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Abstract

Background: Methods for safety signal detection in electronic healthcare data

analysing data sequentially are being developed to meet the limitations of

spontaneous reporting systems.

Objectives: This study aims to provide an overview of the literature on

sequential analysis of electronic healthcare data and describe the development

and testing of a novel epidemiological surveillance system.

Methods: We searched Medline, Embase, PubMed, Scopus, Web of Science, and

the Cochrane Library applying similar in- and exclusion criteria as those of a pre-

vious systematic review. The proposed system consisted of repeated cohort stud-

ies and was tested in an emulated prospective setting. Two signal evaluations

were performed with several sensitivity analyses and a target trial emulation.

Findings: In the literature, 11 studies analysed the data sequentially of which

two applied traditional epidemiological methods. Epidemiological surveillance

of several exposures and outcomes can be successfully conducted with the

newly proposed sequential analysis of electronic healthcare data. Signal evalu-

ation studies confirmed the results of the system.

Conclusions: Very few studies in the literature analysed data at multiple time

points, although this seems to be a prerequisite for testing the methods in a

realistic setting. We demonstrated the feasibility of a sequential surveillance

system using electronic healthcare data.

KEYWORD S
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1 | INTRODUCTION

Routine safety surveillance comprises mainly spontane-
ous reporting systems that consist of individual case safety
reports filled by healthcare professionals or medicine
users. The aim of spontaneous reporting systems is to

provide early and new information on drug-associated
risks. This early information is based on signal detection,
“the process of looking for and/or identifying signals
using data from any source”,1 in which a safety signal is
“information on a new or known adverse event that may
be caused by a medicine and requires further
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investigation.”1 Spontaneous reporting systems are impor-
tant for newly marketed drugs and in situations where
medical events or drug exposures are rare. Spontaneous
reporting systems have well-known limitations such as
underreporting and biased reporting as the reporting is
dependent on the healthcare professional or medicine
user’s suspicion about a relationship between a specific
drug and the event and the subsequent fill of the report.

Electronic healthcare data has increased in availabil-
ity, and to meet some of the limitations of spontaneous
reporting, new methods utilizing electronic healthcare
data are being developed for safety surveillance. Aronson
et al. compared definitions of surveillance in drug safety
and proposed the following definition: “a form of non-
interventional public health research, consisting of a set
of processes for the continued systematic collection, com-
pilation, interrogation, analysis and interpretation of data
on benefits and harms (including relevant spontaneous
reports, electronic medical records and experimental
data).”2 Hence, it is distinguished from monitoring by
including populations rather than individuals. Surveil-
lance can be performed at any time during the lifecycle of
a drug and is not restricted to a single or particular period
of time.2 Electronic healthcare databases can be used for
screening or data mining of drug-event associations and
several studies have investigated methods applicable for
this purpose.3 In a routine surveillance setting, data will
be analysed repeatedly at multiple time points as they
accumulate. In studies that evaluate the performance of
screening methods in a realistic surveillance setting, the
analysis should be performed sequentially to emulate a
near real-time analysis.4,5 To assess how early signals are
detected, sequential analysis is essential.

A surveillance system conducts analyses of systemati-
cally collected data at regular intervals as it becomes
available to enable early detection of signals. The perfor-
mance of such a sequential system should be evaluated
in a similar context, as it has been done with dispropor-
tionality analysis in spontaneous reporting.6 The aim of
this focused review is to provide an overview of the litera-
ture on sequential analysis performed in electronic
healthcare data, describe the development and testing of
a novel epidemiological safety surveillance system and
discuss possible further improvements to our system
and future perspectives of similar initiatives.

2 | SAFETY SIGNAL DETECTION
IN ELECTRONIC
HEALTHCARE DATA

Several methods have been proposed for safety signal
detection in electronic healthcare data. These methods

are described in a review by Arnaud et al. from 2017.
They divided the methods into seven overall categories:
disproportionality analysis, traditional pharmacoepide-
miological designs, sequence symmetry analysis, sequen-
tial statistical testing, temporal association rules,
supervised machine learning and tree-based scan statis-
tics.3 The authors highlighted that no method is superior
but when considering whether the method 1) achieves
the goal of signal detection, 2) is understandable to stake-
holders and 3) provides guidance to help stakeholders
handle the enormous amount of expected signals to be
detected, the sequence symmetry analysis was proposed
as the most promising method for signal detection in
electronic healthcare data. The method is simple, easy to
understand and, because of the self-controlled design, it
is also likely to reduce the detection of false positives.
However, it is less robust towards protopathic and indica-
tion bias.3

Recently, the list of methods for signal detection in
electronic healthcare data was updated by Coste et al.
They further compared the performance of the methods
overall and for specific types of exposures and outcomes.7

The authors concluded that no method was superior for
all drugs and outcomes and propose that more than one
method may be applied for signal detection among multi-
ple drug-outcome pairs. Furthermore, they highlighted
that only one of their included studies investigated the
timeliness of signal detection.7 Therefore, we investigated
which of the papers included in the review by Coste et al.
analysed their data at multiple time points as the authors
did not focus on this aspect. Additionally, on 3 March
2023, we updated the systematic search conducted by
Coste et al. to include papers available after 13 July 2021.
Thus, we applied the same search strategy in the same
databases (Medline and Embase via OVID, PubMed, Sco-
pus, Web of Science and the Cochrane Library).7 We also
applied the same in- and exclusion criteria screening the
identified records first by title and abstract followed by a
full-text screening (Supplementary Figure S1). We identi-
fied 570 new papers after 13 July 2021, after removal of
duplicates. After title and abstract screening, 39 papers
were left and 17 were included after full-text screening. Of
these, three studies were review papers (Supplementary
Figure S1).

3 | SEQUENTIAL ANALYSIS
OF DATA

Surveillance in healthcare databases using sequential
analyses may be conducted with other purposes than sig-
nal detection, that is, screening for new drug-event asso-
ciations among a broader range of drugs and conditions.
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The objective may also be to assess the safety and effec-
tiveness of a new drug compared with an existing drug
using predefined outcomes,4 or to address emerging
safety concerns, estimating the relative risk of one or a
few specific predefined events in a target drug comparing
with a suitable reference.8 In this review, we chose to
focus only on drug surveillance in healthcare data with
the purpose of signal detection.

In total, 11 original papers analysed their data at
multiple time points including both papers from the
systematic search conducted by Coste et al. and the
updated search. Furthermore, one review paper was
identified. The studies used different approaches covering
the maximized sequential probability ratio test
(maxSPRT),5,9,10 the conditional sequential sampling pro-
cedure (CSSP),11,12 shrinkage observed-to-expected
(OE) ratios,13 the Weibull Shape Parameter plotting haz-
ard rates over time,14 sequence symmetry analysis tested
cumulatively,15,16 a self-controlled design with incidence
rates over time,17 and finally, our own study, a new-user
cohort design plotting hazard ratios and heat maps of
hazard ratios over time.18 These studies are described in
more detail in the following sections and listed
in Table 1. Of the 11 identified studies, three compared
different methods.10,12,16 In addition to these studies, a
review compared studies using group sequential methods
with either regression adjustment or weighting as con-
founder control.19

3.1 | The maximized sequential
probability ratio test (maxSPRT)

In 2007, Brown et al. tested a refinement of the sequen-
tial probability ratio test (SPRT). SPRT is a sequential
hypothesis test in which a signal appears if the likelihood
ratio exceeds a certain threshold and the observation
ends if the likelihood crosses a certain lower limit. The
refinement, the maxSPRT, uses an alternative hypothesis
of a relative risk greater than one instead of a single alter-
native hypothesis with a specific value. This means that
the maxSPRT does not require a predefined specification
of the level of the increased risk. With maxSPRT, a signal
is generated if the log likelihood ratio reached a critical
value established based on an α level, for example, 0.05.
In the test of the maxSPRT, the authors used automated
claims data for the prospective monitoring. They identi-
fied increased risks in four of five known drug-event
associations and no signals in the two negative controls,
suggesting that these findings support the potential for
claims data in drug safety surveillance.5

Key methodological considerations of this maxSPRT
were investigated in a later paper by Brown and

colleagues using health plan data. Seven drug-event asso-
ciations were selected to assess the performance of the
method of which seven were known or suspected
associations and two were negative controls. The authors
suggest that specifications unique to the different drug-
medical event combinations are needed and that there
will not be a one-size fits all solution for signal detection
using maxSPRT.9

In 2011, Kulldorff et al. compared the maxSPRT
method with the classic SPRT using historical vaccine
data. They compared the methods investigating fever and
neurological symptoms following the Pediarix™ vaccine.
The authors concluded that the maxSPRT works well for
vaccine surveillance with good statistical power and
timely signal detection.10

3.2 | Conditional sequential sampling
procedure (CSSP)

Lingling Li proposed a practical group sequential method,
the CSSP, in 2009. The CSSP method is a semi-parametric
Poisson regression model that adjusts for multiple testing
and was proposed to test for excess risk when little histor-
ical data is available. This proposal was motivated by
issues identified in a study testing the maxSPRT method.
The maxSPRT method requires a large amount of histori-
cal data to provide reliable estimates. The authors tested
the method on administrative claims data using simula-
tion in which they could evaluate the performance in
many different scenarios. Moreover, the method was
applied to the use of rofecoxib and the potential risk of
acute myocardial infarction compared with the risk
among users of diclofenac and naproxen. The authors
conclude that the CSSP is especially useful if both the
drug of interest and the comparator drug are new or
when the comparator is prescribed to a different patient
population, as this will not require historical data.11

The CSSP method proposed in 2009 was compared
with a log-linear model with Poisson distribution (LLMP)
in a study by Zhou et al. in 2018 in which they used data
from administrative health claim databases. The LLMP is
a parametric-based method where a generalized linear
model is fitted within the available study population with
the log of the expected number of events at each interim
analysis. The two methods were tested on 50 combina-
tions of drugs and outcomes of which nine were consid-
ered known associations and the remaining 41 were
negative controls. The authors concluded that both
methods have the potential for safety surveillance; how-
ever, the LLMP was often better and faster for identifying
known associations and that it may be an alternative to
or complement the CSSP method.12
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3.3 | Shrinkage observed-to-expected
ratios

In a paper from 2010, Norén et al. propose a statistical
shrinkage transformation that can be applied to OE ratios
that reflects how an observed pattern deviates from an
expected pattern.13 The method is used for temporal pat-
tern discovery in electronic patient records, and has been
further described in subsequent papers.20,21 OE ratios are
particularly sensitive when the expected number of
events is low. This can be stabilized by statistical shrink-
age. The authors visualize the evolution over time by
plotting separately both the logarithm of the OE ratio
with shrinkage and the observed and expected number of
events for several drug-event pairs, aligned according to
the time of drug prescription. In this study, the analysis
at multiple time points was an integral part of the signal
detection method using temporal association, but OE
ratios with shrinkage may also be useful for sequential
follow-up as illustrated with data from the WHO Global
Individual Case Safety Reports database, VigiBase.20 The
authors highlight how this approach ensures practical
relevance in addition to transparency of the patterns and
will protect against the generating of many false positive
signals.20

3.4 | Weibull Shape Parameter

In a paper from 2013, Sauzet and colleagues assessed the
performance of the Weibull Shape Parameter for signal
detection in which hazard rates were plotted over time.14

The Weibull Shape Parameter tool uses time-to-event
data but does not require a reference group. It is based on
the Weibull Shape Parameter test. Using the Weibull dis-
tribution, the null hypothesis is that the shape parameter
is equal to one, and thus, a shape parameter will indicate
if the hazard is not constant when the shape parameter is
different from a value of one. A signal arises when a sig-
nificant shape parameter is obtained, that is, the p value
is less than the defined significance level. The Weibull
Shape Parameter tool is then applied to the data, which
is censored at specified time points and until the end of
the observation period. The aim of the study was to
explore the use of the Weibull Shape Parameter tool
using real data and provide guidance on how to fit the
tool and interpret the results. In the test of the tool, four
events related to the use of bisphosphonates were
selected. These were headache, musculoskeletal pain,
alopecia, and carpal tunnel syndrome. The study illus-
trated the usability and reliability of the Weibull tool but
also that more work is needed on the definition of the
censoring periods.14 The time-dependent analysis of

hazard rates in this study was a part of the signal detec-
tion method itself and not performed to evaluate repeated
analyses in a surveillance setting.

3.5 | Cumulative sequence symmetry
analysis

Wahab and colleagues compared time with signal detec-
tion of adverse drug reactions in a spontaneous reporting
system and a claims database in 2014 by comparing dif-
ferent methods. The test cases were rofecoxib-induced
myocardial infarction and rosiglitazone-induced heart
failure. They demonstrated that the four methods investi-
gated (the sequence symmetry analysis, reporting odds
ratio, proportional reporting ratio, and Bayesian tech-
niques) detected signals within 1–3 years after the drugs
entered the market. Thus, the methods detected signals
earlier than results from clinical trials, which did not lead
to withdrawal or a warning before 5 and 7 years after
rofecoxib and rosiglitazone entered the market, respec-
tively. The findings from this study indicate the potential
for sequence symmetry analysis to complement methods
known from spontaneous reporting systems to guide
stakeholders in the decision-making process.16

Arnaud et al.15 investigated a system with automated
signal detection based on sequence symmetry analysis in
longitudinal healthcare data, selecting non-insulin
glucose-lowering drugs as a case study. Data analysis was
performed quarterly and detected signals prioritized
according to their relevance using the Longitudinal-SNIP
(L-SNIP) algorithm, which is based on strength (S),
novelty (N), impact (I) of the signal, and pattern of drug
use (P).15 Detected signals were compared with positive
and negative controls in a reference set of drug-event
associations based on a review of Summaries of Product
Characteristics (SmPCs). Of 815 associations included in
the screening, 241 (29.6%) were detected as signals of
which 58 (24.1%) were prioritized. When comparing with
the reference set, the signal detection method had a
sensitivity = 47%, specificity = 80%, positive predictive
value = 33% and negative predictive value = 82%. It
was concluded that the system performed well with a
promising potential for routine signal detection and
prioritization.

3.6 | Self-controlled case series (SCCS)

In 2018, Zhou et al. evaluated the use of the self-
controlled case series (SCCS) for signal detection in data
from The Health Improvement Network, a UK primary
care database, and Optum, a claims database from the

AAKJÆR ET AL. 133

 17427843, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bcpt.13955 by U

trecht U
niversity, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



US. They tested the method on five outcomes in users of
desvenlafaxine and escitalopram in addition to six
outcomes in users of adalimumab. They considered
Signals of Disproportional Recording, that is, a positive
finding when the lower level of the confidence intervals
(CIs) of the incidence rate ratio was greater than 1. The
authors concluded that the SCCS showed promise for
signal detection and may have a potential for early
signal identification.17

3.7 | Cumulative cohort analysis

In 2021, we, the authors, proposed a safety surveillance
system based on cumulative cohort studies. Several stud-
ies have demonstrated the use of sequential surveillance
of adverse events in healthcare data using a traditional
cohort analysis plotting hazard ratios over time.22–25

These studies have focused on a few outcomes, but so far,
no studies have applied these methods to a wide range of
medical events. Therefore, we proposed an epidemiologi-
cal surveillance system based on a new-user active com-
parator cohort design in which the data was analysed
sequentially as it accumulated and tested it emulating a
prospective scenario for near real-time signal detection.18

The surveillance system that we developed consists of
data management, analysis, and evaluation (Figure 1). In
the data management phase, the cohorts of new users,
outcomes and covariates are generated, whereas in the
analysis phase, descriptive analyses and risk quantifica-
tion are performed, which leads to the detection of
potential signals. Signals are presented in heat maps of
hazard ratios and plots of hazard ratios over time. In the
evaluation phase, signals for further evaluation are
selected and investigated in more detail in advanced

pharmacoepidemiological studies. The system was tested
on new users of antidepressants.18 In the following
sections, this surveillance system will be described in fur-
ther detail in addition to two signal evaluation studies
comprising the final phase of the system to illustrate all
phases of the system.

3.7.1 | Signal detection: a test of the system
(Phases 1a–3a)

Electronic healthcare data from the national Danish reg-
istries from 1 January 1986 to 31 December 2016 was
used to test the system using information on dispensed
prescriptions from the National Prescription Registry and
information on hospital admissions from the National
Patient Register.26 The inclusion period started 10 years
later on 1 January 1996.

We performed repeated cohort studies with one-year
intervals on new users (at least one year washout period)
of selective serotonin-reuptake inhibitors (SSRIs) and
serotonin-norepinephrine reuptake inhibitors (SNRIs).
Patients were followed using an intention-to-treat
approach for a maximum of six months from the first
prescription fill until censoring (outcome, emigration,
death, end of follow-up or study). New users of each drug
were individually compared with new users of citalo-
pram, and new users of all others in the class except the
drug of interest. We selected 51 outcomes leading to hos-
pital admission from the European Medicines Agency
(EMA) Designated Medical Event (DME) list, a list of
serious medical events that are serious and often drug-
related.27 Patients were not allowed to have had the out-
come of interest at any time point prior to the index date.
To adjust for confounding, we specified a general list of

F I GURE 1 Phases of the proposed safety surveillance system. HR, hazard ratio.18 CC BY 4.0 http://creativecommons.org/licenses/by-

nc/4.0/
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potential confounders that are believed to be risk factors
for many medical events as many different outcomes
were investigated. A crude, age-/sex-adjusted and multi-
variate Cox regression model was performed for each
analysis providing hazard ratios with 95% CIs as epidemi-
ological risk measures. Potential signals were defined as
significant associations in at least two consecutive years,
though both years include experience prior to those
years. As analyses with different comparators were con-
ducted, we defined drug-medical event combinations as
unique combinations not accounting for the choice of
comparator. These are, however, all parameters that can
be tuned to design the most comprehensive safety sur-
veillance system.18

Totally, we included 969 667 new users of SSRIs and
SNRIs and identified 31 drug–medical event combina-
tions as potential signals. Of these, more than half were
considered unknown as they were not listed in the cur-
rent Summary of Product Characteristics (SmPCs) and
11 were insignificant at the end of the study, meaning
that they would have required further investigation in a
prospective surveillance scenario. From this study, we
saw how epidemiological surveillance can be conducted
using annual, sequential and repeated analysis of
electronic healthcare data. Our system could not identify
potential signals from rare events or infrequently used
drugs, which should therefore either be analysed in
larger populations or identified using the spontaneous
reports.18 However, our surveillance system could be
implemented in current pharmacovigilance and comple-
ment existing spontaneous reporting systems by provid-
ing preliminary risk estimates for the more common
adverse events.

3.7.2 | Signal evaluation (Phase 3b)

In a preliminary version of the system with no washout
period for the outcomes, an association between fluoxe-
tine and acute pancreatitis was observed with a hazard
ratio of 1.5 (95% CI 1.1–2.1). We initiated a detailed study
investigating this potential association in depth.28,29 We
included 61 783 new users of fluoxetine in propensity
score-matched cohorts and compared the risk of acute
pancreatitis among users of fluoxetine with users of cita-
lopram and users of other SSRIs. In this study, we did not
see an increased risk of acute pancreatitis among users of
fluoxetine in line with findings from a case–control study
by Lancashire et al.30 However, in a sensitivity analysis
allowing patients with previous pancreatic events
(no outcome washout), higher point estimates were
observed in our study.29 These higher point estimates
observed in analyses without an outcome washout period

may explain why an increased risk was initially observed
in the preliminary28 and not the final version of the sys-
tem. This finding indicates that the potential signal iden-
tified in the preliminary version of the system might have
been a false positive.18

In the final version of the system, a transient potential
signal of cardiac arrest among new users of citalopram
was detected. We wanted to investigate this potential
safety signal further, as the Food and Drug Administra-
tion (FDA) and EMA previously issued safety warnings
because of evidence indicating dose-dependent QT pro-
longation associated with citalopram31,32 (and escitalo-
pram).33 Furthermore, the evidence from observational
studies was conflicting. We evaluated this potential safety
signal by emulating a target trial. Target trial emulation
ensures that the desirable features of clinical trials such
as the specification of time zero and assignment of the
treatment are preserved.34 Also, it is an efficient way to
utilize the data especially if the size of the data is limited
or the outcomes are rare, as the individuals are allowed
to enter the study several times. Besides increasing the
number of exposed patients and outcomes, selection bias
is also reduced.35–38 Overall, 257 760 person-trials corre-
sponding to 212 309 individuals were included, meaning
that 17% entered the study more than once. Overall, we
found no increased risk of serious arrhythmia either
among users of citalopram or escitalopram, which was in
line with the majority of previous studies.39–43 Neverthe-
less, when we investigated the risk before and after the
safety warnings issued in 2011, lower point estimates
were observed in the period after the warnings. This find-
ing may indicate that the prescribers were actually com-
pliant with the warnings by prescribed less citalopram
and escitalopram to patients with cardiovascular risk
factors.44

These two signal evaluation studies indicated the
importance of study design and analysis choices that can
be tuned in epidemiological studies. However, we believe
that they also indicate the benefit and usefulness of our
proposed system, since the signal detection results of the
system were confirmed by the in-depth pharmacoepide-
miological studies. The potential signal of fluoxetine and
acute pancreatitis, which was detected in a preliminary
version of the system, was not detected in the final ver-
sion of the surveillance system, when recurrent outcome
events were not allowed, indicating that this potential
signal might have been a false positive. Similarly, the
potential signal of citalopram and cardiac arrest was a
transient potential signal, meaning that it was significant
at some point during the study period but not at the end
of the study. In the evaluation study of this potential sig-
nal, we saw a similar pattern of the risk over time with
higher risk estimates before the warnings in 2011 and
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lower risk estimates after, which may be explained by a
shift in prescription patterns or that we investigated seri-
ous arrhythmia rather than cardiac arrest, as we believe
serious arrhythmia is a more well-defined outcome.
Given the very similar conclusions between the signal
detection study and the evaluation of the potential
signals, signal evaluation in advanced pharmacoepide-
miological studies may not be needed to the same extent
if the majority of the design and analysis choices are
already implemented in the signal detection phase of the
proposed surveillance system. We believe that signal
evaluation could rather focus on validation in another
database.

3.7.3 | Strengths and limitations

Major strengths of our proposed surveillance system are
the use of routinely collected electronic healthcare data
covering all serious medical events leading to hospitaliza-
tion and the use of sequential analysis as data accumu-
lates. The use of sequential analysis provides risk
estimates during the study period, whereas risk estimates
in traditional retrospective pharmacoepidemiological
studies are provided for the entire study period.18 Com-
pared with spontaneous reporting systems, our surveil-
lance system avoids underreporting as, for example, no
clinical suspicion of an adverse event is required.18 Fur-
thermore, not only relative risks but also absolute risks
are calculated, indicating the importance of the potential
signal for the treated patient population to a greater
extent, and also giving important information for a
benefit–risk evaluation.

A limitation of our proposed system is the limited
testing of the many tuning opportunities of design and
analysis choices, for example, having citalopram as the
comparator, which might not always be the most suit-
able.18 Moreover, the active comparator design requires a
suitable control for each exposure drug under investiga-
tion. There might, however, be situations where a suit-
able control is not available, which limits the
generalizability of the system. In the test of the system,
we focused on acute and serious events leading to hospi-
tal admission. Detecting potential signals of long-term or
chronic conditions would require different analysis
choices, especially regarding the exposure models, that is,
time-dependent and cumulative exposure models.18 To
include less serious events, for example, events not lead-
ing to hospital admissions, other data sources such as
data from general practice should be included. Moreover,
in the test of our system, 35.5% of the potential signals
disappeared before the end of the study indicating that
they were either false positives or true risks, which were

then well-managed in clinical practice. Lastly, we decided
not to adjust for the multiple testing, as known from clin-
ical trials and which have been done in some of the other
previous studies analysing the data at multiple time
points such as the CSSP.11 In trials, these tests are used to
decide whether the trials should be continued or not. Our
purpose was to detect potential signals that should be
evaluated further. The multiple testing could, however,
be implemented by specifying a narrower threshold of
the p value for a potential signal to arise. This would,
however, lead to both less detection of false positive sig-
nals but it could also cause important risks to go
undetected.

4 | DISCUSSION

When searching the literature on signal detection in elec-
tronic healthcare data, we found that very few studies
analysed the data sequentially. The study by Wahab et al.
was the only one that evaluated timeliness of signal
detection,16 and three studies compared signal detection
methods.10,12,16 In general, the authors of the included
papers were positive towards the use of their methods for
signal detection in electronic healthcare data. Consider-
ing the categories proposed in the review by Arnaud
et al., the majority of the methods were sequential statis-
tical testing using either maxSPRT or CSSP,5,9–12 whereas
two studies used sequence symmetry analysis15,16 and
two studies including our own analysed the data using
traditional epidemiological methods with SCCS and
cohort designs.17,18 In these studies, risk estimates were
available at different time points. For two of the papers in
the review, however, the analysis of multiple time points
was a part of the signal detection method in itself and not
conducted with the purpose of assessing the performance
of the method in a surveillance setting.13,14

Arnaud et al. highlighted three criteria for methods to
be suitable for signal detection in electronic healthcare
data (achievement of the goals of signal detection, under-
standable for stakeholders, and guidance for stakeholders
to prioritize the large amount of signals).3 Currently, no
method that analyses the data sequentially has claimed
to fulfill the goals of signal detection by investigating all
possible combinations of drugs and medical events. Two
studies investigated several drugs within a group and
multiple outcomes, Arnaud et al.15 conducting sequence
symmetry analysis on noninsulin glucose-lowering drugs
and our study comparing cohorts of SSRI with SNRI
users.18 In other studies, methods were in general tested
on a few selected outcomes in users of specific drugs.
Thus, there is still great potential for exploring the
methods both in terms of drug exposures and outcomes.
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The method should also be understandable to stake-
holders, who are often not statisticians. Having this aspect
in mind, the methods relying on simpler concepts such as
the SCCS, the sequence symmetry and cumulative cohort
analyses might be more appealing compared with more
advanced statistical approaches such as the CSSP. Another
advantage of using the traditional epidemiological
methods is that they do not rely on statistical significance
only, but provide a relative risk estimate, as highlighted
by Arnaud et al. A relative risk estimate reflects the
strength of the association and will help stakeholders
prioritize the large amount of expected signals.3 Norén
et al. have proposed OE ratios for pattern discovery in
observational medical data, offering a similar advantage
in interpretation.20 As OE ratios are particularly sensitive
when the expected number of events is low, they propose
a statistical shrinkage transformation that regularizes the
measure towards the null value (one) when there are few
events. This approach may also be relevant for other mea-
sures of association and in cumulative sequential analyses.
However, confidentiality requirements precluded analysis
of data with event counts <5 in our study.18

In our study, we have demonstrated with our newly
proposed method, how electronic healthcare data can be
applied to signal detection by developing and testing an
epidemiological surveillance system. We have shown
how such a surveillance system can potentially comple-
ment the existing pharmacovigilance comprising mostly
of evidence from spontaneous reporting systems. We
believe that safety surveillance can be conducted faster if
automation of epidemiological surveillance systems is
applied with limited required tuning for the individual
drug-medical event combination.

4.1 | Future perspectives

The proposed surveillance system has been tested using
automation incorporated into the Nordic Common Data
Model developed by the Pharmacovigilance Research
Center at the University of Copenhagen.45 We used infor-
mation from SmPCs to assess if the system could detect
known adverse events among the DMEs. This informa-
tion on prior signals and their evaluation should ideally
be integrated into the system’s phase 3a. Currently, infor-
mation from the SmPCs is extracted manually. This step
should be automatized for example using text mining
methods as recently applied in Structured Products labels
and regulatory approvals.46,47 This automated extraction
of information could preferably be conducted in digita-
lized product information, as described in a project by
the EMA.48 Also, potential signals detected by our system
were not prioritized. In a system of routine use, studies of

assessment evaluation processes for potential signals is
needed as seen in the study by Cederholm et al.49 If
applied to all drugs and an even wider range of medical
events, an automated approach for prioritizing the
detected potential signals would be needed. Arnaud et al.
suggested to prioritize signals according to the relevance
of the signals using the Longitudinal-SNIP (L-SNIP) algo-
rithm, which is based on strength, novelty, impact of the
signal, and pattern of drug use.15 However, the use of
artificial intelligence in pharmacoepidemiological studies
has increased exponentially recently and could poten-
tially be applied to signal prioritization as well.50

Similarly, high-dimensional propensity scores, an
extension of traditional propensity score selection that
identifies a large set of proxies to be included in the pro-
pensity score model,51 or a data-driven approach for the
selection of confounders based on the identification of
risk factors for the individual medical events of interest
should be applied rather than confounders being selected
based on the current literature or the use of a general set
of potential risk factors applying to all medical events in
our setting.

Assessing the system’s added value and evaluation of
timeliness was beyond the scope of our studies. Our refer-
ence with regard to knowledge of drug-event associations
was the information in SmPCs. An alternative could be
used to publish observational findings suggesting an asso-
ciation as positive controls as seen previously in studies
by Ryan et al.52,53 We do recommend that future analyses
should incorporate analyses with, for example, a list of
signals that are well-established and preferably resulted
in regulatory actions. Ideally, this should also include
information on signals of which it was concluded that no
regulatory action was needed.54 Timeliness could be
assessed by comparing the time of detection in our sur-
veillance system with the detection through the sponta-
neous reporting systems.

Lastly, once the potential signals have been generated,
a future system should include analyses stratifying the
analysis into relevant subgroups, for example, older adults
or patients with a certain diagnosis, to identify if the risk
is higher in certain patient groups. Again, these many sub-
group analyses should be performed using artificial intelli-
gence because of the huge amount of factors to
investigate. These stratified analyses will help stakeholders
in their subsequent work with the potential signals.

5 | CONCLUSION

Very few studies available in the current literature on sig-
nal detection in electronic healthcare data analyse the
data at multiple time points, evaluate the timeliness of
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signal detection and compare methods. This indicates the
need to further test safety surveillance systems as we
believe that this might complement existing pharmacov-
igilance that currently mostly comprises evidence
generated through spontaneous reporting systems. We
have demonstrated the feasibility of a safety surveillance
system analysing the data sequentially using an epidemi-
ological approach in electronic healthcare data. We eval-
uated two potential signals leading to insights into how
such a system should be designed.

As surveillance is per definition done sequentially, it
should also be tested sequentially. We recommend that
surveillance is tested by assessing the performance of the
methods, thus, whether the method is able to identify
true risks without the detection of many false positive
and negative signals for example by comparing the
detected signals to well-known associations and finally,
to compare how different methods perform. We should
be able to conduct safety surveillance faster if we auto-
mate epidemiological approaches in surveillance systems
that require limited tuning of design and analysis choices
for each drug-event pair.
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