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Abstract

Many longitudinal studies collect data that have irregular observation times, often
requiring the application of linear mixed models with time-varying outcomes. This paper
presents an alternative that splits the quantitative analysis into two steps. The first step
converts irregularly observed data into a set of repeated measures through the broken stick
model. The second step estimates the parameters of scientific interest from the repeated
measurements at the subject level. The broken stick model approximates each subject’s
trajectory by a series of connected straight lines. The breakpoints, specified by the user,
divide the time axis into consecutive intervals common to all subjects. Specification of
the model requires just three variables: time, measurement and subject. The model is
a special case of the linear mixed model, with time as a linear B-spline and subject as
the grouping factor. The main assumptions are: Subjects are exchangeable, trajectories
between consecutive breakpoints are straight, random effects follow a multivariate normal
distribution, and unobserved data are missing at random. The R package brokenstick
v2.5.0 offers tools to calculate, predict, impute and visualize broken stick estimates. The
package supports two optimization methods, including options to constrain the variance-
covariance matrix of the random effects. We demonstrate six applications of the model:
Detection of critical periods, estimation of the time-to-time correlations, profile analysis,
curve interpolation, multiple imputation and personalized prediction of future outcomes
by curve matching.

Keywords: brokenstick, R, linear mixed model, repeated measures, linear B-spline, person-
alized estimation, growth curve analysis, critical periods, time-to-time correlation, profile
analysis, curve interpolation, multiple imputation, curve matching, two-step method, Kasim-
Raudenbush method.

1. Introduction

Most longitudinal studies plan data collection to occur at a fixed set of time points. In
practice, the realized times can differ – sometimes substantially – from the scheduled times.
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There may be many reasons for such differences. For example, we planned a visit at the
weekend or during a holiday, the subject did not show up, the measurement device was out of
order, or the investigator fell ill. Varying observation times may also result from combining
data from multiple studies, each collected according to its own design. Timing variation can
be substantial in observational studies, especially if the survey lacks a pre-specified schedule.
Longitudinal data with timing differences between subjects are said to be irregular.
Irregular observation times present significant challenges for quantitative analysis. For exam-
ple, it is not easy to calculate the time-to-time correlation matrix if the data spread thinly
over time. It might also be complex to predict the future from past data if subject times differ.
Observation times may also relate to the process of interest. For example, more severely ill
patients get measured more frequently; unmotivated cohort members respond more rarely,
and so on. Conventional methods like MANOVA, regression or cluster analysis break down
if observation times differ or if drop-out is selective.
While irregular observation times occur all over science, there is no universal or principled
approach to resolve the problem. One straightforward fix is to take only those dates for
which data are available (e.g., dates when stocks are traded), thus ignoring the times when
markets are closed. One may also create bins of time intervals around the planned times,
thereby ignoring within-period differences. Another ad-hoc method predicts the value at the
scheduled time from neighboring data, e.g., by linear interpolation or smoothing, typically
reducing the variability in the data. Some quick fixes create data sets where the timing
problem seems to have “gone away”, which may tempt the analyst to ignore the potential
effects of data patch-up on the substantive conclusions. While convenient and straightforward,
the thoughtless application of these fixes introduces significant spurious relations over time,
especially if the spacing of observations is highly irregular (Rehfeld, Marwan, Heitzig, and
Kurths 2011). Binning can lead to “surprisingly large” biases (Towers 2014). If timing
variation is related to the outcome of interest, these methods may result in biased estimates
and exaggerated claims (Pullenayegum and Lim 2016).
The linear mixed model for longitudinal data (Laird and Ware 1982; Fitzmaurice, Laird,
and Ware 2011) is the standard for analyzing irregular data. The model represents each
subject’s observed curve by a parametric function of time. The parameter estimates of this
function are specific to each subject and modeled as random effects. The linear mixed model
is beneficial for irregular data. It borrows strength across different realizations of the same
process, summarizing each trajectory by a small number of parameters that vary over subjects.
The analyst can break down the distribution of these random effects as a function of individual
characteristics. The linear mixed model is attractive when the number of measurements differs
between individuals or when the measurements are taken at different times.
This paper explores the use of the broken stick model to transform irregularly observed data
into repeated measures. The broken stick model describes a curve by a series of connected
straight lines. The model has a long history and is known under many other names, among
others, segmented straight lines (Bellman and Roth 1969), piece-wise regression (Toms and
Lesperance 2003), structural change models (Bai and Perron 2003), broken line smoothing
(Koutsoyiannis 2000) and segmented regression (Lerman 1980). The term broken stick goes
back to at least MacArthur (1957), who used it in an analogy to indicate the abundance
of species. Most of the literature on the broken stick model concentrates on the problem
of finding optimal times at which the lines should connect. Instead, the present paper will
focus on the problem of summarizing irregular individual trajectories by estimates made at
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a pre-specified time grid. This time grid is identical for all individuals, but it need not be
equidistant. Our model formulation is a special case of the linear mixed model, with time
modeled as a set of random effects coded as a linear B-spline and subjects as the grouping
factor. The output of the transformation is a set of repeated measures, where every subject
obtains a score on every time point.
Many R packages offer tools for interpolation. The splines package (R Core Team 2023) and
the akima package (Akima, Gebhardt, Petzold, and Mächler 2021) contains classic interpo-
lation methods for one- and two-dimensional smoothing. Most contributed packages concen-
trate on time series or spatial interpolation. See Li and Heap (2014) and Lepot, Aubin, and
Clemens (2017) for overviews of the different concepts and methodologies. Most interpola-
tion techniques rely on neighboring information, in time, space or both. The broken stick
model addresses the problem where many independent replications provide short irregular
multivariate time series, say of 5-30 time points. The scientific interest is to dynamically pre-
dict and update future observations. The model applies the linear mixed model to increase
stability for such series by borrowing information across replicates. As there are no satis-
factory solutions to this problem, the brokenstick package intends to fill this gap. Package
brokenstick (Van Buuren 2023) is available from the Comprehensive R Archive Network at
https://CRAN.R-project.org/package=brokenstick.
Substantive researchers often favor repeated measures over the use of linear mixed models
because of their simplicity. For example, we can easily fit a subject-level model to predict
future outcomes conditional on earlier data with repeated measures data. While such simple
regression models may be less efficient than modelling the complete data (Diggle, Heagerty,
Liang, and Zeger 2002, Section 6.1), increased insight may be more valuable than increased
precision.
The broken stick model requires a specification of a sensible set of time points at which the
measurements ideally should have been taken. For each subject, the model predicts or imputes
hypothetical observations at those times, so the substantive analysis applies to the repeated
measures instead of the irregular data. This strategy is akin to Diggle’s multi-stage model-
fitting approach (Diggle 1988). The envisioned two-step analytic process aims to provide the
best of both worlds.
Some applications of the broken stick model are:

• To approximate individual trajectories by a series of connected straight lines;

• To align irregularly observed curves to a joint age grid;

• To impute realizations of individual trajectories;

• To estimate the time-to-time correlation matrix;

• To predict future observations.

The original motivation for developing the broken stick model was to facilitate the statistical
analysis and testing of critical ages in the onset of childhood obesity (De Kroon, Renders,
Van Wouwe, Van Buuren, and Hirasing 2010), with extensions to multiple imputation (Van
Buuren 2018a). There is good support in R for fitting child growth data. We mention some
related approaches. Methods for estimating growth references with parametric models are
gamlss() from gamlss (Stasinopoulos and Rigby 2007) and its Bayesian incarnation bamlss()

https://CRAN.R-project.org/package=brokenstick


4 Broken Stick Model for Irregular Longitudinal Data

from bamlss (Umlauf, Klein, Simon, and Zeileis 2021). Nonparametric alternatives that esti-
mate quantiles directly are rq() from quantreg (Koenker, Portnoy, Ng, Zeileis, Grosjean, and
Ripley 2018) and expectreg.ls() from expectreg (Otto-Sobotka et al. 2021). Methods for
modelling and smoothing growth curves fit trajectories per child include smooth.basisPar()
from fda (Ramsay, Graves, and Hooker 2021), gam() from mgcv (Wood 2011), loess() and
smooth.spline() from base stats (R Core Team 2023). Models that smooth by borrowing
strength across children are face.sparse() from face (Xiao, Li, Checkley, and Crainiceanu
2021), lmer() from lme4 (Bates, Mächler, Bolker, and Walker 2015), and sitar() from
sitar (Cole 2022). The broken stick model fits in the latter tradition, and features an intu-
itive parameterization of each individual growth curve as a series of connected straight lines.
See Anderson, Hafen, Sofrygin, Ryan, and HBGDki Community (2019) for an overview and
comparison of these methods.
The present paper highlights various computational tools from the brokenstick v2.5.0 package.
The package contains tools to fit the broken stick model to data, export the fitted model’s
parameters, create imputed values of the model, and predict broken stick estimates for new
data. Also, the text illustrates how the tool helps to solve various analytic problems.

2. Illustration of broken stick model
As a first step, let us study the variation in the age of measurement of 200 children from the
SMOCC study (Herngreen, Van Buuren, Van Wieringen, Reerink, Verloove-Vanhorick, and
Ruys 1994). Lokku, Lim, Birken, Pullenayegum, and TARGet Kids! Collaboration (2020)
suggest the abacus plot to visualize this variation.
The blue points in Figure 1 indicate the observation times. Generally, the blue points are
close to the scheduled ages (indicated by vertical lines), especially in the first half-year. Ob-
servation times vary more for older children. Several children have one or more missing visits
(e.g., 10002, 10008, 10024). Some children (10012, 10015) had fairly close visits. Child 10028
dropped out after month 9.
Let us fit two models, with two and nine lines, respectively, to body length’s standard devia-
tion score (SDS).

R> fit2 <- brokenstick(hgt_z ~ age | id, smocc_200, seed = 1, knots = 0:2)
R> fit9 <- brokenstick(hgt_z ~ age | id, smocc_200, seed = 1,
+ knots = round(c(0:3, 6, 9, 12, 15, 18, 24)/12, 4))

Knot values are rounded to simplify the presentation. Figure 2 shows the individual trajec-
tories of three children. The blue points coincide with the observed data, whereas the red
curves are calculated according to the broken stick model.
There are two fitted models. The simpler model (top) uses just two line segments. The first
line starts at birth and ends at the age of exactly 1 year. The second line spans the period
between 1 to 2 years. Note that the two lines connect at the breakpoint, the age of 1 year.
The red curves for the two-line model are a crude approximation to the data.
We can create a better model by setting breakpoints equal to the scheduled ages. Since there
are 10 scheduled ages, we construct nine straight lines. In contrast to the two-line model, the
nine-line broken stick model is sensitive to small bumps in the observed trajectory and closely
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Figure 1: Abacus plot of observation times for the first 20 children of the SMOCC data. Data
collection was done through 10 waves. Each dot represents the age at which an observation
was made. The variability in timing between children rises with age.
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Figure 2: Data and fitted curves for three children (blue = observed data, red = fitted curves).
The broken stick model with two lines (top) gives a crude approximation of the data. The
model with nine lines (bottom) follows the data quite closely.
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fits the empirical data. The residual variance of the nine-line model is low (0.059), and the
proportion of explained variance in SDS is high (0.98).
While the observation times in the data differ between children, the broken stick curves use
identical time points across subjects. The idea is now that we can add the broken stick
estimates to the child-level data by a long-to-wide conversion and analyze supplemented
columns as repeated measures. A repeated measures analysis is usually simpler than the
equivalent for the temporally misaligned data. For example, it is easy to calculate mean
profiles for arbitrary groups, estimate the time-to-time covariance matrix, or build predictive
models at the child level. See Hand and Taylor (1987) for a lucid overview of linear techniques
for repeated measures.

3. Methodology

3.1. Notation

We adopt the notation of Fitzmaurice et al. (2011). Let Yij denote the response variable for
the ith subject on the jth measurement occasion at time tij . Data are collected in a sample
of N persons i = 1, . . . , N . Let repeated measurements for the ith subject be grouped as

Yi =


Yi1
Yi2
...
Yini

 , i = 1, . . . , N.

If the measures have been observed at a common same set of occasions, then we could drop
the index i in tij since tij = tj for all i = 1, . . . , N . Here we will focus on the case that tij

varies over i.
In addition, let use define the ni × p matrices

Xi =


Xi11 Xi12 · · · Xi1p

Xi21 Xi22 · · · Xi2p
...

... . . . ...
Xini1 Xini2 · · · Xinip

 , i = 1, . . . , N,

so that the rows of Xi contain p covariates associated with the responses at ni measurement
occasions. The columns may be time-varying covariates. If a certain covariate is fixed in time
(e.g., sex, treatment, education), then all values within the corresponding column in Xi are
identical.

3.2. Broken stick model

The broken stick model avoids modeling observation times tij directly by representing each
tij as its relative position within a time interval. For example, suppose tij = 0.6 years and
that the time interval is given by 0.5-1.0 years. The position relative to the left break age
is xleft = (1.0 − 0.6)/(1.0 − 0.5) = 0.8, whereas relative to the right break age is xright =
(0.6 − 0.5)/(1.0 − 0.5) = 0.2. In order to fit the broken stick model, we need to replace time
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point tij = 0.6 by two values: 0.8 (for break age 0.5), and 0.2 (for break age 1.0). Note that
both values add up to 1. Coding time in this way simplifies modeling continuous time by a
set of discrete break ages.
More specifically, let tij be coded by a second-order (linear) B-spline using k internal knots
κ placed at k + 1 ordered ages

κ0 = κ1 < . . . < κk < κk+1

The internal knots κ1, . . . , κk correspond to the set of ages for which we obtain broken stick
estimates, and it could be specified by the user. The left boundary knot κ0 = κ1 is left-
anchored to the minimum time min(tij) in the data. This point defines the starting event
of the participant, such as birth or study enrollment. The right hand boundary knot is
κk+1 ≥ max(tij).
The second-order B-spline (De Boor 1978, pp. 32),

Hs(t) =


(t − κs−1)/(κs − κs−1) , κs−1 < t ≤ κs,
(κs+1 − t)/(κs+1 − κs) , κs ≤ t < κs+1,
0 , otherwise.

is applied to tij to obtain (k + 1) transformed variables xis = tij with s = 1, . . . , k + 1.
These variables can conveniently be grouped into the ni × (k + 1) matrix of covariates Xi =
(xi1, . . . , xik, xi(k+1)). Each row in Xi has only one or two non-zero elements, which sum to
1.
Using this Xi, the broken stick model is a special case (with Zi = Xi) of the two-stage
random-effects model (Laird and Ware 1982)

Yi = Xiβ + Xibi + ϵi

where the k +1 column vector β contains k +1 fixed effect coefficients common to all persons,
where the k +1 column vector bi accommodates for k +1 subject-specific random parameters,
and where the ni column vector ϵi holds subject-specific residuals.
In order to complete the model specification, we assume that the residuals are identically and
independently distributed as ϵi ∼ N(0, σ2I(ni)), where σ2 is a common variance parameter,
and where I(ni) is the identity matrix of order ni. Thus, the equation represents population
parameters (fixed effects), individual effects (random effects), and an amount of within-person
dispersion that is the same for all persons. Section 4.2 also considers a heterogeneous model
that allows σ2

i to vary over subjects.
In summary, given the knot specification and the choice of the response scale, the parameters
of the broken stick model are:

• β, a vector of k + 1 fixed parameters;

• Ω, a (k + 1) × (k + 1) covariance matrix of the random effects;

• σ2, the within-person error variance.

The total number of parameters for a solution with k internal knots is thus equal to (k2 +5k+
6)/2. For example, a model of k = 3 knots (i.e., with two connected lines) has 15 parameters,
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a model with k = 4 has 21 parameters, and a model with k = 10 break ages has 78 parameters.
The heterogeneous model has one additional parameter that measures the variation of σ2

i .

3.3. Model assumptions

At the person level, we assume bi ∼ N(0, Ω), i.e., the random coefficients of the subjects have
a multivariate normal distribution with zero mean and a (k+1)×(k+1) covariance matrix Ω.
The base model allows the elements of Ω to vary freely. For time-dependent data, constrained
versions for Ω are also of interest (Fitzmaurice et al. 2011, Ch. 7). Section 4.2 highlights two
such extensions. We also assume that the covariance between bi and ϵi is zero. For simplicity,
this paper is restricted to the case where Xi includes only time, and no other covariates.
The broken stick model builds upon three main modeling assumptions:

• The trajectory between break ages follows a straight line. This assumption may fail for
processes that are convex or concave in time. For example, human height growth in
centimeters is concave in time, so setting breakpoints far apart introduces a systematic
negative bias. Modeling height SDS instead of raw height will prevent this bias.

• The broken stick estimates follow a joint multivariate normal distribution. As this
assumption may fail for skewed measurements, it could be beneficial to transform the
outcomes so that their distribution will be closer to normal.

• The data are missing at random (MAR) given the outcomes from all subjects at all
observation times. This assumption is restrictive in the sense that missingness may
only depend on the observed outcomes, and not on covariates other than time. At the
same time, the assumption is liberal in the sense that the missingness may depend on
future outcomes. While this MAR-future assumption is unusual in the literature on
drop-out and observation time models, it is a sensible strategy for creating imputations
that preserve relations over time, especially for intermittent missing data. Of course,
the subsequent substantive analysis on the imputed data needs to be aware of the causal
direction of time.

3.4. Interpretation

Given the model estimates and the person data, we can calculate the random effect bi. The
broken stick parameter γis = βs + bis is the subject-specific mean of Yi at time κs, s =
1, . . . , k + 1. The set of γis parameters describes the mean response profile for subject i by k
lines that connect at the k + 1 coordinates (κs, γis).
The broken stick parameter is the most likely value of outcome Yi for subject i at time κs

given the person’s observed data and given the fitted model (which represents the evolution
of trajectories from the training data). The parameter is the center of the posterior predictive
distribution for normal Yi. The two-sided 100(1−α)% prediction interval for the true, though
often unobserved, value Yi,κs is equal to

[Y lo
i,κs

, Y hi
i,κs

] = γis ± t(1−α/2;N−1)σ,

where t(1−α/2;N−1) is the 100(1 − α/2) percentile of Student’s t-distribution with N − 1 de-
grees of freedom. For example, the 50% prediction interval γis ± 0.68σ will contain 50% of
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true values. For normal Yi, the length of the 50% prediction interval is equivalent to the in-
terquartile range (IQR). If the residual variation σ2 is small (say σ2 < 0.1), the IQR is about
0.22, so half of the true values will be within 0.22 SD of γis, a small difference. For large σ2

(e.g., σ2 > 0.2), the γi vector is a smoothed representation of Yi. While smoothness amplifies
low-frequency features of the trajectories, it could also introduce biases in the subsequent
analysis by suppressing high-frequency variation. In that case, the analyst needs to check
whether this reduction in variation does not affect the parameters of substantive interest. We
may restore high-frequency variation by adding random draws from the residual distribution
N(0, σ2). From there, it is a small step to multiple imputation, a well-developed methodology
for drawing valid inferences from incomplete data (Rubin 1987; Van Buuren 2018a).
If ni ≫ k then the broken stick model provides a parsimonious representation of the measure-
ments. Reversely, if ni ≪ k then the model infers plausible values for subject i by building
strength across persons. The broken stick model converts ni irregularly observed measure-
ments into a new set of k values γis at common ages κ1, ..., κk, s = 1, . . . , k.
Since each row in Xi sums to unity, the broken stick model does not have a global intercept.
The linear B-spline coding effectively replaces the global random intercept term by k +1 local
intercepts, one at each break age. The local intercept summarizes the information available in
the adjacent left and right age intervals and ignores any information beyond the two adjacent
knots. The broken stick estimates are thus primarily local. Outcome data observed outside
the two adjacent age intervals influence the broken stick estimates only through the subject-
level part of the model, in particular through Ω.

4. Estimation

4.1. Main function

The brokenstick() function estimates the parameters of the broken stick model. The user
needs to specify the outcome, the predictor and the grouping variable, as well as the location
of the knots on the predictor variable. A call produces an object of class ‘brokenstick’:

R> fit <- brokenstick(hgt_z ~ age | id, data = smocc_200,
+ knots = c(0, 0.5, 1, 2), seed = 12321)
R> summary(fit)

Class brokenstick (kr)
Variables hgt_z (outcome), age (predictor), id (group)
Data 1942 (n), 36 (nmis), 200 (groups)
Parameters 22 (total), 5 (fixed), 5 (variance), 10 (covariance), 2 (error)
Knots 0.0 0.5 1.0 2.0
Means -0.0939 0.0926 -0.0137 0.0842
Residuals 0.106 0.129 0.146 0.169 0.361 (min, P25, P50, P75, max)
Mean resid 0.156
R-squared 0.893

Variance-covariance matrix
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age_0 age_0.5 age_1 age_2
age_0 1.409
age_0.5 0.718 0.905
age_1 0.521 0.755 0.765
age_2 0.395 0.721 0.783 0.941

The object contains the model setting, the data and the results. The column names of X
consist of the name of the time variable with the knot values appended. Thus, age_0 is birth
length and age_1 is the length at the age of 1y. Here we find estimates of the fixed effects β
under means, the residual variance σ2 under mean resid and the variance-covariance matrix
of the random effects Ω as get_omega(fit). We calculate the broken stick estimates at the
knot locations as a wide matrix through the predict() function as follows:

R> bse <- predict(fit, x = "knots", shape = "wide")
R> dim(bse)

[1] 200 5

R> head(bse, 3)

# A tibble: 3 x 5
id `0` `0.5` `1` `2`

<dbl> <dbl> <dbl> <dbl> <dbl>
1 10001 0.789 0.247 0.0256 0.0341
2 10002 -0.267 -0.228 -0.421 -0.514
3 10003 1.67 2.00 1.28 1.10

The specification x = "knots" uses the special keyword "knots" to set the predictor values
equal to the knot locations used to fit the model. The argument shape = "wide" returns the
predicted values as a wide matrix (one row per group, one column per predictor value). As a
result we now have each individual trajectory summarized by six estimates.

4.2. Estimation steps explained

We may break up the estimation process into two main steps. The first step calculates the
matrix of B-splines for the time variable age by the core splines::bs() (R Core Team 2023)
function:

R> library("splines")
R> data <- brokenstick::smocc_200
R> internal <- c(0, 0.5, 1, 2)
R> X <- bs(data$age, knots = internal, Boundary.knots = c(0, 2.68),
+ degree = 1)
R> colnames(X) <- paste("age", c(internal, 2.68), sep = "_")
R> head(X)
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age_0 age_0.5 age_1 age_2 age_2.68
[1,] 1.000 0.000 0.0000 0 0
[2,] 0.836 0.164 0.0000 0 0
[3,] 0.682 0.318 0.0000 0 0
[4,] 0.491 0.509 0.0000 0 0
[5,] 0.000 0.992 0.0076 0 0
[6,] 0.000 0.494 0.5058 0 0

The numerical example shows that the bs() function transforms the age variable into five
columns, the B-spline basis, with names like age_0 and age_0.5. If age coincides with one of
these (e.g., as in the top row), then the corresponding column receives a 1. In all other cases,
age distributes over two adjacent columns. Setting degree = 1 specifies a B-spline and gives
the broken stick model its name and its characteristic shape.
Although not strictly needed, all applications in this paper assume that the left boundary
knot marks the start of time, e.g., birth or day of enrollment. There are some subtleties in
using splines::bs() to create a linear B-spline basis. Matrix X has values in the range [0, 1]
and a maximum of two non-zero values per row that sum to 1. These conditions require that
Boundary.knots span at least the range of the data. This requirement is easy to achieve
by setting Boundary.knots = range(data$age), which is done by default. Also, we need
to ensure that the range of knots is not outside Boundary.knots. We may achieve that
by setting Boundary.knots to include at least range(knots). In practice, the user does
not need to worry about boundaries since the brokenstick() function takes care of both
conditions by expanding the boundary range when needed. The primary reason for setting
explicit boundaries is to make them independent of the data.
The second step is to specify the model and estimate its parameters. We have two methods
for this: "kr" and "lmer". Method "lmer" relies on the popular function lme4::lmer()
(Bates et al. 2015) to fit a linear mixed normal model.

R> data <- cbind(brokenstick::smocc_200[, c("id", "age", "hgt_z")], X)
R> ctl_lmer <- lme4::lmerControl(
+ check.conv.grad = lme4::.makeCC("warning", tol = 0.04))
R> f <- hgt_z ~ 0 + age_0 + age_0.5 + age_1 + age_2 + age_2.68 +
+ (0 + age_0 + age_0.5 + age_1 + age_2 + age_2.68 | id)
R> mod_lmer <- lme4::lmer(f, data, control = ctl_lmer)
R> class(mod_lmer)

[1] "lmerMod"
attr(,"package")
[1] "lme4"

The formula removes the intercept and specifies each knot as a random effect with child id as
grouping factor. The control argument suppresses the warning Model failed to converge
with max|grad| = 0.0360913. Such warnings occur often if the model has many random
effects. These warnings may also be thrown if some of the child data are outliers (for example
pre-terms). I found that the broken estimates generally look sound and reasonable despite
the warnings. Note however that my experience derives primarily from child growth data, so
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there is no guarantee that this apparent robustness will hold for other types of data. Warnings
from lmer() become more frequent with a higher number of knots, for smaller samples and
for data with observations made at more irregular time points.
Object mod_lmer has class ‘lmerMod’ so we may use standard plot(), predict() and summary
methods offered by the lme4 package. Converting the result into broken stick estimates
requires summing the fixed and random effects.

R> bse_lmer <- t(t(lme4::ranef(mod_lmer)$id) + lme4::fixef(mod_lmer))
R> head(round(bse_lmer, 3), 3)

age_0 age_0.5 age_1 age_2 age_2.68
10001 0.778 0.272 -0.01 0.076 0.095
10002 -0.278 -0.206 -0.46 -0.477 -0.223
10003 1.681 1.969 1.28 1.115 -0.256

The calculation time of lme4::lmer() rapidly increases with the number of random effects.
More than ten random effects (knots) takes significant time, and beyond 15 knots is generally
impossible to fit. For example, using a dataset with 33,000 records and 2,600 individuals, an
M1 Max processor takes 8 seconds (5 knots), 107 seconds (9 knots), 403 seconds (12 knots)
and 1172 seconds (15 knots).
The brokenstick package provides another alternative, the Kasim-Raudenbush (KR) sampler
(Kasim and Raudenbush 1998). The method simulates draws from the posterior distributions
of parameters from a two-level normal model with heterogeneous within-subject variances.
The speed of the Kasim-Raudenbush sampler is almost insensitive to the number of random
effects and depends primarily on the total number of iterations and somewhat on sample
size. Execution of the KR method for the same problem takes 15 seconds (5 knots), 17
seconds (9 knots), 19 seconds (12 knots) and 20 seconds (15 knots). The method is available
as the function kr() in the brokenstick package and is the default since version 2.0.0. The
control_kr() function tweaks estimation options:

R> ctl_kr <- control_kr()
R> mod_kr <- kr(y = data$hgt_z, x = X, g = data$id, control = ctl_kr)

The call to control_kr() produces a list with settings for the sampler according to the
conventions of the coda package (Plummer, Best, Cowles, and Vines 2006). The defaults
in control_kr() should be reasonable across a wide range of cases. The list component
mod_kr$mod contains various objects of class ‘mcmc’ with the sampling history and detailed
results. For example, inspect the fixed effect estimates as

R> library("coda")
R> summary(mod_kr$mod$beta)

Iterations = 101:300
Thinning interval = 1
Number of chains = 1
Sample size per chain = 200
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1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
age_0 -0.0966 0.0875 0.00619 0.01001
age_0.5 0.0897 0.0625 0.00442 0.00442
age_1 -0.0196 0.0626 0.00443 0.00526
age_2 0.0768 0.0749 0.00530 0.00715
age_2.68 0.2087 0.4594 0.03249 0.15269

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
age_0 -0.2623 -0.1582 -0.0897 -0.0354 0.0600
age_0.5 -0.0188 0.0454 0.0943 0.1320 0.2139
age_1 -0.1502 -0.0633 -0.0183 0.0223 0.0922
age_2 -0.0623 0.0257 0.0806 0.1263 0.2168
age_2.68 -0.6762 -0.0168 0.1983 0.4737 1.2039

Also, we may obtain trace plots and densities. For example try plot(mod_kr$mod$beta).
We obtain results for method "lmer" as

R> fit_lmer <- brokenstick(hgt_z ~ age | id, data = smocc_200, knots = c(
+ 0, 0.5, 1, 2), method = "lmer", control = ctl_lmer)
R> head(predict(fit_lmer, x = "knots", shape = "wide"), 3)

# A tibble: 3 x 5
id `0` `0.5` `1` `2`

<dbl> <dbl> <dbl> <dbl> <dbl>
1 10001 0.778 0.272 -0.0101 0.0763
2 10002 -0.278 -0.206 -0.460 -0.477
3 10003 1.68 1.97 1.28 1.12

The argument shape = "wide" specifies the form of the return value. The broken stick
estimates from the kr and lmer methods are similar, but not identical. In fact, substantial
discrepancies may occur in areas where data are sparse, for example, at the right boundary
knot. Apart from being faster for more complex models, the KR-sampler opens up interesting
analytic options:

1. It is relatively easy to constrain the fitted covariance of random effects, Ω, to a matrix of
simple structure. Informing the sampler of the time-dependent structure of the random
effect leads to stabler estimates of Ω. The package currently implements two correlations
models. These models express the correlation ρ(t1, t2) between two Z -scores Z1 and
Z2 at successive ages t1 and t2 as a function of those ages. The Argyle model (Argyle,
Seheult, and Wooff 2008) is ρ(t1, t2) = exp(−λ|T1 − T2|), where Ti = log(τ + ti) is a
logarithmic rescaling of the time axis and ρ = exp(−λ). The Cole correlation model
(Cole 1995) describes the Fisher-transformed correlation as a function of the average



14 Broken Stick Model for Irregular Longitudinal Data

(t1 + t2)/2 and the difference (t2 − t1), including two multiplicative terms. Note that
both models were proposed in the context of child growth, so may fit less well for other
types of time-dependent data.

2. The Kasim-Raudenbush sampler fits the slightly more general linear-mixed model with
heterogeneous within-subject variances, i.e., with a residual variance σ2

i per subject i
instead of the global residual σ2. This makes it easier to identify, study and weight
subjects based on how well they fit the model.

3. A third option is to simulate imputations as an extra step to the sampler. For subjects
with large σ2

i , the random effect estimates are a too smooth representation of the data,
leading to inappropriate variance estimates when those estimates are analyzed as “just
data”. Section 11.3 of Van Buuren (2018a) pioneered a solution that constructs multiple
trajectories by adding a proper amount of residual noise to random effect estimates. The
variance estimation then proceeds according to the principles of multiple imputation
(Rubin 1987).

5. Functionality

5.1. Overview

The brokenstick package contains functions to fit, predict and plot data. Main functions,
user-oriented helpers, and internal functions for computation used in the brokenstick package
are summarized in Table 1.
The package exports S3 methods for the class ‘brokenstick’ for the following generic func-
tions coef(), fitted(), model.frame(), model.matrix(), plot(), predict(), print(),
residuals() and summary(). An object of class ‘brokenstick’ stores the training data by
default. When this is not desired, specify brokenstick(..., light = TRUE) to create a
small object with just the parameter estimates. Of course, we cannot extract the original
data from a light object. However, we can still use it to calculate brokenstick estimates for
new cases using predict(object, newdata = ...).

5.2. Data preparation

Before we can fit the model, the data need to be in shape. The brokenstick() function takes
tidy data in the long-form. Every row in the data corresponds to one visit. Two columns
identify a visit: a subject variable and a time variable. Thus, if subject one has three visits
and subject two has five visits, the combined data will have eight records. This section uses
the built-in smocc_200 data, containing the heights of 200 children measured at ten visits up
to two years (Herngreen et al. 1994).

R> library("brokenstick")
R> head(smocc_200, 3)

# A tibble: 3 x 7
id age sex ga bw hgt hgt_z
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Function name Description

Main functions
brokenstick() Fit a broken stick model to irregular data
predict() Predict broken stick estimates
plot() Plot individual trajectories

User-oriented helper functions
coef() Extract coefficients
fitted() Calculate fitted values
get_knots() Obtain the knots used by model
get_omega() Extract the variance-covariance matrix
get_r2() Obtain proportion of explained variance
model.frame() Extract training data
model.matrix() Extract design matrix
print() Print object
residuals() Extract residuals from model
summary() Summarize object

Computation functions
set_control() Generic control function
control_kr() Set controls for Kasim-Raudenbush sampler
kr() Kasim-Raudenbush sampler for two-level model
EB() Empirical Bayes predictor for random effects (internal)
make_basis() Create linear splines basis (internal)

Table 1: Main functions, user-oriented helpers, and internal functions for computation used
in the brokenstick package.

<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 10001 0 female 40 3960 52 0.575
2 10001 0.0821 female 40 3960 55.6 0.888
3 10001 0.159 female 40 3960 58.2 0.797

The subject variable is id and the time variable is age.

5.3. Transformation to Standard Deviation Scores (SDS)

The broken stick model can fit observations in either the raw scale Y (cm, kg, and so on) or as
a Z-score. Under a normal distribution with mean µ and standard deviation σ the Z-score for
a data value Y is defined as Z = (Y − µ)/σ. In statistics, it is customary to estimate µ and σ
from the data, but we can also take those values from an external reference table. For example,
heights of boys with an age t follow an approximate normal distribution with an age-specific
mean µt and an age-specific standard deviation σt. A reference table consists of estimates of
µt and σt at different ages t. We calculate the standard deviation score (SDS) for a boy with
height Y at age t as Z = (Y − µt)/σt, with µt and σt taken from the reference table. We
can compare this Z-score directly to the reference population, or compare two measurements
taken at different ages with the age effect removed. SDS calculation is standard methodology
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in child growth, and is available under many distributions. See Stasinopoulos and Rigby
(2007) for details.
Analysis of Z-scores is preferable to the raw scale for several reasons:

1. A growth curve that follows a centile in the reference distribution translates into a
horizontal line in the Z-score scale, which simplifies modeling;

2. Observations in the Z-score scale are closer to multivariate normality;

3. Analysis of Z-scores removes the overpowering impact of age and sex on growth, so it
becomes easier to highlight interesting variation within and between children;

4. Fitting Z-score data leads to fewer convergence issues.

In the area of child growth, it is easy to convert raw measurements into the Z-score scale, fit
the model, and convert back to the raw scale afterwards, if desired. There are several R pack-
ages that assist in the calculations: AGD (Van Buuren 2018b), anthro (Schumacher, Borghi,
and Polonsky 2020), childsds (Vogel 2020), growthstandards (Hafen 2021), nlreferences (Van
Buuren 2021b), sitar (Cole 2022) and zscorer (Myatt and Guevarra 2019).
The smocc_200 data contains the height measurement both in the original scale in cm (hgt)
and the Z-score scale (hgt_z) relative to the height references from the Fourth Dutch Growth
study (Fredriks et al. 2000). For illustration, let us calculate and check height SDS using the
AGD package.

R> library("AGD")
R> z <- with(smocc_200, y2z(y = hgt, x = age, sex = ifelse(
+ sex == "male", "M", "F"), ref = nl4.hgt))
R> identical(z, smocc_200$hgt_z)

[1] TRUE

Figure 3 shows that, as expected, the empirical Z-score distribution is close to the standard
normal. The few very extremely low heights correspond to pre-term born infants. Section 5.4
concentrates on modelling hgt_z. Function z2y() applies the inverse transformation of Z-
scores to the original scale. The following snippet converts hgt_z into the cm scale.

R> y <- with(smocc_200, AGD::z2y(z = hgt_z, x = age, sex = ifelse(
+ sex == "male", "M", "F"), ref = nl4.hgt))
R> all.equal(y, smocc_200$hgt, tol = 0.0001)

[1] TRUE

We have used the Dutch 1997 height references here, but similar transforms could be made
using other references. Many age- and sex-conditional references exist in the field of child
growth. In other fields, such references may be rare or uncommon. In that case, we may
achieve the benefits of Z-scale analysis by applying the broken stick model to the standardized
residuals of a preliminary non-linear regression of the outcome on time.
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Figure 3: Distribution of height SDS for 200 SMOCC children aged 0-2 years relative to the
Dutch 1997 length references. The distribution closely follows the normal distribution. A few
outliers in the left tail are genuine observations from children born pre-term.
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Figure 4: Detrended growth chart. Length growth of 52 infants 0-2 years expressed in the
Z-score scale. Each trajectory represents a child. Trajectories are almost flat in this repre-
sentation. More centile crossings occur near the start of the trajectory.

5.4. Model fitting

Figure 4 displays the growth curves of a subset of 52 children. The Z-score transformation
takes away the major time trend, so all trajectories are more or less flat. This display allows
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Figure 5: Observed data (blue) and fitted broken stick model (red) with a straight line between
birth and two years. While this model picks up the overall trend, it ignores any systematic
patterns around the line.

us to see an extremely detailed assessment of individual growth. Note how the measurements
cluster around ten ages: Birth, 1, 2, 3, 6, 9, 12, 15, 18 and 24 months. While the data
collectors rigorously followed the study design, variation in timing is inevitable because of
weekends, holidays, sickness, and other events.

Fit one line
As a start, let us fit a simple straight line model over the age range 0y–2y.

R> fit1 <- brokenstick(hgt_z ~ age | id, smocc_200, knots = c(0, 2))
R> get_knots(fit1, hide = "none")

[1] 0.00 2.00 2.68

The argument knots = c(0, 2) specifies that we wish to model the data over age range 0y–
2y as a straight line. Closer inspection by get_knots(fit1, hide = "none") reveals that
there is actually another knot at the right boundary at age 2.68 years. This knot needs to be
there to ensure that all data are taken into account, but it is not of direct interest. We can
plot individual trajectories as:

R> ids <- c(10001, 10005, 10022)
R> plot(fit1, group = ids, xlab = "Age (years)", ylab = "Length (SDS)")

Figure 5 shows the observed (blue) and fitted (red) trajectories of three selected children. As
a side note, we can actually plot the model over the full age range of the data by adding
argument hide = "none" to the plot() function (not shown). Observe that the model only
captures the overall age trend, so the fit to the data is moderate.

Fit two lines
We now extend to two connected lines. The first line should start at birth and end at the
age of one year. The second line spans the period between one to two years. The lines must
connect at the age of one year. We estimate and plot the model as follows:



Journal of Statistical Software 19

R> fit2 <- brokenstick(hgt_z ~ age | id, smocc_200, knots = 0:2)
R> plot(fit2, group = ids, xlab = "Age (years)", ylab = "Length (SDS)")

The resulting plot was already shown as Figure 2 (top line). The fit2 object holds the
parameter estimates of the model:

R> summary(fit2)

Class brokenstick (kr)
Variables hgt_z (outcome), age (predictor), id (group)
Data 1942 (n), 36 (nmis), 200 (groups)
Parameters 16 (total), 4 (fixed), 4 (variance), 6 (covariance), 2 (error)
Knots 0 1 2
Means -0.0450 0.0179 0.0611
Residuals 0.125 0.150 0.170 0.200 0.379 (min, P25, P50, P75, max)
Mean resid 0.182
R-squared 0.866

Variance-covariance matrix
age_0 age_1 age_2

age_0 1.226
age_1 0.494 0.841
age_2 0.454 0.794 0.874

The printed output lists the knots of the model at 0, 1 and 2 years. The left and right bound-
aries are located at 0 and 2.68, respectively, corresponding to the lowest and highest ages in
the data. The data for the right boundary are suppressed since the brokenstick() function
sets fit2$hide = "right" by default. The means entry lists the fixed effect estimates, which
we interpret as the average SDS per time point. The time-to-time variance-covariance matrix
covers four random effects (3 visits + 1 end knot). The two error parameters measure the
variability of the discrepancies between the model and the observed data. These three pa-
rameters (fixed, random, residual variance) are well interpretable and fully record the fitted
broken stick model.

Fit nine lines

The two-line model does not fit well. We substantially refine the model by adding a knot for
each scheduled visit. We code and run the model as

R> fit9 <- brokenstick(hgt_z ~ age | id, smocc_200, seed = 1,
+ knots = round(c(0:3, 6, 9, 12, 15, 18, 24)/12, 4))

With a small residual variance of 0.077, the nine-line broken stick model fits the observed
data very well.
Figure 2 (bottom line) illustrates that the nine-line model follows that data much better.
The training set includes all subjects. Depending on the study goals, we may wish to further
improve the model fit by removing children from the data. For example, there might be
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children for which few observations are available, children with diseases, or children with
trajectories that are very unusual or faulty. The distribution of the subject-specific residuals,
plotted by hist(fit9$sigma2j), shows there is one severe outlier. We can locate and plot
the outlier by plot(fit9, group = unique(fit9$data$id)[which(fit9$sigma2j > 4)]).
We could remove it to increase model fit, but of course, such removals may affect external
generalizability.

5.5. Prediction

Once we have a fitted model, we may obtain predictions. The subject(s) could be part of the
training sample, but could also consist of new children.

All subjects

The predict() function obtains predictions from the broken stick model. The function is
flexible, and allows for prediction of new subjects at arbitrary ages in a variety of output
formats. The simplest call

R> p1 <- predict(fit9, shape = "vector")
R> head(p1)

[1] 0.574 0.852 0.750 0.643 0.231 -0.168

produces a vector containing 1942 predictions at the observed ages. These values represent a
compromise between each person’s measurement and the global mean. In general, the fewer
and less extreme the data points of a person are, the closer the compromise will be toward
the global mean. The compromise is called the conditional mean of the posterior distribution,
the sum of the fixed and random effects.
We can obtain the predictions at each knot for every person by specifying the x = "knots"
argument, e.g.,

R> p2 <- predict(fit9, x = "knots", shape = "wide")
R> head(p2, 3)

# A tibble: 3 x 11
id `0` 0.083~1 0.166~2 `0.25` `0.5` `0.75` `1` `1.25` `1.5`

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 10001 0.574 0.856 0.739 0.650 0.237 -0.172 0.121 0.163 -0.193
2 10002 -0.189 -0.311 -0.260 -0.315 -0.229 -0.282 -0.336 -0.494 -0.490
3 10003 1.17 2.10 1.98 2.02 2.04 1.81 1.31 1.14 0.880
# ... with 1 more variable: `2` <dbl>, and abbreviated variable names
# 1: `0.0833`, 2: `0.1667`

The result p2 is a table with 200 rows with the values at 10 knots. These values represent the
regularized version of each observed curve, i.e., having a predicted value at each knot location.
Add argument hide = "none" to predict() to calculate values for the right boundary knot.
We may request the combination of both types of predictions in one call as



Journal of Statistical Software 21

R> p3 <- predict(fit9, x = "knots")
R> head(p3, 3)

.source id age sex ga bw hgt hgt_z .pred
1 data 10001 0.0000 female 40 3960 52.0 0.575 0.574
2 data 10001 0.0821 female 40 3960 55.6 0.888 0.852
3 data 10001 0.1588 female 40 3960 58.2 0.797 0.750

The result is a long matrix with 3942 rows. There are two special columns. Column .pred
contains the predicted values. Column .source identifies whether the row comes from the
training data (value data) or corresponds to one of the knots (value added). The number of
records from the training data and the knots is:

R> table(p3$.source)

added data
2000 1942

This dataset is perfectly suited to plot and summarizes data and model predictions.
Now suppose that we desire to predict height SDS at other ages, e.g., at 0.42, 1.33 and 4
years. We can do so by

R> head(predict(fit9, x = c(0.42, 1.33, 4), shape = "wide",
+ include_data = FALSE), 3)

# A tibble: 3 x 4
id `0.42` `1.33` `4`

<dbl> <dbl> <dbl> <dbl>
1 10001 0.369 0.0492 NA
2 10002 -0.257 -0.493 NA
3 10003 2.03 1.05 NA

The include_data = FALSE argument removes the observed data from the result to prevent
conversion into an overly large and inefficient wide matrix. Thus, we have considerable
flexibility to work with times that are not breakpoints. Remember though that the underlying
model does not change. For example, we cannot magically predict outside the model at age
4, so those values all get NA.

Single subject

Obtaining predicted values for selected subjects requires the group argument (case 3 in
predict()). For example

R> predict(fit9, group = 10001, shape = "vector")

[1] 0.574 0.852 0.750 0.643 0.231 -0.168 0.121 0.151 -0.150
[10] 0.142
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returns the vector of predictions for child 10001. Appending the child’s data is conveniently
done by removing the shape argument. Also, we can predict at other times using the x
argument, e.g., at ages 0.42 and 1.33 (case 4 in predict()).

R> predict(fit9, x = c(0.42, 1.33), group = 10001, shape = "vector")

[1] 0.5744 0.8519 0.7503 0.6428 0.2308 -0.1682 0.1214 0.1505
[9] -0.1500 0.1424 0.3693 0.0492

Now suppose that for subject 10001 we have additional height data at ages 0.42 and 1.33
years, say −0.5 SDS and −1 SDS, respectively. Can we predict the child’s trajectory with
these new points included? The answer is yes:

R> predict(fit9, x = c(0.42, 1.33), y = c(-0.5, -1), group = c(10001, 10001))

.source id age sex ga bw hgt hgt_z .pred
1 data 10001 0.0000 female 40 3960 52.0 0.575 0.61363
2 data 10001 0.0821 female 40 3960 55.6 0.888 0.78191
3 data 10001 0.1588 female 40 3960 58.2 0.797 0.67251
4 data 10001 0.2546 female 40 3960 61.2 0.661 0.46165
5 data 10001 0.5038 female 40 3960 67.2 0.290 0.00908
6 data 10001 0.7529 female 40 3960 70.2 -0.398 -0.28561
7 data 10001 1.0021 female 40 3960 75.7 0.202 -0.01344
8 data 10001 1.1745 female 40 3960 78.5 0.268 -0.13440
9 data 10001 1.5661 female 40 3960 81.8 -0.332 -0.39919
10 data 10001 2.0096 female 40 3960 88.3 0.227 0.05064
11 added 10001 0.4200 <NA> NA NA NA -0.500 0.15972
12 added 10001 1.3300 <NA> NA NA NA -1.000 -0.27760

The command (case 5 in predict()) appends two new records to the data of child 10001, and
recalculates the trajectory using all data from child 10001. Note the last two rows contain
the specified values in columns age and hgt_z, as well as the predicted value in .pred. These
predicted values are different from those calculated above under case 4 because of the two
additional observations. If desired the user could also fill values for columns sex, ga, and so
on.

New subject

Suppose we have measured two new children, Fred and Alice. We wish to obtain predictions
for both using the model fit9. The following snippet calculates predictions at both the
observed ages and at the knot locations:

R> data <- data.frame(age = c(0, 0.12, 0.32, 0.62, 1.1, 0.25, 0.46),
+ hgt_z = c(-1.2, -1.8, -1.7, -1.9, -2.1, -1.9, -1.5), id = c(
+ rep("Fred", 5), rep("Alice", 2)))
R> p <- predict(fit9, newdata = data, x = "knots")

We can plot the trajectories data by
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Figure 6: Broken stick model prediction for sparse data. Alice and Fred have few observations
(blue points). The broken stick model borrows information from other children to calculate
fitted trajectories over the full age range (red points).

R> plot(fit9, newdata = data, ylim = c(-2.5, 0), xlab = "Age (years)",
+ ylab = "Length (SDS)")

Alice contributes only two data points in the first half-year. The model expects that her height
SDS will be around −1 SD at the age of two years. Using the data up to 1.1 years, the model
predicts that Fred’s growth curve remains around −2.0 SD until Fred is 1.5 years, and then
increases to around −1.8 SD. While both predicted trajectories are extreme extrapolations,
the example illustrates that it is possible to make informed predictions using just a handful
of data points.
The brokenstick:::EB() function implements the empirical Bayes (EB) estimate (Skrondal
and Rabe-Hesketh (2009), p. 683). The procedure is the workhorse underlying the predict()
method.

5.6. Quality of prediction

Figure 7 is the scatter plot of the observed versus predicted values and provides a visual
representation of the accuracy of the prediction of the model in height SDS and cm scales.
Both plots suggest an excellent fit between the observed and fitted data. The percentage of
explained variance for the height SDS is high: 98.1%. The standard deviation of the residuals
is equal to 0.077 SD, a small value in the Z-scale. When back-converted to centimeters, the
scatter plot of the observed versus predicted values is even a little tighter. The estimate of
the proportion of explained variance is close to perfection: 99.9%. The standard deviation
of the residuals is 4 mm, about the size of the technical error of measurement (TEM) for
duplicate measurements in infants (Ismail et al. 2016, Table 2). The out-of-sample predictive
behavior is comparable. If we randomly split the data 100 times into 2/3 training data and
1/3 test data and calculate the proportion in the test data, we obtain even slightly higher
out-of-sample values: 98.4% and 99.9% over the 100 replications.
The model is as good as it can get. The uncertainties associated with the transformation from
varying observation times to repeated measures will be small. For all practical purposes, the
results from a linear mixed or multilevel model and a repeated measures model are likely to
be same.
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Figure 7: Comparison between predicted (vertical) and observed (horizontal) height in the
SDS scale (left) and CM scale (right) in the SMOCC data. The model almost perfectly
recreates the observed data.

5.7. Knot placement strategies

Fitting the broken stick model requires a specification of the knots. The choice of the knots in-
fluences the quality and usefulness of the solution, so exercise some care in setting appropriate
knot locations.
The brokenstick() function uses the same set of knots for all subjects. By default, the pro-
cedure places five internal knots (through the default argument k = 5) and sets the boundary
knots equal to the range of the predictor variable. The k argument is a quick way to add
k internal knots at equidense quantiles of the time variable. For example, specifying k = 1
puts a knot at the 50th centile (median), setting k = 3 puts knots at the 25th, 50th and
75th centiles, and so on. While convenient and quick, this option can result in sub optimal
knot placement that is not adequate for the problem at hand. In general, it is best to specify
explicit values for the knots argument.
Here are some suggestions for knot placement by the knots argument:

1. Rule of thumb: Limit the number of knots to the average number of data points per
subject;

2. If you want to predict at specific times, then specify knots at those time points;

3. Setting knots at scheduled visits is a sensible strategy for obtaining predictions at pre-
cisely the scheduled times;

4. Set equidistant knots if the analysis requires a fixed time interval;

5. Keep the number of knots low, for speed and simplicity. Having many (≥ 10) knots can
improve the fit to the data, but it will also increase calculation time and may result
in unstable solutions. For problems that require more than 10 knots, method = "kr"
(default) is faster than method = "lmer". Use control_kr() to improve stability by
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setting a correlation model. The brokenstick() function does not accept more than
50 knots;

6. Do not place knots in sparsely filled areas of the data, e.g., in-between two visits. Doing
so may result in erratic joins;

7. Optionally, check whether model.matrix(fit) produces a design matrix with all ele-
ments in the range [0, 1] and all rows summing to 1. Check colSums(model.matrix(fit))
to see how the total number of observations distributes over the knots;

8. Optionally, and in contrast to 6, add a knot equal to or slightly higher than the maximum
time value. Doing so ensures that the model specification does not depend on the range
of the training data. See the next point for an alternative;

9. Prevent data-dependent boundary knots by explicitly specifying the boundary argument
in brokenstick() to convenient values just outside the range of the x variable.

The brokenstick() function automatically sets the boundary knots to the range of the time
variable, and if necessary extends the boundary knots to include the range of knots. Normally,
you should concentrate on setting proper knots and be less concerned with the left and right
boundary knots. In some cases, the time range in the test data is larger than in the training
data. The following code block shows the effect of adding an extra knot, according to point
8 above.

R> train <- smocc_200[smocc_200$age < 2.1, ]
R> fit1 <- brokenstick(hgt_z ~ age | id, data = train, knots = c(0, 1, 2))
R> fit2 <- brokenstick(hgt_z ~ age | id, data = train, knots = c(0, 1, 2, 3))
R> p1 <- predict(fit1, newdata = smocc_200, shape = "vector")
R> p2 <- predict(fit2, newdata = smocc_200, shape = "vector")
R> table(is.na(p1))

FALSE TRUE
1908 34

R> table(is.na(p2))

FALSE
1942

The code trims the time range of the training data to age 2.1 and fits two models. Model
1 is limited to the time range [0, 2.1] years. Therefore it cannot predict above 2.1 years, so
its predictions will contain 34 NAs. One might say that this is the correct result because the
fitted model is not informative beyond the age of 2.1 years, and hence the NAs are useful and
plausible. For comparison, model 2 uses the same training and test data, but sets the wider
time interval [0, 3]. As a consequence, model 2 produces predictions for all test data. These
predictions might be useful in some cases. For example, simulation studies often resample or
regenerate data, so the time range may vary between replications. Setting the boundary to
include the largest range possible avoids problems caused by NA predictions. In general, to
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make the model specification independent of the training data, add an extra knot equal to or
slightly higher than the maximum time value in the train and test data.
Due to sparse data, broken stick estimates at the boundaries can be widely erratic and have
no useful interpretation. It is best to exclude those estimates from plots and calculations.
Depending on the data, erratic estimates can occur at both the left and right boundaries.
The code block below reverses age, so now the sparse data are at the left boundary. As a
consequence, we need to supply the hide = "left" (instead of the default hide = "right")
argument to the brokenstick() function. If desired, one may add the hide argument also
to plot() to overwrite fit2_mirror$hide.

R> data <- smocc_200
R> data$age <- -data$age
R> fit2_mirror <- brokenstick(hgt_z ~ age | id, data = data,
+ knots = c(-2, -1, 0), hide = "left")
R> plot(fit2_mirror, groups = c(10001, 10005, 10022))

6. Applications

6.1. Critical periods

The following question motivated the development of the broken stick model: At what ages
do children become overweight? Knowing the answer to this question provides handles for
preventive interventions to counter obesity. Dietz (1994) suggested the existence of three
critical periods for obesity at adult age: The prenatal period, the period of adiposity rebound
(roughly around the age of 5-6 years), and adolescence. Obesity formed in these periods is
likely to increase the obesity risk at adult age and its complications.
A growth period, bounded by ages T1 and T2, is critical for adult overweight if the following
criteria hold (De Kroon et al. 2010):

a. There is a significant difference in mean gain score Z2 − Z1 between subjects with and
without adult overweight;

b. The gain score Z2 − Z1 has an independent contribution over Z2 to the prediction of
Zadult. It not only matters where you were at T2 but also how you got there;

c. Z2 correlates highly with Zadult, so it is easier (i.e., with higher sensitivity and specificity)
to identify children at risk for adult overweight.

De Kroon et al. (2010) found that the age interval 2-6 years met all criteria for a critical
period. Our re-analysis tests the requirements for the following age intervals: Birth-4 months,
4 months-1 year, 1-2 years, 2-4 years, 4-6 years, 6-10 years and 10-14 years. Hence, we define
the following break ages:

R> knots <- round(c(0, 1/3, 1, 2, 4, 6, 10, 14, 24, 29), 3)
R> labels <- c("birth", "4m", "1y", "2y", "4y", "6y", "10y", "14y", "24y",
+ "")
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Figure 8: Scatter plot of BMI SDS and log(age + 0.2) for the Terneuzen cohort data. The
plot shows differential amounts of clustering of measurements around the specified break ages.
Clustering is tighter at some ages (birth, 1y, 14y) than at others (4m, 2y, 24y).

The Terneuzen Birth Cohort (De Kroon et al. 2008) comprises of 2604 children born around
the year 1980 in Terneuzen, The Netherlands. Figure 8 shows the body mass index (BMI)
standard deviation scores (SDS) against age in a random subset of 306 children. While we
may easily recognize scheduled visits at birth, 1y and 14y, the figure shows that observations
at other periods are less structured. Compared to the analysis in De Kroon et al. (2010), we
removed the knots at 8 days and 18 years (because these appear in sparse data areas) and
added knots at 4, 14 and 24 years. For aesthetic reasons, we set the right boundary knot to
29y, slightly higher than the maximum age in the data.

R> ctl <- lme4::lmerControl(
+ check.conv.grad = lme4::.makeCC("warning", 0.02, NULL),
+ check.conv.singular = lme4::.makeCC("ignore", 0.001))
R> fit_lmer <- brokenstick(bmi.z ~ age | id, data = mice::tbc,
+ knots = knots, boundary = c(0, 29), method = "lmer", control = ctl)

The control specification prevents warnings and messages that result from the over-parameterized
nature of the model. One may stabilize the model by restricting the variance-covariance ma-
trix, for example by the Argyle correlation model. As a result, the fitted trajectories will be
stabler in regions with sparse data. The following snippet applies the Argyle model.

R> fit_kr <- brokenstick(bmi.z ~ age | id, data = mice::tbc,
+ knots = knots, boundary = c(0, 29), seed = 41441, cormodel = "argyle")

Figure 9 shows the observed and fitted BMI SDS trajectories for both models. The per cent
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Figure 9: Observed and fitted BMI SDS trajectories of six subjects as predicted by the lmer
(red) and Argyle (green) models. The figure illustrates that fitted trajectories from the Argyle
model are stabler in areas with sparse data.

explained variance of BMI SDS is similar in both: 84 per cent. For the lmer model, the fitted
trajectory for subject 8 reveals a pretty rough estimate at the age of 24y. Persons 1259 and
7460 have very low (−2.5 SD) and high (+2.5 SD) BMI SDS at adult age, respectively. Note
that the model pulls the adult BMI SDS estimates (in red) towards the global mean, due
to the well-known bias-variance trade off (Gelman and Hill 2007, pp. 394). Pulling is more
vigorous at the extremes. The effect is negligible for more average trajectories, such as for
subject 2447. In the Argyle model, the trajectories are slightly smoother and more stable at
adult ages with limited data. The rough estimate for subject 8 has gone. There is still some
gravity towards the global mean at knot 24y for persons 1259 and 7460, but it is of lesser
magnitude. All fitted trajectories are well behaved. We, therefore, select the kr solution for
further analysis.
To identify critical periods, we need to predict adult overweight. In Figure 9, only three out
of six subjects had a BMI measurement at adult age. Since we do not want the results to
overly depend on fitted extrapolations, we restrict the analysis sample to persons with an
adult measurement. The following lines extract the repeated measures for 92 (out of 306)
individuals for whom we observed adult BMI.
R> tbc1 <- mice::tbc %>%
+ filter(!is.na(ao) & first) %>%
+ select(id, nocc, sex)
R> tbc2 <- mice::tbc.target %>%
+ filter(id %in% tbc1$id)
R> prd <- predict(fit_kr, mice::tbc, x = "knots", shape = "wide",
+ group = tbc1$id)
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Figure 10: Fitted BMI SDS trajectories for 92 subjects, of which 18 persons have adult
overweight (red = observed BMI at adult age > 1.3 SDS), while 74 individuals (gray) do
not have adult overweight. The figure shows that the BMI distribution before the age of
2y is similar in both groups, whereas BMI at ages 10y and 14y is highly predictive of adult
overweight.

R> data <- bind_cols(prd, select(tbc1, -id), select(tbc2, -id))
R> head(data, 3)

# A tibble: 3 x 14
id `0` `0.333` `1` `2` `4` `6` `10` `14` `24`

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 8 0.371 -0.440 0.366 1.45 1.10 0.606 0.489 0.544 -0.822
2 60 0.159 -0.372 -0.0442 -0.360 -0.595 -0.818 -1.03 -1.16 -1.46
3 97 1.68 0.569 0.948 1.90 1.28 0.838 0.444 0.238 0.397
# ... with 4 more variables: nocc <dbl>, sex <dbl>, ao <dbl>,
# bmi.z.jv <dbl>

Figure 10 shows the 92 fitted trajectories colored by adult overweight status (observed BMI
SDS > 1.3). It is evident that BMI SDS at ages of 14y or 10y is highly predictive of adult
overweight, but does that also hold in early childhood? Also, does a change in specific periods
predict later overweight? To answer such questions, we fit simple linear models to predict
observed (not fitted!) BMI SDS at adult age from the fitted BMI SDS trajectories. The
following code block fits two models for the period 4y–6y.

R> m1 <- lm(bmi.z.jv ~ `6`, data)
R> m2 <- lm(bmi.z.jv ~ `6` + I(`6`-`4`), data)
R> anova(m1, m2)

Analysis of Variance Table
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Model 1: bmi.z.jv ~ `6`
Model 2: bmi.z.jv ~ `6` + I(`6` - `4`)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 90 74.3
2 89 63.4 1 10.8 15.2 0.00019 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model m1 predicts adult BMI SDS from BMI SDS 6y, and explains 45.3 per cent of the
variance. Model m2 extends the model with the pre-gain between 4y and 6y. If the pre-gain
improves the prediction, then it matters how much you gained between 4y and 6y. In that
case, we would call the interval 4y–6y a critical period. Here we found that model 2 explain
53.6 per cent variance, thus 8.3 per cent more. The anova statement performs the formal
test. In this case, the pre-gain is significant over the last predictor at 6y. Thus, interval 4y–6y
classifies as a critical period. We can repeat these analyses for other age intervals, similar to
Table 3 in Kenward (1987).

6.2. Time-to-time correlations

The conditional gain score is defined as (Cole 1995)

conditional Zgain = Z2 − rZ1√
1 − r2

,

where Z1 and Z2 are the standard deviation scores at times T1 and T2, with T2 > T1, and
where r is the correlation between Z1 and Z2. The conditional gain corrects for regression to
the mean, which is its selling point over traditional velocity measures and is less sensitive to
measurement error (Van Buuren 2007). A practical difficulty is to obtain r for a given T1 and
T2. The time-to-time correlation matrix needs to be known. Also, we need to interpolate r if
T1 or T2 differs from the tabulated ages.
The broken stick model provides an estimate of the time-to-time correlation matrix. The
brokenstick object stores the variance-covariance matrix Ω of the random effects. For a
perfectly fitting model (with σ2 = 0) Ω equals the time-to-time covariance matrix, so then
get_omega(fit, cor = TRUE) gives the desired time-to-time correlation matrix. If σ2 > 0
then Ω overestimates the covariances between the observed data. In general, we need to
add the within-residual variance estimate to the diagonal, thus Ω + σ̂2I(ni) to estimate the
time-to-time covariance matrix.

R> fit <- brokenstick(hgt_z ~ age | id, data = smocc_200, knots = 1:4/2)
R> omega <- get_omega(fit)
R> t2t <- omega + diag(fit$sigma2, ncol(omega))
R> round(cov2cor(t2t), 2)

age_0 age_0.5 age_1 age_1.5 age_2
age_0 1.00 0.57 0.42 0.37 0.31
age_0.5 0.57 1.00 0.76 0.71 0.67
age_1 0.42 0.76 1.00 0.80 0.78
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age_1.5 0.37 0.71 0.80 1.00 0.82
age_2 0.31 0.67 0.78 0.82 1.00

In child growth, we expect that the correlation tapers off as the difference between T1 and
T2 grows. Also, for a fixed interval T2 − T1 we expect the correlation to increase with age.
Altering the number and location of the knots may change this. It is often useful to scan the
time-to-time correlation matrix for gross deviations of the expectations. If such happens, one
could simplify the model, for example, by subjecting Ω to a correlation model.

R> fit <- brokenstick(hgt_z ~ age | id, data = smocc_200,
+ knots = seq(0, 2, 0.1), cormodel = "argyle")
R> omega <- get_omega(fit)
R> t2t <- omega + diag(fit$sigma2, ncol(omega))
R> dim(t2t)

[1] 21 21

The above code fits a model with 21 equidistant breakpoints, which is likely large enough for
most purposes. It works because it restricts the covariance-matrix by the Argyle correlation
model, which summarizes the information by just two parameters. We may extract or re-
estimate these parameters and create a one-liner for calculating r.
We cannot indefinitely add breakpoints. Suppose we double the number of knots by setting
knots = seq(0, 2, 0.05). Then even kr is not able to cope and will abort with Error:
Sigma is symmetric but not positive. Thus, as always, be sensible in what you ask the
software to do for you.

6.3. Profile analysis

Profile analysis (Morrison 1976; Johnson and Wichern 1988) refers linear multivariate lin-
ear methods to test for differences in population means or treatment effects, typically by
regression analysis or multivariate analysis of variance (MANOVA). These methods assume
independence of subjects, organize the data at the subject level, and express parameters
of interest by linear combinations of outcomes, like change scores, means or other derived
quantities.
Krone, Boessen, Bijlsma, Van Stokkum, Clabbers, and Pasman (2020) report a statistical
analysis using the linear mixed model with time-varying individual subject data. This section
re-analyses the data from their Figure 4 using the broken stick model. The data are available
as the brokenstick::weightloss object.

R> data <- brokenstick::weightloss
R> ggplot(data, aes(day, body_weight, group = subject, color = condition)) +
+ scale_x_continuous(name = "Day", breaks = c(0, 21, 42, 63),
+ minor_breaks = c(7, 14, 28, 35, 49, 56)) + ylab("Body weight (KG)") +
+ geom_line() + geom_point(size = 0.7) + theme_light() +
+ theme(legend.position = "bottom")

Figure 11 charts daily body weight measurements of twelve individuals who were followed
for nine weeks. The investigators subdivided the total duration into three periods of three
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Figure 11: Daily body weight (KG) for 12 subjects followed for 63 days under one of three
conditions. The graph illustrates the irregular nature of the data. Some trajectories are almost
complete and regular, whereas others miss many daily measurements or display surprising
jumps around their average weight level.

weeks. Period one (week 1–3) acted as a control period. During period 2 (week 4–6), the
investigators stimulated participants to restrict food intake, and during period 3 (week 7–9)
the experimenters promoted physical activity. Subjects 4 and 12 received the interventions
in the reverse order. See Krone et al. (2020) for more detail.
Most of these subjects adhere quite well to the data collection design. Some trajectories show
gaps due to missed measurements. The most extreme example is the trajectory that hovers
around the value of 95 kilograms (KG). Other curves display stretches of lines, suggesting
that missed measurements were linearly interpolated. One of the series shows some surpris-
ing spikes, likely to be measurement errors. All in all, these data perfectly illustrate the
inescapable imperfections of real data.
The remainder of the section discusses two ways to estimate the effect of diet and physical
activity on body weight.

Constant model

R> data <- brokenstick::weightloss
R> fit0 <- brokenstick(body_weight ~ day | subject, data,
+ knots = c(0, 21, 42, 63), degree = 0, method = "lmer", hide = "none")
R> plot(fit0, size_y = 0, color_y = rep("gray", 2),
+ scales = "free_y", xlab = "Day", ylab = "Body weight (KG)",
+ n_plot = 12, ncol = 4)
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Figure 12: Constant model. Observed and fitted trajectories for a model that summarizes
each experimental period by a constant. The estimated level is approximately the mean of
the measurements made during the period. The model produces sudden jumps at ages when
the condition changes and thus fails to describe the data well.

The model underlying Figure 12 summarizes the trajectory within a period by a constant,
the mean. We obtain an estimate of these means by setting the degree = 0 argument. This
model gives a fair representation of the trajectory of subjects 9 (a persistent downward trend),
1 and 5 (no trend). On the other hand, the model fails to capture patterns for subjects 2, 4
and 8 (rebound in period 3) or 11 (inverse rebound).
It is straightforward to quantify the effects of Diet and Activity relative to Control. The
next code snippet calculates these effects per person, accounting for the intervention order
reversal for subjects 4 and 12.

R> prd <- data.frame(predict(fit0, data, x = "knots", shape = "wide"))
R> control <- prd[, 2]
R> diet <- prd[, 3]
R> diet[c(4, 12)] <- prd[c(4, 12), 4]
R> activity <- prd[, 4]
R> activity[c(4, 12)] <- prd[c(4, 12), 3]
R> effects <- 1000 * data.frame(
+ diet_control = diet - control,
+ activity_control = activity - control,
+ activity_diet = activity - diet)
R> round(effects)
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diet_control activity_control activity_diet
1 174 179 5
2 -1055 -1759 -704
3 961 1045 84
4 -1846 -723 1123
5 371 149 -223
6 -1582 -3269 -1687
7 -158 -514 -356
8 -614 -1057 -443
9 -1166 -2039 -872
10 -594 -1210 -616
11 63 -559 -621
12 -1322 -425 897

R> round(colMeans(effects))

diet_control activity_control activity_diet
-564 -848 -284

The average weight under caloric restriction is 564 grams lower than control. We find a 848
grams lower body weight when we stimulate physical activity. We could be tempted to believe
that exercise reduces weight more than a diet. However, except for subjects 4 and 12, the
investigators administered the activity treatment after the diet treatment, so the difference
relative to control represents the combined effect of diet and activity on body weight. It might
be more relevant to study the difference between training and diet (third column). The average
difference of -284 grams suggests that diet is more effective than physical activity. Realize
that also this estimate is not entirely satisfactory. First, subjects 4 and 12 had a reversed
administration, so the difference does not make sense for them. Second, as anyone who has
tried to lose weight can attest, “quick wins” are more likely in period 2 than in period 3.
Although it is possible to account for these sequence effects, there is a more intuitive analysis
of the data.

Broken stick model

R> ctl_lmer <- lme4::lmerControl(
+ check.conv.grad = lme4::.makeCC("warning", tol = 0.01))
R> fit1 <- brokenstick(body_weight ~ day | subject, data,
+ knots = c(0, 21, 42, 63), method = "lmer",
+ control = ctl_lmer, hide = "none")
R> plot(fit1, size_y = 0, color_y = rep("gray", 2),
+ size_yhat = 1.5, scales = "free_y", xlab = "Day",
+ ylab = "Body weight (KG)", n_plot = 12, ncol = 4)

Figure 13 shows the same data as in Figure 12 but now fitted by the linear broken stick
model. This model also suggests a persistent downward trend for subject 9 and an absence of
trend for participants 1 and 5. Also, the model now correctly identifies the prominent zig-zag
patterns for persons 2, 4, 8 and 11 across the three experimental periods.
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Figure 13: Broken stick model. Observed and fitted trajectories for a model that summarizes
each experimental period by a line. The slope indicates the change during the period. The
model connects lines from adjacent periods and provides an informative description of the
data.

A natural way to quantify the effect of the intervention is to calculate the before-after estimate
per period. For example, for person 2 the effect of diet is 60, 933 − 63, 671 = −2, 738 grams,
of activity is 62, 635 − 60, 933 = +1, 701 grams. The following code accounts for the alternate
treatment ordering of subjects 4 and 12.

R> prd <- data.frame(predict(fit1, data, x = "knots", shape = "wide"))
R> control <- prd[, 3] - prd[, 2]
R> diet <- prd[, 4] - prd[, 3]
R> diet[c(4, 12)] <- prd[c(4, 12), 5] - prd[c(4, 12), 4]
R> activity <- prd[, 5] - prd[, 4]
R> activity[c(4, 12)] <- prd[c(4, 12), 4] - prd[c(4, 12), 3]
R> effects <- 1000 * data.frame(
+ control = control,
+ diet = diet,
+ activity = activity)
R> round(effects)

control diet activity
1 -303 459 -411
2 95 -2738 1701
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3 847 479 570
4 117 682 -2168
5 637 -606 659
6 -756 -2594 -833
7 251 -783 277
8 -297 -1112 349
9 -1006 -1389 -424
10 -190 -1096 -290
11 -908 929 -2573
12 -902 -423 -468

R> round(colMeans(effects))

control diet activity
-201 -683 -301

The average effects are −201 grams (control), −683 grams (diet) and −301 grams (activity).
Although not statistically significant, the slight decrease of 201 grams during the control
period suggests that weight monitoring by itself may motivate the participant to lose weight.
The effect estimates for diet and activity are of similar magnitude as before. Still, they can
be sizable discrepancies at the individual level, e.g., for subjects 2 or 11.
We may obtain a simple estimate of the sequence effect by linear regression as

R> df <- data.frame(y = 1000 * c(diet, activity),
+ activity = rep(c(0, 1), each = 12),
+ activity2 = rep(c(rep(0, 3), 1, rep(0, 7), 1), 2))
R> coef(lm(y ~ 1, data = df))

(Intercept)
-492

R> coef(lm(y ~ activity, data = df))

(Intercept) activity
-683 382

R> coef(lm(y ~ activity + activity2, data = df))

(Intercept) activity activity2
-662 382 -123

Variable y is the change in grams observed during periods 2 and 3, activity is a dummy
variable for treatment (0 = diet, 1 = activity) and activity2 is a dummy variable indicating
that activity occurred in period 2 (0 = no, 1 = yes). The average loss in weight per period
is equal to 492 grams. The second model shows that diet reduces body weight more than
activity (by 382 grams). The third model indicates that activity applied in period 2 is more
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effective than in period 3, as it reduces weight with an additional 123 grams. Of course, bear
in mind that we calculated these results on very few individuals. Hence, they are sensitive to
substantial estimation error.
This application demonstrates that the broken stick model can effectively capture rapid linear
changes in experiments. Even though the actual timing of the observations may be erratic,
it is easy to define, interpret and calculate intuitive effect estimates at the individual level.
Note that the analysis here assumed an instantaneous effect of the interventions. If we expect
a delay, then we may right-shift the knots by a few days and re-estimate the broken stick
model. By varying the number of days, we may be able to detect the optimal delay factor.

6.4. Curve interpolation

Problem

A growth chart visualizes the individual trajectory relative to a set of centile lines. We may
store a centile line as a set of coordinates with a relatively dense age grid. If we connect the
adjacent vertices by a straight line, the centile will appear as smooth in time. However, this
plotting method runs into trouble when ages are wide apart. This section shows how we can
create a realistic interpolation with sparse time data.

Interpolation in measurement scale

Suppose we measured the length of a boy at the ages of 1 month (52.6 cm) and 14 months
(81.7 cm). The following code block uses the AGD::y2z() function to convert the measure-
ments to SDS relative to the reference of the Fourth Dutch Growth Study.

R> boy <- data.frame(x = c(1, 14), y = c(52.6, 81.7))
R> ref <- AGD::nl4.hgt
R> boy$z <- AGD::y2z(y = boy$y, x = boy$x/12, sex = "M", ref = ref)
R> boy$z

[1] -0.980 0.994

During the period the boy grows from moderately short (about −1.0 SD at month 1) to
relatively tall (about +1.0 SD at month 14). Figure 14 shows the usual representation of the
growth chart with a straight line drawn between the two values. Due to the concave shape
of the centile lines, the straight line that connects the two measurements starts at −1.0 SD,
then touches the −2.0 SD centile around 4.5 months, is back at −1.0 SD at the age of 7.5
months, crosses the 0.0 SD line at 11.5 months, and ends at +1.0 SD at 14 months. The
right hand side graph portrays the interpolated growth curve in the SDS scale. Since length
growth during infancy is not linear in time, finding a real growth curve like this is extremely
unlikely. Since we have just two data points smoothing the data does not help either.

Interpolation in the SDS scale

A first alternative is to apply the linear interpolation in the SDS scale. This option is attractive
because centile lines are straight in the SDS scale. The red curves in Figure 14 illustrate
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Figure 14: The effect of three interpolation methods (linear in cm (blue), linear in SDS (red),
and by the broken stick model (green)). For each method, the vertical line indicates the age
at which the interpolated curve crosses the mean of the age-conditional length distribution.
Both linear methods results in unrealistic trajectories at intermediate ages. For example, all
points on the blue lines are too low. Interpolation by the broken stick method is the only
alternative that correctly describes faster growth during the first months.

interpolation in the SDS scale. By definition, the line that connects the measurements is
straight in the SDS score scale. In the cm scale, the representation is more realistic and more
pleasing to the eye. The curve crosses the 0 SD line halfway, at 7.5 months.
While this approach is a considerable improvement over interpolation in the Y -scale, it is still
not ideal. The assumption underlying this interpolation is that the SDS increment is constant
across time. This assumption is false here, however. Since length growth is faster during the
first half-year, we expect that the larger share of the increment to occur during the earlier
months. In other words, the cross-over point at 7.5 months is too late.

Interpolation by the broken stick model

The second alternative is a model-based interpolation. Assuming the availability of a fitted
broken stick model, we specify a time grid, say twice a month, and predict the length at these
ages given the data from the observed trajectory. The expected curve represents the most
likely values under the model at the intermediate ages. The following code calculates the
relevant estimates from the fit_200 fitted model:

R> age <- round(seq(1, 14, 0.5), 3)
R> z <- rep(NA, length(age))
R> z[1] <- boy$z[1]; z[length(z)] <- boy$z[2]
R> zout <- predict(fit_200, x = age/12, y = z, shape = "vector")
R> yout <- AGD::z2y(x = age/12, z = zout, ref = ref)

The green curve in Figure 14 shows the results of the broken stick model. The curve in
the measurement scale represents the most likely course according to the broken stick model.
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Note that now the child realizes the larger share of the change during the first few months. As
a result, the cross-over point where the predicted value intersects the 0 SD line is now around
4.5 months, considerably earlier than obtained by the two other interpolation methods. The
right hand side plot confirms the steeper slope in the first part. Note that this method treats
rising and declining curves alike. For example, if the boy’s length were 57 cm at month 1
(+1.0 SD) and 76 cm at month 14 (−1.0 SD), the cross-over point would also be around 4.5
months (not shown).
Observe that this method leaves the world of pure interpolation and moves towards an approx-
imation of the data by a model. The observed and predicted lengths are not exactly equal.
The difference is so small that we may hardly notice the discrepancy when plotted in the
measurement scale, but it is more conspicuous when plotted as SDS. Thanks to the added
knowledge of the child growth process, the broken stick model provides the most realistic
expected trajectory at the intermediate ages.
Note that the green curve is not entirely smooth, which is due to the linearity assumption
of the model. We could create a smoother curve by using a finer grid of break points.
Alternatively, we could use a correlation model for predicting the correlation at intermediate
ages. The latter option is more convenient, but is currently not possible in predict(). Adding
support for correlation models is an area for further development.

6.5. Multiple imputation
Remember from Section 5.5 that the broken stick estimates are conditional means. We may
be tempted to analyze these estimates as if they were “just data”, but they do not have the
same variability as the real data. For example, suppose we calculate the correlation matrix
of the broken stick estimates. We know that the values in this matrix will exceed those from
the underlying observed data. Not accounting for this fact leads to overconfident predictions
and results that are too good to be true.
Multiple imputation (Rubin 1987; Van Buuren 2018a) restores variability by adding noise.
We may fit standard complete-data software to the imputed data, and obtain valid regression
weights, confidence intervals and p values under a wide range of conditions.
By default, method kr executes 200 iterations of the Kasim-Raudenbush sampler. The nimp
argument to the control_kr() function specifies the number of multiple imputations. The
following call to the brokenstick() function creates and plots 20 imputations for each missing
outcome (hgt_z here).

R> knots <- round(c(0, 1, 2, 3, 6, 9, 12, 15, 18, 24)/12, 4)
R> data <- bind_rows(smocc_200[!is.na(smocc_200$hgt_z), ],
+ expand.grid(id = unique(smocc_200$id), age = knots))
R> fit_kr <- brokenstick(hgt_z ~ age | id, data = data,
+ knots = knots, nimp = 20, seed = 15244)
R> plot(fit_kr, show = c(TRUE, FALSE, TRUE),
+ group = c(10001, 10005, 10022),
+ xlab = "Age (years)", ylab = "Length (SDS)")

Figure 15 displays the observed data from three persons plotted on top of 20 imputed trajec-
tories. The within-person within-time average over the gray trajectories approximates to the
broken stick estimate (not shown here). The observed curve in each panel occasionally strays
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Figure 15: Observed data (blue) and 20 imputed trajectories (gray) for three subjects from
the SMOCC data. Imputed trajectories are possible realizations of the observed data in the
hypothetical case that the observations are made at the specified break ages. Note that the
pattern of child 10001 is more certain than of child 10022.

towards the boundaries of the gray bundle. This behavior is as expected and indicates that
the blue curve performs like a gray curve.
Section 6.2 showed how we can estimate the time-to-time correlation matrix. An alternative
way is to calculate it from the imputed data, as follows:

R> cormat <- cor(matrix(t(fit_kr$imp), ncol = length(knots)))
R> dimnames(cormat) <- list(knots, knots)
R> round(cormat, 2)

0 0.0833 0.1667 0.25 0.5 0.75 1 1.25 1.5 2
0 1.00 0.68 0.70 0.63 0.47 0.43 0.38 0.33 0.32 0.24
0.0833 0.68 1.00 0.81 0.79 0.70 0.58 0.53 0.51 0.50 0.39
0.1667 0.70 0.81 1.00 0.81 0.73 0.60 0.52 0.49 0.52 0.42
0.25 0.63 0.79 0.81 1.00 0.75 0.64 0.58 0.56 0.53 0.46
0.5 0.47 0.70 0.73 0.75 1.00 0.83 0.81 0.73 0.75 0.65
0.75 0.43 0.58 0.60 0.64 0.83 1.00 0.84 0.77 0.77 0.71
1 0.38 0.53 0.52 0.58 0.81 0.84 1.00 0.84 0.81 0.76
1.25 0.33 0.51 0.49 0.56 0.73 0.77 0.84 1.00 0.84 0.82
1.5 0.32 0.50 0.52 0.53 0.75 0.77 0.81 0.84 1.00 0.83
2 0.24 0.39 0.42 0.46 0.65 0.71 0.76 0.82 0.83 1.00

Another important application of the multiply-imputed curves is to obtain correct confidence
intervals and p values for estimates of scientific interest. The most convenient way to do this
is to convert the brokenstick object into an object of class ‘mids’, as defined by the mice
package. The brokenstick package currently has no features that perform the conversion.
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Figure 16: Curve matching. Predict infant length at 14 months given the length data up to 6
months using 10 matches. The red curve is the observed data for the target child. The bundle
of gray curves are observed length curves from other children that match the trajectory of the
target child up to month 6. The blue line represents the most likely future trajectory for the
target child towards month 14. The variation between the gray curves represents the amount
of uncertainty of the trajectory prediction.

6.6. Curve matching

Curve matching (Van Buuren 2014) is a tool to assist in the interpretation and prediction
of individual growth curves. The idea is as follows. Suppose we measure the growth of the
target child up to half a year and plot the measurements onto his or her growth chart. Curve
matching is a nearest-neighbor technique that relies on historical growth data. It finds, say,
ten other children who are similar to the target child, and adds the curves of those matches
to the child’s chart. If the matching is done right, then the bundle of historic growth curves
suggests how the target child will develop in the future.
Figure 16 is a screen shot of a demo shiny app (Chang et al. 2022) of the Joint Automatic
Measurement and Evaluation System (https://tnochildhealthstatistics.shinyapps.
io/james_tryout/). The red curve corresponds to five measurements of the target child
made during the first six months. The ten gray curves are historic growth curves from the
ten matched children. We may define similarity in many ways. Here we use a linear model
to predict length at the age of 14m from previous length data. The distance between the
target child and another child is equal to the difference between their predicted values. The
procedure lifts the data of the matches from the database, and plots the observed growth

https://tnochildhealthstatistics.shinyapps.io/james_tryout/
https://tnochildhealthstatistics.shinyapps.io/james_tryout/
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curves onto the chart as gray curves. This method for finding nearest neighbors is known
as predictive mean matching and has grown into a powerful technique for missing data (Van
Buuren 2018a). The bundle of gray curves indicates possible future trajectories of the target
child. The wider the bundle, the more uncertain future growth will be (Toet, Van Erp, Boert-
jes, and Van Buuren 2019). The mean of the bundle is the most likely path. Graphically it
is the dotted blue curve between the last measurement and the age of the outcome.
Let’s look at a numerical example. We split the data into one target child and 199 donor
children, and fit a broken stick model to the donor set.

R> donor_data <- smocc_200 %>%
+ filter(id != "10001")
R> target_data <- smocc_200 %>%
+ filter(id == "10001" & age < 0.51)
R> knots <- round(c(0, 1, 2, 3, 6, 9, 12, 15, 18, 24)/12, 4)
R> fit <- brokenstick(hgt_z ~ age | id, data = donor_data,
+ knots = knots, seed = 15244)

All time points from the donor data enter the broken stick model. Note that the target_data
contains only observations from the first five visits.
We now fit the prediction model on the child-level donor data. The prediction model contains
the broken stick estimates for length SDS up to 6 months, as well as sex, gestational age and
birth weight as covariates.

R> covariates <- donor_data %>%
+ group_by(id) %>%
+ slice(1)
R> bse <- predict(fit, donor_data, x = "knots", shape = "wide")
R> donors <- bind_cols(covariates, select(bse, -id))
R> model <- lm(`1.25` ~ `0` + `0.0833` + `0.1667` + `0.25` + `0.5` +
+ sex + ga + bw, data = donors)
R> summary(model)

Call:
lm(formula = `1.25` ~ `0` + `0.0833` + `0.1667` + `0.25` + `0.5` +

sex + ga + bw, data = donors)

Residuals:
Min 1Q Median 3Q Max

-1.3328 -0.2567 -0.0151 0.2634 1.4653

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.87e-01 8.99e-01 0.54 0.589
`0` 6.74e-02 5.33e-02 1.27 0.207
`0.0833` 5.89e-02 8.69e-02 0.68 0.499
`0.1667` -2.55e-01 9.92e-02 -2.57 0.011 *
`0.25` -2.16e-01 1.07e-01 -2.01 0.046 *
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`0.5` 1.21e+00 7.54e-02 16.07 <2e-16 ***
sexmale 9.13e-02 6.42e-02 1.42 0.157
ga -7.05e-03 2.25e-02 -0.31 0.754
bw -7.53e-05 1.09e-04 -0.69 0.491
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.436 on 190 degrees of freedom
Multiple R-squared: 0.777, Adjusted R-squared: 0.767
F-statistic: 82.5 on 8 and 190 DF, p-value: <2e-16

The next step is to extract model predictions for both donors and target and find the ten
closest donors.

R> donors_pred <- predict(model)
R> names(donors_pred) <- donors$id
R> target <- bind_cols(
+ slice(target_data, 1),
+ select(predict(fit, target_data, x = "knots", shape = "wide"), -id))
R> target_pred <- predict(model, newdata = target)
R> matches <- sort(abs(donors_pred - target_pred))[1:10]
R> matches

11013 10032 11035 10093 10051 11063 11086 11083 11102
0.00422 0.00578 0.01833 0.01889 0.02507 0.02657 0.03069 0.03744 0.05118

11049
0.05922

The above steps contain the basic ingredients of the find_matches() function in the chart-
plotter package (Van Buuren 2021a). Finally, let us study the observed and fitted trajectories
of the ten matches.

R> ids <- as.numeric(names(matches))
R> plot(fit, group = ids, xlim = c(0, 1.4), size_y = 1, size_yhat = 0,
+ xlab = "Age (years)", ylab = "Length (SDS)", ncol = 5)

The ten trajectories are all close to the prediction (0.101 SD) for the target child at the age of
1.25 years. Note that this does not guarantee that the histories are identical. Most matches
have relatively flat curves, but a few (10051, 11023, 11086) show striking rising patterns.
Nevertheless, these candidates are the best in terms of the model prediction.
If we wish the curves of the matches during the first six months to be closer to the target case,
we could consider alternative metrics. A simple measure is the sum of squares differences of
the broken stick estimates. Such a selection may be visually more pleasing, at the expense
of prediction accuracy. On the other hand, we are less tied to setting one particular future
time point, so other measures may work better when “future” is more vaguely defined as
a time interval. It is still an open research question where we strike a balance. Whatever
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Figure 17: Curve matching. Observed (blue) and fitted (red) trajectories of the 10 closest
matches for subject 10001. Fitted values at the outcome age (1.25y) are close to the predicted
value for the target child (0.101 SD).

the objectives or preferences from the user might be, the curve matching methodology, as
illustrated here, has tremendous flexibility and is easy to adapt.

7. Conclusion

7.1. Overview

This paper introduces a new approach to solve the problem of irregular longitudinal data.
The method absorbs the time-dependent information into a set of broken stick estimates at
the subject level. The primary advantage is that it simplifies the analysis by splitting the
modelling problem into two steps. First, solve the timing problem, and then solve the sub-
stantive/scientific problem. The method is mathematically simple, conceptually appealing,
yet principled.

7.2. Distinctive features

The assumptions of the model cover many cases of practical interest: A straight line be-
tween breakpoints, a multivariate normal distribution for the random effects, and the MAR
assumption including future data. Despite the relatively low number of model parameters,
it is possible to obtain a close fit to the data, sometimes almost up to perfect reconstruction
(c.f., Figure 7). There is no need to specify equidistant breakpoints. Applications in human
growth and development are often more natural using non-uniformly spaced knots, which is
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very easy to model. Many people find it easier to understand the raw data values than the
summaries. The broken stick model invites visualization of the actual data points against
time and makes it is easy to portray uncertainty as a bundle of curves. Such direct visualiza-
tion options contribute to the explainable and responsible personalized analyses that appeal
to a broad user group.

7.3. Current limitations

The broken stick model, as presented here, uses just three variables: time, measurement and
group. This design choice simplifies interpretation and estimation. The lack of covariates in
the model implies that the transformation from irregular data to repeated measures is identical
for every subject. As long as the residual error is small, the relations with not-in-the-model
variables thus remain intact. The possibility to include covariates in a second-round enhances
modular modern analytic pipelines. Yet, some will prefer the direct estimation of all effects
in one more extensive analysis. The current package does not support covariates.
The broken stick method is intended for aligning observations, where every individual has
the same number and location of breakpoints. The technique assumes that subjects share the
same time axis. In our applications, synchronization at the start was most natural (e.g., birth,
start of experiment), which is easy to do. In some cases, one might prefer an anchor in the
middle, e.g., at menarche, which occurs at different ages for different individuals (Naumova,
Must, and Laird 2001), and the scientific interest is on what happens before and after the
anchor. It could also make sense to fasten the end, e.g., at graduation or death. The choice
of the anchor may matter less for cyclic processes. For example, in weekly data it may be
more important to anchor on day of the week than on the actual date or age. Irrespective of
the actual timings of the observed data, the number and location of breakpoints is identical
for all subjects. The method is less suited for applications where there is no sensible common
time axis, or when the breakpoints should vary between individuals.

7.4. Software

The Kasim-Raudenbush sampler (Kasim and Raudenbush 1998) is both fast and flexible. It
produces estimates of the residual error variance per subject, can accommodate for correlation
models and supports multiple imputation out-of-the-box. More research is needed to establish
its statistical properties especially compared to lmer() and other established methods. It
would also be interesting to study the suitability of the correlation models implemented in
the lme4qtl package (Ziyatdinov et al. 2018). As no training data are stored, instances of the
light ‘brokenstick’ class objects are tiny, often 15–20 Kb.
Features not implemented, but that could be useful in future versions include a separate
impute() function that inputs class ‘brokenstick’ and returns class ‘mids’, a Trelliscope
(Hafen and Schloerke 2020) viewer to quickly peruse hundreds of individual model fits, an
extension to multivariate time-varying and child-level data, and a generalization to degree
> 1 to support quadratic and cubic splines.

7.5. Methodological advances

The primary modelling task for the user is to set the proper knot locations. One might
envision scenarios where we want to search for the “best” locations. It is not yet clear how
we should do this, and how far we could automate knot placement strategies.



46 Broken Stick Model for Irregular Longitudinal Data

We need more insight into the statistical properties of procedures that execute the analysis
as a sequence of steps. The relative pro’s and con’s of choices between multiple imputation
versus random effects are not yet fully understood.
The current procedure assumes that the within-person error is constant across all time points.
However, we might expect that observing more data close to the breakpoint will reduce the
uncertainty of its estimate. In some applications, we might require that the estimate should
equal the observed data value when the observation time coincides with the breakpoints.
While models for such scenarios are considerably more complicated, they could also increase
efficiency.

7.6. Conclusion

This paper has highlighted various applications of the broken stick model: Critical periods,
time-to-time correlation, profile analysis, curve interpolation, multiple imputation and per-
sonalized prediction. These applications certainly do not exhaust the potential of the model.
My hope is that the availability of the software will stimulate creative uses, ideas and exper-
iments.

Computational details
I am running a Mac Studio, MacOS Venture, V 13.1, 32GB RAM with R version 4.2.2 (2022-
10-31) and brokenstick version 2.5.0 (2023-03-22).
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