
1. Introduction
One of the most important spatial scales in the ocean circulation is the internal Rossby radius of deformation 
LD; it ranges from 50 to 100 km at mid-latitudes to a few km in the polar regions (Hallberg,  2013). At this 
scale, perturbations are amplified on mean flows through mixed barotropic/baroclinic instability, giving rise to 
ocean eddies. Interactions between these eddies and the mean flow can lead to up-gradient momentum transport 
affecting the strength and separation of ocean western boundary currents such as the Kuroshio and Agulhas 
(Chassignet et al., 2020).

Most climate models, in particularly those used in CMIP5 and CMIP6, do not resolve ocean processes at the scale 
LD as the spatial grid size used is too large; typically 1° (Eyring et al., 2016). The main reason is computational 
costs, as doubling the horizontal resolution increases these costs roughly by a factor 10. Effects of subgrid-scale 
processes are hence parameterized in these models. For example, the effect of ocean eddies on tracer transport is 
represented by the Gent–McWilliams (Gent et al., 1995) scheme, but such a scheme cannot capture, for example, 
the up-gradient momentum transport. Hence, western boundary flows are too weak and diffuse, and do not sepa-
rate at the correct location (Chassignet et al., 2020).

Over the last few years, first simulations have been performed with global climate models, where the ocean 
model component has a resolution of 0.1°, which is smaller than LD for many locations on the globe (Chang 
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learning methods to allow high- and low-resolution dynamical models to mutually benefit from each other. 
In this work we mainly focus on how a low-resolution model can be enhanced within a symbiotic model 
configuration. The broader aim is to enhance the representation of unresolved processes in low-resolution 
models, while simultaneously improving the efficiency of high-resolution models. To achieve this, we use 
a grid-switching approach together with hybrid modeling techniques that combine linear regression-based 
methods with nonlinear echo state networks. The approach is applied to both the Kuramoto–Sivashinsky 
equation and a single-layer quasi-geostrophic ocean model, and shown to simulate short-term and long-term 
behavior better than either purely data-based methods or low-resolution models. By maintaining key flow 
characteristics, the hybrid modeling techniques are also able to provide higher quality initial conditions for 
high-resolution models, thereby improving their efficiency.

Plain Language Summary Models of the ocean vary in complexity. Some are very detailed and 
manage to show oceanic vortices, whereas others are very efficient but coarse, and unable to compute such 
vortices. The idea in this paper is to let these different model types work together and benefit from each other, 
as if in a symbiosis. With knowledge of differences between the detailed and coarse model we can use machine 
learning techniques to improve the coarse model. In this way a coarse model can be used to provide good 
quality predictions and to aid a detailed model by taking over part of its computations. We apply our ideas 
to the Kuramoto–Sivashinsky (KS) model and a quasi-geostrophic (QG) ocean model, where we show that 
promising short-term KS results may generalize to models of the ocean. Long-term equilibrium experiments 
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et al., 2020; Jüling et al., 2021). We will refer to those models as high-resolution (HR) models to contrast them 
with the 1° models which we will call low-resolution (LR) models. But also the high-resolution models are not 
completely eddy-resolving as this requires an even higher spatial resolution. There is now a substantial amount 
of model data available to compare results on ocean-climate variability and climate change for both types of 
models. High-resolution models tend to reduce biases compared to observations, particularly in western bound-
ary currents, sea surface temperature variability patterns and Southern Ocean mean flows (Chang et al., 2020; 
Jüling et al., 2021).

However, HR model simulations form a great drain on computational resources and hence there are still many 
efforts to represent the effects of unresolved processes in LR models. This parameterization process has been 
around for decades and approaches can be grouped into three types. First, semi-empirical parameterizations are 
used, where observation motivated schemes are implemented (Gargett,  1989; Viebahn et  al.,  2019). Second, 
theoretically derived schemes, where specific approximations are made in the underlying equations (Gent 
et al., 1995) have been used. Third, stochastic schemes derived from sampled high-resolution model simulations 
(Berloff, 2005; Mana & Zanna, 2014) have shown potential in representing unresolved processes in LR models 
(Hewitt et al., 2020).

Recently, a new approach has been added, where the subgrid-scale (SGS) model is based on machine learning 
(ML) techniques. In Bolton and Zanna  (2019), a convolutional neural network (CNN) was trained with data 
from a high-resolution model of the mid-latitude ocean gyres. This CNN was shown to successfully capture the 
small-scale processes and the effects of those on the mean flow in the low-resolution version of the same model. 
Capturing up-gradient momentum transport in turbulent flows is a crucial test for ML-based SGS models and 
the quasi-geostrophic (QG) equations form an ideal testing ground for this problem. Effective learning strategies 
based on CNNs and applied to QG are for instance presented in Frezat et al. (2022) and Guan et al. (2023), where 
in the latter study physics-based augmentations and constraints are introduced.

CNNs are a special variant of the traditional feed-forward neural network architecture (FFNN), which has also 
been used for subgrid-scale representations in both ocean and atmospheric models (Irrgang et al., 2021; Rasp 
et al., 2018). Another ML architecture that shows promise in the modeling of climate physics is the reservoir 
computing approach, often referred to as an echo state network (ESN). An ESN is especially suited to simulate 
chaotic dynamics (Jaeger & Haas, 2004; Pathak et  al., 2017) and is shown to be capable of emulating inter-
actions between empirical orthogonal functions (EOFs) (Nadiga,  2021). ESNs are a type of recurrent neural 
network (RNN), which are in fact dynamical systems with internal states that are propagated according to recur-
sive relations. This property sets them apart from FFNNs, which can be seen as functions (Lukoševičius & 
Jaeger, 2009). A relatively low training cost and a limited number of hyperparameters make ESNs stand out 
against similar RNN architectures such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) 
(Vlachas et al., 2020). Furthermore, ESNs are shown to have close computational and theoretical connections 
with linear regression and models based on dynamic mode decomposition (DMD) (Bollt, 2021; Kutz et al., 2016; 
Schmid, 2010).

Recent “hybrid” (or physics-controlled) ESN advances (Pathak et al., 2017, 2018) provide a simple and effective 
approach to correct known model imperfections, such as those due to the lack of eddies in LR ocean models. With 
training data based on ground truths and imperfect model predictions, model tendencies and nonlinear model 
mismatches are encoded in an ESN. The result is an artificial dynamical system that can be controlled using an 
imperfect model. Combining an imperfect model with corrections from a trained ESN creates a hybrid dynamical 
system that greatly outperforms both the network and the imperfect model (Wikner et al., 2020). This approach 
was recently applied to an atmospheric model (SPEEDY) and shown to be able to improve the simulations of 
mean flow and variability considerably on short time scales (Arcomano et al., 2022).

In this paper we use the hybrid modeling framework as a key ingredient for a “symbiotic” ocean modeling 
approach. The idea is to couple models of different complexities and configure them to solve the same problem, 
where we distinguish between perfect and imperfect models in terms of differing resolution and parameteriza-
tions. This model coexistence can be made mutually beneficial using data-driven and ESN-based techniques. 
With the symbiotic approach we aim to improve the computational efficiency of HR models, while simultane-
ously enhancing the parameterizations of unresolved processes in LR models. Our approach shares similarities 
with the coupling techniques in Barthélémy et al. (2022) and Counillon et al. (2023). Yet, here our broader aim is 
not a synchronized solution, but to be able to alternate between LR and HR models during time integration, with 
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simultaneous transients only present during a training phase. Hence our concept of symbiotic modeling involves 
both synchronous and alternating propagations of HR and LR models.

We will first focus on using the hybrid modeling strategy with data generated from both LR and HR models 
to correct imperfect model transients. Model corrections made can then be seen as modeling subgrid effects. 
To this end, we employ a linear grid-switching approach and introduce a correction framework that includes 
models based on linear regression, DMD, ESN and hybrid variants (Section 2). We apply the correction strategy 
to coupled LR and HR versions of the Kuramoto–Sivashinsky (KS) equations (Section 3) and a single-layer 
quasi-geostrophic (QG) ocean model (Section 4). With the ocean model we perform both short-term predictions 
and long-term equilibrium runs to compare the available corrective models. In the final part of Section 4 we test 
the symbiotic idea for the QG equations and lift LR predictions back to the HR grid where they serve as initial 
conditions for numerous HR simulations. A summary and discussion with the main conclusions is provided in 
Section 5.

2. Methods
In a general framework, the HR model is defined on a fine grid Ω f and is regarded as a perfect model. An LR 
model is considered as an imperfect model, and is defined on a coarse grid Ω c. The grids Ω f and Ω c have dimen-
sions Nf and Nc, respectively, and cover the same domain. Both models attempt to solve the same problem, but 
apart from different grids we also allow differences in key parameters and forcings between the perfect and 
imperfect model. The physics resolved by the perfect model is then used as ground truth and the imperfect model 
results are considered to be in need of correction.

The perfect model is a system of coupled partial differential equations (PDEs), spatially discretized on Ω f, which 
leads to a large system of differential-algebraic equations (DAEs):

𝑀𝑀𝑃𝑃 �̇�𝝃 = 𝐹𝐹𝑃𝑃 (𝝃𝝃), with 𝝃𝝃 ∈ ℝ
𝑁𝑁𝑓𝑓 . (1)

Here, ξ = ξ(t) is a time dependent state vector and 𝐴𝐴 𝐴𝐴𝑃𝑃 ∈ ℝ
𝑁𝑁𝑓𝑓×𝑁𝑁𝑓𝑓 is a mass matrix that determines the dependence 

on temporal derivatives. The nonlinear operator 𝐴𝐴 𝐴𝐴𝑃𝑃 ∶ ℝ
𝑁𝑁𝑓𝑓 → ℝ

𝑁𝑁𝑓𝑓 is a spatial discretization of the perfect model 
physics. Similarly, the semi-discretized imperfect model has a coarse state x = x(t) that evolves according to

𝑀𝑀𝐼𝐼 �̇�𝐱 = 𝐹𝐹𝐼𝐼 (𝐱𝐱), with 𝐱𝐱 ∈ ℝ
𝑁𝑁𝑐𝑐 , (2)

where 𝐴𝐴 𝐴𝐴𝐼𝐼 ∈ ℝ
𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐 and 𝐴𝐴 𝐴𝐴𝐼𝐼 ∶ ℝ

𝑁𝑁𝑐𝑐 → ℝ
𝑁𝑁𝑐𝑐 are again the mass matrix and spatial discretization operator.

Transfers between the solutions on the two grids Ω f and Ω c are made through a fully weighted restriction 
𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑁𝑁𝑐𝑐×𝑁𝑁𝑓𝑓 and a prolongation operator 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑁𝑁𝑓𝑓×𝑁𝑁𝑐𝑐 . We choose these operators for their convenient (varia-

tional) property that they are each other's transpose up to a constant factor: R = cP ⊤ (Briggs et al., 2000). The 
perfect model evolves according to 𝐴𝐴 𝐴𝐴𝑃𝑃 ∶ ℝ

𝑁𝑁𝑓𝑓 → ℝ
𝑁𝑁𝑓𝑓 . Similarly, the evolution of the imperfect model is given 

by 𝐴𝐴 𝐴𝐴𝐼𝐼 ∶ ℝ
𝑁𝑁𝑐𝑐 → ℝ

𝑁𝑁𝑐𝑐 . Hence ϕP and ϕI are time-propagation operators that represent time-discretized versions of 
Equations 1 and 2, respectively. We assume a fixed time step Δt; an uncorrected, imperfect model state that has 
been propagated for a single Δt will be denoted as 𝐴𝐴 �̃�𝐱

𝑘𝑘+1 = 𝜙𝜙𝐼𝐼

(

𝐱𝐱
𝑘𝑘
)

 .

The imperfect spatial discretization FI is incapable of capturing the physics resolved by the perfect model and we 
therefore attempt to improve the imperfect evolution ϕI with a combination of linear and non-linear corrections. 
As these corrections are data-driven we divide our approach into a data gathering and a prediction phase.

2.1. Data Gathering

We gather data from a trajectory of ξ(t) on Ω f. From this transient, associated restricted states, imperfect predic-
tions and auxiliary states are computed. Starting at time t0, we collect NT + 1 snapshots of the evolving state ξ(t):

{

𝝃𝝃
0
, 𝝃𝝃

1
, . . . , 𝝃𝝃

𝑁𝑁𝑇𝑇
}

, 𝝃𝝃
𝑘𝑘
= 𝝃𝝃(𝑡𝑡0 + 𝑘𝑘Δ𝑡𝑡), (3)

at fixed time intervals Δt such that we cover the model time T = NTΔt. The snapshots are restricted to the coarse 
grid and combined into two data matrices:

𝑋𝑋 =
[

𝐱𝐱
0, 𝐱𝐱

1, . . . , 𝐱𝐱
𝑁𝑁𝑇𝑇 −1

]

=
[

𝑅𝑅𝝃𝝃
0
, 𝑅𝑅𝝃𝝃

1
, . . . , 𝑅𝑅𝝃𝝃

𝑁𝑁𝑇𝑇 −1
]

, (4)
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𝑋𝑋′ =
[

𝐱𝐱
1, 𝐱𝐱

2, . . . , 𝐱𝐱
𝑁𝑁𝑇𝑇

]

=
[

𝑅𝑅𝝃𝝃
1
, 𝑅𝑅𝝃𝝃

2
, . . . , 𝑅𝑅𝝃𝝃

𝑁𝑁𝑇𝑇
]

. (5)

Apart from the restricted data matrix 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑁𝑁𝑐𝑐×𝑁𝑁𝑇𝑇 and its shifted version 𝐴𝐴 𝐴𝐴′ ∈ ℝ

𝑁𝑁𝑐𝑐×𝑁𝑁𝑇𝑇 , we also create a collec-
tion of imperfect predictions 𝐴𝐴 Φ(𝑋𝑋) :

Φ(𝑋𝑋) =
[

𝜙𝜙𝐼𝐼

(

𝐱𝐱
0
)

, 𝜙𝜙𝐼𝐼

(

𝐱𝐱
1
)

, . . . , 𝜙𝜙𝐼𝐼

(

𝐱𝐱
𝑁𝑁𝑇𝑇 −1

)]

∈ ℝ
𝑁𝑁𝑐𝑐×𝑁𝑁𝑇𝑇 . (6)

The matrices X and Φ(X) contain perfect and imperfect model tendencies that serve as forcing to an auxiliary 
(surrogate) model f. The exact structure of this model is described in more detail in Section 2.3. The model f 
has an internal state s and is subjected to an input forcing u. We evolve f over the same time period T and obtain 
snapshots from it at the same fixed intervals Δt. Hence we can iterate according to

𝐮𝐮
𝑘𝑘
= ℎ

(

𝐱𝐱
𝑘𝑘, 𝜙𝜙𝐼𝐼

(

𝐱𝐱
𝑘𝑘
))

, (7)

𝐬𝐬
𝑘𝑘+1

= 𝑓𝑓
(

𝐬𝐬
𝑘𝑘, 𝐮𝐮𝑘𝑘

)

, (8)

where the input forcing u is given by a mapping h and with initialization s 0 = s0 at t = t0. For h we either use a 
selection, for example, 𝐴𝐴 𝐴

(

𝐱𝐱
𝑘𝑘, �̃�𝐱𝑘𝑘+1

)

= 𝐱𝐱
𝑘𝑘 or combine the forcing such that 𝐴𝐴 𝐴

(

𝐱𝐱
𝑘𝑘, �̃�𝐱𝑘𝑘+1

)

=
(

𝐱𝐱
𝑘𝑘; �̃�𝐱𝑘𝑘+1

)

 , where ( ; )  
denotes vertical stacking. These are the most straightforward choices and of course other options are possible 
here. The surrogate model f comes in the form of an Echo State Network (ESN) and is described in Section 2.3. 
From the evolution of f we gather NT + 1 state snapshots 𝐴𝐴 𝐬𝐬

0, . . . , 𝐬𝐬𝑁𝑁𝑇𝑇 and combine them into a data matrix, with 
the exception of the initialization s 0:

𝑆𝑆 =
[

𝐬𝐬
1, 𝐬𝐬

2, . . . , 𝐬𝐬
𝑁𝑁𝑇𝑇

]

∈ ℝ
𝑁𝑁𝑟𝑟×𝑁𝑁𝑇𝑇 . (9)

2.2. Prediction

The data gathered up until time t = t0 + T is used to obtain linear best fit operators for a corrected prediction 
strategy. Given data X, X′, Φ(X), and S, these operators optimally combine x, 𝐴𝐴 𝐴𝐴𝐼𝐼 (𝐱𝐱) and s to improve the imper-
fect evolution given by ϕI alone. Here we provide a general transient strategy that covers a number of different 
corrective methods.

A corrected imperfect transient is started at t0 + T. Now, the models ϕI and f operate in isolation from any perfect 
model data and f augments ϕI. Using starting states 𝐴𝐴 𝐱𝐱

𝑁𝑁𝑇𝑇 and 𝐴𝐴 𝐬𝐬
𝑁𝑁𝑇𝑇 , the transient proceeds as follows:

�̃�+1 = ��
(

��
)

create an imperfect model prediction, (10)

�� = ℎ
(

��, �̃�+1
)

construct a forcing, (11)

��+1 = �
(

��, ��) evolve the auxiliary state, (12)

��+1 = ��� + ��̃�+1 + ���+1 create an improved prediction, (13)

for k = NT, NT + 1, …. Hence the trajectory of x is initialized with a restricted truth 𝐴𝐴
(

𝐱𝐱
𝑁𝑁𝑇𝑇 = 𝑅𝑅𝝃𝝃

𝑁𝑁𝑇𝑇
)

 but continues 
independently of the perfect model 𝐴𝐴

(

𝐱𝐱
𝑁𝑁𝑇𝑇 +1 ≠ 𝑅𝑅𝝃𝝃

𝑁𝑁𝑇𝑇 +1
)

 .

With the general formulation in Equations 10–13 we aim to include several methods and their combinations in the 
same framework. The operators A, B, C in Equation 13 have separate interpretations. On its own, A is obtained as 
a linear best fit of the propagation from X to X′. Its eigendecomposition is known as a dynamic mode decompo-
sition (DMD) (Kutz et al., 2016; Schmid, 2010) and A is often called a DMD-operator. The matrix B is the best 
direct correction of Φ(X) to X′ in the least squares sense. Lastly, as f is a neural net, the operator C is the optimal 
output layer, that is, the linear best fit translation of S to X′. Hence these different methods can be seen as special 
cases in Equations 10–13.

Combinations of the operators A, B, and C are fitted at t = t0 + T using regularized linear regressions with the 
data matrices X, X′, Φ(X), and S. Choices for the architecture of f and h and the use of operators A, B, C lead to 
a variety of predictive methods (Table 1). A model only approach uses B = I and ignores A and C. The transient 
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(Equations 10–13) is reduced to only the imperfect model evolution. In an ESN prediction we translate from 
states of the neural net (ESN) to predictions using a best fit C. Here, f is forced with restricted states only: x k. A 
DMD prediction is based on the best linear approximation of the propagation from X to X′. When the operators 
B and C are combined and 𝐴𝐴 𝐮𝐮

𝑘𝑘 =
(

𝐱𝐱
𝑘𝑘; �̃�𝐱𝑘𝑘+1

)

 , the auxiliary model f is subjected to a physics-based control 𝐴𝐴 𝐴𝐴𝐼𝐼 (𝐱𝐱) , 
both internally through u and externally through B. With f an ESN this is referred to as ESNc, which is equiva-
lent to the hybrid scheme in Pathak et al. (2018). DMDc denotes DMD with control (Proctor et al., 2016) and is 
obtained by combining operators A and B. In DMDc the imperfect physics assist the DMD model which, on its 
own, generalizes poorly outside the training data. A basic correction-only approach follows from using only B, 
whereas additional combinations lead to the varieties ESN + DMD and ESN + DMDc. Connections between 
ESNs and DMD exist (Bollt, 2021) and within this framework it is straightforward to combine (and consequently 
isolate) both approaches.

The minimizations shown in Table 1 are computed using Tikhonov regularization, which introduces an addi-
tional penalty on the size of the fitted operator. Regularization is crucial as it reduces overfitting and improves 
the stability of a long-term transient (Lukosevicius, 2012). For instance, the DMD-operator actually minimizes

min
�

(

‖

‖

�� −�′
‖

‖� + �2
‖

‖

�‖
‖�

)

, (14)

with λ > 0 a regularization parameter.

2.3. Echo State Network

An echo state network (Jaeger, 2001; Jaeger & Haas, 2004) will act as the auxiliary predictive model f. Here we 
will roughly outline the organization of an ESN. For a detailed explanation we refer to Pathak et al. (2018), which 
we follow closely. An ESN is a recurrent neural network that can be viewed as an artificial nonlinear dynami-
cal system with a state 𝐴𝐴 𝐬𝐬 ∈ ℝ

𝑁𝑁𝑟𝑟 of sufficient dimension Nr. Typically, better prediction results are achieved for 

Method 𝐴𝐴 𝐴
(

𝐱𝐱
𝑘𝑘, �̃�𝐱𝑘𝑘+1

)

 Known operators Minimization to compute unknown operators

Model only A = 0, B = I, C = 0 No minimization necessary

ESN x k A = 0, B = 0 min
�

‖

‖

‖

�� −�′‖
‖

‖�
 

DMD B = 0, C = 0 min
�

‖

‖

‖

�� −�′‖
‖

‖�
 

ESNc

𝐴𝐴

⎡

⎢

⎢

⎢

⎣

𝐱𝐱
𝑘𝑘

�̃�𝐱
𝑘𝑘+1

⎤

⎥

⎥

⎥

⎦

 

A = 0

𝐴𝐴 min
[𝐵𝐵 𝐵𝐵]

‖

‖

‖

‖

‖

‖

‖

‖

[

𝐵𝐵 𝐵𝐵

]

⎡

⎢

⎢

⎢

⎣

Φ(𝑋𝑋)

𝑆𝑆

⎤

⎥

⎥

⎥

⎦

−𝑋𝑋′

‖

‖

‖

‖

‖

‖

‖

‖𝐹𝐹

 

DMDc C = 0

𝐴𝐴 min
[𝐴𝐴 𝐴𝐴]

‖

‖

‖

‖

‖

‖

‖

‖

[

𝐴𝐴 𝐴𝐴

]

⎡

⎢

⎢

⎢

⎣

𝑋𝑋

Φ(𝑋𝑋)

⎤

⎥

⎥

⎥

⎦

−𝑋𝑋′

‖

‖

‖

‖

‖

‖

‖

‖𝐹𝐹

 

Correction-only A = 0, C = 0 min
�

‖

‖

‖

�Φ(�) −�′‖
‖

‖�
 

ESN + DMD x k B = 0

𝐴𝐴 min
[𝐴𝐴 𝐴𝐴]

‖

‖

‖

‖

‖

‖

‖

‖

[

𝐴𝐴 𝐴𝐴

]

⎡

⎢

⎢

⎢

⎣

𝑋𝑋

𝑆𝑆

⎤

⎥

⎥

⎥

⎦

−𝑋𝑋′

‖

‖

‖

‖

‖

‖

‖

‖𝐹𝐹

 

ESN + DMDc

𝐴𝐴

⎡

⎢

⎢

⎢

⎣

𝐱𝐱
𝑘𝑘

�̃�𝐱
𝑘𝑘+1

⎤

⎥

⎥

⎥

⎦

 
𝐴𝐴 min

[𝐴𝐴 𝐴𝐴 𝐴𝐴]

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

[

𝐴𝐴 𝐴𝐴 𝐴𝐴

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑋𝑋

Φ(𝑋𝑋)

𝑆𝑆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−𝑋𝑋′

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖𝐹𝐹

 

Note. The associated minimizations are linear regression problems for which we do not include the regularization here; ‖ ‖F 
is the Frobenius norm. Additional variations on these methods rely on the specific architecture chosen for h and f. The choices 
we make for h are added as a separate column to this table.

Table 1 
Overview of Corrective Methods Based on Operator Configurations in Equation 13
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larger Nr, at the cost of increased training time. The size of the ESN state s is therefore one of the key tunable 
hyperparameters in our framework. The components of s interact through a sparse, random linear operator 

𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑁𝑁𝑟𝑟 → ℝ

𝑁𝑁𝑟𝑟 that is not altered after initialization. The average degree of the adjacency graph associated with 
W is denoted with 𝐴𝐴 𝑑𝑑 . Input data 𝐴𝐴 𝐮𝐮 ∈ ℝ

𝑁𝑁𝑢𝑢 is standardized (every unknown has zero mean and unit variance) and is 
fed as forcing to the system, where it is combined with the state using a fixed linear operator 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ∶ ℝ

𝑁𝑁𝑢𝑢 → ℝ
𝑁𝑁𝑟𝑟 . 

The input operator Win is random and sparse, with only a single element per row that is drawn from a uniform 
distribution on [−1, 1]. The internal state evolves according to

𝐬𝐬
𝑘𝑘+1 = 𝑓𝑓

(

𝐬𝐬
𝑘𝑘, 𝐮𝐮𝑘𝑘

)

= (1 − 𝛼𝛼)𝐬𝐬𝑘𝑘 + 𝛼𝛼 tanh
(

𝑊𝑊 𝐬𝐬
𝑘𝑘 +𝑊𝑊𝑖𝑖𝑖𝑖𝐮𝐮

𝑘𝑘
)

, 𝐬𝐬
0 = 𝐬𝐬0 (15)

with initialization s0 and a relaxation parameter α ∈  (0, 1] (also known as the leaking rate) that controls the 
“speed” of the artificial dynamics (Lukoševičius & Jaeger, 2009). Hence the state s evolves according to a deter-
ministic iteration with internal interactions given by a random (but fixed) W and forcing provided by the input 
data. The tanh(⋅) activation function introduces a nonlinearity that is controlled by the weights in Win. The spectral 
radius of W, ρ(W), determines the amplification or damping of s k due to the recursive application of Equation 15 
and thereby controls the memory of system. From Equation 15 it is apparent that α allows a matching of time 
scales between the network and the variability in the training data, which is beneficial to the network's predictive 
performance (Lukoševičius & Jaeger, 2009). The presence of α ∈ (0, 1] is the only significant difference between 
our formulation of f and the original hybrid ESN in Pathak et al. (2018), which can be viewed as having α = 1. 
ESN prediction results are in fact sensitive to α and we treat it as a key hyperparameter that requires tuning.

Starting at t = t0 with s0, the recursion (Equation 15) generates NT new states that are combined into a data matrix 
S, as described in Section 2.1. A linear operator C provides output predictions by translating the auxiliary state 
to a prediction. In the standard ESN approach the output operator 𝐴𝐴 𝐴𝐴 ∶ ℝ

𝑁𝑁𝑟𝑟 → ℝ
𝑁𝑁𝑐𝑐 is computed from a regular-

ized minimization problem using S ⋆ and X′, see Section 2.2. Here S ⋆ is an adapted version of S. As in Pathak 
et al. (2018), we take the square of the even elements in each state s k ∈ S. The motivation for this is largely empir-
ical but related to problems that may originate with capturing symmetry in the model equations (Lu et al., 2017).

3. Results: Kuramoto–Sivashinsky Model
In Pathak et al. (2018) a hybrid ESN was applied to the Kuramoto–Sivashinsky (KS) equation. Here we will begin 
with a test of our framework by replicating these results. We will first consider equal grids (Nf = Nc) and introduce 
an imperfection through a perturbation in one of the parameters. Later we explore a perfect/imperfect model setup 
with Nf = 2Nc and no parameter perturbation in the KS-equation.

The KS-equation is capable of displaying rich spatiotemporal dynamics and is used to study a variety of phenom-
ena such as flame front dynamics (Sivashinsky, 1977) and reaction-diffusion dynamics (Kuramoto, 1984). In one 
dimension it is given by

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ (1 + 𝜖𝜖)

𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2
+

𝜕𝜕4𝜕𝜕

𝜕𝜕𝜕𝜕4
= 0, (16)

with u ∈ [0, L], initial value 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 0) = 𝐴𝐴0(𝑥𝑥) and periodic boundaries 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) = 𝐴𝐴(𝑥𝑥 + 𝐿𝐿𝑥 𝑥𝑥) . The domain size L is 
also the bifurcation parameter of the problem. In Pathak et al. (2018), the domain size is chosen at L = 35, for 
which the KS-equation has a positive maximum Lyapunov exponent λmax and produces chaotic behavior (Hyman 
& Nicolaenko, 1986). A perturbation ϵ ≥ 0 is introduced to create an imperfection. With ϵ = 0 we obtain the true, 
“perfect” evolution whereas our “imperfect” model will have ϵ > 0.

The KS-equation is discretized on an equidistant grid: xi = i/Nf with i = 1, 2, …, Nf = Nc = 64. We use a fully 
implicit time stepping scheme with Δt = 0.25 and initialize with

𝑢𝑢0(𝑥𝑥𝑖𝑖) =

⎧

⎪

⎨

⎪

⎩

1, 𝑖𝑖 = 1,

0, 𝑖𝑖 𝑖 1.
 

Starting at t = t0, a transient is computed up to T = 6,000 from which we select a large number of training and 
testing intervals. In the remaining experiments we follow a similar procedure with long transients to sample 
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training periods from. This approach is efficient from a data-management perspective and will be necessary to 
consistently train in the same dynamical regime, but it does not guarantee uncorrelated data and might introduce 
biases. However, in our comparison with Pathak et al. (2018) we do not encounter such problems.

The ESN used closely follows that in Pathak et al. (2018). The spectral radius is set at ρ(W) = 0.4, the average 
degree is 𝐴𝐴 𝑑𝑑 = 3 , we use training intervals of size T = 5,000 and ignore any relaxation with α = 1. The KS-equation 
and its discretization are also equivalent to Pathak et al. (2018) so, for a coherent interpretation of the predictions, 
we scale the obtained timings with the same Lyapunov exponent λmax = 0.07.

The methods summarized in Table 1 are compared in a scaling experiment where the auxiliary state size Nr is 
doubled several times (see Figure 1). Only those methods based on an ESN depend on this parameter which 
leads to constant results for the other predictions. For each method we use 100 different training intervals and 
hence network realizations, as we do not reuse W. We fix the regularization parameter at λ = 1 ⋅ 10 −5. The pure 
DMD-based methods (DMD and ESN + DMD) are not shown as they did not produce meaningful results. This 
is likely caused by DMD generalizing poorly to unseen data and hence showing only valid predictions for a short 
period after t0 + T.

The short-term prediction accuracy is measured with the normalized error used in Pathak et  al.  (2018). We 
compare the kth prediction x k with the restricted truth y k = Rξ k through

𝐸𝐸
(

𝐱𝐱
𝑘𝑘, 𝐲𝐲𝑘𝑘

)

=
‖

‖

𝐱𝐱
𝑘𝑘 − 𝐲𝐲

𝑘𝑘
‖

‖

√

⟨

‖𝐲𝐲
𝑘𝑘
‖

2
⟩

, (17)

Figure 1. Results for the replication of the experiments in Pathak et al. (2018) where the imperfect model is a perturbed 
version of the KS-equation with perturbation parameter ϵ. “Valid time” is the time it takes until the error threshold is passed: 

𝐴𝐴 𝐴𝐴
(

𝐱𝐱
𝑘𝑘, 𝐲𝐲𝑘𝑘

)

> 0.4 . These timings are in Lyapunov units (λmaxt). The experiment is repeated for 100 different training intervals 
and network realizations. For each Nr a box plot is depicted showing the first, second and third quartile.
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with 𝐴𝐴 ⟨⋅⟩ the mean over a time window up until k.

The results in Figure 1 show a strong resemblance with the scaling exper-
iment in Pathak et al.  (2018) (Figure 8 in that paper). There, similar valid 
times are obtained for ESN, ESNc and the standalone imperfect model. 
However, our ESN appears to suffer more from a stagnation at higher Nr 
values, which is likely due to differences in regularization. The imperfect 
model performs poorly on its own and the ESN-based methods improve the 
predictions as expected. A standalone ESN is able to achieve decent predic-
tions for ϵ = 1 and ϵ = 0.1. For ϵ = 0.01, however, it appears impossible for 
a standalone ESN to perform better than the imperfect model. In all studied 
cases it is remarkable how the hybrid variant ESNc stands out. By combin-
ing the imperfect model physics with the ESN a significant improvement is 
achieved.

The three additional models in Table 1 further explain the advantage of the 
hybrid ESNc over the standalone ESN. The correction-only and DMDc 
predictions do not depend on Nr and show up here as constant solutions. 
These two regression-based corrections outperform the standalone ESN for 
ϵ = 0.1 and ϵ = 0.01. The third approach, ESN + DMDc, follows the ESNc 
performance but with an overall slight advantage for the two largest pertur-
bations ϵ. This advantage is explained by the performance of DMDc and 
correction-only, as these are the linear components of ESN + DMDc and 
ESNc, respectively. In experiments where DMDc outperforms the correction 

we find a similar overall gain between ESN + DMDc and ESNc. From the experiments in Figure 1 it is apparent 
that ESN + DMDc and ESNc reduce to their linear components for low Nr, which is what would be expected 
from the correction Equation 13. Hence the performance of the linear models can be seen as a departure point 
for hybrid variants that add a nonlinear ESN. This largely explains the performance gain of, for example, ESNc 
over the standalone ESN.

In a different perfect/imperfect model setup, illustrating the symbiotic modeling approach, the models both use 
ϵ = 0 and have different spatial resolutions instead. The perfect model is discretized on a grid with twice the 
resolution, Nf = 2Nc. The domain size, ESN parameters and regularization remain unchanged. As explained in 
Section 2.1, fine grid information is restricted to the coarse grid and any data-driven corrections are made to the 
imperfect, coarse model evolution. Hence, instead of a model perturbation, it is now the difference in truncation 
errors and resolved scales between two resolutions that causes a model mismatch. With this setup the approach 
given by Equations 10–13 can be seen as a subgrid scale (SGS) modeling technique.

The coarse model is capable of a good prediction in this setup (Figure 2). DMDc, the correction-only and the stan-
dalone ESN are all unable to improve the coarse model. However, the hybrid variants ESNc and ESN + DMDc do 
show an overall improvement and an increase in predictive skill for larger Nr, similar to the parameter perturba-
tion results (Figure 1). For large values of Nr the hybrid methods double the predictive performance. This, again, 
shows the benefit of introducing the imperfect physical predictions to both force and control the artificial ESN. 
Hence the hybrid approach in Pathak et al. (2018) shows promise as a nonlinear subgrid modeling technique.

4. Results: Quasi-Geostrophic Model
The barotropic quasi-geostrophic (QG) vorticity equation for a square (length L, constant depth D) ocean basin is 
solved on a β-plane. The ocean flow is driven by an idealized and deterministic wind-stress forcing pattern. Typi-
cal horizontal length and velocity scales are denoted L and U, from which the time scale follows as L/U. Using 
L = 10 6 m and U = 3.17 ⋅ 10 −2 ms −1, we obtain a time scale of approximately one year. The equations are solved 
on a square domain, x ∈ [0, 1], y ∈ [0, 1], with periodic boundaries in both directions.

The QG equations in non-dimensional form are given by
[

𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕

𝜕𝜕𝜕𝜕

]

(𝜔𝜔 + 𝛽𝛽𝜕𝜕) =
1

Re
∇2𝜔𝜔 + 𝛼𝛼𝜏𝜏𝐶𝐶𝜏𝜏 (𝜕𝜕𝑥 𝜕𝜕)𝑥 (18)

Figure 2. Grid experiment with the KS-equation. The imperfect model 
consists of the same equations but discretized on a grid half the resolution of 
the perfect model. Solutions are valid until 𝐴𝐴 𝐴𝐴

(

𝐱𝐱
𝑘𝑘, 𝐲𝐲𝑘𝑘

)

> 0.4 . As in Figure 1, we 
repeat the experiment for 100 different training sets and network realizations.

 19422466, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003631 by U
trecht U

niversity, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

MULDER ET AL.

10.1029/2023MS003631

9 of 18

𝜔𝜔 = ∇2𝜓𝜓𝜓 (19)

with ω the vertical component of the vorticity vector and streamfunction ψ. The Reynolds number is Re = LU/
AH, where AH is the horizontal mixing coefficient and β = β0L 2/U, with β0 = 1.6 ⋅ 10 −11 (ms) −1. Wind forcing 
enters through the nondimensional parameter ατ = τ0L/(ρDU 2), with forcing amplitude τ0 = 0.3 Nm −2, density 
ρ = 1 ⋅ 10 3 kg m −3 and layer depth D = 6 ⋅ 10 2 m. We use a constant idealized wind-stress curl forcing in the form 
of a stirring pattern with stirring wavenumber kf = 5 in both directions:

𝐶𝐶𝜏𝜏 (𝑥𝑥𝑥 𝑥𝑥) = cos(2𝑘𝑘𝑓𝑓𝜋𝜋 𝑥𝑥) cos(2𝑘𝑘𝑓𝑓𝜋𝜋 𝑥𝑥). (20)

This problem setup is a variant of the approach in Edeling and Crommelin (2019), but here a rotating situation 
is considered. With doubly periodic boundaries, sufficient resolution, and a high enough Reynolds number, the 
rotating barotropic flow will organize into a zonal jet pattern, similar to the structure of Jupiter's atmosphere 
(Farrell & Ioannou, 2007). Different zonal patterns are possible under the same forcing conditions due, not only 
to translational symmetries, but also to turbulent self-organization processes (Bouchet et al., 2019).

4.1. Approach

Following the perfect/imperfect modeling approach we discretize the QG equations on two different grids. The 
perfect model uses a fine discretization on Ω f with Nf = 2 ⋅ 256 2 unknowns and the imperfect variant is discretized 
on Ω c with Nc = 2 ⋅ 32 2 unknowns (Nf = 64Nc). Furthermore, for both grids we model a flow with a Reynolds 
number that does not cause any numerical artifacts. With the perfect model we can run with Ref = 2,000. A stable 
flow for this Reynolds number and forcing amplitude τ0 is impossible to achieve on the coarse grid and we there-
fore choose to use Rec = 500 for the imperfect model.

For the discretization in time we use a fully implicit time stepping scheme that allows the use of the same time 
step for both models. In our experiments we will use Δt = 1 day which is stable on both grids and choices for Re. 
The perfect QG state (ω, ψ) is randomly initialized and we run the model into a statistical steady state. From the 
steady state we select training periods of size NT = 10, 000 days and follow the data gathering process described 
in Section  2.1. We ensure that the perfect QG reference trajectory contains no transitions between zonal jet 
patterns and hence all training intervals are part of the same statistical equilibrium. To get an idea of the perfect 
and imperfect flows we restart the imperfect model from a restricted fine state and run it into a steady regime. 
Snapshots from the two different statistical steady states are shown in Figure 3. The imperfect model solution in 
Figure 3b is highly diffusion dominated and shows a flow that strongly reflects the forcing pattern. The “perfect” 
solution in Figure 3a is—with 256 2 grid points—a moderately high-resolution flow and the difference in resolved 
features with the imperfect model is substantial, which makes this setup an ideal testing ground for the correc-
tive approaches in Table 1. Without explicitly formulating a residual subgrid term, this setup can still be seen 

Figure 3. Snapshots of the vorticity fields (in day −1) at the end of the transient depicted in Figure 5. (a) Perfect model 
vorticity snapshot from a statistical equilibrium with Nf = 2 ⋅ 256 2 and Ref = 2,000. (b) Imperfect model vorticity, also in a 
statistical equilibrium, Nc = 2 ⋅ 32 2 and Rec = 500.

 19422466, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003631 by U
trecht U

niversity, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

MULDER ET AL.

10.1029/2023MS003631

10 of 18

as an SGS model and shares several similarities with the approach in Frezat 
et al. (2022).

For the QG flow problem we will investigate the performance of the corrected 
transients, following Equations 10–13, in three different ways. We will make 
short-term predictions with the methods in Table 1 and compare with the 
truth using a normalized error, similar to the KS results in Figures 1 and 2. 
Then we let the different corrective models run into a statistical equilibrium 
and compare probability density functions (PDFs) of key flow properties 
with the perfect model equilibrium using the Kullback–Leibler divergence 
DKL; a measure of the similarity between two distributions (explained in more 
detail below). Finally we perform a coupling experiment that tests the long-
term corrective model predictions by using them as initial conditions on the 
fine grid.

4.2. Short-Term Predictions

In Figure 4 we present a short-term prediction experiment using the methods 
in Table 1. From here on we exclude the standalone DMD and DMD + ESN 
corrections for their lack of meaningful results, which was also noticed for 
the KS problem. For the ESN operators we again use ρ(W) = 0.4 and 𝐴𝐴 𝑑𝑑 = 3 , 
but with T = 10, 000 days and Δt = 1 day we use half the amount of training 
data. For this problem we find that, after scanning the range (0,1], the optimal 
relaxation parameter lies around α = 0.2 which roughly corresponds to the 

eddy turnover time scale in the model (∼73 days). The regularization is increased to λ = 1 ⋅ 10 −4 and the number 
of accurate days is measured using a stricter tolerance 𝐴𝐴 𝐴𝐴

(

𝐱𝐱
𝑘𝑘, 𝐲𝐲𝑘𝑘

)

< 0.2 , allowing only a small departure from the 
true trajectory.

The poor performance of the imperfect QG model shown in Figure 4 is improved by all studied methods. The 
standalone ESN needs at least Nr = 1,600, while the other methods show a significant improvement for all chosen 
Nr. From Equation 13 and Table 1 we see that ESNc is the optimal (in the least squares sense) hybrid between 
ESN and the correction-only approach. In the short-term QG predictions we find that these methods coincide for 
small Nr. A similar observation can be made for DMDc and the combination ESN + DMDc, which also coincide 
for low Nr. Controlled DMDc has better short-term predictive power than the correction-only variant, which is 

Figure 4. Short-term prediction experiments with the imperfect QG equations 
in a setup similar to Figure 2. The experiments are repeated for 50 different 
network realizations and training sets. “Accurate days” marks the time steps 
(Δt = 1 day) it takes until the error threshold is passed: 𝐴𝐴 𝐴𝐴

(

𝐱𝐱
𝑘𝑘, 𝐲𝐲𝑘𝑘

)

> 0.2 .

Figure 5. Spinup and long-term transient dynamics indicated by mean kinetic energy Km. (a) A 100 years spinup with 
the perfect QG equations using a time step Δt = 1 day is followed by a training period of NTΔt = T = 10, 000 days. After 
the training period, 100 years predictions with imperfect QG, ESN and ESNc are shown, using Nr = 3,200 and λ = 1. (b) 
Approximations of the probability density functions (PDFs) associated with the equilibrium transients, using 20 bins and 
excluding spinup/transition periods. Vorticity snapshots at the end of the depicted trajectories are shown in Figures 3 and 6. 
The ESN results are with single realizations and serve as a demonstration of the corrected dynamics.
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also reflected in the behavior of ESN + DMDc and ESNc at low Nr. With this domain setup we expect DMDc to 
perform reasonably well on short time scales and it can therefore be viewed as a linear benchmark. The nonlinear 
ESN + DMDc hybrid improves on it immediately but it takes at least Nr = 3,200 for the other ESN-based meth-
ods to outperform DMDc. For large Nr both hybrid methods (ESN + DMDc and ESNc) almost coincide and any 
positive influence of the DMD component is negligible.

The Nr doubling results are reminiscent of the findings with the KS-equation here and in Pathak et al. (2018). 
Similar to the KS scaling results, increasing Nr improves the short-term predictions of ESN-based methods for 
the QG problem. Based on the experiments with the KS-equation we expect that also here a plateau or a maxi-
mum will be reached for Nr > 12,800. For ESN state sizes ranging between 200 and 1,600 the ESN + DMDc 
combination gives the best results, where ESNc shows a slight deterioration in performance. After Nr = 1,600, the 
ESN component begins to dominate the results and ESNc becomes comparable to ESN + DMDc. Note, however, 
that also the standalone ESN is doing remarkably well for large state sizes. Hence, we again find that the linear 
components provide a positive offset to the ESN prediction skill at low Nr. For larger Nr the differences are less 
pronounced compared to the KS results, yet still present.

4.3. Long-Term Dynamical Regime

For the short-term results in the previous subsection, we used a normalized error based on the full fields (ω, ψ) 
for a comparison of the “hybrid” model results with the (restricted) perfect model truth. Failure in terms of this 
measure does not imply the predictions are invalid, only that the exact truth is not reproduced. We are therefore 
also interested in reproducing ergodic properties of long-term time series as in Pathak et al. (2017). In this fashion 
we will continue here and investigate three flow properties for long-term transient runs: mean kinetic energy Km, 
eddy kinetic energy Ke and enstrophy Z.

Horizontal velocities u, v follow from the streamfunction ψ, with u = −∂ψ/∂y, v = ∂ψ/∂x, and are decomposed 
into a (time) mean and transient component: 𝐴𝐴 𝐴𝐴 = ⟨𝐴𝐴⟩ + 𝐴𝐴′, 𝑣𝑣 = ⟨𝑣𝑣⟩ + 𝑣𝑣′ with the mean 𝐴𝐴 ⟨⋅⟩ taken over a window of 
50 days. The quantities Km, Ke, and Z are then given by

𝐾𝐾𝑚𝑚 =
∫
Ω

(

⟨𝑢𝑢⟩
2
+ ⟨𝑣𝑣⟩

2
)

𝑑𝑑Ω, (21)

𝐾𝐾𝑒𝑒 =
∫
Ω

(⟨

𝑢𝑢′
2
⟩

+

⟨

𝑣𝑣′
2
⟩)

𝑑𝑑Ω =
∫
Ω

(⟨

𝑢𝑢2
⟩

− ⟨𝑢𝑢⟩
2
+
⟨

𝑣𝑣2
⟩

− ⟨𝑣𝑣⟩
2
)

𝑑𝑑Ω, (22)

𝑍𝑍 =
∫
Ω

𝜔𝜔2 𝑑𝑑Ω, (23)

where the integral is approximated with a Riemann sum over the coarse domain Ω c.

A switch from the perfect (Nf = 2 ⋅ 256 2, Ref = 2,000) to the imperfect (Nc = 2 ⋅ 32 2, Ref = 500) QG model 
solution will inevitably lead to a different statistical steady state. An example of this process is presented in 
Figure 5. The perfect QG model is randomly initialized and runs into a statistical equilibrium. Predictions using 
imperfect QG, a standalone ESN and the hybrid ESNc then start from a restricted perfect QG state and run for 
100 years. For stable long-term transients with the ESN-based methods we need a significantly larger regulariza-
tion parameter (λ = 1) compared to the short-term experiments. Vorticity snapshots of the perfect and imperfect 
model depicted in Figure 3 are taken at the end of the trajectories in Figure 5. In Figure 6 we present vorticity 
snapshots at the end of the ESN and ESNc trajectories. By examining these vorticity snapshots we observe that 
the imperfect model enters a new regime and loses track of the zonal jet pattern that is present in the perfect QG 
solution. The two ESN-based methods, however, appear to maintain this structure to some degree after 100 years.

The imperfect model reaches a very different statistical equilibrium after a transition period of approximately 
10 years. A corrected transient based on Equations 10–13 should stay closer to the perfect model's dynamical 
regime and the presented ESN and ESNc trajectories show that this is feasible. Especially the hybrid ESNc shows 
a significantly better reproduction of the perfect model's Km PDF, compared to imperfect model (Figure 5b).

In Figure 7 the average energy spectrum over the final 80 years in Figure 5a is shown. The spectrum provides 
another demonstration of the improved dynamics given by the standalone ESN and the hybrid ESNc. The imper-
fect QG solution strongly reflects the forcing, which is also noticeable in the vorticity snapshot (Figure 3b). In 
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an incompressible 2D flow we expect energy to be transferred from the stirring wavelength to the larger scales, 
whereas enstrophy is transferred from the stirring wavelength to the smaller scales and dissipated (Vallis, 2019). 
Both the energy and the enstrophy transfer are poorly represented in the imperfect model. The ESN-based meth-
ods are a lot better at producing the correct energy transfer and achieve a good correspondence for the lowest 
frequencies. Around the stirring frequency ESNc still performs well, whereas the standalone ESN is overesti-
mating. The enstrophy transfer appears even more difficult to capture correctly but still the hybrid ESNc shows a 
great improvement over the standalone ESN at these scales.

The transients shown in Figure 5 are specific examples and provide only information for a single realization of 
the ESN and a single training range. For a more rigorous approach we compute transients for 50 training periods 
(and hence network realizations). We turn to all models studied in the short-term experiment (Figure 4) and, to 
maintain a stable iteration, need to increase the regularization parameter λ. For the ESN-based methods we use 
λ = 1, for correction-only we will use λ = 5 and with DMDc we use λ = 10 to compute stable evolutions. Later in 
this section we explore how these methods perform for various other λ choices.

Figure 7. Average equilibrium energy spectrum based on the final 80 years of the trajectories in Figure 5a. A dashed line 
is added to mark the frequency of the forcing. The spectrum is normalized with the largest amplitude in the perfect QG 
spectrum.

Figure 6. Snapshots of the vorticity fields (in day −1) at the end of the transient in Figure 5. (a) Standalone ESN prediction 
with Nr = 3,200 and λ = 1, (b) hybrid ESNc prediction with Nr = 3,200 and λ = 1.
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From the trajectories we compute flow properties Km, Ke, and Z, as defined 
in Equations 21–23, and compare their PDFs to the perfect model using their 
Kullback–Leibler (KL) divergence (Cover & Thomas, 2006): for two discrete 
distributions P and Q, the divergence of Q from P is given by

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃 𝑃𝑃𝑃) =
∑

𝑖𝑖

𝑃𝑃𝑖𝑖 ln

(

𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖

)

. (24)

Here, the distribution P is obtained from the perfect (reference) model. The 
PDFs are approximated using a domain that ranges beyond the perfect model's 
PDF with twice the standard deviation. This domain is divided into 100 bins 
and every transient is truncated to exclude initial spinup effects. For each 
flow property the divergence of its PDF from the “truth” is computed and 
combined into boxplots for different ESN state sizes Nr (Figure 8). We avoid 
division by zero in Equation  24 by substituting zero-values with machine 
precision. This leads to large but finite divergences for non-overlapping 
distributions (∼32). The KL–divergence DKL is a time-integrated measure 
that is here only used for evaluation, but is also well-suited for a-posteriori 
training strategies (Frezat et al., 2022).

The imperfect model shows a poor representation of the variability, which 
should be expected from the transient example in Figure 5. The PDFs for 
all flow properties show no resemblance with the true PDF, giving DKL 
results that remain at the maximum divergence value. Controlled DMDc 
and correction-only methods are better at capturing the variability, although 
this is highly dependent on the stabilizing regularization. Especially for the 
correction-only approach it is possible to find a configuration such that PDFs 
give a reasonable correspondence.

The KL–divergences for ESN-based methods in Figure 8 are partly missing. 
For low Nr, ESNc and ESN + DMDc are unstable when λ = 1. The remaining 
results show an overall improvement for increasing ESN state size Nr (cf. 
Figure 1), although not very clear for all flow properties. Both mean and eddy 
kinetic energy KL–divergences are somewhat irregular with optima at moder-
ate Nr values. For enstrophy, the ESN-based methods gradually improve with 
ESN state size. From the energy spectrum in Figure 7 (and related results 
in Frezat et  al.  (2022)) we know that the enstrophy transfer is difficult to 
capture and here a similar effect is visible in the correspondence between 
PDFs. ESNc requires at least Nr  =  1,600 to obtain small KL–divergences 
from the enstrophy PDF, further improving for larger Nr.

Diverged trajectories show up as non-overlapping with either a maximal KL–divergence or a missing value in 
the DKL results. Poor performing methods are hence indistinguishable from unstable ones. Especially the combi-
nation ESN + DMDc appears to suffer from stability issues for small Nr, leading to missing DKL values. We find 
that the ESN stabilizes regression-based corrective methods, as already noted in Arcomano et al. (2022). When 
the regression-based methods run on their own we choose a regularization that stabilizes sufficiently such that 
divergent trajectories are rare.

To provide an idea of how regularization affects the long-term performance of various methods we perform 
numerous equilibrium runs for different λ. In Figure 9 we present the results for enstrophy Z. The correction-only 
approach gives remarkably good results within a narrow optimal region for λ. It is also only slightly enhanced 
by the combination with an ESN (i.e., ESNc). The hybrid ESNc and ESN + DMDc are, however, much more 
robust and overall better at reproducing the correct enstrophy variability. From the regularization parameter study 
it is clear that DMDc needs a stronger regularization than the correction-only approach. The KL–divergences 
in Figure  8 show a related problem for the models that incorporate an ESN, where the ESN that combines 
with DMDc needs a much larger state size Nr to achieve sufficient stabilization. Hence stabilization is achieved 
through both regularization λ and ESN complexity Nr.

Figure 8. Long-term (100 years) transient results for 50 different training 
intervals. DKL results from methods that do not depend on an ESN are shown 
in (a, c, and e), for Km, Ke, and Z, respectively. In (b, d, and f) the respective 
scalings with Nr are depicted for models with an ESN-dependence. Missing 
values in the plots are caused by unstable configurations.
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4.4. Symbiotic Modeling

The symbiotic modeling idea proposes a two-way coupling between HR and LR models that benefits both model 
types. In the experiments above we have only studied a one-way coupling, with data-driven subgrid modeling 
schemes that make use of HR data on the LR grid. In this section we set out to complete a symbiotic setup by 
coupling the LR model configurations to the HR reference model and compute HR restart (spinup) trajectories.

We limit our investigation to the LR QG model configurations that have successfully produced long-term predic-
tions. Following the 100-year prediction experiments (Figures 8 and 9), the coarse predictions on Ω c are lifted 
to the fine grid Ω f using the prolongation operator P. From there an ensemble of 40-year restarts are performed 
with the high-resolution QG version (Nf = 2 ⋅ 256 2, Ref = 2,000), using all available (50) coarse predictions. The 
results are shown in Figure 10.

The QG solution in a doubly periodic domain, with our chosen set of model parameters and wind stress pattern, 
exhibits multi-stability and hence the flow can organize into different zonal jet patterns under the same forcing 
conditions. Hence the statistical equilibrium of the HR QG setup that has been used to generate training data 
(Figure 5) is not unique. In Figure 10a it is clear that the imperfect QG predictions fail at maintaining the correct 
dynamics. The majority of HR restarts (48 out of 50) from imperfect QG end up in different statistical steady 
states with markedly higher Km. Moreover, the spinup times into the different regimes are significant.

From the restarts using DMDc predictions (Figure 10b), 41 out of 50 trajectories end up in the correct regime 
after 40 model years. The correction-only approach performs worse, with 34 out of 50 trajectories approximat-
ing the desired dynamical range after 40 years. Both these linear methods are able to provide suitable initiali-
zations for HR QG, but not in a robust way. Many predictions have greatly diverged from the original training 
equilibrium. The states that do provide a good initialization yield only a short spinup time for the HR model, 
indicating the quality of these predictions.

The initializations with ESN-based predictions do show a consistent and reliable return to the training equilib-
rium. No significant differences in spinup behavior are observed between predictions for this particular choice of 
ESN state size (Nr = 3,200) and regularization (λ = 8). Throughout the prediction phase the ESN-based methods 
are able to maintain key flow properties, thereby creating ideal conditions for HR QG restarts with a minimal 
spinup period. Hence this result shows how LR QG with an ESN-based subgrid model can be used to improve 
the performance of the HR QG configuration.

Evolving HR QG for one year takes ∼3000s (on average, for runs on a single Intel i7 CPU at 1.80 GHz). Taking 
ESNc as an example, with λ = 8 and Nr = 3,200, it requires ∼150s for training and an additional ∼20s to compute 
one year. Switching for one year to the coarse grid using ESNc constitutes a speedup of a factor ∼17. For 
100 years we reach speedup factors ∼140 as training is needed only once.

Figure 9. Reproduction of the enstrophy Z variability for different regularization parameters using an equidistant spacing 
in 𝐴𝐴
√

𝜆𝜆 . Long-term (100 years) equilibrium runs are performed for 50 different (but partially overlapping) training sets and 
network realizations. Boxplots show the first, second and third quartile of the resulting spread of divergences DKL. The 
ESN-based methods have dimension Nr = 3,200.
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5. Summary and Discussion
In this paper we have proposed a symbiotic ocean modeling approach, that is, a framework in which models 
with different complexities are coupled in order to benefit from each other. We distinguish between perfect and 
imperfect models in terms of differing spatial resolutions and key parameterizations, and mainly focus on how 
an imperfect model can benefit from a symbiotic setup. With data generated from both model types we seek to 
correct imperfect model transients, which can be viewed as a subgrid-scale (SGS) modeling effort. To this end, 
we make use of hybrid modeling techniques that combine linear regression-based methods with nonlinear echo 
state networks (ESNs). Furthermore, we illustrate how perfect models may benefit from corrected imperfect 
models in terms of performance, thus demonstrating the symbiotic concept.

Comparisons with similar ML methods show that ESNs perform remarkably well when tasked with predicting 
complex spatiotemporal dynamics, such as those generated by the Kuramoto–Sivashinsky (KS) equation (Vlachas 
et al., 2020). With the KS equation as benchmark problem we establish that our physics-controlled ESNc imple-
mentation reproduces short-term predictions that are consistent with earlier work in Pathak et al. (2017). Our 
framework furthermore allows a straightforward comparison with purely regression-based methods. We show 
how corrections based on linear regression contribute to the success of the hybrid machine learning combinations 
and serve as a departure point for hybrid methods. When we apply these techniques to a subgrid modeling version 
of the KS problem, we observe a similar scaling behavior with ESN complexity and departure points rooted in the 
linear regression techniques. Here it is worth noting that our framework is model-agnostic, making it applicable to 
a wide range of problems. It therefore generalizes easily from the KS equation to the rotating flow problem (QG) 
with minimal hyperparameter adjustments.

For the subgrid modeling problem with the QG equations, short-term predictions give results that are comparable to 
the findings with the KS-equation. A scaling behavior is found with the size of the ESN. When the ESN complexity 
is negligible, the hybrid methods reduce to their linear regression components. For the long-term flow develop-
ment, our comparison of statistical steady states shows that the hybrid combinations are robust and perform well 
for various flow parameters. The parameter study with long-term statistics also shows how the ESN-based methods 
improve with ESN state size, reminiscent of the short-term full-field reproductions. For our purposes, however, the 
comparison of long-term flow characteristics is more informative than an error norm on state differences.

The experimental setup with long-term (100-year) transient experiments is an ideal testing ground to study 
the stability of ML-based SGS models. Our parameter studies with equilibrium simulations show that subgrid 

Figure 10. Density heat maps of high-resolution QG restart trajectories. Restarts are based on the final result of 100-year long predictions using (a) imperfect QG, (b) 
DMDc (λ = 10), (c) correction-only (λ = 5), (d) ESN (λ = 8, Nr = 3,200), (e) ESNc (λ = 8, Nr = 3,200), (f) ESN + DMDc (λ = 8, Nr = 3,200). Each method produces 
50 long-term predictions from which perfect QG is restarted. The choice for λ = 8 in the ESN-based methods is informed by the results in Figure 9. For the heat maps, 
the (time, Km)-domain is rasterized using 160 × 130 bins. A measure of density is then obtained by counting the number of trajectory points per bin.
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models based on only an ESN or regression often diverge and are difficult to stabilize. The problem of stabi-
lization is in fact a major issue for ML-based subgrid-scale models. In Guan et al. (2023) a stable CNN-based 
SGS model is obtained through adding physics constraints, while in Frezat et al. (2022) stability is achieved with 
a time-integrated loss-function for the training of a CNN. In our ESN-based framework training is limited  to 
a simple linear regression problem and hence we stabilize through regularization of this problem. Moreover, 
for purely linear correction strategies, the regularization parameter λ is the only available hyperparameter. In 
our long-term experiments with varying λ we observe that hybrid combinations are more stable. Here it is the 
ESN that stabilizes a correction-only strategy, which was also mentioned in Arcomano et al. (2022), whereas 
pure DMD is stabilized by the correction-only controlling term. Another important factor is the role of ESN 
complexity. Hence we find that, for a single architecture, stabilization is achieved through both regularization 
λ and ESN state size Nr. However, other configuration decisions such as the spectral radius ρ(W) and the fully 
implicit time-discretization for the physics-based control term were not studied in this context, yet these are both 
expected to have a dampening effect on the prediction transient. The combinations with a DMD model yield 
interesting comparisons, especially in the short-term QG experiments. Benefits of adding a DMD model are 
visible for moderate ESN state sizes. For long-term transient runs the advantage of hybrid DMD-ESN models is 
less pronounced, which is possibly due to the DMD model being valid for only a short period and hence it should 
be (partially) rebuilt in an online fashion (Pendergrass et al., 2016).

Obviously, the QG ocean model used here is highly idealized compared to state-of-the-art ocean models. Still, 
we think that these ideas are applicable to the general problem of correcting large scale flows, that is, improving 
coarse versions of the flow problem at hand. For models with a higher dimension than studied here a reduced 
order version of the corrective transient framework, as defined by Equations  10–13, is worth investigating. 
Here the best choice of reduced coordinates (POD, Fourier, wavelets) in combination with an ESN remains 
uncertain. Projecting with global POD modes, for instance, greatly reduces the ESN's predictive skill (Vlachas 
et al., 2020). A localized representation as used in Wan et al. (2021) shows more promise. Another way to tackle 
high-dimensional problems is through parallelization. A parallel hybrid ESNc based on a local domain decompo-
sition is used in Wikner et al. (2020) and Arcomano et al. (2022). It would be interesting to apply this approach 
as a subgrid model and reproduce long-term flow characteristics, comparing especially its ability to correctly 
capture energy and enstrophy transfer at low wave numbers.

The full, two-way coupling between high and low-resolution QG setups constitutes an essential test for the 
data-driven subgrid models. With a reference equilibrium that is not unique, it is interesting to observe the 
return to a high resolution steady regime from prolongated low-resolution predictions. It turns out that only 
the  ESN-based methods are able to consistently maintain the zonal flow pattern that is present in the training 
data. Considering both its computational efficiency and adequate prediction capabilities we therefore conclude 
that the physics-controlled ESNc is a promising candidate to facilitate our envisioned model symbiosis.

Data Availability Statement
The software developed for this paper is archived at Zenodo (Mulder & Baars, 2023). Included here are config-
urations for the KS and QG models with initial and boundary conditions as described in the paper. The experi-
mental framework that handles transient computations, ESN/DMD configurations and error metrics is available 
here as well.
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