
Nonlin. Processes Geophys., 30, 195–216, 2023
https://doi.org/10.5194/npg-30-195-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Data-driven methods to estimate the committor function
in conceptual ocean models

Valérian Jacques-Dumas1,2, René M. van Westen1, Freddy Bouchet3, and Henk A. Dijkstra1,2

1Institute for Marine and Atmospheric research Utrecht, Department of Physics,
Utrecht University, Utrecht, the Netherlands

2Centre for Complex Systems Studies, Department of Physics, Utrecht University, Utrecht, the Netherlands
3CNRS, Laboratoire de Physique, Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, Lyon, France

Correspondence: Valérian Jacques-Dumas (v.s.jacques-dumas@uu.nl)

Received: 30 November 2022 – Discussion started: 19 December 2022
Revised: 20 March 2023 – Accepted: 1 June 2023 – Published: 28 June 2023

Abstract. In recent years, several climate subsystems have been identified that may undergo a relatively rapid
transition compared to the changes in their forcing. Such transitions are rare events in general, and simulating
long-enough trajectories in order to gather sufficient data to determine transition statistics would be too ex-
pensive. Conversely, rare events algorithms like TAMS (trajectory-adaptive multilevel sampling) encourage the
transition while keeping track of the model statistics. However, this algorithm relies on a score function whose
choice is crucial to ensure its efficiency. The optimal score function, called the committor function, is in practice
very difficult to compute. In this paper, we compare different data-based methods (analog Markov chains, neural
networks, reservoir computing, dynamical Galerkin approximation) to estimate the committor from trajectory
data. We apply these methods on two models of the Atlantic Ocean circulation featuring very different dynam-
ical behavior. We compare these methods in terms of two measures, evaluating how close the estimate is from
the true committor and in terms of the computational time. We find that all methods are able to extract informa-
tion from the data in order to provide a good estimate of the committor. Analog Markov Chains provide a very
reliable estimate of the true committor in simple models but prove not so robust when applied to systems with
a more complex phase space. Neural network methods clearly stand out by their relatively low testing time, and
their training time scales more favorably with the complexity of the model than the other methods. In particular,
feedforward neural networks consistently achieve the best performance when trained with enough data, making
this method promising for committor estimation in sophisticated climate models.

1 Introduction

Global warming may lead to the destabilization of certain
subsystems of the climate system, called tipping elements
(e.g., Lenton et al., 2008). A recent inventory of these tipping
elements, including the Amazon rainforest and the polar ice
sheets, has provided estimates of their critical temperature
thresholds (Armstrong McKay et al., 2022). Two important
tipping elements involving the ocean are the subpolar gyre
convection and the Atlantic meridional overturning circula-
tion (AMOC).

In the case of the AMOC, the salt-advection feedback is
known to cause a bistable regime in conceptual ocean mod-

els (Stommel, 1961; Rahmstorf, 1996). Many model studies
have shown that the AMOC may collapse under a chang-
ing freshwater forcing, either by crossing a tipping point, or
by noise or rate-induced transitions. Observations (Bryden
et al., 2011; Garzoli et al., 2013) of an indicator of bistability
(de Vries and Weber, 2005; Dijkstra, 2007) suggest that the
present-day AMOC is in such a bistable regime.

The collapse of the AMOC is thought to be a rare event,
but because of its high impact, it is important to compute
the probability of its occurrence in the 21st century. The the-
oretical framework of large deviation theory (Freidlin and
Wentzell, 1998) is not applicable, as strong assumptions on

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.

196 V. Jacques-Dumas et al.: Data-driven committor estimation

the noise statistics have to be made. Moreover, the methods
from this theory prove unfeasible in high-dimensional sys-
tems, such as global ocean models. Transition probabilities
can also be computed using a simple Monte Carlo approach
in which many long trajectories are simulated to find enough
transitions to determine statistics. However, this approach is
not tractable either for high-dimensional systems because of
the required computational costs.

A good alternative is to use splitting, or cloning al-
gorithms such as trajectory-adaptive multilevel splitting
(TAMS) (Lestang et al., 2018; Baars et al., 2021) based itself
on the AMS (adaptive multilevel splitting) algorithm (Cérou
and Guyader, 2007). Using ensemble simulations (with sig-
nificantly fewer members compared to a traditional Monte
Carlo approach), these methods are suited to compute the
probability to reach a state B (e.g., collapsed AMOC) of the
phase space starting from a state A (e.g., present-day-like
AMOC), where the transition from A to B is a rare event.
TAMS also adds a time threshold: the transition must be
completed before a certain time Tmax. Using a score func-
tion to measure how close trajectories are from the state B,
AMS and TAMS encourage the closest ones while discard-
ing the ones where the rare event is least prone to happen.
Then, new trajectories are simulated by branching from the
most promising ones. In this way, the statistics are not al-
tered and the transition probability can be obtained at a lower
computational cost. Rolland et al. (2015) applied AMS for
the first time to the computation of rare event probabilities
in a 1-D stochastic partial differential equation. Since then,
such sampling algorithms have achieved numerous successes
when applied to atmospheric turbulent flows (Bouchet et al.,
2019; Simonnet et al., 2021) or even a full complexity cli-
mate model (Ragone et al., 2018).

The main limitation of this kind of algorithm is that it
heavily relies on its score function; using a bad score func-
tion may cancel its time-saving benefit. Fortunately, in the
case of TAMS, the optimal score function is known: it is the
committor function q (Cérou et al., 2019). It is defined as
the probability to reach a certain set A of the phase space
before another set B, as a function of the initial condition
of the trajectory. The committor function is a solution of a
backward Kolmogorov equation, and, in theory, it is possi-
ble to compute it exactly. In practice, however, this equation
is intractable to solve in high-dimensional models. Even in
simpler systems, such as the Jin–Timmermann model, Lu-
cente et al. (2022a) showed that the committor function can
already have a very complex structure. Moreover, the com-
mittor function contains precisely the information we are
looking for when using TAMS. Consequently, another way
to estimate that function is required.

When it is assumed that the underlying dynamics can be
described by an overdamped Langevin equation, the back-
ward Kolmogorov equation may be simplified. The commit-
tor can then be parametrized using, for instance, feedfor-
ward neural networks (Khoo et al., 2018; Li et al., 2019).

A novel way to perform such parametrization has recently
been proposed by Chen et al. (2023) by using tensor net-
works. More general approaches have also been developed to
estimate the committor from pre-computed trajectories. For
instance, milestoning (Elber et al., 2017) consists in coars-
ening the phase space into a cell grid and considering short
trajectories between boundaries of these cells. Lucente et al.
(2022b) has also recently applied to this problem a Markov
chain interpretation of the analog method (Lorenz, 1969a, b;
Yiou, 2014; Yiou and Déandréis, 2019; Lguensat et al., 2017;
Platzer et al., 2021a, b), which consists in approximating the
dynamics of the system by sampling its phase space. The re-
sulting simpler process is a transition matrix whose proper-
ties can be easily studied. The committor estimation problem
was also approached by trying to solve the backward Kol-
mogorov equation using a data-driven mode decomposition
of the adjoint of the Fokker–Planck operator (Thiede et al.,
2019; Strahan et al., 2021; Finkel et al., 2021). Finally, neu-
ral network methods can also be applied for direct computa-
tion of the committor function in this more general setting, as
was shown by Lucente et al. (2019) and recently developed
by Miloshevich et al. (2022).

The contribution of the present paper is to compare the ca-
pabilities and performance of these different committor esti-
mation methods by applying them to two different concep-
tual, low-dimensional ocean models. The objective is to as-
sess their strengths and weaknesses and determine which one
could be best suited for applying the committor estimation
within TAMS for high-dimensional models. The structure of
the paper is as follows. In Sect. 2, we shortly present both
ocean models for which we estimate the committor. We also
explain the methods that will be compared, detail the choices
made for their implementation, and outline our comparison
protocol. Results on the performance of the different com-
mittor estimation methods are presented in Sect. 3. In Sect. 4,
we discuss possible ways of optimization and future lines of
improvement.

2 Models and methods

2.1 The AMOC model

The AMOC box model used here was presented in Cima-
toribus et al. (2014) and slightly extended in Castellana et al.
(2019). The Atlantic Ocean is divided into five boxes as
shown in Fig. 1. The northern and southern Atlantic boxes
are labeled “n” and “s”, respectively. The pycnocline layer is
modeled as two boxes, the tropical box (“t”) and the tropical
southern box (“ts”); the latter is located south of 30◦ S. Fi-
nally, a deep box (“d”) extends throughout the whole ocean
below the pycnocline depth D. The temperature in each box
is prescribed, so that the water density only depends on its
salinity. Due to conservation of salt, the state vector of the
model is determined by five of the six quantities St, Sts, Sn,
Ss, Sd, and D.

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 197

Figure 1. Sketch of the AMOC box model (Castellana et al., 2019).
The red arrows represent the volume transport between each box,
the blue arrows represent the freshwater forcing, and the green ar-
rows represent the wind-driven transport. Solid red arrows are trans-
port that always takes place, dashed arrows are only present in a
present-day-like AMOC, and the dotted arrows are only present in
the reversed state of the AMOC.

The flows between the boxes are represented by three main
quantities. Firstly, the volume transport qn accounts for the
downwelling of dense water taking place in the northern box.
Secondly, qs corresponds to the difference between the wind-
driven Ekman flow (qEk) and the eddy-induced flow (qe).
Finally, qu models the upwelling from the deep box to the
tropical box. Two additional terms, rs and rn, represent the
salinity transport due to the wind-driven subtropical gyres.
The equations of the model are given in the Appendix A.

The model is subject to two forced freshwater fluxes: a
constant symmetric forcing, Es, from the tropical box to the
boxes “n” and “s”; and an asymmetric forcing Ea from the
box “s” to the box “n”. Only Ea contains a random white-
noise component, i.e., Ea(t)= Ea(1+ fσ ζ (t)), where ζ (t)
is a white-noise process with zero mean and unit variance.
The quantity fσ is the noise ratio ranging from 0 to 0.5
(Castellana et al., 2019). Fixing all other parameters (see
Appendix A), the behavior of the trajectories of the system
is entirely determined by the values of the two parameters
(Ea,fσ).

2.2 The double-gyre model

The double-gyre model is a well studied model of the wind-
driven ocean circulation in a rectangular basin of sizeLx×Ly
and characteristic horizontal scale L. This model describes
the flow in an ocean layer of constant density and fixed thick-
ness, forced by an idealised zonal wind stress. The dimen-
sionless equation for the geostrophic stream function 9 and

the potential vorticity Q are given by

Q≡∇29 −9 +βy, (1)

∂Q

∂t
+ J (9,Q)− r∇29 = σ (1+ γ ζ (t)) sin

(
2π

L

Ly
y

)
,

(2)

where J is the Jacobian J (u,v)=
∂u

∂x

∂v

∂y
−
∂u

∂y

∂v

∂x
. β stands

for the strength of the planetary vorticity gradient and r for
the bottom friction coefficient. The wind-stress forcing am-
plitude is σ (1+γ ζ (t)), where ζ (t) is again a zero-mean unit-
variance white-noise process, σ is the deterministic strength
of the wind stress, and γ is a stochastic noise ratio. In deriv-
ing a reduced model, a Fourier expansion (with a western-
boundary layer structure) is pursued (Jiang et al., 1995), i.e.,

9(x,y, t)=
4∑
k=1

Ak(t)e−sx sin(x) sin(ky), (3)

where s represents the fixed width of the boundary layer. In a
Galerkin method, the equations are projected onto the same
Fourier basis. As shown in Appendix B, this truncation gives
four ordinary differential equations (ODEs) that capture (Si-
monnet et al., 2005) the first bifurcations of the full model
(Eq. 2). When all other parameters are fixed (values given in
Appendix B), the behavior of the model is fully determined
by the values of the two parameters (σ,γ).

2.3 Committor function

Consider two sets A and B in the phase-space � of a given
dynamical system. From a trajectory X(t) of that dynamical
system, one can define its first-passage time τC in any set
C ∈� as

τC =min{t | X(t) ∈ C}. (4)

The committor function, q(x), is the probability that a trajec-
tory X(t) starting at x reaches the set A ∈� before the set
B ∈�, i.e.,

q(x)= P(τA < τB | X(0)= x). (5)

In the case of a stochastic dynamical system with dimension
d (which is the case we always consider here), the committor
function is a solution to the backward Kolmogorov equation.
In other words, it obeys the following Dirichlet problem:

Lq(x)= 0 ∀x ∈ (A∪B)c, (6)
q(x)= 1 ∀x ∈ A, (7)
q(x)= 0 ∀x ∈ B, (8)

where L is the infinitesimal generator of the process and the
adjoint of the Fokker–Planck operator. In the case considered

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

198 V. Jacques-Dumas et al.: Data-driven committor estimation

here of a stochastic differential equation, it is defined as

L=
d∑
i=1

ai(x)
∂

∂xi
(·)+

d∑
i,j=1

Dij (x)
∂

∂xi∂xj
(·), (9)

a being the drift of the system and D its diffusivity.
One can directly sample the committor function via a

Monte Carlo method. Suppose we have determined a trajec-
tory X(t) and we want to compute the committor for each
point x ∈� in this trajectory. Then, for each x, N trajecto-
ries starting from x are simulated. If NA is the number of
those where τA < τB , the committor is simply expressed as

q(x)=
NA

N
. (10)

Such a Monte Carlo computation, however, is extremely
costly, even when fully optimized and parallelized. This
method is only used here to obtain a reliable “true” commit-
tor for comparison with their estimated equivalent.

2.4 Committor estimation: analog methods (AMC)

The analog method was first proposed in Lorenz (1969a, b)
as a way to predict future states in a trajectory by using past
data. Much work has been done on this method (Yiou, 2014;
Yiou and Déandréis, 2019; Lguensat et al., 2017; Platzer
et al., 2021a, b) and it has been used to generate new stochas-
tic trajectories by re-using past data to emulate the dynam-
ics of the system. This method may also be interpreted as
a Markov chain that approximates the underlying dynamics.
This interpretation allows one to store an effective dynamic
in a simple transition matrix, which Lucente et al. (2022b)
used to compute a committor function. We give below a short
summary of this method.

Let {Xn}1≤n≤N be a discretized trajectory. Each state
Xn corresponds to a simulated time tn = n1t , 1t being
the time resolution. The analogs of every state Xn are de-
fined as its K nearest neighbors {X(k)

n }1≤k≤K in the tra-
jectory, using the Euclidean distance in the phase space.
In practice, the analogs are obtained through a search in a
k-dimensional (KD) tree (Bentley, 1975) containing every
point of {Xn}1≤n≤N . KD trees are a type of binary space-
partitioning tree: every node of the tree corresponds to a k-
dimensional data point and belongs to a hyperrectangle split-
ting the space along a certain axis. This type of tree is well
suited to search for nearest neighbors efficiently.

This set of analogs is thus a subset of the original trajec-
tory: {Xlk | lk ∈ [1,N − 1]r {n},1≤ k ≤K}. It is then as-
sumed that there is a transition fromXn to the image of any of
itsK analogs with a probability 1/K . Hence, the endpoint of
the trajectoryXN is excluded from the set of analogs because
it has no image. Xn has thus equal probability to transition to
any of the states {Xlk+1, lk ∈ [1,N−1]r {n},1≤ k ≤K}. A
Markov chain can then be built that approximates the dynam-
ical behavior of the original trajectory. The transition matrix

G describing this Markov chain has the following elements:

Gi,j =

{
1
K

if Xj−1 is an analog of Xi
0 otherwise

. (11)

Suppose that transitions occur between two sets of the phase
space, calledA and B. Firstly, all states belonging toA in the
trajectory can be grouped together. The same is done for the
states belonging to B. Then a new transition matrix G̃ can
be defined where all states in A and B are represented by a
single index, respectively iA and iB . The elements of G̃ are
then

G̃iA,iA = 1

G̃iB ,iB = 1
G̃iA,j = 0 if j 6= iA
G̃iB ,j = 0 if j 6= iB
G̃i,iA =

∑
k|Xk∈A

Gi,k if i 6= iA, i 6= iB

G̃i,iB =
∑

k|Xk∈B

Gi,k if i 6= iA, i 6= iB

G̃i,j =Gi,j otherwise

. (12)

The committor function is now computed from this transition
matrix (Lucente, 2021). Let q be the vector containing the
committor function q(x) on every point of the trajectory. It
follows (Schütte et al., 1999; Prinz et al., 2011; Tantet et al.,
2015; Noé and Rosta, 2019; Lucente, 2021) that q obeys the
following equation:

G̃q = q. (13)

Finding the committor function on the trajectory {Xn}1≤n≤N
thus amounts to solving an eigenvector problem. It can be
shown that G̃ has an eigenvalue 1 with two leading eigenvec-
tors v1 and v2 (Prinz et al., 2011). The committor function
then reads

q = αv1+βv2, (14)

where α and β are derived from the conditions qiB = 0 and
qiA = 1 (following the same convention as in Sect. 2.3).

AMC thus returns an estimate of the committor on ev-
ery point of the input trajectory. Since all the information
only comes from the transition matrix computed from that
trajectory, AMC does not require any pre-training (in con-
trast to the machine learning methods described below) and
could in theory be applied directly to any trajectory com-
puted in TAMS. However, restarting the whole process from
scratch for each of the hundreds of trajectories simulated dur-
ing TAMS may be computationally expensive.

In order to estimate the committor at any other point of
the phase space (not belonging to the train trajectory), the
AMC method has to be combined with another method. As
suggested in Lucente (2021), we use a K nearest neighbors
(KNNs) method (Altman, 1992). More precisely, we will

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 199

use AMC to train the Markov chain and KNN to apply the
learned Markov chain to test trajectories.

Suppose an estimate q of the committor is already known
on a set of states {Xn}1≤n≤N . To compute the committor on
another point Y of the phase space, its K nearest neighbors
{Xlk , lk ∈ [1,N],1≤ k ≤K} can be computed using again
the Euclidean distance in the phase space. The committor on
Y is then calculated from

q(Y)=
1
K

K∑
k=1

q(Xlk). (15)

In practice, AMC will be applied beforehand on a very long
training trajectory to create a pool of states for which the
committor is already estimated. Another KD tree is then used
to compute the K nearest neighbors of Y among this pool of
states. For simplicity, we use the same value ofK for both the
number of analogs used in AMC and the number of nearest
neighbors used in KNN.

When applying AMC, as explained in Lucente (2021),
there are cases where the estimated committor takes values
outside of the interval [0,1]. Such cases can occur when the
dataset is not large enough, thus causing a breakdown of er-
godicity in the Markov chain. In practice (Lucente, 2021),
the pool of states created by AMC only consists of the points
x where q(x) ∈ [0,1].

2.5 Committor estimation: neural network methods

2.5.1 Feedforward neural network (FFNN)

FFNNs are frequently used to perform a classification task:
each data sample is labeled (often with a binary label) as
belonging to a class and the FFNN must learn the differ-
ent classes. Here, however, to estimate a probability, an extra
layer shall be added at the end of the network. First, all data
samples must be labeled in both the train and test set. Follow-
ing the same convention as in Sect. 2.3, two classes are used:
“leading to a state in A” and “leading to a state in B”. Let X
be a point belonging to a given trajectory. Starting from X, if
that trajectory then first reaches a state in A, X is labeled as
“leading to a state in A” and is assigned the label (0,1). Oth-
erwise, if after going through X, the trajectory first reaches a
state in B, X will be labeled as “leading to a state in B” and
will be assigned the label (1,0). Classes are here labeled us-
ing one-hot encoding, as it will allow one to transform these
labels into a probability. In this way, all data samples (in the
train and test sets) are in the form {X,Y }, where X is a point
in the phase space and Y is either (0,1) or (1,0).

The FFNN itself consists of several hidden layers of
densely connected neurons, preceded by an input layer and
followed by an output layer. Our baseline architecture con-
tains three hidden layers of respectively 64,128, and 256
neurons. The size of the input layer is the number of vari-
ables given as input, between 2 and 4. The output layer al-
ways contains two neurons, so as to predict one-hot-encoded

labels. These kinds of labels are used because they allow one
to apply a Softmax function on the output of the FFNN. This
function transforms the output of the network into a couple of
probabilities that can be interpreted as (“probability to reach
a state in B first”, “probability to reach a state in A first”).
The second member of that couple is the desired committor
function.

The loss function used to train the FFNN is the cross-
entropy loss. It is well suited to assess a distance between
the true committor and the data-based estimation. Moreover,
it is closely related to the measures we are using to evaluate
the performance of the different methods (see Sect. 2.7.1).

Unlike the training of AMC, training an FFNN involves
randomness (e.g., shuffling of the train dataset). To ensure
robustness of the results, we use k-fold cross validation dur-
ing the training process. It consists in randomly splitting the
whole training set into k subsets and then training the FFNN
k times. Each time, validation is performed using a differ-
ent subset and the remaining k− 1 are used for training.
This method allows making statistics on the performance of
the network for a given setup. Here, we arbitrarily choose
k = 20.

The AMC method is easy to optimize, as it involves a sin-
gle hyperparameter. However, for the FFNN, there are many
more parameters that can be varied. We choose the following
setup and hyperparameters:

– Each layer of the neural network is initialized according
to the He et al. (2015) normal initialization method.

– The optimization algorithm is the stochastic gradient
descent method.

– We use a learning rate scheduler, with the plateau algo-
rithm: if the loss function is not improved for 5 consecu-
tive epochs, the learning rate is divided by 10; the initial
learning rate λ= 10−4.

– Each learning lasts 30 epochs. At the end, we retain the
state of the model at the epoch that resulted in the best
validation loss.

2.5.2 Reservoir computing (RC)

Reservoir computing was first introduced by Jaeger (2001).
It is a specific type of recurrent neural network (RNN). The
main difference between the latter and the FFNNs presented
in the former section is that the connection structure of RNNs
contains cycles. In this way, they are able to preserve a dy-
namical memory of their internal state, making RNN a pow-
erful tool for dynamical system analysis. However, train-
ing traditional RNNs with a gradient descent algorithm suf-
fers from a number of drawbacks that make it inefficient
(for more details, see the introduction of Lukoševičius and
Jaeger, 2009). Reservoir computing avoids those problems
by using a structure that does not require gradient descent.

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

200 V. Jacques-Dumas et al.: Data-driven committor estimation

A classical reservoir computer consists of three main el-
ements: an input layer matrix Win, a random network (the
reservoir) with the reservoir state X, and an output layer
matrix Wout. The main feature of this method is that the
weights of the input layer and reservoir are fixed: only the
output layer is trained, using a regularized linear least squares
method. In a nutshell, the input time series is mapped onto
the reservoir with a nonlinear function (usually tanh); the
output layer then simply performs a linear regression of the
feature vector X computed in the reservoir. It has recently
been shown (Gonon and Ortega, 2020) that a universal ap-
proximator can be realized with this approach. However, this
classical approach has again several drawbacks, in particu-
lar the use of random networks to represent the reservoir and
the number of hyperparameters (there are seven) that have to
be optimized; both can greatly hinder the performance of the
reservoir computer.

Recently, Gauthier et al. (2021) developed the so-called
“next-generation” reservoir computing, which we abbreviate
below with RC. The basic idea behind RC is that, instead of
first applying a nonlinear function to the data followed by
a linear regression as in the classical approach, first a linear
function is applied to the data, and then the output layer is a
weighted sum of nonlinear functions. By doing so, no more
reservoir is needed. The details of the methodology are de-
scribed in Gauthier et al. (2021), and we only specify below
the relevant ones for the committor estimation.

Consider a trajectory U ∈ RM×T in dimensionM and con-
sisting of T time steps. From this trajectory, a feature vec-
tor X ∈ RN×(T−ks) is extracted. N,k, and s are detailed in
Appendix C. The output layer then simply maps this feature
vector X onto the desired output. The output layer is repre-
sented by a matrix Wout ∈ RD×N , where D is the dimension
of the desired output. In our case, M is the number of vari-
ables in the model where we aim to estimate the committor
and D = 1 (dimension of the committor). The RC method
returns the committor via

q =WoutX. (16)

Suppose we have computed the full time series of feature
vectors X. Then, if we know the committor q train of the train-
ing set, W out is given by

Wout = q trainX
T(XXT

+αI)−1, (17)

where I is the identity matrix and α is the Tikhonov regular-
ization parameter.

Appendix C explains how the feature vector X is deter-
mined from values of U at k time steps with stride s. This RC
method only depends on four hyperparameters, which are α,
k, s and the degree p of the monomials in the nonlinear part
of X (see Appendix C). These are very convenient to opti-
mize because k, s, and p are integers, which must all remain
small to keep tractable computation times. The values of all
hyperparameters are empirically determined, model depen-
dent, and are listed in Table C1 in Appendix C.

2.6 Dynamical Galerkin approximation (DGA)

The dynamical Galerkin approximation (DGA) method as
implemented here is based on Thiede et al. (2019) and Finkel
et al. (2021). The main idea is to project the Dirichlet prob-
lem (Eq. 6) onto a set of basis functions estimated from data.
The original problem is thus reduced to a simple matrix equa-
tion that gives access to the projection of the committor func-
tion onto this basis.

The first step is to homogenize the boundary conditions
in Eq. (6). To do so, this system is rewritten in terms of a
function g(x)= q(x)− 1B (x), where 1B (x) is the indicator
function of the set B, i.e.,

1B (x)=

{
1 if x ∈ B

0 otherwise
. (18)

The original Dirichlet problem now reads as

Lg(x)=−L1B (x) ∀x ∈ (A∪B)c, (19)
g(x)= 0 ∀x ∈ (A∪B). (20)

Next, a set of basis functions {φi, i ∈ [1,M]} is defined
within the Hilbert space on which Eqs. (18)–(20) are defined.
The key constraint is that each basis function should obey the
homogeneous boundary conditions. It ensures that the pro-
jection of g onto this subspace also obeys the boundary con-
ditions. Calling L the projection of L onto this subspace and
ḡ that of g, each basis function must then obey

〈φi,Lḡ〉 = −〈φi,L1B〉 . (21)

Furthermore, let two function u and v from the state space to
R. Following Thiede et al. (2019), given a sampling measure
µ, the inner product of the Hilbert space can be defined as

〈u,Lv〉 =
∫
u(x)v(x)µ(dx). (22)

If we now have a dataset (e.g., a trajectory) {Xn,n ∈ [1,N]},
this product can be approximated by the following sum:

〈u,v〉 =
1
N

N−1∑
i=1

u(Xn)v(Xn). (23)

Given a time step1t , the definition of the generator L yields

〈u,Lv〉 =
1
N

N−1∑
n=1

u(Xn)
v(Xn+1)− v(Xn)

1t
. (24)

By construction, there is a unique set of scalars aj such that

ḡ(x)=
M∑
j=1

ajφj (x). (25)

By writing Lij =
〈
φi,Lφj

〉
and ri = 〈φi,L1B〉, all that re-

mains is the following matrix equation:

M∑
j=1

Lijaj =−ri . (26)

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 201

The main difficulty with this approach is to find a good set
of basis functions, but Thiede et al. (2019) also provide a
method to find these functions (see Appendix D).

In practice, the modes are computed from a training set.
Then, they are extended on the trajectories where the com-
mittor is to be estimated using an approximation formula pro-
vided by Thiede et al. (2019) (see Appendix D).

2.7 Performance evaluation

We are not only looking for a method that best estimates the
committor function but also for one that is most time ef-
ficient. We will therefore use several measures to compare
them: the logarithm score, the difference score, and the com-
putation time. In this section, we give more details about the
first two.

2.7.1 Logarithm score

Let {xk}k∈[1,N] be a trajectory of length N and {qk}k∈[1,N] an
estimate of the corresponding committor. To every state xk , a
label zk ∈ {0,1} can be attached, such that zk = 1 if xk leads
(in the trajectory) to an off state and zk = 0 if xk leads to an
on state. If xk itself is an on state or an off state, it is naturally
labeled 0 or 1, respectively. If Nl is the index of the last state
in the trajectory belonging to either the on zone or the off
zone, then the last N −Nl states in the trajectory cannot be
labeled. Hence, these are not included in the computation of
the logarithm score.

The logarithm score is defined (Benedetti, 2010) as

L=
1
Nl

Nl∑
k=1

(zk ln(qk)+ (1− zk) ln(1− qk)) . (27)

This score has values between −∞ and 0, where L= 0
corresponds to a perfect agreement between the theory and
the estimation, while L=−∞ corresponds to the “opposite
match”.

Let X be a state in the phase space. If X is not an on state
nor an off state, its committor value is 0< q(X)< 1 in the
general case. This is the probability that a trajectory starting
on X reaches an off state before an on state. However, all
we have access to is a realization of this event. If we look at
the available data, X either leads to an off state or does not.
As a result, from the logarithm score’s viewpoint, the com-
mittor function is always either 0 or 1. The true committor
obtained by Monte Carlo sampling has thus a “real score”
LMC < 0, which is the value we should aim for when esti-
mating the committor. In other words, a perfect estimate of
the committor will have a logarithm score LMC. However, it
is not guaranteed that an estimate of the committor with a
score LMC is the perfect estimate.

For better interpretability, Benedetti (2010) also defines
the normalized logarithm score as

S = 1+
1
CS

1
Nl

Nl∑
k=1

(zk ln(qk)+ (1− zk) ln(1− qk)) , (28)

where CS is a reference term, the climatology. The climatol-
ogy is defined here as the score we obtain if we predict every-
where the average of a reference committor. For a meaningful
comparison, the on and off states of the reference committor
are excluded from the average. Calling 〈q〉 the average refer-
ence committor over the transition states, CS =−〈q〉 ln(〈q〉).
A normalized logarithm score of S = 0 is equivalent to pre-
dicting everywhere the climatology. The theoretical “perfect
match” corresponds this time to a normalized score of S = 1.
This normalized score is still not bounded below 0 (so the
“opposite match” still corresponds to S =−∞).

2.7.2 Difference score

The difference score is simply the squared difference be-
tween the estimated committor (called E) and the true one
(called T). Moreover, we use F as the “furthest estimate” of
the true committor. It consists in rounding every value of the
committor to the furthest integer, either 0 or 1, so as to max-
imize the quantity ||T −F ||2. The difference score D is then
defined as

D = 1−
||T −E||2

||T −F ||2
. (29)

This score has two big advantages. Firstly, it is very easy
to interpret. A score D = 1 corresponds to predicting ex-
actly the true committor, while a scoreD = 0 corresponds to
the worst possible estimate. Since the climatology here cor-
responds to the mean committor of a reference committor,
D = 0.5 roughly corresponds to predicting the climatology.
So, unlike the normalized logarithm score, a difference score
closer to 1 is always a better estimate of the committor.

The major drawback of using the difference score is that
it is in general not computable. Indeed, in the general case,
we do not know the true committor. In this paper, however,
thanks to the low dimensionality of our example models,
we can determine the true committor with a Monte Carlo
method. We can use this score here in the comparison of the
different methods, but in more complex settings we will have
to rely entirely on the normalized logarithm score.

3 Results

We will now compare the different methods used to estimate
the committor on both ocean models. Assessing the mea-
sures of the committor estimate and the computation time for
each method enables us to assess which one is the best and
seems the most promising for future applications, on high-
dimensional models in particular. All results presented be-
low were computed on a Mac M1 CPU using Python 3.9.7,

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

202 V. Jacques-Dumas et al.: Data-driven committor estimation

NumPy 1.22.3 and PyTorch 1.10.2 (the latter only for the
feedforward neural network). Computation times are simply
the elapsed time during the training or testing process.

3.1 AMOC model

3.1.1 Phase-space analysis

As detailed in Castellana et al. (2019), the AMOC model ex-
hibits a bistability regime for Ea ∈ [0.06,0.35]. Its two sta-
ble steady states are defined by qn > qs > qu and by qn =

0 & qs < 0. The former corresponds to a strong downwelling
in the northern Atlantic and thus to the present-day circula-
tion of the AMOC. The latter corresponds to the fully col-
lapsed state of the AMOC, with a shut down of the down-
welling in the northern Atlantic and a reversal of the south-
ern circulation. These definitions are actually more general
than the fixed points of the system: they define entire sets
of the phase space to which the fixed points respectively be-
long. So, here, what we call an “on” state of the AMOC is
any point such that qn > qs > qu, not only a fixed point of
the system. When noise is added to the system (fσ > 0), a
second type of collapse is observed: qn = 0 & qs > 0. In this
case, fast variations in the freshwater inputs may shut down
the northern downwelling without disturbing the deep layers
of the ocean. This shutdown is always a transient state of the
AMOC and happens on much shorter timescales than a full
AMOC collapse with an adjustment of the deep ocean cir-
culation (qs < 0). With the values of Ea and fσ considered
here, a “temporary” shutdown occurs after a few decades to
a century, while the transition to the fully collapsed state
takes about 1000 years. Here, we are interested in short-
term transition probabilities of the AMOC; hence we focus
on the transient collapse, which we call an “off” state of the
AMOC. Hence, we will study transitions between “on” and
“off” states.

The expressions of qs and qu only depend on D, while
qn is entirely defined by Sn− Sts and D. Consequently, we
can summarize the behavior of the system in the reduced
phase space (Sn− Sts,D), shown in Fig. 2a for fσ = 0.4 and
Ea = 0.234. In this figure, the different zones of interest in
the phase space are highlighted: yellow for the set containing
all “on” states, brown for the set containing all “off” states,
and black for the set containing all fully collapsed states. The
purple dots represent the steady states. We also plot a long
trajectory starting close to the steady on state. We clearly see
the transitions between on states and off states, or F tran-
sitions (fast transitions) (Castellana et al., 2019), through a
transition zone. In this example, the simulated trajectory is
too short for the system to reach the fully collapsed zone, or
to undergo a so-called S transition (slow transition) (Castel-
lana et al., 2019).

We are interested in the probability that the AMOC col-
lapses, so the committor function is here defined as the prob-
ability that a trajectory reaches the off state’s zone before the

on state’s zone. Here, the subspaceA is the set of all on states
of the AMOC (yellow zone in Fig. 2a) and the subspace B is
the set of all off states of the AMOC (brown zone in Fig. 2a).
So, here, all on states will correspond to a value of the com-
mittor q(x)= 0 and all off states will correspond to a value
of the committor q(x)= 1. In such a setting with fixed forc-
ing, fixed noise and a time-independent phase space, there
is a one-to-one mapping between any trajectory in the phase
space and its corresponding committor function. We can thus
plot in Fig. 2b the committor along the simulated trajectory
of Fig. 2a. The committor function is plotted in blue. The on
states, with a committor value of 0, are highlighted in yellow,
while the off states, with a committor value of 1, are high-
lighted in brown. The committor function switches between
both kinds of states, which corresponds to the noise-induced
transitions in the original trajectory.

In the following study of this model, all trajectories will
be computed with (Ea,fσ)= (0.234,0.4).

3.1.2 Train and test dataset

To be able to compare different methods for the committor
estimation, we need to train them and to test them with dif-
ferent trajectories. We thus need to create a training and a
test dataset. For simplicity and consistency, we set a stan-
dard length for all test trajectories of both models: 5000 time
steps (corresponding to 500 years of simulation, similar to
the trajectory and its associated committor function plotted
in Fig. 2). The total test set consists of 100 independent such
trajectories. The logarithm and difference scores are aver-
aged over these trajectories.

When it comes to training methods for the committor es-
timation problem, what really matters is to have reactive tra-
jectories; that is, trajectories going through both on and off
states. Consequently, it makes sense to count the length of
trajectories in terms of the number of transitions NT . What
we call a transition is a set of consecutive points starting
in the on zone (resp. off zone) and ending in the off zone
(resp. on zone).

One of our goals is to estimate the committor func-
tion using as little data as possible. It is thus interest-
ing to study how the performance of each method scales
with the amount of training data. To do so, we gen-
erate several training sets, having an increasing num-
ber of transitions NT that span a large interval: NT =
10,20,30,50,75,100,150,200,300,400,500. In practice,
to ensure meaningful comparison between these training
sets, we only generate the longest one, with NT = 500. The
shorter ones simply consist of the NT first transitions of this
very long trajectory.

In the case of the AMOC model, generating a trajectory
with 500 transitions is not possible without S transitions oc-
curring, which we want to avoid. Instead, we concatenate as
many 5000 time-step-long trajectories as needed, all starting
close to the steady on state.

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 203

Figure 2. (a) An example of a long trajectory in the reduced phase space (Sn−Sts,D), for (Ea,fσ)= (0.234,0.4). The phase space contains
four zones: on states (yellow), off states (brown), fully collapsed states (gray), and a transition zone (white). The fuchsia points are the steady
states. The red curves show the separation between each zone. (b) The corresponding committor function. The off states are highlighted in
brown and the on states are highlighted in yellow.

3.1.3 Application of the different methods

The performance of each method when applied to the AMOC
model will be presented in the next two sections, but first, we
specify some implementation details.

The training of AMC, DGA, and RC does not involve ran-
domness; hence we perform it once only on the entire train-
ing set containingNT transitions. As for FFNN, since the ini-
tialization of its weights and the gradient descent algorithm
involve randomness, we perform a 20-fold cross validation
on the same training set with NT transitions. The latter is
thus split into 20 subsets and only 19 are used for training
every time. In the end, we average the performance obtained
from the resulting 20 optimized FFNNs.

In the case of RC, the parameters k, s, p, and α (see Ap-
pendix C) were optimized by hand and their values are in
Table C1. In the case of DGA, the number of modes and the
values of d, ε0, and ε (see Appendix D) were also optimized
empirically (see Table D1).

For optimal results, the different methods are also applied
to different sets of variables, which shows that the methods
capture different features of the phase space as follows:

– AMC and DGA. Sn− Sts,Sn, and Ss.

– FFNN. Sn− Sts and D.

– RC. Sn− Sts,Sn,Ss, and D.

3.1.4 Skill

The normalized logarithm score for each method is presented
in Fig. 3a. Firstly, AMC (blue curve) and DGA (green curve)
both show a great performance, since they are the two best-
performing methods up to NT = 100. The lowest score of

AMC, for NT = 10, is 0.660. Its best normalized logarithm
score is attained forNT = 500, where the score is 0.718. The
gap between its 5th and 95th percentile does not decrease in
the same time and remains between 0.299 and 0.331 (slightly
higher than the width of the distribution of the true score,
equal to 0.270). Moreover, AMC’s mean normalized loga-
rithm score only increases by 9 % when NT is multiplied by
50. It means that this is a very efficient method, thanks to
the large-scale structures in the phase space of the AMOC
model (see Fig. 2a): the committor on neighboring points is
consistent, and thus averaging it is a reliable method.

AMC is fairly easy to optimize, since it relies on a single
parameter: the number of analogsK . We tested different val-
ues of K , ranging from K = 5 to K = 250, but we retained
only the results for K = 25 because they gave the best re-
sults, both in terms of logarithm and difference score. For the
largest training dataset, we find a mean normalized logarithm
score of 0.708 for K = 250 up to 0.718 for K = 25.

DGA has an even better score than AMC for NT ≤ 50, al-
though the relative difference of both scores, of less than 9 %,
is largely within both error bars. The gap between the 5th
and 95th percentile of DGA is also slightly larger than for
AMC (respectively, 0.337 against 0.331) because it is more
skewed towards larger scores. It shows that DGA may tend
to produce sharper transitions in the committor between the
on states and off states. The similarity between the scores of
AMC and DGA may be explained if we consider that they
both use a sampling of the phase space to estimate the com-
mittor. The scores are not shown for NT > 150 because they
could not be computed due to the too large computation time
(see Sect. 3.1.5).

However, the most important feature of the normalized
logarithm score of DGA is that it decreases as NT increases.
It means that the DGA method becomes less and less effi-

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

204 V. Jacques-Dumas et al.: Data-driven committor estimation

Figure 3. Comparison of the performance and computation time of all four methods on the AMOC box model. (a) The normalized logarithm
scores of each method. (b) The difference scores of each method. (c) The training times of each method. (d) The testing times of each method.
In (a), (b), and (d), each curve is the average over the score of the 100 test trajectories. The shaded areas around each curve are their 90 %
most probable values, between the 5th and 95th percentiles. In (c), the shaded area is only provided for FFNN, since all other methods are
only trained once (the confidence interval is here very narrow: the difference between the 5th and 95th percentiles is less than 8.5 % of the
average training time for NT ≤ 30 and less than 3.7 % of the average training time for NT ≥ 50).

cient as its training set grows larger. We have not found any
satisfying explanation for this seemingly paradoxical behav-
ior. However, the normalized logarithm score of DGA for
NT = 10 is the second-best score of all, just behind the score
of FFNN for NT = 500 (0.722 for DGA against 0.729 for
FFNN).

The performance of the FFNN (orange) is exactly the ex-
pected one, as it is well known that machine learning poorly
performs when trained with too little data. Here, FFNN
yields a normalized logarithm score of 0.026 when trained
with the smallest dataset, which is equivalent to predicting
the climatology everywhere. Moreover, the committor esti-
mates are very inconsistent, heavily depending on the tra-
jectory: the 5th percentile is −0.862 and the 95th percentile
is 0.516. But as the size of the training set increases, the
FFNN can extract more complex features from the data. As
a result, the score increases fast and the error bars shrink.
For NT ≥ 200, FFNN performs at least as well as AMC and
keeps improving, although this difference is negligible com-
pared to error bars. For instance, for NT = 500, the respec-

tive scores of AMC and FFNN are 0.718 and 0.730. Their
95th percentiles of score are similar (respectively, 0.871 and
0.866), but the distribution of scores of FFNN is overall
narrower than that of AMC, with a 5th percentile of 0.600
against 0.551 for AMC.

The other machine learning technique, RC (purple), also
has a low score when trained with insufficient data and it
increases with the size of the training set. However, for
NT = 10, its normalized logarithm score is already 0.531,
much better on average than FFNN (above the 95th per-
centile of its scores). Then for NT ≥ 30, the evolution of
the average normalized logarithm score of RC exactly fol-
lows that of FFNN, only differing by 0.8 % (NT = 50) to
3 % (NT = 500), however, remaining lower than the score of
FFNN for NT ≤ 100. RC also exhibits a narrower gap than
FFNN between the 5th and 95th percentiles of its score, by
more than 20 % for 30≤NT ≤ 150 and by 7 % or less for
larger NT . For NT ≥ 200, the skill of RC reaches a plateau
at 0.707 and stops improving. This may be due to the lim-

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 205

ited learning capacity of the vector containing the nonlinear
features (see Appendix C).

The difference score for these methods is shown in Fig. 3b.
The scores of the machine learning methods (FFNN and RC)
increase overall as the size of training set increases: from
0.767 (NT = 10) to 0.964 (NT = 500) for FFNN and from
0.758 (NT = 10) to 0.954 (NT = 400) for RC. As was al-
ready the case with the normalized logarithm score, the ma-
chine learning methods are by far the poorest-performing
ones when not trained with enough data. But asNT increases,
FFNN becomes better than the phase-space sampling-based
methods. The score of RC strongly decreases from NT = 10
to NT = 20, from 0.758 to 0.506, due to the drop in its 5th
percentile from 0.634 to 0.201. But for NT ≥ 50, the av-
erage score differs between FFNN and RC by only 2 %, a
smaller gap than FFNN’s error bars. As was already observed
in the normalized logarithm score, RC skill seems to reach a
plateau after NT = 200, around a score of 0.953.

AMC performs clearly better on average than FFNN and
RC for NT ≤ 50, with a difference score of 0.895 to 0.931.
Its error bars, however, overlap those of both machine learn-
ing methods. The score of AMC then keeps on steadily in-
creasing with NT but slower, reaching 0.948 for NT = 200
to 0.950 for NT = 500.

Finally, once again, the score of DGA decreases as NT in-
creases, from 0.914 for NT = 10 down to 0.904 for NT =
100. It is thus the best method for NT ≤ 20 and the poorest-
performing method on average for NT ≤ 50. Its average
score for NT = 100 is even below the 5th percentile of both
AMC and FFNN.

However, the scores ranking between AMC, FFNN, and
RC might not be so meaningful, since the largest difference
between their average scores is not as large as the error bars
of FFNN, the narrowest of all.

3.1.5 Computation time

Figure 3c shows the training times of each method and
Fig. 3d presents the testing times. In practice, both are com-
plementary and equally important. As expected, all methods
have a training time scaling with the size of the training set.
This is expected because the methods need to process an in-
creasing amount of data when the size of the training set in-
creases.

We provide below an evaluation of the scaling of the train-
ing time of our implementation of each method. We call N
the size of the training set (i.e., the number of samples):

– For AMC, building the KD tree is at worst O(N logN),
while querying it is about O(N) and the eigenvector
search isO(N2). Thus whenN grows large, the training
time of AMC mainly depends on the eigenvector search
in G̃, although we are using the implicitly restarted
Arnoldi method, which already takes advantage of the
sparsity of G̃.

– Training DGA consists in two steps: computing a dif-
fusion map kernel matrix (O(N2)) and computing the
modes as eigenvectors (O(N3)).

– The training time of FFNN mostly depends on the ar-
chitecture of the neural network. The only dependence
onN comes from the sequential use of the training sam-
ples. So, the training time only scales as O(N).

– For RC, the training time heavily depends on the size
of the reservoir, which does not depend on N , and the
training samples are seen sequentially. If we call R
the dimension of the features vector, then the training
time scales as O(NR+R2)+O(R3) (linear regression
+ computation of the pseudo-inverse). R depends on the
dimension of the system, and this contribution may out-
weigh that of the size of the training set.

As for the testing times, if we call M the number of samples
in the test dataset, for each method they scale as follows:

– To test AMC, we need to build a KD tree using the train-
ing set, which is about O(N logN). Then, it amounts to
a search in this tree in O(M).

– For the testing of DGA, we need to extend the trained
modes (O(MN)), update the Galerkin approximation
(O(M)), and finally compute the committor (O(M)).

– Once again for the FFNN, the testing time only depends
on the network’s architecture, and the test samples are
given in sequential order, hence the testing time scales
asO(M). This testing time might scale quite differently
from the training time, though, because during the train-
ing, the back-propagation scales as O(N) but can be
very slow if the architecture is too large.

– Testing the RC scales as O(RM) (where R is the num-
ber of nodes in the reservoir) because the test samples
are once again seen sequentially.

FFNN is about 98 times slower than AMC for the small-
est training set. The training in this case takes about 2.44 s
instead of 0.025 s for AMC. However, for the largest train-
ing set, this difference has shrunk to 5 times only. When
NT = 500, FFNN takes about 125 s to be trained instead of
25 s for AMC. This is because the training time for AMC
increases fast for NT > 50, since this method implies com-
puting the largest eigenvectors and eigenvalues of the matrix
G̃ (see Sect. 2.4), whose size depends on NT .

For each value of NT , FFNN has been trained 20 times
independently because its training process involves random-
ness due to the gradient descent algorithm. However, the 5th
and 95th percentiles cannot be seen on the plot because their
gap is very small: for NT ≥ 50, it is always less than 3.7 %
of the average score.

As for RC (purple), it is interesting to see how fast the
training of this machine learning method is. The training time

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

206 V. Jacques-Dumas et al.: Data-driven committor estimation

is the main fallback of the FFNN because of the weights-
updating algorithm run after each batch and the large number
of weights. In the case of RC, the training mostly amounts
to computing the nonlinear features that are extracted from
the data at every time step. This can be achieved in a single
NumPy operation for the whole training set, which is thus
very well optimized. As a result, RC scales much better with
an increasing NT than FFNN: training RC is 47 times faster
than training FFNN for NT = 10, but it is up to 240 times
faster for NT = 500.

DGA is the method whose training time has the worst scal-
ing withNT : it increases from 0.30 s forNT = 10 to 119 s for
NT = 150; hence there is a multiplication by almost 400. It
becomes the longest training time for NT ≤ 100 and quickly
blows up, due to the large matrix operations that this method
implies (see Appendix D). On top of that, if we also want the
method to optimize d,ε0, and ε (see Appendix D) by itself,
then the training time surges to 24.5 s for NT = 75, making
it the slowest method of all.

The different methods can be separated into two groups
when looking at their testing times (Fig. 3d). DGA has a
much larger testing time than AMC, FFNN, and RC.

Once again, the testing time of DGA scales with the size
of the training set and quickly blows up as well. Indeed, the
modes used during the test phase are of the size of the train-
ing set, which makes the testing phase increasingly time-
expensive. For NT = 10, this testing time is 0.36 s, up to
6.54 s for NT = 150. For NT = 10, it is already 27 times as
long as the testing time of FFNN, yet the second longest.

In the second group, for NT ≤ 200, FFNN has the largest
testing time, with an average of 0.01 s. Once again, its er-
ror bars are extremely narrow, and showing how consistent
this method is, the gap between its 5th and 95th percentile
is only 2.3 % of the average score. For NT > 200, it is AMC
that has the largest testing time of this group because it scales
with the size of the training set (the size of the KD-tree used
during the testing phase increases with the size of the train-
ing set). Indeed, for NT = 10, the testing time of AMC is 3
times lower than that of FFNN but up to 1.7 times longer
forNT = 500. The testing time of RC is overall the lowest of
this group, consistently between 5.1×10−3 and 5.2×10−3 s,
only contained within the error bars of AMC (yet below its
average) for NT ≤ 50.

3.2 Double-gyre model

3.2.1 Phase-space analysis

For σ ∈ [0.3,0.48], the double-gyre model is in a bistable
regime with two fixed points, which we refer to as an “up”
state and a “down” state. They are respectively defined
by (Aup

1 ,A
up
2 ,A

up
3 ,A

up
4) and (Adown

1 ,Adown
2 ,Adown

3 ,Adown
4).

These states result in two steady states of the system’s stream
function, which shows up and down jet states (see Fig. 4a).
As we add white noise, the system will undergo transitions

between these two states. If we define up to be an on state
and down to be an off state, we have a similar terminology
as in the AMOC model. The committor function here is sim-
ilarly defined as the probability to reach the off state before
the on state.

Although of lower dimension than the AMOC model, the
double-gyre model exhibits a phase space with a more com-
plex structure. Figure 4b displays a snapshot of it for σ = 0.3
and γ = 0. The phase space is partitioned into two zones: one
where all initial conditions will lead to the on state and the
other where all initial conditions will lead to the off state. To
compute these zones, we choose a fixed value of A3 = 0.069
and sample 104 random values of (A1,A2,A4) from a uni-
form distribution on the intervals [Aup

1 − 1,Aup
1 + 1], [Aup

2 −

1,Aup
2 + 1], and [Aup

4 − 1,Aup
4 + 1]. Figure 4b is a projection

on the plane (A1,A2). In this figure, the black dots represent
both steady states, the yellow dots represent the initial con-
ditions leading to the on state, and the brown dots represent
the initial conditions leading to the off state. If we imagine
that the structure displayed in this figure evolves along the
A3 axis, we see how much more complex this structure is
compared to the AMOC model. Overlap between the yellow
and brown dots originates from the projection of the different
values of A4 on the (A1,A2) plane.

In the following study of this model, all trajectories will
be computed with (σ,γ)= (0.45,0.198).

3.2.2 Train and test datasets

The generation procedure of the train and test datasets used
for studying the double-gyre model is similar to that used
for the AMOC model. The standard length of all trajectories
is 5000 time steps, and the test set also consists of 100 such
independent trajectories. The logarithm and difference scores
are averaged over these trajectories.

In the case of the double-gyre model, generating the train-
ing sets is simpler than for the AMOC model, as we do not
need to pay attention to different collapsed states. We can just
simulate a single very long trajectory containing 500 transi-
tions. All other training sets, containingNT = 10, 20, 30, 50,
75, 100, 150, 200, 300, and 400 transitions simply consist of
the first NT transitions of that very long trajectory.

3.2.3 Application of the different methods

Once again, we will compare in the following sections the
performance of each method against the size of the training
set. AMC, DGA, and RC were applied on the full training
sets. We performed 20 cross validation for the training of
FFNN. The parameters of RC and DGA are also optimized
by hand and can be found respectively in Tables C1 and D1.

However, for this model, the implementation of AMC is
slightly different than for the AMOC model. As is done in
Lucente (2021), the distance used to compute the analogs
of every state is normalized by the variance of the distribu-

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 207

Figure 4. (a) Stream functions of the jet-up and jet-down steady states of the double-gyre model, for σ = 0.45. (b) Phase space of the
double-gyre model (σ = 0.3,γ = 0) in the plane (A1,A2) for a fixed value of A3. Black dots correspond to both steady states. The yellow
dots are the initial conditions leading to the on state. The brown dots show the initial conditions leading to the off state.

tion of each variable. The choice for this normalization sim-
ply comes from the observation that, in this case, unlike the
AMOC model, doing so improves the skill of this method.

For the double-gyre model, all methods are applied on the
full set of variables: A1,A2,A3, and A4.

3.2.4 Skill

First of all, we can see that the curves of AMC in all plots
of Fig. 5 (blue curves) stop after NT = 200. This is due to
the too long computation time of the eigenvalues and eigen-
vectors of the matrix G̃ (cf. Sect. 2.4) when training this
method. Indeed, we observe in the double-gyre model that
trajectories spend less time in the on and off states com-
pared to the AMOC model. As a result, the trajectories of the
double-gyre model contain more transition states and G̃ is
larger than its equivalent in the AMOC model. For instance,
in the latter model, for NT = 500, G̃ is a square matrix of
size 13988×13988. In the double-gyre model, however, for
NT = 200, G̃ is already of size 25359× 25359. When con-
sidering the normalized logarithm scores for the double-gyre
model, shown in Fig. 5a, we see that AMC is no longer
one of the best-performing methods. It is even the worst-
performing method on average forNT > 100. ForNT ≤ 100,
its score increases from −0.430 up to 0.032. It is thus only
for NT ≥ 100 that AMC can perform at least as well as the
climatology. Moreover, its maximum normalized logarithm
score is only 0.167 for NT = 200. Furthermore, the distri-
bution of scores of AMC exhibits a huge spread: the dif-
ference between its 95th percentile and its 5th percentile is
1.702 for NT = 20, down to 0.746 for NT = 200. For such
a large dataset, it corresponds to the largest spread of all
methods. Moreover, the optimal value of K here is K = 15,
instead of K = 25 for the AMOC model. When increasing
the value of K , the normalized logarithm score dramatically
decreases: it is on average −0.012 for K = 20, −0.083 for

K = 25, and keeps decreasing. In other words, for K ≥ 20,
AMC performs worse than the climatology. This may be ex-
plained by the more complex structure of the phase space of
the double-gyre model (see Fig. 4b).

Here, FFNN performs even more poorly as in the AMOC
model when trained with too little data (score of −0.690
for NT = 10). FFNN is even the poorest-performing method
up to NT = 100 and only manages to give a better estimate
of the committor than AMC for NT ≥ 150. Its maximum
score, for NT = 500, is 0.360. Moreover, the gap between
the 5th and 95th percentiles of this score is huge forNT ≤ 75
(more than 1.89, systematically larger than that of AMC)
but quickly shrinks down to 0.6 on average for NT ≥ 150.
From NT = 75 to NT = 150, the average normalized loga-
rithm score of FFNN also increases from −0.218 to 0.297
and becomes the second-best method (while it is the worst
for NT ≤ 75); this value of NT acting as a sort of threshold
above which the FFNN is much more efficient.

Once again, the curve of DGA (shown in green) stops at
NT = 100 due to the too large matrix computation. Once
again, its normalized logarithm score decreases as NT in-
creases, from 0.378 for NT = 10 down to 0.142 for NT =
100. However, on that interval, DGA remains the second-best
method after RC.

RC also has a decreasing normalized logarithm score as
NT increases, from 0.495 for NT = 10 down to 0.288 for
NT = 500, but its difference score increases in the meantime,
which we explain at the end of this section. For NT = 10
to NT = 500, the gap between its 5th and 95th percentile
also increases from 0.283 to 0.416. This method thus shows
the opposite behavior compared to the other methods in-
volving training. We will provide an interpretation of this
phenomenon when looking at the difference score of that
method.

The difference score of each method (Fig. 5b) is further
away from the perfect estimate than their equivalent in the

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

208 V. Jacques-Dumas et al.: Data-driven committor estimation

Figure 5. Comparison of the performance and computation time of all four methods on the double-gyre model. (a) The normalized logarithm
scores of each method. (b) The difference scores of each method. (c) The training times of each method. (d) The testing times of each method.
In (a), (b), and (d), each curve is the average over the score of the 100 test trajectories. The shaded areas around each curve are their 90 %
most probable values, between the 5th and 95th percentiles. In (c), the shaded area is only provided for FFNN, since all other methods are
only trained once.

AMOC model; once again showing that the committor esti-
mation task in this model is more difficult.

DGA is only the best-performing method for NT ≤ 30, al-
though its difference score drops from 0.823 to 0.789. The
difference score of AMC only increases from 0.756 on av-
erage to 0.802 between NT = 10 and NT = 200, making it
the worst-performing method for NT ≥ 150. For NT ≥ 50,
FFNN is on average the best-performing method, with a
score of only 0.875 at its maximum, for NT = 500. This
maximum score is much further away from the score of
the perfect estimate (1.0) than in the AMOC model (max-
imum score of 0.964), showing once again that computing
the committor function in a more complex phase space is
a much more difficult task. However, FFNN is clearly the
best-performing method when trained with a large training
set (NT ≥ 400), since there is barely any overlap between its
error bar and that of RC, the second-best-performing method.

For NT ≤ 30, RC is the worst-performing method with a
score of less than 0.774 but it closely follows the difference
score of FFNN until NT = 100. RC then reaches a perfor-
mance plateau at 0.820 with the narrowest error bars of all

methods for NT ≥ 150 (having a width between 0.05 and
0.06). So, as NT increases, the difference score of RC in-
creases and its error bars shrink but its normalized logarithm
score decreases. This example is interesting to explain the
difference between both scores and why the trend of the log-
arithm score may sometimes be misleading when comparing
two committor estimates.

In this model, the fixed amplitude of the noise has a
stronger effect on the trajectories than the noise amplitude
used in the AMOC box model. As a consequence, trajecto-
ries will spend a longer time in the transition zone and ex-
plore larger areas of the phase space before reaching an on
or off state. The committor along this trajectory will oscillate
accordingly, as the trajectory moves closer to the on state
or off state. This causes the average logarithm score of the
Monte Carlo estimate of the committor to decrease in this
model, as observed in Fig. 5a compared to Fig. 3a. It also
explains the behavior of RC: as NT increases, the committor
estimate of the RC method reflects better this behavior due to
noise, which is penalized by the normalized logarithm score,
although it better matches the true committor.

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 209

3.2.5 Computation time

The computation times for the double-gyre model are shown
in Fig. 5c and d. The scaling of these methods do not change
compared to the AMOC model. They are all slower, though,
because the training sets are larger, the number of modes for
DGA has been increased, and the reservoir of RC is also
larger.

As was already the case for the AMOC model, the training
time of RC scales better with the size of the training set than
that of FFNN (Fig. 5c): FFNN takes 2.7 times longer to be
trained for NT = 10 and is over 16 times slower than RC for
NT = 500. RC only takes 1.82 s to be trained for NT = 10,
up to 14.42 s for NT = 500.

During the training of AMC, due to the fast growing size
of the matrix G̃ as NT increases, this method has again a
worse scaling with the size of the training set than FFNN. Its
training time is multiplied by 242 from NT = 10 (0.22 s) to
NT = 200 (52.26 s). For NT = 200, the number of samples
N in the dataset is twice as large for the AMOC model with
NT = 500. Due to the O(N2) time complexity of the itera-
tive eigensolver, it becomes difficult to train this method in a
reasonable time.

As a comparison, between NT = 10 and NT = 200, the
training time of FFNN is only multiplied by 38 and that of
RC by 8.

For NT ≤ 20, DGA is faster to train than FFNN, with a
training time of less than 10 s. However, for NT ≥ 30, it be-
comes the slowest method of all by far, with its training time
ranging from 23 to 627 s for NT = 100. Between NT = 10
and NT = 100, this training time is multiplied by 263, so its
scaling with the amount of data is even worse than for AMC,
due to the complexity in O(N3) of the modes computation.

The testing times are shown in Fig. 5d. The testing time
of RC is 0.136 s on average, which is a significant increase
(26 times larger) compared to the AMOC model. It is largely
due to the increase in dimension of the features vector (from
330 to 1716 coefficients). The testing time of AMC is less
affected by this change of model, since it only consists in
a search in a KD tree. For NT ≤ 50, AMC has the short-
est testing time, from 0.006 s for NT = 10 up to 0.009 s for
NT = 50.

As was already the case in the AMOC model, FFNN also
has a very short testing time of about 0.008 s. The testing
has even decreased by 38 % compared to the AMOC model,
making FFNN the method with the shortest testing time for
NT ≥ 75. Finally, the testing time of DGA ranges from 0.72 s
for NT = 10 to 8.64 s for NT = 100, blowing up again after-
wards. This is 5 to 64 times longer than the RC, which is
the second longest. Its maximum testing time is only 2.1 s
longer than for the AMOC model (thus increasing by 32 %),
although the number of modes involved has been multiplied
by 20. It shows that the number of modes only has a limited
impact on the computation time, which mainly depends on
the size of the training set.

4 Summary and discussion

The present work intends to evaluate and compare several ex-
isting methods to estimate the committor function from tra-
jectory data. Having a good estimate of the committor func-
tion is crucial in order to ensure maximum efficiency and ac-
curacy of a rare event algorithm such as TAMS. Using these
kind of algorithms is a very promising solution to the com-
putation of probabilities of rare transitions in complex dy-
namical systems, such as a potential collapse of the AMOC
in high-dimensional ocean-climate models. We compared the
analog method (AMC) with a simple feedforward neural net-
work (FFNN), a reservoir computing (RC) method, and a dy-
namical Galerkin approximation (DGA) scheme. Two mod-
els, an AMOC box model and a double-gyre model, were
used for their evaluation, where the phase-space dynamics
of the double-gyre model is more complex than that of the
AMOC model.

Although efficient in the AMOC model, AMC is very
slow and not so robust in more complex settings such as the
double-gyre model. The sampling of the phase space indeed
becomes difficult when it displays complex structures. This
result may be related to what Lucente et al. (2022a) observed
in the Jin–Timmermann model: there are certain zones of the
phase space where the committor function displays a com-
plex, fine-scale structure, which we cannot expect AMC to
predict accurately due to its analog approximation. Even the
testing phase that uses a search through a KD tree quickly
becomes very computationally expensive with dimensional-
ity and requires a lot of training data.

FFNN proves a very robust method that can adapt to com-
plex phase spaces. Its main drawback is the time it takes to
be trained and the amount of data needed to obtain an ad-
equate estimate of the committor. However, once trained, it
is a very fast method that also provides the best estimate of
the committor. The RC method is the most naive of all, ex-
tracting nonlinear features from a trajectory and performing a
linear regression on them. This method is strikingly efficient,
considering how simple it is. When well optimized, its results
may compete with those of the FFNN, but it is much faster to
train. However, it has a limited learning capacity and reaches
a performance plateau, which makes a difference with FFNN
when trained with a lot of data.

The DGA method shows a strange behavior that we could
not explain: its performance decreases as the size of the train-
ing set increases. However, for the lowest value ofNT tested,
DGA is one of the best-performing methods, competing with
the machine learning methods trained with NT = 500. This
method is thus efficient in terms of number of transitions: it
requires a limited amount of data to compete with the best-
performing methods. Its main limit is its computing time and
that its parameters need to be tweaked by hand to be fully
optimized.

We compared these methods using two scores: the normal-
ized logarithm score and the difference score. Although the

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

210 V. Jacques-Dumas et al.: Data-driven committor estimation

latter is easier to interpret, it will in general never be com-
putable because it requires knowing the true committor. For
more complex models, we will thus have to rely on the nor-
malized logarithm score. We found that they do not provide
the exact same information: in particular, they rank the meth-
ods differently. However, in general, the improvement in the
skill of most methods can be read accordingly in both scores.
We only found one exception: RC in the case of the double-
gyre model, where the normalized logarithm score wrongly
indicates a loss in performance as NT increases.

By applying rare event algorithms to more sophisticated,
high-dimensional models, it is likely that long (and expen-
sive) simulations contain few or even no transitions. This is
a major problem because AMC, FFNN, and DGA all rely
on reactive trajectories to be trained and then estimate the
committor. If there are no transitions in the data, the neural
network only sees one class of events, so it can never pre-
dict a transition. In addition, it can be easily demonstrated
that AMC and DGA fail as well. So, we may need extra long
costly simulations to be able to apply these methods, all the
more so as AMC and FFNN require a sufficient number of
transitions to be trained properly.

In this setting, DGA and RC are promising. Indeed, al-
though DGA needs transitions to be trained, we showed that
much less data are required than for any other method in or-
der to obtain good results. Moreover, we do not necessarily
need to see complete transitions in the trajectories. Only cer-
tain relevant areas in the phase space need to be explored and
sampled (although determining which ones precisely is not
obvious in general), which can be done by stacking shorter
trajectories that do not necessarily transition from one state
to another. This approach is the one developed in Finkel et al.
(2021). It consists in first simulating a very long control tra-
jectory and then drawing N samples from it. These sam-
ples will serve as initial conditions for short trajectories on
which DGA is then applied. Finkel et al. (2021) show very
good agreement between this approach and a Monte Carlo
approach, all the more so as their approach allows estimating
the committor on many states at the same time and can be
parallelized. RC may also be interesting because at its core
lies a simple linear regression. It is thus the only method
that makes no assumption on transitions: the training com-
mittor will be fitted whatever the value of the probabilities.
The problem, on the other hand, is that we need to compute
the committor for training, which is what we are trying to
avoid because of its cost. It might then be interesting to use a
combined approach: for instance, compute a first estimate of
the committor using DGA and use it to train RC.

Another important question that arises is how the compu-
tation time of these methods scale with an increasing number
of dimensions. This problem is equally as important as the
scaling of the computation time with the size of the dataset
in the (realistic) case where we have a model with very high
dimension because it often implies we cannot compute long
trajectories. AMC involves the model dimension during the

computation of the analogs (for the train and test phase).
Then the using a KD tree does not show significant improve-
ment over a brute force search. But after this step, AMC only
deals with the number assigned to every analog and thus only
depends on the size of the dataset. DGA only consists of mul-
tiplying the vectors that contain the modes, which take their
values in R; hence its complexity only depends on the size
of the dataset. However, the model dimension plays an im-
portant role when it comes to computing the modes. Indeed,
the method provided by Thiede et al. (2019) implies comput-
ing the distance between every sample, which is increasingly
expensive as the dimension of the state space grows larger.
For both FFNN and RC, the model dimension is an impor-
tant bottleneck. Indeed, the first layer of a FFNN contains
as many neurons as input variables. In a high-dimensional
space, the weight matrices may then become very large, thus
impacting the cost of their numerous multiplications and of
the gradient back propagation. However, if we are to work
with complex climate models, an obvious way to dramati-
cally decrease the number of weights of the network while
improving its accuracy is to use convolutional neural net-
works. Since they are designed to work with 2-D data and
to extract spatial patterns, they are much better suited to this
kind of problems. This dimensional bottleneck is even worse
for RC. Indeed, the size of the reservoir involves a binomial
coefficient that depends on the model dimension and thus
grows very fast (see Sect. 3.1.5 for the scaling of RC’s train-
ing and testing times with the size of the reservoir). In prac-
tice, RC would probably be very difficult to use with high-
dimensional models.

The next step of this work would be to combine these data-
driven estimates of the committor function with TAMS to ac-
tually compute rare event probabilities. However, it requires
some extension of the present study. We already mentioned
the problem of regimes where long trajectories contain only
few to no transitions. Moreover, we may want to compute
transition probabilities for different parameters of the model,
as is done by Castellana et al. (2019) for the AMOC box
model or by Baars et al. (2021) with the model from den
Toom et al. (2011). In this case, the dynamics of the model
change with each set of parameters and we have to take it
into account during the training of the method we will be us-
ing. Such an adaptation to changing dynamics has recently
been implemented for RC by Kong et al. (2021), but we can
also think of other approaches. For instance, FFNN can be
combined with transfer learning: it consists in first training
it in a regime where we have a lot of data and the estima-
tion is easy. Then, we use that learned knowledge to (warm)
start the training in a regime where transitions are much less
probable. Jacques-Dumas et al. (2022) have shown that this
method at least reduces the computation time for the predic-
tion of extreme events.

A related approach consists in building a feedback loop
between a rare event algorithm and a data-driven committor
function estimation method. The estimate of the committor

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 211

yielded by the latter is used by the former to generate more
data in order to improve the committor estimate. This idea
has already been implemented by Nemoto et al. (2016) and
more recently by Lucente et al. (2022b). The latter in partic-
ular have coupled AMC with AMS, testing for the first time
this approach in a model with complex dynamics. Another
interesting work is that of Du (2020), where AMS was cou-
pled to Mondrian forests, a relatively new type of random
forests method (Lakshminarayanan et al., 2014) that can also
be used to estimate the committor function. The advantage of
Mondrian forests is that this allows one to apply online learn-
ing: new data samples can be provided one after the other to
incrementally improve the estimation of the committor, and
the order in which they are provided does not matter. The
power of this property is clear when it comes to coupling
with TAMS: the committor estimation can be improved ev-
ery time a new clone trajectory is simulated. However, all
these coupling approaches have until now only been applied
to low-dimensional systems and might prove computation-
ally expensive in the case of high-dimensional models.

Another extension of this work would be to consider non-
autonomous dynamics. Once again, this extension can be
achieved from several viewpoints. Firstly, if the objective is
to compute the probability that the AMOC collapses within
a certain time frame, Lucente (2021) proposes to add a time
dimension to the system’s phase space. Suppose the goal is
to compute the probability to reach a set A of the phase
space before another set B and before a time Tmax. Either
a time-independent committor can be used in combination
with TAMS or the problem can be reformulated as the prob-
ability to reach a set A of the newly expanded phase space
before another set B̃ = B∪{t | t ≥ Tmax}. This new formula-
tion overrides of course the use of TAMS but may pose addi-
tional issues concerning the training data. The second view-
point is more general: it consists in studying the committor in
a non-autonomous system where either the equations explic-
itly depend on time or the sets A and B themselves depend
on time. Helfmann et al. (2020) and Sikorski et al. (2021)
propose frameworks to work with such time-dependent com-
mittor functions. Such a generalization is especially of in-
terest when working on climate problems involving global
warming.

The long-term objective of such a study and extensions
would be to apply TAMS and committor function estimation
to much more complex models, such as Earth system models
of intermediate complexity (EMICs) or even general circula-
tion models (GCMs). Their complexity is nowhere compara-
ble to the models featured in this work, with a dimensionality
of the order of at least 106. By looking at partial differential
equations, or even intermediate complexity climate models,
Bouchet et al. (2019) and Ragone et al. (2018) have already
applied TAMS on such high-dimensional systems. However,
thanks to a simpler phenomenology, they could design suit-
able score functions, and TAMS has never been used in com-
bination with committor functions in these cases. Extending

the methods presented here will be a real challenge, regard-
ing for instance optimization and the limited amount of data
available. It is, however, an interesting scientific perspective
to gain more insight into these models’ dynamics through the
probability of occurrence of rare events.

Appendix A: AMOC box model

The equations of the AMOC model are

d(VtSt)
dt
=qs(θ (qs)Sts+ θ (−qs)St)+ quSd

− θ (qn)qnSt+ rs(Sts− St)
+ rn(Sn− St)+ 2EsS0, (A1)

d(VtsSts)
dt

=qEkSs− qeSts− qs(θ (qs)Sts+ θ (−qs)St)

+ rs(St− Sts), (A2)
d(VnSn)

dt
=θ (qn)qn(St− Sn)+ rn(St− Sn)

− (Es+Ea)S0, (A3)
d(VsSs)

dt
=qs(θ (qs)Sd+ θ (−qs)Ss)+ qeSts

− qEkSs− (Es−Ea)S0, (A4)(
A+

LxALy

2

)
dD
dt
= qu+ qEk− qe− θ (qn)qn, (A5)

S0V0 = VnSn+VdSd+VtSt+VtsSts+VsSs. (A6)

The function θ (x) is here defined as the Heaviside function,
equal to 1 if x > 0 and 0 otherwise. The flows between the
boxes are defined as

qEk =
τLxS

ρ0|fS |
, (A7)

qe = AGM
LxA

Ly
D, (A8)

qs = qEk− qe, (A9)

qn = η
ρn− ρts

ρ0
D2, (A10)

qu =
κA

D
, (A11)

where the density of the box “i” is defined as

ρi = ρ0(1−α(Ti− T0)+β(Si− S0)). (A12)

The volumes of the boxes “t”, “ts”, and “d” are defined as

Vt = AD, (A13)

Vts =
LxALy

D
, (A14)

Vd = V0−Vt−Vts−Vn−Vs. (A15)

Finally, we present in Table A1 the constants and values of
the parameters used here.

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

212 V. Jacques-Dumas et al.: Data-driven committor estimation

Table A1. Reference constants and parameters of the AMOC model.

Parameters used in the model

V0 3× 1017 m3 Total volume of the basin
Vn 3× 1015 m3 Volume of the northern box
Vs 9× 1015 m3 Volume of the southern box
A 1× 1014 m2 Horizontal area of the Atlantic pycnocline
LxA 1× 107 m Zonal extent of the Atlantic Ocean at its southern end
Ly 1× 106 m Meridional extent of the frontal region of the Southern Ocean
LxS 3× 107 m Zonal extent of the Southern Ocean
τ 0.1 Nm−2 Average zonal wind stress amplitude
AGM 1700m2 s−1 Eddy diffusivity
fS −10−4 s−1 Coriolis parameter
ρ0 1027.5kgm−3 Reference density
κ 10−5 m2 s−1 Vertical diffusivity
S0 35psu Reference salinity
T0 5K Reference temperature
Tn 5K Temperature of the northern box
Tts 10K Temperature of the box “ts”
η 3× 104 ms−1 Hydraulic constant
α 2× 10−4 K−1 Thermal expansion coefficient
β 8× 10−4 psu−1 Haline contraction coefficient
rs 1× 107 m3 s−1 Transport by the southern subtropical gyre
rn 5× 106 m3 s−1 Transport by the northern subtropical gyre
Es 0.17× 106 m3 s−1 Symmetric freshwater flux

Appendix B: Double-gyre model

The stream function of the double-gyre is written as

9(x,y, t)=
4∑
k=1

Ak(t)8k(x,y), (B1)

where the coefficients Ak(t) are computed from

π∫
0

π∫
0

[Eq. (2)]8kdxdy. (B2)

As a result, the mode amplitudes Ak obey the following set
of ODEs:

Table B1. Fixed parameters of the double-gyre model.

c1 c2 c3 c4 c5 c6 c7

0.020736 0.018337 0.015617 0.031977 0.036673 0.314802 0.046850

µ1 µ2 µ3 µ4

0.0128616 0.0211107 0.0318615 0.0427787

dA1

dt
= c1A1A2+ c2A2A3+ c3A3A4−µ1A1, (B3)

dA2

dt
= c4A2A4+ c5A1A3− c1A

2
1

−µ2A2+ c6σ (1+ γ ζ), (B4)
dA3

dt
= c7A1A4− (c2+ c5)A1A2−µ3A3, (B5)

dA4

dt
=−c4A

2
2− (c3+ c7)A1A3−µ4A4, (B6)

where white-noise ζ (t) is added, and the fixed parameters are
shown in Table B1.

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

V. Jacques-Dumas et al.: Data-driven committor estimation 213

Appendix C: Nonlinear feature vector in RC

In this Appendix, we explain how Gauthier et al. (2021) com-
pute the feature vector X in the RC approach. X consists in
three parts: c is a constant always taken to 1, Xlin is the lin-
ear part of the feature vector, and Xnonlin is its nonlinear part.
They are concatenated (⊕ operation) so that

X = c⊕Xlin⊕Xnonlin. (C1)

Firstly, Xlin is a concatenation of the current time step and
k previous time steps, with a stride of s. Let the input tra-
jectory U at the time step t be of the form U t = [ui ∀i ∈

{1, . . .,M}]. Xlin at the time step t is then defined by

Xlin,t = U t⊕U t−1×s ⊕ . . .⊕U t−(k−1)×s . (C2)

Since U ∈ RM×T , then Xlin ∈ RMk×(T−ks). The first ks time
steps of the trajectory are the warm-up period, needed to cre-
ate the first point of Xlin.

Secondly, Xnonlin is defined as a nonlinear function of
Xlin. Gauthier et al. (2021) set Xnonlin to contain all unique
monomials that can be obtained from the outer product
Xlin⊗Xlin. For instance, if Xlin,t = [x,y,z], then Xnonlin,t =

[x2,xy,xz,y2,yz,z2
].

Gauthier et al. (2021) then generalize this definition of
Xnonlin,t . A new parameter, p, is introduced, corresponding
to the maximum degree of the monomials in the nonlinear
vector. Xnonlin is now defined as

Xnonlin =Xlin⊗Xlin⊗ . . .⊗Xlin, (C3)

where Xlin appears p times.
In the general case, the shape of Xnonlin is thus given by

the binomial factor B =
(
Mk+p−1

p

)
. As a result, Xnonlin ∈

RB×(T−ks) and then X ∈ R(1+Mk+B)×(T−ks).

Table C1. Parameters of the new-generation reservoir network for
both models.

Model k s p α

AMOC 2 1 4 10−9

Double gyre 2 1 6 10−6

Appendix D: Basis functions in the DGA

The basis functions are computed from a transition matrix,
itself computed from a reactive trajectory as follows:

Pmn =
Kε(xm,xn)∑
nKε(xm,xn)

, (D1)

where Kε is a kernel exponentially decreasing as xm and xn
move further away at a rate depending on ε. The submatrix of
P where xm and xn belong to (A∪B)c is then extracted and its

Table D1. Parameters of the dynamical Galerkin approximation for
both models.

Model N d ε0 ε

Cimatoribus 10 0.45 215 2−15

Double gyre 200 0.75 25 2−5

M eigenvectors ϕi with the largest eigenvalue are computed.
The basis functions φi(x), i ∈ [1,M] are then defined as

φi(x)=

{
ϕi(x) for x ∈ (A∪B)c

0 otherwise
. (D2)

Thiede et al. (2019) also provides a method to compute the
kernel Kε(xm,xn). We will simply show the equations; more
details can be found in Berry and Harlim (2014), Berry et al.
(2015), and Thiede et al. (2019). The kernel itself is defined
by

Kε(xm,xn)= exp
(

−||xm− xn||
2

εk(xm)−1/dk(xn)−1/d

)
, (D3)

where

k(xm)=
(2πε0)−d/2

Nζ0(xm)d

N∑
n=1

K0(xm,xm,ε0), (D4)

K0(xm,xn,ε0)= exp
(
−||xm− xn||

2

2ε0ζ0(xm)ζ0(xn)

)
, (D5)

ζ0(xm)=
1
k0

k0∑
l=1
||xm− xI (m,l)||

2. (D6)

d,ε0, and ε are parameters that we optimized by hand (see
Table D1), and xI (m,l) refers to the lth nearest neighbor of
xm. Following Berry and Harlim (2014) Thiede et al. (2019),
we also found k0 = 7 to be a suitable value.

Finally, Thiede et al. (2019) provide a fast method to ex-
tend the modes computed on a training set. Suppose the ker-
nel Kε(xm,xn) has been computed for every point xm,xn of
the training set. It allows one to also compute every mode φi
(associated with an eigenvalue λi) on each of these points.
To extend the mode i on a new point y of the phase space,
the following formula can be used:

φi(y)=
1
λi

∑
mKε(xm,y)φi(xm)∑

mKε(xm,y)
. (D7)

Code availability. The Python implementation of both models, all
methods, and the code producing the result plots can be found
at the following address: https://doi.org/10.5281/zenodo.7380724
(Jacques-Dumas, 2022).

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

https://doi.org/10.5281/zenodo.7380724

214 V. Jacques-Dumas et al.: Data-driven committor estimation

Data availability. All data sets mentioned in the article were cre-
ated and can be reproduced using the code provided in the “Code
availability” section.

Author contributions. All authors conceived the study. VJD car-
ried out the computations, generated all figures, and wrote the first
draft of the paper. All authors contributed to the final paper.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This project has received funding from
the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement
no. 956170. The work of Freddy Bouchet was supported by the
ANR grant SAMPRACE, project ANR-20-CE01-0008-01.

Financial support. This research has been supported by the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant (grant no. 956170).

Review statement. This paper was edited by Stéphane Vannitsem
and reviewed by two anonymous referees.

References

Altman, N. S.: An Introduction to Kernel and Nearest-
Neighbor Nonparametric Regression, Am. Stat., 46, 175–185,
https://doi.org/10.1080/00031305.1992.10475879, 1992.

Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R.,
Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rock-
ström, J., and Lenton, T. M.: Exceeding 1.5 ◦C global warm-
ing could trigger multiple climate tipping points, Science, 377,
eabn7950, https://doi.org/10.1126/science.abn7950, 2022.

Baars, S., Castellana, D., Wubs, F., and Dijkstra, H.: Appli-
cation of adaptive multilevel splitting to high-dimensional
dynamical systems, J. Comput. Phys., 424, 109876,
https://doi.org/10.1016/j.jcp.2020.109876, 2021.

Benedetti, R.: Scoring Rules for Forecast Ver-
ification, Mon. Weather Rev., 138, 203–211,
https://doi.org/10.1175/2009MWR2945.1, 2010.

Bentley, J. L.: Multidimensional Binary Search Trees Used
for Associative Searching, Commun. ACM, 18, 509–517,
https://doi.org/10.1145/361002.361007, 1975.

Berry, T. and Harlim, J.: Variable Bandwidth Diffusion Kernels,
ArXiv, https://doi.org/10.48550/ARXIV.1406.5064, 2014.

Berry, T., Giannakis, D., and Harlim, J.: Nonparametric forecasting
of low-dimensional dynamical systems, Physical Review E, 91,
3, https://doi.org/10.1103/physreve.91.032915, 2015.

Bouchet, F., Rolland, J., and Simonnet, E.: Rare event al-
gorithm links transitions in turbulent flows with ac-
tivated nucleations, Phys. Rev. Lett., 122, 074502,
https://doi.org/10.1103/PhysRevLett.122.074502, 2019.

Bryden, H. L., King, B. A., and McCarthy, G. D.: South Atlantic
overturning circulation at 24◦ S, J. Marine Res., 69, 38–56, 2011.

Castellana, D., Baars, S., Wubs, F. W., and Dijkstra, H. A.:
Transition Probabilities of Noise-induced Transitions
of the Atlantic Ocean Circulation, Sci. Rep., 9, 20284,
https://doi.org/10.1038/s41598-019-56435-6, 2019.

Cérou, F. and Guyader, A.: Adaptive Multilevel Splitting for
Rare Event Analysis, Stoch. Anal. Appl., 25, 417–443,
https://doi.org/10.1080/07362990601139628, 2007.

Cérou, F., Delyon, B., Guyader, A., and Rousset, M.: On
the Asymptotic Normality of Adaptive Multilevel Splitting,
SIAM/ASA Journal on Uncertainty Quantification, 7, 1–30,
https://doi.org/10.1137/18M1187477, 2019.

Chen, Y., Hoskins, J., Khoo, Y., and Lindsey, M.: Committor
functions via tensor networks, J. Comput. Phys., 472, 111646,
https://doi.org/10.1016/j.jcp.2022.111646, 2023.

Cimatoribus, A. A., Drijfhout, S. S., and Dijkstra, H. A.:
Meridional overturning circulation: stability and ocean
feedbacks in a box model, Clim. Dynam., 42, 311–328,
https://doi.org/10.1007/s00382-012-1576-9, 2014.

den Toom, M., Dijkstra, H. A., and Wubs, F. W.: Spurious multiple
equilibria introduced by convective adjustment, Ocean Model.,
38, 126–137, https://doi.org/10.1016/j.ocemod.2011.02.009,
2011.

de Vries, P. and Weber, S. L.: The Atlantic freshwater budget as a
diagnostic for the existence of a stable shut down of the merid-
ional overturning circulation, Geophys. Res. Lett., 32, L09606,
https://doi.org/10.1029/2004GL021450, 2005.

Dijkstra, H. A.: Characterization of the multiple equilibria regime
in a global ocean model, Tellus, 59A, 695–705, 2007.

Du, Q.: Sequential Monte Carlo and Applications in
Molecular Dynamics, Theses, Sorbonne Université,
https://tel.archives-ouvertes.fr/tel-02969115 (last access:
2022), 2020.

Elber, R., Bello-Rivas, J. M., Ma, P., Cardenas, A. E., and
Fathizadeh, A.: Calculating Iso-Committor Surfaces as Opti-
mal Reaction Coordinates with Milestoning, Entropy (Basel,
Switzerland), 19, 219, https://doi.org/10.3390/e19050219, 2017.

Finkel, J., Webber, R. J., Gerber, E. P., Abbot, D. S., and
Weare, J.: Learning Forecasts of Rare Stratospheric Transitions
from Short Simulations, Mon. Weather Rev., 149, 3647–3669,
https://doi.org/10.1175/MWR-D-21-0024.1, 2021.

Freidlin, M. I. and Wentzell, A. D.: Random Perturba-
tions, pp. 15–43, Springer New York, New York, NY,
https://doi.org/10.1007/978-1-4612-0611-8_2, 1998.

Garzoli, S., Baringer, M., Dong, S., Perez, R., and Yao, Q.: South
Atlantic meridional fluxes, Deep-Sea Res. Pt. I, 71, 21–32,
https://doi.org/10.1016/j.dsr.2012.09.003, 2013.

Gauthier, D. J., Bollt, E., Griffith, A., and Barbosa, W. A. S.:
Next generation reservoir computing, Nat. Commun., 12, 5564,
https://doi.org/10.1038/s41467-021-25801-2, 2021.

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1126/science.abn7950
https://doi.org/10.1016/j.jcp.2020.109876
https://doi.org/10.1175/2009MWR2945.1
https://doi.org/10.1145/361002.361007
https://doi.org/10.48550/ARXIV.1406.5064
https://doi.org/10.1103/physreve.91.032915
https://doi.org/10.1103/PhysRevLett.122.074502
https://doi.org/10.1038/s41598-019-56435-6
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1137/18M1187477
https://doi.org/10.1016/j.jcp.2022.111646
https://doi.org/10.1007/s00382-012-1576-9
https://doi.org/10.1016/j.ocemod.2011.02.009
https://doi.org/10.1029/2004GL021450
https://tel.archives-ouvertes.fr/tel-02969115
https://doi.org/10.3390/e19050219
https://doi.org/10.1175/MWR-D-21-0024.1
https://doi.org/10.1007/978-1-4612-0611-8_2
https://doi.org/10.1016/j.dsr.2012.09.003
https://doi.org/10.1038/s41467-021-25801-2

V. Jacques-Dumas et al.: Data-driven committor estimation 215

Gonon, L. and Ortega, J.-P.: Reservoir Computing Universality
With Stochastic Inputs, IEEE T. Neur. Net. Lear., 31, 100–112,
https://doi.org/10.1109/TNNLS.2019.2899649, 2020.

He, K., Zhang, X., Ren, S., and Sun, J.: Delving Deep
into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification, in: 2015 IEEE International
Conference on Computer Vision (ICCV), 1026–1034,
https://doi.org/10.1109/ICCV.2015.123, 2015.

Helfmann, L., Borrell, E. R., Schütte, C., and Koltai, P.:
Extending Transition Path Theory: Periodically Driven and
Finite-Time Dynamics, J. Nonlin. Sci., 30, 3321–3366,
https://doi.org/10.1007/s00332-020-09652-7, 2020.

Jacques-Dumas, V.: ValerianJD/Committor-Estimation: Methods
comparison for data-driven committor estimation (v1.0.0), Zen-
odo [code], https://doi.org/10.5281/zenodo.7380724, 2022.

Jacques-Dumas, V., Ragone, F., Borgnat, P., Abry, P., and Bouchet,
F.: Deep Learning-Based Extreme Heatwave Forecast, Front.
Climate, 4, 789641, https://doi.org/10.3389/fclim.2022.789641,
2022.

Jaeger, H.: The “echo state” approach to analysing and training re-
current neural networks-with an erratum note, Bonn, Germany:
German National Research Center for Information Technology
GMD Technical Report, 148, 2001.

Jiang, S., Jin, F.-F., and Ghil, M.: Multiple Equilib-
ria, Periodic, and Aperiodic Solutions in a Wind-
Driven, Double-Gyre, Shallow-Water Model, J. Phys.
Oceanogr., 25, 764–786, https://doi.org/10.1175/1520-
0485(1995)025<0764:MEPAAS>2.0.CO;2, 1995.

Khoo, Y., Lu, J., and Ying, L.: Solving for high dimensional
committor functions using artificial neural networks, ArXiv,
https://doi.org/10.48550/ARXIV.1802.10275, 2018.

Kong, L.-W., Fan, H.-W., Grebogi, C., and Lai, Y.-
C.: Machine learning prediction of critical transi-
tion and system collapse, Phys. Rev. Res., 3, 013090,
https://doi.org/10.1103/PhysRevResearch.3.013090, 2021.

Lakshminarayanan, B., Roy, D. M., and Teh, Y. W.: Mon-
drian Forests: Efficient Online Random Forests, ArXiv,
https://doi.org/10.48550/ARXIV.1406.2673, 2014.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W.,
Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the
Earth’s climate system, P. Natl. Acad. Sci. USA, 105, 1786–
1793, https://doi.org/10.1073/pnas.0705414105, 2008.

Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C., and Bouchet,
F.: Computing return times or return periods with rare
event algorithms, J. Stat. Mech.-Theory E., 2018, 043213,
https://doi.org/10.1088/1742-5468/aab856, 2018.

Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M., and Fablet, R.: The
Analog Data Assimilation, Mon. Weather Rev., 145, 4093–4107,
https://doi.org/10.1175/MWR-D-16-0441.1, 2017.

Li, Q., Lin, B., and Ren, W.: Computing committor functions for
the study of rare events using deep learning, J. Chem. Phys., 151,
054112, https://doi.org/10.1063/1.5110439, 2019.

Lorenz, E. N.: Atmospheric Predictability as Re-
vealed by Naturally Occurring Analogues, J. At-
mos. Sci., 26, 636–646, https://doi.org/10.1175/1520-
0469(1969)26<636:APARBN>2.0.CO;2, 1969a.

Lorenz, E. N.: Three approaches to atmospheric predictability, B.
Am. Meteorol. Soc, 50, 345–351, 1969b.

Lucente, D.: Predicting probabilities of climate extremes from ob-
servations and dynamics, PhD thesis, ENS de Lyon, 2021.

Lucente, D., Duffner, S., Herbert, C., Rolland, J., and Bouchet, F.:
MACHINE LEARNING OF COMMITTOR FUNCTIONS FOR
PREDICTING HIGH IMPACT CLIMATE EVENTS, in: Cli-
mate Informatics, Paris, France, https://hal.archives-ouvertes.fr/
hal-02322370 (last access: 2022), 2019.

Lucente, D., Herbert, C., and Bouchet, F.: Committor Functions
for Climate Phenomena at the Predictability Margin: The Exam-
ple of El Niño–Southern Oscillation in the Jin and Timmermann
Model, J. Atmos. Sci., 79, 2387–2400, 2022a.

Lucente, D., Rolland, J., Herbert, C., and Bouchet, F.: Coupling
rare event algorithms with data-based learned committor func-
tions using the analogue Markov chain, J. Stat. Mech.-Theory
E., 2022, 083201, https://doi.org/10.1088/1742-5468/ac7aa7,
2022b.

Lukoševičius, M. and Jaeger, H.: Reservoir computing approaches
to recurrent neural network training, Comput. Sci. Rev., 3, 127–
149, https://doi.org/10.1016/j.cosrev.2009.03.005, 2009.

Miloshevich, G., Cozian, B., Abry, P., Borgnat, P., and Bouchet,
F.: Probabilistic forecasts of extreme heatwaves using convo-
lutional neural networks in a regime of lack of data, ArXiv,
https://doi.org/10.48550/ARXIV.2208.00971, 2022.

Nemoto, T., Bouchet, F., Jack, R. L., and Lecomte, V.: Population-
dynamics method with a multicanonical feedback control, Phys.
Rev. E, 93, 062123, https://doi.org/10.1103/physreve.93.062123,
2016.

Noé, F. and Rosta, E.: Markov Models of Molecular Kinetics, J.
Chem. Phys., 151, 190401, https://doi.org/10.1063/1.5134029,
2019.

Platzer, P., Yiou, P., Naveau, P., Filipot, J.-F., Thiébaut, M.,
and Tandeo, P.: Probability Distributions for Analog-
To-Target Distances, J. Atmos. Sci., 78, 3317–3335,
https://doi.org/10.1175/jas-d-20-0382.1, 2021a.

Platzer, P., Yiou, P., Naveau, P., Tandeo, P., Zhen, Y., Ailliot,
P., and Filipot, J.-F.: Using local dynamics to explain analog
forecasting of chaotic systems, J. Atmos. Sci., 78, 2117–2133,
https://doi.org/10.1175/jas-d-20-0204.1, 2021b.

Prinz, J.-H., Held, M., Smith, J. C., and Noé, F.: Efficient Computa-
tion, Sensitivity, and Error Analysis of Committor Probabilities
for Complex Dynamical Processes, Multiscale Model. Sim., 9,
545–567, https://doi.org/10.1137/100789191, 2011.

Ragone, F., Wouters, J., and Bouchet, F.: Computation of ex-
treme heat waves in climate models using a large de-
viation algorithm, P. Natl. Acad. Sci. USA, 115, 24–29,
https://doi.org/10.1073/pnas.1712645115, 2018.

Rahmstorf, S.: On the freshwater forcing and transport of the At-
lantic thermohaline circulation, Clim. Dynam., 12, 799–811,
https://doi.org/10.1007/s003820050144, 1996.

Rolland, J., Bouchet, F., and Simonnet, E.: Computing Tran-
sition Rates for the 1-D Stochastic Ginzburg–Landau–
Allen–Cahn Equation for Finite-Amplitude Noise with
a Rare Event Algorithm, J. Stat. Phys., 162, 277–311,
https://doi.org/10.1007/s10955-015-1417-4, 2015.

Schütte, C., Fischer, A., Huisinga, W., and Deuflhard, P.:
A Direct Approach to Conformational Dynamics Based on
Hybrid Monte Carlo, J. Comput. Phys., 151, 146–168,
https://doi.org/10.1006/jcph.1999.6231, 1999.

https://doi.org/10.5194/npg-30-195-2023 Nonlin. Processes Geophys., 30, 195–216, 2023

https://doi.org/10.1109/TNNLS.2019.2899649
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1007/s00332-020-09652-7
https://doi.org/10.5281/zenodo.7380724
https://doi.org/10.3389/fclim.2022.789641
https://doi.org/10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2
https://doi.org/10.48550/ARXIV.1802.10275
https://doi.org/10.1103/PhysRevResearch.3.013090
https://doi.org/10.48550/ARXIV.1406.2673
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1175/MWR-D-16-0441.1
https://doi.org/10.1063/1.5110439
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
https://hal.archives-ouvertes.fr/hal-02322370
https://hal.archives-ouvertes.fr/hal-02322370
https://doi.org/10.1088/1742-5468/ac7aa7
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.48550/ARXIV.2208.00971
https://doi.org/10.1103/physreve.93.062123
https://doi.org/10.1063/1.5134029
https://doi.org/10.1175/jas-d-20-0382.1
https://doi.org/10.1175/jas-d-20-0204.1
https://doi.org/10.1137/100789191
https://doi.org/10.1073/pnas.1712645115
https://doi.org/10.1007/s003820050144
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1006/jcph.1999.6231

216 V. Jacques-Dumas et al.: Data-driven committor estimation

Sikorski, A., Weber, M., and Schütte, C.: The Aug-
mented Jump Chain, Adv. Theory Sim., 4, 2000274,
https://doi.org/10.1002/adts.202000274, 2021.

Simonnet, E., Ghil, M., and Dijkstra, H.: Homoclinic bifurcations
in the quasi-geostrophic double-gyre circulation, J. Marine Res.,
63, 931–956, https://doi.org/10.1357/002224005774464210,
2005.

Simonnet, E., Rolland, J., and Bouchet, F.: Multistability and
rare spontaneous transitions in barotropic β-plane turbulence,
J. Atmos. Sci., 78, 1889–1911, https://doi.org/10.1175/jas-d-20-
0279.1, 2021.

Stommel, H.: Thermohaline Convection with Two Stable Regimes
of Flow, Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-
3490.1961.tb00079.x, 1961.

Strahan, J., Antoszewski, A., Lorpaiboon, C., Vani, B. P., Weare,
J., and Dinner, A. R.: Long-Time-Scale Predictions from
Short-Trajectory Data: A Benchmark Analysis of the Trp-
Cage Miniprotein, J. Chem. Theor. Comput., 17, 2948–2963,
https://doi.org/10.1021/acs.jctc.0c00933, 2021.

Tantet, A., van der Burgt, F. R., and Dijkstra, H. A.: An early warn-
ing indicator for atmospheric blocking events using transfer op-
erators, Chaos, 25, 036406, https://doi.org/10.1063/1.4908174,
2015.

Thiede, E. H., Giannakis, D., Dinner, A. R., and Weare, J.: Galerkin
approximation of dynamical quantities using trajectory data, J.
Chem. Phys., 150, 244111, https://doi.org/10.1063/1.5063730,
2019.

Yiou, P.: AnaWEGE: a weather generator based on analogues
of atmospheric circulation, Geosci. Model Dev., 7, 531–543,
https://doi.org/10.5194/gmd-7-531-2014, 2014.

Yiou, P. and Déandréis, C.: Stochastic ensemble climate forecast
with an analogue model, Geosci. Model Dev., 12, 723–734,
https://doi.org/10.5194/gmd-12-723-2019, 2019.

Nonlin. Processes Geophys., 30, 195–216, 2023 https://doi.org/10.5194/npg-30-195-2023

https://doi.org/10.1002/adts.202000274
https://doi.org/10.1357/002224005774464210
https://doi.org/10.1175/jas-d-20-0279.1
https://doi.org/10.1175/jas-d-20-0279.1
https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
https://doi.org/10.1021/acs.jctc.0c00933
https://doi.org/10.1063/1.4908174
https://doi.org/10.1063/1.5063730
https://doi.org/10.5194/gmd-7-531-2014
https://doi.org/10.5194/gmd-12-723-2019

	Abstract
	Introduction
	Models and methods
	The AMOC model
	The double-gyre model
	Committor function
	Committor estimation: analog methods (AMC)
	Committor estimation: neural network methods
	Feedforward neural network (FFNN)
	Reservoir computing (RC)

	Dynamical Galerkin approximation (DGA)
	Performance evaluation
	Logarithm score
	Difference score

	Results
	AMOC model
	Phase-space analysis
	Train and test dataset
	Application of the different methods
	Skill
	Computation time

	Double-gyre model
	Phase-space analysis
	Train and test datasets
	Application of the different methods
	Skill
	Computation time

	Summary and discussion
	Appendix A: AMOC box model
	Appendix B: Double-gyre model
	Appendix C: Nonlinear feature vector in RC
	Appendix D: Basis functions in the DGA
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

