that quotient by a non-perturbative symmetry [4]. Such orbifolds don’t have a CFT description on
the worldsheet and we will not consider them in this paper.

3For details on how T-duality acts on the background fields we refer to the classic review [38] and
e.g. [39, 40].
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define the same theory. Then the distinct orbifolds correspond to conjugacy classes of
monodromies [11]. This conjugation changes the fixed point ḡ Ñ ḡ1 “ gḡ but leaves M̃
unchanged. Changing ḡ to ḡk with k P K0 gives another representative of the coset rḡs and
transforms M̃ to kM̃k´1. Then the monodromy only defines the rotation matrix M̃ and
the mass matrix M up to conjugation by an element of K0.

2.3 Type IIB string theory compactified on T 4

For type IIB string theory compactified on T 4, G “ Spinp5, 5q and K “ rSpinp5q ˆ
Spinp5qs{Z2 with double cover K̃ “ rSpinp5q ˆ Spinp5qs. We will focus on the T-duality
subgroup Spinp4, 4q Ă Spinp5, 5q which is a perturbative symmetry that can be realised in
the world-sheet formulation. In the classical supergravity theory, the 1/2-BPS 0-branes in
6D obtained by compactification on T 4 are in the 16-dimensional spinor representation of
Spinp5, 5q. In the quantum string theory, the charges of these 0-branes are quantized and
take values in a 16-dimensional charge lattice. The U-duality group GpZq “ Spinp5, 5;Zq is
the discrete subgroup of Spinp5, 5q preserving this lattice. Under the subgroup Spinp4, 4q Ă
Spinp5, 5q, the 16 0-brane charges decompose into an 8-dimensional vector representation 8v
of Spinp4, 4q corresponding to the NS-NS 0-branes from 4 momentum modes and 4 winding
modes on T 4, together with an 8-dimensional chiral spinor representation 8s of Spinp4, 4q
corresponding to the R-R 0-branes arising from D1-branes and D3-branes wrapping the T 4.
Then the charges transform as the 8v ` 8s representation of Spinp4, 4q, and Spinp4, 4;Zq is
the discrete subgroup of Spinp4, 4q preserving the charge lattice.

At a point rgs in the moduli space that is fixed under a Zp symmetry, we compactify
on a further S1 and orbifold by the Zp symmetry of the T 4 combined with a shift on the
S1. The orbifold group is then generated by M combined with a shift of the S1 coordinate
by 2πR{p. This corresponds to a compactification on T 4 followed by a compactification
on S1 with a duality twist by the T-duality transformation M P GpZq, so that there is a
monodromy M on the S1. Then M P Spinp4, 4;Zq is required to satisfy

M “ gM̃g´1 ; M̃ P rpSpinp4q ˆ Spinp4qq{Z2s0 Ă Spinp4, 4q , g P Spinp4, 4q .
(2.6)

Note that Spinp4, 4q is the double cover of SOp4, 4q and rSpinp4qˆSpinp4qs{Z2 is a double
cover of the SOp4q ˆ SOp4q subgroup of SOp4, 4q. This means that it is the double cover
of an asymmetric rotation. In the world-sheet theory, one SOp4q factor acts as a rotation
on the left-movers and the other acts as a rotation on the right-movers. The restriction
to Spinp4, 4;Zq ensures that the periodicity condition of the bosonic coordinates on T 4 is
preserved. The group K̃ “ Spinp4q ˆ Spinp4q is a quadruple cover of the SOp4q ˆ SOp4q.

The elements ˘1 of Spinp4q both project to the identity 1 of SOp4q, while the four
elements p1,1q, p1,´1q, p´1,1q, p´1,´1q of Spinp4q ˆ Spinp4q all project to the identity
p1,1q of SOp4q ˆ SOp4q, exhibiting the quadruple cover. Then

SOp4q ˆ SOp4q – Spinp4q ˆ Spinp4q
Z2 ˆ Z2

, (2.7)
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with the subgroup Z2 ˆ Z2 consisting of the elements p1,1q, p1,´1q, p´1,1q, p´1,´1q.
The duality group K is the double cover of (2.7), given by

K “
Spinp4q ˆ Spinp4q

Z2
, (2.8)

with the Z2 generated by p´1,´1q.
All fermions in the theory transform as representations of Spinp4q ˆ Spinp4q while

the bosons transform as representations of SOp4q ˆ SOp4q. The element p´1,´1q of
Spinp4q ˆ Spinp4q leaves all bosons invariant but multiplies each spacetime fermion by ´1.
This means that it acts as p´1qFs , where Fs is the spacetime fermion number. Next, p´1,1q
acts as ´1 on fermions transforming under the Spinp4qL subgroup of Spinp4qL ˆ Spinp4qR
and so acts as p´1qFL , where FL is the corresponding fermion number. Similarly, p1,´1q
acts as ´1 on fermions transforming under the Spinp4qR subgroup of Spinp4qL ˆ Spinp4qR
and so acts as p´1qFR . Note that Fs should not be confused with the world-sheet fermion
number and FL, FR should not be confused with the left and right-moving world-sheet
fermion numbers, although they are of course related via the GSO projection. Thus,
there are four possible lifts to Spinp4q ˆ Spinp4q of the identity in SOp4q ˆ SOp4q, given
by 1, p´1qFs ,p´1qFL ,p´1qFR . Of these, p´1qFs is represented trivially in Spinp4, 4;Zq by
M̃ “ 1, while p´1qFL ,p´1qFR are represented in Spinp4, 4;Zq by M̃ “ ´1.

We can now specify the orbifolds we will be considering here. We choose a M P

Spinp4, 4;Zq satisfying Mp “ 1, for some p, and take the monodromy to be M. This then
determines an element M̃ P rpSpinp4qˆSpinp4qq{Z2s0 via (2.6). To define the transformation
of the fermions, we then choose a lift of M̃ to the double cover M̂ P Spinp4qˆSpinp4q. It is
also possible to include a fermionic twist, in which case the monodromy becomes Mp´1qFs ,
and similarly for FL{R. Note that if p is odd, pMp´1qFsqp “ p´1qFs , so that this generates
a Z2p symmetry, while for even p it generates a Zp symmetry.

Practically, it is often useful to define the orbifold by a choice of matrix M̂ P Spinp4q ˆ
Spinp4q which gives the orbifold action on all the fields. This matrix is only determined up
to Spinp4q ˆ Spinp4q conjugation, and by conjugation we can bring it to a standard form in
a convenient maximal torus SOp2q4

M̂ “ pML,MRq P Spinp4qL ˆ Spinp4qR , (2.9)

with

ML “

˜

Rpm1q 0
0 Rpm3q

¸

, MR “

˜

Rpm2q 0
0 Rpm4q

¸

, (2.10)

where we use the notation Rpxq “
` cosx ´ sinx

sinx cosx
˘

for a two by two rotation matrix. Here
each matrix acts in the p2, 0q ` p0, 2q representation of Spinp4q – SUp2q ˆ SUp2q. The
matrices ML{R act on spinors on T 4 such as the internal part of the R-vacua, as we discuss
in the next section, see (3.11). Thus, the monodromy is specified by four angles mi, and
then the key step is determining what angles are allowed, i.e. for which choices of the angles
mi there is a monodromy matrix M P Spinp4, 4;Zq.

These mi are the same parameters that were used in the supergravity analysis of [14],
so they can be used to make contact with the results that were obtained there. Each of the
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mass parameters mi gives the mass of exactly two of the eight gravitini, so the amount of
preserved supersymmetry in the orbifold can be tuned by choosing the mi to be zero or
non-zero. Our orbifolds preserve N “ 2r supersymmetry, where r is the number of mi that
is zero (or a multiple of 2π). For N “ 4 supersymmetry with two of the mi non-zero, there
are two possibilities depending on whether the twist is chiral with both of the non-zero
mi in either ML or in MR, or non-chiral with one of the non-zero mi in ML and one in
MR. A chiral twist (e.g. with m2 “ m4 “ 0) leads to a (1,1) supergravity theory, as the
massive multiplets are (1,1) massive supermultiplets in the terminology of [42]. Regarding
the non-chiral twists, we refer to the twist with m3 “ m4 “ 0 as (0,2) theory as the massive
multiplets are (0,2) massive supermultiplets, and we refer to the twist with m1 “ m2 “ 0
as a (2,0) theory as the massive multiplets are (2,0) massive supermultiplets. More details
on the supergravity aspects are discussed in section 5 and in [14].

Using the isomorphism Spinp4q – SUp2q ˆ SUp2q (see appendix A and in particu-
lar (A.16)) the matrix M̂ P Spinp4q ˆ Spinp4q projects onto a matrix

Mθ “ pNL,NRq P SOp4qL ˆ SOp4qR , (2.11)

which (by conjugation) can be brought to the standard form

NL “

˜

RpθLq 0
0 Rpθ1Lq

¸

, NR “

˜

RpθRq 0
0 Rpθ1Rq

¸

, (2.12)

for four angles θL, θ1L, θR, θ1R which are related to the mi by

θL “ m1 `m3 , θR “ m2 `m4 ,

θ1L “ m1 ´m3 , θ1R “ m2 ´m4 .
(2.13)

Then e.g. m1 “
1
2pθL ` θ

1
Lq so that taking θ1L Ñ θ1L ` 2π takes m1 to m1 ` π and Rpm1q to

´Rpm1q. Note that pm1,m2,m3,m4q, pm1 ` π,m2,m3 ` π,m4q, pm1,m2 ` π,m3,m4 ` πq,
pm1`π,m2`π,m3`π,m4`πq all give the same angles θL, θ1L, θR, θ1R (mod 2π), exhibiting
the quadruple cover.

2.4 An ansatz

Solving in general for all possible integer valued T-duality elements that are conjugate to a
rotation is a difficult problem. Here we consider a special case for which results are known
in the literature. For the case G “ SLp2,Rq, K “ SOp2q all monodromies satisfying

M “ gM̃g´1 ; M P SLp2,Zq , M̃ P SOp2q , g P SLp2q (2.14)

are given in [4, 43]. The M̃ P SOp2q for which this is possible are rotations by angles

α P
 

0,˘π
3 ,˘

π
2 ,˘

2π
3 , π

(

mod 2π . (2.15)

Such rotations then generate a Z2, Z3, Z4 or Z6 subgroup of SLp2q generated by M̃ P SOp2q
and these in turn yield a Z2, Z3, Z4 or Z6 subgroup of SLp2,Zq generated by M.
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The group SOp4, 4q has a subgroup SOp2, 2q ˆ SOp2, 2q as well as a subgroup SOp4q ˆ
SOp4q, and the group theory regarding these two subgroups is very similar. Now, Spinp4, 4q
has a subgroup that is a double cover of this SOp2, 2q ˆ SOp2, 2q given by

Spinp2, 2q ˆ Spinp2, 2q
Z2

Ă Spinp4, 4q . (2.16)

As
SLp2q2 – Spinp2, 2q , (2.17)

we see that Spinp4, 4q has a subgroup

SLp2q4

Z2
Ă Spinp4, 4q . (2.18)

The quotient by Z2 reflects the fact that the element p´1,´1,´1,´1q P SLp2q4 maps to
the identity in Spinp4, 4q. We will then restrict our monodromy to lie in this subgroup
and use the known results for SLp2q. We stress that these are not all possible rSpinp4q ˆ
Spinp4qs{Z2 rotations that can be conjugated to integer valued elements of the T-duality
group Spinp4, 4;Zq, but these are the ones that we focus on for the purposes of this work.

Restricting the subgroup SLp2q4{Z2 Ă Spinp4, 4q to a subgroup of Spinp4, 4;Zq, restricts
us to a discrete subgroup of SLp2q4 and we need to check what subgroup arises in this way.
The 8v of Spinp4, 4q restricts to a p4, 1q ` p1, 4q of Spinp2, 2q ˆ Spinp2, 2q and as the vector
representation 4 of Spinp2, 2q is the p2, 2q representation of SLp2q2, the 8v is in the

p2, 2, 1, 1q ` p1, 1, 2, 2q

representation of SLp2q4. The 8s representation of Spin(4,4) is in the

p1, 2, 2, 1q ` p2, 1, 1, 2q

representation of SLp2q4. Thus the 16 charges are in the

p2, 2, 1, 1q ` p1, 1, 2, 2q ` p1, 2, 2, 1q ` p2, 1, 1, 2q . (2.19)

Choosing 16 basis vectors ei for the 16-dimensional charge lattice, the allowed charges are
niei where ni is a 16-vector of integers, ni P Z16. The group SLp2q4 acts on the integers
ni in the representation (2.19) and will preserve the lattice if restricted to the discrete
subgroup SLp2,Zq4.

Then the monodromy M P SLp2,Zq4{Z2 is conjugate to a rotation in SOp2q4 specified
(up to conjugation) by four angles αi P

 

0,˘π
3 ,˘

π
2 ,˘

2π
3 , π

(

mod 2π, where i “ 1, . . . , 4.
The element p´1,´1,´1,´1q P SLp2q4 with trivial monodromy corresponds to α1 “ α2 “

α3 “ α4; this will play a role in the N “ 6 supersymmetric cases discussed below.
The angles αi are related to the angles θi by (for details see appendix A.4)

θL “ α1 ` α3 , θR “ α1 ´ α3 ,

θ1L “ α2 ` α4 , θ1R “ α2 ´ α4 .
(2.20)
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This is similar in form to (2.13) and so we see again that the SOp2q4 parameterised by the
αi provides a quadruple cover of the SOp2q4 parameterised by the θi. Comparing (2.20)
with (2.13), we see that

m1 `m3 “ α1 ` α3 , m2 `m4 “ α1 ´ α3 ,

m1 ´m3 “ α2 ` α4 , m2 ´m4 “ α2 ´ α4 .
(2.21)

All the equations relating angles hold modulo 2π.
The equations (2.21) then determine the mass parameters mi, giving one solution as

m1 “
1
2pα1 ` α2 ` α3 ` α4q , m2 “

1
2pα1 ` α2 ´ α3 ´ α4q ,

m3 “
1
2pα1 ´ α2 ` α3 ´ α4q , m4 “

1
2pα1 ´ α2 ´ α3 ` α4q .

(2.22)

For a given set of αi, the complete set of solutions is given by the pm1,m2,m3,m4q in (2.22),
together with pm1 ` π,m2,m3 ` π,m4q, pm1,m2 ` π,m3,m4 ` πq, pm1 ` π,m2 ` π,m3 `

π,m4 ` πq. All these yield the same angles θL, θ1L, θR, θ1R, giving a quadruple cover. Then
for a given set of αi, there are four possible choices of M̂. Denoting the canonical M̂
(given by (2.9), (2.10) with the m’s given by (2.22)) by M̂pmq, the four choices are M̂pmq,
M̂pmqp´1qFs , M̂pmqp´1qFL and M̂pmqp´1qFR .

The results just stated come from requiring agreement of the two different parameteri-
sations of Mθ in terms of the m’s or the α’s respectively. Half of this ambiguity is lifted by
requiring agreement for the two different parameterisations of M̃. Then a given set of α’s
determines a M̃, which we denote M̃pαq and is conjugate to a monodromy Mpαq. For this,
there remain two possible choices of M̂, which are M̂pmq and M̂pmqp´1qFs , corresponding
to a choice of generalized spin structure (see the discussion of fermionic monodromies below).
We choose the generalized spin structure so that the monodromy Mpαq gives the twist
M̂pmq and Mpαqp´1qFs gives the twist M̂pmqp´1qFs .

It will be useful to note that (2.22) can be inverted to give

α1 “
1
2pm1 `m2 `m3 `m4q , α2 “

1
2pm1 `m2 ´m3 ´m4q ,

α3 “
1
2pm1 ´m2 `m3 ´m4q , α4 “

1
2pm1 ´m2 ´m3 `m4q .

(2.23)

As the allowed values for each of the αi are
 

0,˘π
3 ,˘

π
2 ,˘

2π
3 , π

(

mod 2π, the allowed
values of the mi can be found by taking linear combinations of these. It will often be useful
to rewrite these parameters as

mi “
2πNi

p
. (2.24)

Here the Ni are integers, and p is the smallest positive integer such that all four mi can be
written like this. This relation defines the quantization condition on the mass parameters
and guarantees that the integer p is the order of the monodromy matrix, M̂p “ 1.

As follows from (2.22), the quantization of the α’s allows for the values p P t2, 3, 4, 6, 8,
12, 24u. Notice that the values p “ 5 and p “ 10 found in [37] and mentioned in the
beginning of this section do not appear in our list. This is because the duality twists from
our ansatz lie in a particular SLp2q4 subgroup given by (2.18), and the values p “ 5, 10 do
not arise from this subgroup.
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Preserved supersymmetry (A)symmetric Possible Zp orbifold ranks

N “ 6 A p “ 2, 3

N “ 4 p0, 2q
S p “ 2, 3, 4, 6

A p “ 3, 4, 6, 12

N “ 4 p1, 1q A p “ 2, 3, 4, 6, 12

N “ 2 A p “ 2, 3, 4, 6, 12

N “ 0
S p “ 2, 3, 4, 6, 8, 12, 24

A p “ 3, 4, 6, 8, 12, 24

Table 1. The class of orbifolds studied in this paper, indicating the amount of preserved supersym-
metry and the rank of the orbifold. We also indicate which orbifolds are symmetric (S, m1 “ m2 and
m3 “ m4) or asymmetric (A). The N “ 4 p0, 2q is defined from having m3 “ m4 “ 0 whereas the
p1, 1q is defined from m2 “ m4 “ 0, up to trivial permutations exchanging m1,2 with m3,4. Notice
the absence of p “ 2 for asymmetric N “ 4 p0, 2q orbifolds. In this case we have m1,2 “ ˘π but `π
is the same as ´π, and so this is a symmetric orbifold in disguise.

In table 1 we list which values of p yield orbifolds that preserve a certain amount of
supersymmetry. Recall that our orbifolds preserve N “ 2r supersymmetry where r is the
number of mi that is zero (mod 2π). Notice that fixing p does not fix the orbifold. For a
given p, there can be more than one possibility. An example is N “ 4 p0, 2q, with p “ 4, for
which there can be both a symmetric and an asymmetric orbifold.

2.5 Special cases and examples

The action of the group SLp2q4 on T 4 we are considering splits it into the product of T 2ˆT 2

with the SLp2q2 parameterised by α1, α3 acting on one T 2 and the SLp2q2 parameterised by
α2, α4 acting on the other T 2.

Fermionic monodromies p´1qFs,p´1qFL,p´1qFR

Here we consider monodromies such that Mθ “ 1 (i.e. all angles θi “ pθL, θ1L, θR, θ1Rq are 0
mod 2π), so that the NS-NS sector is invariant and the twist only acts on fermions and on
the R-R sector. For θi “ 0 mod 2π, each of the mi and each of the αi must be either 0 or π
(mod 2π). Consider for instance the twist

m1 “ m3 “ π, m2 “ m4 “ 0 , (2.25)

so that θL “ 2π, θ1L “ 0 and θR “ θ1R “ 0. The αi are given by α1 “ α3 “ π, α2 “ α4 “ 0.
This lifts to a monodromy on the double cover

M̂ “ pML,MRq “ p´1,1q , (2.26)

so that M̂ “ p´1qFL . Choosing instead m1 “ m3 “ 0 and m2 “ m4 “ π, we get
M̂ “ p1,´1q, so that M̂ “ p´1qFR .
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We now consider a monodromy with

m1 “ m2 “ m3 “ m4 “ π . (2.27)

Then

M̂ “ pML,MRq “ p´1,´1q , (2.28)

so that M̂ “ p´1qFs . This has a trivial projection to K̃: M̃ “ 1. This then corre-
sponds to M “ 1 so that orbifold with m1 “ m2 “ m3 “ m4 “ π has a monodromy
Mp´1qFs “ p´1qFs .

The orbifold of the type IIB string by p´1qFs gives the non-supersymmetric type 0B
string [44, 45]. Here we are combining the p´1qFs with a half-shift on the S1 to give an
interesting Z2 orbifold breaking all supersymmetry, which can be made tachyon-free. We
will discuss it further in subsection 5.2.4.

Symmetric orbifold of T 2

Choosing

α2 “ α3 “ α4 “ 0 ñ θL “ θR “ α1; θ1L “ θ1R “ 0 . (2.29)

Then (2.22) gives

m1 “ m2 “ m3 “ m4 “
α1
2 . (2.30)

This is a symmetric orbifold with α1 parameterizing an SOp2q acting as a rotation
on one T 2. For α1 “ 2π{n, Mn “ 1, as Mn is a rotation through 2π, but M̂n “ ´1, as
the double cover of the 2π rotation acts as ´1 on spinors. Thus, this constitutes a Zp
orbifold with p “ 2n. From the allowed values of α1, we can read of the allowed values of n,
which are n “ 1, 2, 3, 4, 6, such that p “ 2, 4, 6, 8, 12. As all mi ‰ 0, this orbifold breaks all
supersymmetry.

Symmetric orbifold of T 4

Choosing

α3 “ α4 “ 0 ñ θL “ θR “ α1, θ1L “ θ1R “ α2 , (2.31)

and (2.22) gives

m1 “ m2 “
1
2pα1 ` α2q, m3 “ m4 “

1
2pα1 ´ α2q . (2.32)

Recall that the allowed values for each of the α1, α2 are
 

0,˘π
3 ,˘

π
2 ,˘

2π
3 , π

(

mod 2π. For
most choices of α1,2, all mi ‰ 0, so this orbifold breaks all supersymmetry. When α1 “ α2,
we have N “ 4 supersymmetry of type p0, 2q.
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Example: a Z24 orbifold

We now give an explicit example of a Z24 orbifold arising as above, i.e. as a symmetric
orbifold of T 4. We can see from table 1 that Z24 orbifolds always break all supersymmetry.
The example that we choose is

α1 “
π

2 , α2 “
π

3 , α3 “ α4 “ 0 ñ m1 “ m2 “
5π
12 , m3 “ m4 “

π

12 . (2.33)

The monodromies in the SLp2,Zq subgroups (2.18) that the α’s rotate in are known.
They can be found e.g. in [4]. The ones corresponding to α1 and α2 respectively read

˜

0 ´1
1 0

¸

,

˜

0 ´1
1 1

¸

. (2.34)

The first one is simply a rotation matrix over an angle α1 “ π{2, and the second one is
conjugate to a rotation matrix over an angle α2 “ π{3 via a conjugation à la (2.14):

˜

0 ´1
1 1

¸

“

c

2
?

3

˜

1 0
´1

2

?
3

2

¸

¨

˜

cos π3 ´ sin π
3

sin π
3 cos π3

¸

¨

«

c

2
?

3

˜

1 0
´1

2

?
3

2

¸ff´1

. (2.35)

We can use appendix A.3 to map the SLp2q matrices (2.34) properly to SOp2, 2q matrices,
which can then be combined into an SOp4, 4q element. This yields the monodromy

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ´1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 ´1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 ´1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ´1
0 0 0 0 0 0 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P SOp4, 4q . (2.36)

This monodromy is written in τ -frame (using the language from appendix A.1), meaning
that the group SOp4, 4q consists of matrices that preserve the metric

τ “

˜

0 14ˆ4
14ˆ4 0

¸

. (2.37)

We see that, in this frame, the monodromy is integer-valued as it should be.4 Notice that
the monodromy acts as a diffeomorphism on T 4, as it should, since we consider a symmetric
orbifold. The geometric group GL(4,Z) is embedded in the T-duality group SO(4,4,Z) as

MSO “

˜

g 0
0 g´t

¸

, g “

¨

˚

˚

˚

˝

0 ´1 0 0
1 0 0 0
0 0 0 ´1
0 0 1 1

˛

‹

‹

‹

‚

, g P GLp4,Zq . (2.38)

4This is the case because the T-duality group works on integer valued charges (winding and momentum
numbers) in τ -frame.
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Note that the monodromy in (2.36) generates an orbit of rank 12: M12
SO “ 1. The

action on the fermions is through the matrix M̂ given by (2.9), (2.10) with the m’s in (2.33)
and this generates an orbit of rank 24 as it satisfies M̂24 “ 1.

Asymmetric orbifold of T 2

Choosing

α2 “ α4 “ 0 ñ θL “ α1 ` α3, θR “ α1 ´ α3; θ1L “ θ1R “ 0 , (2.39)

and (2.22) gives

m1 “ m3 “
1
2pα1 ` α3q, m2 “ m4 “

1
2pα1 ´ α3q . (2.40)

As discussed previously, α1, α3 P
 

0,˘π
3 ,˘

π
2 ,˘

2π
3 , π

(

mod 2π. For example, choosing
α1 “ π{2, α3 “ π{3 gives m1 “ m3 “ 5π{12 and m2 “ m4 “ π{12 giving a Z24 orbifold.
Again, as all mi ‰ 0, this orbifold breaks all supersymmetry. We can preserve some
supersymmetry e.g. by choosing α1 “ α3, so that m2 “ m4 “ 0 and there is N “ 4
supersymmetry of type p1, 1q.

Chiral orbifold of T 4

Choosing

α1 “ α3, α2 “ α4 ñ θL “ 2α1, θ1L “ 2α2, θR “ θ1R “ 0 , (2.41)

and (2.22) gives

m1 “ α1 ` α2, m3 “ α1 ´ α2, m2 “ m4 “ 0 . (2.42)

This type of orbifold can preserve either N “ 6 or N “ 4 supersymmetry. We now look at
these cases separately.

N “ 6 supersymmetric orbifold

For N “ 6 supersymmetry, precisely one of the mi should be non-zero. Choosing this to be
m1 ‰ 0 with m2 “ m3 “ m4 “ 0 requires (using (2.41), (2.42))

α1 “ α2 “ α3 “ α4 “
1
2m1 ñ θL “ θ1L “ 2α1 “ m1, θR “ θ1R “ 0 , (2.43)

so that this is a chiral orbifold. Recall that α1 “ m1{2 P
 

0,˘π
3 ,˘

π
2 ,˘

2π
3 , π

(

mod 2π.
The factor of two in the relation between αi and m1 is important. The case α1 “ π

gives m1 “ 2π as well as θL “ θ1L “ 2π, so that M̂ “ 1 and M “ 1 so that the monodromy
is trivial. This reflects the fact that the monodromy is not in SLp2q4 but in SLp2q4{Z2.
Similarly, α1 “ π{2 gives a Z2 symmetry instead of the Z4 that might have been expected.
Finally, α1 “ π{3 gives a Z3 symmetry instead of a Z6 symmetry, while α1 “ 2π{3 also
gives a Z3 symmetry. Thus, the only possible values of p from our ansatz are 2 and 3.
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N “ 4 chiral supersymmetric orbifold

For an orbifold with N “ 4 chiral supersymmetry we need to turn on two mass parameters.
Requiring m1,m3 ‰ 0 and m2 “ m4 “ 0 gives (using (2.41), (2.42))

α1 “ α3 “
1
2pm1 `m3q, α2 “ α4 “

1
2pm1 ´m3q ñ

θL “ m1 `m3, θ1L “ m1 ´m3, θR “ θ1R “ 0 .
(2.44)

This choice of mass parameters leads to a (1,1) theory.

Non-chiral supersymmetric orbifolds of T 4

We discuss two examples of this type, preserving N “ 4 and N “ 2 supersymmetry
respectively.

N “ 4 non-chiral supersymmetric orbifold

Requiring m1,m2 ‰ 0 and m3 “ m4 “ 0 gives (using (2.23))

α1 “ α2 “
1
2pm1 `m2q, α3 “ α4 “

1
2pm1 ´m2q ñ θL “ θ1L “ m1, θR “ θ1R “ m2 .

(2.45)
This choice of mass parameters leads to a (0,2) theory. In general, this is an asymmetric
orbifold, but for the special choice m1 “ m2, the orbifold is symmetric.

N “ 2 supersymmetric orbifold

For N “ 2, we turn on three mass parameters and the remaining one is zero. Requiring e.g.
m4 “ 0 gives (using (2.23))

α1 “
1
2pm1 `m2 `m3q , α2 “ 1

2pm1 `m2 ´m3q ,

α3 “
1
2pm1 ´m2 `m3q , α4 “ 1

2pm1 ´m2 ´m3q .
(2.46)

so that
θL “ m1 `m3, θ1L “ m1 ´m3, θR “ θ1R “ m2 . (2.47)

Notice that this is always an asymmetric orbifold. We will discuss some explicit examples
of non-chiral orbifolds in section 4.

3 The orbifold action on the world-sheet fields and the partition function

3.1 Lattices and tori

Our starting point was a torus compactification on a square torus R4{Z4 with periodic
torus coordinates so that the BPS 0-brane charge lattice was preserved by Spinp4, 4;Zq.
The moduli were packaged into the background metric and antisymmetric tensor gauge
fields on the torus and the fixed point under the action of the monodromy was at a point
rḡs in the moduli space. Acting with a duality transformation ḡ in G moves the fixed point
to the origin and diagonalizes the action of the monodromy on the fields. However, it also
deforms the torus, so that it is no longer a square torus and the boundary conditions of the
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torus coordinates are changed, so that the left-moving coordinates take values on a torus
R4{ΛL for some lattice ΛL and the right-moving coordinates take values on a torus R4{ΛR
for some lattice ΛR. The left-moving momenta pL take values in the lattice dual to ΛL

and the right-moving momenta pR take values in the lattice dual to ΛR. Then the vectors
ppL, pRq build an 8-dimensional even, self-dual Lorentzian lattice, which is known as the
Narain lattice [46] and we will denote by Γ4,4. The sublattices ΛL,ΛR of Γ4,4 are invariant
under the action of the Zp symmetry that is used in the orbifold. These sublattices are
associated with root lattices of Lie algebras.5

For the ansatz of the last section, the monodromy is in

Spinp2, 2q ˆ Spinp2, 2q
Z2

Ă Spinp4, 4q . (3.1)

This means that the T 4 can be regarded as T 2 ˆ T 2 with one Spinp2, 2q factor in the
monodromy acting on the first T 2 and the other acting on the second T 2. In this case, the
two four-dimensional lattices ΛL,ΛR must each decompose into the sum of two 2-dimensional
lattices: ΛL “ Λ1‘Λ2 and similarly for ΛR. Each 2-dimensional lattice must then be A2 or
A1 ‘A1 – D2.6 However, below we will also consider other 4-dimensional lattices ΛL,ΛR
that fall outside the scope of the ansatz of section 2. This allows further possible values
of p, e.g. p “ 5, and in some cases it is necessary for modular invariance, as we will show
in detail.

3.2 The world-sheet fields

We are now ready to discuss the action of the orbifold on the worldsheet variables. We split
the bosonic coordinates as XM Ñ pX̂ µ̂, Y mq Ñ pXµ, Z, Y mq, where Y m (m “ 1, . . . , 4) are
the T 4 coordinates, Z is the circle coordinate, Xµ (µ “ 0, . . . , 4) are the R1,4 coordinates, and
X̂ µ̂ (µ̂ “ 0, . . . , 5) are the coordinates on R1,4 ˆ S1. We often work in complex coordinates
on the torus, which we denote by W i “ 1?

2pY
2i´1 ` iY 2iq with i “ 1, 2. On-shell, the

worldsheet coordinates split into left and right-moving parts as

W ipσ1, σ2q “W i
Lpσ

1 ` σ2q `W i
Rpσ

1 ´ σ2q . (3.2)

Here, σ1 and σ2 are the coordinates on the worldsheet which we always take to be of
Lorentzian signature. We denote the oscillators of all bosonic coordinates by α̃Mn and αMn
where the tilde indicates a left-mover, and we use different indices (µ̂, µ, z, m or i) according
to the above decomposition. The fermionic modes of the superstring are denoted by b̃Mn and
bMn with a similar index structure. In the case of complex modes, we use a bar to denote
the complex conjugate.

Now that we have set up our notation, we are ready to present the orbifold action. It
is most easily stated in terms of the matrix M̃ in (2.6), parametrized by the four mass

5For a thorough discussion on lattices we refer to [47].
6Dn and An denote the root lattices of SOp2nq and SUpn` 1q respectively.
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parameters mi. It works on the bosonic torus coordinates with asymmetric rotations

W 1
L Ñ eipm1`m3qW 1

L ,

W 2
L Ñ eipm1´m3qW 2

L ,

W 1
R Ñ eipm2`m4qW 1

R ,

W 2
R Ñ eipm2´m4qW 2

R ,

(3.3)

and with the same action on the fermionic torus coordinates. In addition, symmetric
orbifolds correspond to m1 “ m2 and m3 “ m4. Furthermore, the rotations on the torus
are accompanied by a shift along the circle coordinate

Z Ñ Z ` 2πR{p , (3.4)

which makes the orbifold freely acting. Here R is the circle radius (Z „ Z ` 2πR). Due to
this shift, states that carry momentum in the Z-direction obtain a phase e2πin{p under the
orbifold action, where n is the momentum number of the state.

Let us now discuss the orbifold action on the Neveu-Schwarz (NS) and Ramond (R)
vacua, which we denote by |0yL{R and |s1, s2, s3, s4yL{R respectively, where sκ “ ˘1

2 . The
subscript L{R is used to distinguish the left and the right-moving vacua. We choose the
GSO projection in such a way that both R-vacua satisfy

4
ÿ

κ“1
sκ P 2Z . (3.5)

The NS-vacua are spacetime scalars and are invariant under the orbifold action. On the
other hand the R-vacua are 10D spinors and we know how they transform under rotations,
so in particular under the orbifold action. In general we have

|s1, s2, s3, s4y Ñ exp
˜

2πi
4
ÿ

κ“1
vκ Sκ

¸

|s1, s2, s3, s4y “ e2πi~v¨~s |s1, s2, s3, s4y , (3.6)

where the Sκ “ J2κ´1,2κ are the Cartan generators of the little group SOp8q with eigenvalues
sκ. The vκ denotes a rotation in the 2κ´ 1 and 2κ directions over an angle 2πvκ. Whenever
the rotation works asymmetrically on left and right-movers, the formula above applies
to spinors in each sector individually. In this case we use ũκ and uκ for the left and
right-moving rotation parameters respectively. Using this notation, we read off from (3.3)
that our orbifold action is a rotation with

ũ3 “
m1 `m3

2π , u3 “
m2 `m4

2π ,

ũ4 “
m1 ´m3

2π , u4 “
m2 ´m4

2π .

(3.7)

and the other rotation parameters (ũ1,2 and u1,2) equal to zero. These rotation parameters
are subject to the constraint

u3,4 “
n3,4
p

, n3,4 P Z , (3.8)
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and similarly for ũ3,4, as follows from the quantization condition on the mass parame-
ters (2.24). These parameters are related to the angles introduced in the last section by

ũ3 “
θL
2π , u3 “

θR
2π ,

ũ4 “
θ1L
2π , u4 “

θ1R
2π .

(3.9)

As we can see from (3.6), the orbifold action on the R-vacua depends only on the values of
s3, s4. We introduce the following notation for the possible values of these spins:

|a1yL{R “
ˇ

ˇs1, s1,
1
2 ,

1
2
D

L{R
,

|a2yL{R “
ˇ

ˇs1, s1,´
1
2 ,´

1
2
D

L{R
,

|a3yL{R “
ˇ

ˇs1,´s1,
1
2 ,´

1
2
D

L{R
,

|a4yL{R “
ˇ

ˇs1,´s1,´
1
2 ,

1
2
D

L{R
.

(3.10)

Here the relative sign between s1 and s2 is fixed by the GSO projection. By using (3.6)
and (3.7) we find that the orbifold action on each of these is

|a1yL Ñ eim1 |a1yL , |a1yR Ñ eim2 |a1yR ,

|a2yL Ñ e´im1 |a2yL , |a2yR Ñ e´im2 |a2yR ,

|a3yL Ñ eim3 |a3yL , |a3yR Ñ eim4 |a3yR ,

|a4yL Ñ e´im3 |a4yL , |a4yR Ñ e´im4 |a4yR .

(3.11)

Requiring that the orbifold action on the R-vacua is of order p yields the additional
conditions

p
ÿ

i

ui P 2Z and p
ÿ

i

ũi P 2Z . (3.12)

This also follows easily from the earlier analysis on the quantization conditions of the mass
parameters, e.g. using (3.7) together with (2.24), one finds ppu3` u4q “ pm2{π “ 2N2 P 2Z
and ppũ3 ` ũ4q “ 2N1 P 2Z. Since pui P Z, one also finds that ppu3 ´ u4q P 2Z. The same
also holds for ũ. An instructive example is the Z24 orbifold (cf 2.5) with m1 “ m2 “ 5π{12
and m3 “ m4 “ π{12, which corresponds to u3 “ 1{4 and u4 “ 1{6 (see also table 10) and
leads to ppu3 ` u4q “ 10.

Furthermore, if ˘u3 ˘ u4 “ 0 mod 2 for some choice of signs, half of the right-moving
supersymmetries are preserved in the orbifold. Essentially, this means that either m2 or
m4 “ 0 mod 2π and two of the four gravitini coming from the NS-R sector remain massless.
On the other hand, if the above condition is not met, all right-moving supersymmetries are
broken. Exactly the same argument holds for ũ, m1,3 and the left-moving supersymmetries.
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Finally, in order for strings to close in our geometry, they need to satisfy the bound-
ary conditions

Xµpσ1,σ2`2πq“Xµpσ1,σ2q , Zpσ1,σ2`2πq“Zpσ1,σ2q`2πRpw`k{pq ,

W 1
Lpσ

1,σ2`2πq“
`

eipm1`m3q
˘k
W 1
Lpσ

1,σ2q , W 1
Rpσ

1,σ2`2πq“
`

eipm2`m4q
˘k
W 1
Rpσ

1,σ2q ,

W 2
Lpσ

1,σ2`2πq“
`

eipm1´m3q
˘k
W 2
Lpσ

1,σ2q , W 2
Rpσ

1,σ2`2πq“
`

eipm2´m4q
˘k
W 2
Rpσ

1,σ2q .

(3.13)
Here w P Z is the winding number along the S1 (we omit winding modes on the torus
here for simplicity of the formulae) and k “ 0, . . . , p ´ 1 is an integer that distinguishes
between the various sectors. We have the untwisted sector for k “ 0, and p ´ 1 twisted
sectors for the other values of k in which case the string closes only under application of
the orbifold action.

3.3 The partition function

Now that we have defined our orbifold action, we would like to construct the one-loop
partition function. (We follow the conventions of [48]; for some other references and recent
examples, see e.g. [49, 50].) In general, the starting point for the partition function is

Zpτ, τ̄q “ Tr
”

qpL0´
c
24 qq̄pL̄0´

c̄
24 q

ı

, q “ e2πiτ , (3.14)

where τ “ τ1 ` iτ2 is the complex structure modulus of the torus. In an orbifold, we have
twisted sectors and projectors in each of the sectors onto invariant states. Therefore, the
trace over the Hilbert space decomposes according to

Zpτ, τ̄q “
1
p

p´1
ÿ

k,l“0
Zrk, lspτ, τ̄q , (3.15)

where, as mentioned before, p is the orbifold rank and k characterizes the various sectors.
In addition, l implements the orbifold projection in each sector.7 Furthermore, for our
models the partition function will factorize into the following pieces (we omit writing the τ
dependence for simplicity of the notation)

Zrk, ls “ ZR1,4 ZS1rk, lsZT 4rk, lsZF rk, ls . (3.16)

Here ZR1,4 is the contribution to the partition function from the non-compact bosons,
ZS1rk, ls and ZT 4rk, ls refer to the compact bosons on S1 and T 4 respectively and ZF rk, ls
is the fermionic contribution to the partition function.

In the remainder of this section, we construct the various parts of the partition function
and discuss modular invariance of the full partition function. For symmetric orbifolds,
showing modular invariance is rather easy, as the individual pieces in (3.16) will have the
same properties under the modular group (or be invariant), in such a way that the sum over
k and l is modular invariant. For asymmetric orbifolds, one must take care of the possible

7If we denote the orbifold group element by g, with gp “ 1, then the projection operator takes the form
P “ 1

p
p1` g ` g2

` ¨ ¨ ¨ ` gp´1
q.
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phases that will arise in left and right-moving sectors under modular transformations, and
show case by case that it all combines into a full modular invariant partition function Z.

First, we consider the bosonic piece of the partition function. The contribution from
the three non-compact bosons (we work in lightcone gauge) to the partition function is

ZR1,4 “ p
?
τ2 η η̄q

´3 . (3.17)

This term is invariant under both T and S modular transformations. (Modular functions
and transformations are discussed in appendix B.)

To compute the contribution to the partition function from the compact boson on S1,
recall that due to the shift along the circle coordinate, momentum states pick up a phase
e2πin{p. In addition, the boundary condition of the circle coordinate (3.13) implies that in
the twisted sectors fractional winding modes can appear. Combining these, we can write

ZS1rk, ls “
1
η η̄

ÿ

n,wPZ
e

2πin
p
l
q
α1

4 P
2
Rpkq q̄

α1

4 P
2
Lpkq , (3.18)

where

PL{Rpkq “
n

R
˘

`

w ` k
p

˘

R
α1

. (3.19)

ZS1rk, ls can be written in a manifestly modular invariant form by performing a Poisson
resummation over the momentum number n. We find

ZS1rk, ls “
R

?
α1
?
τ2 η η̄

ÿ

n,wPZ
e
´πR2
α1τ2

ˇ

ˇ

ˇ
n´ l

p
`

´

w` k
p

¯

τ
ˇ

ˇ

ˇ

2

. (3.20)

Note that the circle partition function consists of four building blocks: ZS1r0, 0s, ZS1r0, ls,
ZS1rk, 0s and ZS1rk, ls. Of course, ZS1r0, 0s corresponds simply to a circle compactification
and is invariant under both T and S modular transformations. The remaining blocks obey
the following modular transformations

ZS1rk, ls
T
ÝÑ

R
?
α1
?
τ2 η η̄

ÿ

n,wPZ
e
´πR2
α1τ2

ˇ

ˇ

ˇ
pn`wq´ l´k

p
`

´

w` k
p

¯

τ
ˇ

ˇ

ˇ

2

“ ZS1rk, l ´ ks ,

ZS1rk, ls
S
ÝÑ

R
?
α1
?
τ2 η η̄

ÿ

n,wPZ
e
´πR2
α1τ2

ˇ

ˇ

ˇ
w` k

p
`

´

n` l
p

¯

τ
ˇ

ˇ

ˇ

2

“ ZS1rl,´ks .

(3.21)

These transformation rules will be combined with similar ones from the T 4 and the fermions
to ensure modular invariance of the full partition function.

Next, we discuss the contribution coming from the T 4. We consider left and right-
movers separately, since the orbifold can act asymmetrically on the torus coordinates. For
clarity of the partition function, it is convenient to parametrize the orbifold action by two
twist vectors ũ “ p0, 0, ũ3, ũ4q and u “ p0, 0, u3, u4q, with ũi, ui as given in (3.7). (For a
discussion on twist vectors see e.g. [51, 52].) By this, we mean that

W 1
L Ñ e2πiũ3 W 1

L ,

W 2
L Ñ e2πiũ4 W 2

L ,

W 1
R Ñ e2πiu3 W 1

R ,

W 2
R Ñ e2πiu4 W 2

R ,

(3.22)
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and the coordinates of the non-compact dimensions are not rotated. Note that symmetric
orbifolds correspond to ũ “ u. Now, let us focus on the oscillator modes and postpone the
discussion of the lattice sum over momenta and windings. The oscillator part of the T 4

partition function factorizes into left and right-moving pieces as

ZT 4rk, ls “ rZT 4rθ̃k, θ̃ls b ZT 4rθk, θls . (3.23)

Here θ is the generator of the orbifold group. θk refers to twisted sectors where the torus
coordinates obey boundary conditions of the form W i

Rpσ
1, σ2 ` 2πq “ θkW i

Rpσ
1, σ2q and

θl characterizes the orbifold action: W i
R Ñ θlW i

R (θ̃k, θ̃l correspond to the left-movers).
Similarly with the circle, ZT 4r0, 0s corresponds simply to compactification on T 4 and is
invariant under both T and S modular transformations.

First, we present the right-moving torus partition function. In the untwisted sector
(k “ 0) it is given by

ZT 4r1, θls “ q´
2
12

4
ź

i“3

8
ź

n“1
p1´ qn e2πiluiq´1p1´ qn e´2πiluiq´1 , (3.24)

and can be rewritten in a more convenient form as

ZT 4r1, θls “
4
ź

i“3
2 sinpπluiq

η

ϑ
” 1

2
´ 1

2`lui

ı . (3.25)

By performing successively S and T modular transformations, we find the partition function
in a twisted sector labeled by k (k ‰ 0), which reads8

ZT 4rθk, θls “ e
´πi

4
ř

i“3
pkuiluiq

e
πi

4
ř

i“3
pkui´ 1

2q
χrθk, θls

4
ź

i“3

η

ϑ
” 1

2´kui
´ 1

2`lui

ı , (3.26)

where

χrθk, θls “
4
ź

i“3
2 sinpπgcdpk, lquiq (3.27)

9is the number of simultaneous “chiral” fixed points10 of θk and θl. We note here that
equation (3.27) is valid for ku3,4 R Z. If there exists j P r3, 4s such that kuj P Z,11 χrθk, θls
should be divided by 2 sinpπlujq for l ‰ 0, and replaced by

ś

i‰j,kuiRZ 2 sinpπkuiq for l “ 0
(see [53] for a relevant discussion). Furthermore, under modular transformations (3.26)
transforms as

ZT 4rθk, θls
T
ÝÑ e´

πi
6 λZT 4rθk, θl´ks ,

ZT 4rθk, θls
S
ÝÑ e´

πi
2 λZT 4rθl, θ´ks ,

(3.28)

8Here we omit an irrelevant constant phase coming from the T transformation because it is always
cancelled by left-moving contributions in both symmetric and asymmetric orbifolds.

9gcdpk, lq denotes the greatest common divisor of k, l with the convention gcdpa, 0q “ gcdp0, aq “ a.
10The orbifolds that we consider have fixed points on the T 4. However, due to the shift on the circle,

there are no points left invariant under the full orbifold action.
11An example is the orbifold with ũ “ u “ p0, 0, 0, 1

2 q. From (3.12) it follows that p “ 4, such that
k “ 0, 1, 2, 3. For k “ 2, one then has ku4 P Z. The mass parameters in this case are m1 “ m2 “ ´m3 “

´m4 “ π{2.
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where λ is the number of ui R Z. The partition function for the left-movers is simply obtained
by substituting q Ñ q̄, η Ñ η̄, ϑÑ ϑ̄ and uÑ ũ, and obeys the transformations (3.28) but
with phases of opposite sign. Finally, notice that if the orbifold acts trivially on W 1,2

R , i.e.
u3, u4 P Z, equation (3.24), or equivalently (3.25), simply becomes η´4.

For the zero modes there are integer momenta and windings and the partition function
includes a lattice sum of left and right-moving momenta. In general, if we compactify the
bosonic string on T 4, we obtain the Narain lattice Γ4,4. On the other hand, for the orbifold
compactifications we have to specify the sublattice Λ Ă Γ4,4 that is invariant under the
orbifold action. Moreover, this sublattice will contribute to the partition function in the
twisted sectors with an overall multiplicative factor that is equal to its volume [21, 22]. We
will return later to this issue when we discuss explicit examples.

For the construction of the fermionic partition function we combine the non-compact
and compact fermions in one expression and we consider left and right-movers separately.
In the NS-sector the right-moving fermionic partition function in a sector labeled by k reads

ZNSrθ
k, θls “

1
2e

πi
4
ř

i“3
pkuiluiq

„ˆ

ϑ3
η

˙2 4
ź

i“3

ϑr kui
´lui

s

η
´e

πi
4
ř

i“3
kui

ˆ

ϑ4
η

˙2 4
ź

i“3

ϑr kui
´ 1

2´lui
s

η



. (3.29)

In the R-sector we have

ZRrθ
k, θls “

1
2e

πi
4
ř

i“3
pkuiluiq

„ˆ

ϑ2
η

˙2 4
ź

i“3

ϑr
1
2`kui
´lui

s

η
` e

πi
4
ř

i“3
kui

ˆ

ϑ1
η

˙2 4
ź

i“3

ϑr
1
2`kui
´ 1

2´lui
s

η



.

(3.30)
By combining the above, we find the right-moving fermionic partition function in a sector
labeled by k, which reads

ZF rθ
k, θls “ ZNSrθ

k, θls ´ ZRrθ
k, θls , (3.31)

and transforms under modular transformations as

ZF rθ
k, θls

T
ÝÑ e

4πi
6 ZF rθ

k, θl´ks ,

ZF rθ
k, θls

S
ÝÑ ZF rθ

l, θ´ks .
(3.32)

For later convenience, we rewrite expressions (3.29) and (3.30) in terms of infinite sums as12

ZNS,Rrθ
k, θls “

1
η4 e

πi
4
ř

i“3
pkuiluiqÿ

r

q
1
2 pr`kuq

2
e´2πilrpr`kuq¨us . (3.33)

Here r “ pr1, r2, r3, r4q is an SO(8) weight vector with each component ri P Z in the NS-
sector and r P Z` 1

2 in the R-sector. The GSO projection is
ř4
i“1 ri P 2Z`1 in the NS-sector

and
ř4
i“1 ri P 2Z in the R-sector. Finally, the left-moving fermionic partition function is

obtained by substituting q Ñ q̄, η Ñ η̄, ϑÑ ϑ̄, uÑ ũ and r Ñ r̃, where r̃ “ pr̃1, r̃2, r̃3, r̃4q,
and transforms as in (3.32) but with a phase of opposite sign.

12In the literature, this is usually referred to as “bosonization”. For an alternative construction of the
partition function see [18, 54].
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As a last comment here, we observe from (3.28) and (3.32) that if we consider only the
right-movers, we do not obtain a modular invariant partition function. Of course, modular
invariance can be achieved by taking also into account the contribution from the left-movers.
This can be easily verified in the case of symmetric orbifolds because the expression for
the left-moving partition function is essentially the complex conjugate of the right-moving
one. Consequently, the constant phases cancel out, as the partition function is the tensor
product of left and right-movers. However, this argument does not hold for asymmetric
orbifolds. Therefore, one shall carefully examine modular invariance for each asymmetric
orbifold construction. In the next, we will address this issue by discussing specific examples.

4 Closed string spectrum

In this section we will first present the general formalism that we use in order to obtain
the closed string spectrum that arises from our orbifold constructions. Afterwards, we
will give explicit examples of symmetric and asymmetric orbifolds, preserving N “ 6, 4, 2,
or 0 supersymmetry. In general, we treat the untwisted and twisted sectors separately.
In other words, we fix k and then we sum over l and divide by the orbifold rank p in
order to implement the orbifold projection. First, we consider the untwisted sector, i.e.
the sector with k “ 0 boundary conditions. Furthermore, we focus on the lowest excited
states, i.e. the states that are massless without the addition of momentum and/or winding
modes. Consequently, we expand the ϑ-functions coming from the bosonic contributions as
well as all the η-functions and we keep only the lowest order terms. We expand then the
partition function in the untwisted sector as (omitting for now overall factors of τ2 which
are reinstated later)

Zr0, ls “ pqq̄q´
1
2

ÿ

n,wPZ
e

2πin
p
l
q
α1

4 P
2
Rp0q pq̄q

α1

4 P
2
Lp0q

ÿ

r,r̃

q
1
2 r

2
pq̄q

1
2 r̃

2
e2πilpr̃¨ũ´r¨uq p1` ¨ ¨ ¨ q , (4.1)

where the dots denote contributions from higher excited oscillator states. We present in
table 2 the NS and R-sector weight vectors for the states of the lowest level that survive
the GSO projection (all of these are massless in the absence of momentum and/or winding
modes). Furthermore, we table their representations under both the massless little group
SOp3q « SUp2q and the massive little group SOp4q « SUp2qˆSUp2q in five dimensions. The
latter is important when adding momenta or windings such that the states become massive.

We construct string states by tensoring the left and right-moving weight vectors from
table 2. In general, a state carries a non-trivial orbifold charge, given by the phase
e2πilpr̃¨ũ´r¨uq, and its degeneracy is

Dpk “ 0q “ 1
p

p´1
ÿ

l“0
e

2πilrpr̃¨ũ´r¨uq`n
p
s
. (4.2)

A charged state will be projected out of the orbifold spectrum when we perform the
summation over l. However, we can fix this issue by adding appropriate momentum modes
on the circle to the state, such that the orbifold charge is cancelled. This also means that
the state will become massive, since momentum modes contribute to the mass of a state;
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Sector r̃, r SO(3) rep SO(4) rep

NS

p˘1, 0, 0, 0q 3‘ 1 p2,2q

p0, 0,˘1, 0q 2ˆ1 2ˆp1,1q

p0, 0, 0,˘1q 2ˆ1 2ˆp1,1q

R

p˘1
2 ,˘

1
2 ,

1
2 ,

1
2q 2 p2,1q

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q 2 p2,1q

p1
2 ,´

1
2 ,

1
2 ,´

1
2q 2 p1,2q

p1
2 ,´

1
2 ,´

1
2 ,

1
2q 2 p1,2q

Table 2. Here we write down all the weight vectors for states that are massless in the absence of
momentum and/or winding modes, including their representations under the massless and massive
little groups in 5D. We write down both left-moving and right-moving weight vectors, where
underlining denotes permutations.

Massless field SOp3q rep

gµν 5
ψµ 4
Aµ 3
χ 2
φ 1

Massive field SOp4q rep

B`µν / B´µν p3,1q / p1,3q
ψ`µ / ψ´µ p2,3q / p3,2q
Aµ p2,2q

χ` / χ´ p1,2q / p2,1q
φ p1,1q

Table 3. Here we show the various massless and massive 5D fields and their representations under
the appropriate little group.

we will discuss this in detail later. Finally, if pr̃ ¨ ũ´ r ¨ uq P Z, the orbifold charge is trivial.
States with trivial charge survive the orbifold projection and remain massless. As follows
from (4.2), the degeneracy of orbifold invariant states in the untwisted sector is 1.

For the construction of states, we use the rules

3b 3 “ 5‘ 3‘ 1 , 2b 2 “ 3‘ 1 , 3b 2 “ 4‘ 2 , (4.3)

for tensoring SUp2q representations. In addition, we table the (massless and massive)
representations that correspond to various supergravity fields in five dimensions in table 3.

Regarding the construction of states in twisted sectors, the procedure is similar with
the untwisted sector. The expansion of the partition function in a twisted sector labeled by

– 24 –



J
H
E
P
0
8
(
2
0
2
3
)
0
8
9

k yields13

Zrk, ls “
ˇ

ˇ

ˇ
χrθk, θls χ̃rθ̃k, θ̃ls

ˇ

ˇ

ˇ
pqq̄q´

1
2 eipϕ̃´ϕqqEk pq̄qẼk

ÿ

n,wPZ
e

2πin
p
l
q
α1

4 P
2
Rpkq pq̄q

α1

4 P
2
Lpkqˆ

ÿ

r,r̃

q
1
2 pr`kuq

2
pq̄q

1
2 pr̃`kũq

2
e2πilpr̃¨ũ´r¨uq e2πilkpũ2´u2q p1` ¨ ¨ ¨ q ,

(4.4)

where
ϕ “ 2π

ÿ

uiRZ

ˆ

1
2 ´ k|ui|

˙

l|ui| (4.5)

is a phase arising from bosonic contributions and

Ek “
ÿ

uiRZ

1
2k|ui|p1´ k|ui|q (4.6)

is a shift to the zero point energy.14 The expressions for χ̃rθ̃k, θ̃ls, ϕ̃, Ẽk are simply obtained
by substituting uÑ ũ. Finally, the degeneracy of a state in a k twisted sector is given by
(see also [55, 56] for a relevant discussion)

Dpkq “
1
p

p´1
ÿ

l“0

ˇ

ˇ

ˇ
χrθk, θls χ̃rθ̃k, θ̃ls

ˇ

ˇ

ˇ
e

2πilrpr̃¨ũ´r¨uq`kpũ2´u2q`ipϕ̃´ϕq`n
p
s
. (4.7)

However, if the orbifold acts trivially on W 1
L{R and/or W 2

L{R, this degeneracy should be
modified because integer momentum and winding numbers can appear. In particular, one
should also divide (4.7) by the volume of the invariant momentum sublattice.

Now, we can proceed with the construction of explicit orbifold models. In particular,
we treat supersymmetric models: two asymmetric Z2 orbifolds, an N “ 6 and an N “ 2,
a symmetric Z4, N “ 4 p0, 2q and an asymmetric Z2, N “ 4 p1, 1q orbifold, as well as a
non-supersymmetric, symmetric Z3 orbifold. We discuss the untwisted orbifold spectra
and verify that they match exactly with the Scherk-Schwarz supergravity spectra obtained
in [14]. In addition, we construct purely stringy states arising from the orbifold twisted
sectors. Regarding the non-supersymmetric orbifolds, we focus on the twisted sectors where
tachyons can appear and we find a critical value for the orbifold circle radius above which
the spectrum is tachyon-free.

4.1 N “ 6

In this section we discuss models with N “ 6 supersymmetry in five dimensions. As we
have seen in the example of section 2.5, these are asymmetric orbifolds of rank p “ 2 or 3.
Such models are chiral orbifolds with the twist acting only on the left or the right-movers
on the torus. Without loss of generality we consider twist vectors of the form u “ p0, 0, 0, 0q
and ũ “ p0, 0, ũ3, ũ4q, with ˘ũ3˘ ũ4 “ 0 mod 2 for some choice of signs, which ensures that

13Here we consider general twist vectors of the form ũ “ p0, 0, ũ3, ũ4q, u “ p0, 0, u3, u4q. As in the
untwisted sector, we omit factors of τ2.

14The absolute values in (4.4)–(4.6) appear due to restriction on the allowed values of the characteristics
of the ϑ-functions in the product representation (B.3). Recall that in general we consider k, l ě 0.

– 25 –



J
H
E
P
0
8
(
2
0
2
3
)
0
8
9

we break half of the left-moving supersymmetries. This choice of twist vectors also implies
that the left-moving momenta are projected out, while there exists an invariant sublattice
of right-moving momenta ΛR Ă Γ4,4 contributing to the partition function ZT 4rk, ls (for
k or l ‰ 0). Following the examples of [26, 34], we take the right-moving momenta to lie
in the lattice D4 for p “ 2 or A2 ‘A2 for p “ 3. Once we have the twist vectors and the
invariant sublattice, we can calculate the degeneracy of the ground state of the twisted
sectors, which is given by the number of fixed points (3.27) divided by the volume of the
invariant sublattice [21, 22]. For a consistent physical theory, the degeneracies of states
should be integers. Orbifolds whose partition functions give non-integer degeneracies should
be excluded. As shown in [34], this only allows the cases Z2 and Z3, which precisely agrees
with the T-duality approach that we use to construct our orbifold models, as we saw in the
example of 2.5.

Now, let us present an example of a Z2 orbifold, breaking 8 left-moving supersymmetries,
with twist vectors ũ “

`

0, 0, 1
2 ,

1
2
˘

and u “ p0, 0, 0, 0q, or in terms of the mass parameters
~m “ pπ, 0, 0, 0q.15 This orbifold acts trivially on the right-movers, while left-movers obtain
a non-zero phase under the orbifold action. The right-moving momenta lie in the D4 lattice.
The associated lattice sum is16

ΘD4pτq “
ÿ

PPD4

q
1
2P

2
“

1
2
`

ϑ3pτq
4 ` ϑ4pτq

4˘ . (4.8)

The remaining parts of the partition function can be obtained as described in section 3.3.
We find

Zr0, 1s “ ZR1,4ZS1r0, 1s
ˆ

η̄

ϑ̄2

˙2 1
η̄4 rpϑ̄3ϑ̄4q

2 ´ pϑ̄4ϑ̄3q
2 ´ pϑ̄2ϑ̄1q

2 ´ pϑ̄1 ¯ϑ2q2sˆ

1
η4 ΘD4pτq

1
η4 rpϑ3q

4 ´ pϑ4q
4 ´ pϑ2q

4 ´ pϑ1q
4s .

(4.9)

Zr1, 0s “ ZR1,4ZS1r1, 0s
ˆ

η̄

ϑ̄4

˙2 1
η̄4 rpϑ̄3ϑ̄2q

2 ` pϑ̄4ϑ̄1q
2 ´ pϑ̄2ϑ̄3q

2 ` pϑ̄1 ¯ϑ4q2sˆ

1
2η4 ΘD˚4

pτq
1
η4 rpϑ3q

4 ´ pϑ4q
4 ´ pϑ2q

4 ´ pϑ1q
4s .

(4.10)

Zr1, 1s “ ZR1,4ZS1r1, 1s
ˆ

η̄

ϑ̄3

˙2 1
η̄4 rpϑ̄3ϑ̄1q

2 ` pϑ̄4ϑ̄2q
2 ´ pϑ̄2ϑ̄4q

2 ` pϑ̄1 ¯ϑ3q2sˆ

1
2η4 ΘD˚4

pτ ` 1q 1
η4 rpϑ3q

4 ´ pϑ4q
4 ´ pϑ2q

4 ´ pϑ1q
4s .

(4.11)

The above pieces of the partition function satisfy the following modular transformations

T œ

Zr0, 1s S
ÐÑ Zr1, 0s T

ÐÑ Zr1, 1s ö S , (4.12)

which ensure modular invariance. It is worth mentioning here that the above Z2 chiral twist
is a symmetry of the pA1q

4 lattice as well.17 However, choosing the pA1q
4 instead of the

15Here we employ the notation ~m “ pm1,m2,m3,m4q.
16A thorough discussion on lattices and theta functions can be found in [57].
17
pA1q

4 is a shorthand notation for A1 ‘A1 ‘A1 ‘A1.
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D4 lattice does not lead to a modular invariant partition function. In particular, for the
model based on the pA1q

4 lattice, performing a modular S transformation on Zr1, 1s does
not give back Zr1, 1s, due to a sign difference in the lattice sum. Furthermore, under two
consecutive T transformations neither Zr1, 0s nor Zr1, 1s get back to themselves, which in
turn means that level-matching is not satisfied [58]. The fact that pA1q

4 fails level-matching
was also discussed in [59]. In addition, the model constructed in [60] based on the pA1q

4

lattice suffers from this problem, as was pointed out in [26].
We now move on to the construction of the closed string spectrum. First, we work

out the massless spectrum in the untwisted sector. Recall that for doing so we do not
add momentum or winding modes on the circle. We use (4.1) with n “ w “ 0, p “ 2,
ũ “

`

0, 0, 1
2 ,

1
2
˘

and u “ p0, 0, 0, 0q. Thus, we obtain

Zr0, ls “ pqq̄q´
1
2
ÿ

r,r̃

q
1
2 r

2
pq̄q

1
2 r̃

2
eπilpr̃3`r̃4q p1` ¨ ¨ ¨ q . (4.13)

We observe that orbifold invariant states have to satisfy r̃3 ` r̃4 “ 0 mod 2. By examining
table 2 we find the following invariant states

NS-NS sector:
p˘1, 0, 0, 0q b p˘1, 0, 0, 0q “ 5‘ 3ˆ 3‘ 2ˆ 1
p˘1, 0, 0, 0q b p0, 0,˘1, 0q “ 4ˆ 3‘ 4ˆ 1

(4.14)

NS-R sector:
p˘1, 0, 0, 0q b ˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q “ 2ˆ 4‘ 4ˆ 2

p˘1, 0, 0, 0q b ˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 2ˆ 4‘ 4ˆ 2

(4.15)

R-NS sector:
˘p1

2 ,´
1
2 ,

1
2 ,´

1
2q b p˘1, 0, 0, 0q “ 2ˆ 4‘ 4ˆ 2

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b p0, 0,˘1, 0q “ 8ˆ 2

(4.16)

R-R sector
˘p1

2 ,´
1
2 ,

1
2 ,´

1
2q b ˘p˘

1
2 ,˘

1
2 ,

1
2 ,

1
2q “ 4ˆ 3‘ 4ˆ 1

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b ˘p

1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 4ˆ 3‘ 4ˆ 1

(4.17)

All together, we find the graviton, 15 vectors, 14 scalars, 6 gravitini and 20 dilatini. These
massless fields fit into the N “ 6 gravity multiplet. Regarding the notation, underlining
denotes permutations, e.g. p0, 0,˘1, 0q corresponds to p0, 0, 1, 0q, p0, 0, 0, 1q, p0, 0,´1, 0q and
p0, 0, 0,´1q. Now, we move on to the massive spectrum. For the construction of massive
states, we take combinations from table 2 that obtain a non-zero phase under the orbifold
action and we cancel this phase by adding momentum modes on the circle. Whenever
we add momentum and/or winding to a state, we denote it only on the left-movers by
pr̃1, r̃2, r̃3, r̃4;n,wq. Once again, we use (4.1) with the same values as in (4.13), with the
exception that we allow n ‰ 0. We obtain

Zr0, ls “ pq q̄q´
1
2
ÿ

nPZ
eπinl pq q̄q

α1n2
4R2

ÿ

r,r̃

q
1
2 r

2
pq̄q

1
2 r̃

2
eπilpr̃3`r̃4q p1` ¨ ¨ ¨ q . (4.18)

We find the following massive states
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NS-NS sector:
˘p0, 0, 1, 0;´1q b p˘1, 0, 0, 0q “ 4ˆ p2,2q
˘p0, 0, 1, 0;´1q b p0, 0,˘1, 0q “ 16ˆ p1,1q

(4.19)

NS-R sector:
˘p0, 0, 1, 0;´1q b ˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q “ 8ˆ p2,1q

˘p0, 0, 1, 0;´1q b ˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 8ˆ p1,2q

(4.20)

R-NS sector:

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b p˘1, 0, 0, 0q “ 2ˆ p3,2q ‘ 2ˆ p1,2q

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b p0, 0,˘1, 0q “ 8ˆ p2,1q

(4.21)

R-R sector:

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b ˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q “ 4ˆ p3,1q ‘ 4ˆ p1,1q

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b ˘p1

2 ,´
1
2 ,

1
2 ,´

1
2q “ 4ˆ p2,2q

(4.22)

In total, we find 2 gravitini (3,2), 4 tensors (3,1), 8 vectors (2,2), 26 dilatini, 16ˆ p2,1q
and 10ˆ p1,2q, and 20 scalars (1,1). All these fields have mass

α1m2
L

2 “
α1m2

R

2 “
α1

4R2 ñ m “

ˇ

ˇ

ˇ

ˇ

1
R

ˇ

ˇ

ˇ

ˇ

, (4.23)

due to the contribution of the n “ ˘1 momentum mode on the circle, and fit into a complex
(1,2) BPS supermultiplet with the representations

p3, 2q ‘ 2ˆ p3, 1q ‘ 4ˆ p2, 2q ‘ 5ˆ p1, 2q ‘ 8ˆ p2, 1q ‘ 10ˆ p1, 1q . (4.24)

All massive and massless states are constructed such that the combination between left and
right-movers ensures zero phase. However, we can add to all these states a trivial phase
epπilq2Z simply by adding 2Z momentum modes along the circle. In this way we can construct
Kaluza-Klein towers on the circle, where the contribution from each (even) momentum
mode to the mass of the state is |2Z{R|. Furthermore, we can generally identify the orbifold
radius R, with the Scherk-Schwarz radius R, by R “ pR, where p is the orbifold rank. In
our Z2 example, this means that we can write the mass of the BPS supermultiplet and the
contribution from the Kaluza-Klein towers as |1{2R| and |Z{R| respectively. This entire
spectrum arising from our orbifold construction in the untwisted sector matches exactly
with the one found in [14] from the Scherk-Schwarz reduction on the level of supergravity.

Besides the untwisted spectrum, we are also interested in finding the lightest states in
the twisted sectors (in a Z2 orbifold there is only one such sector for k “ 1). In order to
construct the twisted spectrum we use (4.4)–(4.6) (with p “ 2, k “ 1, ũ “

`

0, 0, 1
2 ,

1
2
˘

and
u “ p0, 0, 0, 0q). We obtain

Zr1, ls “ 2q´
1
2 pq̄q´

1
4

ÿ

n,wPZ
eπinlq

α1

4 P
2
Rp1qpq̄q

α1

4 P
2
Lp1q

ÿ

r,r̃

q
1
2 r

2
pq̄q

1
2 pr̃`ũq

2
eπilpr̃3`r̃4`1qp1` ¨ ¨ ¨ q .

(4.25)
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Sector r̃ SO(4) rep

NS p0, 0,´1, 0q 2ˆp1,1q

R p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q p2,1q

Table 4. Here we list the weight vectors of the lightest left-moving states in the k “ 1 twisted
sector of the Z2, N “ 6 orbifold and their representations under the massive little group in 5D.

Note that all states come with a multiplicative factor of 2, which is precisely the number
of chiral fixed points18 4 sin2pπ{2q “ 4, divided by the volume of the invariant sublattice
VolpD4q “ 2. The weight vectors for the lightest right-moving states are, again, given in
table 2 because the orbifold acts trivially on the right-movers. On the contrary, the weight
vectors for the lightest left-moving states are listed in table 4. Since the twisted states are
in general massive, we only write down the representation of these states under the massive
little group in five dimensions.

In the twisted sector, orbifold invariant states have to satisfy r̃3 ` r̃4 ` 1 “ 0 mod 2.
We list below the states that we find in each sector

NS-NS sector:
p0, 0,´1, 0q b p˘1, 0, 0, 0q “ 2ˆ p2,2q
p0, 0,´1, 0q b p0, 0,˘1, 0q “ 8ˆ p1,1q

(4.26)

NS-R sector:
p0, 0,´1, 0q b ˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q “ 4ˆ p2,1q

p0, 0,´1, 0q b ˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 4ˆ p1,2q

(4.27)

R-NS sector:
p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2q b p˘1, 0, 0, 0q “ p3,2q ‘ p1,2q

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q b p0, 0,˘1, 0q “ 4ˆ p2,1q

(4.28)

R-R sector:

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q b ˘p˘

1
2 ,˘

1
2 ,

1
2 ,

1
2q “ 2ˆ p3,1q ‘ 2ˆ p1,1q

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q b ˘p

1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 2ˆ p2,2q

(4.29)

Remember that all these states have degeneracy 2. In total we find 2 gravitini (3,2), 4
tensors (3,1), 8 vectors (2,2), 26 dilatini, 16ˆ p2,1q and 10ˆ p1,2q, and 20 scalars (1,1).
All these fields have mass |R{2α1| due to the 1

2 -winding on the circle, and fit into a complex
(1,2) BPS supermultiplet, as in (4.24).

At this point it is interesting to discuss the low energy spectrum that is obtained without
the shift on the circle, i.e. from the non-freely acting orbifold T 4{Z2ˆS

1. In this case, there
are no massive fields in the untwisted sector (these are projected out of the spectrum instead)

18Note that in the k “ 1 sector the expression
ś

i 2 sinpπgcdp1, lqũiq simply becomes
ś

i 2 sinpπũiq.
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and all fields in the twisted sector are massless. In addition to the 6 massless gravitini from
the untwisted sector, there are another 2 massless gravitini coming from the twisted sector.
This leads to a supersymmetry enhancement from 24 to 32 supersymmetries and in essence,
one simply recovers the N “ 8, D “ 5 theory. Furthermore, in the de-compactification limit
R Ñ8, which corresponds to an asymmetric T 4{Z2 orbifold compactification, one obtains
the N “ 8, D “ 6 theory.

The same result can be obtained from the lowest lying spectrum of our freely acting
orbifold in the limit R Ñ 8. Recall that the mass of all fields in the untwisted sector is
equal to |1{R|. In the de-compactification limit these fields become massless and we obtain
2 additional massless gravitini. On the other hand, the mass of the fields in the twisted
sector is proportional to R. These become infinitely massive and decouple. Consequently,
we find 8 massless gravitini and we retrieve the N “ 8, D “ 6 theory. In fact, in the
de-compactification limit all our orbifolds reduce to the N “ 8, D “ 6 theory because, as
we will also see in the next examples, the masses of all fields in the untwisted sector are
proportional to 1{R, while in the twisted sectors they are proportional to R (for large R).

Similar arguments also hold for the Z3, N “ 6 orbifold. Finally, it is worth noting
that both freely and non-freely acting orbifolds prevent the appearance of an N “ 6, D “ 6
theory. Such a theory can be defined classically but in the quantum level is inconsistent since
it suffers from gravitational anomalies (for a discussion on the N “ 6, D “ 6 supergravity
see also [61]).

4.2 N “ 4

In this section we discuss orbifolds with N “ 4 supersymmetry in five dimensions. These
models can be realized by symmetric or asymmetric constructions. Here we will present a
symmetric Z4, N “ 4 p0, 2q and an asymmetric Z2, N “ 4 p1, 1q orbifold.

A symmetric Z4, N “ 4 p0, 2q orbifold

As a first example, we consider a non-chiral symmetric Z4 orbifold (cf. example 2.5) with
twist vectors ũ “ u “ p0, 0, 1

4 ,
1
4q, or equivalently ~m “ pπ2 ,

π
2 , 0, 0q, breaking half of the left

and right-moving supersymmetries. We choose the torus lattice to be the pA1q
4 root lattice

with basis vectors R1p1, 0, 0, 0q, R1p0, 1, 0, 0q, R2p0, 0, 1, 0q and R2p0, 0, 0, 1q, and we set the
B-field to zero. This Z4 orbifold acts non-trivially on all toroidal dimensions. Consequently,
there will be no invariant sublattices of left or right-moving momenta contributing to
ZT 4rk, ls (for k or l ‰ 0). As was discussed in section 3.3, the partition functions for the
symmetric orbifolds that we consider is always modular invariant and we will not present
them here.

Regarding the orbifold spectrum, we construct closed string states following the same
procedure as in section 4.1. We begin with the massless spectrum in the untwisted sector
where invariant states satisfy r̃3 ` r̃4 ´ r3 ´ r4 “ 0 mod 4. We find the following states

NS-NS sector:
p˘1, 0, 0, 0q b p˘1, 0, 0, 0q “ 5‘ 3ˆ 3‘ 2ˆ 1
˘rp0, 0, 1, 0q b p0, 0, 1, 0qs “ 8ˆ 1

(4.30)
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NS-R sector:
p˘1, 0, 0, 0q b ˘p1

2 ,´
1
2 ,

1
2 ,´

1
2q “ 2ˆ 4‘ 4ˆ 2

˘rp0, 0, 1, 0q b p˘1
2 ,˘

1
2 ,

1
2 ,

1
2qs “ 4ˆ 2

(4.31)

R-R sector:
˘rp˘1

2 ,˘
1
2 ,

1
2 ,

1
2q b p˘

1
2 ,˘

1
2 ,

1
2 ,

1
2qs “ 2ˆ 3‘ 2ˆ 1

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b ˘p

1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 4ˆ 3‘ 4ˆ 1

(4.32)

The spectrum in the R-NS sector is identical with the one found in the NS-R sector. This
is expected because we are treating a symmetric orbifold. Collecting together our results
from the four sectors, we find the graviton, 9 vectors, 4 gravitini, 16 dilatini and 16 scalars.
These form the N “ 4 gravity multiplet, consisting of the graviton, 4 gravitini, 6 vectors,
4 dilatini and 1 scalar, coupled to three vector multiplets, each made up from 1 vector, 4
dilatini and 5 scalars. We continue with the massive states

NS-NS sector:
˘rp˘1, 0, 0, 0; 1q b p0, 0, 1, 0qs “ 4ˆ p2,2q
˘p0, 0, 1, 0;´1q b p˘1, 0, 0, 0q “ 4ˆ p2,2q
˘rp0, 0, 1, 0;´2q b p0, 0,´1, 0qs “ 8ˆ p1,1q

(4.33)

NS-R sector:
˘rp˘1, 0, 0, 0; 1q b p˘1

2 ,˘
1
2 ,

1
2 ,

1
2qs “ 2ˆ p3,2q ‘ 2ˆ p1,2q

˘rp0, 0, 1, 0;´2q b p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2qs “ 4ˆ p2,1q

˘p0, 0, 1, 0;´1q b ˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 8ˆ p1,2q

(4.34)

R-R sector:
˘rp˘1

2 ,˘
1
2 ,

1
2 ,

1
2 ;´2q b p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2qs “ 2ˆ p3,1q ‘ 2ˆ p1,1q

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b ˘p1

2 ,´
1
2 ,

1
2 ,´

1
2q “ 4ˆ p2,2q

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b ˘p˘

1
2 ,˘

1
2 ,

1
2 ,

1
2 ; 1q “ 4ˆ p2,2q

(4.35)

19Again, in the R-NS sector we find the same spectrum as in the NS-R sector. In total,
we find 16 vectors p2,2q with mass |1{R|, 2 tensors p3,1q and 10 scalars p1,1q with
mass |2{R|, 4 gravitini p3,2q and 20 dilatini p1,2q with mass |1{R| and 8 dilatini p2,1q
with mass |2{R|. These fields fit into two complex p0, 2q spin-3

2 multiplets of the form
p3,2q ‘ 4 ˆ p2,2q ‘ 5 ˆ p1,2q with mass |1{R|, and one complex p0, 2q tensor multiplet
p3,1q ‘ 4ˆ p2,1q ‘ 5ˆ p1,1q with mass |2{R|. Finally, we construct Kaluza-Klein towers
by adding a trivial phase ep

πil
2 q4Z to all states and we identify R “ 4R. In this way, we

can verify that the orbifold untwisted spectrum matches exactly with the Scherk-Schwarz
supergravity one found in [14]. Now, we move on to the twisted sectors and we start our
analysis with the k “ 1 sector. The weight vectors for the lightest left and right-moving
states are the same, and coincide with those listed in table 4. Orbifold invariant states
satisfy r̃3 ` r̃4 ´ r3 ´ r4 “ 0 mod 4. We list below the states that we find in each sector

19In the last line of the R-R sector, for clearer notation we denoted the momentum of the states on the
right-movers.
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NS-NS sector:
p0, 0,´1, 0q b p0, 0,´1, 0q “ 4ˆ p1,1q (4.36)

NS-R sector:
p0, 0,´1, 0q b p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2q “ 2ˆ p2,1q (4.37)

R-NS sector
p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2q b p0, 0,´1, 0q “ 2ˆ p2,1q (4.38)

R-R sector:
p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2q b p˘

1
2 ,˘

1
2 ,´

1
2 ,´

1
2q “ p3,1q ‘ p1,1q (4.39)

The degeneracy of the above states is 4. In total, we find 4 tensors p3,1q 16 dilatini p2,1q
and 20 scalars p1,1q. These fields have mass |R{4α1|, due to the 1

4 -winding on the circle, and
they fit into two complex p0, 2q tensor multiplets of the form p3,1q ‘ 4ˆ p2,1q ‘ 5ˆ p1,1q.
Regarding the k “ 2 twisted sector, the weight vectors for the lightest states coincide with
those of the k “ 1 sector. Hence, we find the same states. However, the degeneracy of the
states in the k “ 2 twisted sector is 10 and their mass is |R{2α1|. Finally, the k “ 3 twisted
sector is equivalent to the k “ 1 sector. Note that the lightest states in the k “ 3 sector
are those with winding w “ ´1.20 Concluding, in the twisted sectors of the symmetric Z4,
N “ 4 p0, 2q orbifold we find 9 complex tensor multiplets, 4 with mass |R{4α1| and 5 with
mass |R{2α1|.

Finally, we would like to briefly discuss here the spectrum obtained by the corresponding
non-freely acting orbifold T 4{Z4 ˆ S1. In the untwisted sector the massless spectrum
consists of the N “ 4 gravity multiplet coupled to 3 vector multiplets. In the twisted
sectors one finds 18 massless vector multiplets. In total, there exist 27 massless vectors.
The resulting number of vectors is consistent with the anomaly cancellation condition in
type IIB N “ 4 p0, 2q theory in 6D, where 21 massless tensor multiplets are required for the
anomalies to cancel [62]. Then compactification of the 6D theory on a circle yields the 5D
theory with exactly 27 vectors, upon dualizing the tensors into vectors (see also [63]). For
the T 4{Z3,6 ˆ S

1 orbifolds the result is exactly the same and for the T 4{Z2 ˆ S
1 orbifold,

11 vectors come from the untwisted sector and 16 from the untwisted sector, giving again a
total of 27 vectors.21

An asymmetric Z2, N “ 4 p1, 1q orbifold

Here we consider an asymmetric Z2 orbifold with twist vectors ũ “ p0, 0, 0, 0q and u “

p0, 0, 0, 1q, i.e. ~m “ p0, π, 0,´πq. An interesting characteristic of this orbifold is the form
of the right-moving twist vector u, which generates a p´1qFR action. As we saw in the
example of the fermionic monodromies in section 2.5, this orbifold acts trivially on the
torus coordinates, but spacetime fermions do feel the twist. Consequently, the torus bosonic
partition is given by

ZT 4 “
1

pη η̄q4
Γ4,4 , (4.40)

20The same result can be obtained by considering k “ ´1 instead of k “ 3.
21Type IIB on K3ˆ S1 also gives 27 vectors in D “ 5.
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which simply corresponds to a T 4 compactification and is invariant under modular transfor-
mations. For the remaining pieces of the partition function we find

Zr0, 1s “ ZR1,4ZS1r0, 1sZT 4
1

4pη η̄q4 rpϑ̄3q
4 ´ pϑ̄4q

4 ´ pϑ̄2q
4 ´ pϑ̄1q

4sˆ

rpϑ3q
4 ´ pϑ4q

4 ` pϑ2q
4 ` pϑ1q

4s .

(4.41)

Zr1, 0s “ ZR1,4ZS1r1, 0sZT 4
1

4pη η̄q4 rpϑ̄3q
4 ´ pϑ̄4q

4 ´ pϑ̄2q
4 ´ pϑ̄1q

4sˆ

rpϑ3q
4 ` pϑ4q

4 ´ pϑ2q
4 ` pϑ1q

4s .

(4.42)

Zr1, 1s “ ZR1,4ZS1r1, 1sZT 4
1

4pη η̄q4 rpϑ̄3q
4 ´ pϑ̄4q

4 ´ pϑ̄2q
4 ´ pϑ̄1q

4sˆ

r´pϑ3q
4 ´ pϑ4q

4 ´ pϑ2q
4 ` pϑ1q

4s .

(4.43)

Under modular transformations, the above pieces of the partition function transform as
in (4.12) and this guarantees modular invariance. Concerning the orbifold spectrum, in
the untwisted sector orbifold invariant states satisfy r4 P Z. This means that all NS-NS
and R-NS states survive the orbifold projection and remain massless. On the other hand,
all NS-R and R-R states are charged under the orbifold action and survive the orbifold
projection only with the addition of n “ ˘1 momentum modes. In this case, there is no
need to write down explicitly the states that we find in each sector. The massless spectrum
consists of the graviton, 11 vectors, 26 scalars, 4 gravitini and 24 dilatini. These fields make
up the N “ 4 gravity multiplet coupled to five vector multiplets. The massive spectrum
consists of 8 vectors p2,2q, 8 tensors, 4ˆ p3,1q and 4ˆ p1,3q, 8 scalars p1,1q, 4 gravitini,
2ˆ p3,2q and 2ˆ p2,3q and 20 dilatini, 10ˆ p1,2q and 10ˆ p2,1q. All these fields have
mass |1{R| and form two complex p1, 1q spin-3

2 multiplets in the representations

p3, 2q ‘ 2ˆ p3, 1q ‘ 2ˆ p2, 2q ‘ p1, 2q ‘ 4ˆ p2, 1q ‘ 2ˆ p1, 1q ,
p2, 3q ‘ 2ˆ p1, 3q ‘ 2ˆ p2, 2q ‘ p2, 1q ‘ 4ˆ p1, 2q ‘ 2ˆ p1, 1q .

(4.44)

Finally, for the construction of the Kaluza-Klein towers one works exactly as in section 4.1.
Once again, we can verify that the untwisted orbifold spectrum matches exactly the one
found in [14] from the Scherk-Schwarz reduction on the level of supergravity.

Now, consider the k “ 1 twisted sector where we use22

Zr1, ls “ pq q̄q´
1
2

ÿ

n,wPZ
eπinlq

α1

4 P
2
Rp1qpq̄q

α1

4 P
2
Lp1q

ÿ

r,r̃

q
1
2 pr`uq

2
pq̄q

1
2 r̃

2
e´πilp2r4`1qp1` ¨ ¨ ¨ q .

(4.45)
Since the orbifold acts trivially on the left-movers, the weight vectors for the lightest
left-moving states in the absence of momentum and/or winding modes are given in table 2.
The weight vectors for the lightest right-moving states are listed in table 5. Note here
that the state with r “ p0, 0, 0,´1q is tachyonic. However, as we shall demonstrate in
what follows, tachyonic states do not survive the orbifold projection, as expected in a
supersymmetric model.

22Here there is an additional phase eπil coming from the fermionic partition function (3.33) which is not
cancelled by the torus bosonic partition function due to the form of the twist vector u.
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Sector r SO(4) rep

NS p0, 0, 0,´1q p1,1q

R

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q p2,1q

p˘1
2 ,˘

1
2 ,

1
2 ,´

3
2q p2,1q

p1
2 ,´

1
2 ,

1
2 ,´

1
2q p1,2q

p1
2 ,´

1
2 ,´

1
2 ,´

3
2q p1,2q

Table 5. Here we list the weight vectors of the lightest right-moving states in the k “ 1 twisted
sector of the asymmetric Z2, N “ 4 orbifold and their representations under the massive little group
in 5D.

Orbifold invariant states satisfy 2r4 ` 1 “ 0 mod 2. As it follows from table 5, all
states in the NS-R and R-R sectors are invariant under the orbifold action. These are 8
vectors p2,2q, 8 tensors, 4ˆp3,1q and 4ˆp1,3q, 8 scalars p1,1q, 4 gravitini, 2ˆp3,2q, and
2 ˆ p2,3q and 20 dilatini, 10 ˆ p1,2q and 10 ˆ p2,1q. All these fields have mass |R{2α1|,
due to the 1

2 -winding on the circle, and form two complex p1, 1q spin-3
2 multiplets, exactly

as in (4.44). Moving on to the NS-NS and R-NS sectors, we notice that states are neither
invariant under the orbifold action nor level-matched. However we can fix both issues either
by adding n “ ´1, w “ 0 or n “ `1, w “ ´1 momentum and winding modes respectively
on the circle. We find the following states

NS-NS sector:
p˘1, 0, 0, 0;´1, 0q b p0, 0, 0,´1q “ p2,2q
p˘1, 0, 0, 0; 1,´1q b p0, 0, 0,´1q “ p2,2q
p0, 0,˘1, 0;´1, 0q b p0, 0, 0,´1q “ 4ˆ p1,1q
p0, 0,˘1, 0; 1,´1q b p0, 0, 0,´1q “ 4ˆ p1,1q

(4.46)

R-NS sector:
p˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q;´1, 0q b p0, 0, 0,´1q “ 2ˆ p2,1q

p˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2q; 1,´1q b p0, 0, 0,´1q “ 2ˆ p2,1q

p˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q;´1, 0q b p0, 0, 0,´1q “ 2ˆ p1,2q

p˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q; 1,´1q b p0, 0, 0,´1q “ 2ˆ p1,2q

(4.47)

In total we find 2 vectors p2,2q, 8 scalars p1,1q and 8 dilatini, 4 ˆ p1,2q and 4 ˆ p2,1q.
These fields form one complex p1, 1q vector multiplet with mass m “ |1{R´R{2α1|. As we
have seen so far, states in the twisted sectors are generally massive. However, some states
can become massless at special points of the moduli space. In the specific example that
we discuss here, this can be achieved at circle radius R “

?
2α1. In this massless limit the
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massive complex vector multiplet gives two massless real vector multiplets (this can be seen
by using the appropriate representations of the states under the massless little group in five
dimensions). This is a generic feature of N “ 4 p1, 1q theories, where we break all the left,
or right-moving supersymmetries, and we will revisit it when we discuss the moduli spaces
of the orbifolds in section 5.2.

4.3 N “ 2

In this section we discuss orbifolds with N “ 2 supersymmetry in five dimensions. These are
non-chiral asymmetric constructions (cf. example 2.5) which break half of the left-moving and
all the right-moving supersymmetries (or the other way around). As an example, consider
the Z2 orbifold with twist vectors ũ “ p0, 0, 1

2 ,
1
2q and u “ p0, 0, 0, 1q, i.e. ~m “ pπ, π, 0,´πq.

Regarding the bosonic contribution to the partition function, notice that the twist vector
ũ is the same as in section 4.1. Moreover, the twist vector u acts trivially on the torus
coordinates, exactly as the twist vector of section 4.1. Therefore, the bosonic partition
function of this N “ 2 model coincides with the partition function of the N “ 6 model
obtained in section 4.1. However, the fermionic partition function is different because the
twist vector u generates a p´1qFR action. Putting all together we find

Zr0, 1s “ ZR1,4ZS1r0, 1s
ˆ

η̄

ϑ̄2

˙2 1
η̄4 rpϑ̄3ϑ̄4q

2 ´ pϑ̄4ϑ̄3q
2 ´ pϑ̄2ϑ̄1q

2 ´ pϑ̄1 ¯ϑ2q2sˆ

1
η4 ΘD4pτq

1
η4 rpϑ3q

4 ´ pϑ4q
4 ` pϑ2q

4 ` pϑ1q
4s .

(4.48)

Zr1, 0s “ ZR1,4ZS1r1, 0s
ˆ

η̄

ϑ̄4

˙2 1
η̄4 rpϑ̄3ϑ̄2q

2 ` pϑ̄4ϑ̄1q
2 ´ pϑ̄2ϑ̄3q

2 ` pϑ̄1 ¯ϑ4q2sˆ

1
2η4 ΘD˚4

pτq
1
η4 rpϑ3q

4 ` pϑ4q
4 ´ pϑ2q

4 ` pϑ1q
4s .

(4.49)

Zr1, 1s “ ZR1,4ZS1r1, 1s
ˆ

η̄

ϑ̄3

˙2 1
η̄4 rpϑ̄3ϑ̄1q

2 ` pϑ̄4ϑ̄2q
2 ´ pϑ̄2ϑ̄4q

2 ` pϑ̄1 ¯ϑ3q2sˆ

1
2η4 ΘD˚4

pτ ` 1q 1
η4 r´pϑ3q

4 ´ pϑ4q
4 ´ pϑ2q

4 ` pϑ1q
4s .

(4.50)

These pieces of the partition function satisfy the transformations (4.12). This guarantees
modular invariance.23 Now, let us proceed with the construction of the orbifold spectrum. As
usual, we start with the massless states in the untwisted sector, which obey r̃3` r̃4´2r4 “ 0
mod 2

NS-NS sector:
p˘1, 0, 0, 0q b p˘1, 0, 0, 0q “ 5‘ 3ˆ 3‘ 2ˆ 1
p˘1, 0, 0, 0q b p0, 0,˘1, 0q “ 4ˆ 3‘ 4ˆ 1

(4.51)

NS-R sector:
p0, 0,˘1, 0q b ˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q “ 8ˆ 2

p0, 0,˘1, 0q b ˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 8ˆ 2

(4.52)

23As in the N “ 6 example of section 4.1, the model based on the pA1q
4 lattice, which is also discussed

in [60], does not give a modular invariant partition function.

– 35 –



J
H
E
P
0
8
(
2
0
2
3
)
0
8
9

R-NS sector:
˘p1

2 ,´
1
2 ,

1
2 ,´

1
2q b p˘1, 0, 0, 0q “ 2ˆ 4‘ 4ˆ 2

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b p0, 0,˘1, 0q “ 8ˆ 2

(4.53)

R-R sector:
˘p˘1

2 ,˘
1
2 ,

1
2 ,

1
2q b ˘p˘

1
2 ,˘

1
2 ,

1
2 ,

1
2q “ 4ˆ 3‘ 4ˆ 1

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2q b ˘p

1
2 ,´

1
2 ,

1
2 ,´

1
2q “ 4ˆ 3‘ 4ˆ 1

(4.54)

We find the graviton, 15 vectors, 14 scalars, 2 gravitini and 28 dilatini. These fields form
the N “ 2 gravity multiplet consisting of the graviton, 2 gravitini and 1 vector, and 14
vector multiplets each consisting of 1 vector 2 dilatini and 1 scalar. We continue with the
construction of the massive spectrum

NS-NS sector:
˘p0, 0, 1, 0;´1q b p˘1, 0, 0, 0q “ 4ˆ p2,2q
˘p0, 0, 1, 0;´1q b p0, 0,˘1, 0q “ 8ˆ p1,1q
˘rp0, 0, 1, 0; 1q b p0, 0, 0, 1q “ 4ˆ p1,1q

˘rp0, 0, 1, 0;´3q b p0, 0, 0,´1q “ 4ˆ p1,1q

(4.55)

NS-R sector:

˘rp˘1, 0, 0, 0; 1q b p˘1
2 ,˘

1
2 ,

1
2 ,

1
2qs “ 2ˆ p3,2q ‘ 2ˆ p1,2q

˘rp˘1, 0, 0, 0;´1q b p1
2 ,´

1
2 ,

1
2 ,´

1
2qs “ 2ˆ p2,3q ‘ 2ˆ p2,1q

(4.56)

R-NS sector:

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b p˘1, 0, 0, 0q “ 2ˆ p3,2q ‘ 2ˆ p1,2q

˘p˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´1q b p0, 0,˘1, 0q “ 4ˆ p2,1q

˘rp˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ; 1q b p0, 0, 0, 1qs “ 2ˆ p2,1q

˘rp˘1
2 ,˘

1
2 ,

1
2 ,

1
2 ;´3q b p0, 0, 0,´1qs “ 2ˆ p2,1q

(4.57)

R-R sector:

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b ˘p˘

1
2 ,˘

1
2 ,

1
2 ,

1
2 ; 1q “ 4ˆ p2,2q

˘p1
2 ,´

1
2 ,

1
2 ,´

1
2q b ˘p

1
2 ,´

1
2 ,

1
2 ,´

1
2 ;´1q “ 4ˆ p1,3q ‘ 4ˆ p1,1q

(4.58)

24In total, we find 6 gravitini, 4ˆ p3,2q and 2ˆ p2,3q, 4 tensors (1,3), 8 vectors (2,2), 12
dilatini, 8 ˆ p2,1q and 4 ˆ p1,2q, and 16 scalars (1,1) with mass |1{R|, and in addition,
2 dilatini (2,1) and 4 scalars (1,1) with mass |3{R|. These fields fit into the following
complex multiplets: two spin- 3

2 multiplets p3,2q ‘ 2 ˆ p2,2q ‘ p1,2q, another multiplet
containing a spin- 3

2 particle; p2,3q ‘ 2ˆ p1,3q, and four hypermultiplets p2,1q ‘ 2ˆ p1,1q
with mass |1{R|, as well as one hypermultiplet with mass |3{R|. Finally, the construction of
the Kaluza-Klein towers proceeds in exactly the same way as in section 4.1. Once again, we

24In the R-R sector, for clearer notation we denoted the momentum of the states on the right-movers.
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Sector r̃ SO(4) rep r SO(4) rep

NS p0, 0,´1, 0q 2ˆp1,1q p0, 0, 0,´1q p1,1q

R p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q p2,1q

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q p2,1q

p˘1
2 ,˘

1
2 ,

1
2 ,´

3
2q p2,1q

p1
2 ,´

1
2 ,

1
2 ,´

1
2q p1,2q

p1
2 ,´

1
2 ,´

1
2 ,´

3
2q p1,2q

Table 6. Here we list the weight vectors of the lightest left and right-moving states in the k “ 1
twisted sector of the Z2, N “ 2 orbifold and their representations under the massive little group in
5D.

confirm that the orbifold spectrum in the untwisted sector matches exactly the one found
in [14] from the Scherk-Schwarz reduction on the level of supergravity. Now, we move on to
the k “ 1 twisted sector where we use25

Zr1, ls“ 2q´
1
2 pq̄q´

1
4

ÿ

n,wPZ
eπinlq

α1

4 P
2
Rp1qpq̄q

α1

4 P
2
Lp1q

ÿ

r,r̃

q
1
2 pr`uq

2
pq̄q

1
2 pr̃`ũq

2
eπilpr̃3`r̃4´2r4qp1`¨¨ ¨ q .

(4.59)
The weight vectors for the lightest states in the absence of momentum and/or winding
modes are given in table 6.

Orbifold invariant states satisfy r̃3 ` r̃4 ´ 2r4 “ 0 mod 2 and they have degeneracy
2. All the states in the NS-R and R-R sectors survive the orbifold projection. In these
sectors we find 16 dilatini, 8ˆ p2,1q and 8ˆ p1,2q, 4 tensors (3,1), 4 vectors (2,2) and 4
scalars (1,1). All these fields have mass |R{2α1|, due to the 1

2 -winding on the circle, and
they fit into two complex tensor multiplets p3,1q ‘ 2 ˆ p2,1q ‘ p1,1q and two complex
vector multiplets p2,2q ‘ 2ˆ p1,2q. Regarding the NS-NS and R-NS sectors, we observe
that, as in the N “ 4 p1, 1q case, the state r “ p0, 0, 0,´1q is tachyonic. In these sectors
states are not level-matched and do not survive the orbifold projection. However, with the
addition of n “ ´1, w “ 0 or n “ `1, w “ ´1 momentum and winding modes respectively
on the circle, states become level-matched and survive the orbifold. Thereby, we find the
following states

NS-NS sector:
p0, 0,´1, 0;´1, 0q b p0, 0, 0,´1q “ 2ˆ p1,1q
p0, 0,´1, 0; 1,´1q b p0, 0, 0,´1q “ 2ˆ p1,1q

(4.60)

25As in the asymmetric Z2,N “ 4 orbifold, here there is an additional phase eπil coming from the fermionic
partition function (3.33) due to the form of the twist vector u.
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R-NS sector:
p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2 ;´1, 0q b p0, 0, 0,´1q “ p2,1q

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2 ; 1,´1q b p0, 0, 0,´1q “ p2,1q

(4.61)

These states come with a degeneracy factor of 2. We find 8 scalars (1,1) and 4 dilatini
(2,1) which form two massive complex hypermultiplets with mass |1{R ´ R{2α1|. As a
final remark, note that it is possible to make these hypermultiplets massless by fixing the
circle radius at R “

?
2α1. We will return to this issue in section 5.2, where we discuss the

moduli spaces of the orbifolds.

4.4 N “ 0

In this section we discuss non-supersymmetric symmetric orbifolds (see also [64, 65]). These
are models with ũ “ u “ p0, 0, u3, u4q which do not satisfy ˘u3 ˘ u4 “ 0 mod 2 for any
choice of signs, such that all supersymmetries are broken. In general, for the construction of
states in all sectors we follow the same procedure as in section 4.1. The interesting feature
of non-supersymmetric orbifolds is the appearance of tachyons in the twisted sectors. As
we will demonstrate, if the radius of the orbifold circle is large enough compared to the
string scale, there will be no tachyons in the spectrum, see e.g. [4, 16, 66, 67] for more
examples. As an example, consider a symmetric Z3 orbifold breaking all supersymmetry,
with twist vectors ũ “ u “ p0, 0, 0, 2

3q, i.e. ~m “ p2π
3 ,

2π
3 ,´

2π
3 ,´

2π
3 q. For this orbifold is it

more convenient to decompose the T 4 as T 2 ˆ T 2. In this way we can see that the orbifold
action leaves one T 2 intact. Therefore, from this T 2, there will be an invariant lattice of left
and right-moving momenta contributing to ZT 4rk, ls. As usual in toroidal compactification,
this lattice is a 4-dimensional even, self-dual Lorentzian lattice Γ2,2, with volume equal to
1. As a consequence, there are no inconsistencies regarding the degeneracy number of the
twisted states. For the other T 2, in order for the orbifold to be well-defined, we choose the
A2 root lattice with basis vectors R1p

?
2, 0q and R1p´

1?
2 ,
b

3
2q. We set the B-field to zero.

We start with the spectrum in the untwisted sector. As we are mostly interested in the
twisted sectors, we do not write down explicitly all the states but we simply state the results.
Orbifold invariant states satisfy 2pr̃4 ´ r4q “ 0 mod 3. The massless spectrum consists of
the graviton, 15 vectors, 20 scalars and 8 dilatini. Note that there are no massless gravitini
in the spectrum, hence the spectrum is non-supersymmetric. The massive spectrum consists
of 8 vectors (2,2), 4 tensors, 2ˆ p3,1q and 2ˆ p1,3q, and 12 scalars (1,1) with mass |2{R|,
2 scalars (1,1) with mass |4{R|, and 8 gravitini, 4ˆ p3,2q and 4ˆ p2,3q, and 32 dilatini,
16ˆ p2,1q and 16ˆ p1,2q, with mass |1{R|. In addition, we build the Kaluza-Klein towers
by adding a trivial phase ep

2πil
3 q3Z to all states. Finally, we identify the orbifold radius R,

with the Scherk-Schwarz radius R, by R “ 3R and we confirm that the entire untwisted
spectrum matches with the one found in [14] from the Scherk-Schwarz reduction on the
level of supergravity.

Let us now discuss the spectrum in the twisted sectors. As usual, we are interested in
finding the lightest states in the absence of momentum and winding modes. We start from
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Sector r̃, r SO(4) rep

NS p0, 0, 0,´1q p1,1q

R
p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2q (2,1)

p1
2 ,´

1
2 ,

1
2 ,´

1
2q (1,2)

Table 7. Here we list the weight vectors of the lightest states in the k “ 1 twisted sector of the
symmetric Z3, N “ 0 orbifold and their representations under the massive little group in 5D.

the k “ 1 twisted sector and we use26

Zr1, ls “ 3pqq̄q´
7
18

ÿ

n,wPZ
e

2πin
3 lq

α1

4 P
2
Rp1qpq̄q

α1

4 P
2
Lp1q

ÿ

r,r̃

q
1
2 pr`uq

2
pq̄q

1
2 pr̃`uq

2
e

4πil
3 pr̃4´r4q p1` ¨ ¨ ¨ q .

(4.62)
The weight vectors for the lightest states are given in table 7.

Orbifold invariant states satisfy 2pr̃4 ´ r4q “ 0 mod 3. We list below the states that
we find in each sector (all the states below come with a multiplicity 3, which we will omit
writing down explicitly)

NS-NS sector:
p0, 0, 0,´1q b p0, 0, 0,´1q “ p1,1q (4.63)

This state is a scalar with mass
α1m2 “

R2

9α1 ´
4
3 . (4.64)

We note that this state is tachyonic if

R ă 2
?

3α1 . (4.65)

Taking the circle radius to be above this tachyon bound ensures that the spectrum is
tachyon-free. We move on to the R-R sector:

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q b p˘

1
2 ,˘

1
2 ,´

1
2 ,´

1
2q “ p3,1q ‘ p1,1q

p˘1
2 ,˘

1
2 ,´

1
2 ,´

1
2q b p

1
2 ,´

1
2 ,

1
2 ,´

1
2q “ p2,2q

p1
2 ,´

1
2 ,

1
2 ,´

1
2q b p˘

1
2 ,˘

1
2 ,´

1
2 ,´

1
2q “ p2,2q

p1
2 ,´

1
2 ,

1
2 ,´

1
2q b p

1
2 ,´

1
2 ,

1
2 ,´

1
2q “ p1,3q ‘ p1,1q

(4.66)

In this sector we find 2 tensors, 1ˆ(3,1) and 1ˆ(1,3), 2 vectors (2,2) and 2 scalars (1,1)
with mass |R{3α1|. In the NS-R/R-NS sectors, states are not level-matched and do not
survive the orbifold projection. However, we can fix both issues by adding n “ `1{ ´ 1
momentum modes on the circle:

26Note that in the k “ 1 sector the expression
ś

i 2 sinpπgcdp1, lqũiq simply becomes
ś

i 2 sinpπũiq, and
similarly for u.
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NS-R sector:
p0, 0, 0,´1; 1q b p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2q “ p2,1q

p0, 0, 0,´1; 1q b p1
2 ,´

1
2 ,

1
2 ,´

1
2q “ p1,2q

(4.67)

R-NS sector:
p˘1

2 ,˘
1
2 ,´

1
2 ,´

1
2 ;´1q b p0, 0, 0,´1q “ p2,1q

p1
2 ,´

1
2 ,

1
2 ,´

1
2 ;´1q b p0, 0, 0,´1q “ p1,2q

(4.68)

In these sectors we find 4 dilatini, 2ˆ(2,1) and 2ˆ(1,2), with mass |1{R ´R{3α1|. We
note that the states in the NS-R/R-NS sectors become massless for R “

?
3α1. However,

this value is under the tachyon bound. Finally, the spectrum in the k “ 2 twisted sector is
identical to the spectrum in the k “ 1 sector.

4.4.1 Tachyon bounds

In general, the spectrum of non-supersymmetric orbifolds contains tachyons coming from the
twisted sectors. Nevertheless, we can repeat the same analysis as in the Z3 orbifold discussed
above, in order to find the tachyon bounds for other non-supersymmetric, symmetric
orbifolds. For each model, there is a critical circle radius R˚ above which the string
spectrum renders tachyon-free. The critical radius can be determined by examining the
k “ 1 twisted sector.27 For Zp orbifolds with twist vectors of the form p0, 0, u3, u4q with
|u3| ´ |u4| “ n{p, n P Z, we find

R˚
?
α1
“

a

2|n|p . (4.69)

The twist vectors that we used to obtain the above result are listed in appendix C, table 10.

5 Low-energy limit

In this section we give details of the relation between the compactification of type IIB string
theory on freely acting orbifolds and the Scherk-Schwarz reduction of type IIB supergravity
presented in [14]. We then discuss the moduli spaces, the classical Scherk-Schwarz potential
and the supertrace formulae.

5.1 Lowest lying orbifold states and Scherk-Schwarz spectrum

In this subsection, we will explicitly construct the untwisted orbifold sector in terms of
oscillator states. As in section 4, we will only focus on the lowest excited states, i.e the states
that are massless without the addition of momentum and/or winding modes. This will
manifest the correspondence between freely acting orbifolds and Scherk-Schwarz mechanism.

As we discussed in section 3, in the untwisted sector the NS-vacuum is a spacetime
scalar and the R-vacuum is a spacetime spinor in all target space dimensions. The NS-vacua
are invariant under the orbifold action, while the R-vacua transform as in (3.11). Having
these at hand, we can discuss the resulting spectrum.

27As k becomes bigger, the critical radius becomes smaller. The strongest constraint comes from the
k “ 1 sector.
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Sector State L orbifold charge R orbifold charge SOp3q rep SOp4q rep

NS bµ̂
´1{2 |0y 1 1 3‘ 1 p2,2q

bi
´1{2 |0y eipm1˘m3q eipm2˘m4q 2ˆ 1 2ˆ p1,1q

b̄i
´1{2 |0y e´ipm1˘m3q e´ipm2˘m4q 2ˆ 1 2ˆ p1,1q

R |a1,2y e˘im1 e˘im2 2ˆ 2 2ˆ p2,1q

|a3,4y e˘im3 e˘im4 2ˆ 2 2ˆ p1,2q

Table 8. Here we write down all states that are massless in the absence of momentum and/or
winding modes, including their charges under the orbifold action and their representations under the
massless and massive little groups in 5D. We write down general states that appear both left-moving
and right-moving. The tildes on the oscillators in the left-moving sector, and the subscripts L and
R on the vacua are omitted. The index i on the oscillators takes the values 1 and 2. The ` sign in
the L{R orbifold charge corresponds to i “ 1 and the ´ sign to i “ 2.

First, we present in table 8 the lightest NS and R-sector states that survive the GSO
projection. We write down general states that appear both in a left-moving and in a right-
moving version, and we write down the orbifold charges that both of these versions carry.
Furthermore, we table the representations of these states under both the massless little group
SOp3q « SUp2q and the massive little group SOp4q « SUp2q ˆ SUp2q in five dimensions.

String states are constructed by tensoring the left and right-moving states from table 8.
If a state carries a non-trivial orbifold charge, we compensate for this by adding momentum
modes on the circle. In table 9 we give the spectrum of lowest excited string states, including
their orbifold charge and little group representations.

We can now find the field content of our orbifold construction from table 9. As an
example, take the string state |a1yLb b

µ̂
´1{2 |0yR, which has orbifold charge eim1 . First recall

that we can always write m1 “ 2πN1{p where N1 is an integer and p is the rank of the
orbifold. To make the state invariant under the orbifold action, we add momentum along the
S1. States with momentum on the circle obtain a phase e2πin{p with n the number of modes.
If we now choose n “ ´N1, this phase becomes e´2πiN1{p which cancels exactly against the
phase that the string state had before the addition of momentum. In other words, the state
|a1;´N1, 0yL b bµ̂

´1{2 |0yR is invariant under the orbifold action and therefore survives in
the spectrum. Here we use the notational convention to denote the momentum and winding
numbers on the S1 as | ;n,wy on the left-moving vacuum.

At this point, we would like to mention that for the states in table 9 it is always possible
to find an integer-valued momentum number that cancels the phase due to the orbifold
action. All mass parameters can be written as mi “ 2πNi{p with Ni P Z; any sum or
difference of mass parameters can thus also be written as 2π{p times an integer. If we take
this integer with the sign flipped as the momentum number, the total phase cancels.

Next, we can use the little group representations in table 9 to determine what kind of
fields the spectrum consists of. We return to the example state |a1;´N1, 0yL b bµ̂´1{2 |0yR.
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Sector State Orbifold charge SOp3q rep SOp4q rep

NS-NS b̃µ̂
´1{2 |0yL b b

ν̂
´1{2 |0yR 1 5‘ 3ˆ 3‘ 2ˆ 1 p3‘ 1,3‘ 1q

b̃µ̂
´1{2 |0yL b b

i
´1{2 |0yR eipm2˘m4q 2ˆ 3‘ 2ˆ 1 2ˆ p2,2q

b̃µ̂
´1{2 |0yL b b̄

i
´1{2 |0yR e´ipm2˘m4q 2ˆ 3‘ 2ˆ 1 2ˆ p2,2q

b̃i
´1{2 |0yL b b

µ̂
´1{2 |0yR eipm1˘m3q 2ˆ 3‘ 2ˆ 1 2ˆ p2,2q

¯̃bi
´1{2 |0yL b b

µ̂
´1{2 |0yR e´ipm1˘m3q 2ˆ 3‘ 2ˆ 1 2ˆ p2,2q

b̃i
´1{2 |0yL b b

j
´1{2 |0yR eipm1˘m3q`ipm2˘m4q 4ˆ 1 4ˆ p1,1q

b̃i
´1{2 |0yL b b̄

j
´1{2 |0yR eipm1˘m3q´ipm2˘m4q 4ˆ 1 4ˆ p1,1q

¯̃bi
´1{2 |0yL b b

j
´1{2 |0yR e´ipm1˘m3q`ipm2˘m4q 4ˆ 1 4ˆ p1,1q

¯̃bi
´1{2 |0yL b b̄

j
´1{2 |0yR e´ipm1˘m3q´ipm2˘m4q 4ˆ 1 4ˆ p1,1q

R-R |a1,2yL b |a1,2yR e˘im1˘im2 4ˆ 3‘ 4ˆ 1 4ˆ p3‘ 1,1q

|a1,2yL b |a3,4yR e˘im1˘im4 4ˆ 3‘ 4ˆ 1 4ˆ p2,2q

|a3,4yL b |a1,2yR e˘im3˘im2 4ˆ 3‘ 4ˆ 1 4ˆ p2,2q

|a3,4yL b |a3,4yR e˘im3˘im4 4ˆ 3‘ 4ˆ 1 4ˆ p1,3‘ 1q

NS-R b̃µ̂
´1{2 |0yL b |a1,2yR e˘im2 2ˆ 4‘ 4ˆ 2 2ˆ p3‘ 1,2q

b̃µ̂
´1{2 |0yL b |a3,4yR e˘im4 2ˆ 4‘ 4ˆ 2 2ˆ p2,3‘ 1q

b̃i
´1{2 |0yL b |a1,2yR eipm1˘m3q˘im2 4ˆ 2 4ˆ p2,1q

b̃i
´1{2 |0yL b |a3,4yR eipm1˘m3q˘im4 4ˆ 2 4ˆ p1,2q

¯̃bi
´1{2 |0yL b |a1,2yR e´ipm1˘m3q˘im2 4ˆ 2 4ˆ p2,1q

¯̃bi
´1{2 |0yL b |a3,4yR e´ipm1˘m3q˘im4 4ˆ 2 4ˆ p1,2q

R-NS |a1,2yL b b
µ̂
´1{2 |0yR e˘im1 2ˆ 4‘ 4ˆ 2 2ˆ p3‘ 1,2q

|a3,4yL b b
µ̂
´1{2 |0yR e˘im3 2ˆ 4‘ 4ˆ 2 2ˆ p2,3‘ 1q

|a1,2yL b b
i
´1{2 |0yR e˘im1`ipm2˘m4q 4ˆ 2 4ˆ p2,1q

|a3,4yL b b
i
´1{2 |0yR e˘im3`ipm2˘m4q 4ˆ 2 4ˆ p1,2q

|a1,2yL b b̄
i
´1{2 |0yR e˘im1´ipm2˘m4q 4ˆ 2 4ˆ p2,1q

|a3,4yL b b̄
i
´1{2 |0yR e˘im3´ipm2˘m4q 4ˆ 2 4ˆ p1,2q

Table 9. The spectrum of lowest excited string states including their orbifold charge and
representations under the massless little group SOp3q « SUp2q and the massive little group
SOp4q « SUp2q ˆ SUp2q in five dimensions.
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Due to the addition of momentum, the state has become massive with mass |N1{R|. From
the table we then read off the representation as p3,2q ‘ p1,2q, i.e. it corresponds to a
massive gravitino and a massive dilatino.

We can rewrite the mass |N1{R| slightly differently in order to make contact with the
Scherk-Schwarz supergravity spectrum. We know that N1 “ pm1{2π, and we know that
the radius of the orbifold circle R and the radius of the Scherk-Schwarz circle R are related
by R “ pR. The mass of the state is therefore equal to |m1{2πR|. Masses of this form
are precisely what was found in [14]. We have included the relevant table of masses of the
supergravity fields in appendix D (see also section 3.3 of [14]).

Some further care must be taken when comparing the representation of the monodromy
matrix acting on the world-sheet fields or on the supergravity fields. For instance, the two
gravitini from the NS-R sector (the p3,2q and the p2,3q in table 9) only pick up a Spin(4)R
monodromy (with mass parameters m2,m4), but their spacetime chirality is opposite in
six dimensions. Similarly the ones from the R-NS sector transform only under Spin(4)L
and again have opposite 6D chirality. As supergravity fields, the 6D gravitini sit in the
p4,1q and p1,4q representations of the R-symmetry USpp4qL ˆUSpp4qR, where L,R now
indicates the 6D chirality. Therefore, the monodromy matrix appearing in [14] (see e.g.
eq. (3.39) in that paper) has grouped together m1 and m2, and similarly m3 and m4.

This systematic approach can be used to construct the entire field content coming from
the lowest excited string states. Each of the states in table 9 gives fields whose mass can be
read off from their orbifold charge (it is always the absolute value of this linear combination
of mi’s times p{2πR). The type of fields that this state gives can then be found from its
massless or massive little group representation, depending on whether the aforementioned
mass is zero (mod 2π) or not. In this way, the entire supergravity spectrum from [14] can
be reproduced. It is important to note however that the Scherk-Schwarz reduction can
easily be carried out for any monodromy in Spin(5,5), but only for choices in Spin(4,4) we
can compare to the orbifold picture.

Finally, recall that we can build the Kaluza-Klein towers on the circle by adding
pZ momentum modes to the ones that were added following the procedure above. This
addition doesn’t change the orbifold charge, so all of these states survive as well. The
masses shift by pZ{R “ Z{R, e.g. the masses of the KK-tower on our example state become
|m1{2πR` Z{R|. Again, this agrees with the supergravity calculation.

5.2 Moduli spaces

We discussed in section 4 the different patterns of supersymmetry breaking and gave
examples of residual N “ 6, 4, 2 or 0 supersymmetry. The resulting theories have massless
modes and the massless scalars parametrize the moduli space of the orbifold. We illustrate
this here for the examples given in the previous section, and we also provide some additional
examples. In the absence of any twist, the moduli space in D “ 6 is SOp5, 5q{SOp5qˆSOp5q
and has dimension 25. In D “ 5 with maximal supersymmetry, so in the absence of
any twist, it is E6p6q{USpp8q and is 42-dimensional. Some of these scalars will become
massive after the twist and the moduli space will become smaller. For generic values of
the Scherk-Schwarz circle, it suffices to look only at the scalars in the untwisted sector to
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determine the moduli space. At special values of the radius, additional scalars and vectors
can become massless, and we will discuss an example of this too.

5.2.1 N “ 6

These theories can be realized by asymmetric orbifolds and the example we discussed was a Z2
orbifold with ~m “ pπ, 0, 0, 0q. The massless fields constitute the N “ 6, D “ 5 supergravity
multiplet [68]. It contains the graviton and 6 massless gravitini, with USpp6qR “ Spp3q
R-symmetry. Next to the 15 vectors and 20 dilatini, we have 14 scalars that define the
residual moduli space

MN“6 “
SU˚p6q
USpp6q . (5.1)

6 of the 14 massless scalars descend from the NS-NS sector and 8 come from the R-R sector.
28 scalars have become massive in the Scherk-Schwarz reduction.

Similarly, one can construct the moduli space of the N “ 6,Z3 orbifold, with mass
parameters ~m “ p2π

3 , 0, 0, 0q, corresponding to u “ p0, 0, 0, 0q and ũ “ p0, 0, 1
3 ,

1
3q. It has the

same massless spectrum as the p “ 2 orbifold and hence the same moduli space, dictated
by N “ 6 supersymmetry. Asymmetric orbifolds with N “ 6, in four dimensions, have also
been constructed in [69] and more recently in [34, 70, 71].

5.2.2 N “ 4

For the Z4 (0,2) symmetric orbifold that we discussed in section 4.2, we have mass parameters
~m “ pπ2 ,

π
2 , 0, 0q. We saw that the massless spectrum consisted of the D “ 5,N “ 4

supergravity multiplet, containing 1 real scalar and 6 vectors, together with three massless
vector multiplets, each containing 5 scalars. Out of the 15 scalars from the vector multiplets,
9 come from the NS-NS sector, and are remaining geometric moduli, and 6 from the R-R
sector. The total scalar manifold with the 16 “ 1` 15 scalars including those of the three
vector multiplets is

MZ4
N“4 “ SOp1, 1q ˆ SOp5, 3q

SOp5q ˆ SOp3q . (5.2)

One gets the same moduli space for the symmetric Z3 and Z6 orbifolds, but the masses are
different. The moduli space is fixed by supersymmetry and fits into the general structure
of N “ 4, D “ 5 supergravity coupled to n N “ 4 vector multiplets, where the scalars
parametrize [72]

MN“4 “ SOp1, 1q ˆ SOp5, nq
SOp5q ˆ SOpnq . (5.3)

For the Z4 symmetric orbifold from above, we had n “ 3, but it is easy to get other values
for n. Take for instance the symmetric Z2 (0,2) orbifold with ~m “ pπ, π, 0, 0q, corresponding
to ~α “ pπ, π, 0, 0q (see example 2.5). We find from table 9 that there are 26 “ 1 ` 25
massless scalars with moduli space

MZ2
N“4 “ SOp1, 1q ˆ SOp5, 5q

SOp5q ˆ SOp5q . (5.4)

Hence, for Z2 we get four accidental vector multiplets, and for Z3,4,6 we get two accidental
vector multiplets. For the Z2 case, 3 vectors come from the NS-NS sector, and 8 from the
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R-R sector. As the gravity multiplet contains 6 vectors, we are left over with 5 vectors to
form vector multiplets indeed.

There is another way to get the moduli space (5.4), namely from the asymmetric Z2
(1,1) orbifold that we discussed in section 4.2 with ~m “ p0, π, 0,´πq. The bosonic massless
field content is the same, except that the fields have a different ten-dimensional origin. In
this case, all the vectors and scalars come from the NS-NS sectors. Furthermore, for the
asymmetric Z2 orbifold, we saw that for a certain value of the orbifold circle radius, we can
obtain two extra massless vector multiplets coming from the twisted sector. In this case,
the moduli space becomes

MZ2
N“4 “ SOp1, 1q ˆ SOp5, 7q

SOp5q ˆ SOp7q . (5.5)

In general, for the N “ 4, D “ 5 theories, if there are no accidental massless modes,
the moduli space reduces to

MN“4 “ SOp1, 1q ˆ SOp5, 1q
SOp5q . (5.6)

This seems only possible for asymmetric orbifolds, for instance an asymmetric Z6 p0, 2q
orbifold with ~m “ pπ3 , π, 0, 0q, corresponding to ~α “ p2π

3 ,
2π
3 ,´

π
3 ,´

π
3 q, and with twist vectors

u “ p0, 0, 1
2 ,

1
2q and ũ “ p0, 0,

1
6 ,

1
6q. As we can see from table 9, there are 6 massless scalars,

2 from the NS-NS and 4 from the R-R sector. There is only one vector multiplet. 3 vectors
come from the NS-NS sector, and 4 from the R-R sector. Another interesting case is the
asymmetric Z6 p1, 1q orbifold with ~m “ pπ3 , 0, π, 0q. It has the same D “ 5 massless field
content and moduli space, but the ten-dimensional origin is different as all the bosonic
fields, both scalars and vectors come from the NS-NS sector, and the theory contains no
massless R-R fields.

The N “ 4 orbifolds we discussed yield an odd number n of massless vector multiplets,
with n ď 21 (all massless tensors are dualized into vectors), and the corresponding unbroken
gauge group (at generic points in the moduli space) is Up1qn. First of all, this result
agrees with the upper bound on the rank of the gauge group rG “ 26´D given in [30, 31].
Secondly, it should be pointed out that in all the examples we gave n P 2Z`1. Furthermore,
it is easy to derive from table 9 that all orbifolds give an odd number of untwisted vector
multiplets. Regarding the twisted sectors, we saw that in N “ 4 p1, 1q theories (where we
break all the left, or right-moving supersymmetries) it is possible to tune the circle radius
such that some of the twisted vector multiplets become massless. In this massless limit
each complex vector multiplet will give two real vector multiplets. As a result, regardless of
the specific orbifold, we can only get an even number of real vector multiplets coming from
the twisted sectors. Therefore, combining both untwisted and twisted sectors we can see
that n P 2Z` 1 is a generic feature of our orbifolds.

The appearance of only an odd number of vector multiplets seems to be a characteristic
of a broader class of string constructions with 16 supersymmetries in 5D. Theories with 16
supersymmetries in D ą 6 have been studied extensively (see e.g. [73, 74] and references
therein). In addition, N “ p1, 1q theories in 6D were recently classified in [75]. Dimensional
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reduction of the various higher dimensional theories given in these references always yields
an odd number of vector multiplets in 5D, which supports our findings.28 Consequently,
cases with n P 2Z appear not to be part of the string landscape of N “ 4, D “ 5 Minkowski
vacua29 They do however seem to appear as moduli spaces in AdS5 vacua in the context of
holography, see e.g. section 7 of [77] (and earlier work obtained in [78]) for the case of two
vector multiplets, n “ 2.

5.2.3 N “ 2

N “ 2 in five dimensions is the minimum amount of supersymmetry, namely eight real
supersymmetries. In this case, only one mass parameter is set to zero, and therefore, all
these orbifolds are necessarily asymmetric. In the absence of any accidental massless modes,
one obtains the gravity multiplet (containing the metric and a vector), coupled to two
vector multiplets. For the Z2 orbifold discussed in section 4.3 we have ~m “ pπ, π, 0,´πq.
This orbifold gives twelve additional vector multiplets. In total there are 14 real scalars,
one per each massless vector multiplet. Notice that the massless bosonic field content is
exactly the same as in the asymmetric N “ 6,Z2 orbifold, consisting of 6 NS-NS scalars
and 8 R-R scalars. The moduli space is again

MZ2
N“2 “

SU˚p6q
USpp6q . (5.7)

This is one of the magic square supergravities of [32].
We can also easily determine the moduli space of a Z4 orbifold with ~m “ pπ2 ,

π
2 ,

π
2 , 0q.

The corresponding twist vectors are given by u “ p0, 0, 1
4 ,

1
4q and ũ “ p0, 0,

1
2 , 0q and satisfy

the quantization conditions (3.12). The α’s are given by ~α “ p3π
4 ,

π
4 ,

π
4 ,´

π
4 q (cf. example 2.5)

and do not satisfy (2.15). This could indicate that this orbifold is not allowed and be part
of the swampland. It remains to be seen whether this is due to the restricted conjugacy
classes we did consider or otherwise it would have to show up that the integrality condition
or modularity of the partition function is not satisfied. We leave this for future research. If
for now we assume it is a consistent orbifold, it would give a massless spectrum consisting
of eight vector multiplets coupled to supergravity, and no hypermultiplets. The most likely
candidate for the (classical) moduli space is another of the magic square supergravities,

MZ4
N“2 “

SLp3,Cq
SUp3q , (5.8)

which is known to be a truncation of N “ 8, D “ 5 supergravity if we break the N “ 8
supermultiplet into N “ 2 supermultiplets and truncate the spin- 3

2 and matter multi-
plets [32]. In Scherk-Schwarz, we do not truncate these multiplets; instead, these become
lifted and massive.

28Similar results were found in the context of four dimensional asymmetric orbifolds in [76]. In four
dimensions, the number of vector multiplets in N “ 4 was always found to be even, consistent with odd
number in five dimensions.

29In [26], an asymmetric orbifold was proposed which appeared to give pure supergravity with no vector
multiplets. However, the monodromy in this example involves a single T-duality and so the construction is
not a quotient by a symmetry of the IIB string theory: the bosonic action of the monodromy is in Opd, dq,
not in SOpd, dq. Such a quotient seems problematic and is outside the class of constructions we discuss here.
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In both of the above cases, there are no hypermultiplets and the dilaton sits in a vector
multiplet. Hence, the classical moduli space can be quantum corrected. Of course, as we
saw in section 4.3 it is possible to obtain massless hypermultiplets coming from the twisted
sectors by tuning the orbifold circle radius. However, at a generic point of the moduli
space the orbifolds discussed above are free of massless hypermultiplets. Similar models of
hyper-free superstrings were constructed in [79]. It is interesting that we can produce two
out of the four magical supergravity theories of [32, 33], but apparently not the other two
(with 5 and 26 vector multiplets).

Another example is the Z6 orbifold defined by ~m “ pπ, 2π
3 , π, 0q. This corresponds to

~α “ p4π
3 ,

π
3 ,

2π
3 ,´

π
3 q and twist vectors u “ p0, 0, 1

3 ,
1
3q and ũ “ p0, 0, 1, 0q. This gives six

vector multiplets coupled to N “ 2 supergravity, and again no hypers. The moduli space
does not belong to the magic square. All the scalars come from the NS-NS sector and the
most likely candidate is the factorizable moduli space

SOp5, 1q
SOp5q ˆ SOp1, 1q , (5.9)

as this can be obtained from a truncation of the N “ 6 theory [32].
Hypermultiplets in the untwisted sector can be produced by other types of orbifolds,

namely when three of the non-vanishing mass parameters add up to 0 mod 2π. For instance,
consider the Z4 orbifold with ~m “ pπ, π2 ,

π
2 , 0q. It leads to four vector multiplets and two

hypermultiplets.
Related interesting work on asymmetric orbifolds and non-geometric string backgrounds

with few moduli in four dimensions, preserving N “ 2 supersymmetry, can be found e.g.
in [17, 18, 28, 29, 80].

What all the models seem to have in common is that the total number of vectors r
is always odd. In N “ 6 we have r “ 15. In N “ 4, the number of vectors in the gravity
multiplet is six, so this means always an odd number of vector fields. In N “ 2, there is
one vector in the gravity multiplet, and we find always an even number of vector multiplets.
It would be nice to relate these observations to the work in higher dimensions in D ě 7 and
the string lamppost principle [30].

5.2.4 N “ 0 and supertraces

For N “ 0, all four mass parameters are switched on and the complete R-symmetry
group USpp4qL ˆUSpp4qR “ Spinp5qL ˆ Spinp5qR is broken. The states neutral under the
Scherk-Schwarz twist are the singlets, i.e. with zero orbifold charge. In the absence of
accidental modes these are 3 vectors, 2 scalars, and the graviton, all coming from the NS-NS
sector. All fermions become massive, and hence all supersymmetry is broken. So we get
the Einstein-Hilbert action for gravity coupled to 3 vectors and 2 scalars.

A particular model breaking all supersymmetry is the Z2 symmetric orbifold with all
masses turned on and equal to π. The twist vectors are given by u “ ũ “ p0, 0, 1, 0q and
~α “ p2π, 0, 0, 0q. There are now many accidental massless modes and in fact all bosons
become massless, while all fermions become massive (cf. table 9). In fact, this Z2 orbifold is
generated by p´1qFs combined with a half-shift on S1. The bosonic field content is therefore
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the same as the one from N “ 8, D “ 5 supergravity, and the classical moduli space is
E6p6q{USpp8q. The orbifold is tachyon-free above the critical radius R˚ “ 2

?
2α1. The fact

that we combined p´1qFs with a shift on the circle makes this model different from type 0B
string theory compactified on T 4 ˆ S1, which suffers from a tachyon for any value of the
radius of S1.

The Scherk-Schwarz reductions we considered generate positive definite scalar potentials
at the classical level. In the presence of partial supersymmetry, the corresponding Minkowski
vacua are perturbatively stable, and hence the cosmological constant vanishes. When all of
the supersymmetries are spontaneously broken, a one-loop cosmological constant, which is
determined by the minimum of the one-loop effective potential, may be non-vanishing.

The effective potential can be expressed in terms of various supertraces, as it was first
shown in [81]. Supertraces are defined as weighted sums over the masses of all fields in the
spectrum of the theory, that is

StrM2β “ NφpMφq
2β ´ 2NχpMχq

2β ` 3NBµν pMBµν q
2β ` 4NAµpMAµq

2β ´ 6NψµpMψµq
2β ,

(5.10)
where β ą 0 is an integer30 and we denote by Nfield the number of fields with mass Mfield.
Each field is multiplied by the corresponding (massive) degrees of freedom in five dimensions
and fermion fields appear with a minus sign.

Regarding supersymmetric theories, all supertraces vanish on Minkowski vacua [82].
This is a result of bose-fermi degeneracy. In supersymmetric theories all fields fit in supermul-
tiplets and as a consequence, all supertraces are identically zero. For non-supersymmetric
theories the situation is more complicated, due to the absence of bose-fermi degeneracy.
However, it was noticed in [3, 36] that for Scherk-Schwarz reductions of N “ 8 supergravities
with fully broken supersymmetry

StrM2 “ StrM4 “ StrM6 “ 0 , StrM8 ‰ 0 . (5.11)

The same result was later obtained in [83] for any gauging of N “ 8 supergravity.
Here we also perform the supertrace calculation for an N “ 0 supergravity theory

with all mass parameters non-zero. Our result is consistent with (5.11). Furthermore, we
explicitly find the value of StrM8 to be

StrM8 “ 40320 pm1m2m3m4q
2 , (5.12)

which is positive definite. As shown in [83], StrM2 “ StrM4 “ StrM6 “ 0 and StrM8 ą 0
imply that the one-loop effective potential is negative definite.

It would be interesting to see how this calculation extends to the full string theory
spectrum. For this one needs to compute the full partition function which is generating
the cosmological constant. It can happen that for specific orbifolds, one can still obtain
a vanishing cosmological constant at one-loop, see e.g. [84–91], but it is not certain if the
cosmological constant vanishes at higher loops.

30StrM0 is equal to bosonic minus fermionic degrees of freedom and is always zero.
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6 Swampland examples

The swampland programme deals with effective actions that cannot be consistently lifted
to string theory or quantum gravity in general [92]. In our case, the effective supergravity
actions are Scherk-Schwarz reductions to five spacetime dimensions. They yield N “ 8
gauged supergravity in five dimensions with vacua that spontaneously break supersymmetry.
The N “ 8 supergravity multiplet in five dimensions contains as bosonic fields a graviton,
27 vector fields and 42 real scalars. The gauge group was discussed in detail in [14], where
it was shown how the structure constants of the gauge algebra are determined by the
twist matrix. In the class of twists we considered in this paper (with the twist matrix
(conjugate to) an element in the R-symmetry group Spinp5qL ˆ Spinp5qR), the potential
and the structure constants depend on four mass parameters mi. The potential can be
written as (see e.g. eq. (3.49) in [14])

V pHq “ 1
4e
´
?

8{3φ5 Tr
”

M2 `MTH´1MH
ı

, (6.1)

where φ5 is the KK scalar coming from the metric in six dimensions, H P Spinp5, 5q
parametrizes the 42 scalar fields, and M P sop5, 5q is the mass matrix containing the mass
parameters mi (see [14] for more details).

For this potential to belong to the string landscape, in particular the landscape of freely
acting orbifolds, a number of conditions need to be satisfied. First of all, the monodromy
matrix should be inside the T-duality group, otherwise there is no obvious CFT description
on the worldsheet in terms of an orbifold, as we discussed in detail in section 2.

Secondly, in supergravity the mass parameters mi are continuous parameters, while for
a well defined orbifold the mass parameters must be quantized (see section 2) and possible
accidental massless modes arise when some of the masses add up to a multiple of 2π. In the
case of symmetric orbifolds the quantization of the mass parameters is the only constraint
for a consistent uplift, since modular invariance of the partition function is ensured. For
asymmetric orbifolds, however, modular invariance is not guaranteed and this restricts
the possible supergravity theories that can be consistently uplifted to string theory (as
freely acting orbifolds). Furthermore, even if modular invariance is achieved, one should
carefully examine the degeneracy of states in the twisted sectors. For a sensible theory
this degeneracy must be an integer number. As shown in [34], this additional integrality
constraint can exclude a seemingly consistent model.

For example, consider the asymmetric Z4, N “ 6 orbifold with twist vectors ũ “
`

0, 0, 1
4 ,´

1
4
˘

and u “ p0, 0, 0, 0q, or in terms of the mass parameters ~m “ p0, 0, π2 , 0q. For
this orbifold, the invariant momentum sublattice is ΛR “ pA1q

4 and the degeneracy of
states in the k “ 1 sector is Dp1q “ 1

2 [34]. Consequently, this model is not allowed. Note
that this orbifold is also excluded by the T-duality arguments presented in section 2.2.
Specifically, for this orbifold the values of the α’s are ~α “ pπ4 ,´

π
4 ,

π
4 ,´

π
4 q, which are not

valid (cf. example 2.5). Therefore, the supergravity potential with this choice of mass matrix
is in the swampland.

Now, let us take a chiral Z4, N “ 4 p1, 1q orbifold with twist vectors ũ “
`

0, 0, 1
4 ,

3
4
˘

and u “ p0, 0, 0, 0q, or ~m “ pπ, 0,´π
2 , 0q. Although this orbifold breaks 16 supersymmetries,
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its action on the torus coordinates is the same as in the previous Z4, N “ 6 example, i.e.
the SOp4, 4q element is unchanged. Then the background is the same and the degeneracy of
states in the k “ 1 sector is once again Dp1q “ 1

2 . This is another example of an apparently
consistent orbifold that is excluded by the integrality constraint. Once more, the values
of the α’s for this orbifold are invalid, as we find ~α “ pπ4 ,

3π
4 ,

π
4 ,

3π
4 q (cf. example 2.5). The

chosen mass parameters therefore again yield a scalar potential that is in the swampland.
Another interesting example is the Z4, N “ 2 orbifold with twist vectors ũ “

`

0, 0, 1
4 ,´

1
4
˘

and u “ p0, 0, 0, 1q, or ~m “ p0, π, π2 ,´πq. The only difference of this orb-
ifold compared to the Z4, N “ 6 that we discussed previously, is that the twist vector u
generates an action p´1qFR , and one can show that this does not affect modular invariance.31

Again, this orbifold suffers from the same integrality problem as the two models above.
This is yet another example of a seemingly consistent orbifold which is not allowed by the
integrality condition. In addition, this orbifold is not allowed by the quantization of the
α’s, since we find the invalid values ~α “ pπ4 ,

3π
4 ,

π
4 ,´

5π
4 q (see example 2.5).

Similarly, one can start with the naively consistent Z6, N “ 6 orbifold with twist
vectors ũ “

`

0, 0, 1
6 ,´

1
6
˘

and u “ p0, 0, 0, 0q, which is also excluded due to the integrality
constraint [34]. By repeating the same steps as above, one can show that the Z6, N “ 4
orbifold with ũ “

`

0, 0, 1
6 ,

5
6
˘

, u “ p0, 0, 0, 0q and the Z6, N “ 2 orbifold with ũ “
`

0, 0, 1
6 ,´

1
6
˘

, u “ p0, 0, 0, 1q are also not allowed by the integrality condition. Moreover, all
these orbifolds are not allowed by the quantization of the α’s (for the above orbifolds the
α’s are proportional to π{6).

In all of the above examples, the particular choices of mass parameters are perfectly
well-defined at the level of supergravity actions but they cannot be lifted to string theory
orbifolds. Unless there are other stringy constructions than orbifolds, all these examples
belong to the swampland. It remains to be seen if these other stringy constructions then
are consistent with the chosen mass parameters.

7 Conclusions and outlook

In this paper we have explored a landscape of freely acting orbifolds of type IIB on
pT 4 ˆ S1q{Zp. Our techniques can be easily carried over to type IIA string theory and
straightforwardly extended to higher dimensional tori. Freely acting orbifolds on pT 4 ˆ

S1q{Zp lead to five-dimensional effective actions with spontaneous (partial) supersymmetry
breaking in Minkowski vacua. They are significantly different from orbifolds by the same
T 4 symmetry but without the shift on the extra circle, so that the orbifolds without shifts
have fixed points. It is nevertheless interesting to compare the two, as we did in some
examples. The main difference is the appearance of a scalar potential on the moduli space
in the freely acting case, and the properties of this potential are interesting to study in
the context of the landscape and moduli stabilization. In the supergravity description,
these models correspond to Scherk-Schwarz reductions and the potential contains mass
parameters mi that are continuous. In the orbifold picture, the masses are quantized and
rational, mi2π “

Ni
p , but not all integers Ni and p are allowed. In the space of string theories

31We have explicitly illustrated this in the Z2 examples of sections 4.2 and 4.3.
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parametrized by these mass parameters, only a discrete and finite set arises and defines
a landscape of freely acting orbifolds. In the models we considered, the highest possible
value for p we found is p “ 24. Here we have only studied duality twists with monodromy
matrices that are within the T-duality group Spin(4,4;Z) and conjugate to the R-symmetry
group. We have not discussed shifts on the dual circle or on multiple circles. It would be
interesting to generalize to these cases and to U-duality twists to learn more about the
structure of this discrete, finite set of string compactifications and to investigate whether
there is a relationship to the tamed structure found in [93].

There are many directions in which to generalize and extend our work. One direction
is to understand better the origin of the integrality constraints arising in the partition
function of asymmetric orbifolds from the point of view of the duality twists and the possible
monodromies. We discussed examples of Zp orbifolds with N “ 6, 4 and 2 which have
modular invariant partition functions but where for p “ 4, 6 the integrality constraints are
not satisfied. Another direction is to investigate the properties of the string orbifolds with
completely broken supersymmetry. We have shown that they can be made free of tachyons,
but it would be interesting to see if these models are perturbatively stable.

In the massless sector, we found some interesting restrictions on the number of vector
multiplets arising in the class of orbifolds we consider. For instance, for orbifolds with sixteen
supersymmetries (N “ 4, D “ 5) we find that only an odd number of vector multiplets
arises, whereas generic N “ 4, D “ 5 supergravities allow any number of vector multiplets.
We are not aware of any anomaly conditions that could explain this. Moreover, the lift to
six dimensions yields back the anomaly free N “ 8 theory. It would be interesting to see if
these observations can be promoted to a concrete conjecture on the full string landscape
with sixteen supersymmetries.

We have limited ourselves to perturbative aspects of string theories with T-duality
twists. Ongoing work will deal with the BPS spectrum of D-brane states in these T-folds.
A particularly interesting case is to understand the fate of the D1-D5 brane system in the
various orbifold theories and its applications to black holes and dual CFT. This was our
original motivation laid out in [14] and will be studied further in [27].
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A Group theory

Here we collect some (known) group theoretical information and some conventions that are
relevant for the main text.
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A.1 Two frames for SO(d,d)

Canonically, groups of the form SOpd, dq consist of 2d-dimensional matrices A that satisfy
the relation

AηAT “ η , (A.1)

where η is the indefinite metric

η “

˜

1 0
0 ´1

¸

. (A.2)

Here and everywhere else in this subsection we adopt the notation that 1 and 0 denote
d-dimensional blocks that make up a 2d-dimensional matrix.

There is a different way of constructing SOpd, dq, namely as the group of matrices
Ã satisfying

Ã τ ÃT “ τ , (A.3)

where

τ “

˜

0 1

1 0

¸

. (A.4)

It is straightforward to see that these two ways of constructing SOpd, dq are equivalent, or,
one might say, that the groups consisting of the matrices A and Ã are isomorphic. For
example, the map

A Ñ Ã “ X AX´1 , (A.5)

where

X “
1
?

2

˜

1 1

1 ´1

¸

, (A.6)

takes matrices satisfying (A.1) to matrices satisfying (A.3). It can be checked that this
map is a proper isomorphism between what we call “SOpd, dq in η-frame” and “SOpd, dq in
τ -frame”.

We encounter both η and τ frame in this work, and we will refer to them by these names.

A.2 The isomorphism sop4q – sup2q ‘ sup2q

We first discuss the isomorphism between compact Lie algebras before moving on to the
non-compact version. The algebra sop4q is spanned by six 4d anti-symmetric matrices. We
denote the generators of this algebra by Mij where the i, j denote which entries in the
matrix are non-zero. We have

M12 “

¨

˚

˚

˚

˝

0 ´1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‚

, M13 “

¨

˚

˚

˚

˝

0 0 ´1 0
0 0 0 0
1 0 0 0
0 0 0 0

˛

‹

‹

‹

‚

, . . . (A.7)

Similarly we construct M14,M23,M24,M34. We can compactly write the commutators
between these generators as

rMij ,Mkls “ δikMjl ´ δilMjk ´ δjkMil ` δjlMik , (A.8)

where it is understood that Mii “ 0 and Mij “ ´Mji.
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The algebra sup2q is spanned by three 2d anti-Hermitian traceless matrices. We choose
the generators

N1 “
1
2

˜

0 ´1
1 0

¸

, N2 “
i

2

˜

0 1
1 0

¸

, N3 “
i

2

˜

1 0
0 ´1

¸

, (A.9)

for this algebra. This yields the commutator

rNI , NJ s “ ´ εIJK NK , (A.10)

where we choose εIJK such that ε123 “ 1.
We have now established sufficient notation to write down the isomorphism sop4q –

sup2q ‘ sup2q. We choose this to be the map

M12 Ñ
`

N1, N1
˘

M13 Ñ
`

N3, N3
˘

M14 Ñ
`

N2, ´N2
˘

M23 Ñ
`

N2, N2
˘

M24 Ñ
`

´N3, N3
˘

M34 Ñ
`

N1, ´N1
˘

,

(A.11)

which can readily be checked to preserve the commutator, making it a proper isomorphism.

A.3 The isomorphism sop2, 2q – slp2q ‘ slp2q

Here we repeat the analysis of the previous section for the maximally non-compact version
of the same isomorphism. On the sop2, 2q side, this means that we take four of the six
generators to be symmetric rather than anti-symmetric. We choose the following generators
to span the algebra:32

M̃12 “

¨

˚

˚

˚

˝

0 ´1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‚

, M̃13 “

¨

˚

˚

˚

˝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

˛

‹

‹

‹

‚

, M̃14 “

¨

˚

˚

˚

˝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

˛

‹

‹

‹

‚

,

M̃23 “

¨

˚

˚

˚

˝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

˛

‹

‹

‹

‚

, M̃24 “

¨

˚

˚

˚

˝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

˛

‹

‹

‹

‚

, M̃34 “

¨

˚

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 0 ´1
0 0 1 0

˛

‹

‹

‹

‚

.

(A.12)

The algebra slp2q is spanned by traceless real matrices. The generators that we choose are
equal to the ones we chose for the sup2q algebra (A.9), but without the factors of i in front.
We define our three generators as

Ñ1 “
1
2

˜

0 ´1
1 0

¸

, Ñ2 “
1
2

˜

0 1
1 0

¸

, Ñ3 “
1
2

˜

1 0
0 ´1

¸

. (A.13)

32Note that these generators span the algebra sop2, 2q in η-frame, using the language from appendix A.1.
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These algebras satisfy similar commutation relations as their compact counterparts, (A.8)
and (A.10), with some signs changed. In fact the signs are changed in such a way that the
isomorphism sop2, 2q – slp2q‘ slp2q can be written down in the exact same way as in (A.11).
We simply add the tildes to indicate that we consider the maximally non-compact generators:

M̃12 Ñ
`

Ñ1, Ñ1
˘

M̃13 Ñ
`

Ñ3, Ñ3
˘

M̃14 Ñ
`

Ñ2, ´Ñ2
˘

M̃23 Ñ
`

Ñ2, Ñ2
˘

M̃24 Ñ
`

´Ñ3, Ñ3
˘

M̃34 Ñ
`

Ñ1, ´Ñ1
˘

.

(A.14)

Again it is straightforward to check that this map preserves the commutator.

A.4 Embedding rotations in Spin(4,4)

One of the main motivations for adding in the previous sub-appendices was to be able to
properly embed rotations in various subgroups of Spinp4, 4q into an 8d matrix. Let us first
consider how rotations map through the two isomorphisms that we just discussed. We start
with rotations in

SOp2q ˆ SOp2q Ă SUp2q ˆ SUp2q – Spinp4q . (A.15)

If we take a rotation over an angle m1 in the first SOp2q and a rotation over an angle m3 in
the second SOp2q, we can use (the inverse of) the isomorphism (A.11) to map this to an
SOp4q Ă Spinp4q matrix:
˜˜

cosm1 ´sinm1
sinm1 cosm1

¸

,

˜

cosm3 ´sinm3
sinm3 cosm3

¸¸

“
`

e2m1N1 ,e2m3N1
˘

isomorphism
ÝÑ epm1`m3qM12`pm1´m3qM34 “

¨

˚

˚

˚

˝

cospm1`m3q ´sinpm1`m3q 0 0
sinpm1`m3q cospm1`m3q 0 0

0 0 cospm1´m3q ´sinpm1´m3q

0 0 sinpm1´m3q cospm1´m3q

˛

‹

‹

‹

‚

.

(A.16)

We can repeat this for the maximally non-compact isomorphism, mapping rotations in
the subgroup

SOp2q ˆ SOp2q Ă SLp2q ˆ SLp2q – Spinp2, 2q , (A.17)

to an SOp2, 2q Ă Spinp2, 2q matrix. We find
˜˜

cosα1 ´ sinα1
sinα1 cosα1

¸

,

˜

cosα3 ´ sinα3
sinα3 cosα3

¸¸

“

´

e2α1Ñ1 , e2α3Ñ1
¯

isomorphism
ÝÑ epα1`α3qM̃12`pα1´α3qM̃34 “

¨

˚

˚

˚

˝

cospα1 ` α3q ´ sinpα1 ` α3q 0 0
sinpα1 ` α3q cospα1 ` α3q 0 0

0 0 cospα1 ´ α3q ´ sinpα1 ´ α3q

0 0 sinpα1 ´ α3q cospα1 ´ α3q

˛

‹

‹

‹

‚

.

(A.18)
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The almost identical structure that we find through the compact and maximally non-
compact isomorphisms should not be surprising, as the generators that appear are equal,
e.g. M12 “ M̃12 and N1 “ Ñ1. It is the other generators (the non-compact ones) that differ
between these algebras.

Now we are ready to embed the four rotation parameters that are relevant in the main
text (see section 2) in an SOp4, 4q Ă Spinp4, 4q matrix.

We consider both the parameters m1, . . . ,m4 that rotate in the subgroup

SOp2q4 Ă SUp2q4 – Spinp4q2 , (A.19)

and the parameters α1, . . . , α4 that rotate in the subgroup

SOp2q4 Ă SLp2q4 – Spinp2, 2q2 . (A.20)

Both are essentially a repetition of the embeddings shown in (A.16) and (A.18). The SO(4)
matrices can be embedded into SO(4,4) in a block-diagonal way

¨

˚

˚

˚

˝

Rpm1 `m3q 0 0 0
0 Rpm1 ´m3q 0 0
0 0 Rpm2 `m4q 0
0 0 0 Rpm2 ´m4q

˛

‹

‹

‹

‚

P SOp4, 4q , (A.21)

while for the SO(2,2) matrices, the embeddding into SO(4,4) is given by
¨

˚

˚

˚

˝

Rpα1 ` α3q 0 0 0
0 Rpα2 ` α4q 0 0
0 0 Rpα1 ´ α3q 0
0 0 0 Rpα2 ´ α4q

˛

‹

‹

‹

‚

P SOp4, 4q . (A.22)

Here we use the shorthand notation Rpxq “
` cosx ´ sinx

sinx cosx
˘

for a two by two rotation matrix.
From the way that the two sets of rotation parameters are embedded in SOp4, 4q we can
deduce the relation between them. We find

m1 “
1
2pα1 ` α2 ` α3 ` α4q , m2 “

1
2pα1 ` α2 ´ α3 ´ α4q ,

m3 “
1
2pα1 ´ α2 ` α3 ´ α4q , m4 “

1
2pα1 ´ α2 ´ α3 ` α4q .

(A.23)

We use these relations in section 2 to determine the allowed values for the m’s in terms of
the allowed values for the α’s.

Note that all SOp2, 2q and SOp4, 4q matrices in this subsection are written down in
η-frame. In order to obtain the relevant matrices in τ -frame (which is the frame in which the
monodromies are required to be integer valued), one would have to perform a conjugation
à la (A.5).

B Modular functions and transformations

The Dedekind η-function is defined as

ηpτq ” q
1
24

8
ź

n“1
p1´ qnq , q “ e2πiτ . (B.1)
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The Jacobi ϑ-function with characteristics α, β is given by

ϑrαβ spτq “
ÿ

nPZ
q

1
2 pn`αq

2
e2πipn`αqβ . (B.2)

For ´1
2 ď α, β ď 1

2 there is also a product representation of the ϑ-function, which reads

ϑrαβ spτq “ ηpτqe2πiαβq
1
2α

2´ 1
24

8
ź

n“1
p1` qn`α´

1
2 e2πiβqp1` qn´α´

1
2 e´2πiβq . (B.3)

Particular ϑ-functions that appear often are

ϑr00 spτq ” ϑ3pτq , ϑr
0
1
2
spτq ” ϑ4pτq , ϑr

1
2
0 spτq ” ϑ2pτq , ϑr

1
2
1
2
spτq ” ϑ1pτq . (B.4)

In addition, two useful ϑ-function identities are33

ϑr´α
´β spτq “ ϑrαβ spτq , ϑrα`mβ`n spτq “ e2πinα ϑrαβ spτq , m, n P Z . (B.5)

Finally, the Poisson resummation formula is given by
ÿ

nPZ
e´πan

2`πbn “
1
?
a

ÿ

nPZ
e´

π
a pn`i

b
2q

2
. (B.6)

The modular transformations are defined as: T ” τ Ñ τ ` 1 and S ” τ Ñ ´1{τ . The
Dedekind η-function transforms as follows

ηpτ ` 1q “ eπi{12 ηpτq ,

ηp´1{τq “
?
´iτ ηpτq .

(B.7)

Note that under both T and S transformations the combination ?τ2 ηpτq η̄pτ̄q is invariant.
Under modular transformations, the Jacobi θ-function transforms as follows

ϑrαβ spτ ` 1q “ e´πipα
2´αq ϑr α

α`β´ 1
2
spτq ,

ϑrαβ sp´1{τq “
?
´iτ e2πiαβ ϑr´βα spτq .

(B.8)

The theta series of the SO(2n) root lattice Dn is

ΘDnpτq “
1
2 pϑ3pτq

n ` ϑ4pτq
nq . (B.9)

For the SU(3) root lattice A2 and its dual A˚2 we have

ΘA2pτq “ ϑ3p2τqϑ3p6τq ` ϑ2p2τqϑ2p6τq ,
ΘA˚2

pτq “ ϑ3p
2τ
3 qϑ3p2τq ` ϑ2p

2τ
3 qϑ2p2τq .

(B.10)

Finally, for a d-dimensional lattice Λ and its dual Λ˚ the following expression holds

ΘΛp´1{τq “ p´iτq
d
2

VolpΛqΘΛ˚pτq . (B.11)

33Various ϑ-function identities can be found in [94, 95].
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C Twist vectors and lattices

Here we list in table 10 and table 11 twist vectors u (up to a sign and an exchange u3 Ø u4)
breaking all and half of the right-moving supersymmetries respectively. In addition, we
compute the number of chiral fixed points for each twist vector, χ “

ś

i 2 sinpπuiq and we
list in table 11 only those u’s giving integer χ. For symmetric orbifolds (u “ ũ) we also
write down examples of root lattices generated by root systems of simple Lie algebras, which
represent the appropriate torus lattices admitting the corresponding Zp symmetries (for
symmetries of root lattices see e.g. [96, 97] and references thereof). Furthermore, we evaluate
the volume, Vol, of these lattices. The root lattices An, Bn and Dn are associated to the
groups SUpn` 1q, SOp2n` 1q and SOp2nq respectively. Note that the lattice generated by
the A2 system is the same as the G2 root lattice (hexagonal). Also, A1 ‘ A1 – D2 and
B2 generate the same (square) lattice. Finally, we use a shorthand notation of the form
pA1q

2 ” A1 ‘A1.

Zp u χ Lattice Vol

Z2 p0, 0, 0, 1q -

Z3 p0, 0, 0, 2
3q

?
3 A2

?
3

Z4
p0, 0, 0, 1

2q 2 pA1q
2 2

p0, 0, 1
4 ,

3
4q 2 pA1q

4 4

Z5 p0, 0, 1
5 ,

3
5q

?
5 A4

?
5

Z6

p0, 0, 0, 1
3q

?
3 A2

?
3

p0, 0, 1
3 ,

2
3q 3 pA2q

2 3

p0, 0, 1
2 ,

1
6q 2 pA1q

2 ‘ A2 2
?

3

p0, 0, 1
6 ,

5
6q 1 pA2q

2 3

Z8 p0, 0, 0, 1
4q

?
2 pA1q

2 2

Zp u χ Lattice Vol

Z8
p0, 0, 1

2 ,
1
4q 2

?
2 pA1q

4 4

p0, 0, 1
8 ,

3
8q

?
2 B4, D4 2

Z10
p0, 0, 1

5 ,
2
5q

?
5 A4

?
5

p0, 0, 1
10 ,

3
10q 1 A4

?
5

Z12

p0, 0, 0, 1
6q 1 A2

?
3

p0, 0, 1
2 ,

1
3q 2

?
3 pA1q

2 ‘A2 2
?

3

p0, 0, 1
3 ,

1
6q

?
3 pA2q

2 3

p0, 0, 1
12 ,

5
12q 1 F4, D4

1
2 , 2

Z24
p0, 0, 1

4 ,
1
3q

?
6 pA1q

2 ‘A2 2
?

3

p0, 0, 1
4 ,

1
6q

?
2 pA1q

2 ‘A2 2
?

3

Table 10. Supersymmetry breaking twist vectors.

Zp u χ Lattice Vol

Z2 p0, 0, 1
2 ,

1
2q 4 D4, pA1q

4 2, 4

Z3 p0, 0, 1
3 ,

1
3q 3 pA2q

2 3

Z4 p0, 0, 1
4 ,

1
4q 2 pA1q

4 4

Z6 p0, 0, 1
6 ,

1
6q 1 pA2q

2 3

Table 11. 1
2 -Supersymmetry preserving twist vectors.
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D Scherk-Schwarz spectrum

Here we provide the table of masses of the various fields obtained by reduction of type
IIB supergravity on T 4 and followed by a Scherk-Schwarz twist on S1. The table is taken
from [14]. The mass of each field is |µpmiq|{2πR. The notation mi,j indicates that both
indices i and j occur. There is no correlation between the ˘ signs and the ij indices, so that
e.g. (˘m1 ˘m2) denotes 4 different combinations of mass parameters, and (˘m1,2 ˘m3,4)
denotes 16 different combinations. For example, the 5 tensors in the p5,1q representation
consist of two with mass |m1 ` m2|{2πR, two with mass |m1 ´ m2|{2πR and one with
mass 0.

Fields Representation |µpmiq|

Scalars p5,5q | ˘m1 ˘m2 ˘m3 ˘m4|

| ˘m1 ˘m2|

| ˘m3 ˘m4|

0

Vectors p4,4q | ˘m1,2 ˘m3,4|

Tensors p5,1q | ˘m1 ˘m2|, 0

p1,5q | ˘m3 ˘m4|, 0

Gravitini p4,1q | ˘m1,2|

p1,4q | ˘m3,4|

Dilatini p5,4q | ˘m1 ˘m2 ˘m3,4|

| ˘m3,4|

p4,5q | ˘m1,2 ˘m3 ˘m4|

| ˘m1,2|

Table 12. Scherk-Schwarz spectrum.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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