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High-throughput interrogation of microbial communities has

provided  a  quantum  leap  in  our  ability  to  characterize  the
phylogenetic composition of our microbial  world.  However,  as
ecologists, we aim to go beyond pure stamp collecting of who
is present in a community. We seek to understand the drivers of
community  dynamics  and  the  interactions  that  dictate
community  functioning.  A  range  of  tools  has  been  developed
to  visualize  co-occurrence  patterns,  generated  for  instance  by
High-throughput (HTP) tag sequencing of ribosomal RNA gene
fragments, as networks of taxa that are positively or negatively
correlated  in  their  distributions  (Barberán et  al.,  2012).  While
such  studies  often  reveal  interesting  changes  in  network  top-
ology as related to specific  environmental  gradients or experi-
mental  manipulations  (Hilton et  al.,  2021; Li et  al.,  2021),
interpretation  of  how  such  networks  relate  to  actual  interac-
tions  and  community  drivers  has  remained  problematic  and
can  even  be  misleading  (Cardona et  al.,  2016).  Here,  we  use  a
set  of  manipulated  soil-borne  microbial  communities  to
demonstrate  that  extra  complex  and  tightly  knit  microbial  co-
occurrence networks  can be generated by  selection processes
that  have  no  link  to  actual  ecological  interactions.  Thus,  while
co-occurrence  network  topology  and  complexity  may  indeed
have  ecological  meaning,  we  purport  that  they  are  more
related  to  common  outcomes  of  population  selection,  as
opposed to interactive activities.

As  we  continue  to  develop  more  advanced  and  thorough
means  to  describe  complex  microbial  communities,  we  obvi-
ously  wish  to  move  beyond  cataloguing  relative  population
densities  toward  detecting  patterns  of  ecological  significance.
To drive such research forward,  a  number of  approaches have
been  employed  to  examine  evolutionary  and  ecological  sig-
natures  within  large  microbial  datasets  (Horner-Devine  and
Bohannan, 2006; Stegen et al., 2012; Dini-Andreote et al., 2015),
in  order  to  examine  how  interspecific  interactions,  be  they
positive,  negative  or  neutral,  shape  microbial  community
structure  and assembly  (Faust  and Raes,  2012; Zelezniak et  al.,
2015; Blasche et  al.,  2021).  The  use  of  co-occurrence  and
correlation networks has increased significantly in recent years,
as  a  means  of  organizing  population  distributions  across  a
range  of  complex  microbial  communities  from  oceans  to  the
human gut and for describing not only bacteria, but also fungi,
protists and other organisms (Faust and Raes, 2012; Morriën et
al.,  2017; Xiong et  al.,  2018; Gao et  al.,  2022).  Indeed,  a  simple

search  of  the  Web  of  Science  (Fig.  1)  demonstrates  the
widespread and growing use of such approaches.

Many  different  approaches  (correlation  networks  (CoNet),
local  similarity  analysis  (LSA),  maximal  information coefficients
(MIC),  random  matrix  theory  (RMT),  sparse  correlations  for
compositional  data  (SparCC),  Pearson  correlations,  Spearman
correlations,  Bray–Curtis,  and  so  on)  and  models  (copula,  null
model,  ecological,  and  lotka–volterra)  have  been  explored  for
constructing  co-occurrence  networks,  and  were  reported  to
exhibit  different  correlation  technique  usage  (Weiss et  al.,
2016). Resulting changes in network topology are then typically
related  to  specific  environmental  gradients  or  experimental
manipulations.  While  most  researchers  recognize  that  such
networks  do  not  demonstrate  actual  ecological  interactions
between  species,  the  very  term  'network'  implies  that  such
community  portrayals  yield  interactive  information  (Morales-
Castilla et al., 2015; Cazelles et al., 2016; Sander et al., 2017). Real
world  interactions  are  far  more  complex  than  a  mathematical
linkage can convey. They involve specific physiologies,  higher-
order  and  indirect  interactions,  changing  environmental
conditions and spatially structured environments (Alexander et
al.,  2015; Thakur  and  Geisen,  2019; Dal et  al.,  2020; Vos et  al.,
2013).  Network  analysis  is  clearly  booming,  but  what  insight
does it  lend to illuminating microbial  interactions or  drivers of
community structuring?

Positive  or  negative  links  within  co-occurrence  networks
have  been  shown  to  be  poor  predictors  of  actual  interactions
upon  examination  of  one-to-one  effects  (Freilich et  al.,  2018).
However,  such  pairwise  interactions  should  also  be  viewed
within the context of other interactions within the community,
as  interactions  may  be  indirect  and  other  species  in  the
network  may  impact  one  or  both  of  the  pairwise  players.
Species  can  also  coexist  and  exhibit  a  correlation  in  their
abundances  through  population  selection  by  a  third  species
(Holt  and Bonsall,  2017)  or  unreported abiotic  factors  (Röttjers
and Faust, 2018; Lv et al., 2019). It has also been suggested that
co-occurrence  may  be  a  result  of  dispersal  limitation  (Ulrich,
2004),  or  common  selection  due  to  specific  environmental
factors, without any actual direct or indirect interaction (Peres-
Neto et al., 2001; Freilich et al., 2018).

We  believe  that  this  latter  explanation  is  in  many  cases
driving  the  topology  of  microbial  co-occurrence  networks.  In
order to examine this premise, we used a set of engineered soil-
borne  microbial  communities  that  differed  in  the  degree  to

LETTER
 

© The Author(s)
www.maxapress.com/sse

www.maxapress.com

https://doi.org/10.48130/SSE-2023-0001
mailto:g.a.kowalchuk@uu.nl
https://doi.org/10.48130/SSE-2023-0001
mailto:g.a.kowalchuk@uu.nl
http://www.maxapress.com/sse
http://www.maxapress.com


which populations were segregated across replicates. We then
tracked  rhizosphere  community  assembly  and  network  top-
ology, via a  range  of  methods,  over  time.  Briefly,  we  used  a
dilution  series  of  a  soil  suspension  re-inoculated  back  into  its
sterilized  origin  soil  to  create  soil  communities  that  had  been
subjected  to  different  levels  of  population  segregation
(Supplemental  Fig.  S1).  With  such  a  dilution-to-extinction
experiment  setup,  all  starting  communities  derived  from  low
dilutions  have  very  similar  species  pools,  as  nearly  all  species
remain  present  in  the  starting  inoculum.  On  the  other  hand,
replicates  at  higher  dilutions  receive  more  disparate  species
pools  due  to  the  dilution  to  extinction  of  different  subsets  of
the initial  community.  As  such,  this  imposed community  'drift'
acts  as  a  strong  experimentally  imposed  segregation  at  high
dilutions,  but  not  at  low dilutions.  Soils  were  incubated for  61
weeks  and  then  used  to  examine  microbial  community
assembly on plant roots via 16S rRNA gene tag sequencing by
primers  341F  (5’-CCTACGGGNBGCASCAG-3’)  and  806R  (5’-

GGACTACNVGGGTWTCTAAT-3’)  based  on  the  Illumina  MiSeq
platform  and  network  analyses  in  a  replicated  design
(Supplemental  Fig.  S1).  There  are  12  sequencing  samples  in
each  dilution  with  three  replicates  per  treatment  which  was
derived from one origin soil  (in a total  of  four origin soils)  and
with 446-814 OTUs in each sample,  depending on the dilution
and the sampling time, used to compute one network.

Co-occurrence network analyses of rhizosphere communities
showed  distinct  patterns  with  respect  to  the  dilution  of  the
starting  communities,  as  well  as  the  age  of  the  plant  (Fig.  2),
with denser and stronger networks with increased dilution and
plant  age.  In  addition,  the  number  of  links  per  network  also
showed increased trends with dilution, independent of the co-
occurrence  model  used  (see Supplemental  Fig.  S2;  e.g.  CoNet,
Pearson  or  Spearman).  The  Spearman  correlations  between
node  (or  link)  number  with  dilutions  in  each  network  were
calculated,  and  significant  correlations  can  be  observed  in
some  networks  (see Supplemental  Table  S1).  In  our  manipu-
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Fig. 1    (a) Number of publications and (b) citations referencing microbial network analysis (Web of Science from 1985 to Dec 20, 2022; search
= network and microbiology or microbes or microbiome or microbiota or microflora as two separate subjects).

 
Fig.  2    Co-occurrence  networks  of  rhizosphere  bacteria  microbiota  from  samples  collected  from  week  1  and  week  3  across  the  given  soil
suspension dilution treatments. Connections represent significant (P < 0.01) correlation as calculated by the Pearson method. Nodes represent
different OTUs. Nodes and edges are colored by modularity class.
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lated  communities,  we  have  no  reason  to  assume  that  com-
munities  at  higher  dilutions  are  more  'connected'  or  contain
more  microbial  interactions,  which  can  be  supported  by  the
decreased  number  of  OTUs  involved  in  the  network  (see
Supplemental  Fig.  S2).  Rather,  the  imposed  segregation  of
populations,  which  is  greater  at  higher  dilutions,  resulted  in  a
greater preponderance of positive and negative co-occurrence
patterns  and  an  increased  number  of  nodes  derived  from
multiple  replicates  (see Supplemental  Fig.  S3).  Similarly,  net-
work  strength  is  increased  with  the  continued  growth  of  the
plant (Fig. 2). We believe that this result is due to the increased
selective  action  of  the  plant,  which  increases  with  plant  size.
Indeed,  it  has  previously  been  observed  that  co-occurrence
network  complexity  increases  with  plant  growth  stage  (Shi et
al., 2016; Ceja-Navarro et al., 2021).

It  has  been  suggested  that  co-occurrence  networks  can  be
misleading  if  other  factors,  such  as  habitat  filtering,  result  in
non-random patterns in the abundance of multiple taxa (Berry
and Widder,  2014).  In  other  words,  if  one seeks  to  zoom in on
one  particular  parameter  driving  co-occurrence  network
structure,  it  is  important  to  keep  all  other  factors  that  may
influence  this  structure  constant.  Here,  the  numbers  of  intra-
and inter-treatment links  both showed increased trends in co-
occurrence  networks  of  rhizosphere  microbiota  with  the  level
of dilution (see Supplemental Fig. S4). We demonstrate that our
imposed  segregation  of  populations,  which  can  be  seen  as  a
random  selection,  resulted  in  more  tightly  knit  network  top-
ologies  –  a  result  that  most  likely  has  nothing  to  do  with
increases  in  actual  interactions.  The  distribution  of  microbial
species in the environment is clearly not independent, and we
suggest  that  estimations  of  microbial  responses  to  environ-
mental  filtering  need  to  be  considered,  for  instance via
generalized  joint  attribute  modeling  (Clark et  al.,  2017).  Our
example  provides  an  empirical  warning  regarding  the  ecolo-
gical  interpretation  of  co-occurrence  networks.  We  show  that
co-occurrence  network  structure  and  complexity  can  be
principally  driven  by  common  patterns  of  imposed  selection,
thereby  providing  a  strong  cautionary  message  to  the  inter-
pretation of functional interactions from such approaches.
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