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A B S T R A C T   

As our viewpoint changes, the whole scene around us rotates coherently. This allows us to predict how one part 
of a scene (e.g., an object) will change by observing other parts (e.g., the scene background). While human object 
perception is known to be strongly context-dependent, previous research has largely focused on how scene 
context can disambiguate fixed object properties, such as identity (e.g., a car is easier to recognize on a road than 
on a beach). It remains an open question whether object representations are updated dynamically based on the 
surrounding scene context, for example across changes in viewpoint. Here, we tested whether human observers 
dynamically and automatically predict the appearance of objects based on the orientation of the background 
scene. In three behavioral experiments (N = 152), we temporarily occluded objects within scenes that rotated. 
Upon the objects’ reappearance, participants had to perform a perceptual discrimination task, which did not 
require taking the scene rotation into account. Performance on this orthogonal task strongly depended on 
whether objects reappeared rotated coherently with the surrounding scene or not. This effect persisted even 
when a majority of trials violated this real-world contingency between scene and object, showcasing the auto
maticity of these scene-based predictions. These findings indicate that contextual information plays an important 
role in predicting object transformations in structured real-world environments.   

1. Introduction 

The retinal image of objects in our everyday environments changes 
as we move. Predicting such changes is crucial for acting quickly and 
efficiently within a dynamic world. For this purpose, we are equipped 
with internal representations of objects that can be transformed simi
larly to those objects (Higgins, Racanière, & Rezende, 2022; Shepard, 
1984, 2001). For example, we can mentally rotate (Shepard & Metzler, 
1971), translate (Larsen & Bundesen, 1998) or rescale object represen
tations (Bundesen & Larsen, 1975) to reliably predict how objects will 
look from novel viewpoints. 

In the real world, object transformations such as changes in orien
tation or position are strongly constrained by scene context. For 
example, as we navigate an environment, the perceived orientation of 
stationary objects will change jointly with the orientation of the scene 
(e.g., the orientations of walls). Real-world vision is thus highly 
redundant: by observing one part of the scene, it is possible to predict 
another. While previous research has investigated how static scene 
context informs predictions about object identity (e.g., a car will be 

better recognized on a road than on the sea; Bar, 2004; Oliva & Torralba, 
2007; Brandman & Peelen, 2017; Võ, Boettcher, & Draschkow, 2019), 
not much is known about how scene context dynamically guides pre
dictions about spatial transformations of objects. Here, we test the hy
pothesis that observers automatically predict object orientation based 
on scene context, as measured by improved performance in an orthog
onal perceptual discrimination task. 

Exploiting scene context to predict object transformations could 
alleviate the computational burden of mentally transforming objects, 
which is a slow and effortful process (Just & Carpenter, 1976; Larsen, 
2014; Xue et al., 2017). For example, the amount of rotation of the scene 
would directly determine the rotation of the object. This stands in stark 
contrast with the requirements of traditional mental rotation paradigms, 
in which participants need to determine the angle and direction of 
rotation that is required to solve the task (Hamrick & Griffiths, 2014). 
Rather than imagining object transformations on a ‘mental screen’ 
separated from current visual input, such context-driven trans
formations would amount to a task of completing partial information 
present in a scene. This process could be particularly beneficial in real- 
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world situations where internal representations and external context are 
integrated, for instance when keeping track of temporarily occluded 
objects (Munton, 2022; Scholl & Pylyshyn, 1999). 

Here, in three behavioral experiments, we investigated whether 
human participants automatically predict the appearance of a rotated 
object, based exclusively on the orientation of the surrounding scene. 
We designed an experimental paradigm in which an object (a bed or 
couch) was shown in the context of a realistic indoor scene (Fig. 1). 
While the viewpoint on the scene kept changing, the object was 
temporarily hidden by an occluder, and then reappeared. When it 
reappeared, the object could either be oriented consistently (Congruent 
condition) or inconsistently (Incongruent condition) with the scene’s new 
viewpoint. Importantly, the exact same view of the object could be 
congruent or incongruent (on a given trial) depending on (A) the ob
ject’s starting position and (B) the amount of scene rotation, thus ruling 
out any stimulus-related differences between conditions. Moreover, 
because the angle of scene rotation was varied across trials, participants 
could not predict the object’s congruent orientation by simply extrap
olating the rotation of the object alone. Therefore, any difference in 
processing between congruent and incongruent objects implies that 
observers inferred the appearance of the object from changes in the 
surrounding scene. 

In order to assess how scene-object orientation congruency influ
enced object processing, we measured participants’ performance on a 
perceptual discrimination task (Fig. 1B). Upon reappearance, the object 
was displayed twice, very briefly, and participants had to indicate 
whether or not the object had the exact same orientation in these two 

displays (same/different task). We compared accuracy in this task be
tween congruent and incongruent trials. Importantly, this task was fully 
orthogonal to the congruency manipulation, and participants were not 
explicitly instructed to exploit scene information, nor were they incen
tivized to predict the upcoming object view. We hypothesized that 
participants would be more accurate in the congruent than the incon
gruent condition, reflecting the facilitatory influence of scene-based 
predictions (De Lange, Heilbron, & Kok, 2018). 

To summarize our results, we found that perceptual discrimination 
accuracy was higher when the object reappeared in a congruent as 
compared to an incongruent orientation relative to the scene, providing 
evidence that participants used scene orientation to predict object 
orientation. In Experiment 1, this congruency effect occurred when the 
congruent orientation appeared on a majority of trials (75%). To 
disentangle the role of real-world regularities and short-term experi
ment contingencies in driving the effect, in subsequent experiments we 
presented congruent and incongruent orientations with equal proba
bility (50%; Experiment 2), and even reversed the real-world regularity 
by showing the congruent orientation on a minority of trials (25%; 
Experiment 3). Despite manipulating these short-term contingencies, 
the congruency effect still followed real-world (rather than short-term) 
regularities, indicating that scene viewpoint influences mental object 
transformations in an automatic fashion. Moreover, this influence is not 
abolished or reversed when expectations are violated frequently during 
the experiment, suggesting that the scene-based predictions derive pri
marily from knowledge of long-term real-world regularities, and cannot 
be easily overruled. Automatically predicting object transformations 

Fig. 1. (A) Schematic of the sequence of scene orientations in an example trial, seen from above. (B) The stimuli shown in in this same example trial, where the total 
rotation of the scene is “Large” (90◦), the orientation of the object upon reappearance is “Congruent” relative to the scene, and the two probes are “Different”: the 
second probe is slightly rotated relative to the first (green arrows added for illustration). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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based on scene context helps to overcome the complexity of the real 
world by exploiting its regularities. 

2. Methods 

2.1. Participants 

All experiments were run online, hosted on Pavlovia (https://pavl 
ovia.org/) and programmed in Javascript using JsPsych 6.3.0 (De 
Leeuw, 2015) and the jspsych-psychophysics library (Kuroki, 2021). 

Online participants were recruited on Prolific (Palan & Schitter, 
2018), and had to satisfy the following criteria: reside in Europe or the 
UK, to ensure their time zone was the same as ours and they were 
participating during day hours; be between 18 and 35 years old; have 
normal or corrected-to-normal vision; have participated in at least 10 
previous studies on Prolific; and have a Prolific approval rate of at least 
95%. 

Participants provided informed consent before the study and 
received monetary compensation for their participation. The study was 
approved by the Radboud University Faculty of Social Sciences Ethics 
Committee (ECSW2017-2306-517). Participants were included in the 
analysis if a one-sided binomial test comparing their hit rate in our 
same/different task with 50% was significant (at α = 0.05), meaning 
that they were performing better than chance. We continued data 
collection until the number of included participants reached 50 for each 
experiment (in batches of 10–20 participants: in Experiment 3, this led 
to a final sample size of 52, as more participants in the final batch met 
the inclusion criteria than expected). Previous pilot studies in the lab
oratory revealed a large effect size (> 0.8), such that a sample of 23 
participants would be sufficient for 95% power. Given that conducting 
the experiment online might have reduced the effect size, we chose to 
aim for a larger sample size of 50. In Experiment 1, we excluded 30 
participants. Of the included 50 participants, 25 were female, and mean 
age (and standard deviation) was 26.7 ± 5.1. In Experiment 2, we 
excluded 33 participants. Of the included 50 participants, 20 were fe
male, and mean age was 24.5 ± 4.3. In Experiment 3, we excluded 56 
participants. Of the included 52 participants, 25 were female, 26 male 
and one participant’s demographic information was missing. Mean age 
was 24.7 ± 4.4. 

The high exclusion rate was likely due to several reasons: primarily, 
we limited the maximum possible orientation difference between the 
two probes to 20◦, to avoid exceeding 1/3 of the difference between 
congruent and incongruent views (60◦). This meant that the staircase 
was limited in its ability to adjust to participants with a higher 
discrimination threshold. Moreover, we kept a very short presentation 
time (50 ms) for the two probes, in order to reduce the influence of 
deliberate judgment and find evidence of a perceptual representation of 
the object’s updated appearance, thereby making the task more chal
lenging. Importantly, however, all the results reported here held true 
with no participant exclusions (see Supplementary Materials S.2, 
Fig. S3). 

2.2. Stimuli 

The stimuli were based on 8 different indoor scenes (Fig. S1) 
modeled in Blender 2.92 (Blender Foundation) and rendered using the 
Cycles rendering engine for realistic lighting. The scenes all had the 
same layout (floor, two walls at a right angle and a main object in the 
center) but contained various other objects, adjacent to the walls, and 
different textures on the walls and floor. The central object was a couch 
in half of the scenes, and a bed in the other half. The size of the central 
object was the same across scenes. For each scene, a sequence of 
different viewpoints was rendered, by rotating the scene around the 
vertical axis between 0◦ to 90◦ in steps of 5◦. The two walls were ori
ented such that the scene was fully visible from all these viewpoints. All 
scene images were presented at a resolution of 960 × 540 pixels. 

2.3. Procedure 

Each trial (Fig. 1) began with a fixation dot (which was always 
present during the trial, radius 5 pixels) for 500 ms, followed by the first 
orientation of the scene for 2000 ms, the 3 intermediate orientations for 
500 ms each, and the final view for a randomly jittered duration be
tween 1500 and 2000 ms. The central object (couch or bed) was fully 
visible for the first and second view, and was occluded by a grey rect
angle during the third, fourth and final view (see Fig. 1A for a schematic 
representation). The occluder had the height and width of the largest 
possible view of the object, plus a margin (horizontal: 110 pixels, ver
tical: 40 pixels) to ensure the object was fully covered and its shadow 
was not visible, which would have provided a cue to its orientation. 

After the final orientation of the scene was shown, with the object 
still fully occluded, the object was briefly flashed twice (within the 
scene) for 50 ms, with a 100 ms inter-stimulus interval in between. We 
refer to these two brief presentations of the object as the probes. The task 
of the participants was to report whether the second probe was the 
‘same’ as (or ‘different’ from) the first, by pressing the F or J key, 
respectively. After responding, they would receive feedback: the fixation 
dot would turn green following a correct answer and red following an 
incorrect answer for 250 ms. They had a maximum of 2500 ms to 
respond, after which the fixation dot would turn black, the experiment 
would skip to the next trial and the current trial would be counted as 
missed. Participants were explicitly told that their task would be on the 
final two views of the objects exclusively, but that they should also pay 
attention to the preceding sequence of images, to ensure they would not 
completely disengage during the seconds preceding the probes. 

The orientation of the first probe object was randomly sampled from 
a normal distribution centered around the Congruent or Incongruent 
object viewpoint, with a standard deviation of 1◦, to add a small amount 
of jitter, and then rounded to the nearest integer. The second probe was 
exactly the same as the first probe in half of the trials (‘same’ trials). In 
the other half of the trials (‘different’ trials), the second probe was 
rotated around the vertical axis relative to the first (see Fig. 1B, bottom 
left), clockwise or counterclockwise with equal probability. 

The orientation difference on the ‘different’ trials was titrated using a 
2-down 1-up staircase, to keep the task difficulty constant across par
ticipants and across experiments. Specifically, a single staircase was 
used across both Congruency conditions to ensure average performance 
around 70% correct (Wetherill & Levitt, 1965) across conditions, while 
still allowing for accuracy differences between the Congruent and 
Incongruent conditions. The motivation for using a single staircase 
across conditions, rather than two separate interleaved staircases on 
Congruent and Incongruent trials as more commonly done (e.g. Kok, 
Jehee, & De Lange, 2012), was to keep the physical stimuli exactly the 
same in both conditions, thus ensuring the full orthogonality of the 
Congruency manipulation from the physically presented stimuli. 
Allowing the probe orientation differences probes to vary between 
conditions could have drawn participants’ attention to the manipula
tion, possibly leading to changes in response strategies. Stimulus in
tensity (orientation difference between probes) was adjusted after both 
‘same’ and ‘different’ trials. The starting value for the staircase was 10◦, 
step size was 1◦ (lowered to 0.5◦ after 3 staircase reversals) and the 
minimum and maximum possible orientation differences shown were 
0.5◦ and 20◦, respectively. The means and standard deviations of the 
angle differences reached by the staircase in the second half of trials, in 
each of the three experiments, were 12.76◦ ± 4.64, 11.96◦ ± 5.18, and 
14.11◦ ± 4.90 respectively. 

Each experiment lasted about 30 min in total, divided in 8 blocks, 
and participants were encouraged to take a short break after the end of 
each block. Before the experiment began, participants read instructions, 
accompanied by demonstration images, at their own pace. Then they 
completed a short practice run. During the practice run, the presentation 
time of the two probes gradually decreased across trials from 300 ms to 
50 ms, which is the presentation time used in the main experiment. This 
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allowed participants to familiarize with the task with an initially less 
challenging presentation time. 

2.4. Experimental design 

Trials varied along three different factors (Fig. 2): Congruency 
(Congruent, Incongruent), initial Object Orientation relative to the 
scene (6 angles: 0◦, 60◦, 120◦, 180◦, 240◦, 300◦), Scene Rotation (Small, 
Large) and Scene (1 of 4 different scene exemplars, one of two subsets of 
the 8 total views, selected randomly for each participant). 

The overall proportion of Congruent and Incongruent trials varied 
depending on the experiment (75% of total trials in Exp. 1, 50% in Exp. 
2, and 25% in Exp. 3). All the other factors were fully balanced within 
the Congruent and Incongruent trials, meaning that each of four parti
tions of the trials (variably assigned to either Congruent or Incongruent 
depending on the experiment) were equally divided among each com
bination of Object Orientation, Scene Rotation and Scene (6 × 2 × 4 =
48 trials for each partition, resulting in 192 trials in total). All these trials 
were presented in random order throughout the experiment. 

The Incongruent view corresponded, on Small scene rotation trials, 
to an object that was rotated 60◦ more than expected, and on Large scene 
rotation trials, to an object rotated 60◦ less than expected. The 6 initial 
object orientations were chosen to be 60◦ apart, so that the Incongruent 
view for one orientation corresponded to the Congruent one for another 
(see also Fig. S2). Consequently, the exact same images were presented 
as Congruent in the context of one trial, and Incongruent in the context 
of another trial, avoiding any possible confounds due to physical dif
ferences between conditions (Fig. 2). 

2.5. Post-experiment survey 

After completing the experiment, participants were asked three 
questions about their awareness of the congruency manipulation. 

The questions were:  

• “Your task was only on the final image, when the object changed or 
not. Did you also pay attention to the sequence of images before the 
task image?” - the response had to be indicated on a Likert scale from 
1 (Not at all) to 7 (All the time).  

• “When the scene rotated, did you anticipate seeing the object in the 
correct viewpoint after it reappeared?” - the response also had to be 
indicated on a 1–7 Likert scale.  

• “What percentage of objects were in line with your expectation? 
(They reappeared with the correct viewpoint)” - the response had to 
be a value in percentage, from 0 to 100%. 

2.6. Analysis software 

All analyses were conducted in Python using Pandas 1.2.5 (McKin
ney, 2011), Numpy 1.20.2 (Harris et al., 2020), Pingouin 0.3.4 (Vallat, 
2018), and Scipy 1.6.2 (Virtanen et al., 2020), and results were visual
ized using Matplotlib 3.3.4 (Hunter, 2007), and Seaborn 0.11.1 (Was
kom, 2021). For the three-way mixed ANOVA in the scene alignment 
analysis (see Role of alignment with the scene in Results), we used 
the R package bruceR (https://CRAN.R-project.org/package=bruceR). 

3. Results 

3.1. Experiment 1: 75% probability 

In the first experiment, participants had a 75% probability of seeing 
the object reappear in the congruent view. Across conditions, their mean 
accuracy (and SEM) was 0.68 ± 0.01, indicating that they were able to 
perform the task, and that the staircase successfully reached the desired 
accuracy range, around 70%. 

In our central analysis, we compared accuracy between Congruent 

Fig. 2. Illustration of the experimental design, showing the initial orientation of the object relative to the scene, and the final images (after the whole sequence of 
rotations, including the occlusion period) resulting from a Small or Large rotation on Congruent or Incongruent trials. The images highlighted by the colored frames 
are examples of the same images appearing as either Congruent or Incongruent on different trials. Note that these are only two out of six possible starting orientations 
(see Fig. S2); throughout the experiment every final image occurred in the Congruent as well as the Incongruent condition. 
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and Incongruent trials. Participants were significantly more accurate on 
Congruent than Incongruent trials 

(means: 0.71 vs. 0.65; t49 = 5.87, p < 0.001, d = 0.95, 95% CI =
[0.04, 0.09]; Fig. 3A), indicating that the congruency of the orientation 
of the object with that of the scene influenced performance on the 
orthogonal perceptual discrimination task. Supplementary analyses 
showed that congruency influenced both sensitivity and bias (Fig. S4A). 

In this experiment, the object was congruent with the scene on a 
majority of trials. Real-world regularities (the coherence of an object’s 
rotation with the surrounding scene), then, matched the short-term 
regularities observed during the experiment. In the next experiment, 
we investigated whether more frequent violations of real-world regu
larities would disrupt this effect of object congruence on task 
performance. 

3.2. Experiment 2: 50% probability 

In Experiment 2, the object reappeared from occlusion in a congruent 
or incongruent view with equal probability (i.e., 50% probability 
instead of 75%). Besides this probability manipulation, stimuli and 
experimental paradigm were the same as in Experiment 1. Like in the 
previous experiment, the included participants were reliably above 
chance in performing the task (mean accuracy and SEM: 0.69 ± 0.01). 

Confirming the results of the previous experiment, in our main 
analysis we found accuracy to significantly differ between the 
Congruent and Incongruent conditions. Participants were more accurate 
on Congruent than Incongruent trials (means: 0.70 vs. 0.68, t49 = 2.56, 
p = 0.01, d = 0.45, 95% CI = [0.01, 0.05]; Fig. 3B). The effect of object 
congruency on task performance was thus consistent with that of 
Experiment 1 (results were also consistent for sensitivity and bias 
measures, see Fig. S4B). This suggests that even when the long-term 
expectation of scene and object rotating coherently was not informa
tive of the stimuli shown during the experiment, it still affected partic
ipants’ performance on the task. In Experiment 3, we asked whether 
presenting incongruent object orientations on a majority of trials could 
overrule, and possibly even reverse, the effect of object congruence on 
task performance. 

3.3. Experiment 3: 25% probability 

In this experiment, the object reappeared in the congruent orienta
tion only on 25% of trials. Aside from this, stimuli and paradigm were 
the same as in the previous two experiments. Here, participants again 
performed well above chance level (mean accuracy and SEM: 0.69 ±
0.01). 

In our central comparison of accuracy between the Congruent and 
Incongruent conditions, we again found a significant difference. Accu
racy was higher in Congruent than Incongruent trials (means: 0.71 vs. 
0.68, t51 = 3.50, p < 0.001, d = 0.47, 95% CI = [0.01, 0.05]; Fig. 3C), 
consistent with the previous experiments (results were also consistent 
for sensitivity and bias measures, see Fig. S4C). Interestingly, then, the 
influence of object congruence on task performance did not reverse 
when the short-term experimental regularities ran counter to it. This 
result provides strong evidence that the real-world constraint of 
coherent scene-object rotation cannot be easily overruled by inconsis
tent evidence within the short term of an experiment. 

3.4. Congruency-probability interaction 

The results of Experiments 2 and 3 revealed that participants pre
dicted the orientation of the object to be coherent with the scene rota
tion, even when this was counter-productive for the task at hand. It is 
possible, however, that these expectations - that are derived from real- 
world regularities - still interact with the short-term contingencies 
observed during the experiment. In particular, when within-experiment 
and real-world regularities match, participants’ expectations might be 

stronger than when they do not match. 
To determine whether this was the case in our studies, we ran an 

across-experiment comparison (mixed ANOVA with Congruency as 
within-subject, Probability/experiment as between-subject factor) to 
test for the possible interaction of scene-object congruency and the 
probability of observing this congruency during the experiment. First, a 
main effect of Congruency confirmed that task performance was better 
on Congruent trials than Incongruent trials across experiments (F1, 149 =

49.31, p < 0.001, η2
p = 0.25). Second, no main effect of Probability 

(experiment) on participant’s accuracy was found, which shows that the 
staircasing procedure successfully yielded similar performance across 
experiments (F2, 149 = 0.57, p = 0.566, η2

p = 0.01). Most interestingly, a 
significant interaction of Congruency and Probability on task perfor
mance was found (F2, 149 = 4.86, p = 0.009, η2

p = 0.06). Subsequent two- 
sample (Welch) t-tests between the Congruent-Incongruent accuracy 
differences of different experiments revealed a significant difference 
between Experiment 1 (P(Congruent) = 75%) and both Experiments 2 
and 3 (P(Congruent) = 50% and 25%; t98 = 2.68, t92.7 = 2.52, pbonf =

0.02, 0.04, d = 0.54, 0.50 respectively). The accuracy differences in 
experiments 2 and 3, on the other hand, did not significantly differ (t97.3 
= − 0.35, pbonf = 1.0, d = 0.07) 

The results of this analysis indicate that the impact of congruency on 
task performance was reduced when real-world contingencies did not 
reliably predict object appearance during the experiment. This suggests 
that observers use both long-term structural regularities and short-term 
experimental contingencies to predict object orientation. 

3.5. Role of alignment with the scene 

The spatial structure of scenes can be represented in two distinct 
ways: either in terms of image-like views from the observer’s perspective 
(view-based representation) or in terms of object positions and orien
tations relative to the scene (structural representation). Cardinal axes of 
a scene (the axes parallel or perpendicular to walls) provide a reliable 
reference frame, that remains invariant to the observer’s viewpoint. If 
the congruency effect that we observed is derived from a structural, 
scene-centric representation, then we would expect the congruency ef
fect to be particularly strong when objects are aligned to these axes. If 
instead the congruency effect is derived entirely from a view-based, 
observer-centric representation, then the magnitude of the congruency 
effect should be unrelated to the alignment of the object with the main 
axes of the scene. 

As the object orientations in our study (Fig. S2) could be divided into 
those that were aligned with one of the scene’s main axes (0◦, 180◦) and 
those that were not (60◦, 120◦, 240◦, 300◦), we conducted an explor
atory analysis to clarify the influence of object-scene alignment on our 
results. On the one hand, we tested whether the congruency effect is 
significantly stronger when object and scene are aligned, which would 
indicate a role of structural cues. On the other hand, we tested whether 
the congruency effect is still present on misaligned trials, which would 
show that structural cues, even if they contribute to scene-driven ex
pectations, are not necessary for observers to form such expectations. 

First, to examine the effects of Congruency, Alignment, and Proba
bility (experiment) together, as well as possible interactions between 
them, we conducted a mixed ANOVA with Congruency and Alignment 
as within-subject factors, and Probability as a between-subject factor. 
The full results of the analysis are reported in Table 1. Beyond the effects 
of Congruency and Probability, already reported in the main text, this 
analysis revealed a significant main effect of Alignment (mean accu
racies: 0.72 and 0.67 for Aligned and Misaligned objects respectively; 
F1,149 = 57.98, p < 0.001, η2

p = 0.27), consistent with the established 
finding that participants are more sensitive to orientation differences 
around cardinal axes (Appelle, 1972; Shiffrar & Shepard, 1991). More 
importantly, the interaction between Congruency and Alignment was 
also significant (F1,151 = 5.13, p = 0.025, η2

p = 0.03), showing that the 
accuracy difference between Congruent and Incongruent trials was 
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larger when objects were aligned than when objects were misaligned 
with the main axes of the scene (mean accuracy differences: 0.06 and 
0.03 respectively). Structural cues, then, might have contributed to 
participants’ expectations of the upcoming object orientation. 

Next, we asked whether the congruency effect was still present when 
object and scene were misaligned, to determine whether structural cues 
are necessary for object expectations to emerge. To this end, we sepa
rately tested the difference between Congruent and Incongruent trials in 
the Aligned and Misaligned conditions. As the ANOVA did not reveal a 
three-way interaction between Congruency, Alignment and Probability 
(i.e., the interaction between congruency and alignment did not differ 
between experiments; Table 1), we grouped the three experiments 
together to maximize statistical power. Here, we found that the effect of 
Congruency was significant for both Aligned (t151 = 5.33, p < 0.001, d 
= 0.59, 95% CI = [0.04, 0.08]) and Misaligned (t151 = 4.16, p < 0.001, 
d = 0.41, 95% CI = [0.02, 0.04]) trials, as shown in Fig. 4. The con
gruency effect, then, was still present when object and scene were 
misaligned. 

Altogether, these results indicate that structural cues were not 
necessary for participants’ scene-driven expectations of object orienta
tion to arise. As our stimuli did not include other apparent structural 
cues,1 it is likely that on misaligned trials object expectations were eli
cited by view-based cues. On the other hand, the congruency effect was 
significantly stronger on aligned trials, suggesting that structural cues 
might have also contributed to participants’ expectations. It might not 
be possible, however, to rule out that other aspects of our experimental 
design might have contributed to this interaction: (1) the lower general 
accuracy on misaligned trials might have led to a floor effect, 

attenuating the difference between congruent and incongruent trials; (2) 
in the aligned trials, incongruent objects were also misaligned with the 
scene, possibly accentuating the effect of congruency. 

While it might not be possible, then, to conclusively show using the 
present analysis that structural scene cues played a role in our paradigm, 
previous findings and theoretical motivations suggest that the repre
sentations involved were not purely view-based, as we outline in the 
Discussion. 

4. Discussion 

In the real world, objects and their context are strongly interdepen
dent, allowing observers to predict how the orientation of an object will 
change based on changes in the orientation of the surrounding scene. In 
this study, we manipulated whether objects respected this constraint, 
and measured how this affected participants’ performance on an 
orthogonal perceptual discrimination task. Across three experiments, we 
found that participants’ accuracy was influenced by scene-object con
gruency, showing that they formed an expectation of the object’s 
updated orientation based on the surrounding scene. 

The scene-object orientation congruency effect revealed here could 
not be driven by physical stimulus differences between conditions, as the 
(in)congruency of a given object orientation was determined exclusively 
by the trial context: the object’s initial orientation, and the rotation of 
the scene background while the object was occluded. Moreover, the 
effect appeared to occur automatically: (1) the task did not require 
predicting object orientation, or even taking scene information into 
account; (2) as revealed by our post-experiment survey, the congruency 
effect did not correlate with participants’ self-reported prediction of the 
object’s orientation, nor with self-reported attention to the scene context 
(see Supplementary Materials S.5); (3) most importantly, the effect was 
still present even when the real-world constraint was not predictive 
(Experiment 2) or even was counter-predictive (Experiment 3) during 
the experiment. In Experiments 2 and 3, predicting the congruent object 
orientation would not help performing the task, so it is particularly 
unlikely that participants predicted object orientation as part of a 
deliberate strategy. 

While short-term experiment regularities did not erase long-term 
structural expectations we still found that the accuracy difference was 
significantly greater in Experiment 1 than both Experiments 2 and 3. As 
such, participants may have been able to partly suppress real-world 
expectations when they ran counter to the current task setting (Dogge, 
Custers, Gayet, Hoijtink, & Aarts, 2019). The fact that the scene-object 
congruency effect did not reverse in Experiment 3 (where real-world 
contingencies were counter-predictive) further indicates that scene- 
based predictions of object appearance were not solely driven by 

Fig. 3. Results of Experiments 1–3. Bar plots show mean accuracy (and SEM) for Congruent and Incongruent trials. Violin plots show distribution of the differences 
between conditions (Congruent – Incongruent) for each participant, with mean and 95% confidence interval. * p < 0.05, *** p < 0.001. 

Table 1 
Results of the ANOVA including Congruency, Probability and Alignment. Sig
nificant effects are highlighted in boldface. * p < 0.05, *** p < 0.001.  

Effect df F p η2
p 

Congruency 1, 149 51.01 < 0.001*** 0.25 
Alignment 1, 149 57.98 < 0.001*** 0.27 
Probability 2, 149 0.53 0.588 0.01 
Congruency x Alignment 1, 149 5.13 0.025 * 0.03 
Congruency x Probability 2, 149 4.35 0.015 * 0.05 
Alignment x Probability 2, 149 3.70 0.027 * 0.05 
Congr. x Align. x Prob. 2, 149 0.08 0.920 0.00  

1 Another possible cue is the orientation of the main object relative to 
background objects: however, these were aligned with the scene’s walls, 
meaning that this cue could also not have been used on misaligned trials. 
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statistical association between arbitrary object views, unlike in prior 
studies investigating the effect of probabilistic expectations on percep
tion (e.g., Meyer & Olson, 2011; Richter, Ekman, & de Lange, 2018). 
Instead, scene-based predictions of object appearance were constrained 
by real-world regularities, acquired through life-long learning. 
Furthermore, these expectations were flexible: both the amount of 
overall scene rotation and the orientation of the object relative to the 
scene were varied across trials, meaning that participants were able to 
predict objects from novel viewpoints given any initial orientation, and 
to adjust this prediction to the amount of rotation in the scene. 

The present findings show that scene representations can support 
object predictions across spatial transformations. What could be the 
format of these scene representations? One possibility is that the scene is 
represented in a viewpoint-invariant way, in terms of its parts and their 
spatial relations (Biederman, 1987; Erdogan & Jacobs, 2017; Hummel, 
2000). In that case, the incongruency of an object view would corre
spond to the detection of a change in the object’s orientation relative to 
the scene. Alternatively, the scene may be represented as a collection of 
image-like views, linked by operations such as mental rotation (Tarr & 
Pinker, 1989), combination (Ullman, 1998), associative learning (Gill
ner & Mallot, 1998; Glennerster, 2023; Gootjes-Dreesbach, Pickup, 
Fitzgibbon, & Glennerster, 2017) or normalization (Willems & Wage
mans, 2001). Expectation violations, in that case, would mismatch the 
egocentric object view predicted by the participant. 

To tentatively distinguish between these two accounts, in an 
exploratory analysis we compared the magnitude of the congruency 
effect between trials in which the object was aligned with one of the 
cardinal axes of the scene, and trials in which it was not. This compar
ison is commonly used to adjudicate between structure- and view-based 
scene representations (e.g., Marchette & Shelton, 2010; Mou & McNa
mara, 2002), since salient axes of the environment provide a stable 
reference frame that can be used across viewpoints. We found that the 
congruency effect was still present when the object was not aligned with 
the scene, which is consistent with the view that scene-driven orienta
tion expectations can be elicited by view-based cues alone (for similar 
conclusions using a traditional mental rotation paradigm, see Stewart 
et al., 2022). On the other hand, our finding of a slightly larger con
gruency effect for aligned than for misaligned objects might indicate an 
additional contribution of structural scene cues. While it might not be 
possible to determine this from this analysis alone, as described in the 
Results, prior findings and theoretical motivations suggest that view- 
based and structural information were likely to be both involved. 

Several studies have shown that humans extract these two types of in
formation in parallel, both in object perception and spatial cognition 
(Burgess, Spiers, & Paleologou, 2004; Foster & Gilson, 2002; Heywood- 
Everett, Baker, & Hartley, 2022). From a computational standpoint, 
several hybrid models have been proposed, in which spatial relations are 
represented in an approximate way, remaining bound to viewer- 
centered image coordinates (Bear et al., 2020; Edelman & Intrator, 
2001). Such hybrid models are a compromise between the composi
tional flexibility afforded by structural representations (Hafri, Green, & 
Firestone, 2023) and the necessity to estimate them from egocentric 
views, as well as the potential advantage of using retinotopic co
ordinates as a common reference frame for different visual computations 
(Groen, Dekker, Knapen, & Silson, 2022). An intriguing question for 
future research is the extent to which these two objectives are balanced 
in the scene representations underlying dynamic object tracking and 
prediction. 

The present results complement previous findings showing that the 
way objects are perceived and represented depends on static scene 
context. While previous work primarily focused on how scene context 
facilitates recognition of an object’s identity (Bar, 2004; Brandman & 
Peelen, 2017; Oliva & Torralba, 2007; Võ et al., 2019), a property that 
remains invariant to viewpoint changes, we here investigate object 
orientation, a property that is inherently dependent on viewpoint 
changes. 

Other studies have shown that depth cues in a scene, indicating the 
distance of an object from the observer, can influence the object’s 
perceived size, as in the classic Ponzo illusion (Leibowitz, Brislin, Perl
mutrer, & Hennessy, 1969; Yildiz, Sperandio, Kettle, & Chouinard, 
2021). Interestingly, beyond shaping the representation of perceived 
objects, scene depth cues can also ‘rescale’ internally generated object 
representations, such as preparatory templates in visual search (Gayet & 
Peelen, 2022). Unlike these previous studies, however, here we 
demonstrate that internal object representations can be influenced by 
scenes dynamically, being updated as the scene changes. Moreover, 
participants in our study were not engaged in an explicit visual search 
task, showing that object representations automatically transform in 
accordance with the scene context. 

Scene context can also provide cues to 3D object orientation: the 
difficulty of recognizing objects in unfamiliar orientations can be alle
viated if scene context provides a spatial reference frame (Christou, 
Tjan, & Bülthoff, 2003; Humphrey & Jolicoeur, 1993). In the present 
study, we show that this contextual information can also drive internal 

Fig. 4. Mean accuracy (and SEM) for Congruent and Incongruent trials, plotted separately for Aligned and Misaligned objects. *** p < 0.001.  
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predictions of object appearance from new viewpoints, consistent with 
the possibility that similar mechanisms might underlie context-driven 
transformations and the mental rotation of isolated objects (Graf, 
2006). Future research could further investigate the relation between 
these cognitive processes, elucidating how internal representations and 
external context interface in real-world perception. 

5. Conclusion 

In conclusion, we have shown that participants create expectations 
of object appearance from novel viewpoints automatically, driven by 
scene context. These expectations affect participants’ accuracy in an 
orthogonal perceptual discrimination task. Moreover, the expectations 
that are based on real-world contingencies are not easily overruled by 
frequent violations, and persist even when detrimental to task perfor
mance, showcasing their automaticity. Together, our results demon
strate that scene context facilitates the mental transformation of objects, 
supporting efficient perception in structured real-world environments. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cognition.2023.105521. 

Funding 

This project received funding from the European Research Council 
(ERC) under the European Union’s Horizon 2020 research and innova
tion program (grant agreement No. 725970). 

CRediT authorship contribution statement 

Giacomo Aldegheri: Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Resources, Software, Visualiza
tion, Writing – original draft, Writing – review & editing. Surya Gayet: 
Conceptualization, Methodology, Supervision, Writing – review & 
editing. Marius V. Peelen: Conceptualization, Funding acquisition, 
Methodology, Supervision, Writing – review & editing. 

Data availability 

All data and stimuli are publicly available at https://osf.io/wnefh/. 
Code for running the online experiments and analyzing the data is 
publicly available at https://github.com/GAldegheri/scenecontext-tra 
nsforms. The design and analysis plans for the experiments were not 
preregistered. 

References 

Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: 
The “oblique effect” in man and animals. Psychological Bulletin, 78(4), 266. 

Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629. 
Bear, D., Fan, C., Mrowca, D., Li, Y., Alter, S., Nayebi, A., … Others. (2020). Learning 

physical graph representations from visual scenes. Advances in Neural Information 
Processing Systems, 33, 6027–6039. 

Biederman, I. (1987). Recognition-by-components: A theory of human image 
understanding. Psychological Review, 94(2), 115. 

Brandman, T., & Peelen, M. V. (2017). Interaction between scene and object processing 
revealed by human fMRI and MEG decoding. Journal of Neuroscience, 37(32), 
7700–7710. 

Bundesen, C., & Larsen, A. (1975). Visual transformation of size. Journal of Experimental 
Psychology: Human Perception and Performance, 1, 214–220. https://doi.org/ 
10.1037/0096-1523.1.3.214 

Burgess, N., Spiers, H. J., & Paleologou, E. (2004). Orientational manoeuvres in the dark: 
Dissociating allocentric and egocentric influences on spatial memory. Cognition, 94 
(2), 149–166. 

Christou, C. G., Tjan, B. S., & Bülthoff, H. H. (2003). Extrinsic cues aid shape recognition 
from novel viewpoints. Journal of Vision, 3(3), 1. https://doi.org/10.1167/3.3.1 

De Lange, F. P., Heilbron, M., & Kok, P. (2018). How do expectations shape perception? 
Trends in Cognitive Sciences, 22(9), 764–779. 

De Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments 
in a web browser. Behavior Research Methods, 47(1), 1–12. 

Dogge, M., Custers, R., Gayet, S., Hoijtink, H., & Aarts, H. (2019). Perception of action- 
outcomes is shaped by life-long and contextual expectations. Scientific Reports, 9(1). 
https://doi.org/10.1038/s41598-019-41090-8. Article 1. 

Edelman, S., & Intrator, N. (2001). A productive, systematic framework for the 
representation of visual structure. Advances in Neural Information Processing Systems, 
10–16. 

Erdogan, G., & Jacobs, R. A. (2017). Visual shape perception as Bayesian inference of 3D 
object-centered shape representations. Psychological Review, 124(6), 740. 

Foster, D. H., & Gilson, S. J. (2002). Recognizing novel three-dimensional objects by 
summing signals from parts and views. Proceedings of the Royal Society B: Biological 
Sciences, 269(1503), 1939–1947. https://doi.org/10.1098/rspb.2002.2119 

Gayet, S., & Peelen, M. V. (2022). Preparatory attention incorporates contextual 
expectations. Current Biology, 32(3), 687–692. 

Gillner, S., & Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a 
virtual maze. Journal of Cognitive Neuroscience, 10(4), 445–463. 

Glennerster, A. (2023). Understanding 3D vision as a policy network. Philosophical 
Transactions of the Royal Society, B: Biological Sciences, 378(1869), 20210448. 
https://doi.org/10.1098/rstb.2021.0448 

Gootjes-Dreesbach, L., Pickup, L. C., Fitzgibbon, A. W., & Glennerster, A. (2017). 
Comparison of view-based and reconstruction-based models of human navigational 
strategy. Journal of Vision, 17(9), 11. 

Graf, M. (2006). Coordinate transformations in object recognition. Psychological Bulletin, 
132, 920–945. https://doi.org/10.1037/0033-2909.132.6.920 

Groen, I. I. A., Dekker, T. M., Knapen, T., & Silson, E. H. (2022). Visuospatial coding as 
ubiquitous scaffolding for human cognition. Trends in Cognitive Sciences, 26(1), 
81–96. https://doi.org/10.1016/j.tics.2021.10.011 

Hafri, A., Green, E. J., & Firestone, C. (2023). Compositionality in visual perception. 
PsyArXiv. https://psyarxiv.com/trg7q. 

Hamrick, J. B., & Griffiths, T. (2014). What to simulate? Inferring the right direction for 
mental rotation. Proceedings of the Annual Meeting of the Cognitive Science Society, 36 
(36). https://escholarship.org/uc/item/064367d4. 

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., 
Cournapeau, D., … Smith, N. J. (2020). Array programming with NumPy. Nature, 
585(7825), 357–362. 

Heywood-Everett, E., Baker, D. H., & Hartley, T. (2022). Testing the precision of spatial 
memory representations using a change-detection task: Effects of viewpoint change. 
Journal of Cognitive Psychology, 34(1), 127–141. 

Higgins, I., Racanière, S., & Rezende, D. (2022). Symmetry-based representations for 
artificial and biological general intelligence. Frontiers in Computational Neuroscience, 
16. https://www.frontiersin.org/articles/10.3389/fncom.2022.836498. 

Hummel, J. E. (2000). Where view-based theories break down: The role of structure in shape 
perception and object recognition (pp. 157–185). Cognitive Dynamics: Conceptual 
Change in Humans and Machines. 

Humphrey, G. K., & Jolicoeur, P. (1993). An examination of the effects of axis 
foreshortening, monocular depth cues, and visual field on object identification. The 
Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 46A, 
137–159. https://doi.org/10.1080/14640749308401070 

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & 
Engineering, 9(03), 90–95. 

Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive 
Psychology, 8(4), 441–480. https://doi.org/10.1016/0010-0285(76)90015-3 

Kok, P., Jehee, J. F., & De Lange, F. P. (2012). Less is more: Expectation sharpens 
representations in the primary visual cortex. Neuron, 75(2), 265–270. 

Kuroki, D. (2021). A new jsPsych plugin for psychophysics, providing accurate display 
duration and stimulus onset asynchrony. Behavior Research Methods, 53(1), 301–310. 

Larsen, A. (2014). Deconstructing mental rotation. Journal of Experimental Psychology: 
Human Perception and Performance, 40, 1072–1091. https://doi.org/10.1037/ 
a0035648 

Larsen, A., & Bundesen, C. (1998). Effects of spatial separation in visual pattern 
matching: Evidence on the role of mental translation. Journal of Experimental 
Psychology: Human Perception and Performance, 24, 719–731. https://doi.org/ 
10.1037/0096-1523.24.3.719 

Leibowitz, H., Brislin, R., Perlmutrer, L., & Hennessy, R. (1969). Ponzo perspective 
illusion as a manifestation of space perception. Science, 166(3909), 1174–1176. 

Marchette, S. A., & Shelton, A. L. (2010). Object properties and frame of reference in 
spatial memory representations. Spatial Cognition and Computation, 10(1), 1–27. 
https://doi.org/10.1080/13875860903509406 

McKinney, W. (2011). Pandas: A foundational Python library for data analysis and 
statistics. Python for High Performance and Scientific Computing, 14(9), 1–9. 

Meyer, T., & Olson, C. R. (2011). Statistical learning of visual transitions in monkey 
inferotemporal cortex. Proceedings of the National Academy of Sciences, 108(48), 
19401–19406. https://doi.org/10.1073/pnas.1112895108 

Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. 
Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 162. 

Munton, J. (2022). How to see invisible objects. Noûs, 56(2), 343–365. 
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in 

Cognitive Sciences, 11(12), 520–527. 
Palan, S., & Schitter, C. (2018). Prolific.Ac—A subject pool for online experiments. 

Journal of Behavioral and Experimental Finance, 17, 22–27. 
Richter, D., Ekman, M., & de Lange, F. P. (2018). Suppressed sensory response to 

predictable object stimuli throughout the ventral visual stream. Journal of 
Neuroscience, 38(34), 7452–7461. 

Scholl, B. J., & Pylyshyn, Z. W. (1999). Tracking multiple items through occlusion: Clues 
to visual Objecthood. Cognitive Psychology, 38(2), 259–290. https://doi.org/ 
10.1006/cogp.1998.0698 

Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant 
kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review, 
91(4), 417. 

G. Aldegheri et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.cognition.2023.105521
https://doi.org/10.1016/j.cognition.2023.105521
https://osf.io/wnefh/
https://github.com/GAldegheri/scenecontext-transforms
https://github.com/GAldegheri/scenecontext-transforms
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0005
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0005
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0010
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0015
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0015
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0015
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0020
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0020
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0025
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0025
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0025
https://doi.org/10.1037/0096-1523.1.3.214
https://doi.org/10.1037/0096-1523.1.3.214
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0035
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0035
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0035
https://doi.org/10.1167/3.3.1
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0045
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0045
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0050
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0050
https://doi.org/10.1038/s41598-019-41090-8
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0060
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0060
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0060
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0065
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0065
https://doi.org/10.1098/rspb.2002.2119
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0075
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0075
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0080
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0080
https://doi.org/10.1098/rstb.2021.0448
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0090
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0090
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0090
https://doi.org/10.1037/0033-2909.132.6.920
https://doi.org/10.1016/j.tics.2021.10.011
https://psyarxiv.com/trg7q
https://escholarship.org/uc/item/064367d4
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0115
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0115
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0115
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0120
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0120
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0120
https://www.frontiersin.org/articles/10.3389/fncom.2022.836498
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0130
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0130
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0130
https://doi.org/10.1080/14640749308401070
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0140
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0140
https://doi.org/10.1016/0010-0285(76)90015-3
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0150
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0150
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0155
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0155
https://doi.org/10.1037/a0035648
https://doi.org/10.1037/a0035648
https://doi.org/10.1037/0096-1523.24.3.719
https://doi.org/10.1037/0096-1523.24.3.719
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0170
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0170
https://doi.org/10.1080/13875860903509406
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0180
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0180
https://doi.org/10.1073/pnas.1112895108
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0190
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0190
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0195
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0200
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0200
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0205
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0205
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0210
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0210
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0210
https://doi.org/10.1006/cogp.1998.0698
https://doi.org/10.1006/cogp.1998.0698
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0220
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0220
http://refhub.elsevier.com/S0010-0277(23)00155-5/rf0220


Cognition 238 (2023) 105521

9

Shepard, R. N. (2001). Perceptual-cognitive universals as reflections of the world. 
Behavioral and Brain Sciences, 24(4), 581–601. 

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. 
Science, 171(3972), 701–703. 

Shiffrar, M. M., & Shepard, R. N. (1991). Comparison of cube rotations around axes 
inclined relative to the environment or to the cube. Journal of Experimental 
Psychology: Human Perception and Performance, 17, 44–54. https://doi.org/10.1037/ 
0096-1523.17.1.44 

Stewart, E. E. M., Hartmann, F. T., Morgenstern, Y., Storrs, K. R., Maiello, G., & 
Fleming, R. W. (2022). Mental object rotation based on two-dimensional visual 
representations. Current Biology, 32(21), R1224–R1225. https://doi.org/10.1016/j. 
cub.2022.09.036 

Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape 
recognition. Cognitive Psychology, 21(2), 233–282. 

Ullman, S. (1998). Three-dimensional object recognition based on the combination of 
views. Cognition, 67(1–2), 21–44. 

Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31), 
1026. 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., … 
Bright, J. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in 
Python. Nature Methods, 17(3), 261–272. 
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