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In situ spectroscopy and diffraction to look inside the 
next generation of gas diffusion and zero-gap 
electrolyzers 
Jan den Hollander and Ward van der Stam   

Electrolyzers allow for the sustainable conversion of chemical 
waste (e.g. nitrous oxides, NOx, or carbon dioxide, CO2) into 
valuable chemicals or building blocks (e.g. ammonia or 
hydrocarbons). There is a constant search for new and 
improved materials (electrocatalysts) that can facilitate these 
complex chemical reactions with optimized activity, selectivity, 
and stability. In order for electrolyzers to become economically 
feasible, it is of utmost importance that they perform at high 
current density > 100 mA/cm2 (activity), since this scales with 
chemical reaction rate. However, if high current density is only 
achieved for a short period of time (stability), the electrolyzer 
has to be regenerated, which is a costly endeavor. For this 
purpose, chemical engineers have focused on gas diffusion 
electrodes (GDE) or membrane electrode assemblies (MEA) in 
recent years, but these cell configurations are prone to rapid 
deactivation and salting. In situ spectroscopy and diffraction 
techniques can shed light on the parameters that influence 
catalyst (de)activation, but application of the technique of 
choice depends heavily on the reaction conditions and hence is 
not straightforwardly applied to electrolyzers that operate at 
high current density. This review addresses the recent 
developments within the community for in situ characterization 
of GDE and MEA electrolyzers, and opportunities for future 
studies are highlighted, which are aimed to stimulate discussion 
and advancement of the field. 
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Introduction 
Electrolyzers promise to play a pivotal role in the energy 
transition, and have already shown tremendous potential 
for the production of renewable hydrogen and other 
valuable compounds [1,2]. For example, electrochemical 
CO2 reduction (eCO2R) is a promising method of re
using atmospheric CO2 to sustainably produce chemical 
building blocks as a means to store (excess) renewable 
energy in chemical bonds [3,4]. In recent years, sig
nificant progress has been made in terms of two main 
descriptors of catalysis: electrocatalytic activity (current 
densities 10–100 mA/cm2) and selectivity (approaching 
unity) of electrolyzers [5]. It has been shown that activity 
and selectivity are heavily influenced by catalyst design 
strategies, such as grain boundaries, nanoparticle mor
phology, and electrocatalyst composition [5–8]. How
ever, in order for the technological development and 
implementation of electrolyzers to take flight, the pro
duction rates have to be scaled up to current densities of 
500–1000 mA/cm2 for prolonged operation time (> 500 
hours) [9–11]. In order to reach these higher current 
densities, recent cell design strategies are being explored 
to go beyond traditional H-shaped electrochemical 
cells [12–14]. Porous gas diffusion electrodes (GDEs) 
and membrane electrode assemblies (MEAs) have 
gained extra attention, because they circumvent mass 
transport limitations associated with the low solubility of 
CO2 in aqueous media [15,16]. Owing to their high CO2 
availability and relatively low cell resistance [17], GDEs 
and MEAs can run at elevated current densities 
(> 100 mA/cm2), which translates into more efficient 
CO2 conversion into chemicals [18]. However, despite 
their increased performance, the presence of a delicate 
gas–solid (MEA) or gas–solid–liquid (GDE) interface 
has a detrimental effect on the third descriptor of cata
lysis: stability [19–22]. It is observed that GDEs and 
MEAs deactivate rapidly, often ascribed to problems 
such as flooding, carbonate salt formation, or catalyst 
deactivation [17,23–25]. 

To investigate the degradation mechanisms of GDEs 
and MEAs, in situ/operando spectroscopy and character
ization are necessary as they can increase our under
standing of (de)activation events on/in the porous 
electrodes during eCO2R and other electrochemical re
actions of interest [26]. However, we have to realize that 
in situ characterization at high current densities poses 
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additional challenges that potentially influence the 
measurements, such as substantial heating and bubble 
formation [27]. Next to that, this might also induce faster 
(de)activation of the electrocatalyst, highlighting the 
need for increased spatiotemporal resolution of the 
characterization method of choice. Therefore, in situ 
characterization of GDEs and MEAs is a whole different 
game compared with in situ characterization in small- 
scale electrolyzer cells (area 1–10 cm2, current density 
10–100 mA/cm2), and the rules of the game tend to 
change during the measurement. 

In general, in situ/operando spectroscopy and diffraction 
have already proven to be successful in revealing and 
understanding electrocatalyst properties by probing ad
sorbed intermediates and monitoring surface re
construction [26,28–30]. For example, previous work has 
shown that vibrational spectroscopy (Raman and in
frared) and X-ray-based techniques (X-ray diffraction, 
XRD, and absorption spectroscopy, XAS) are viable 
options for in situ characterization of both surface and 
bulk events during eCO2R in small-scale electro
chemical cells (area 1–10 cm2) [31–35]. However, ap
plying the same techniques to GDEs and MEAs 
requires delicate cell engineering to maximize the de
tected signal and minimize attenuation of the incoming 
and outgoing beam, and is therefore not an easy en
deavor [36]. Furthermore, the presence of porous 
(carbon) layers potentially complicates the measure
ments even more. At present, only a few articles in the 
electrocatalysis community report in situ characterization 
of MEAs, whereas in situ spectroscopic investigations of 
GDEs have not been reported to the best of our 
knowledge. 

In this perspective, we highlight recent advances in op
erando and in situ characterization of MEAs at high 

current densities (> 100 mA/cm2) and hypothesize that 
for porous GDEs, both Raman and X-ray characteriza
tion techniques can be readily applied from a techno
logical and engineering point of view, as pictured in  
Figure 1a. However, for MEA-based systems, the 
layered sandwich structure of solids can complicate vi
brational spectroscopy methods, making XRD/spectro
scopy techniques a more attractive option. We highlight 
recent reports on in situ XRD and XAS characterization 
of MEAs, and provide guidelines for the application of in 
situ characterization techniques beyond XRD and XAS, 
both at synchrotrons and in the lab [37]. The first 
highlighted article shows by synchrotron-based grazing 
incidence XRD and clever cell design that carbonate 
salts form at the gas–solid interface, which has a drastic 
influence on the potential and the Faradaic efficiency, 
and subsequently causes deactivation of the 
MEA [38]. The second article discusses the effects of 
unwanted cations near the cathode surface, to show how 
the catalyst structure during eCO2R can be assessed by 
in situ X-ray spectroscopy [39]. The third article shows 
the use of soft X-ray spectroscopy to study the compo
sition and active phase of Zn-modified Cu cata
lysts [40]. Based on these recent reports, we envision 
how in situ/operando characterization of GDEs and MEAs 
can aid the energy transition by revealing the (de)acti
vation of the active electrocatalyst in these promising 
electrolyzer cell designs, allowing these architectures to 
reach their full potential. 

Investigating gas diffusion electrode 
deactivation with X-ray scattering and 
diffraction 
GDEs can reach very high current densities > 100 mA/ 
cm2 because it decouples the CO2 supply from the CO2 
solubility limitations in the aqueous electrolyte [15,16]. In 
GDEs, the CO2 gas is fed through the back of a porous 

Figure 1  
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Schematic representation of the potential of in situ vibrational and X-ray spectroscopy for detailed characterization of (a) GDE and (b) MEA 
electrolyzers. We hypothesize that the cell design of typical GDE electrolyzers allows for the application of Raman spectroscopy, as well as XRD and 
XAS in transmission and back-illumination mode, whereas the ‘sandwich structure’ of solids in a MEA cell limits the use of possible in situ vibrational 
spectroscopy methods to study the active gas–solid interface between the CL and the AEM. In this review article, recent advances in and guidelines 
for in situ characterization of GDE and MEA electrolyzers will be discussed.   
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electrode, after which a three-phase boundary is formed 
at the gas–liquid–solid interface, resulting in high con
version rates (i.e. current density). It is well-known that 
the deactivation of MEAs and GDEs is due to flooding of 
the gas compartment with aqueous electrolyte and salt 
deposition in the GDE [17,41], but there is limited 
knowledge as to how or why this happens and how to 
prevent it from happening. Multiple studies have hy
pothesized that flooding occurs because of increased 
wetting of the GDE, instigated by cathodic potentials 
(electrowetting) or loss of hydrophobicity due to, for ex
ample, oxidation of the carbon gas diffusion layer (GDL) 
or delamination of the catalyst layer (CL) [42,43]. Subse
quently, carbonate salt crystals can form in the pores of 
the GDL, potentially causing irreversible structure 
changes and hindering CO2 availability [44,45]. 

To elucidate the deactivation mechanism, the Seger 
group recently performed a study on a MEA system 
using operando X-ray analysis, which enabled them to 
closely study the water and salt content in the GDE [38] 
(Figure 2). Using wide-angle X-ray scattering (WAXS), 
they were able to correlate the change in signal from 
amorphous phases to the change in GDE electrolyte 
content, by exploiting the fact that the other amorphous 
phases did not change during the measurement. Because 
of this, the electrolyte content could be mapped from 
the membrane to deep (∼100 µm) inside the GDE by 
continuously measuring on a vertical line at different 
positions during eCO2R. Simultaneously, the GDE salt 
content was determined from the WAXS pattern, the 
Faradaic efficiency was tracked using gas chromato
graphy, and the voltage was monitored during the ex
periment. Combining these data resulted in new insights 
into MEA deactivation: the carbonate salt formation 
seemed to precede the flooding of the GDE. We envi
sion that other aspects of such MEAs can be investigated 
in different measurement geometries and through com
binations of (X-ray) techniques. For example, in trans
mission X-ray characterization geometry, the full MEA 
stack can be analyzed simultaneously (Figure 1b). For 
this purpose, high-energy X-rays are necessary to ensure 
proper penetration through the MEA stack, but we an
ticipate that comparing and combining different mea
surements will enable researchers to draw a more 
complete picture of electrolyzer (de)activation. For ex
ample, XAS and XRD can be readily combined in such a 
transmission configuration to probe catalyst structure 
(XRD) and composition (XAS) simultaneously, for 
which the design of a proper in situ cell is a challenging 
endeavor. 

Investigating catalyst structure and 
composition with hard X-ray spectroscopy 
Considering that carbonate salt formation is a cause for 
GDE performance degradation, there is a strong 

incentive to further investigate the reason why carbonate 
salt formation happens [44]. For carbonate salts to form, 
CO3

2– or HCO3
– ions require the presence of cations 

(K+) in order to precipitate in the pores of the GDE. In 
MEA-based systems, the use of an anion-exchange 
membrane (AEM) and a zero-gap configuration can 
make it easy to overlook or even disregard the influence 
of cations near or in the GDE. In this light, the Mayer 
group recently investigated cation effects at the cathode 
in a catholyte-free MEA-based system [39]. Using a 
range of different anolyte concentrations (0.05–1.0 M 
KOH, and pure aqueous electrolyte), they used in situ 
XAS at the Cu K-edge to track the copper catalyst and 
its chemical composition during eCO2R. All resulting 
spectra closely resembled metallic copper, which in
dicates that the catalyst is completely reduced during 
eCO2R. However, since XAS is a bulk technique [28], 
the acquired data did not describe the events on the 
surface of the catalyst and are therefore inconclusive as 
to what happens at the active site. To gain a better 
understanding of cation effects on catalyst structure, 
quasi in situ X-ray photoelectron spectroscopy (XPS) was 
used as a complementary surface-sensitive technique. It 
is noted that in situ XPS measurements are virtually 
impossible because of the need for ultrahigh vacuum, 
and the very short mean-free path of photoelectrons, 
which makes it impossible for XPS to investigate 
‘buried’ interfaces [26,47]. Instead, the authors have 
taken samples and handled them inside an inert glo
vebox to prevent oxidation and mimic their re
presentative oxidation state during eCO2R as much as 
possible. Interestingly, this approach inferred a correla
tion between increasing anolyte concentration and the 
presence of Cu0 at the surface. This means that despite 
the use of an AEM, cations are still able to migrate from 
the anolyte to the GDE surface and affect the catalyst 
structure during eCO2R. This highlights the complexity 
of in situ characterization of MEA electrolyzers, which 
obviously depends on multiple parameters (e.g. elec
trolyte concentration, current density) over various 
length scales (e.g. surface versus bulk) that are ideally all 
probed simultaneously through clever cell design and 
combinations of characterization techniques ( Figure 3). 

Guidelines for cell design 
We wish to note that (unfortunately) one size does not fit 
all in the case of cell design for in situ characterization of 
GDE and MEA electrolyzers. The cell design strategy 
depends largely on the scientific question that needs to 
be answered, and the related characterization technique 
of choice. For example, when the scientific question can 
only be answered by soft X-ray spectroscopy techni
ques [47], the experimentalist has to pay special atten
tion to the cell design and cannot straightforwardly use 
the cell design described above for in situ WAXS (Figure 
2) [46]. Luckily, a recent study showed that it is possible 
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Figure 2  
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Operando wide-angle X-ray scattering study of electrolyte content in membrane electrode assemblies. (a, b) Custom in situ XRD and scattering GDE 
cell used to monitor the gas–solid interface with WAXS and (c) results showing water oscillations during electrolyzer operation. 
Figure adapted with permission from Refs [3,4]. Copyright © 2023, Joule. 
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to engineer such a cell to successfully perform in situ soft 
X-ray spectroscopy on zero-gap MEA electrolyzers 
(Figure 4) [40]. In this cell design, the interaction with 
the aqueous electrolyte was minimized through a gra
phene sandwich structure, which allowed for measure
ments in fluorescence mode at the front of the CL. The 
soft X-rays allowed the researchers to study the Zn- 
doped Cu electrocatalyst at the Cu L-edge as well as the 
O and C K-edges, thereby revealing the origin of the role 
of Zn on the electrocatalytic activity. It was found that 
Zn is initially doped in the oxidized Cu electrocatalyst, 
but after in situ activation, Cu and Zn form alloyed 
structures in the presence of stabilized Cu(I)–O species. 
This example opens up avenues for in situ investigation 
of active electrocatalysts through a variety of soft X-ray 
spectromicroscopic techniques that are not common
place in the electrocatalysis community, including but 

not limited to resonant inelastic X-ray spectroscopy [47] 
and ptychography [48]. Based on the recent studies that 
were highlighted in this short review article and our own 
insights, we have drafted guidelines for in situ char
acterization of GDE and MEA electrolyzers. We strongly 
encourage the community to include complete descrip
tions of their in situ setups, including detailed schematics 
of the cells used. Such details are often lacking in the 
literature, and could facilitate follow-up work by other 
groups to move the field toward standardization of 
techniques.  

1. Decide on the characterization technique(s) based on 
the scientific question(s).  

2. Determine the energy-dependent penetration of the 
X-rays through the electrolyte, porous GDL, mem
brane, and CL (transmission mode). 

Figure 3  

Current Opinion in Chemical Engineering

In situ X-ray spectroscopy characterization of copper-based MEA cells reveals bulk and surface Cu oxidation state in different anolyte compositions 
through in situ XAS at the Cu K-edge and quasi in situ XPS. (a) Schematic of the MEA electrolyzer. (b) In situ X-ray absorption near-edge structure 
(XANES) spectroscopy at the Cu K-edge in different concentrations of anolyte, including reference spectra of common compounds. (c) Radial 
distribution function of the data in b. (d) Quasi in situ XPS data in different anolyte concentrations, and (e) the quantitative result of the at% Cu species 
from the XPS fitting. 
Figure adapted with permission from Ref [39]. Copyright © 2023, Nature Communications.   
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3. Determine the energy-dependent penetration of the 
X-rays through the GDL and catalyst (back-illumi
nation mode).  

4. Maximize the signal-to-noise ratio based on 2/3, for 
example, by using thinner carbon GDL.  

5. Ensure sufficient electrocatalytic performance by 
minimizing mass transport limitations and other ki
netic effects, for example, by choosing a larger cath
olyte chamber based on 2/3. For best practices of 
GDE and MEA, see Ref. [11].  

6. Monitor common deactivation descriptors for GDE 
and MEA electrolyzers, such as flooding and salting. 

7. Account for potential beam damage, and adjust ac
quisition time to maximize signal-to-noise ratio.  

8. Quantify the liquid and gaseous reaction products 
during the spectroscopy or diffraction measurements 
(online), or offline in the same cell using standard 
product quantification techniques (e.g. chromato
graphy). 

Characterization of gas diffusion electrodes 
and membrane electrode assemblies beyond 
the state-of-the-art 
The recent work highlighted in this review shows the 
potential of X-ray-based techniques (especially XRD 
and absorption) as powerful methods to investigate 
MEA and GDE systems in situ/operando. However, we 
wish to note that all discussed experimental work 

involving X-rays was performed at a synchrotron facility. 
Because of the limited time and space at these locations, 
this significantly hinders further development of such 
techniques for stability assessment of electrolyzers at 
high current densities, which is necessary for the large- 
scale implementation of electrolyzers (m2 electrolyzers). 
Therefore, we state that it is imperative that more ac
cessible, in-house experiments are designed in order for 
electrolyzers to be implemented on industrial scale and 
take the next step in their technological development. 
For this purpose, chemical engineers are required to 
develop dedicated in situ cells that (1) optimize signal-to- 
noise ratio and (2) allow for the combination of char
acterization techniques while (3) operating at high cur
rent densities (> 100 mA/cm2) and prolonged operation 
time for stability assessment at low-energy lab-based X- 
ray sources. It is our vision that only then the next 
generation of electrolyzers can be implemented on a 
large scale to aid the energy transition. 

Furthermore, (X-ray) techniques beyond the state-of- 
the-art (XRD and XAS) have to be considered to draw a 
more complete picture of electrocatalyst (de)activation 
at high current densities. We should also not stare our
selves blind on the workhorse techniques, because de
spite the fact that they do give high-quality information 
on catalyst (de)activation, they have their own specific 
requirements and limitations (e.g. crystallinity for XRD). 

Figure 4  

Current Opinion in Chemical Engineering

Soft X-ray spectroscopy of MEA electrolyzer. (a,b) Cell design, (c) schematic of the measurement mode. (d–i) In situ near-edge X-ray absorption fine 
structure (NEXAFS) at Cu L-edge, O K-edge, and C K-edge. 
Figure adapted with permission from Ref. [38]. Figure adapted with permission from Ref. [37]. Copyright © 2023, ACS.   
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Since catalyst (de)activation is a multiscale event, it is 
necessary to think outside the paved pathways and in
vestigate the application of uncommon techniques with 
optimal spatiotemporal resolution. Examples include, 
but are not limited to, small-angle X-ray scattering (to 
elucidate size and shape), [49] pair distribution function 
analysis (to investigate amorphous structures) [50], and 
X-ray microscopy (to investigate composition in porous 
structures) [48]. We urge the community to reach out to 
other disciplines where these techniques have been 
widely applied (e.g. heterogeneous catalysis, nanoma
terials science), and investigate ways to bring them to 
the electrocatalysis community in order for electrolyzers 
to take the next step toward the development of stable 
performance at high current density. 
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