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ABSTRACT
Background:  Conventional growth charts offer limited guidance to track individual growth.
Aim:  To explore new approaches to improve the evaluation and prediction of individual growth 
trajectories.
Subjects and methods: We generalise the conditional SDS gain to multiple historical measurements, 
using the Cole correlation model to find correlations at exact ages, the sweep operator to find 
regression weights and a specified longitudinal reference. We explain the various steps of the 
methodology and validate and demonstrate the method using empirical data from the SMOCC 
study with 1985 children measured during ten visits at ages 0–2 years.
Results:  The method performs according to statistical theory. We apply the method to estimate 
the referral rates for a given screening policy. We visualise the child’s trajectory as an adaptive 
growth chart featuring two new graphical elements: amplitude (for evaluation) and flag (for 
prediction). The relevant calculations take about 1 millisecond per child.
Conclusion:  Longitudinal references capture the dynamic nature of child growth. The adaptive 
growth chart for individual monitoring works with exact ages, corrects for regression to the mean, 
has a known distribution at any pair of ages and is fast. We recommend the method for evaluating 
and predicting individual child growth.

Introduction

Evaluation and prediction of child growth are central activ-
ities in child health care. Conventional growth charts display 
the variation in growth in the population by age. Such charts 
offer limited guidance to address questions of parents and 
health professionals. Typical questions that parents have are: 
Is my child’s growth normal? Why is my child not following 
the centile line? What are the options to counter my child’s 
inhibited growth? Where will the next measurement be? 
Health professionals have questions like: Given what I know 
of the child, how will it develop in the future? Did the child 
grow normally since the last visit? What can I tell the parent 
about the child’s realised and future growth? While this article 
does not address all these questions directly, it offers tools 
that aim to advance the evaluation and prediction of indi-
vidual growth curves.

Most published growth charts are distance references that 
portray the effects of age and sex on growth. Distance ref-
erences have two primary uses. First, we can use them to 
evaluate the attained child’s growth at a particular age by 
comparing the child’s measurement to the population cen-
tiles in the chart. Second, we can apply distance references 
to remove the effects of age and sex on growth by trans-
forming each measurement to a standard deviation score 
(SDS) or Z -score. As a result, effects on growth unrelated 

to age or sex will be easier to detect. Distance-based charts 
provide limited guidance on individual growth. Differences 
in tempo between children may produce distance references 
that are both biased and inefficient for studying growth 
during puberty (Tanner 1990, p. 187). At the individual level, 
it is better to look for unexpected changes in growth (e.g. 
failure-to-thrive, slow persistent deceleration, developmental 
delay) to identify potential pathology. This paper, therefore, 
concentrates on measures of change.

A simple measure of change is velocity, defined as 
V Y Y T T� � �( ) / ( )2 1 2 1 , where Y1  and Y2  are the attained size 
at ages T1  and T2 . Low velocity appears on the distance 
chart as a downwards centile crossing. The level and variance 
of V  depend on age and sex, so proper interpretation of 
V  requires age- and sex-conditional references. Replacing 
Y  by Z  standardises the velocity scale to SDS per year, but 
its distribution depends on T1  and T2 . Whereas a decelerating 
curve with a slope of −1 SDS/year indicates a dramatic height 
loss during childhood, the same value in infancy could fall 
within the normal range. Cole (1995) discussed a standardised 
version of velocity Z Z Z

u = −( ) /
2 1

σ , where � � �2 2r  and r  
is the correlation between Z1  and Z

2
. Z u  has a standard 

normal distribution for all pairs of T T1 2, .� �  However, the prob-
lem with Z u  is that it fails to account for regression to the 
mean. Generally, a child with a Z1  value below zero has a 
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higher expected growth rate than a child with a Z1  value 
above zero. The strength of the effect depends on r .

Healy (1974) proposed a regression approach that condi-
tions the reference on one or more known child factors. Prior 
measurements made at an earlier age are predictive in lon-
gitudinal settings. Early examples of references that condition 
previous data include Cameron (1980) and Berkey et  al. 
(1983). Cole (1995) developed the conditional gain score 
Z Z rZg � �( ) /2 1 �  with σ = −1 2

r , which predicts Z2  from a 
prior measurement Z1 . Conditioning may also involve mul-
tiple factors. For example, Thompson and Fatti (1997) pro-
posed weight charts that adjusted the references to individual 
characteristics like height, age, and parity. The idea of con-
ditioning can improve screening and monitoring tools with 
elevated sensitivity and specificity for detecting growth-related 
diseases.

Table 1 lists velocity and conditional indices for two mea-
surements. The conditional SDS gain is the preferred measure 
in Table 1. It is the only measure that standardises for age 
and sex and that corrects for regression to the mean, a fun-
damental statistical phenomenon. Regression to the mean 
stems from the natural variation in weight gain from child 
to child. This variation is a combination of measurement error 
and actual biological differences in weight gain, so both 
components contribute to regression to the mean (Wright 
et  al. 1994; Cole 1995). Moreover, especially for small values 
of r , its variance 1 2− r  is low, so it is less sensitive to mea-
surement error in Z1  and Z2  than alternatives. For these 
reasons, this paper concentrates on conditional SDS gain Z g  
as the measure of change.

Despite its technological superiority, the conditional SDS 
gain has yet to be widely adopted. One reason for the slow 
update is that calculating by hand is difficult. In addition, 
there are no accepted standards or references for the time-to-
time correlation matrix, i.e. the correlation matrix of the 
measurement taken at different ages. Another complication 
is that Z g  is defined for two ages. In practice, we need to 
assess growth curves that consist of more than two mea-
surements. In that case, there are multiple ways to select 
two ages. Calculating Z g  for many age pairs leads to issues 
related to multiple testing. This paper, therefore, concentrates 
on extending Z g  to work with more than two ages.

Wright et  al. (1994) introduced the term thrive line. Until 
now, thrive lines have enjoyed limited popularity. For exam-
ple, the overview by Scherdel et  al. (2016) shows that many 
routine monitoring systems rely on decision rules with arbi-
trary cut points and unconditional SDS gain scores. Visual 

thrive line overlays exist that help interpret the growth chart, 
but these apply only to fixed age intervals. Technically, the 
thrive line is equivalent to a centile of the distribution of 
Z

g. This paper adopts the concept of the thrive line as a 
natural and elegant criterion for finding children experienc-
ing failure to thrive.

This paper aims to develop, validate and demonstrate 
tools to evaluate and predict individual growth. The tools 
should work on growth curves with measurements taken at 
arbitrary ages, allow for a flexible choice of growth reference, 
take the dynamic nature of growth into account, be fast, 
intuitive, and easy to communicate, and have known statis-
tical properties. Evaluation should inform us whether the 
observed growth is normal and assist in decision-making in 
cases where the child’s growth is unusual. Prediction should 
inform us about the likely growth path in the future and 
portray the inherent uncertainty associated with this 
prediction.

Section 2 (Materials) introduces the data used. Section 3 
(Methodology) presents a definition of a longitudinal refer-
ence, extends Z g  to include additional measurements, 
describes a fast algorithm to fit the relevant regression mod-
els, and explains how the method can work with arbitrary 
ages. Section 4 (Statistical Analysis) describes the quantitative 
techniques used to estimate the model parameters and val-
idation statistics. Section 5 (Results) reports the results of 
the quantitative analysis. Section 6 (Applications) describes 
two applications: estimation of the overall referral rate and 
visualisation by the adaptive growth chart. Section 7 
(Discussion) highlights the pros and cons and identifies areas 
for further research.

Subjects and methods

Materials

Data
The SMOCC study (Herngreen et  al. 1994) collected weight 
measurements of a representative sample of 2151 Dutch 
children aged 0–2 between 1989 and 1990. Trained observers 
monitored and measured children at ten visits: birth and at 
months 1, 2, 3, 6, 9, 12, 15, 18, and 24. We selected the 
subset of 1895 children with a gestational age ��  37 weeks 
and a minimum of four visits. Raw weights and heights were 
transformed into age- and sex-conditional Z -scores using 
references from the Fourth Dutch Growth Study (Fredriks 
et  al. 2000).

Table 1. overview of distance, velocity and conditional gain measures for longitudinal data.

Definition name Advantages Disadvantage

Y1 size at T1
simple Age- and sex-dependent

Z1 size at T1  in sDs standardised for age and sex no information on growth

V Y Y T T� � �( ) / ( )2 1 2 1
Velocity Easy to calculate Age- and sex-dependent

W Z Z T� � �( ) / ( )2 1 2 1
Velocity in sDs standardised for time interval Age- and sex-dependent

Z = Z2 - Z1 / 2 - 2ru � � unconditional sDs gain standardised for age and sex no regression to the mean

Z = Z - rZ / 1- rg

2 1

2� � Conditional sDs gain Handles regression to the mean

standardised for age and sex

https://doi.org/10.1080/03014460.2023.2190619
https://doi.org/10.1080/03014460.2023.2190619
https://doi.org/10.1080/03014460.2023.2190619
https://doi.org/10.1080/03014460.2023.2190619
https://doi.org/10.1080/03014460.2023.2190619
https://doi.org/10.1080/03014460.2023.2190619
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Descriptive statistics
Table 2 contains the time-to-time correlations ×  1000 cal-
culated from the Z -scores in the SMOCC study subsample 
of term births. The number of measurements used to cal-
culate Table 2 was 16,266 (height) and 17,618 (weight). We 
grouped the measurement ages into ten age bins and cal-
culated the pairwise Pearson correlation matrix from the 
wide data.

Methodology

Longitudinal reference
A longitudinal reference L  describes the variation in growth 
between and within children. It is convenient to compose a 
longitudinal reference from two independent parts, a distance 
reference, and a time reference.

The distance reference D  describes how growth depends 
on sex and age (or on height, in the case of weight-for-
height). Distance references derive from cross-sectional or 
longitudinal data or mixes of these. A significant application 
of D  is transforming measurements Y  into Z -scores, which 
removes the effects of age and sex. Assuming that D  is 
appro priate for the sample of interest, then Z  follows a 
normal distribution with a zero mean and a unit variance at 
every age.

The time reference R  describes how Z -scores are related 
over time by the time-to-time correlation matrix R  of Z
-scores. Time references can be calculated only from longi-
tudinal studies. The idea of modelling distance and time 
references in successive stages is not novel. Pan and Goldstein 
(1997) emphasise that modelling on the scale of Z  is sta-
tistically convenient since it allows us to characterise the 
multivariate data structure fully.

We use the notation L D R�� �,  to refer to a longitudinal 
reference L . Note that we do not require that D  and R  
stem from the same study. In this paper, we take D  as the 
height and weight references from the Fourth Dutch Growth 
Study (Fredriks et  al. 2000) and define R  as the values in 
Table 2. The combination of D  and R  completely defines 
this study’s longitudinal reference L .

Conditional SDS gain for multiple time points
Let Yt  stand for a measurement made at child age t  (in 
months). Once we have reference L  in place, the objective 

is to model P Y Y Lt t t( | , )�� , i.e. the distribution of outcome Y  
at time points t  given any measurements observed at earlier 
time points t t� � . Subscript t  represents a vector of time 
points, possibly in the past, present or future. P Y Y Lt t t( | , )��  
describes the predictive distribution of Yt  if t  lies in the 
future. For present and past t , the observed value Yt  can 
be checked against the predicted distribution. We first con-
sider this situation.

Two-time points.   Suppose that we have height 
measurements Y2  and Y6  taken at ages of t� � 2  (past) 
and t = 6  (present) months, respectively. In a screening 
context, we wish to evaluate whether the realised height 
gain of the child during the interval 2 6,� �  is deficient. 
We check whether the probability of observing a value 
Y6  given Y2 , P Y Y L( | , )6 2 , exceeds a pre-set cut point. Let 
the “hat notation” Y6 indicate the predicted child height 
at month 6 given the child’s observed height at month 
2 and reference L . We are interested in answering two 
questions: What is the expected score Y6 given a previous 
Y2  and L ? How far is realised Y6  from the expected Y6? 
The recipe for calculating the conditional SDS gain 
Z g

6   is:

1. Transform measurements Y Y2 6,� �  into Z Z2 6,� �
2. Interpolate r  from R  at ages t� � 2  and t = 6
3. Calculate conditional SDS gain Z g

6  as

 Z
Z rZ

rg
6

6 2 21�
�

� �� �
�

, where �  

4. Back transform Z rZ

6 2=  into Y6

5. Back transform [ , ]Z6 1 2�� ��  into centiles -2, -1, +1 
and +2 SD of the prediction interval for Y6

6. Assess the location of realised Y6  within the prediction 
interval

For example, suppose that Y2 58= , Y6 65=  and r = 0 745. , 
where Y ’s unit is CM. Figure 1 plots the observed curve (solid, 
blue) and the predicted centiles at −2 SD, −1 SD, 0 SD, +1 SD, 
+2 SD of the prediction interval (in red) at t� � 2 . The left-hand 
plot depicts the observed and predicted curves in the mea-
surement scale, whereas the right-hand side figure plots the 
same data in the SDS scale. The conditional SDS gain is 

Table 2. Time-to-time correlations times 1000 for Dutch children measured at birth, 1, 2, 3, 6, 9, 12, 15, 18 and 24 months. 
The upper triangle contains height correlations and the lower triangle represents weight correlations at different ages. 
source data: Herngreen et  al. (1994).

month 0 1 2 3 6 9 12 15 18 24

0 – 702 663 580 524 462 440 425 390 374
1 790 – 856 791 691 614 598 585 563 518
2 655 902 – 844 745 671 646 630 587 560
3 532 776 909 – 803 741 715 687 651 627
6 412 587 696 817 – 862 829 784 747 702
9 384 508 589 683 884 – 890 843 814 759
12 390 486 544 615 793 926 – 895 863 818
15 395 480 526 579 727 867 938 – 884 843
18 397 467 503 556 681 808 880 933 – 866
24 392 462 499 535 636 751 828 881 918 –
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Z g
6 1 57� � . , just above the thrive line at the fifth centile (solid, 

black), at Z � �1 645. .

Three time points.  Growth faltering between months 2 
and 6 is substantial in the example, but the value of −1.57 
is slightly above the cut-off. Could our evaluation change 
if we use more than one historic measurement? To gain 
further insight, let us model P Y Y Y L( | , , )6 1 2  and address the 
following questions: What is the expected score Y6  given 
Y1 , Y2  and L ? How far is realised Y6  from the  
expected Y6 ? Suppose we have an additional measurement 
at month 1. The recipe for calculating the conditional SDS 
gain from time points Z g

6  is:

1. Transform measurements Y Y Y1 2 6, ,� �  into Z Z Z1 2 6, ,� �
2. Define time model Z Z Z6 1 1 2 2� � �� �   with  �N( , )0 2�
3. Calculate regression weights �1 16 26 12 12

21� � �( ) / ( )r r r r  
and �2 26 16 12 12

21� � �( ) / ( )r r r r

4. Calculate multiple correlation
 r r r r r r r2

16
2

26
2

12 16 26 12
22 1� � � �( ) / ( )

5. Calculate conditional SDS gain Z g
6

 Z
Z Z Z

rg
6

6 1 1 2 2 21�
� �� �

� �� �� �
�

�, where  

6. Then follow the previous recipe

Using r16 0 691= . , r26 0 745= .  and r12 0 856= .  from Table 2, 
we obtain �1 0 198� . , �2 0 575� .  and r 2 0 566= . . Suppose 
Y1 56=  CM, then Z1 1 065= .  so Z g

6 1 76� � . .
Figure 2 communicates that the curve shows a pro-

longed growth failure starting at month 1. The conditional 
SDS gain of −1.76 indicates a more severe growth decel-
eration than before. As a result of adding the additional 
measurement, the realised gain is below the fifth centile 
thrive line.

0 1 2 3 4 5 6 7
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55

60
65

70

Age (months)
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th
 (c

m
)

0 1 2 3 4 5 6 7

−2
−1

0
1
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Age (months)

Le
ng

th
 (S

D
S)

Conditional SDS gain: −1.57

Figure 1. observed length curve (blue) plotted on top of the personalised reference (solid red: predicted growth; dotted red: centiles -2, -1, +1, +2 sD of the 
prediction interval), in the measurement scale (left) and the sDs scale (right). The conditional sDs gain at month 6 is equal to -1.57, just above thrive line at 
-1.64 (solid black). The grey lines in the background correspond to the height references for girls from the fourth Dutch growth study.
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Conditional SDS gain: −1.76

Figure 2. observed length (blue) on the personalised reference (solid red: predicted growth; dotted red: centiles -2, -1, +1, +2 sD of the prediction interval) 
with three time points. The conditional sDs gain of -1.76 indicates a more severe drop-off (4 out of 100) than in figure 1, thus providing an early warning 
of possible growth failure.
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Figure 3 shows the same analysis, with one difference: 
Y1 53=  instead of Y1 56= . Now Z1 0 432� � . , which changes 
Z g

6 1 31� � . , so for these data 10 out of 100 have a lower Y6  
value. Compared to Figure 2, deceleration between months 2 
and 6 now appears less alarming. The jagged nature of the 
trajectory in Figure 3 suggests that Y2  may be too high, per-
haps due to measurement error. The difference between Figures 
2 and 3 illustrates that adding one extra observation affects 
the interpretation of the growth curve in an intuitive way.

Estimation with more than three time points
The calculation of β  and σ 2  in recipe 2 becomes cumbersome 
for more than three-time points. The sweep operator (Beaton 
1964; Goodnight 1979) is a fast and easy way to obtain these 
quantities for arbitrary time points. The operator calculates β  
and σ 2  for any linear regression by applying simple pivots to 
the correlation matrix. Suppose we have the correlation matrix 
for time points 1, 2, and 6 months, and we wish to obtain β1  
and β2  for predicting the outcome at month 6. The procedure 

below uses the sweep.operator() function from the R pack-
age fastmatrix (Osorio and Ogueda 2022). We start with the 
relevant 3 3×  correlation matrix:

 

All variables are outcomes, but we may sweep out (“turn 
into in predictor variable”) columns 1 and 2 as follows:

We find the values of the β  and σ 2  parameters in the third 
column of the calculated result matrix s. The two regression 
weights β1  and β2  are 0 198 0 575. , .� � , and σ 2  equals 0 434. .

0 1 2 3 4 5 6 7

50
55

60
65

70

Age (months)

Le
ng

th
 (c

m
)

0 1 2 3 4 5 6 7

−2
−1

0
1

2

Age (months)

Le
ng

th
 (S

D
S)

Conditional SDS gain: −1.31

Figure 3. same as figure 2, but now with an altered starting observation. observed length (blue) on the personalised reference (solid red: predicted growth; 
dotted red: centiles -2, -1, +1, +2 sD of the prediction interval) with three time points. The conditional sDs gain of -1.31 indicates that drop-off is less severe 
than in figure 1. The pattern suggests that the drop-off between months 2 and 6 may partly result from measurement error at month 2.
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Conditional SDS gain: −1.32

Figure 4. same as figure 3, but now with an additional observation at birth. The conditional sDs gain of -1.32 is similar in size as in figure 3, suggesting 
that including birth length does not add new information.
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Application of the sweep operator to the time-to-time 
correlation table generalises the conditional SDS gain to any 
number of time points. For example, Figure 4 adds a birth 
length of 52  cm to the curve. Note that the conditional SDS 
gain of −1.32 is similar to the previous model, which included 
two historical points. Adding birth length here had only a 
minimal impact on the evaluation.

Arbitrary observation ages
Until now, the text presented examples where the measure-
ment ages coincide with tabulated time points in R . In real-
ity, the measurement ages and tabulated time points will 
differ. To make it useable, our model needs to work with 
arbitrary ages.

Correlation models express the correlation ρ( , )t t1 2  
between two Z-scores Z1  and Z2  at successive ages t1  and 
t2  as a function of those ages. The Cole correlation model 
(C o l e  1 9 9 5 )  d e s c r i b e s  t h e  Fi s h e r - t r a n s fo r m 
� � �� � �� �1

2 1 1log ( ) / ( )  of the correlation ρ  as a function of 
the sum ( )t t1 2+ , the difference ( )t t2 1− , the reciproke ( )t t2 1

1− −  
and includes two multiplicative terms. If V t t1 1 2 2� �log(( ) / ) , 
V t t2 2 1� �log( )  and V t t3 2 11� �/ ( )  the model

 
� � � � �

� � �

t t V V V

VV V
1 2 0 1 1 2 2 3 3

4 1 2 5 1
2 20

,

, ,

� � � � � �

� � � � � �  N
 

has six unknown parameters that need to be estimated from 
R . Once the model is fitted and applied to new t1  and t2

, the outcomes can be back-transformed into the correlation 
scale as � � �� � �(exp( ) ) / (exp( ) )2 1 2 1 .

Statistical analysis

The aims of the statistical analyses were 1) to estimate the 
parameters of the correlation model and 2) to validate the 
statistical properties of the proposed methodology.

The first task was to estimate the parameters of the correla-
tion model from the data in Table 2. The shortest interval in the 
table is one month, so the fitted model will need to extrapolate 
outside the data when t t2 1−  is shorter than one month. To 
stabilise the estimates for such intervals, we arbitrarily specified 
the correlation of any 3-day difference to be equal to 0.95.

The second task was to obtain insight into the statistical 
properties of the method in practice. We calculated the mean 
and the standard deviation of the empirical distribution of 
the conditional SDS gain P Z Z Lt t( | , )′  for two models, called 
LAST and ALL. Model LAST conditions on the most recent 
measurement, while model ALL conditions on all historic 
measurements since birth. We estimated the proportion of 
explained variance and percentage of observations below 
the thrive line at each visit.

Results

Correlation model estimates
Table 3 contains the parameter estimates of the Cole model 
fitted to the Fisher-transformed weight and height 

correlations in Table 2. The fit for weight is near perfect with 
a percentage of explained variance of 99.7 per cent. Height 
correlations (97.1 per cent) are more challenging to model, 
especially for correlations below 0.5. After back-transformation 
into the correlation scale, the standard deviation of the 
observed minus predicted correlations was equal to 0.012 
and 0.043, respectively, for weight and height.

Validation
Table 4 summarises the mean and standard deviations of 
the Z -scores for weight and height relative to the Dutch 
references for the SMOCC data. As expected, most aggregates 
are close to 0 (mean) and 1 (sd). The empirical distribution 
of the conditional SDS weight and height gains Z g  is close 
to the standard normal distribution. The SMOCC children are 
slightly heavier and taller than the references between 
months 2 and 6. Note that the weight gain at month 2 has 
a positive bias (0.416 and 0.453), which indicates that children 
grow faster than expected between months 1 and 2. Weight 
gain is slower between months 3 and 6. The empirical stan-
dard deviation of Z g  tends to be smaller than 1.0 around 
month 12. The proportion of explained variance for child 
weight from visit-to-visit is around 80 per cent. An exception 
is month 3 due to the relatively large time gap between 
month 3 and month 6. For height, predictive accuracy hovers 
around 73 per cent. Finally, the observed percentage of chil-
dren below the P5 thrive line is 4.1 (weight) and 4.5 per cent 
(height), close to the nominal percentage of 5 per cent. 
Differences are generally slight between models LAST 
and ALL.

Applications

We demonstrate two applications of the method. The first 
application studies the effect of multiple testing on the over-
all referral rate. The second application uses the conditional 
SDS gain to create an adaptive growth chart that adds two 
new graphical elements.

Table 3. linear regression of fisher transformed correlations between Z-scores 
as predicted by mean age and time gap (in months), fitted on the data in 
Table 2.

Estimate std. Error t value Pr(>|t|)

Child weight

 ββ0
1.539 0.014 107.172 0.000

 ββ1
0.329 0.008 39.384 0.000

 ββ2
−0.951 0.013 −72.454 0.000

 ββ3
−0.190 0.004 −50.485 0.000

 ββ4
0.143 0.004 40.345 0.000

 ββ5
0.001 0.003 0.188 0.852

Child height

 ββ0
1.329 0.036 36.443 0.000

 ββ1
0.250 0.021 11.799 0.000

 ββ2
−0.672 0.033 −20.185 0.000

 ββ3
−0.104 0.010 −10.927 0.000

 ββ4
0.105 0.009 11.697 0.000

 ββ5
−0.003 0.007 −0.428 0.670

note: Adj r 2  (weight) = 0.997, Adj r 2  (height) = 0.971, n = 45.
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Overall referral rate
Suppose we refer a child if its conditional gain SDS at some 
age is below a pre-specified centile. We wish to study the 
statistical properties of a growth monitoring scheme with k  
visits. What is the probability that we refer a child in any of 
those k  visits? Under successive independent assessments, 
we can calculate the theoretical answer as 1 - pbinom(0, 
k − 1, 0.05). For example, if k = 5 , we obtain a prob-
ability of 0.185. How accurate is the theoretical answer in 
practice for different k ?

We calculated the percentage of children with a condi-
tional SDS gain below the 5 per cent thrive line in one or 
more of 10 visits and compared the result to the cumulative 
binomial distribution. Table 5 specifies three base referral 
probabilities P�� �0 05 0 025 0 01. , . , .  and compares the theoret-
ical answer to the actual proportions in the SMOCC data. 

The theoretical proportion rapidly grows as the number of 
evaluations increases. For example, if we refer if the condi-
tional SDS gain is below −1.645 ( P = 0 05. ) , then the binomial 
predicts that a sequence of ten evaluations will refer 37.0 
per cent of all children at least once. Although the realised 
percentages are lower (28.2 and 30.5 per cent), these referrals 
are unreasonably large parts of the population. Using a 
stricter cut-off of −2.326 ( P = 0 01. ) reduces the rate to a more 
reasonable 8.6 per cent.

The binomial provides a reasonably accurate representa-
tion of the realised proportions, especially for small base 
probabilities. The distribution appears as a workable approx-
imation for calibrating referral proportions in a growth mon-
itoring scheme. Table 5 suggests that we may change the 
base referral probability, but there are also other alternatives. 
For example, we can tailor cut-off values to different actions 

Table 4. mean (mEAn) and standard deviations (sD) of Z-scores Z  and conditional sDs gains Z g , the proportion of variance explained r 2  and the percentage 
of children below the P5 for models lAsT (only last measurement) and All (all historic measurements), aggregated by visits (in months).

mEAn( Z g ) sD( Z g ) r 2 p < P5

month mEAn(Z) sD(Z) lAsT All lAsT All lAsT All lAsT All

Child weight
 0 0.028 1.237
 1 0.008 1.025 −0.043 −0.044 1.098 1.097 0.575 0.575 7.1 7.1
 2 0.153 0.997 0.416 0.453 1.058 1.080 0.802 0.808 2.8 2.4
 3 0.151 0.964 −0.010 −0.112 0.993 1.002 0.821 0.829 4.5 5.4
 6 0.032 0.913 −0.172 −0.188 0.938 0.944 0.719 0.730 4.6 5.1
 9 0.006 0.926 −0.023 0.013 0.941 0.942 0.808 0.812 2.9 2.5
 12 0.009 0.929 −0.027 −0.022 0.882 0.874 0.870 0.875 3.3 3.0
 15 0.025 0.940 0.054 0.050 0.927 0.929 0.889 0.891 3.8 3.7
 18 0.047 0.961 0.117 0.109 1.002 1.005 0.875 0.877 3.9 4.1
 24 0.093 0.974 0.119 0.110 1.020 1.047 0.842 0.841 3.2 3.4
Total 0.056 0.994 0.046 0.039 0.999 1.009 0.793 0.796 4.0 4.1
Child height
 0 −0.149 1.127
 1 0.005 1.018 0.252 0.252 1.167 1.167 0.466 0.466 5.5 5.5
 2 0.063 1.004 0.174 0.176 1.113 1.120 0.728 0.723 5.0 4.9
 3 0.153 0.962 0.159 0.165 1.083 1.055 0.727 0.740 4.6 4.5
 6 0.102 0.933 −0.051 −0.046 0.928 0.939 0.694 0.688 3.2 3.3
 9 0.060 0.953 −0.032 0.003 0.937 0.941 0.767 0.775 3.2 3.0
 12 0.058 0.966 0.009 0.063 0.951 0.932 0.804 0.818 3.7 4.2
 15 0.094 0.994 0.071 0.152 1.039 1.016 0.801 0.820 5.1 4.8
 18 0.077 0.998 0.013 0.022 1.102 1.079 0.782 0.801 6.5 5.9
 24 0.127 1.031 0.138 0.206 1.111 1.145 0.740 0.749 4.7 4.2
Total 0.062 1.001 0.068 0.112 1.046 1.051 0.731 0.726 4.5 4.5

note: n = 17,618 (weight), n = 16,266 (height), 1,895 term-born Dutch children.

Table 5. Percentage of children with at least one referral based on the evaluation of the conditional sDs gain for a growth monitoring scheme with 10 visits 
in the first two years. for three base probabilities (0.05, 0.025, 0.01) the table gives the probability according to the binomial distribution, the realised pro-
portion for weight, and the realised proportion for height.

p = 0.05 p = 0.025 p = 0.01

month Binomial Weight Height Binomial Weight Height Binomial Weight Height

0 0.0 0.0 0.0
1 5.0 7.2 5.5 2.5 3.7 3.1 1.0 1.7 1.2
2 9.8 9.0 10.3 4.9 5.3 5.6 2.0 2.6 2.2
3 14.3 14.0 14.2 7.3 8.6 7.7 3.0 4.8 3.0
6 18.5 17.8 16.8 9.6 10.4 9.0 3.9 5.7 3.8
9 22.6 19.5 19.4 11.9 11.2 10.0 4.9 6.1 4.1
12 26.5 21.7 21.9 14.1 12.4 11.5 5.9 6.5 5.2
15 30.2 24.2 25.0 16.2 13.6 13.3 6.8 6.8 6.1
18 33.7 26.8 28.4 18.3 14.9 16.5 7.7 7.5 7.7
24 37.0 28.2 30.5 20.4 16.0 18.2 8.6 8.4 8.9

note: n = 17,618 (weight), n = 16,266 (height), 1895 term-born Dutch children.
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(e.g. planning an additional visit), reduce the evaluation 
moments to a subset of time points, or - more generally - 
specify different referral proportions at different ages. The 
sequential testing literature on alpha spending functions 
(Demets and Lan 1994) treats the problem in detail.

Adaptive growth chart
A frequently asked question among parents is how tall 
their child will be. We know that tall parents have tall 
offspring, but for a given child, an accurate answer 
depends primarily on the realised growth of that child. 
Prediction of future growth can help to set expectations 
and motivate healthy behaviour. This section explores the 
techniques proposed in this paper to draw personalised 
growth charts.

The conditional SDS gains conditions on realised child 
growth and predicts current growth from previous growth. 
The same technique also applies to future growth. We can 
augment the correlation table of measurements at past ages 

with a set of future ages and calculate a personalised growth 
chart from the augmented table.

Figure 5 presents an adaptive growth chart that combines 
four graphic elements, each with a specific function:

1. Blue points and lines: the child’s growth curve;
2. Reference band: area for evaluating the child’s data 

relative to a reference population;
3. Amplitude: area to evaluate how common the varia-

tion in the data over time is;
4. Flag: a mini-growth chart delimiting the area where 

we expect the child’s subsequent measurement 
one-year ahead.

We discuss each in turn.
The blue points represent the realised weight measure-

ments adjusted for age (WAZ) for nine successive visits. Each 
visit adds one measurement. We see the top-left chart at 
birth, the top-middle chart at month 1, and the bottom-right 
chart at 18 months.
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Figure 5. Adaptive growth chart for the same child at nine successive visits (top-left to bottom-right). A computer-generated dispay would show one panel 
at a time, so the elements change dynamically at every new measurement. Each panel contains four graphic elements: the child’s growth curve (blue line), 
the population reference band (light green), amplitude showing the conditional sDs gain (darker bars, left of last measurement) and the flag, personalised 
reference band of future growth one-year ahead for the child.



ANNALS OF HUMAN BIOLOGy 255

The reference band between the −2.0 SD and +2.0 SD 
delimits the normal range of the reference population. We 
expect that 95.4 per cent of the measurements of children 
of a given age will fall within this range. We can quickly 
evaluate whether some of the blue points are located out-
side the normal range and take appropriate action 
accordingly.

The amplitude element visualises a series of conditional 
SDS gains calculated for successive age intervals. The 
amplitude element is empty at birth and expands as a 
new measurement arrives. The element indicates how 
common the observed variability in the growth curve is. 
A zero amplitude means that the child grows precisely 
according to expectation. This could occur occasionally, 
but actual child growth typically deviates from the expec-
tation. The level expresses the deviation’s direction and 
intensity during the age interval. A positive direction indi-
cates that the child grew faster than expected, while the 
intensity level measures how much. The amplitude ele-
ment provides a quick assessment of the commonness of 
variations in the data. We expect 95.4 per cent of the 
intensity levels to lie between the −2.0 SD and −2.0 SD 
centiles. Levels beyond this range could indicate that 
something is wrong, for example, that the child has rap-
idly lost weight due to an illness. However, an extreme 
value could also signal a measurement error in the data. 
If that is the case, we often see that the intensity level 
for a subsequent fidel measurement is extreme in the 
other direction. Measurement error will manifest itself by 
rapidly changing directions. Finding a run of four visits 
in the same direction is exceptional and could indicate 
slow growth failure, especially when combined with size-
able intensities. For this child, all levels fall nicely in the 
horizontal band, so the variation in the curve is normal.

The last element looks like a flag with the wind coming 
from the East. The flag element is a mini-growth chart that 
visualises the prediction interval for the next 12 months 
as centile lines −2 SD, −1 SD, 0 SD (median), +1 SD and 
+2 SD. More precisely, we expect with a confidence of 95 
per cent that the subsequent measurement for the child 
will be located within the range of −2 SD to +2 SD. Centile 
lines grow apart with age because predicting further in 
time is more error-prone. The prediction interval is initially 
wide because infant growth at these ages is highly vari-
able. As time goes by, predictions will become more 
accurate.

All elements work together. For example, consider the 
middle-left chart when the child is three months old. The 
95 per cent prediction interval of the (yet unobserved) WAZ 
at month 6 varies roughly between −1.3 SD and +1.1 SD 
(read off the flag at month 6). Three months later, the real-
ised value is slightly above −1.0 SD. This value locates 
approximately halfway between the −1.0 and −2.0 flag cen-
tile lines. The central chart for month 6 adds the −1.4 SD 
level to the amplitude element (read-off amplitude between 
months 3 and 6). We can quickly gauge whether the value 
falls outside the −2.0 SD to +2.0 SD range. Note that we 
use the same reference band for evaluating distance and 

gain, but one may set these levels independently when 
required. The prediction interval is updated with the new 
data point, and the cycle repeats.

The graph contains more information than might be 
needed for some purposes. Depending on the intended 
user, we could alter various aspects of the design. For 
example, a bouncing amplitude element could feel uncom-
fortable for parents. We could replace it with a smiley for 
periods when the conditional SDS gain falls within preset 
bounds or show a question mark or a frown when outside. 
Also, we could tweak the flag centiles as more straight-
forward interquartile ranges or even show only the pre-
dicted value without indicating uncertainty. To enhance 
compliance, we could tightly shrink the flag’s width to an 
age interval around the next scheduled visit. Another 
possibility to communicate the inherent predictive uncer-
tainty is to plot the realised curves of children with a 
similar predicted value, a technique known as curve 
matching (van Buuren 2014; Toet et  al. 2019). Another 
idea is to apply a one-sample runs test (Siegel and 
Castellan 1988) to separate measurement error from bio-
logical variation in a more formal way.

Discussion

The generalisation of the conditional SDS gain to the com-
plete historical data requires us to specify three model com-
ponents: a longitudinal reference, a correlation model to deal 
with arbitrary time points, and a prediction model for indi-
vidual child data. The text below discusses these choices and 
their interdependencies.

The longitudinal reference consists of a distance and 
a time component. Both can be estimated from the same 
data but may derive from different samples. Although any 
distance reference defines a transformation from raw mea-
surements into Z -scores, an improper reference choice 
can bias predictions. Suppose that the references are too 
low, then regression to the mean is more forceful for taller 
or heavier children, which results in a prediction that is 
too low and an SDS gain that is too high. As a rule of 
thumb, we suggest that the Z -score mean in the target 
sample should lie between −0.1 SD and +0.1 SD to pre-
vent this bias.

The time component is a time-to-time correlation table. 
Table 2 was estimated by assigning each Z -score to the 
closest scheduled age. This procedure is sub-optimal because 
it assumes that the correlation is constant within bins, which 
may not hold. Binning may reduce correlations, but we do 
not yet know by what amount and what the impact would 
be in practice. The use of specialised estimation methods, 
as proposed by Xiao et  al. (2018), Anderson et  al. (2019), 
and van Buuren (2023) may improve upon simple binning. 
The Pearson correlation measures the strength between two 
normally distributed variables. Realise that applying a cor-
relation for pairs of Z -scores that systematically deviate from 
bivariate normality may fail to capture subtle effects 
in growth.
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The primary function of the correlation model is to pro-
duce a correlation table per child between ages of measure-
ment. We used the parametrisation of the Cole correlation 
model and estimated the parameters from our data. Other 
correlation models with applications in child growth can be 
found in Lesaffre et  al. (2000), Argyle et  al. (2008) and Feng 
et  al. (2020), and could potentially be used to improve the 
Cole model.

One striking result in Table 4 is that including more his-
torical data points hardly raises the proportion of explained 
variance r 2 . This finding is at variance with Ivanescu et  al. 
(2017), who concluded, “Prediction performance increases 
substantially when using the entire growth history relative 
to using only the last and first observation” and “Subtle 
changes in the subject-specific history contain substantial 
additional information.” In contrast, in our approach, the 
inclusion of additional time points had negligible effects on 
r 2 . Regression weights vanished after conditioning on the 
last two observations. Adding more than two measurements 
had little effect on the predicted value and the conditional 
SDS gain. It is an open question whether these results hold 
more generally. One reason why prediction may not get 
more precise could be that the correlation model smoothes 
out meaningful relationships beyond lag 2. It would be inter-
esting to investigate this hypothesis in more detail. Finding 
a correlation model directly from the source data (instead 
of compressing the dynamic information into the correlation 
matrix) could shed light on the issue.

There is not yet much experience with formal growth 
prediction in preventive settings. My vision is that prediction 
intervals can help practitioners set expectations, motivate 
healthy behaviours, and communicate the variability in 
human growth. The predictive model produces a personalised 
mini-chart for the child’s subsequent measurement. The cur-
rent model returns the area that contains a single future 
observation. Depending on the setting, one may also con-
struct intervals in which all m  future observations will lie 
or contain k  out of m  (Hahn and Meeker 1991).

The predictive model is fast. For a given person, the algo-
rithm calculates the personalised correlation matrix, the 
regression weights, the prediction and the SDS gain for each 
measurement. On an M1 Max processor, the calculations for 
all children in the data ( n =1895 ) took 1.8 s, irrespective of 
the number of historical data points added. Thus, for a child 
with a growth curve of 10 measurements, we need about 1 
millisecond to calculate the nine SDS gains.

A limitation of the current model is that it conditions 
only on previous outcomes. Including other time-varying 
outcomes or covariates (e.g. parental weights and heights, 
socio-economic factors) as predictors lead to sharper pre-
dictions. Technically, such extensions can be done in mul-
tiple ways. One straightforward possibility is to augment 
the time-to-time correlation matrix with the relevant 
factors.

The validation study revealed that the generalised condi-
tional SDS gain has the expected statistical properties. Figures 
2–4 show that the inclusion of the second last visit affects 
the value and interpretation of the conditional SDS gain. 

Cole (1995) said: “Strictly speaking, weight is better predicted 
if more than one previous weight is used.” Our study found 
only a slight increase in the proportion of explained variance. 
Still, using all historical information produces more informa-
tive gain scores less impacted by measurement error. In order 
to benefit, we suggest including at least the last two histor-
ical measurements in the conditional SDS gain.

The paper used the distance references D  from the Fourth 
Dutch Growth Study and calculated the time-to-time correla-
tion matrices R  from the SMOCC data. Users from non-Dutch 
countries may want to use their national reference or adopt 
the WHO Child Growth Standards. For D , there are many 
options. However, only a few published estimates exist for 
R , so choices are minimal. We have yet to learn how R  
differs across child populations. The SMOCC study involved 
a large longitudinal sample from 0–2 years from the general 
population. For the time being, we suggest using R  from 
Table 2 as a replacement.

Tracking individual child growth sounds easier than it is. 
This paper provides the theory, algorithms and tools for 
assembling an extensible modular monitoring system from 
simple principles. Setting a distance reference, a time-to-time 
correlation matrix, and a correlation model is enough to 
capture the dynamic nature of child growth. The adaptive 
growth chart for individual tracking works with exact ages, 
corrects for regression to the mean, and has a known distri-
bution at any pair of ages. These properties turn the meth-
odology presented here into an ideal vehicle for evaluating 
and predicting child growth.

The adaptive growth chart proposed in the Applications 
section incorporates two novel graphical elements: amplitude 
and flag. Incorporating these elements into one display will 
contribute to well-informed decision-making for parents, 
health professionals, and researchers.
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