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Abstract. We analyse the long term behaviour of the measure-valued solutions of a class of linear renewal
equations modelling physiologically structured populations. The renewal equations that we consider are
characterised by a regularisation property of the kernel. This regularisation property allows to deduce the
large time behaviour of the measure-valued solutions from the asymptotic behaviour of their absolutely
continuous, with respect to the Lebesgue measure, component. We apply the results to a model of cell
growth and fission and to a model of waning and boosting of immunity. For both models we relate the
renewal equation to the partial differential equation (PDE) formulation and draw conclusions about the
asymptotic behaviour of the solutions of the PDEs.

1. Introduction

Models of physiologically structured populations can take various forms. If the
individual states are discrete stages in which individuals sojourn for an exponentially
distributed amount of time, then it is natural to formulate the model at the population
level as a system of ordinary differential equations describing the rate of change of
the number of individuals in the different stages [18,42]. If the individual states form
a continuum, like in e.g. age-size structured populations, there are several popular
modelling approaches.
A very natural, and historically the oldest, approach is to formulate an integral

equation of renewal type for the population birth rate. The method is based on the
observation that those who are born at the current time are the children of individuals
who were themselves born in the past, have survived up to the current time and give
birth at the current time. This approach was formalised by Lotka [31] and Sharpe and
Lotka [39] for age structured populations, using ideas going back to Euler [17].
Another way to model the dynamics of structured populations is to first write down

a partial differential equation (PDE) of transport-degradation type describing devel-
opment (movement in the individual state space) and survival. After that, the PDE is
augmented by a rule for reproduction. This can either lead to extra non-local terms
in the PDE, like in models of individuals reproducing by fission, or to non-local
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boundary conditions, like in age-size structured models in which newborns enter the
individual state space at the boundary where age is zero. The PDE-approach was first
introduced by McKendrick [33] for age-structured populations and later adapted to
age-size-structured populations by Tsuchiya et al. [44], Bell and Anderson [3] and
others. For a data oriented discrete time variant, see [16] and [9].

Herewe focus on the integral equation for the population birth rate, which in general
is a measure representing the rate at which individuals are born in different subsets
of the individual state space. If there are no dependencies between individuals such
as competition for resources, that is, if the environmental condition is given, then the
integral equation is linear and of renewal type. Here we assume that the environmental
condition is constant in time.

In a recent paper, [19], we considered the question when such a renewal equation
can be reduced to a one dimensional renewal equation in the sense that the measure-
valued solution of the original equation can be recovered from the solution of the one
dimensional reduction. In the present paper we analyse the renewal equation when a
different, less restrictive, assumption on the kernel is satisfied and prove asynchronous
exponential growth/decline for the solution of the renewal equation.

Our interest in measure-valued solutions is motivated by the fact that it allows to
consider in a unified way the case in which Ω is a discrete set and the case in which
we have a continuum of states. Moreover, considering measure-valued solutions for
REs allows us to draw the connection with measure-valued solutions of PDEs, that
have gained much interest in the last years, see for instance [15].

We apply our results to two concrete population models: a model of cell growth
and fission (into equal or unequal parts) and a model of waning and boosting of the
immunity level. As anticipated above, these models can be also formulated as PDEs,
see (6.1), (6.2), (6.11) and could also be analysed in the PDE framework as has been
done in [5,8,36].

The aim of this paper is twofold. On one hand we reiterate the message presented in
[19], i.e., renewal equations are suitable when dealing with measure-valued solutions.
The reason is that the existence and uniqueness of their solution can be proven con-
structively as in the case of scalar equations and, moreover, since renewal equations
are integral equations, no regularity assumption with respect to the time variable is
required for the concept of solution. This is in contrast with what happens in the PDE
framework, where it is typically necessary to work with weak solutions in the measure
sense, i.e., weak solutions of the dual equation, see (7.4).

The second aim of the paper is to provide applicable techniques, based on the work
presented in [26] and [28], to study the asymptotic behaviour of the measure-valued
solutions of renewal equations.

In the case of age-structured populations the relationship between the renewal equa-
tion and PDE approaches is well understood and discussed in an abstract setting in
[13]. In the case of size-structured populations the relationship between the two formu-
lations has been investigated in [7] and [2]. In the closing section of the present paper
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we show that the measure-valued solutions of the renewal equation yield a solution of
a corresponding PDE and we deduce the asymptotic behaviour of the solution of the
PDE from the behaviour of the solution of the RE.
The paper is organised as follows: in Sect. 2 we provide conditions on the kernel

that guarantee the existence of a unique solution for the renewal equation. In Sect. 3
we introduce the main assumption of this work: the kernel has a regularising effect on
the initial condition. We also motivate heuristically the assumption.
In Sect. 4 we prove asynchronous exponential growth for the solution of the renewal

equation when the kernel satisfies the assumption presented in Sect. 3. We do this by
adapting the methods presented in [26] and [28]. The aim of Sect. 5 is to show that
kernels satisfying the regularisation assumption arise in applications. We analyse the
corresponding models in Sect. 6. Finally, as anticipated above, Sect. 7 is devoted to the
connection between REs and PDEs.
In Appendix A we collect explanations of the notational conventions, while in

Appendix B we collect results on the existence of a unique solution for the PDE that
corresponds to the renewal equation we study.

2. The renewal equation: existence and uniqueness of the solution

In this paper we study linear physiologically structured population models that can
be formalised via a renewal equation with a measure-valued solution. More precisely,
we consider a population of individuals characterised by a structuring variable, i-state.
We assume that the individual state evolves in time due to different individual level
mechanisms that might be continuous and deterministic, as is growth, or discontinuous
and stochastic, as is fission.
We denote with Ω the set of the possible i-states and we assume that Ω is a Borel

subset of Rn . The set of the possible states at birth is Ω0 ⊂ Ω.
Wedenote with B(t, ω) the population birth rate, that is the rate at which individuals

appear in the population with state in the set ω ∈ B(Ω0) at time t . Note that when an
individual jumps from state A to another state B, we will say that an individual with
state A has died and that an individual with state B is born. Likewise, in the case of cell
fission, we consider the disappearance of the mother as ‘death’ and the appearance of
the two daughters as ‘birth’.
If we assume that the population distribution at time zero is a given datum M0 ∈

M+,b(Ω), then we deduce that B solves

B(t, ω) =
∫ t

0

∫
Ω0

K (a, ξ, ω)B(t−a, dξ)da+ B0(t, ω) t > 0, ω ∈ B(Ω0) (2.1)

where K (t, ξ, ω) is interpreted as the rate at which an individual, having state ξ time
t ago, gives birth to an individual with state in the set ω and

B0(t, ω) :=
∫
Ω

K (t, x, ω)M0(dx). (2.2)
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Here we repeat the definition of locally bounded kernels, and of their convolution,
from [19], but we refer to the Appendix of that paper for the proofs of the results
presented below.

Definition 2.1. (Locally bounded kernel) A locally bounded kernel is a positive func-
tion K : R+ ×Ω × B(Ω0)→ R+ with the following properties

1. for every (a, ξ) ∈ R+ × Ω , K (a, ξ, ·) ∈ M+(Ω0) (space of positive Borel
measures)

2. for every ω ∈ B(Ω0), the function

(a, ξ) �→ K (a, ξ, ω), (a, ξ) ∈ R
+ ×Ω

is measurable (with respect to the product Borel σ -algebra).
3. for any T > 0

sup
(a,ξ)∈[0,T ]×Ω

K (a, ξ,Ω0) <∞.

The middle argument ξ of K ranges over all of Ω only in connection with the
initial condition, cf. (2.2). In connection with births it ranges over Ω0. We therefore
define Bloc, the set of the locally bounded kernels, as the set of kernels defined on
R+ ×Ω0 ×B(Ω0) such that the properties of Definition 2.1 hold with ξ restricted to
Ω0.

Definition 2.2. (Convolution product of kernels) We define the convolution product
of K1, K2 ∈ Bloc, as

(K2 ∗ K1)(t, x, ω) :=
∫ t

0

∫
Ω0

K2(t − s, ξ, ω)K1(s, x, dξ)ds. (2.3)

Definition 2.3. (Semiring)A semiring R is a set endowed with two binary operations,
addition + and multiplication ∗, such that

– (R,+) is a commutative monoid with identity element 0: i.e. for every element
a, b, c ∈ R we have that (a + b)+ c = a + (b+ c), for every a, b ∈ R we have
that a + b = b + a and for every a ∈ R we have that a + 0 = a;

– (R, ∗) is a semigroup: for every a, b, c ∈ R we have that (a ∗b)∗c = a ∗ (b∗c);
– multiplication from the right and from the left is distributive over the addition,
– multiplication by 0 annihilates R: for every a ∈ R we have that a∗0 = 0∗a = 0.

Lemma 2.4. (Properties of the convolution) The convolution product ∗ of two locally
bounded kernels is a locally bounded kernel. The set Bloc, equipped with the sum and
with the convolution product ∗, is a semiring.

Unlike the classical convolution of scalar functions, the convolution ∗ defined by
(2.2) is not commutative. Moreover, (Bloc, ∗) is a semigroup, but not a monoid. The
reason is that the candidate identity element 1 is a Dirac measure in the time/age
variable, indeed 1(t, x, ω) = δ0(t)χω(x). Hence 1 does not belong to Bloc.
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Definition 2.5. X denotes the set of functions f : R+ × B(Ω0) → R+ such that
for every a ∈ R+, f (a, ·) is a measure, the function f (·, ω) is measurable for every
ω ∈ B(Ω0) and f (·,Ω0) is locally integrable.

Definition 2.6. Given K ∈ Bloc and f ∈ X , we denote with LK f the convolution
of K and f , defined by

(LK f )(t, ω) :=
∫ t

0

∫
Ω0

K (t − σ, x, ω) f (σ, dx)dσ t ≥ 0 ω ∈ B(Ω0). (2.4)

Lemma 2.7. If K ∈ Bloc, then the operatorLK is a linear operator fromX to itself.
If K1, K2 ∈ Bloc, thenLK2LK1 = LK2∗K1 .

We now interpret (2.1) as the equation B = LK B + B0 with given B0 ∈ X and
unknown B ∈ X .

Proposition 2.8. Let K ∈ Bloc and B0 ∈ X . Then, there exists a unique solution B
of equation (2.1) and it is given by

B = B0 + LR B0 (2.5)

where R ∈ Bloc is the resolvent of the kernel K defined by R = ∑∞
n=1 K

∗n where
K ∗1 = K and for every n ≥ 2

K ∗n = K ∗(n−1) ∗ K .

We deduce that, if K is a locally bounded kernel and if B0 is given by (2.2), where
M0 ∈ M+,b(Ω), then B0 ∈ X and equation (2.1) has a unique solution.

3. Reduction to densities

In this subsection we present the assumptions on the kernel K that allow us to study
the asymptotic behaviour of the solution of equation (2.1) by studying the asymptotic
behaviour of the density of its non-singular component. We start with an heuristic
explanation of the simplification achieved in this manner.
We can rewrite equation (2.1) in the following translation invariant form

B(t, ω) =
∫ ∞

0

∫
Ω0

K (a, ξ, ω)B(t − a, dξ)da (3.1)

where for every ω ∈ B(Ω0), B(θ, ω)dθ := Φ(dθ, ω) if θ < 0 with Φ a given
measure. We allowΦ to be a measure with respect to the time-of-birth variable simply
because it does not harm. The fact that equation (3.1) is translation invariant and linear
suggests to look for exponential solutions of the form:

B(t, ω) := eλtΨ (ω) for every t ∈ R. (3.2)
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We want to investigate whether such exponential solutions exist and whether they are
attractive, i.e., describe the long-term behaviour of B.

To guarantee the convergence of the relevant integrals we make the following as-
sumption.

Assumption 3.1. There exists a z0 < 0 and a constant C > 0 such that for every
t ≥ 0

sup
x∈Ω0

K (t, x,Ω0) ≤ Cez0t . (3.3)

We say that a locally bounded kernel that satisfies Assumption 3.1 is a z0-bounded
kernel.
Substituting the Ansatz (3.2) in (3.1) we obtain the following non-linear eigenprob-

lem

Ψ (ω) =
∫ ∞

0

∫
Ω0

e−λaK (a, ξ, ω)Ψ (dξ)da. (3.4)

So we need to study the properties of the operator

Ψ �→
∫ ∞

0

∫
Ω0

e−λaK (a, ξ, ·)Ψ (dξ)da.

that mapsM+,b(Ω0) into itself. In particular we would like to prove its compactness,
but this is a very difficult task when we deal with spaces of measures, see for instance
[43].
Therefore we introduce regularity assumptions on K that allow us to reduce the

non-linear eigenproblem (3.4) to measures that are absolutely continuous with respect
to the Lebesgue measure, so to an associated non-linear eigenproblem in L1(Ω0). It
is easiest to assume that for each t and x the measure K (t, x, .) has a density. But as
we shall see in Sect. 5, there are natural examples in which the ‘smoothing’ needs one
more step.

Assumption 3.2. For every x ∈ Ω0, every t ≥ 0 the measure

ω �→
∫ t

0

∫
Ω0

K (t − a, ξ, ω)K (a, x, dξ)da (3.5)

is absolutely continuous with respect to the Lebesgue measure. Moreover, for every
t ≥ 0 and for every f ∈ L1(Ω0) the measure

ω �→
∫
Ω0

K (t, x, ω) f (x)dx (3.6)

is absolutely continuous with respect to the Lebesgue measure.

Definition 3.3. We say that K is a z0-bounded regularizing kernel if it is a z0-bounded
kernel that satisfies Assumption 3.2.
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The interpretation of the absolute continuity with respect to the Lebesgue measure
of (3.5) is that, when we focus on an individual with state x and look t time later at
the distribution of the state-at-birth over Ω0 of grandchildren born at that time, it has
a density. So we require that the distribution concentrated in x is, by the combination
of growth, survival and twice reproduction, transformed into an absolutely continuous
distribution.
On the other hand, the absolute continuity, with respect to the Lebesgue measure,

of (3.6), guarantees that, if the distribution of the states at birth of a certain generation
is absolutely continuous with respect to the Lebesgue measure, then the same is true
for the future generations.
We refer to Appendix A for an explanation of the notation used in the formulation

of the following theorem (whose proof is given at the end of the current section).

Theorem 3.4. Let K be a z0-bounded regularizing kernel and let B0 be given by (2.2)
as a function of K and M0 ∈ M+,b(Ω). Then the solution B of (2.1) satisfies

‖B(t, ·)s‖ ≤ c1e
z0t + c2te

tz0 t > 0 (3.7)

where ‖ · ‖ = ‖ · ‖T V = ‖ · ‖� and c1, c2 > 0.

Since the operator LK is linear, equation (2.1) can be rewritten as

BAC + Bs = LK BAC + LK Bs + BAC
0 + Bs

0 (3.8)

Equation (3.8) can be decoupled in a system of two equations

BAC = LK BAC + (
LK Bs)AC + BAC

0 (3.9)

and

Bs = (
LK Bs)s + Bs

0. (3.10)

Thanks to Theorem 3.4 we can focus on the asymptotic behaviour of the density of
BAC to gain information regarding B.
We next present a definition and two lemmas which will be applied in the proof of

Theorem 3.4.

Definition 3.5. I is the set of the locally bounded kernels K such that

K (t, x, ·) ∈ M+,AC (Ω0)

for every t ≥ 0 and x ∈ Ω0.

Definition 3.6. (Right semi-ideal) Let R be a semiring with the binary operations +
and ∗. A setJ ⊂ R is a right semi-ideal if (J ,+) is a monoid and for every i ∈ J

and every K ∈ R we have that j ∗ K ∈ J .

Lemma 3.7. The set I is a right semi-ideal. Moreover, if K ∈ I , then for every
t ≥ 0 and every f ∈ X , we have that (LK f )(t, ·) ∈ M+,AC (Ω0).
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Proof. Assume that K2 ∈ I and that K1 ∈ Bloc. Consider a set A that has Lebesgue
measure equal to zero. Since K2 ∈ I , we deduce that, for every t ≥ 0 and x ∈ Ω0,

K2(t, x, A) = 0.

By Definition 2.2 and formula (2.3), we deduce that, for every t ≥ 0 and x ∈ Ω0

(K2 ∗ K1)(t, x, A) = 0.

We conclude that for every t ≥ 0 and x ∈ Ω0 the measure (K2 ∗ K1)(t, x, ·) is
absolutely continuous with respect to the Lebesgue measure, hence K2 ∗ K1 ∈ I .

The second statement of the proof follows analogously from formula (2.4) �

Lemma 3.8. If K satisfies Assumption 3.2, then
∑∞

n=2 K
∗n ∈ I .

Proof. Thanks to Assumption 3.2 we know that K ∗ K ∈ I . SinceI is a right-ideal
we deduce that, if K ∗n ∈ I , then K ∗n∗K = K ∗(n+1) ∈ I .We conclude by induction
that

∑∞
n=2 K

∗n ∈ I . �

Proof of Theorem 3.4. Since B solves (2.1), then

B = B0 + LR B0 = B0 + LK B0 + L∑∞
n=2 K

∗n B0.

Thanks to Lemma 3.8 we deduce that

Bs = Bs
0 + LK Bs

0.

As a consequence of the fact that for every t ≥ 0, B0(t,Ω0) ≤ c1ez0t and (3.3), we
deduce that there exists c2 > 0 such that

LK B0(t,Ω0) ≤ c2te
z0t for every t ≥ 0,

hence Bs(t,Ω0) ≤ c1ez0t + c2tez0t . �

4. Asymptotic behaviour of the solution of the renewal equation

In this section we denote with X the Banach space L1(Ω0) endowed with the L1

norm ‖·‖1.Moreover we denote with X+ the cone of the positive functions in L1(Ω0)

and we call the bounded linear operator L : X → X positive if L : X+ → X+.
To study the asymptotic behaviour of the solution B of (2.1) we adopt the following

strategy:

– in Sect. 4.1 we introduce the renewal equation for the density of BAC and we
prove that it has a unique solution;

– in Sect. 4.2 we perform the Laplace transform to all the terms in the renewal
equation for the density of BAC .Wederive in thisway anon-linear eigenproblem;

– in Sect. 4.3 we present some results on positive operators that are important to
study the non-linear eigenproblem derived in (4.2);



J. Evol. Equ. Modelling physiologically structured Page 9 of 62 46

– in Sect. 4.4 we prove that there exists a unique, up to renormalisation, real eigen-
couple solving the non-linear eigenproblem derived in Sect. 4.2;

– in Sect. 4.5 we adapt the approach presented by Heijmans in [26] to prove that
the solution of the non-linear eigenproblem is attractive, i.e., we deduce the
asymptotic behaviour of the density of BAC ;

– in Sect. 4.6 we sketch a different approach to derive the asymptotic behaviour of
the density of BAC ;

– in Sect. 4.7 we show that the behaviour of the density of BAC determines the
behaviour of B.

4.1. Renewal equation for the density

Definition 4.1. Apositive locally bounded operator kernel is amap K̃ : R+ → L (X)
such that

– K̃ (a) is a positive operator for every a ≥ 0;
– the map a �→ K̃ (a) f is Bochner measurable for every f ∈ X ;
– for every T ≥ 0

sup
a∈[0,T ]

‖K̃ (a)‖op = sup
a∈[0,T ]

sup
{ f ∈X :‖ f ‖1≤1}

‖K̃ (a) f ‖1 <∞. (4.1)

Since in this paper we will only deal with operator kernels that are positive and
locally bounded, in the following we use the term operator kernel to refer to locally
bounded operator kernels.

Lemma 4.2. Let K̃ be an operator kernel. Let b0 : R+ → X be Bochner measurable
and locally bounded. Then the equation

b(t) =
∫ t

0
K̃ (t − a)b(a)da + b0(t), t ≥ 0 (4.2)

has a unique solution b : R∗+ → X,which is locally bounded andBochnermeasurable.

Proof. The main step of the proof consists in proving the existence of the resolvent
of K̃ . To this end, we aim at proving that

sup
a∈[0,T ]

sup
{ f ∈X :‖ f ‖1≤1}

‖R̃(a) f ‖1 = sup
a∈[0,T ]

sup
{ f ∈X :‖ f ‖1≤1}

‖
∞∑
n=1

K̃ n(a) f ‖1 <∞

where for every f ∈ X and every a ≥ 0

K 1(a) f := K̃ (a) f

and for every n ≥ 2

K̃ n(a) f :=
∫ a

0
K̃ (n−1)(a − s)K̃ (s) f ds.
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To ensure that the resolvent is well defined, we need to prove that, if Ki are operator
kernels, then K1  K2 : R+ → L (X), defined by

K1  K2 : t �→
(
f �→

∫ t

0
K1(t − a)K2(a) f da

)

is also an operator kernel. Inequality (4.1) follows by the boundedness properties of K1

and K2, while the Bochner measurability can be proven by an adaptation of the proof
of the measurability of the classical convolution product. See the proof of Theorem 1
in [22] for more details.
Hence, if

sup
{ f ∈X :‖ f ‖1≤1}

∥∥∥∥
∫ T

0
K̃ (s) f ds

∥∥∥∥
1
< 1

then for every 0 ≤ a ≤ T

sup
{ f ∈X :‖ f ‖1≤1}

‖R̃(a) f ‖1 = sup
{ f ∈X :‖ f ‖1≤1}

∥∥∥∥∥
∞∑
n=1

K̃ n(a) f

∥∥∥∥∥
1

≤
∞∑
n=1

(
sup

{ f ∈X :‖ f ‖1≤1}

∥∥∥∥
∫ T

0
K̃ (s) f ds

∥∥∥∥
1

)n

<∞.

If, instead,

sup
{ f ∈X :‖ f ‖1≤1}

∥∥∥∥
∫ T

0
K̃ (a) f da

∥∥∥∥
1

≥ 1

the above argument can be adapted by considering a scaled version of K̃ , K̃λ(a) :=
e−λa K̃ (a), with λ chosen such that

sup
{ f ∈X :‖ f ‖1≤1}

∥∥∥∥
∫ T

0
K̃λ(a) f da

∥∥∥∥
1
< 1.

The uniqueness of the solution of equation (4.2) follows by standard arguments of
renewal theory. See for instance [22] or [23, pp. 233–234]. �
4.2. Laplace transformed equation

In this section, we make the following assumptions on K̃ and b0.

Assumption 4.3. K̃ is an operator kernel. Moreover, there exists a z0 < 0 and a
constant C > 0 such that for every t ≥ 0

‖K̃ (t) f ‖1 ≤ Cez0t‖ f ‖1. (4.3)

Assumption 4.4. b0 : R+ → X is a Bochner measurable function and there exists a
c > 0 such that for every t ≥ 0

‖b0(t)‖1 ≤ cez0t + c1te
z0t + c2t

2ez0t . (4.4)

We denote with b the solution of equation (4.2).
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Lemma 4.5. There exists a β ∈ R such that b(t)e−λt is integrable over R+ for every
λ > β.

Proof. This proof is an adaptation of the proof of Lemma 3.4 in [26]. Thanks to the
fact that K̃ satisfies (4.3) and b0 satisfies (4.4), we know that there exists a β ∈ R such
that both ∫ ∞

0
e−βa sup

{ f ∈X :‖ f ‖1=1}

∥∥∥K̃ (a) f
∥∥∥
1
da = k1 < 1

and

sup
t≥0

e−βt‖b0(t)‖1 = k2 <∞

hold. Since b satisfies (4.2), then

e−βt‖b(t)‖1 ≤ e−βt
∥∥∥∥
∫ t

0
K̃ (a)b(t − a)da

∥∥∥∥
1
+ e−βt‖b0(t)‖1

≤
∥∥∥∥
∫ t

0
e−βa K̃ (a)e−β(t−a)b(t − a)da

∥∥∥∥
1
+ k2

Consider the map M : R+ → R+ defined by M(t) := maxa∈[0,t] e−βa‖b(a)‖1 then
we deduce that for every t > 0

M(t) ≤ M(t)k1 + k2

this implies that M(t) ≤ k2
1−k1

. We deduce that ‖b(t)‖1 ≤ ceβt for a positive constant
c > 0, and the desired conclusion follows. �

As a consequence the Laplace transform of b,

b̂(λ) :=
∫ ∞

0
e−λt b(t)dt

is well defined for every λ ∈ C with �λ > β.
The next generation operator corresponding to the operator kernel K̃ is the operator

K0 : X → X defined by

K0 f :=
∫ ∞

0
K̃ (a) f da. (4.5)

Notice that the integral in (4.5) is guaranteed to converge thanks to the fact that K̃
satisfies (4.3).

Motivated by the interpretation in the context of population models, we call

R0 := ρ(K0), (4.6)

where ρ(K0) denotes the spectral radius of K0, basic reproduction number.
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We denote with Kλ the discounted next generation operator

Kλ f :=
∫ ∞

0
e−λa K̃ (a) f da. (4.7)

Notice that if λ ∈ C thenKλ is a complex-valued function. This is the reason why we
introduce the concept of complexification of a Banach space and of a linear operator.
We denote with XC the set of the functions f : Ω0 → C such that f = f1 + i f2

for some f1 ∈ X and f2 ∈ X .

Definition 4.6. The complexification of a linear operator T : X → X is the operator
T : XC → XC defined by

T ( f + ig) = T f + iT g.

The operatorKλ is well defined for every λ ∈ Cwith�λ > z0. The same holds for

b̂0(λ) :=
∫ ∞

0
e−λt b0(t)dt.

The Laplace transformed version of equation (4.2), is

b̂(λ) = b̂0(λ)+ Kλb̂(λ) �λ > z0. (4.8)

Let

Σ := {λ ∈ Δ : 1 ∈ σ(Kλ)} (4.9)

where

Δ := {λ ∈ C : �λ > z0} (4.10)

For λ ∈ C \Σ it is possible to write

b̂(λ) = (I − Kλ)
−1 b̂0(λ). (4.11)

As will be explained later, applying the inverse Laplace transform formula to b̂, we
deduce the asymptotic behaviour of b.
It is then clear that the first fundamental step to deduce the asymptotic behaviour

of b̂ is to study the non-linear eigenproblem

f = Kλ f, (4.12)

which is, in a sense, the differentiated version of (3.4).
If the non-linear eigenproblem (4.12) has a unique, upon normalisation of f , real

solution (λ, f ) = (r, ψr ), then r is calledMalthusian parameter, while the eigenvector
ψr is called the stable distribution.
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4.3. Compact and non-supporting positive operators

The aim of this section is to present the results on positive compact and non-
supporting operators that we need to study the non-linear eigenproblem (4.12). To this
end we introduce the following notation: X∗+ is the positive cone in the dual of X∗,
represented by the set L∞+ (Ω0).
We start this section by introducing the concept of non-supporting operators.

Definition 4.7. (Non-supporting operator) Let L : X → X be a positive bounded
linear operator. The operator L is non-supporting with respect to X+ if for every
ψ ∈ X+, ψ �= 0 and F ∈ X∗+, F �= 0, there exists an integer p such that for every
n ≥ p we have that 〈F, Lnψ〉 > 0.

The following result is fundamental for our purposes as it provides important infor-
mation regarding the spectral radius of positive non-supporting operators. We do not
write the statement in its most general form, i.e., for a generic Banach space E with
certain properties, but we state the result for E = X = L1(Ω0).

Theorem 4.8. ([32] and [38]) Let T : X → X be positive and non-supporting (cf.
Definition 4.7) and suppose that ρ(T ) is a pole of the resolvent, then

1. ρ(T ) > 0 and ρ(T ) is an algebraically simple eigenvalue of T .
2. The corresponding eigenvector ψ is almost everywhere strictly positive.
3. The corresponding dual eigenvector F is strictly positive, i.e.〈F, φ〉 > 0 for

every φ ∈ X+ with φ �= 0.
4. If {λ ∈ σ(T ) : |λ| = ρ(T )} consists only of poles of the resolvent, then it consists

only of λ = ρ(T ) and all the remaining elements λ ∈ σ(T ) satisfy |λ| < ρ(T ).
The following result, proven byMarek, [32, Theorem 4.3 and Theorem 4.5], allows

us to compare the spectral radius of two positive operators by comparing the operators.
Again, we do not write the statement in its most general form, but we state the result
for E = X = L1(Ω0) and for the classes of operators we are interested in.

Proposition 4.9. Suppose that S, T : X → X are positive, bounded, linear operators.
Then, the following holds:

1. if S ≤ T , that is if T − S : X+ → X+, then ρ(S) ≤ ρ(T );
2. if T, S are non-supporting and compact and S ≤ T with S �= T , then ρ(S) <
ρ(T ).

4.4. The Malthusian parameter r

In this section we make again Assumption 4.3 on K̃ and Assumption 4.4 on b0.
We denote withKλ the discounted next generation operator, (4.7). We recall thatΔ is
given by (4.10).
The aim of this section is to prove that there exists a unique, up to renormalisation,

real solution to the non-linear eigenproblem (4.12).
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Theorem 4.10. Assume that for every λ ∈ Δ ∩ R the positive operator Kλ is non-
supporting and compact. Then, there exists a unique real eigencouple (r, ψr ), with
ψr ∈ X+ and ‖ψr‖1 = 1, that solves equation (4.12). If R0 > 1 then r > 0, if R0 = 1
then r = 0, if R0 < 1 then r < 0.

To prove Theorem 4.10 we follow the approach presented by Heijmans in [26]. The
main steps of the proof consist in

1. proving that ρ(Kλ) is a positive eigenvalue of Kλ and that its corresponding
eigenfunction is strictly positive: to this end we apply Theorem 4.8, hence we
need the operator Kλ to be compact and non-supporting;

2. proving that the function λ �→ ρ(Kλ) is strictly decreasing and continuous and
that limλ→z0 ρ(Kλ) ≥ 1 while limλ→∞ ρ(Kλ) = 0. To this end we will employ
step 1 and Proposition 4.9.

Step 1 is made in Lemma 4.11 and Step 2 is made in Proposition 4.12 and Proposi-
tion 4.13.

Lemma 4.11. Assume that the operatorKλ is compact and non-supporting for every
λ ∈ Δ ∩ R. Then

1. the spectral radius ofKλ, denoted with ρ(Kλ), is a positive, algebraically simple
eigenvalue of Kλ;

2. the corresponding eigenvectorψλ ∈ X, with normalisation ‖ψλ‖1 = 1, satisfies
ψλ(x) > 0 for a.e. x ∈ Ω0

3. the dual eigenfunctional Fλ ∈ X∗, such thatK∗
λFλ = ρ(Kλ)Fλ whereK∗

λ is the
dual operator of Kλ, is strictly positive, i.e. 〈Fλ, φ〉 > 0 for every φ ∈ X+ with
φ �= 0.

Proof. By the fact that Kλ is positive we deduce that ρ(Kλ) ∈ σ(Kλ). Since Kλ is
also compact we deduce that the spectral radius is a pole of the resolvent. Hence, if we
additionally assume thatKλ is non-supporting, we can apply Theorem 4.8 and deduce
the desired conclusion. �

Proposition 4.12. AssumeKλ to be compact and non-supporting for every λ ∈ Δ∩R.
The map λ �→ ρ(Kλ) is decreasing and continuous for λ ∈ [z0,∞).
Proof. To prove that the function λ �→ ρ(Kλ) is decreasing it is enough to notice
that if λ2 > λ1, then for every f ∈ X+ we have that

(
Kλ1 − Kλ2

)
f belongs to X+.

Hence, by Proposition 4.9 we deduce that 0 < ρ(Kλ2) < ρ(Kλ1) by Theorem 4.8.
To prove the continuity notice that thanks to Lemma 4.11 we have that for every

λ > z0 it holds that
〈K∗
λFλ,ψμ〉

〈Fλ,ψμ〉 = ρ(Kλ)〈Fλ,ψμ〉
〈Fλ,ψμ〉 = ρ(Kλ) and similarly that 〈FλKμ,ψμ〉

〈Fλ,ψμ〉 =
ρ(Kμ)〈Fλ,ψμ〉

〈Fλ,ψμ〉 = ρ(Kμ). Hence

ρ(Kλ)− ρ(Kμ) = 〈K∗
λFλ, ψμ〉

〈Fλ, ψμ〉 − 〈FλKμ,ψμ〉
〈Fλ, ψμ〉 = 〈(K∗

λ − K
∗
μ

)
Fλ, ψμ〉

〈Fλ, ψμ〉
≤ ‖K∗

λ − K
∗
μ‖X∗ = ‖Kλ − Kμ‖1.
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Therefore, if we prove that limλ→μ ‖Kλ−Kμ‖1 = 0, thenwe deduce that λ �→ ρ(Kλ)

is continuous. Since for every x1, x2 ≥ 0 we have |e−x1 − e−x2 | ≤ |x1 − x2|, then
∫
Ω0

|Kλ f (x)− Kμ f (x)|dx ≤
∫
Ω0

∫ ∞

0
|e−λa − e−μa |

∣∣∣K̃ (a) f
∣∣∣ (x)dx

≤
∫ ∞

0
|e−λa − e−μa |‖K̃ (a) f ‖1da ≤ |λ− μ|‖ f ‖X

∫ ∞

0
aez0ada.

Hence λ �→ Kλ is continuous and the desired conclusion follows. �

Proposition 4.13. Let Kλ be compact and non-supporting for every λ ∈ Δ ∩ R. If
R0 ≥ 1, then there exists a unique r ≥ 0 such that

ρ(Kr ) = 1. (4.13)

If R0 < 1 and there exists a z ∈ [z0, 0) such that ρ(Kz) ≥ 1, then there exists a unique
r < 0 such that (4.13) holds.

Proof. The map λ �→ ρ(Kλ) is decreasing and continuous. First of all, in both cases,
R0 < 1 and R0 ≥ 1, we have that ρ(Kλ)→ 0 as λ→ ∞. To see this, it is enough to
notice that

0 ≤ ρ(Kλ) ≤ ‖Kλ‖op → 0 as λ→ ∞.

If R0 ≥ 1, then, by the comparison theorem of linear operators, i.e., Proposition 4.9,
the definition of R0 and the continuity of λ �→ ρ(Kλ) we deduce that there exists a
r ≥ 0 such that (4.13) holds.

When R0 < 1 the proof is similar. �

Proof of Theorem 4.10. The proof is a direct consequence of Proposition 4.13 and of
the fact that the spectral radius of Kλ is an eigenvalue when positive. �

4.5. Large time behaviour of the density

Most of the results of this section hold thanks to the assumption that the discounted
next generation operator Kλ is non-supporting for real values of λ.
The aim of this section is to prove that the unique real eigensolution of (4.12) is

attracting. Namely we aim at proving the following theorem.

Theorem 4.14. Assume that for every λ ∈ Δ ∩ R the operator Kλ is non-supporting
and that its complexification Kλ is compact for every λ ∈ Δ. Additionally, assume
that if λ ∈ Σ , where Σ is given by (4.9), and λ �= r , then �λ < r. Let (r, ψr ) be the
unique real normalised eigencouple solving (4.12). Then there exists v > 0 such that

‖e−r t b(t)− cψr (·)‖1 ≤ Le−vt , t > 0

for some constants L , c > 0.
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To prove Theorem 4.14 we follow the approach presented by Heijmans in [26]. We
need to prove that the exponential solution of the form (3.2) with λ = r and ψ = ψr ,
is attracting. We can divide the proof in the following main steps.

1. We prove that (I − Kλ)
−1 is meromorphic on the half-plane Δ and that it has

a pole of order 1 in λ = r . The residue has the form: R−1ψ = C(ψ)ψr where
C(ψ) > 0.

2. We prove that there exists a spectral gap: there exists an ε, with 0 < ε < r , such
that �λ ≤ r − ε for every λ ∈ Σ. To this end we apply the Riemann Lebesgue
Lemma (i.e. Lemma 4.18), and we exploit the fact that for every λ ∈ Σ we have
that �λ < r . The results proven in step 1 will also be used.

3. We apply the Laplace transform inversion theorem (i.e. Lemma 4.22), to deduce
the behaviour of b. To this end we apply some results of complex analysis (such
as the Cauchy Theorem) and the results of the previous steps.

Step 1 is made in Proposition 4.15 and 4.19. Step 2 is made in Lemma 4.17. Finally
step 3 is made in Proposition 4.21 and Theorem 4.14.

Proposition 4.15. Assume that the positive operator Kλ is compact for every λ ∈ Δ.
The function λ �→ (I − Kλ)

−1 is meromorphic on Δ.

To prove this proposition we use the following result due to Steinberg and proven
in [41].

Theorem 4.16. Let Γ be a subset of the complex plane which is open and connected.
If {T (λ) : λ ∈ Γ } is an analytic family of compact operators on XC, then either
I − T (λ) is nowhere invertible in Γ or (I − T (λ))−1 is meromorphic in Γ.

Proof of Proposition 4.15. From the the definition of Kλ we know that

‖Kλ‖op ≤ ‖K�λ‖op → 0 as �λ→ ∞.

Hence (I −K
C
λ ) is invertible for �λ large enough. Since Kλ is compact for each real

λ with λ > z0 and since λ �→ Kλ is analytic, we can apply Theorem 4.16 to deduce
that λ �→ (I − Kλ)

−1 is meromorphic. �

Lemma 4.17. Let Kλ be non-supporting for every λ ∈ Δ∩R and compact for every
λ ∈ Δ. Let r be the Malthusian parameter. Moreover, assume that if λ ∈ Σ , whereΣ
is given by (4.9), and λ �= r , then �λ < r . There exists an ε > 0 such that for every
λ ∈ Σ with λ �= r , �λ ≤ r − ε.

The following lemma is taken from [27], see Theorem 6.4.2, and will be applied to
prove Lemma 4.17.

Lemma 4.18. (Riemann-Lebesgue) Let f ∈ L1((0,∞), XC) and let f̂ be its Laplace
transform. Then lim|η|→∞ f̂ (ξ + iη) = 0, uniformly for ξ in bounded closed subin-
tervals of (0,∞).
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Proof of Lemma 4.17. Thanks to Lemma 4.18 we have that for every r < r there
exists an η0 > 0 such that ‖Ks+iη‖op < 1, hence

(
I − Ks+iη

)−1 is analytic, for every
s ∈ [r , r ] and |η| > η0. Since the function (I − Kλ)

−1 is meromorphic, we deduce
that the number of its poles contained in the compact set {λ ∈ C |Imλ| ≤ η0 and �λ ∈
[r , r ]} is finite. This implies that the set Σ ∩ {λ ∈ C �λ ∈ [r , r ]} has a finite number
of elements. Thanks to the assumption of Lemma 4.17, the only λ ∈ Σ with �λ = r
is λ = r . From this we deduce that there exists an ε > 0 such that �λ ≤ r − ε for
every λ ∈ Σ with λ �= r . �

Since, from Proposition 4.15, we know that Kλ is analytic in a neighbourhood of r
we can write its Taylor expansion:

Kλ =
∞∑
n=0

(λ− r)nKn . (4.14)

Moreover, the map Rλ = (I − Kλ)
−1 can be represented by a Laurent series around

the pole r of order p ≥ 1:

Rλ =
∞∑

n=−p

(λ− r)n Rn . (4.15)

Proposition 4.19. Let Kλ be non-supporting for every λ ∈ Δ ∩ R and let Kλ be
compact for every λ ∈ Δ. Moreover assume that if λ ∈ Σ and λ �= r , then�λ < r . Let
r be the Malthusian parameter, ψr be the stable distribution, Fr be the corresponding
dual eigenfunction. The function λ �→ (I − Kλ)

−1 has a pole of order one in λ = r
and the residue, R−1, is given by

R−1ψ = 〈Fr , ψ〉
〈Fr ,−K1ψr 〉ψr , ψ ∈ X.

Proof. The proof of this proposition is the same as the proof of Theorem 7.1 in [26].
The fact that

Rλ(I − Kλ) = (I − Kλ)Rλ = I, (4.16)

implies, together with (4.14) and (4.15) that

R−p(I − K0) = (I − K0)R−p = 0. (4.17)

From (4.17) and from the fact that K0 = Kr we deduce that the range of R−p is equal
to {γψr : γ ∈ C}. Similarly we deduce that the range of R∗−p, which is the dual
operator of R−p, is equal to {γ Fr : γ ∈ C}. As a consequence there exist Φ and H
solving

R−pΦ = ψr and R∗−pH = Fr (4.18)
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respectively.
From the identity (4.16) and formula (4.15) and (4.14) we can also deduce that if

p > 1, then

−R−pK1 + R−p+1(I − K0) = 0.

While, if p = 1 we have that

−R−1K1 + R0(I − K0) = I.

Combining these two last equations with (4.17) we deduce that if p > 1 then

R−pK1R−p = 0 (4.19)

while if p = 1

R−1K1R−1 = −R−1. (4.20)

As a consequence of (4.19) and (4.18), if p > 1, then

〈Fr , K1ψr 〉 = 〈R∗−pH, K1R−pΦ〉 = 〈H, R−pK1R−pΦ〉 = 0,

which is a contradictionwith the fact that Fr strictly positive and−K1ψr = [− d
dλKλ

]
r

ψr is positive. Hence p = 1.
Now let R−1ψ = f (ψ)ψr for some linear functional f. Using the fact that Fr =

R∗−1Hr and (4.20) we deduce that

〈Fr , ψ〉 = 〈R∗−1H, ψ〉 = 〈H, R−1ψ〉 = 〈H,−R−1K1R−1ψ〉 =
〈R∗−1H,−K1 ( f (ψ)ψr )〉 = f (ψ)〈R∗−1H,−K1ψr 〉 = f (ψ)〈Fr ,−K1ψr 〉

it follows that f (ψ) = 〈Fr ,ψ〉
〈Fr ,−K1ψr 〉 . �

Definition 4.20. The Hardy-Lebesgue class H1(α, XC) is the class of functions g :
C → X , which are analytic in �λ > α and satisfy the following conditions

sup
ξ>α

∫ ∞

−∞
‖g(ξ + iη)‖1dη <∞ (4.21)

and g(α+ iη) = limξ→α g(ξ + iη) exists a.e. and is an element of L1((−∞,∞), X).
Proposition 4.21. Let Kλ be compact for every λ ∈ Δ and Kλ non-supporting for
every λ ∈ Δ ∩ R. Moreover, assume that if λ ∈ Σ and λ �= r , then �λ < r . Let r be
the Malthusian parameter. Then b̂ ∈ H1(α, XC) if α > r.

Proof of Proposition 4.21. For each fixed ξ > z0 the map

η �→ b̂0(ξ + iη)
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belongs to L1((−∞,∞), XC), see for instance Theorem 6.3.2 in [27]. From Lemma
4.18 we know that there exists a η0 such that if |η| ≥ η0 then∥∥∥(I − Kξ+iη

)−1
∥∥∥
op

≤ 2.

Since when ξ > r the function η �→ (
I − Kξ+iη

)−1 is continuous on the compact
set [−η0, η0] it follows that, if ξ > r there exists a constant C(ξ) > 0 such that

∥∥∥(I − Kξ+iη
)−1

∥∥∥
op

≤ C(ξ)

for all η ∈ R. Since b̂ is given by (4.11) we deduce, that

‖b̂(ξ + iη)‖1 ≤ C(ξ)‖b̂0(ξ + iη)‖1 for ξ > r and η ∈ R.

As a consequence of the positivity of b and b̂0, we have that for every ξ ≥ α > r

‖b̂(ξ + iη)‖1 ≤ ‖b̂(α + iη)‖1 ≤ C(α)‖b̂0(α + iη)‖1 (4.22)

Hence ‖b̂(ξ+ iη)‖1 is integrable with respect to η over (−∞,∞) and thanks to (4.22)
we deduce that b̂ satisfies (4.21).

Since the maps λ �→ (I − Kλ)
−1 and λ �→ b̂0(λ) are analytic when �λ > r we

deduce that the map λ �→ b̂(λ) is analytic for �λ > r . Hence the limit of b̂(ξ + iη) as
ξ → α exists and is equal to b̂(α+ iη). The fact that b̂(α+ i ·) ∈ L1((−∞,∞), XC)

follows from inequality (4.22). �

The following lemma, useful for the proof of Theorem 4.14, is taken from [20].

Lemma 4.22. Let ĝ ∈ H1(α, XC),(cf. Definition 4.20) then the function

f (t) = 1

2π i
lim

T→∞

∫ γ+iT

γ−iT
eλt ĝ(λ)dλ γ ≥ α

is well defined for every t ∈ R, and does not depend on γ . Moreover, f (t) = 0 if
t < 0, while f is continuous in t for t > 0. Finally f̂ (λ) = ĝ(λ).

Proof of Theorem 4.14. Also in this case, the proof is very similar to a proof in [26],
viz. the proof of Corollary 8.3. We write the main steps here.
Since the function b̂ belongs to H1(α, XC) for every α > r , we deduce, by

Lemma 4.22 and by the uniqueness of the Laplace transform [27, Theorem 6.2.3]
that

b(t) = 1

2π i

∫ α+i∞

α−i∞
eλt b̂(λ)dλ. (4.23)

Consider 0 < v < ε where ε is given by Lemma 4.17 and notice that

∫ α+iT

α−iT
eλt b̂(λ) =

∮
Γ

eλt ˆb(λ)dλ− lim
T→∞

∫
Γ3

eλt b̂(λ)dλ− lim
T→∞

∫
Γ2

eλt b̂(λ)dλ
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Figure 1. Graphic representation of the set Γ

− lim
T→∞

∫
Γ4

eλt b̂(λ)dλ (4.24)

where Γ := ∪4
i=1Γi and Γ1 is the segment in the complex plan connecting the point

α − iT to α + iT , Γ2 is the segment connecting α + iT with r − v + iT , Γ3 is
the segment connecting r − v + iT with r − v − iT and, finally, Γ4 is the segment
connecting r − v − iT with α − iT .
From the Cauchy theorem for vector valued functions ([27]), equality (4.24) and

Lemma 4.18 and the Laplace inversion formula (4.23), we deduce that

b(t) = 1

2π i

∮
Γ

eλt ˆb(λ)dλ+ 1

2π i
lim

T→∞

∫ r−v+iT

r−v−iT
eλt b̂(λ)dλ.

By the residue theorem we have that

1

2π i

∮
Γ

eλt ˆb(λ)dλ = Resλ=r e
λt b̂(λ) = ert R−1b̂0(r) = ert

〈Fr , b̂0(r)〉
〈Fr ,−K1ψr 〉ψr .

We conclude the proof by noting that
∥∥∥∥ 1

2π i
lim

T→∞

∫ r−v+iT

r−v−iT
eλt b̂(λ)dλ

∥∥∥∥
1

≤ Me(r−v)t

with

M = 1

2π

∫ ∞

−∞

∥∥∥b̂(r − v + iη)
∥∥∥
1
dη

and explaining why
∫ ∞

−∞

∥∥∥b̂(r − v + iη)
∥∥∥
1
dη <∞.

As in the proof of Proposition 4.21 we know that thanks to Lemma 4.18, there exists
a η0 > 0 and a constant C > 0 such that

‖(I − Kr−v+iη)
−1‖op ≤ C
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for every η with |η| > η0.On the other hand since the function η �→ (I −Kr−v+iη)
−1

is continuous on the compact set [−η0, η0] we deduce that for every η ∈ R

‖(I − Kr−v+iη)
−1‖op ≤ C.

By equality (4.11) we deduce that

‖b̂(r − v + iη)‖1 ≤ C‖b̂0(r − v + iη)‖1.
Since from the proof of Proposition 4.21 we know that for every ξ > z0 the function
η �→ b̂0(ξ + iη) belongs to L1((−∞,∞), XC)) we deduce, possibly adjusting C ,
that the function η �→ b̂(r − v + iη) belongs to L1((−∞,∞), XC)). �

We next present here two sufficient conditions on K̃ that guarantee that for every
λ ∈ Σ , with r �= λ, we have that �λ < r . As will be shown in Sect. 5, either
Assumption 4.23 or Assumption 4.24 can be easily checked for all themodel examples
we consider.

Assumption 4.23. There exists a measurable function γ : R+ ×Ω0 → R such that
for every x ∈ Ω0 the function a �→ γ (a, x) is piecewise monotone and there exists a
measurable function c : R+ ×Ω0 → R+ such that

K̃ (a)ϕ(·) = c(a, ·)ϕ(γ (a, ·)) ∀ϕ ∈ X+ and ∀a ∈ R+.

Assumption 4.24. There exists a function k̃ : R+ ×Ω0 ×Ω0 �→ R+, that is measur-
able in each variable and such that

sup
a∈[0,T ]

sup
x∈Ω0

∫
Ω0

k̃(a, x, y)dy <∞

and such that

(K̃ (a)ϕ)(y) :=
∫
Ω0

k̃(a, x, y)ϕ(x)dx ∀ϕ ∈ X and ∀a ∈ R+.

The aim of the following proposition is to show that each of the preceding two
assumptions guarantees that �λ < r for every λ ∈ Σ with λ �= r .

Proposition 4.25. Let Kλ be compact for every λ ∈ Δ and non-supporting for every
λ ∈ Δ ∩ R. Let K̃ satisfy either Assumption 4.23 or Assumption 4.24. Let r be the
Malthusian parameter. If λ ∈ Σ , where Σ is given by (4.9), and λ �= r , then �λ < r .

To prove Proposition 4.25 we need the following Theorem, which corresponds to
Theorem 1.39 in [37].

Theorem 4.26. Let ϕ ∈ XC and assume that
∫
Ω0

|ϕ(x)|dx =
∣∣∣∣
∫
Ω0

ϕ(x)dx

∣∣∣∣
then there exists a constant β such that βϕ = |ϕ| a.e. on Ω0.
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Proof of Proposition 4.25. The proof is an adaptation of the proof of Theorem 6.13
in [26].
Assume that there exists a λ ∈ Σ with λ �= r such thatKλψ = ψ for someψ ∈ XC.

It follows that

|ψ | = |Kλψ | ≤ K�λ|ψ |. (4.25)

Taking duality parings with F�λ on both sides of the inequality we deduce that

〈F�λ, |ψ |〉 ≤ ρ(K�λ)〈F�λ, |ψ |〉.
This implies that ρ(K�λ) ≥ 1 = ρ(Kr ). Since, by Proposition 4.12 we know that the
function μ→ ρ(Kμ) is decreasing when μ varies in R we deduce that �λ ≤ r.
Assume now that �λ = r , hence, since λ �= r , it must hold that Imλ > 0. From

(4.25) we know thatKr |ψ | ≥ |ψ |. If we assume thatKr |ψ | �= |ψ | then taking duality
parings with Fr we deduce that 〈Fr , |ψ |〉 > 〈Fr , |ψ |〉. This is a contradiction, hence it
must hold thatKr |ψ | = |ψ |. Since (r, ψr ) is the unique (up to normalization) solution
of the non-linear eigenproblem (4.12), we deduce that there exists an � : Ω0 → R such
thatψ(x) = ei�(x)ψr (x) and, as a consequence of (4.25), we have thatKrψr = |Kλψ |
i.e. ∫ ∞

0
e−ra K̃ (a)ψr da =

∣∣∣∣
∫ ∞

0
e−raeia Imλ K̃ (a)ei�(·)ψr da

∣∣∣∣ (4.26)

If we make Assumption 4.23 this implies that
∫ ∞

0
e−ra K̃ (a)ψr da =

∣∣∣∣
∫ ∞

0
e−raeia Imλei�(γ (a,·)) K̃ (a)ψr da

∣∣∣∣
Since ∫ ∞

0
e−ra K̃ (a)ψr da =

∫ ∞

0

∣∣∣e−raeia Imλei�(γ (a,·)) K̃ (a)ψr

∣∣∣ da
we deduce, by Theorem 4.26, that there exist a β ∈ R such that

aImλ+ �(γ (a, x)) = β.
As a consequence we have that

ei�(x)ψr (x) =
∫ ∞

0
e−(�λ+i Imλ)a K̃ (a)ψ(x)da

=
∫ ∞

0
e−a�λeiβ−i�(γ (a,x)) K̃ (a)ψ(x)da

= eiβ
∫ ∞

0
e−a�λ K̃ (a)ψr (x)da = eiβψr (x).

This implies that �(x) = β( mod 2π) for a.e. x ∈ Ω0 and hence, the piecewise
monotonicity of γ (·, x) implies that Imλ = 0. This is a contradiction and the desired
conclusion follows.
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If, instead, we make Assumption 4.24 equality (4.26) implies that
∫ ∞

0
e−ra

∫
Ω0

k̃(a, y, x)ψr (y)dyda

=
∣∣∣∣
∫ ∞

0
e−ra

∫
Ω0

eia Imλ+i�(y)k̃(a, y, x)ψr (y)dyda

∣∣∣∣
Since

∫ ∞

0
e−ra

∫
Ω0

k̃(a, y, x)ψr (y)dyda

=
∫ ∞

0

∫
Ω0

∣∣∣e−raeia Imλ+i�(y)k̃(a, y, x)ψr (y)
∣∣∣ dyda,

we deduce by Theorem 4.18 that there exists a β ∈ R such that

aImλ+ �(x) = β.
As a consequence we have that

ei�(x)ψr (x) =
∫ ∞

0
e−(�λ+i Imλ)a K̃ (a)ψ(x)da

=
∫ ∞

0
e−a�λeiβ−i�(x) K̃ (a)ψ(x)da

= eiβ
∫ ∞

0
e−a�λ K̃ (a)ψr (x)da = eiβψr (x).

This implies that �(x) = β( mod 2π) for a.e. x ∈ Ω0 and hence that Imλ = 0. This
is a contradiction and the desired conclusion follows. �

4.6. An alternative approach

In this section we present an alternative approach for proving Theorem 4.14. We
make the same assumptions on K̃ and b0 as made in Sect. 4.5 and we keep the same
notation.
We plan to deduce the asymptotic behaviour of the solution of equation (4.2) by

obtaining estimates on the resolvent operator from the following theorem, which is
Theorem 2 in [22].

Theorem 4.27. Let w ∈ R and let K̃ ∈ L1−w(R+,L (XC)) be an operator kernel.
Then its resolvent R̃ belongs to L1−w(R+,L (XC)) if and only if I − Kλ is invertible
for every λ ∈ C such that �λ ≥ w.
To be able to apply this theorem, we have to assume that the function a �→ K̃ (a)

is measurable with respect to the topology induced by the operator norm on L (X).
This measurability assumption is stronger than the measurability assumption we ask
for the operator kernels in Sect. 4.1.
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Theorem 4.28. Assume that for every λ ∈ Δ ∩ R the operator Kλ is non-supporting
and that its complexification Kλ is compact for every λ ∈ Σ . Additionally assume
that K̃ : R+ → L (XC) is measurable and satisfies either Assumption 4.23 or
Assumption 4.24. Let (r, ψr ) be the eigencouple solving (4.12). Then there exists
v > 0 such that

‖e−r t b(t)− cψr (·)‖1 ≤ Le−vt , t > 0

for some constants L , c > 0.

Proof. We already know that for every λ ∈ Cwith�λ ≥ σ > r the operator I −Kλ is
invertible. Moreover K̃ ∈ L1−σ (R+,L (XC)) for any σ > r . Hence we deduce from
Theorem 4.27 that R̃ ∈ L1−σ (R+,L (XC)). We denote the Laplace transform of R̃ as
follows

Rλ :=
∫ ∞

0
e−λa R̃(a)da <∞ �λ > σ.

Similarly as in Proposition 4.21 we deduce that (I − Kλ)
−1

Kλb̂0(λ) ∈ H(σ, XC)

for σ > r . Hence, from the Laplace inversion formula we deduce that

∫ t

0
R̃(a)b0(t − a)da = 1

2π i
lim

T→∞

∫ σ+iT

σ−iT
eλt (I − Kλ)

−1
Kλb̂0(λ)dλ

if σ > r.
Consider aw ∈ Rwithw < r such that the operator (I −Kλ) is invertible for every

λ ∈ C with w ≤ �λ < r . This w exists thanks to Lemma 4.17. Define the operator Q
as

∫ t

0
Q(a)b0(t − a)da := 1

2π i
lim

T→∞

∫ w+iT

w−iT
eλt (I − Kλ)

−1
Kλb̂0(λ)dλ.

Similarly as in the proof of Theorem 4.14 we can deduce, by the residue theorem,
that

∫ t

0
R̃(a)b0(t − a)da −

∫ t

0
Q(a)b0(t − a)da = ert R−1Kr b̂0(r)

As a consequence

b(t) =
∫ t

0
R̃(a)b0(t − a)da + b0(t)

=
∫ t

0
Q(a)b0(t − a)da + ert R−1Kr b̂0(r)+ b0(t)

=
∫ t

0
Q(a)b0(t − a)da + ert

〈Fr ,Kr b̂0(r)〉
〈Fr ,−K1ψr 〉 ψr + b0(t)
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Notice that by the definition of Fr we have that

〈Fr ,Kr b̂0(r)〉
〈Fr ,−K1ψr 〉 = 〈K∗

r Fr , b̂0(r)〉
〈Fr ,−K1ψr 〉 = 〈Fr , b̂0(r)〉

〈Fr ,−K1ψr 〉
Moreover, by the definition of Q we have ‖ ∫ t

0 Q(a)b0(t − a)da‖1 ≤ cewt where
the constant c is equal to

c :=
∫ ∞

−∞
‖(I − Kw+iη)

−1
Kw+iηb̂0(w + iη)‖1dη

The fact that c < ∞ follows by an adaptation of the final part of the proof of Theo-
rem 4.14. Hence, using (4.4), it follows that

∥∥∥∥∥e−r t b(t)− 〈Fr , b̂0(r)〉
〈Fr ,−K1ψr 〉ψr

∥∥∥∥∥
1

≤ c1e
(w−r)t + e−r t‖b0(t)‖1 ≤ c2e

−vt ,

for some positive constants v, c1, c2. �

This approach is not very different from the approach developed in Sect. 4.5, but
here we have to make stronger measurability assumptions on K̃ . These correspond to
stronger assumptions on the model parameters and therefore we decided to focus on
Heijmans’ approach.

4.7. Asymptotic behaviour of the measure-valued solution

In this section we deduce the asymptotic behaviour of the measure B from the
behaviour of the density of its absolutely continuous component. This type of technique
has been applied in [12] and in [36].

Lemma 4.29. Let K be a z0-bounded regularizing kernel and let B0 be given by (2.2)
as a function of K and M0 ∈ M+,b(Ω). Let K̃ : R

∗+ → L (X) be the operator
defined by

K̃ (a) f = dK , f (a) for every a ≥ 0 and f ∈ X (4.27)

where dK , f (a) ∈ X is the density of the measure (3.6) with t replaced by a. Let us
denote with B the solution of equation (2.1). Then

BAC (t, ω) =
∫
ω

b(t)(x)dx ∀ω ∈ B(Ω0) (4.28)

where b is the solution of (4.2) with respect to K̃ and the function b0 : R+ → X
mapping t to the density of BAC

0 (t, ·)+ LK (Bs)AC (t, ·).
Proof. First of all we need to check that K̃ is an operator kernel, so in particular that
for every f ∈ X the map

a �→ K̃ (a) f (4.29)
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is Bochner measurable. Since X is separable, Bochner measurability and weak mea-
surability coincide. So it suffices to show that the map (4.29) is weakly measurable,
i.e. that for every g ∈ L∞(Ω0) the map

a �→
∫
Ω

g(x)K̃ (a) f (x)dx =
∫
Ω

g(x)dK , f (a)(x)dx

is measurable. This is a consequence of the fact that for every ω the map

a �→
∫
ω

dK , f (a)(x)dx =
∫
Ω

K (a, y, ω) f (y)dy

is measurable. We refer to [19] for the details. Similarly one shows that b0 : R+ → X
is Bochner measurable.
Moreover, thanks to the fact that K is a locally bounded kernel

sup
a∈[0,T ]

sup
f ∈X

‖K̃ (a) f ‖1 <∞.

Hence, thanks to Lemma 4.2, equation (4.2), with respect to K̃ and b0 has a unique
solution b. Integrating all the terms in the equation over the set ω we deduce that

B̃(t, ω) :=
∫
ω

b(t)(x)dx

is a solution of (3.9). By uniqueness it follows that B̃ = BAC �
Theorem 4.30. Let K be a z0-bounded regularizing kernel such that the operator
Kλ, defined by (4.7) with K̃ given by (4.27), is compact for every λ ∈ Δ and non-
supporting for every Δ ∩ R. Assume also that K̃ satisfies either Assumption 4.23 or
Assumption 4.24. Let us denote with B the solution of equation (2.1) and letΨr (dx) =
ψr (x)dx, with ψr the stable distribution, and r the Malthusian parameter. Then there
exist constants M, k > 0 such that∥∥e−r t B(t, ·)− cΨr (·)

∥∥ ≤ Me−kt ∀t > 0. (4.30)

where c > 0 is the same constant as in Theorem 4.14 and ‖ · ‖ = ‖ · ‖T V = ‖ · ‖�.
Proof. Since the density of BAC (t, ·), b(t), solves (4.2) with respect to the K̃ and b0
given by Lemma 4.29, we deduce that
∥∥e−r t B(t, ·)− cΨr (·)

∥∥ ≤
∥∥∥e−r t B(t, ·)− e−r t B AC (t, ·)+ e−r t B AC (t, ·)− cΨr (·)

∥∥∥
≤
∥∥∥e−r t B(t, ·)− e−r t B AC (t, ·)

∥∥∥+
∥∥∥e−r t B AC (t, ·)− cΨr (·)

∥∥∥
≤ e−r t

∥∥Bs(t, ·)∥∥+ ∥∥e−r t b(t, ·)− cψr (·)
∥∥
1 ≤ e−r t

∥∥Bs(t, ·)∥∥+ Le−vt

≤ c1e
(z0−r)t + c2te

(z0−r)t + Le−vt ,

where in the last inequality we have applied (3.7). From this chain of inequalities we
deduce that (4.30) holds. �
We stress that in Corollary 4.30 we prove balanced exponential growth and we also

provide an exponential estimate of the remainder, as is done in [5] to which we refer
for yet another approach.
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5. Kernels arising from structured population models

The aim of this section is to present three classes of z0-bounded regularizing kernels
that, as we shall show in the next sections satisfy the assumptions of Theorems 4.10
and 4.14, i.e. the corresponding operator kernel K̃ satisfies either Assumption 4.23
or Assumption 4.24 and the corresponding operator Kλ is non-supporting for every
λ ∈ Δ ∩ R and compact for every λ ∈ Δ.
Since the classes of kernels that we present are motivated by structured population

models, we interpret the mathematical assumptions by describing their meaning in
the context of the corresponding models. To help the reader we also provide the more
classical PDE formulation of the models in the next section. In all of this section we
assume that the i-state space Ω is a subset of R∗+.

5.1. The kernel as a modelling ingredient

The main modelling ingredient of the renewal equation is the kernel, which sum-
marises the effect of the individual level mechanisms determining the population
evolution. The individual level mechanisms modelled via the renewal equation (2.1)
are

– deterministic smooth development of the individual state, as growth or waning.
– giving birth, with offspring appearing at a different position (i.e. having a differ-
ent state), or jumping to another position, inwhich casewe say that the individual
in the old state died while an individual in the new state was born. We assume
that this happens at a position dependent rate Λ.

Therefore we assume that the kernel is

K (a, ξ, ω) := F (a, ξ)Λ(X (a, ξ))ν(X (a, ξ), ω) (5.1)

where

– X (a, ξ) is the state of an individual that survived up to the current time and that,
a time ago, had state ξ .

– F (a, ξ) is the probability that an individual that a time ago had state ξ survives
up to the present time.

– ν(z, ω) denotes the expected number of individuals born with size in ω when an
individual with size z reproduces or jumps.

We want to find sufficient conditions on F , X and ν that guarantee that K is a
z0-bounded regularizing kernel, that the corresponding operator kernel K̃ satisfies
either Assumption 4.23 or Assumption 4.24 and that the corresponding operator Kλ
is compact for every λ ∈ Δ and non-supporting for every λ ∈ Δ ∩ R. To this end
we start by writing the following basic assumptions on F , X , ν implying that K is a
z0-bounded kernel.

Assumption 5.1. Assume that

– the map (a, ξ) �→ F (a, ξ) is measurable;
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– the map (a, ξ) �→ X (a, ξ) is measurable;
– for every ω ∈ B(Ω0) the map x �→ ν(x, ω) is measurable and

sup
x∈Ω

ν(x,Ω0) ≤ M

for some M > 0;
– there exists a z0 < 0 and a constant c > 0 such that

sup
x∈Ω0

F (t, x)Λ(X (t, x)) ≤ cez0t , t ≥ 0; (5.2)

If Assumption 5.1 holds, then the kernel K , defined by (5.1), is a z0-bounded kernel.
What additional assumptions on ν and X guarantee that K is also a regularizing kernel?

Proposition 5.2. Let F , ν, X satisfy Assumption 5.1.
If, additionally, ν(x, ·) ∈ M+,AC (Ω0), then the kernel K defined by (5.1) is a

z0-bounded regularizing kernel.

Proof. The absolute continuity, with respect to the Lebesguemeasure, of themeasures
(3.6) and (3.5) is a consequence of the fact that K (a, x, ·) ∈ I , with I defined in
Definition 3.5, for every a > 0 and x ∈ Ω0. �

We aim at finding milder conditions on ν that still guarantee that the kernel K is
regularizing. Motivated by biological applications (see the upcoming sections) we
focus on the following type of measures

ν(x, ω) = β(x)δq(x)(ω) x ∈ Ω, ω ∈ B(Ω0). (5.3)

where q and β are suitable functions.
We first present an example of a measure ν, satisfying (5.3), and a function X , that

give rise to a kernel K which is not regularizing.

Example 5.3. If

ν(x, ω) = 2δ x
2
(ω)

and if we assume that the development is exponential, i.e. X (a, ξ) = ξea , then As-
sumption 3.2 does not hold. Hence K is not a regularizing kernel. Indeed,

2
∫ t

0

∫
Ω

K (s, x, dξ)F (t − s, ξ)δ 1
2 X (t−s,ξ)(ω)Λ(X (t − s, ξ))ds

= 4
∫ t

0

∫
Ω

F (s, x)Λ(xes)δ x
2 e

s (dξ)F (t − s, ξ)δ 1
2 ξe

t−s (ω)Λ(X (t − s, ξ))ds

= 4δ x
4 e

t (ω)

∫ t

0
F (s, x)Λ(xes)F

(
t − s,

x

2
es
)
Λ
(
X
(
t − s,

x

2
es
))

ds.
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The take home message of this example is that it is not only the shape of ν that
determines whether the kernel is regularizing or not, but also the development rate.
We now state sufficient assumptions on q, β,F and X that guarantee that the kernel

K defined by (5.1) is a z0-bounded regularizing kernel.

Proposition 5.4. LetF , ν, X satisfy Assumption 5.1. Assume that ν is of the form (5.3)
for a measurable function β : Ω → R+ and a measurable function q : Ω → R+.
Additionally, assume that q is such that the function

Fa : x �→ q(X (a, x)) (5.4)

is invertible and such that if |ω| = 0, then |F−1
a (ω)| = 0, where we are denoting with

| · | the Lebesgue measure, see Appendix A. Finally assume that q and X are such that
the function

pt,x : a �→ q(X (t − a, q(X (a, x)))) (5.5)

is invertible and such that |ω| = 0 implies |p−1
t,x (ω)| = 0. Then the kernel K defined

by (5.1) is a z0-bounded regularizing kernel.

Proof. The kernel K is z0-bounded because F , X and ν satisfy Assumption 5.1.
We now prove that, for every f , the measure (3.6) is absolutely continuous with

respect to the Lebesgue measure. For notational convenience we rewrite K as

K (a, x, ω) = j (a, x)δq(X (a,x))(ω).

Let A ∈ B(Ω) be a set of zero Lebesgue measure, then
∫
Ω0

f (x)K (a, x, A)dx =
∫
Ω0

f (x) j (a, x)δq(X (a,x))(A)dx

=
∫
F−1
a (A)

f (x) j (a, x)dx = 0.

We now prove that also (3.5) is an absolutely continuous measure with respect to the
Lebesgue measure. Indeed

K ∗2(T, x, A)

=
∫ T

0

∫
Ω

K (s, x, dξ) j (T − s, ξ)δq(X (T−s,ξ))(A)ds

=
∫ T

0
j (s, x) j (T − s, q(X (s, x)))δpT,x (s)(A)ds

=
∫

[0,T ]∩p−1
T,x (A)

j (s, x) j (T − s, q(X (s, x)))ds.

The assumptions on pT,x then guarantee that K ∗2(T, x, ·) is absolutely continuous
with respect to the Lebesgue measure. �
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6. Asymptotic behaviour of the population birth rate for the model examples

We now motivate the above assumptions on ν by presenting the models that we are
going to study with the results presented in Sect. 4.

6.1. Two applications to structured population models

6.1.1. Cell growth and fission

Thefirst example is themodel of cell growth andfission that is classically formulated
via the PDE

∂t n(t, x)+ ∂x (g(x)n(t, x)) = − [Λ(x)+ μ(x)] n(t, x)+ 4Λ(2x)n(t, 2x) (6.1)

or alternatively via the PDE

∂t n(t, x)+ ∂x (g(x)n(t, x)) = − [Λ(x)+ μ(x)] n(t, x)
+
∫
Ω

h(y, x)Λ(y)n(t, y)dy, (6.2)

These PDEs describe the evolution in time of a population of cells, structured by size,
growing at rate g, dying at rateμ and dividing into two smaller cells at rateΛ. The type
of equation depends on how the cells divide. More precisely, if cells divide into equal
parts, then the density of cells of size x at time t , n(t, x), is the solution of equation
(6.1). If, instead, the expected number of cells with size in [y, y + dy], produced by
the division of a cell of size x , is equal to h(x, y)dy, then n(t, x) is the solution of
equation (6.2).
The model described above fits into the class of models introduced in Sect. 5.1.

Hence, the population birth rate, which in this case is the rate at which individuals
are born due to fission, has to satisfy (2.1), with K given by (5.1) and X (a, ξ) is the
solution at time a of the following ODE

dx

dt
= g(x) x(0) = ξ, (6.3)

while

F (t, ξ) := exp

(
−
∫ t

0
μ̃(X (s, ξ))ds

)
= exp

(
−
∫ X (t,ξ)

ξ

μ̃(x)

g(x)
dx

)
(6.4)

where μ̃(x) = μ(x)+Λ(x), and with

ν(x, ω) =
∫
ω

h(x, y)dy or ν(x, ω) = 2δ x
2
(ω).

Now the question is, what are the assumptions on the parameters g, Λ and ν that
ensure that K is a z0-bounded regularizing kernel, that the corresponding operator K̃
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satisfies Assumption 4.23 or Assumption 4.24 and thatKλ is non-supporting for every
λ ∈ Δ∩R, compact for every λ ∈ Δ? In other words, what are the assumptions on the
parameters that allow us to study the evolution of the population by using the results
presented in Sect. 4? Below we present two collections of assumptions, one for the
case of fission into equal sizes and one for the case of fission into unequal sizes. We
start with the latter.

Assumption 6.1. (Unequal fission model) We assume that

1. Ω = R
∗+;

2. the growth rate g : Ω → R
∗+ is a continuous function such that for every z ∈ Ω
∫ ∞

z

1

g(s)
ds = ∞; (6.5)

3. the fission rate Λ : (0,∞) → R+ is a measurable function such that ei-
ther supp(Λ) = [M,∞), where M > 0, or supp(Λ) = R

∗+, and such that
limz→∞Λ(z) exists and is strictly positive;

4. the death rate μ : Ω → R+ is measurable;
5. for every y ∈ Ω

ν(y, ·) ∈ M+,AC (Ω), (6.6)

with density h(y, ·) such that h(y, x) = 0 when y < x and h(y, x) > 0 if y > x
∫ y

0
h(y, x)dx = 2, h(y, x) = h(y, y − x); (6.7)

6. the set of the states at birth is

Ω0 :=
⋃

y∈supp(Λ)
supp (h(y, ·)) = (0,∞).

We assume that for every ε > 0 there exists a δε > 0 such that for every
0 < δ < δε we have∣∣∣∣

∫
Ω0

(h(y, x)− h(y, x + δ)) dx
∣∣∣∣ < εy for every y > 0 (6.8)

where h(y, x + δ) := 0 if x + δ /∈ Ω0.
7. Finally we assume that

∫ 1

0

Λ(y)

yg(y)
dy <∞. (6.9)

We now explain the interpretation of these requirements on g, h,Λ. By the definition
of g,

τ(x, y) :=
∫ y

x

1

g(z)
dz
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is the time that it takes to develop from size x to size y. Hence, the fact that g satisfies
(6.5) implies that the time that it takes to grow up to size equal to supΩ is equal to
infinity. This, together with the assumption on the limiting large size behaviour of the
fission rate, guarantees that the probability that a cell reaches size equal to infinity is
zero.
The first assumption on h in (6.7) guarantees that a cell always divides into two

cells. The second assumption in the same line is a consequence of the fact that mass
is conserved during fission and hence a cell of size x that divides into a cell of size y
produces also a cell of size equal to x − y.
In many works the i-state space Ω is assumed to be a compact subset of R∗+,

see for instance [14] and [25]. Here we relax this assumption and assume that Ω =
R

∗+. The price of this generalisation is that we need to impose assumptions on the
model parameters g,Λ, h that exclude gelation (i.e. escape of mass at infinity, in the
“fragmentation” terminology) and shattering (i.e. escape of mass at zero). This is why
we introduce conditions (6.8) and (6.9). These tightness assumptions guarantee the
compactness of the operatorKλ, as we will see in Sect. 6.2.1, proof of Proposition 6.8.

Condition (6.8) holds for a broad class of self-similar kernels. In particular it holds
for uniform fragmentation, h(y, x) = 2

yχ(0,x), but also for some of the self-similar
kernels considered in [40]. Indeed assume that

h(y, x) = 2

y
p

(
x

y

)

where p : [0, 1] �→ R+ is s.t. p ∈ L∞([0, 1])with ∫ 1
0 p(z)dz = 1and p(1−z) = p(z)

for every z ∈ [0, 1]. Then
∣∣∣∣
∫
Ω0

[h(y, x)− h(y, x + δ)] dx
∣∣∣∣ ≤

∣∣∣∣
∫ y−δ

0
[h(y, x)− h(y, x + δ)] dx

∣∣∣∣
+
∣∣∣∣
∫ y

y−δ
h(y, x)dx

∣∣∣∣ ≤ 2

y

∣∣∣∣
∫ y−δ

0

[
p

(
x

y

)
− p

(
x + δ
y

)]
dx

∣∣∣∣

+ 2

y

∣∣∣∣
∫ y

y−δ
p

(
x

y

)
dx

∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ 1− δ

y

0

[
p (z)− p

(
z + δ

y

)]
dz

∣∣∣∣∣
+ 2

∣∣∣∣∣
∫ 1

1− δ
y

p (z) dz

∣∣∣∣∣

≤ 2

∣∣∣∣∣
∫ 1− δ

y

0
p (z) dz −

∫ 1

δ
y

p (z) dz

∣∣∣∣∣+
2

y
δ‖p‖L∞

≤ 2

∣∣∣∣∣
∫ 1

1− δ
y

p (z) dz

∣∣∣∣∣+ 2

∣∣∣∣∣
∫ δ

y

0
p (z) dz

∣∣∣∣∣+
2

y
δ‖p‖L∞ ≤ 6

y
δ‖p‖L∞ .

Hence h satisfies (6.8).
Finally condition (6.9) guarantees that Λ(y) → 0 as y → 0 quickly, namely

faster that y itself. We expect that it is possible to weaken considerably the condition
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h(x, y) > 0 if x > y. This condition is however attractive, because it allows for a
straightforward proof of the non-supportingness of the operator Kλ.
For the model in which cells divide into equal parts we make the following assump-

tions.

Assumption 6.2. (Equal fission model) In this case we assume that

1. Ω = Ω0 := (0,∞),
2. g satisfies point 2 ofAssumption 6.1, is Lipschitz continuous and g(2x) < 2 g(x)

for every x ∈ Ω and 0 < supx∈Ω 1
g(x) <∞,

3. Λ satisfies point 3 of Assumption 6.1,
4. μ satisfies point 4 of Assumption 6.1,
5. for every y ∈ Ω we have that

ν(y, ω) = 2δy/2(ω) ω ∈ B(Ω0). (6.10)

The requirements on the parameters listed in Assumption 6.2 are needed to deduce
the asymptotic behaviour of the population with the method presented in Sect. 4.7.
Indeed the assumptions on the growth rate g exclude the possibility of having cyclic
solutions, see [4,34], being a sufficient assumption to guarantee that the operator Kλ
is compact and non-supporting, as we will see in Sect. 6.2.1.

Lemma 6.3. Let either Assumption 6.1 or Assumption 6.2 hold. Then the kernel K
defined by (5.1) is a z0-bounded regularizing kernel for some z0 < 0.

Proof. Thanks to (6.5),

K (t, x,Ω0) ∼ e− limz→∞Λ(z)t

as time tends to infinity. Hence for every z0 > − limz→∞Λ(z) we have that K
satisfies (3.3). If ν satisfies Assumption 6.1, then this concludes the proof thanks to
Proposition 5.2.

Assume, instead, that ν is given by (6.10) and that g(2x) < 2g(x). Then the function
pT,x introduced in Proposition 5.4 is equal to

pT,x : s �→ 1

2
X

(
T − s,

1

2
X (s, x)

)
.

This map is differentiable and by the chain rule

2p′
T,x (s) = −∂1X

(
T − s,

1

2
X (s, x)

)
+ ∂2X

(
T − s,

1

2
X (s, x)

)
1

2

d

ds
X (s, x)

Using (6.3) we deduce that for every a > 0, ξ > 0 and s > 0

dX (a, (X (s, ξ))

ds
= ∂2X (a, X (s, ξ)) g(X (s, ξ)).
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On the other hand

dX (a, (X (s, ξ))

ds
= dX (a + s, ξ)

ds
= g(X (a + s, ξ)).

Hence substituting s = 0 we deduce that

∂2X (a, ξ) = g (X (a, ξ))

g(ξ)
.

Therefore using g(2x) < g(x) we deduce that

2p′
T,x (s) = −g

(
X

(
T − s,

1

2
X (s, x)

))
+ g(X

(
T − s, 12 X (s, x)

)
)

g
( 1
2 X (s, x)

) 1

2
g(X (s, x))

= −g

(
X

(
T − s,

1

2
X (s, x)

))(
1 − g(X (s, x))

2g
( 1
2 X (s, x)

)
)
< 0.

As a consequence pT,x is monotone, hence invertible and such that |A| = 0 implies
|p−1

T,x (A)| = 0
The function Fa , given by (5.4), is invertible and such that if |A| = 0, then

|F−1
a (A)| = 0 as the map x �→ X (a, x) is monotone. �

6.1.2. Waning and boosting

Consider a population of individuals structured by their level of immunity against a
pathogen. Assume that the level of immunity decreases with rate g and is boosted by
infection and that the force of infection equals a constant γ.We assume that the time
that it takes the immune systems to clear the infection is negligible compared to the
time in between two infections and consider, accordingly, boosting as instantaneous.
Assume that the immunity level after the boosting is determined by the immunity

level before the boosting event via the boosting function f . We assume that f is as
in Fig. 2 and we denote with f1 the restriction of f to the set (0, xc) and with f2 the
restriction to f on (xc,M]. The density of individuals with immunity level x at time
t , n(t, x), satisfies the following PDE

∂t n(t, x)+ ∂x (g(x)n(t, x)) = −γ n(t, x)+ Sn(t, x) (6.11)

where

Sϕ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < m

−γ 1
f ′( f −1

1 (x))
ϕ( f −1

1 (x))+ γ 1
f ′( f −1

2 (x))
ϕ( f −1

2 (x)) m < x < r

γ 1
f ′( f −1

2 (x))
ϕ( f −1

2 (x)) r < x < M.

(6.12)

The term Sn(t, x) in equation (6.11) represents the individuals that (re)appear in
the population at time t with state x after boosting. Since the function f has a local
minimum, an individual with immunity level x ∈ [m, r ] can be obtained as the result of
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the boosting of an individual in any one of the sets (0, xc), (xc,M)while an individual
with state at birth x ∈ [r,M] is produced by the boosting of an individual with state
in (xc,M).

The backward reformulation of equation (6.11) is

∂tm(t, x)− g(x)∂xm(t, x) = −γm(t, x)+ S∗m(t, x) (6.13)

where S∗ is the (pre)dual operator of S and is given by

S∗ϕ(x) = γ ϕ( f (x)).

This model fits into the class of models described in Sect. 5.1. Hence, the population
birth rate B, which in this case is the rate at which individuals appear in the population
with a higher immunity level due to boosting, is the solution of equation (2.1) with
a kernel K given by formula (5.1). The factor X (a, ξ) in (5.1) is the solution of the
ODE (6.3), with g the rate of waning. The factor Λ(x) = γ > 0 is the boosting rate.
Since we assume the death rate to be equal to zero, we have that the term F in (5.1)
is equal to

F (t, ξ) := e−γ t (6.14)

and

ν(y, ω) := δ f (y)(ω) (6.15)

for every i-state y and for every set of states at birth ω.
We have chosen a specific form of f in order tomake the computations in Sect. 6.2.3

not too demanding for the reader. For sure the result holds for a much wider class of
boosting functions f (see for instance [12], but note that in that paper there is no proof
that convergence is exponential). We now specify the assumptions on the parameters
that guarantee that we can apply the results presented in Sect. 4.

Assumption 6.4. (Waning and boosting model, see Fig. 2) We assume that

1. Ω = (0,M];
2. the boosting function f : Ω → [m,M] =: Ω0 is such that f (x) = f1(x) if

x ∈ (0, xc] while f (x) = f2(x) if x ∈ (xc,M] where
f1(x) = −α1x + q1 and f2(x) = α2x + q2

with

α1 = r − m

xc
, q1 = r where 0 < m < M, 0 < r < M

α2 = M − m

M − xc
, q2 = m − xc

M − m

M − xc
;
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Figure 2. Boosting function

3. g : Ω → (− ∞, 0) is a continuous function and such that

α2g(y)

g( f (y))
< 1 for a.e. y ∈ Ω0. (6.16)

The conditions on the parameters g, ν, Λ listed in Assumption 6.4 guarantee that
the model is well defined and allow to apply the results of Sect. 4.7 as we will see in
Sect. 6.2.3.
In this work we focus on Assumption 6.4 and we assume that the set of the possible

immunity levels is a compact set, but this assumption can be relaxed as for instance
in [12].
Condition (6.16) is sufficient to guarantee that the kernel K defined by (5.1) is

regularizing. The meaning of this assumption is the following. The immunity level of
an individual who boosts at time t and then wanes for a time interval of length dt is
lower than the immunity level of an individualwhowanes for dt and then boosts at time
t + dt. This assumption can be seen as a congener of the assumption g(2x) < 2 g(x)
in the case of fission into equal sizes. We refer to [12] for more explanations.

Lemma 6.5. Let g, μ,Λ, ν satisfy Assumption 6.4. Then the kernel K defined by (5.1)
is a −γ -bounded regularizing kernel.

Proof. The fact that K is a −γ kernel follows simply by noting that

F (a, x)Λ(X (a, x)) = γ e−γ a .

We next investigate whether K is a regularizing kernel. To this end we notice that the
function Fa introduced in Proposition 5.4,

Fa : x �→ f (X (a, x))

is invertible because it is piecewise monotone.
On the other hand, the function pT,x now reads

pT,x : a �→ f (X (T − a, f (X (a, x))))
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As in the proof of Lemma 6.3, using the chain rule, condition (6.16) and the definition
of X as the solution of the ODE (6.3) we prove that

p′
T,x (a) = − f ′(X (T − a, f (X (a, x))))g(X (T − a, f (X (a, x))))·
·
[
1 − f ′(X (a, x))g(X (a, x))

g( f (X (a, x)))

]
a.e. a > 0.

Thanks to (6.16) we deduce that pT,x is piecewise monotone. Hence the desired
conclusion follows. �
6.2. Asymptotic behaviour for the model examples

In this section we apply the results presented in Sect. 4 to the model examples. To
this end we proceed as follows

1. we use Lemma 4.29 to associate to the kernel K an operator kernel K̃ ;
2. we define the discounted next generation operator Kλ as a function of K̃ , using

(4.7);
3. then we check that the operator Kλ is compact and non supporting.

6.2.1. Cell growth and fission (into unequal parts)

In this section we assume that the parameters g, μ,Λ, ν satisfy Assumption 6.1.
Hence there exists a z0 such that the kernel K , given by (5.1), is a z0-regularizing
kernel.
It remains to prove that, under the assumptions of the unequal fission model, Kλ

satisfies the assumptions of Theorem 4.14. Recall that K ∈ I . We denote with k its
density, given by

k(a, x, y) := F (a, x)Λ(X (a, x))h(X (a, x), y). (6.17)

The operator K̃ introduced in (4.27), is given by
(
K̃ (a)ϕ

)
(y) :=

∫
Ω0

k(a, x, y)ϕ(x)dx a ≥ 0, y ∈ Ω0 (6.18)

and as a direct consequence we have the following result.

Lemma 6.6. The kernel K̃ satisfies Assumption 4.24.

The following theorem, see e.g [30], is fundamental to prove the compactness of
the operator Kλ in the model examples.

Theorem 6.7. (Fréchet-Kolmogorov) Let T : XC → XC be linear and bounded. If
for every ε > 0 there exists a δ > 0 such that for every 0 < |h| < δ∫

Ω0

|Tϕ(x + h)− Tϕ(x)| dx ≤ ε‖ϕ‖1

for every ϕ ∈ XC, where Tϕ(x + h) = 0 if x + h /∈ Ω0, then the operator T is
compact.
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Proposition 6.8. The operator Kλ is compact for every λ ∈ Δ and the operator Kλ
is non-supporting for every λ ∈ Δ ∩ R.

Proof. To prove compactness we apply Theorem 6.7. Recalling Assumption 6.8 we
deduce that for every ε > 0 there exists a δε > 0 such that for every δ < δε and for
every ϕ ∈ X+

∫
Ω0

|(Kλϕ) (x + δ)− (Kλϕ) (x)| dx

≤
∫ ∞

0

∫
Ω0

ϕ(y)e−a�λF (a, y)Λ(X (a, y))·

·
∣∣∣∣
∫
Ω0

h(X (a, y), x + δ)− h(X (a, y), x)dx

∣∣∣∣ dyda

≤ ε
∫ ∞

0

∫ ∞

0
ϕ(y)e−a�λF (a, y)Λ(X (a, y))

X (a, y)
dyda,

where for the last inequality we have used (6.8).
Using Fubini’s theorem and performing the change of variables X (a, y) = x we

deduce that
∫ ∞

0

∫ ∞

0
ϕ(y)e−a�λF (a, y)Λ(X (a, y))

X (a, y)
dyda

=
∫ ∞

0

∫ ∞

0
ϕ(y)e−a�λF (a, y)Λ(X (a, y))

X (a, y)
dady

=
∫ ∞

0

∫ ∞

y
ϕ(y)e−τ(y,x)�λF̂ (y, x) Λ(x)

xg(x)
dxdy

≤
∫ 1

0

∫ x

0
ϕ(y)e−τ(y,x)�λF̂ (y, x) Λ(x)

xg(x)
dydx

+
∫ ∞

1

∫ x

0
ϕ(y)e−τ(y,x)�λF̂ (y, x) Λ(x)

xg(x)
dydx

Now, using Fubini’s theorem, the change of variables x = X (a, y) and the bound
(5.2), we estimate the second term in the following way

∫ ∞

1

∫ x

0
ϕ(y)e−τ(y,x)�λF̂ (y, x) Λ(x)

xg(x)
dydx

≤
∫ ∞

1

∫ x

0
ϕ(y)e−τ(y,x)�λF̂ (y, x)Λ(x)

g(x)
dydx

≤
∫ ∞

0

∫ x

0
ϕ(y)e−τ(y,x)�λF̂ (y, x)Λ(x)

g(x)
dydx

≤
∫ ∞

0

∫ ∞

y
ϕ(y)e−τ(y,x)�λF̂ (y, x)Λ(x)

g(x)
dxdy

≤
∫ ∞

0

∫ ∞

0
ϕ(y)e−a�λF (a, y)Λ(X (a, y))dady
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≤ C
∫ ∞

0
e(−�λ+z0)ada

∫ ∞

0
ϕ(y)dy ≤ C

�λ− z0
‖ϕ‖1

On the other hand, thanks to (6.9)

∫ 1

0

∫ x

0
ϕ(y)e−τ(y,x)�λF̂ (y, x) Λ(x)

xg(x)
dydx ≤ e−τ(0,1)�λ‖ϕ‖1

∫ 1

0

Λ(x)

xg(x)
dx .

It follows that for every ε > 0 there exists a δ such that

‖(Kλϕ) (· + δ)− (Kλϕ) (·)‖1 ≤ ε‖ϕ‖1.
Applying Lemma 6.7 we conclude thatKλ is compact for every λ ∈ C with �λ > z0.

We now prove that Kλ is non-supporting. To this end we firstly prove a stronger
property. Indeed, thanks to (6.8) we can prove that Kλϕ(x) > 0 for every x ∈ Ω0,
because for every ϕ ∈ L1+(Ω0) and every x ∈ Ω0

(Kλϕ)(x) =
∫ ∞

0

∫ ∞

0
ϕ(y)e−λaF (a, y)Λ(X (a, y))h(X (a, y), x)dady

=
∫ ∞

0
ϕ(y)

∫ ∞

y
e−λτ(y,z)F̂ (z, y)Λ(z)

g(z)
h(z, x)dzdy

Since we assume that h(z, x) > 0 for every z > x , then

∫ ∞

y
F̂ (y, z)e−λτ(y,z) Λ(z)

g(z)
h(z, x)dz > 0.

Since ϕ belongs to X+ there exists a set of positive Lebesgue measure U ⊂ Ω0, on
whichϕ is strictly positive. The integration is overΩ0.Weconclude that (Kλϕ)(x) > 0
for every x ∈ Ω0. �

Proposition 6.9. Let g, μ,Λ, ν be such that Assumption 6.1 holds. Let r, ψr be re-
spectively the Malthusian parameter and the stable distribution. The solution B of
(2.1) satisfies

‖e−r t B(t, ·)− cΨr‖ ≤ Me−vt

whereΨr (dx) = ψ(x)dx and c,M > 0 and v > 0 and the norm ‖·‖ = ‖·‖T V = ‖·‖�.
Moreover

sign(r) = sign(R0 − 1)

where R0 is defined in (4.6) and

K0μ(·) =
∫ ∞

0

∫
Ω0

k(t, x, ·)μ(dx)dt.
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6.2.2. Cell growth and fission (into equal parts)

In this section we assume that the parameters g, μ,Λ, ν are such that Assump-
tion6.2holds.Also in this casewehave to checkwhether the assumptions ofLemma4.29
hold. In this case

(K̃ (s)ϕ)(z) := 4
g(X (−s, 2z))

g(2z)
F (s, X (−s, 2z))Λ(2z)ϕ(X (−s, 2z)) (6.19)

for every z > 0 such that s < τ(0, 2z) while (K̃ (s)ϕ)(z) = 0 otherwise. Indeed
∫
Ω

K (s, x, ω)ϕ(x)dx = 2
∫ ∞

0
F (s, x)Λ(X (s, x))δ 1

2 X (s,x)
(ω)ϕ(x)dx

= 4
∫
ω

χ[0,τ (0,2y)](s)F (s, X (−s, 2y))Λ(y)ϕ(x)
g(X (−s, 2y))

g(2y)
dy

Lemma 6.10. The kernel K̃ satisfies Assumption 4.23.

Proof. The statement follows by the definition of K̃ . �

The following theorem can be found in [29] and will be important to prove the
compactness of the operator Kλ.

Theorem 6.11. Let T : XC → XC be linear and bounded and of the form

(Tϕ)(x) =
∫
Ω0

h(x, y)ϕ(y)dy.

Suppose that there exists an h+ such that

|h(x, y)| ≤ h+(x, y) x, y ∈ Ω0

and that the operator T+ : X+ → X+

(T+ϕ)(x) :=
∫
Ω0

h+(x, y)ϕ(y)dy

is compact. Then T is compact.

Lemma 6.12. The operatorKλ is compact for every λ ∈ Δ andKλ is non-supporting
for every λ ∈ Δ ∩ R.

Proof. Using (6.19) and (5.2), we deduce that for every ϕ ∈ X+

|(Kλϕ) (y)|

≤ 4
∫ τ(0,2y)

0
e−s�λ g(X (−s, 2y))

g(2y)
F (s, X (−s, 2y))Λ(2y)ϕ(X (−s, 2y))ds

≤ c
∫ τ(0,2y)

0
e−s�λez0s g(X (−s, 2y))

g(2y)
ϕ(X (−s, 2y))ds
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Let p > 0. The operator K+(p) defined by

(
K

+(p)ϕ
)
(y) =

∫ τ(0,2y)

0
e−ps g(X (−s, 2y))

g(2y)
ϕ(X (−s, 2y))ds

is a linear bounded map from X+ to X+. Indeed, thanks to the second assumption in
(6.9), if we assume that ϕ ∈ X+, then

∫ ∞

0

(
K

+(p)ϕ
)
(y)dy =

∫ ∞

0

∫ τ(0,2y)

0
e−psϕ(X (−s, 2y))

g(X (−s, 2y))

g(2y)
dsdy

=
∫ ∞

0

∫ 2y

0
e−pτ(z,2y) ϕ(z)

g(2y)
dzdy ≤

∫ ∞

0

∫ ∞

z/2

e−pτ(z,2y)

g(2y)
dyϕ(z)dz

= 1

p
‖ϕ‖1

We want to prove thatKλ it is compact. To this end, we apply Lemma 6.7. Consider
δ > 0, then

∣∣K+(p)ϕ(δ + y)− K
+(p)ϕ(y)

∣∣

≤
∣∣∣∣∣
∫ τ(0,2y+2δ)

0
e−ps g(X (−s, 2y + 2δ))

g(2y + 2δ)
ϕ(X (−s, 2y + 2δ))ds

−
∫ τ(0,2y)

0
e−ps g(X (−s, 2y))

g(2y)
ϕ(X (−s, 2y))ds

∣∣∣∣∣
≤
∣∣∣∣
∫ 2y+2δ

0
e−pτ(z,2y+2δ) ϕ(z)

g(2y + 2δ)
dz −

∫ 2y

0
e−pτ(z,2y) ϕ(z)

g(2y)
dz

∣∣∣∣
≤
∣∣∣∣
∫ 2y+2δ

2y
e−pτ(z,2y+2δ) ϕ(z)

g(2y + 2δ)
dz

∣∣∣∣

+
∫ 2y

0

∣∣∣∣∣
e−pτ(z,2y)

g(2y)
− e−pτ(z,2y+2δ)

g(2y + 2δ)

∣∣∣∣∣ϕ(z)dz.

Moreover
∫ 2y+2δ

2y

∣∣∣∣e−pτ(z,2y+2δ) ϕ(z)

g(2y + 2δ)

∣∣∣∣ dz

≤ sup
x∈Ω

1

g(x)
e−pτ(2y,2y+2δ)

∫ 2y+2δ

2y
e−pτ(z,2y)ϕ(z)dz.

Consequently,

‖K+(p)ϕ(· + δ)− K
+(p)ϕ(·)‖1
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≤ sup
x∈Ω

1

g(x)

∫ ∞
0

e−pτ(2y,2y+2δ)
∫ 2y+2δ

2y
e−pτ(z,2y)ϕ(z)dzdy

+
∫ ∞
0

∫ 2y

0

∣∣∣∣∣
e−pτ(z,2y)

g(2y)
− e−pτ(z,2y+2δ)

g(2y + 2δ)

∣∣∣∣∣ϕ(z)dzdy

≤ sup
x∈Ω

1

g(x)

∫ ∞
0

∫ z/2

z/2−δ
e−pτ(2y,2y+2δ)e−pτ(z,2y)dyϕ(z)dz

+
(
sup
x∈Ω

1

g(x)

)2 ∫ ∞
0

∫ ∞
z/2

∣∣∣g(2y + 2δ)e−pτ(z,2y) − e−pτ(z,2y+2δ)g(2y)
∣∣∣ϕ(z)dydz

≤ sup
x∈Ω

1

g(x)
ĉδ‖ϕ‖1 +

(
sup
x∈Ω

1

g(x)

)2
c′δ‖ϕ‖1

≤ sup
x∈Ω

1

g(x)

[
ĉδ‖ϕ‖1 + c∗2δ‖ϕ‖1

]

where ĉ, c∗, c′ > 0 and where we have used the Lipschitz continuity of g and of τ with
respect to its second argument. We deduce that K+(p) is compact for every p > 0,
hence by Lemma 6.11 we have that Kλ is compact for every λ ∈ C with �λ > z0.

We now check that Kλ is non-supporting for every λ ∈ R ∩Δ. For every ϕ ∈ X+,
there exists a set S of positive Lebesgue measure with ϕ(x) �= 0 for every x ∈ S.
Therefore for every 2x > x1 := inf S

Kλϕ(x) = 4Λ(2x)
∫ 2x

0
e−λτ(z,2x)F̂ (z, 2x) ϕ(z)

g(2x)
dz > 0.

This implies that for every x > x1/4 we have that K2
λϕ(x) > 0, indeed

K
2
λϕ(x) = 4

∫ 2x

0
e−λτ(z,2x)F̂ (z, 2x)Kλϕ(z)

g(2x)
dz.

Iterating this argument we deduce that for every ϕ ∈ X+ there exists an x1 > 0 and
an n ∈ N such thatKn

λϕ(x) > 0 for every x > x1
2n . As a consequence, this implies that

for every F ∈ L∞+ (Ω0) and every ϕ ∈ X+ there exists an n such that 〈F,Kn
λϕ〉 > 0.

�
Proposition 6.13. Let g, μ,Λ, ν be such that Assumptions 6.1 holds. Let r, ψr be
respectively the Malthusian parameter and the stable distribution. The solution B of
(2.1) satisfies

‖e−r t B(t, ·)− cΨr‖ ≤ Me−vt

where c,M, v > 0 and Ψr (dx) = ψr dx and ‖ · ‖ = ‖ · ‖T V = ‖ · ‖�,
sign(r) = sign(R0 − 1),

and R0 is the spectral radius of K0 defined by

K0ϕ(x) =
∫ ∞

0

g(X (−t, 2x))

g(2x)
F (t, X (−t, 2x))Λ(2x)ϕ(X (−t, 2x))dt.
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6.2.3. Waning and boosting

In this section we make Assumption 6.4. In this case the operator kernel K̃ is such
that for every a ≥ 0 the operator K̃ (a) belongs to L (L1+(Ω0)) = L (L1+([m,M]))
and is equal to

(K̃ (s)ϕ)(z) :=

⎧⎪⎪⎨
⎪⎪⎩

γ e−γ s
[
−β1(z)ϕ(X (−s, f −1

1 (z)))g(X (−s, f −1
1 (z))

+β2(z)ϕ(X (−s, f −1
2 (z)))g(X (−s, f −1

2 (z))
]
, z < r

γ e−γ sβ2(z)ϕ(X (−s, f −1
2 (z)))g(X (−s, f −1

2 (z)), z > r

(6.20)

for z ∈ [m,M], where

β1(z) = 1

g( f −1
1 (z)) f ′( f −1

1 (z))
> 0 (6.21)

while

β2(z) = 1

g( f −1
2 (z)) f ′( f −1

2 (z))
< 0. (6.22)

Indeed the measure (3.6) is equal to
∫
Ω

K (s, x, ω)ϕ(x)dx = γ e−γ s
∫
Ω0

δ f (X (s,x))(ω)ϕ(x)dx

= γ e−γ s
∫
Ω

δ f (y)(ω)
g(X (−s, y))

g(y)
ϕ(X (−s, y))dy

= γ e−γ s
[∫
ω∩[m,r ]

(
−ϕ(X (−s, f −1

1 (z)))g(X (−s, f −1
1 (z)))

g( f −1
1 (z)) f ′( f −1

1 (z))

+ ϕ(X (−s, f −1
2 (z)))g(X (−s, f −1

2 (z)))

g( f −1
2 (z)) f ′( f −1

2 (z))

)
dz

+
∫
ω∩[r,M]

ϕ(X (−s, f −1
2 (z)))g(X (−s, f −1

2 (z)))

g( f −1
2 (z)) f ′( f −1

2 (z))
dz

]

Hence the density of the measure (3.6) is (6.20).
By the definition of K̃ we deduce the following.

Lemma 6.14. The kernel K̃ satisfies Assumption 4.23.

Lemma 6.15. The operator Kλ is compact for every λ ∈ Δ and non-supporting for
every λ ∈ Δ ∩ R.

Proof. By the definition of K̃ and by the change of variables

y = X (−s, f −1
1 (z))
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we deduce that Kλ is equal to

1

γ
Kλϕ(z) =

⎧⎪⎪⎨
⎪⎪⎩

D1(z)
∫ M
f −1
1 (z) e

−(λ+γ )τ(x, f −1
1 (z))ϕ(y)dy

+D2(z)
∫ M
f −1
2 (z) e

−(λ+γ )τ(x, f −1
2 (z))ϕ(y)dy m < z < r

D2(z)
∫ M
f −1
2 (z) e

−(λ+γ )τ(x, f −1
2 (z))ϕ(y)dy r < z < M

where

D1(z) = β1(z) > 0 and D2(z) = −β2(z) > 0.

Hence Kλ is the sum of the three operators Ki
λ defined as

K
1
λϕ(z) =

{
γ D1(z)

∫ M
f −1
1 (z) e

−(λ+γ )τ(x, f −1
1 (z))ϕ(y)dy m < z < r

0 r < z < M

K
2
λϕ(z) =

{
γ D2(z)

∫ M
f −1
2 (z) e

−(λ+γ )τ(x, f −1
2 (z))ϕ(y)dy m < z < r

0 r < z < M

and

K
3
λϕ(z) =

{
γ D2(z)

∫ M
f −1
2 (z) e

−(λ+γ )τ(x, f −1
2 (z))ϕ(y)dy r < z < M

0 z < r

Since Kλ = ∑3
i=1K

i
λ if we prove that for i = 1, 2, 3 the operator Ki

λ is compact,
then we deduce that Kλ is compact.
To prove that each Ki

λ is compact we apply Lemma 6.7. We describe in detail how
to prove that K1

λ is compact. Consider δ < min{m, r − m}. If z ∈ [m, r − δ], then
since f −1

1 (z) > f −1
1 (z + δ)

1

γ

∣∣∣K1
λϕ(z + δ)− K

1
λϕ(z)

∣∣∣

=
∣∣∣∣∣D1(z)

∫ M

f −1
1 (z)

e−(λ+γ )τ(x, f −1
1 (z))ϕ(x)dx

−D1(z + δ)
∫ M

f −1
1 (z+δ)

e−(λ+γ )τ(x, f −1
1 (z+δ))ϕ(x)dx

∣∣∣∣∣
≤
∫ M

f −1
1 (z)

∣∣∣D1(z) e
−(λ+γ )τ(x, f −1

1 (z)) − D1(z + δ)e−(λ+γ )τ(x, f −1
1 (z+δ))

∣∣∣ϕ(x)dx

+
∫ f −1

1 (z)

f −1
1 (z+δ)

D1(z + δ)e−(λ+γ )τ(x, f −1
1 (z+δ))ϕ(x)dx .

On the other hand if z ∈ [r − δ, r ] we have that
1

γ

∣∣∣K1
λϕ(z + δ)− K

1
λϕ(z)

∣∣∣
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= D1(z)
∫ M

f −1
1 (z)

e−(λ+γ )τ(x, f −1
1 (z))ϕ(x)dx

Hence

1

γ

∥∥∥K1
λϕ(· + δ)− K

1
λϕ(·)

∥∥∥
1

≤
∫ r−δ

m

∫ M

f −1
1 (z)

∣∣∣D1(z) e
−(λ+γ )τ(x, f −1

1 (z))

−D1(z + δ)e−(λ+γ )τ(x, f −1
1 (z+δ))

∣∣∣ϕ(x)dxdz

+
∫ r−δ

m

∫ f −1
1 (z)

f −1
1 (z+δ)

D1(z + δ)e−(λ+γ )τ(x, f −1
1 (z+δ))ϕ(x)dxdz

+
∫ r

r−δ
D1(z)

∫ M

f −1
1 (z)

e−(λ+γ )τ(x, f −1
1 (z))ϕ(x)dxdz. (6.23)

Since f −1
1 (z) ∈ [0, xc], and f −1

1 (z + δ) ∈ [0, xc] if z ∈ [m, r ], then

D1(z) = − 1

α1

1

g( f −1
1 (z))

and D1(z + δ) = − 1

α1

1

g( f −1
1 (z + δ)) .

Using similar arguments to the one used in the proof of Lemma 6.12 we estimate the
first term of inequality (6.23) in the following way

∫ r−δ

m

∫ M

f −1
1 (z)

∣∣∣D1(z)e
−(λ+γ )τ(x, f −1

1 (z))

−D1(z + δ)e−(λ+γ )τ(x, f −1
1 (z+δ))

∣∣∣ϕ(x)dxdz

≤ 1

α1

∫ r−δ

m

∫ M

f −1
1 (z)

e−(λ+γ )τ(x, f −1
1 (z+δ))

∣∣∣∣∣
1

g( f −1
1 (z))

e−(λ+γ )τ( f −1
1 (z), f −1

1 (z+δ))

− 1

g( f −1
1 (z + δ))

∣∣∣∣∣ϕ(x)dxdz ≤ cδ‖ϕ‖1

where we have used the uniform continuity of g on compact intervals and the Lipschitz
continuity of the function τ in the second argument. On the other hand, using the
expression for f1 we deduce that the second term in inequality (6.23) can be estimated
in the following way

∫ m−δ

r

∫ f −1
1 (z)

f −1
1 (z+δ)

D1(z + δ)e−(λ+γ )τ(x, f −1
1 (z+δ))ϕ(x)dxdz

≤ c sup
x∈[m,M]

1

g(x)

∫ r−δ

m

∫ − z+δ
α1

+ q1
α1

− z
α1

+ q1
α1

ϕ(x)dxdz
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≤ c sup
x∈[m,M]

1

g(x)

∫ r

m

∫ q1−xα1

q1−δ−α1x
dzϕ(x)dx ≤ cδ‖ϕ‖1

for a suitable constant c > 0.Finally the third term in inequality (6.23) can be estimated
in the following way∫ r

r−δ
D1(z)

∫ M

f −1
1 (z)

e−(λ+γ )τ(x, f −1
1 (z))ϕ(x)dxdz ≤ c′δ‖ϕ‖1.

As a consequence, for every ε > 0 there exists a δε > 0 such that, for every δ < δε

‖K1
λϕ(· + δ)− K

1
λϕ(·)‖1 < ε‖ϕ‖1

and, hence the operator K1
λ is compact. The same technique can be used to prove that

the operators K2
λ and K

3
λ are compact, hence the operator Kλ is compact for every

λ ∈ C with �λ > −γ .
Now we have to prove that the operatorKλ is non-supporting for every λ ∈ Δ∩R.

For every ϕ ∈ X+ = L1+([m,M]) there exists a x0 ∈ (m,M) such that ϕ �= 0
for a subset S of [x0,M] with positive measure. On the other hand for every F ∈
L∞+ (Ω0) = L∞+ ([m,M]) there exists a set SF of positive Lebesgue measure on which
F is strictly positive. If x < x0 we have that

(Kλϕ)(x) ≥ −1

α2g( f
−1
2 (x))

∫ M

f −1
2 (x)

e−(γ+λ)τ(z, f −1
2 (x))ϕ(z)dz

≥ −1

α2g( f
−1
2 (x))

∫ M

x
e−(γ+λ)τ(z, f −1

2 (x))ϕ(z)dz

≥ −1

α2g( f
−1
2 (x))

∫ M

x0
e−(γ+λ)τ(z, f −1

2 (x))ϕ(z)dz

then Kλϕ(x) > 0.
Assume now that x > x0. Also in this case we have that

(Kλϕ)(x) ≥ −1

α2g( f
−1
2 (x))

∫ M

f −1
2 (x)

e−(γ+λ)τ(z, f −1
2 (x))ϕ(z)dz.

Thanks to the fact that f2 is monotonically increasing we deduce that, if x < f2(x0)
then f −1

2 (x) < x0 and hence Kλϕ(x) > 0 for every x < f2(x0). Iterating this
argument we deduce that Kλϕ(x) > 0 for every x < f n2 (x0).

Since for every z < M there exists an n such that f n2 (x0) > z.we deduce that there
exists an n such that the set {x < f n(x0)} ∩ SF has positive measure and therefore
Kλ is non-supporting. �
Proposition 6.16. Let g, μ,Λ, ν be such that Assumptions 6.4 hold. Let ψ0 be the
stable distribution. The Malthusian parameter is equal to 0 and R0 = 1. The solution
B of (2.1) satisfies

‖B(t, ·)− cΨ0‖ ≤ Me−vt

where c, v,M > 0 and Ψ0(dx) = ψ0(x)dx the norm ‖ · ‖ = ‖ · ‖T V = ‖ · ‖�.
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7. Relation between the PDE formulation and the RE

In this sectionwe prove asynchronous exponential growth/decline for the population
distribution for the model examples introduced in Sect. 6.

We assume that the kernel K is defined by (5.1) for parameters satisfying one among
the three Assumptions 6.1, 6.2, 6.4; hence K is a z0-bounded regularizing kernel and
induces via formula (4.27) an operator kernel K̃ that satisfies eitherAssumption 4.23 or
Assumption 4.24. The operator kernel K̃ in turn induces the discounted next generation
operatorKλ through the Laplace transform (4.7).We assume thatKλ is non-supporting
for every λ ∈ Δ ∩ R and compact for every λ ∈ Δ.
7.1. From the population birth rate to the population distribution

We start by making the connection between the renewal equations and the par-
tial differential equations formalising the model examples presented in Sect. 5. Let
M(t, ω) be the number of individuals in the population with state in the set ω at time
t. Assume that at time t = 0 we have M(0, ·) = M0 with M0 ∈ M+,b(Ω). Then the
number of individuals, born before time zero, with state in the set ω at time t is equal
to

∫
Ω

F (t, x)δX (t,x)(ω)M0(dx).

On the other hand, the number of individuals, born after time zero, with state in the
set ω at time t equals

∫ t

0

∫
Ω0

B(t − a, dξ)F (a, ξ)δX (a,ξ)(ω)da,

where B is the population birth rate. The two above observations lead to the following
expression of M in terms of B and M0

M(t, ω) =
∫ t

0

∫
Ω0

B(t − a, dξ)F (a, ξ)δX (a,ξ)(ω)da

+
∫
Ω

F (t, x)δX (t,x)(ω)M0(dx). (7.1)

Once B has been solved from the renewal equation (2.1), the formula (7.1) is an explicit
formula for M .
An alternative way to define M , see for instance [8], is to define it by duality with

the solution of the backward equation corresponding to (6.2), (6.1), (6.11), that reads,
in its general form, as

∂tϕ(t, x) = g(x)∂xϕ(s, x)− μ̃(x)ϕ(s, x)+
∫
Ω0

ϕ(s, η)ν(x, dη)Λ(x). (7.2)
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If M is differentiable this amounts to define M as the function that satisfies
∫
Ω

d

dt
M(t, dx)ϕ(x) =

∫
Ω

(g(x)∂xϕ(x)− μ̃(x)ϕ(x))M(t, dx)

+
∫
Ω

(∫
Ω0

ϕ(η)ν(x, dη)

)
Λ(x)M(t, dx) (7.3)

for everyϕ ∈ C1
c (R+).Weprovidemoredetails onhow to interpret the term

∫
Ω

d
dt M(t,

dx)ϕ(x) in Appendix B (proof of Proposition B.2).
If M is not differentiable, as in the present case, this alternative way cannot be used.

However, M can still be defined as the solution of an equation, namely equation (7.4)
below, which can be seen as a weak version of the PDEs (6.2), (6.1), (6.11) when ν is
equal to (6.6), (6.10) or (6.15), respectively.

Proposition 7.1. Assumeμ, g,Λ, ν are either as in Assumptions 6.1, Assumption 6.2
or Assumption 6.4.
The function M, defined by equation (7.1), is the unique function mapping R+ ×

B(Ω) into R+, that satisfies the following equation for every ϕ ∈ C1(R+,C1
c (Ω))

∫
Ω

ϕ(t, x)M(t, dx)−
∫
Ω

ϕ(0, x)M0(dx)−
∫ t

0

∫
Ω

∂sϕ(s, x)M(s, dx)ds

=
∫ t

0

∫
Ω

(g(x)∂xϕ(s, x)− μ̃(x)ϕ(s, x))M(s, dx)ds

+
∫ t

0

∫
Ω

(∫
Ω0

ϕ(s, x)ν(η, dx)

)
Λ(η)M(s, dη)ds (7.4)

and the initial condition M(0, ·) = M0(·).
We refer to the appendix for the proof of this proposition.
Equation (7.4) is used in the literature, see for instance [10] and also [21] in a

slightly different situation. It is not entirely intuitive because it relies on what one
could call a double duality (both in the state variable and in the time variable). In
our approach we use the interpretation to define M by (7.1). In the next section we
shall deduce the large time behaviour of M from that of B in a simple natural way.
So there is no need to formulate a PDE for M and to specify in which sense we solve
it. Our motivation to, nevertheless, formulate and prove Proposition 7.1 is simply to
show that our constructively defined M does indeed coincide with M as defined in
other works.
By the interpretation of F (t, x) as the survival probability we expect F (t, x) to

tend to zero as time tends to infinity. Indeed, it follows from the assumption on the
model parameters that we have made in this section that there exists a constant C > 0
such that

sup
x∈Ω0

F (t, x) ≤ Cez0t for all t > 0. (7.5)
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The exponential bound (7.5) is crucial in deducing the asymptotic behaviour of the
solution B of the renewal equation (2.1) and subsequently of M defined in terms of B
in (7.1). This will be done in the next subsection.

7.2. Asymptotic behaviour of the solution of the PDE

We now state and prove our result on asynchronous exponential growth/decline of
the population distribution M .

Theorem 7.2. Assume that μ, g,Λ, ν are either as in Assumptions 6.1, Assump-
tion 6.2, or Assumption 6.4. Let M be given by (7.1) and let ψr and r be as in
Corollary 4.30. Then there exist a constant C > 0 and a constant � > 0 such that

∥∥e−r t M(t, ·)− cMψr (·)
∥∥ ≤ Ce−�t t > 0. (7.6)

where c > 0 and Mψr is defined by

Mψr (ω) :=
∫ ∞

0

∫
Ω0

e−arψr (ξ)F (a, ξ)δX (a,ξ)(ω)dξda ω ∈ B(Ω) (7.7)

and where ‖ · ‖ = ‖ · ‖T V = ‖ · ‖�.
Proof. We start by introducing some useful notation. Let M̃ AC be the measure defined
by

M̃ AC (t, ω) :=
∫ t

0

∫
Ω0

b(t − a)(ξ)F (a, ξ)δX (a,ξ)(ω)dξda

where b is the density of BAC . In analogy we define M̃s as follows

M̃s(t, ω) :=
∫ t

0

∫
Ω0

Bs(t − a, dξ)F (a, ξ)δX (a,ξ)(ω)da.

With M̃ we denote the measure defined by

M̃(t, ω) :=
∫
Ω

F (t, x)δX (t,x)(ω)M0(dx).

Notice that
∥∥M(t, ·)− cert Mψr (·)

∥∥ ≤
∥∥∥M(t, ·)− M̃ AC (t, ·)

∥∥∥+
∥∥∥M̃ AC (t, ·)− cert Mψr (·)

∥∥∥
≤
∥∥∥M̃(t, ·)

∥∥∥+
∥∥∥M̃s(t, ·)

∥∥∥+
∥∥∥M̃ AC (t, ·)− cert Mψr (·)

∥∥∥ .
Now we estimate all these terms. In the estimates that follow we shall denote by C
a suitably chosen positive constant the value of which may change from line to line.
Thanks to (7.5) we have
∥∥∥M̃(t, ·)

∥∥∥ =
∫
Ω0

M0(dξ)F (t, ξ)δX (t,ξ)(Ω) ≤
∫
Ω0

M0(dξ)F (t, ξ) ≤ C‖M0‖ez0t
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for every t ≥ 0. It follows from (3.7) and (7.5) that

∥∥∥M̃s(t, ·)
∥∥∥ =

∫ t

0

∫
Ω0

Bs(t − a, dξ)F (a, ξ)δX (a,ξ)(Ω)da

≤
∫ t

0

(
c1e

z0(t−a) + c2te
z0(t−a)

)
sup
ξ∈Ω

F (a, ξ)da

≤ (
c1e

z0t + c2te
z0t
)
t.

Let m be the density of M̃ AC and let mψr be the density of Mψr . This means that

mψr (y) :=
∫ ∞

0
e−raψr (X (−a, y))F (a, X (−a, y))

g(y)

g(X (−a, y))
da

and

m(t, y) :=
∫ t

0
b(t − a)(X (−a, y))F (a, X (−a, y))

g(y)

g(X (−a, y))
da,

where b(t − a)(X (−a, y)) is the evaluation in X (−a, y) of the function b(t − a). By
the definition of the total variation norm and of the flat norm, we then have

∥∥∥M̃ AC (t, ·)− cert Mψr (·)
∥∥∥ = ∥∥m(t, ·)− certmψr (·)

∥∥
1 .

Notice that by the change of variable X (−a, y) = x we get

∥∥m(t, ·)− certmψr (t, ·)
∥∥
1 ≤ ert

∫ ∞

t

∫
Ω0

ψr (x)e
−raF (a, x)dxda

+
∫ t

0

∫
Ω0

∣∣b(a)(x)− ceraψr (x)
∣∣F (t − a, x)dxda

The fact that F satisfies (7.5) and the fact that r > z0 imply

ert
∫ ∞

t

∫
Ω0

ψr (x)e
−raF (a, x)dxda ≤ Cez0t .

Recall that by Corollary 4.30 there exists a constants C > 0 and r > k > 0 such
that

∥∥b(t)− certψr
∥∥
1 ≤ Ce−kt+r t for every t > 0.

Therefore, using (7.5), aswell as the fact that r−k > 0 and, hence,maxa∈[0,t] e(r−k)a =
e(r−k)t we deduce that

∫ t

0

∫
Ω0

∣∣b(a)(x)− ceraψr (x)
∣∣F (t − a, x) dxda

≤ C
∫ t

0
e(r−k)a sup

x∈Ω
F (t − a, x)da ≤ Ce(r−k)t

∫ ∞

0
ez0ada.
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Combining all the bounds that we have for ‖M̃(t, ·)‖, ‖ms(t, ·)‖ and ‖M̃s(t, ·) −
e−r tψr (·)‖ we deduce that

∥∥M(t, ·)− cert Mψr (·)
∥∥ ≤ Ce(r−�)t

fore some � > 0, that is, (7.6) holds. �

8. Concluding remarks

Models of physiologically structured populations can be formulated from first prin-
ciples as renewal equations for the population birth rate B, which takes on values in
the space of measures on the set of admissible states-at-birth [11,19]. In this paper
we proved the asynchronous exponential growth of the measure-valued solution B of
the renewal equation, (2.1) under a regularisation assumption on the kernel K . This
assumption enabled us to derive the asymptotic behaviour of B from the behaviour of
its absolutely continuous part BAC . Moreover, using the regularisation assumption,
we proved that also the density of BAC satisfies a renewal equation. We studied the
long term behaviour of this density by way of Laplace transform methods.
We applied our results to a model of cell growth and fission (either into equal or

unequal parts) and to a model of waning and boosting of the level of immunity against
a pathogen. For these examples we then used the interpretation to express in Equation
(7.1) the population state M , that is, the distribution of individual states, in terms of
the population birth rate B. If we assume that the values of B(t, ω) for t < 0 are given,
we can write (7.1) as follows:

M(t, ω) =
∫ ∞

0

∫
Ω0

B(t − a, dξ)F (a, ξ)δX (a,ξ)(ω)da. (8.1)

Vice versa, we can express B in terms of of M :

B(t, ω) =
∫
Ω

Λ(η)ν(η, ω)M(t, dη). (8.2)

Combining Equations (8.1) and (8.2) we deduce the translation invariant formulation

B(t, ω) =
∫ ∞

0

∫
Ω0

B(t − a, dξ)K (a, ξ, ω)da (8.3)

of Equation (2.1).
When we solved (8.3) and then used (8.1) to define M , we actually solved a PDE,

the weak version of which is (7.4) (see Section 6 of [19] for general remarks about the
way RE arise when solving certain types of PDE). However, as noted above, there
is no need to write down the PDE itself and to specify the notion of solution, nor to
rigorously prove the existence of such a solution, since the interpretation justifies our
conclusions. So guided by the interpretation we determined the asymptotic behaviour
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of the population distribution efficiently using (8.1) and thus avoided demanding tech-
nicalities associated with PDEs.
When the measure M(t, ·) is absolutely continuous with respect to the Lebesgue

measure, it is simpler to write down the PDE. For the model of cell growth and fission
into equal parts it takes the form (6.1), for fission into unequal parts it becomes (6.2)
and for the model of waning and boosting we have (6.11). These PDEs have been
treated for instance in [14], [25] and [12], respectively.

The corresponding backward formulation of these equations is (7.2).WhenΩ ⊂ R,
then the measure M(t, ·) can be represented by the NBV function N defined by

N (t, x) :=
∫

[0,x]
M(t, dη).

The function N satisfies the following forward equation

∂t N (t, x) = −g(x)∂x N (t, x)−
∫

[0,x]
μ̃(ξ)N (t, dξ)

+
∫
Ω

Λ(η)ν(ξ, [0, x])N (t, dξ). (8.4)

The regularization assumption on the kernel K entails, of course, a restriction con-
cerning the class of models that is covered. For the special example of fission into two
equal parts, it is shown in Section II.12 of [34] that one can establish convergence to
an absolutely continuous stable distribution under a relaxed regularity condition. So
there is definitely room for deriving sharper results. On the other hand, it is known that
a stable distribution may have a non-zero singular component. Indeed, this can happen
in the context of the selection-mutation balance as analyzed in [1,6]. We now briefly
comment on the similarities and differences of the models considered here and those
treated in [1,6]. In [6], the nonlinearity is of the ‘replicator’ type, meaning that it is due
to dividing by the total population size, so due to working with relative magnitudes.
In the context of our framework we can, if we wish, do the same. In [1] the per capita
birth and death rates are allowed to depend on the total population size (see below for a
more general setup). Neither [1] nor [6] considers a dynamical trait and both implicitly
assume that the survival probability as a function of age is an exponential function.
In these respects the model considered here is far more general. In [6] mutation is
incorporated as a random change of trait, while in [1] it is incorporated as production
of offspring with a different trait. If in our framework we put K = K1 + K2, with
K1(a, ξ, .) equal to a (a, ξ) dependent multiple of the Dirac measure concentrated
in ξ (describing production of offspring with exactly the same trait) and K2(a, ξ, .)
equal to a (a, ξ) dependent multiple of a fixed absolutely continuous probability dis-
tribution, we obtain a ‘house-of-cards’ type model in the spirit of Section 4 of [6].
Perhaps one can do a lot of more or less explicit calculations for this special case of a
one-dimensional range perturbation of a rather degenerate kernel K1, but this has not
been done so far.
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It is a challenge to extend the analysis developed in this paper to the case of a
structured population embedded in a non-constant environment which influences the
evolution of the population and which in turn is influenced by feedback from the
population. An example of an environment for cell growth and fission is the amount
of nutrient resources, as it is known that the availability of nutrients affects both the
growth and fission rates [35]. In the waning and boosting context, the force of infection
γ is the most relevant environmental variable.

Let us denote the environment by E . The evolution in time of (B(t), E(t)) is given
by the following system of equations

B(t, ω) =
∫ ∞

0

∫
Ω0

B(t − a, dξ)K (a, ξ, Et , E(t), ω)da (8.5)

d

dt
E(t) = f (E(t))−

∫ ∞

0

∫
Ω0

B(t − a, dξ)c(a, ξ, Et , E(t))da (8.6)

where dE(t)
dt = f (E(t)) describes the evolution in time of the environment in the

absence of a consumer population and c(a, ξ, Et , E(t)) represents the influence on
the environment of an individual born with state ξ , that at time t has age a. Both c
and the kernel K in equation (8.5) depend on E(t) as well as on the history Et , that is
on all the values of E before time t and this dependence on E introduces, via (8.6), a
non-linearity in equation (8.5).

It is an open problem to study the asymptotic behaviour of (B(t), E(t)) under an
(adapted) regularisation assumption on the kernel K and to uncover the connection
with the corresponding PDE formulation. The special case Ω0 = {x0} is elaborated
in [2].
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A Notation

In this appendixwe introduce the notation used in the paper.We denote byR+ the set
[0,∞) and by R∗+ the set (0,∞). Given a Borel measurable subset A of R we denote
byB(A) the σ−algebra of all Borel subsets of A.M (A) is the set of the signed Borel
measures on A, M+(A) is the cone of the positive measures and M+,b(A) the set of
the positive and bounded measures on A. Furthermore,M+,AC (A) is the subset of the
measures which are absolutely continuous with respect to the Lebesgue measure. We
denote by μs the singular part of the measure μ and by μAC its absolutely continuous
part, again with respect to the Lebesgue measure. We have μ = μs + μAC . Finally,
we denote by |A| the Lebesgue measure of the Borel set A.

The total variation norm ‖μ‖T V of a measure μ ∈ M (A) is defined by

‖μ‖T V = sup
Π

n∑
i=1

|μ(Ai )|,

where the supremum is taken over all the finite measurable partitionsΠ := {A1, . . . ,

An} of the set A. We denote by BL(A) the space of the real valued bounded Lipschitz
functions, endowed with the norm

‖ f ‖BL := sup
x∈A

| f (x)| + sup
x,y∈A:x �=y

| f (x)− f (y)|
|x − y| .

Finally, the flat norm ‖μ‖� of a measure μ ∈ M(A) is defined by

‖μ‖� = sup

{∣∣∣∣
∫
A
f dμ

∣∣∣∣ : f ∈ BL(A) such that ‖ f ‖BL ≤ 1

}
.

For positive measures μ the equality‖μ‖� = ‖μ‖T V holds, see [24].
We denote by L1+(A) the set of the positive functions belonging to L1(A). The set

L1+(A) is a cone in L1(A). Similarly, we denote by L∞+ (A) the cone of the positive
functions belonging to L∞(A).

For real numbers ρ, L1
ρ(A) is the space of the measurable functions f : A → R

such that
∫
A

∣∣ f (a)eρa∣∣ da <∞.

L (X) is the space of the bounded linear operators from the normed linear space X
into itself equipped with the operator norm by ‖ · ‖op. The spectral radius of the linear
operator T is denoted by ρ(T ).

B Proof of Proposition 7.1

Let the assumptions made in the beginning of Sect. 7 hold.
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To prove that M defined by (7.1) is the unique solution of equation (7.4), we use
the Riesz–Markov–Kakutani representation theorem and (7.1) to identify M(t, ·)with
the element

TB(t)+ TM0(t) (2.87)

of (Cc(Ω))
∗, where the function TB : R+ → (Cc(Ω))

∗ is defined by

TB : t �→
(
ϕ �→

∫ t

0

∫
Ω0

B(t − a, dξ)F (a, ξ)ϕ(X (a, ξ))da

)
t ≥ 0 (2.88)

while the function TM0 : R+ → (Cc(Ω))
∗ is defined by

TM0 : t �→
(
ϕ �→

∫
Ω

M0(dξ)F (t, ξ)ϕ(X (t, ξ))

)
t ≥ 0. (2.89)

We use this representation to compute d
dt M(t, ·). To this end we will identify TB(t)

and TM0(t) with their restrictions on C1
c (Ω). We start with an auxiliary lemma that

explain how to compute d
dt TB(t) and

d
dt TM0(t).

Lemma B.1. The functions TB : R+ → (C1
c (Ω))

∗ and TM0 : R+ → (C1
c (Ω))

∗
defined by (2.88) and (2.89), respectively, are a.e. differentiable and differentiable.
For the values of time t ≥ 0 for which TB is differentiable, its derivative d

dt TB(t) ∈
(C1

c (Ω))
∗ is given by

d

dt
TB(t)ϕ = FB(t)ϕ for every ϕ ∈ C1

c (Ω),

where

FB(t)ϕ :=
∫
Ω0

B(t, dξ)ϕ(ξ)+
∫ t

0

∫
Ω0

B(t − a, dξ)F (a, ξ)G(ϕ)(X (a, ξ))da

with

G(ϕ)(x) := −μ̃(x)ϕ(x)+ g(x)ϕ′(x).

The derivative d
dt TM0(t) ∈ (C1

c (Ω))
∗ of TM0 is given by

d

dt
TM0(t)ϕ = FM0(t)ϕ for every ϕ ∈ C1

c (Ω),

where

FM0(t)ϕ :=
∫
Ω

F (t, ξ)G(ϕ)(X (t, ξ))M0(dξ).

The proof of this lemma is technical as it deals with function with values in
(C1

c (Ω))
∗, but the result is intuitively credible as it is formally obtained by simply

applying Leibniz rule for differentiating under the integral sign.
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Proof. We start by proving that TB is differentiable. Notice that for every ϕ ∈ C1
c (Ω),

∥∥∥∥TB(t)− TB(t + h)

h
− FB(t)

∥∥∥∥
op

= sup
‖ϕ‖

C1
c (Ω)

≤1

∣∣∣∣TB(t)ϕ − TB(t + h)ϕ

h
− FB(t)ϕ

∣∣∣∣ .

By the Lebesgue point theorem we have that for almost every t > 0

lim
h→0

1

h

∫ t+h

t

∫
Ω

B(a, dy)F (t − a, y)ϕ(X (t − a, y))da =
∫
Ω

B(t, dy)ϕ(y)

for every ϕ ∈ C1
c (Ω) with ‖ϕ‖C1

c (Ω)
≤ 1. The fact that ϕ is Lipschitz continuous and

that for every y ∈ Ω0 the map X (·, y) is continuous implies that the convergence is
uniform in ϕ. Let us illustrate why. Notice that

1

h

∣∣∣∣
∫ t+h

t

∫
Ω

B(a, dy)F (t − a, y)ϕ(X (t − a, y))da −
∫
Ω

B(t, dy)ϕ(y)

∣∣∣∣
≤ 1

h

∫ t+h

t

∣∣∣∣
∫
Ω

B(a, dy)F (t − a, y)ϕ(X (t − a, y))

−
∫
Ω

B(a, dy)F (t − a, y)ϕ(y)

∣∣∣∣ da

+ 1

h

∣∣∣∣
∫ t+h

t

∫
Ω

B(a, dy)F (t − a, y)ϕ(y)da −
∫
Ω

B(t, dy)ϕ(y)

∣∣∣∣ da

≤ 1

h

∫ t+h

t

∫
Ω

B(a, dy) |ϕ(X (t − a, y))− ϕ(y)| da

+ 1

h

∫ t+h

t

∣∣∣∣
∫
Ω

B(a, dy)F (t − a, y)da −
∫
Ω

B(t, dy)

∣∣∣∣ da
The second term goes to zero a.e., uniformly in ϕ. Since ϕ is compactly supported,
and Lipschitz continuous, we have that for every ε > 0 there exists a δ > 0 such that
for every h < δ we have |ϕ(X (h, y))− ϕ(y)| ≤ ‖ϕ′‖∞ |X (h, y)− y| < ε. It follows
that

1

h

∫ t+h

t

∫
Ω

B(a, dy) |ϕ(X (t − a, y))− ϕ(y)| da → 0

uniformly in ϕ with ‖ϕ‖C1
c (Ω)

≤ 1 as h → 0.
On the other hand, by the dominated convergence theorem we deduce that

lim
h→0

∫ t

0

∫
Ω0

ΔhFϕ(t, a, y)

h
G(ϕ)(X (a, y)))B(a, dy)da

=
∫ t

0

∫
Ω0

F (a, y)G(ϕ)(X (a, y)))B(a, dy)da
where

ΔhFϕ(t, a, y)
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= F (t + h − a, y)ϕ(X (t + h − a, y))− F (t − a, y)ϕ(X (t − a, y)).

Since for every y ∈ Ω0 the map X (·, y) is continuous and since ϕ ∈ C1
c (R), hence

Lipschitz continuous function, the convergence is uniform in ϕ.
The proof of the fact that

dTM0(t)ϕ

dt
= FM0(t)ϕ

is analogous and we omit it. �

Proposition B.2. The function M, defined by equation (7.1) satisfies (7.4) for every
ϕ ∈ C1(R+,C1

c (Ω)).

Proof. Integrating by parts we find that

∫
Ω

ϕ(t, x)M(t, dx)−
∫
Ω

ϕ(0, x)M0(dx)−
∫ t

0

∫
Ω

∂sϕ(s, x)M(s, dx)ds

=
∫ t

0

∫
Ω

ϕ(s, x)
d

ds
M(s, dx)ds

where the term
∫
Ω
ϕ(s, x)M(s, dx) is equal to FB(s)ϕ(s, ·) + FM0(s)ϕ(s, ·). Hence

thanks to Lemma B.1
∫ t

0

∫
Ω

ϕ(s, x)
d

ds
M(s, dx)ds =

∫ t

0

∫
Ω0

B(t, dξ)ϕ(s, ξ)ds

+
∫ t

0

∫ s

0

∫
Ω0

B(s − a, dξ)F (a, ξ)G(ϕ(s, ·))(X (a, ξ))dads

+
∫ t

0

∫
Ω

F (s, x)G(ϕ(s, ·))(x)M0(dx)ds.

This implies that

∫
Ω

ϕ(t, x)M(t, dx)−
∫
Ω

ϕ(0, x)M0(dx)−
∫ t

0

∫
Ω

∂sϕ(s, x)M(s, dx)ds

=
∫ t

0

∫
Ω0

B(s, dξ)ϕ(s, ξ)ds

+
∫ t

0

∫ s

0

∫
Ω0

B(s − a, dξ)F (a, ξ)G(ϕ(s, ·))(X (a, ξ))dads

+
∫ t

0

∫
Ω

F (s, x)G(ϕ(s, ·))(x)M0(dx)ds.

Hence, to deduce that M satisfies (7.4), we have to prove that

∫ t

0

∫
Ω0

B(s, dξ)ϕ(s, ξ)ds



46 Page 58 of 62 E. Franco et al. J. Evol. Equ.

+
∫ t

0

∫ s

0

∫
Ω0

B(s − a, dξ)F (a, ξ)G(ϕ(s, ·))(X (a, ξ))dads

+
∫ t

0

∫
Ω

F (s, x)G(ϕ(s, ·))(x)M0(dx)ds

=
∫ t

0

∫
Ω

G(ϕ(s, ·))M(s, dx)ds

+
∫ t

0

∫
Ω

(∫
Ω

ϕ(s, x)ν(η, dx)

)
Λ(η)M(s, dη)ds (2.90)

Using (7.1) to compute
∫ t

0

∫
Ω

G(ϕ(s, ·))(x)M(s, dx)ds

we deduce that∫ t

0

∫ s

0

∫
Ω0

B(s − a, dξ)F (a, ξ)G(ϕ(a, ·))(X (a, ξ))dads

=
∫ t

0

∫
Ω

G(ϕ(s, ·))(x)M(s, dx)ds

−
∫ t

0

∫
Ω

F (s, x)G(ϕ(s, ·))(x)M0(dx)ds (2.91)

Let

L(s, x) := Λ(x)
∫
Ω

ν(x, dy)ϕ(s, y).

We integrate the function L(s, η) against the measure M(s, dη)ds on R+ × Ω and
deduce that∫ t

0

∫
Ω

L(s, η)M(s, dη)ds =
∫ t

0

∫
Ω

∫
Ω

ϕ(s, x)ν(η, dx)Λ(η)M(s, dη)ds

On the other hand, integrating L(s, η) against the following measure on R+ ×Ω
∫ s

0

∫
Ω0

B(s − a, dξ)F (a, ξ)δX (a,ξ)(·)dads +
∫
Ω

F (s, x)δX (s,x)(·)M0(dx)ds,

and, additionally, using the fact that B satisfies (2.1), as well as the formula (7.1), we
deduce that ∫ t

0

∫
Ω0

B(s, dξ)ϕ(s, ξ)ds

=
∫ t

0

∫
Ω

L(s, η)M(s, dη)ds

=
∫ t

0

∫
Ω

∫
Ω

(ϕ(s, y)ν(η, dy))Λ(η)M(s, dη)ds (2.92)

Combining (2.90) with (2.91) and with (2.92) we find that M satisfies (7.4). �
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Finally we prove that there exists a unique solution for equation (7.4).

Proposition B.3. If both M1 and M2 solve (7.4) with the same initial condition
M1(0, ·) = M2(0, ·) = M0(·), then M1(t, ·) = M2(t, ·) for every t > 0.

Proof. Let M = M1 − M2. Since M1 and M2 satisfy equation (7.4), it follows that∫
Ω

ϕ(t, x)M(t, dx) =
∫ t

0

∫
Ω

G ϕ(s, x)M(s, dx)ds,

where

G ϕ(s, x) := ∂sϕ(s, x)+ g(x)∂xϕ(s, x)− μ̃(x)ϕ(s, x)+
∫
Ω

ϕ(s, η)Λ(x)ν(x, dη).

(2.93)

We prove that for every ψ ∈ Cc(Ω0) there exists a ϕ ∈ C1([0, t],C1
c (Ω0)) such

that G ϕ = 0 and ϕ(t, x) = ψ(x). This implies that M(t, suppψ) = 0. Making the
function ψ vary we deduce that M(t, A) = 0 for every A ∈ B(Ω0). From this we
find that M1 = M2.

Let us prove that for every ψ there exists a solution to the equation G ϕ = 0 with
final condition ϕ(t, x) = ψ(x). Thanks to the definition of G , this is equivalent to
prove that there exists a unique solution to

∂sϕ(s, x) = −g(x)∂xϕ(s, x)+ μ̃(x)ϕ(s, x)−
∫
Ω

ϕ(s, η)Λ(x)ν(x, dη). (2.94)

Integrating along the characteristic we can rewrite the equation in a fixed point form:

ϕ(s, X (s, x)) = T ϕ(s, x)

with X (s, x) being the solution of the ODE dy
ds = g(y) with initial datum y(0) = x

and with

T ϕ(s, x) := ψ(X (t, x))e− ∫ t
s μ̃(X (v,x))dv

+
∫ t

s

∫
Ω

ϕ(v, η)Λ(X (v, x))ν(X (v, x), dη)e− ∫ v
s μ̃(X (v,x))dvdv

Since

‖T ϕ2 − T ϕ2‖∞ ≤ 2 · ‖ϕ1 − ϕ2‖∞ · sup
x∈Ω

∫ t

s
μ̃(X (v, x))e− ∫ s

v μ̃(X (a,x))dadv

≤ 2 · ‖ϕ1 − ϕ2‖∞ · sup
x∈Ω

(
1 − e− ∫ t

0 μ̃(X (a,x))da
)
,

wededuce that for sufficiently small t > 0 theoperatorT , thatmapsC1([0, t],C1
c (Ω0))

in itself, is a contraction. Hence there exists a unique solution of equation (2.94) as s
varies between 0 and t .A solution for every time t can be proven to exists by repeating
the above reasoning for every interval of time of length t . �
Proof of Proposition 7.1. It is enough to combine the statement of Proposition B.3
and B.2. �
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