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Abstract

We study Koebe orderings of planar graphs: vertex orderings obtained by modelling
the graph as the intersection graph of pairwise internally-disjoint discs in the plane,
and ordering the vertices by non-increasing radii of the associated discs. We prove
that for every d ∈ N, any such ordering has d-admissibility bounded by O(d/ ln d)
and weak d-coloring number bounded by O(d4 ln d). This in particular shows that
the d-admissibility of planar graphs is bounded by O(d/ ln d), which asymptotically
matches a known lower bound due to Dvořák and Siebertz.
Mathematics Subject Classifications: 05C10, 05C62

1 Introduction

The degeneracy of a vertex ordering of a graph G is the maximum number of neighbors
that any vertex v has among vertices smaller than v in the ordering. The degeneracy of
G is the minimum possible degeneracy of a vertex ordering of G. If one takes a vertex
ordering of G, say of degeneracy k, and applies a greedy left-to-right coloring procedure,
then the obtained proper coloring of G uses at most k + 1 distinct colors. For this reason,
the coloring number — defined as degeneracy plus 1 — is an upper bound on the chromatic
number of a graph.

In [13], Kierstead and Yang introduced generalized coloring numbers, which extend
the concept of degeneracy/coloring number by replacing measuring the number of smaller
(with respect to the fixed ordering) neighbors by measuring the number of smaller vertices
reachable by short paths. Here, reachability can be understood in various ways, but the
following notions provide a robust set of definitions. If G is a graph and 4 is a vertex
ordering of G, then a strong reachability path from a vertex v to some vertex u 4 v is a
path P in G that starts at v, finishes at u, and such that all vertices of P except for u
aUtrecht University, The Netherlands (j.nederlof@uu.nl).
bUniversity of Warsaw, Poland (michal.pilipczuk@mimuw.edu.pl).
cSaarland University and Max Planck Institute for Informatics, Saarbrücken, Germany
(wegrzycki@cs.uni-saarland.de).

the electronic journal of combinatorics 30(3) (2023), #P3.33 https://doi.org/10.37236/11095

https://doi.org/10.37236/11095


are not smaller than v in 4. A weak reachability path is defined similarly, except that we
only require that all vertices of P are not smaller than u in 4. Thus, we allow P to use
vertices between u and v in 4. We say that u is strongly d-reachable from v in 4 if there is
a strong reachability path of length at most d from v to u; weak d-reachability is defined
analogously. Finally, the strong (resp. weak) d-coloring number of 4 is the maximum
number of strongly (resp. weakly) d-reachable vertices from any vertex of G, and the
strong (resp. weak) d-coloring number of G is the minimum possible strong (resp. weak)
d-coloring number of a vertex ordering of G. In this work we will be also interested in the
concept of d-admissibility, introduced later by Dvořák [5], which is defined by measuring
the largest possible size of a family of strong reachability paths of length at most d (i.e.,
paths having at most d edges) that share the origin, but otherwise are pairwise disjoint.

It turns out that all three parameters defined above — strong d-coloring number, weak
d-coloring number, and d-admissibility — are functionally equivalent for every fixed d
(see e.g. [19]). Moreover, they can be used to characterize classes of bounded expansion:
the concept of uniform sparseness in graphs that is central to the theory of sparse graph
classes of Nešetřil and Ossona de Mendez. More precisely, as observed by Yang [23] and
by Zhu [24], a class of graphs C has bounded expansion if and only if for every fixed
d ∈ N there is a uniform upper bound on the weak d-coloring number (equivalently, on
the strong d-coloring number or d-admissibility) of graphs in C . For this reason, the
generalized coloring number have become a key technical tool in the area of Sparsity, with
multiple combinatorial and algorithmic applications; see e.g. [1, 2, 4, 5, 9, 12, 15, 18, 20, 21].
We refer the reader to appropriate chapters of [17] and of [19] for an overview of basic
properties and applications of generalized coloring numbers.

The generic arguments used in [23, 24] to bound the generalized coloring numbers
in bounded expansion classes provide only very crude upper bounds on their values.
These upper bounds are typically far from optimal, which motivates the search for tighter
asymptotic estimates on various well-studied classes of sparse graphs. Among these,
perhaps the most interesting case is that of planar graphs. And so, if by admd(Planar),
scold(Planar), and wcold(Planar) we respectively denote the maximum d-admissibility,
strong d-coloring number, and weak d-coloring number among planar graphs, then the
following lower and upper bounds have been known so far:

Ω(d/ ln d)
[8]
6 admd(Planar)

[22]
6 O(d);

Ω(d)
[22]
6 scold(Planar)

[22]
6 O(d);

Ω(d2 ln d)
[11]
6 wcold(Planar)

[22]
6 O(d3).

Thus, only the asymptotics of the strong d-coloring numbers have been determined precisely.
We note that the lower bound on the strong d-coloring number is only sketched in [22],
while the lower bound on the d-admissibility was communicated to us by Zdeněk Dvořák
and Sebastian Siebertz [8] and has not been published. Therefore, for completeness, in
Section 6 we give proofs of both these results.
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Our contribution. So far, the best upper bounds for generalized coloring numbers on
planar graphs are provided by the work of Van den Heuvel et al. [22] and use purely graph-
theoretic decomposition methods. In this work we turn to a more geometric approach
by studying Koebe orderings of planar graphs. More precisely, the celebrated theorem of
Koebe [14] states that every planar graph has a coin model: with every vertex u one can
associate a disc D(u) in the plane so that those discs are pairwise internally disjoint, and
whenever u and v are adjacent in the graph, the corresponding discs D(u) and D(v) are
tangent. Given such a model, one can define a very natural vertex ordering: just order
the vertices by non-increasing radii of the associated discs. (Equi-sized discs are ordered
arbitrarily.) Every vertex ordering of a planar graph that can be constructed in this way
shall be called a Koebe ordering.

Studying Koebe orderings in the context of sparse graphs is not entirely new. A natural
source of examples of non-trivial sparse graphs comes from studying intersection graphs
of families of geometric objects in Euclidean spaces. Here, one usually assumes that
the family is c-thin for some constant c, that is, every point in the space is contained
in at most c objects. For instance, Koebe’s theorem implies that every planar graph is
isomorphic to a subgraph of the intersection graph of a 2-thin family of discs in the plane.
In [6], Dvořák et al. studied separator properties of such geometric intersection graphs.
The work [6], similarly to this one, was partially motivated by the beautiful proof of the
Lipton-Tarjan Separator Theorem using Koebe’s Theorem, due to Har-Peled [10]. More
recently, Dvořák et al. [7] studied generalized coloring numbers of geometric intersection
graphs, and ordering objects from largest to smallest was a recurring idea. From this
perspective, our work can be regarded as an application of this idea to the specific case of
planar graphs and their coin models, in search for tighter bounds.

And so, we prove that for every d ∈ N and every Koebe ordering 4 of a planar graph G,
we have

(a) admd(G,4) 6 O(d/ ln d);

(b) scold(G,4) 6 O(d2); and

(c) wcold(G,4) 6 O(d4 ln d).

Result (a) is probably the most interesting contribution, as it improves the state-of-the-art
upper bounds on the d-admissibility of planar graphs to tightness. Note that so far only an
O(d) upper bound was known, which followed from bounding the strong d-coloring number,
while an Ω(d/ ln d) lower bound was given recently by Dvořák and Siebertz [8]. Thus,
result (a) asymptotically closes the gap between lower and upper bounds on d-admissibility
of planar graphs, and shows that Koebe orderings are asymptotically optimal in this
context. The proof relies on a very careful area argument, where the notion of area is
redefined using an appropriate density function. Result (b) follows from a very simple
area argument that has already been observed in [7], so this is not a new result. Finally,
as for result (c), a general statement proved in [7] implies an upper bound of O(d8 ln d).
Our proof applies a more careful analysis that involves geometric arguments specific to
coin models.
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We also provide some simple lower bounds for results (b) and (c). More precisely, we
show that there are planar graphs and their coin models such that every Koebe ordering
constructed based on those coin models achieves strong d-coloring number Ω(d2) and
weak d-coloring number Ω(d3). Thus, for planar graphs, Koebe orderings are provably not
asymptotically optimal for the strong d-coloring number (for which an O(d) upper bound
can be obtained using graph-theoretic methods [22]), and cannot surpass the current
upper bound of O(d3) on the weak d-coloring number. However, we were unable to find a
lower bound higher than cubic in d, which makes us believe that it is possible that every
Koebe ordering of a planar graph has weak d-coloring number bounded by d3 · lnO(1) d.
Since the approach via Koebe orderings is radically different from previous upper bound
techniques [22], we hope that it is possible to build upon this approach to provide a
subcubic upper bound on the weak d-coloring number of planar graphs.

2 Preliminaries

We use standard graph notation; see for example the textbook by Diestel [3].

Generalized coloring numbers. For a graph G, a vertex ordering of G is a total order
on the vertex set of G. Suppose 4 is a vertex ordering of G and d is a positive integer.
For a vertex v, a weak reachability path starting at v is a path P in G that starts at v,
ends in a vertex u 4 v, and such that all vertices of P are not smaller in 4 than u. A
strong reachability path starting at v is defined in the same way, except that we require
all internal vertices of P to be larger in 4 than v. For a positive integer d, we say that
v weakly d-reaches u if there is a weak reachability path of length at most d that starts
at v and ends at u. Strong d-reachability is defined analogously using strong reachability
paths. We define the following objects and quantities:

• The weak reachability set of v, denoted WReachG,4
d [v], is the set of all vertices u that

are weakly d-reachable from v.
• The strong reachability set of v, denoted SReachG,4

d [v], is the set of all vertices u
that are strongly d-reachable from v.

• The d-admissibility of v, denoted admG,4
d (v), is the maximum size of a family of

strong reachability paths of length d that start at v and are vertex-disjoint apart
from sharing v.

With the length of a path, we refer to the number of edges in it. We may omit the superscript
if the graph and the vertex ordering is clear from the context. Finally, the weak d-coloring
number of a vertex ordering 4 in a graph G is defined as maxv∈V (G) |WReachG,4

d [v]|, and
the weak d-coloring number of G is the minimum weak d-coloring number of a vertex
ordering of G. These are denoted by wcold(G,4) and wcold(G), respectively. The strong
d-coloring number and the d-admissibility of (a vertex ordering of) a graph G are defined
and denoted analogously.

Coin models and Koebe’s theorem. A coin model for a graph G is a mapping D(·)
that assigns to each vertex u of G a circle D(u) ⊆ R2 (called a disk) so that the following
properties are satisfied:
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• the discs {D(u) : u ∈ V (G)} have pairwise disjoint interiors; and
• if vertices u and v in G are adjacent, then discs D(u) and D(v) intersect.
(We say that they touch.)

Note that if a graph G has a coin model, then G is necessarily planar. The classic result
of Koebe, which is the main inspiration for this work, shows that the converse is also true.

Theorem 1 (Koebe’s Theorem, [14]). Every planar graph has a coin model.

For a planar graph G, let a Koebe ordering of G be any vertex ordering 4 constructed
as follows: take any coin model D(·) of G and let 4 be any vertex ordering such that
whenever D(u) has a strictly larger radius than D(v), we have u 4 v. So we order the
vertices by non-increasing radii of the associated discs, but discs with same radii can be
ordered arbitrarily. Throughout the paper, we will often denote u < v to refer to u being
earlier than v in a fixed Koebe ordering that is clear from the context.

Koebe’s Theorem allows us to approach combinatorial problems in planar graphs using
the toolbox of Euclidean geometry on R2. Whenever considering R2, we equip it with
the standard scalar product 〈·, ·〉, `2 norm ‖x‖ =

√
〈x, x〉, and the standard Lebesgue

measure λ. The point (0, 0) is denoted 0.

3 Admissibility

In this section we prove the following theorem, to which the remainder of this section is
devoted.

Theorem 2. Let d ∈ N, G be a planar graph, and 4 be any Koebe ordering of G. Then

admd(G,4) 6 O(d/ ln d).

In particular, for every planar graph G, admd(G) 6 O(d/ ln d).

Let D(·) be the coin model using which the ordering 4 was constructed. It suffices
to prove that for every vertex u, we have admG,4

d (u) 6 O(d/ ln d). Let us fix u from now
on. By scaling and translation we may assume that D(u) is the disk with center 0 and
radius 1. Let F be a family of paths witnessing the value of d-admissibility of u. That is,
F consists of paths P1, P2, . . . , Pk, pairwise disjoint apart from sharing u, such that each
Pj has length at most d, starts at u, ends at a vertex vj such that vj < u, and all internal
vertices of Pj are larger than u in 4. Our goal is to prove that k 6 O(d/ ln d).

Consider any j ∈ {1, . . . , k}. Since vj 4 u, D(vj) has radius at least 1. Let xj be the
unique point of intersection of D(vj) and the disk of the predecessor of vj on Pj , and let D′j
be the disk of radius 1 that is entirely contained in D(vj) and contains the point xj . (That
is, D′j is an image of D(vj) in a homothety centered at xj with positive scale chosen so that
D′j has radius 1.) Let w1, . . . , w` be the internal vertices of the path Pj, so ` 6 d− 1. Let

Aj := D′j ∪
⋃̀
i=1

D(wi).
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Since wi > u for each i ∈ {1, . . . , `}, Aj is a union of a sequence of at most d disjoint disks
of radii at most 1, where every two consecutive disks touch and the first disk touches D(u).
It follows that

Aj ⊆ R,

where
R = {x ∈ R2 | 1 6 ‖x‖ 6 2d+ 1}.

Moreover, observe that sets Aj have pairwise disjoint interiors since the paths Pj have
disjoint sets of vertices.

D(u)

R

2d
+
1

D(vj)

D′
j

Figure 1: Example image of a path Pj in the coin model. The disks of internal vertices —
D(w1), . . . , D(w`) — are depicted in yellow.

Let g : R2 − {0} → R+ be the density defined as

g(x) =
1

‖x‖2
.

We define a measure µ on R2−{0} as the measure with density g. That is, for a measurable
set L ⊆ R2 − {0}, we set

µ(L) =

∫
L

g dλ, (1)

where λ is the Lebesgue measure on R2. Observe that

µ(R) =

∫ 2d+1

1

2πt

t2
dt = 2π ln(2d+ 1).
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Therefore, to argue that k 6 O(d/ ln d) and thereby prove Theorem 2, it suffices to show
the following statement.

Claim 3. For every j ∈ {1, . . . , k}, we have

µ(Aj) > Ω

(
ln2 d

d

)
.

From now on we focus on proving Claim 3.

We will need the following auxiliary claim that provides a lower bound for the measure
of disks.

Claim 4. Let D be a disk in R2 that has radius ρ, center at distance a from 0, and does
not contain 0. Then

µ(D) >
π

4
· ρ

2

a2
.

Proof. Note that since 0 /∈ D, we have ρ < a. It follows that each x ∈ D is at distance at
most a+ ρ < 2a from 0, implying that g(x) > 1

4a2
. Therefore,

µ(D) >
1

4a2
· λ(D) =

π

4
· ρ

2

a2
.

Recall that Aj is the union of a sequence of disks D(w1), . . . , D(w`), D
′
j, where ` < d.

Denote them as D1, . . . , D`+1 in order for convenience. Let ρi be the radius of disk Di and
ai be the distance between the center of Di and 0. Note that since D1 touches D(u) and
Di touches Di−1 for i = 2, . . . , `+ 1, we have

ai 6 1 + 2ρ1 + 2ρ2 + · · ·+ 2ρi−1 + ρi for all i ∈ {1, . . . , `+ 1}.

By Claim 4, we conclude that

µ(Aj) >
π

4
·

(
ρ21

(1 + ρ1)2
+

ρ22
(1 + 2ρ1 + ρ2)2

+ · · ·+
ρ2`+1

(1 + 2ρ1 + 2ρ2 + · · ·+ 2ρ` + ρ`+1)2

)

>
π

16
·

(
ρ21

(1 + ρ1)2
+

ρ22
(1 + ρ1 + ρ2)2

+ · · ·+
ρ2`+1

(1 + ρ1 + ρ2 + · · ·+ ρ` + ρ`+1)2

)
.

As ρi ∈ [0, 1] and ρ`+1 = 1, to prove Claim 3 it suffices to prove1 the following purely
analytic fact.

Lemma 5. Let ρ1, . . . , ρ`+1 ∈ [0, 1] be such that ρ`+1 = 1. Then

ρ21
(1 + ρ1)2

+
ρ22

(1 + ρ1 + ρ2)2
+ · · ·+

ρ2`+1

(1 + ρ1 + ρ2 + · · ·+ ρ` + ρ`+1)2
> Ω

(
ln2 `

`

)
.

1The proof idea presented below was suggested to us by Karl Bringmann; we are grateful to Karl for
this elegant argument that replaced our previous, more cumbersome reasoning.
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Proof. For i ∈ {0, 1, . . . , ` + 1}, let xi =
∑i

j=1 ρj; thus ρi = xi − xi−1. Also, denote
q = 1 + x`+1. Observe that if q 6 `1/3, then we have

`+1∑
i=1

ρ2i
(1 + xi)2

>
ρ2`+1

(1 + x`+1)2
=

1

q2
>

1

`2/3
∈ Ω

(
ln2 `

`

)
.

Hence, from now on we may assume that q > `1/3.
Observe that as ρi ∈ [0, 1] for each i ∈ {1, . . . , `+ 1}, it holds that 1 + xi 6 2(1 + xi−1).

Since the function f(t) = 1/t is non-increasing, we have

`+1∑
i=1

ρi
1 + xi

>
1

2

`+1∑
i=1

ρi
1 + xi−1

=
1

2

`+1∑
i=1

(xi−xi−1)·f(1+xi−1) >
1

2

∫ q

1

f(t) dt =
1

2
ln q >

1

6
ln `.

Hence, we may use the AM-QM inequality to conclude that

`+1∑
i=1

ρ2i
(1 + xi)2

>
1

`+ 1
·

(
`+1∑
i=1

ρi
1 + xi

)2

>
ln2 `

36(`+ 1)
∈ Ω

(
ln2 `

`

)
.

As argued, Claim 3 follows from Lemma 5. So the proof of Theorem 2 is also complete.

4 Strong and weak coloring numbers

We start with a very simple upper bound for the strong coloring numbers. This result
follows directly from a more general statement proved by Dvořák et al. [7, Lemma 1] using
the same volume argument, so we include it here only for completeness.

Theorem 6. Let d ∈ N, G be a planar graph, and 4 be any Koebe ordering of G. Then

scold(G,4) 6 (2d+ 1)2.

Proof. Fix any vertex u of G; our goal is to prove that |SReachd[u]| 6 (2d+1)2. By scaling
and translation, we may assume that D(u) is the disc of radius 1 centered at 0. Consider
any v ∈ SReachd[u] and let P be a strong reachability path witnessing this membership.
Since v 4 u, the radius of D(v) is not smaller than that of D(u), that is, it is at least 1.
Therefore, there is a disc D′(v) of radius 1 that is entirely contained in D(v) and that
touches the disc of the predecessor of v on P .

Observe that all vertices on P apart from v are not smaller in 4 than u, so their discs
have radii at most 1. By the triangle inequality it follows that the center of D′(v) is at
distance at most 2d from 0, so in particular D′(v) is entirely contained in the ball

B := {x ∈ R2 | ‖x‖ 6 2d+ 1}.

Note that discs {D′(v) : v ∈ SReachd[v]} have pairwise disjoint interiors and each of them
has area (i.e. λ measure) equal to π. It follows that

|SReachd[u]| 6 λ(B)

π
= (2d+ 1)2.
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As argued in [22], in fact every planar graph G has a vertex ordering 4 satisfying
scold(G,4) 6 O(d) for every d, and this bound is asymptotically tight. On the other
hand, it is not hard to construct an example showing that the quadratic dependence
on d in Theorem 6 cannot be avoided if we restrict attention to Koebe orderings; see
Proposition 16. This shows that for the strong coloring number of planar graphs, Koebe
orderings are not asymptotically optimal.

We now turn attention to the weak coloring numbers. It follows from [7, Theorem 3]
that for any fixed d ∈ N and any Koebe ordering 4 of a planar graph G, we have
wcold(G,4) 6 O(d8 ln d). However, the arguments used in [7] apply to a more general
setting of intersection graphs of thin families of convex objects in Euclidean spaces, so it
is not surprising that in the concrete setting of coin models, a tighter upper bound can be
obtained by a more careful geometric analysis. This we show in the next statement.

Theorem 7. Let d ∈ N, G be a planar graph, and 4 be any Koebe ordering of G. Then

wcold(G,4) 6 O(d4 ln d).

We do not know whether the bound provided by Theorem 7 is asymptotically tight.
More precisely, in Section 5 we provide an example of a planar graph and its Koebe
ordering whose weak d-coloring number is of the order Θ(d3). This leaves a gap between
the Ω(d3) lower bound and the O(d4 ln d) upper bound. In Section 5 we discuss why
closing this gap might be an interesting research direction.

The remainder of this section is devoted to the proof of Theorem 7. On high level, the
reasoning follows a general strategy employed in [7], but we tailor it to the setting of coin
models in order to obtain improved bounds.

Let us fix a coin model D(·) of the given graph G using which the vertex ordering 4
was constructed. We need to show that for every vertex u of G, we have

|WReachG,4
d [u]| 6 O(d4 ln d). (2)

Let us fix the vertex u for the remainder of the proof. By scaling and translation, we may
assume that D(u) is the disc of radius 1 with center 0. Also, denote W := WReachG,4

d [u]
for brevity. Without loss of generality assume that d > 12.

We partition the vertex set of G into buckets {Bi : i ∈ Z} as follows: for i ∈ Z, we set

Bi := { v ∈ V (G) | d3i 6 r(D(v)) < d3i+3 },

where r(D) is the radius of disc D. Clearly u ∈ B0 and W ⊆
⋃

i>0Bi. We first observe
that an area argument based on the measure µ introduced in Section 3 (see (1) for the
definition) shows that every bucket contains only few vertices from W .

Claim 8. For every i > 0, we have

|Bi ∩W | 6 O(d2 ln d).
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Proof. Consider any w ∈ W − {u}. Let r be the radius of D(w) and a be the distance
from the center of D(w) to 0. Note that w < u, so r > 1. Let P be a weak reachability
path witnessing that w ∈ W . Observe that each v ∈ V (P ) satisfies w 4 v, so the radius
of D(v) is not larger than r. Since P has length at most d, we conclude that

a 6 1 + (d− 1) · 2r + r 6 2dr. (3)

On the other hand, as D(w) has radius r and is disjoint with D(u), we have

a > 1 + r. (4)

Let i > 0 be such that w ∈ Bi. Then d3i 6 r < d3i+3, implying by (3) and (4) that
1 + d3i 6 a 6 2d3i+4. Let D′(w) be the disc with same center as D(w) but twice smaller
radius, that is, radius r/2. It follows that D′(w) is entirely contained in the ring

R := {x ∈ R2 | d3i/2 6 ‖x‖ 6 3d3i+4}.

Further, by Claim 4 and (3), we have

µ(D′(w)) >
π

64
· r2

d2r2
= Ω

(
1

d2

)
.

On the other hand, we have

µ(R) =

∫ 3d3i+4

d3i/2

2πt

t2
dt = 2π

(
ln(3d3i+4)− ln(d3i/2)

)
= 8π ln d+ ln 6 ∈ O(ln d).

As discs {D′(w) : w ∈ Bi ∩W} are pairwise disjoint, and at most one vertex of Bi ∩W
can be equal to u, we conclude that |Bi ∩W | 6 O(d2 ln d).

Therefore, by Claim 8 to prove (2) it suffices to show the following.

Claim 9. There are O(d2) nonnegative integers i such that Bi ∩W 6= ∅.

For the remainder of this section we focus on proving Claim 9.
For two indices j > i > 0, call j accessible from i if there exists a weak reachability

path P that starts at u, ends at a vertex of Bj, has length at most d, and satisfies
V (P ) ⊆ Bj ∪

⋃
k6iBk. The key observation towards the proof of Claim 9 is provided by

the following claim, whose proof heavily relies on the geometry of the Euclidean plane.

Claim 10. Suppose indices j < j′ are both accessible from i > 0. Then

Bt ∩W = ∅ for each t ∈ {i+ 2, i+ 3, . . . , j − 1}.

Proof. Let P and P ′ be weak reachability paths witnessing that j and j′ are accessible
from i, respectively. By trimming P if necessary we may assume that the endpoint w of P
other than u is the only vertex on P that belongs to Bj, and all the other vertices of P
belong to

⋃
k6iBk. The same can be assumed about the endpoint w′ of P ′ other than u.
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Denote
ρ := d3j, ξ := d3i+6 α := 2d3i+4, β := 2d3i+7.

Note that since w ∈ Bj and w′ ∈ B′j, both disks D(w) and D(w′) have radii at least ρ.
Therefore, we can find a disk D contained in D(w) such that D has radius exactly ρ and D
touches the disk of the predecessor of w on P . Similarly, we can find a disk D′ contained
in D(w′) such that D′ has radius exactly ρ and D′ touches the disk of the predecessor of
w′ on P ′.

x

D

D(w)

x′

D′

D(w′)

y

S

D(v)

Figure 2: Situation in the proof of Claim 10. Here is the geometric intuition behind the
proof. D and D′ are huge disks (each of radius ρ), which are nevertheless very close to
0 (at distance at most α � ρ). Therefore, D and D′ necessarily create a “corridor” of
width roughly 2α into which all other disks close to 0 must fit. However, the existence of
a vertex v ∈ W ∩

⋃
i+26k<j Bk would imply the existence of a disk S, disjoint from D and

D′, whose radius is much larger than 2α, and whose distance from 0 is significantly smaller
than ρ. Then S cannot fit into the corridor without intersecting D or D′, a contradiction.

Let x and x′ be the centers of D and D′, respectively. Since all vertices on P except
for w belong to

⋃
k6iBk, the radii of the disks associated with them are smaller than d3i+3.

It follows that the common point of D and the disk of the predecessor of w on P is at
distance at most 1 + 2(d− 1)d3i+3 6 α from 0. By the triangle inequality we conclude that

‖x‖ 6 ρ+ α. (5)

Analogous reasoning for the disk D′ yields that

‖x′‖ 6 ρ+ α. (6)
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On the other hand, D and D′ are respectively contained in disks D(w) and D(w′), which
have disjoint interiors. (Note here that w 6= w′, because j 6= j′ and w ∈ Bj and w′ ∈ Bj′ .)
Therefore, D and D′ have disjoint interiors, implying that

‖x− x′‖ > 2ρ. (7)

Suppose now, aiming at a contradiction, that there exists a vertex v ∈ W that belongs
to Wt for some t ∈ {i+ 2, i+ 3, . . . , j − 1}. We may choose such v so that t is the smallest
possible and, subject to this, the minimum length of a weak reachability path from u to v
is also the smallest possible. Thus, if Q is a minimum length weak reachability path from
u to v, then Q has length at most d and all vertices of Q except for v belong to

⋃
k6i+1Bk.

Since v ∈ Bt and t > i+ 2, the radius of D(v) is at least ξ = d3i+6. Therefore, we can
find a disk S entirely contained in D(v) so that S has radius exactly ξ and S touches the
disk of the predecessor of v on Q. Since all vertices on Q except for v belong to

⋃
k6i+1Bk,

the disks associated with them have radii smaller than ξ. Therefore, the common point of
S and the disk of the predecessor of v on Q is at distance at most 1 + 2(d− 1)ξ from 0.
Denoting the center of S by y, by triangle inequality we again conclude that

‖y‖ 6 1 + 2(d− 1)ξ + ξ 6 2dξ = β. (8)

Note that v is different from w and w′, since v ∈ Bt and t < j < j′. So D(v) and D(w)
have disjoint interiors, implying that S and D have disjoint interiors; similarly for S
and D′. We conclude that

‖x− y‖ > ρ+ ξ and ‖x′ − y‖ > ρ+ ξ. (9)

Now our goal is to combine inequalities (5), (6), (7), (8) and (9) in order to obtain a
contradiction. While the argument that follows might seem to consist of soulless algebraic
manipulations, there is a clear geometric intuition behind it; see the caption of Figure 2.

First, observe that, by (5), (6) and (7),

‖x+ x′‖2 = 2‖x‖2 + 2‖x′‖2 − ‖x− x′‖2 6 4(ρ+ α)2 − 4ρ2 = 8ρα + 4α2. (10)

On the other hand, from (9) we infer that

‖x− y‖2 + ‖x′ − y‖2 > 2(ρ+ ξ)2. (11)

However, observe that

‖x− y‖2 + ‖x′ − y‖2 = ‖x‖2 + ‖x′‖2 + 2‖y‖2 − 2〈x+ x′, y〉
6 ‖x‖2 + ‖x′‖2 + 2‖y‖2 + 2‖x+ x′‖ · ‖y‖
6 2(α + ρ)2 + 2β2 + 4β

√
2ρα + α2,

where in the first step we used the Cauchy-Schwartz inequality and the second step follows
from (5), (6), (8) and (10). Combining this with (11) yields

2(ρ+ ξ)2 6 2(α + ρ)2 + 2β2 + 4β
√

2ρα + α2,
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which readily reduces to

2ρξ + ξ2 6 2ρα + β2 + α2 + 2β
√

2ρα + α2. (12)

We may assume j > i+ 3, for otherwise the statement of the claim holds vacuously.
Hence, we have

2ρα + β2 + α2 + 2β
√

2ρα + α2 6 2ρα + β2 + α2 + 4β
√
ρα

= 4d3j+3i+4 + 4d6i+14 + 4d6i+8 + 8
√

2 · d
3
2
j+ 9

2
i+9

6 24d3j+3i+5,

where in the last step we note that the value 3j + 3i+ 5 is never smaller than any of the
exponents of the involved summands. On the other hand, we have

2ρξ + ξ2 > 2ρξ = 2d3j+3i+6.

However, as we assumed d > 12, we have 2d3j+3i+6 > 24d3j+3i+5. This is a contradiction
with (12) and the proof is complete.

Intuitively, our goal now is to perform a two-level greedy construction after which
Claim 10 will be applicable. Define indices i0, i1, . . . , ip inductively as follows.

• i0 = 0, and
• for t > 0, it+1 is the maximum index accessible from it. In case there is no such

index, the construction finishes without defining it+1; that is, we set p := t.
We observe the following.

Claim 11. Let w ∈ WReacht[u] for some 0 6 t 6 d, and let i be such that w ∈ Bi.
Then i 6 it.

Proof. We proceed by induction on t, with the base case for t = 0 being trivial. Assume
then that t > 1. Let P be a weak reachability path witnessing that w ∈ WReacht[u].
Let w′ be the 4-maximum vertex among V (P ) − {w}, and let i′ be such that w′ ∈ Bi′ .
The prefix of P from u to w′ witnesses that w′ ∈WReacht−1[u]. By induction, we have
i′ 6 it−1. Note that either i = i′, or P witnesses that i is accessible from i′. Together with
i′ 6 it−1 this implies that i 6 it.

From Claim 11 we can immediately infer the following.

Claim 12. It holds that p 6 d.

Proof. Suppose otherwise, that p > d. By the definition of ip, there exists w ∈ Bip ∩W =
Bip ∩WReachd[u]. Then Claim 11 applied to w implies that ip 6 id. But i0, i1, i2, . . . is a
strictly increasing sequence, a contradiction.

For a fixed t ∈ {0, 1, . . . , p− 1}, we define indices it,0, it,1, . . . , it,pt similarly as before:
• it,0 = it, and
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• for s > 0, it,s+1 is the maximum index that is accessible from it,s and smaller than
it+1. In case there is no such index, the construction finishes without defining it,s+1;
that is, we set pt := s.

We observe the following.

Claim 13. Let w ∈ WReachr[u] for some 0 6 r 6 d, and let i be such that w ∈ Bi.
Suppose that it 6 i < it+1 for some t ∈ {0, 1, . . . , p− 1}. Then i 6 it,r−t.

Proof. Note that Claim 11 implies that r > t. Moreover, if r = t then we necessarily have
i = it = it,0. This establishes the base case for induction on r − t. The induction step is
essentially identical to the one from the proof of Claim 11; we leave the details to the
reader.

So similarly as in Claim 12, we obtain the following.

Claim 14. For every t ∈ {0, 1, . . . , p− 1}, we have pt 6 d− t.

Finally, we can use Claim 10 to argue the following.

Claim 15. Let t ∈ {0, 1, . . . , p− 1} and s ∈ {0, 1, . . . , pt − 1}. Then there is at most one
index i such that

it,s < i < it,s+1 and Bi ∩W 6= ∅.

Proof. By construction, it+1 and it,s+1 are two different indices that are both accessible
from it,s. Then Claim 10 implies that every index i satisfying the condition in the claim
statement must be equal to it,s + 1, so there can be at most one such index.

We can now conclude the proof of Claim 9.

Proof of Claim 9. Let L be the set of all indices i satisfying Bi ∩W 6= ∅. By construction,
we have

L ⊆ {i0, i1, . . . , ip} ∪
⋃

t∈{0,1,...,p−1}

{it + 1, it + 2, . . . , it,pt}.

By Claims 14 and 15, for each t ∈ {0, 1 . . . , p− 1} we have

|L ∩ {it + 1, it + 2, . . . , it,pt}| 6 2pt 6 2(d− t).

So by Claim 12, we conclude that

|L| 6 (d+ 1) + 2
d−1∑
t=0

(d− t) = (d+ 1) + d(d+ 1) = (d+ 1)2.

As argued, Claim 8 together with Claim 9 prove Theorem 7.
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Figure 3: The construction of Proposition 16 for d = 26. Every small disc has radius 1,
every large disc has radius

√
10− 1.

5 Lower bounds for Koebe orderings

In this section we discuss some lower bounds for generalized coloring numbers of Koebe
orderings of planar graphs. We start with a very simple lower bound that witnesses the
tightness of Theorem 6. The construction can be considered folklore, so we include it for
completeness and because it will be used as a building block for a later construction.

Proposition 16. For every d ∈ N there exists a planar graph G and a coin model D(·)
for G such that for any Koebe ordering 4 of G constructed with respect to D(·) we have
scold(G,4) > Ω(d2).

Proof. Without loss of generality assume that d is congruent to 2 modulo 12. Consider the
intersection graph G of discs arranged as in Figure 3: it is a d/2× d/2 grid of unit-radius
discs, where all quadruples of discs with adjacent indices congruent to 2 or 0 in the natural
indexing are replaced with single discs of radius

√
10− 1.

Let 4 be any Koebe ordering of G constructed for the particular coin model described
above. Note that 4 places all small discs (those of radius 1) after all large discs (those of
radius

√
10− 1). Therefore, if D is a small disc that is the smallest in 4, then it is easy to

see that every large disc is strongly d-reachable from D. Since the number of large discs is
Ω(d2), it follows that scold(G,4) > Ω(d2)

Next, we provide a lower bound showing that in Theorem 7 one cannot obtain a better
bound than cubic in d.2

2We note that we were informed by Piotr Micek [16] that an asymptotically same lower bound can
be obtained when considering Koebe orderings of natural coin models of stacked triangulations (or
Apollonian networks), but this example seems somewhat harder to analyze formally.
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. . .

Figure 4: The construction of Proposition 17. Every orange box is an appropriately scaled
construction from Figure 3. For clarity of presentation the figure is somewhat not to scale:
every orange box should be exactly d/4 times wider than the grey disc it is tangent to.

Proposition 17. For every d ∈ N there exists a planar graph G and a coin model D(·)
for G such that for any Koebe ordering 4 of G constructed with respect to D(·) we have
wcold(G,4) > Ω(d3).

Proof. Without loss of generality we assume that d is congruent to 4 modulo 24.
We construct a planar graph G by specifying its coin model D(·). Consider first the

following construction of a gadget. First, apply the grid-like construction from Figure 3
where the “grid” has d/4 unit-radius discs along each side. Then, add one unit-radius
disc that touches the disc in the bottom-right corner of the grid at its bottom-most point
(i.e. the one with the lowest second coordinate). This additional disc will be called the
interface of the gadget. In Figure 4, every orange box together with the tangent blue disc
represents a single gadget, where the blue disc is the interface of the gadget.

Finally, construct G together with its coin model D(·) by taking d/2 gadgets, where
the ith gadget is scaled by a factor of di−1, and arranging them so that the interfaces form
a horizontally aligned sequence of discs with increasing radii; see Figure 4. It is easy to
see that discs from different gadgets have pairwise non-intersecting interiors. Hence the
intersection graph of the discs is a planar graph G, and the constructed discs form a coin
model of G.

Let 4 be any Koebe ordering of G constructed with respect to the coin model described
above. Let D be the interface of the first gadget. Observe that for every i ∈ {1, . . . , d/2},
every large disc within the grid in the ith gadget is weakly d-reachable from D in 4.
Indeed, it suffices to first pass from the first interface to the ith interface along a path of
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length i− 1 consisting of consecutive interfaces, and then reach the considered large disc
of the grid by a path of length at most d/2 whose internal vertices are small discs of the
grid. Since the grid in every gadget contains Ω(d2) large discs and there are d/2 gadgets,
it follows that D weakly d-reaches Ω(d3) other discs. So wcold(G,4) > Ω(d3).

Let us analyze the construction of Proposition 17 through the lenses of the proof of
Theorem 7, where we consider u to be the vertex corresponding to the interface of the
first gadget. Then in the notation of the said proof, there are Θ(d) buckets Bi satisfying
Bi ∩W 6= ∅, and each of them contains Θ(d2) vertices that are weakly d-reachable from u.
Thus, the bound from Claim 8 is almost tight — up to a logarithmic factor — while the
bound from Claim 9 is not: there are only O(d) reachable buckets, compared to the O(d2)
upper bound provided by Claim 9. It is possible to construct another example where the
number of reachable buckets is Θ(d2), but then each of them contains only Θ(d) weakly
d-reachable vertices. (We refrain from giving a formal exposition of this example for the
sake of brevity.) We suspect this might not be a coincidence, hence we conjecture the
following

Conjecture 18. For every d ∈ N, planar graph G, and Koebe ordering 4 of G, it holds
that

wcold(G,4) 6 d3 · lnO(1) d.

If Conjecture 18 was true, then it would be conceivable that by taking any Koebe
ordering of a planar graph, and somehow reshuffling similarly-sized discs in order to avoid
the example from Proposition 16, one could obtain a vertex ordering with weak d-coloring
number that is subcubic in d. This would resolve a notorious open problem in the area,
see e.g. [11, Problem 1].

6 Lower bounds for admissibility and strong coloring number

In this section we present two lower bounds: for the d-admissibility and the strong d-
coloring number of planar graphs. Both constructions have been known, but were either
unpublished or had the analysis omitted. We include them here for completeness and to
provide a source for future reference.

We start with d-admissibility. The following lower bound was communicated to us by
Zdeněk Dvořák and Sebastian Siebertz [8] and has not been published. We are grateful to
Zdeněk and Sebastian for allowing us to include their construction here.

Proposition 19. For every integer k > 2 there exists a planar graph G such that
admk2k+2(G) > 2k − 1.

Proof. The construction is depicted in Figure 5. Let L = {W,E}k and K = {W,E}<k be
the sets of all words over the alphabet {W,E} of length k and of length strictly smaller
than k, respectively. For each w ∈ K, construct a 2k × 2k grid Hw and denote the sides
of Hw as NWw, NEw, SEw, and SWw in order. Whenever speaking about the order of
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vertices on these sides, we use the north-to-south convention: the vertices are ordered
naturally along the sides, where the first vertex on sides NWw and NEw is the corner
at their intersection, and the last vertex on sides SWw and SEw is the corner at their
intersection.

Next, whenever w,w′ ∈ K are such that w′ = wW, for each i ∈ {1, . . . , 2k} we add an
edge between the ith vertex of SWw and the ith vertex of NEw′ . In case w′ = wE, perform
a symmetric construction but with the roles of W and E swapped. Finally, for each u ∈ L
construct a vertex vu and make it adjacent to all vertices of SWw if u = wW for some
w ∈ K, and to all vertices of SEw if u = wE for some w ∈ K. As depicted in Figure 5, the
graph G constructed in this way is planar.

Hε

HW HE

HWW HWE HEW HEE

vWWW vWWE vWEW vWEE vEEEvEEWvEWEvEWW

Figure 5: Construction of graph G for k = 3. Path family QEWE constructed later in the
proof is highlighted in blue.

Call a path P in G straight if for every w ∈ K, the intersection of P with Hw is either
empty or consists of a single path of length at most 2k+1 − 2. Note that thus, a straight
path intersects at most 2k−3 different grids Hw and may have vertices of {vu : u ∈ L} only
as endpoints. Thus, every straight path has length at most (2k− 3)(2k+1− 1) + 1 6 k2k+2.

We first construct, for every w ∈ K and s ∈ {W,E}, a family Pws of paths in G with
the following properties:

• paths in Pws are straight and pairwise vertex-disjoint;
• |Pws| = 2k−|w|−1, where |w| is the length of w;
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• every path P ∈ Pws, starts at a vertex vu for some u ∈ L such that ws is a prefix of
u, and ends at a vertex that is among the first |Pws| vertices of the side (Ss)w; and

• for every P ∈ Pws, all internal vertices of P are contained in the union of grids Hw′

for w′ ∈ K such that ws is a prefix of w′.
Note that there are exactly 2k−|w|−1 vertices vu for which ws is a prefix of u, hence every
such vertex is an endpoint of a path from Pws. Similarly, every vertex among the first
|Pws| vertices of the side (Ss)w is an endpoint of a path from Pws.

The construction proceeds by induction on k − |w|. In case k − |w| = 1, we have
ws ∈ L, so the side (Ss)w is entirely adjacent to the vertex vws. So it suffices to set
Pws = {P}, where P is the two-vertex path induced by vws and the first vertex of the side
(Ss)w. For the induction step, by symmetry assume s = W. By induction we can construct
suitable families PwWW and PwWE. To construct PwW, it suffices to take the union of PwWW

and PwWE, then extend each path of this union within the grid HwW so that it ends at a
different vertex among the first 2k−|w|+1 vertices of the side NEwW, and finally extend it
by a single edge so that it ends at a different vertex among the first 2k−|w|+1 vertices of
the side SWw. It can be easily seen that this can be done; see the left panel of Figure 6.
Moreover, each extension uses a path within HwW of length at most 2k+1− 2 plus one edge
connecting HwW and Hw. Thus, the paths of PwW remain straight.

This concludes the construction of path families Pws for w ∈ K and s ∈ {W,E}.

HwW Hw

Figure 6: Left panel: Induction step in the construction of PwW. Families PwWW and
PwWE are depicted in violet and red, respectively, while paths used in the extension are
depicted in blue. Right panel: Induction step in the construction of Qw,u when the last
symbol of w is W and u is a prefix of wW. Families QwW,u and PwWE are depicted in violet
and red, respectively, while paths used in the extension are depicted in blue.

Next, we construct, for every u ∈ L and every w ∈ K that is a prefix of u, a family of
paths Qw,u with the following properties:

• paths in Qw,u are straight and pairwise vertex-disjoint except for sharing vu;
• |Qw,u| = 2k − 1;
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• every path P ∈ Qw,u starts at vu and ends at a vertex from the set Iw,u, where Iw,u

comprises the first 2k−2k−|w| vertices of the side (Nt)w (t ∈ {W,E} being the symbol
other than the last symbol of w), and all vertices vu′ such that u′ ∈ L, u′ 6= u, and
w is a prefix of u′; and

• for every P ∈ Qw,u, all the internal vertices of P are contained in the union of grids
Hw′ for w′ ∈ K such that w is a prefix of w′.

Note that in the third point above, t is not well-defined in case w is the empty word ε.
But then 2k − 2k−|w| = 0, so we simply do not include any vertices of this type in Iw,u.
As before, observe that |Iw,u| = 2k − 1, so every vertex of Iw,u is an endpoint of a path
from Qw,u.

Again, the construction proceeds by induction on k − |w|. A bit unconventionally, let
us explain first the induction step, as the base case will follow from applying the same
construction to a degenerate case. We also focus on the case when w 6= ε; the case w = ε
works analogously. Then, by symmetry, suppose that w = w′W for some w′ ∈ K and
that |w| < k − 1. Suppose further that wW is a prefix of u, the other case (when wE is a
prefix of u) being again symmetric. Consider families QwW,u (obtained from the induction
assumption) and PwE (constructed before). Then, these families can be used to construct
a suitable family Qw,u as follows (see the right panel of Figure 6):

• Start with setting Qw,u := QwW,u.
• For each Q ∈ QwW,u that ends among the first 2k − 2k−|w| vertices of the side NEwW,
say at the ith vertex, extend Q using an edge between HwW and Hw and a path
within Hw so that it ends at the ith vertex of NEw.

• For each Q ∈ QwW,u that ends among the next 2k−|w|−1 vertices of the side NEwW,
say at the vertex number 2k − 2k−|w| + i on this side for some i ∈ {1, . . . , 2k−|w|−1},
extend Q using an edge between HwW and Hw and a path within Hw so that it ends
at the ith vertex of SEw. Then concatenate Q with the unique path of PwE that
ends at the same vertex.

It can be easily seen that the extensions above can be obtained using paths within Hw that
are pairwise vertex-disjoint and of length at most 2k+1 − 2 each. Thus, the paths in the
constructed family Qw,u remain straight and pairwise vertex-disjoint except for sharing vu.

The construction for w = ε follows the same principle, except that we do not need to
construct paths that end at vertices of NWε or NEε. In the base case we may use the same
construction, only that we interpret Qu,u to be a family of 2k − 1 single-vertex paths that
start and end at vu.

This concludes the inductive construction of path families Qw,u for u ∈ L and w ∈ K
such that w is a prefix of u. For u ∈ L, denote Qu = Qε,u. Let us summarize the properties
of Qu:

• Paths in Qu are pairwise vertex-disjoint except for sharing vu.
• Each path in Qu is straight, and therefore of length at most k2k+2.
• For every u′ ∈ L, u′ 6= u, there is a path Q ∈ Qu that connects vu with vu′ .
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Given these properties, we can argue that admk2k+2(G) > 2k − 1. Consider any vertex
ordering 4 of G. Let umax ∈ L be such that vumax is 4-maximum among vertices {vu : u ∈
L}. Then the path familyQ′u, obtained fromQu by trimming every path to the prefix till the
first encounter of a vertex smaller in 4 than vumax , witnesses that admG,4

k2k+2(vumax) > 2k−1.
As 4 was chosen arbitrarily, it follows that admk2k+2(G) > 2k − 1.

Note that from Proposition 19 it follows that for every d ∈ N there is a planar
graph G with admd(G) > Ω(d/ ln d). This means that the upper bound of Theorem 2 is
asymptotically tight.

We continue with the strong d-coloring numbers. As noted by van den Heuvel et al.
in [22], there are planar graphs with strong d-coloring number Ω(d) and this lower bounds
is actually realized by grids, but the work [22] does not contain any formal proof of this
fact. The argument can be considered folklore in the community, but we were unable to
find any published work containing its presentation.

Proposition 20. Let G be the d× d grid for any d ∈ N. Then scol3d−2(G) > d/2.

Proof. Let 4 be any vertex ordering of G; our goal is to prove that scol3d−2(G,4) > d/2.
Index rows and columns of G naturally. For each i ∈ {1, . . . , d}, let ui be the 4-minimal
vertex of the ith column, and let U := {ui : i ∈ {1, . . . , d}}. Further, let k be the index
such that uk is 4-maximal the among vertices of U , and let C be the set of all vertices in
the kth column of G. The choice of k implies that u 4 c for all u ∈ U and c ∈ C.

We observe that in G there exists a family P of d pairwise vertex-disjoint paths, each
connecting a vertex in C with a vertex in U . Indeed, otherwise, by Menger’s theorem,
there would be a vertex subset X with |X| < d that would intersect every such path. But
then there would exist a row and a column of G that would not intersect X, while the
union of this row and this column would contain a path connecting a vertex of C with a
vertex of U ; a contradiction. Further, since the paths from P are pairwise vertex-disjoint,
there are d of them, and the whole graph G contains d2 vertices, we conclude that at most
d/2 paths from P may contain more than 2d vertices. Therefore, we can find a subfamily
P ′ ⊆ P of size at least d/2 such that each P ∈ P ′ has length at most 2d− 1.

For each path P ∈ P ′, let w(P ) be the first (i.e. closest to the endpoint in C) vertex
of P satisfying w(P ) 4 c for all c ∈ C. Note that w(P ) is well-defined, since each P ∈ P ′
contains at least one vertex w satisfying w 4 c for all c ∈ C: the endpoint of P belonging
to U is such a vertex. Since paths of P ′ are pairwise vertex-disjoint, vertices w(P ) for
P ∈ P ′ are pairwise different. Moreover, by concatenating a prefix of P from the endpoint
on C to w(P ) with a subpath of C from uk to the said endpoint, we obtain a strong
reachability path of length at most 3d− 2 that witness that w(P ) ∈ SReach3d−2[uk]. It
follows that

scol3d−2(G,4) > |SReach3d−2[uk]| > |P ′| > d/2.
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