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Climate change is one of the drivers of wildlife-borne disease emergence, as it can affect species abundance and fitness, host
immunocompetence, and interactions with pathogens. To detect emerging wildlife-borne diseases, countries may implement
general wildlife-disease surveillance systems. Such surveillance exists in the Netherlands. However, it is unclear how well it covers
host species vulnerable to climate change and consequently disease emergence in these species. Therefore, we performed a trait-
based vulnerability assessment (TVA) to quantify species vulnerability to climate change for 59 Dutch terrestrial mammals.
Species’ vulnerability was estimated based on the magnitude of climatic change within the species’ distribution (exposure), the
species’ potential to persist in situ (sensitivity), and the species’ ability to adjust (adaptive capacity). Using these vulnerability
categories, we identified priority species at risk for disease emergence due to climate change. Subsequently, we assessed the
frequency of occurrence of these priority species compared to other mammal species examined in general wildlife disease
surveillance during 2008–2022. We identified 25% of the mammal species to be highly exposed, 24% to be highly sensitive, and
22% to have a low adaptive capacity. The whiskered myotis and the garden dormouse were highly vulnerable (i.e., highly exposed,
highly sensitive, and low adaptive capacity), but they are rare in the Netherlands. The Western barbastelle, the pond bat, and the
Daubenton’s myotis were potential adapters (highly exposed, highly sensitive, and high adaptive capacity). Species vulnerable to
climate change were relatively poorly represented in current general surveillance. Our research shows a comprehensive approach
that considers both exposures to climate change and ecological factors to assess vulnerability. TVAs, as presented in this study, can
easily be adapted to include extra drivers and species, and we would therefore recommend surveillance institutes to consider
integrating these types of assessments for evaluating and improving surveillance for wildlife-borne disease emergence.

1. Introduction

Climate change, largely caused by anthropogenic changes on
the planet, is one of the major health threats for both humans
and animals [1, 2]. Under climate change, various species
must adapt to their changed environment or relocate to
new environments for subsistence [3–5]. Throughout this
process, host immunocompetence can be affected [6]. Addi-
tionally, changes in species assemblages may occur, resulting
in new interactions between hosts and microorganisms [5,
7–9]. Thus, shifts in the abundance of microorganisms and
invasions of novel microorganisms into previously unexposed

or more resilient host populations may result in changes in
disease dynamics [9] and may potentially facilitate the emer-
gence of wildlife-borne zoonotic diseases.

Fluctuations in the occurrence of wildlife diseases, includ-
ing zoonoses, can be detected through disease surveillance.
Surveillance systems can focus on detecting a specific disease
or pathogen (targeted surveillance) or any disease or pathogen
(general surveillance) [10]. General wildlife disease surveil-
lance often relies on investigating unusual wildlife mortality
incidents through postmortem examination of carcasses. This
monitoring is based on the voluntary reporting and collection
of dead wild animal specimens, and given their intrinsic
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nature, only a limited number of wildlife mortality incidents
can be investigated through this kind of surveillance system. It
is currently a black box how the wildlife sample surveyed in
general disease surveillance relates to specific threats and dri-
vers of wildlife-borne emerging infectious (zoonotic) diseases,
such as climate change. Therefore, additional metrics for
assessing the general surveillance data relative to such drivers
of disease are needed.

Because the degree of exposure to climate change, the
ability of a species to persist in their current environment,
and the potential of species to accommodate themselves to
the shifting climate may partly determine the rise of (emerg-
ing) wildlife diseases, trait-based vulnerability assessments
(TVA) can be used to identify host species of concern. A
TVA is a framework that gives insight into what extent species
appear to be affected by environmental changes like climate
change (threats) [11]. TVAs are based on the hypothesis that a
species’ capability to deal with the impact of a threat depends
on both external and internal factors, such as the level of
exposure to the perturbation and their life history traits that
allow a species to cope with or adapt to this exposure [11, 12].
This capability or absence thereof can be quantified as “spe-
cies vulnerability” to the threat [13]. The dimensions of vul-
nerability typically include exposure (i.e., degree of change to
a species’ environment by the threat), species sensitivity (i.e.,
species potential to persist in situ), and species adaptive
capacity (i.e., species’ ability to deal with the impacts of a
driver or to relocate) [11, 14]. Up to now, several studies
have investigated the vulnerability of species to climate
change on global or continental scales [11, 15–19]. However,
few have conducted them on a national level for surveillance
purposes [20–22].

Here, we determined the host species’ vulnerability to
climate change to understand the level of coping required
from the mammals represented in our surveillance sample
and discuss possible implications for the surveillance of
emerging diseases. To achieve this, we used a TVA to identify
the climate change vulnerability of wild mammal species at
the scale of the Netherlands and then evaluated the relative
representation of the vulnerability categories in the Dutch
general wildlife disease surveillance program from 2008 to
2022 (by assessing the frequency of occurrence of these pri-
ority species relative to other mammal species examined
from 2008 to 2022). First, we quantified exposure by deter-
mining the degree of climate change within the geographical
range of Dutch mammals [11, 15]. Then we considered a
combination of traits (e.g., ecological, behavioral, and biolog-
ical) that could affect the level of sensitivity of a species or
bestow species with lesser or greater adaptive capacity regard-
ing the impact of climate change. These three components
combined were used to classify Dutch mammalian wildlife in
terms of vulnerability to climate change [21]. Finally, we ana-
lyzed the sample of mammals examined through the general
wildlife disease surveillance system in the Netherlands in
2008–2022 in terms of species vulnerability to climate change
and discussed possible implications.

2. Materials and Methods

2.1. Vulnerability Assessment. As a first step, a list was com-
piled of all terrestrial mammals that are considered native to
the Netherlands (circa 50.6°N to 53.7°N Latitude, 3.2°E to
7.4°E Longitude) [23] (Table S1). We then followed the TVA
framework, explained in detail by Foden et al. [11] (Figure 1)
to assess the three dimensions (i.e., exposure to climate
change, sensitivity, and adaptive capacity) of vulnerability to
climate change for these mammal species. In this approach,
mammals that are, for instance, highly sensitive and bestowed
with a low adaptive capacity were referred to as “biologically
susceptible (Category 2)” to the shifting climate [16]. Biologi-
cally susceptible mammals, which additionally have endured
high exposure to climate change, were considered to have a
high vulnerability to climate change (Category 1). Mammals
which were highly sensitive and highly exposed, but have a
high adaptive capacity were potential adapters (Category 3)
[11, 16]. We assumed climate likely has the greatest direct
effect on health in species belonging to Categories 1 and 3,
due to the potential impact on immunocompetence, species
abundance, and host pathogen contact.

2.2. Assessment Exposure TVA Dimension. To determine the
magnitude of climate change within the Netherlands, we
used a 30-year base period (1961–1990) as a reference, a
timeframe duration recommended by the World Meteoro-
logical Organization [24]. Following the methodology
described by Williams et al. [25], climate dissimilarities
between the baseline period (average from 1961 to 1990)
and the recent period (average from 1991 to 2020) were
quantified by calculating the standardized euclidean dis-
tances (SED) per grid cell (1 km2) as follows:

SED=grid cell ¼ ffiffiffiffi
∑

p
n¼6
k¼1

bki − akj
À Á

2

s2k j
: ð1Þ

In this formula, n is the number of included climatic
variables (here n= 6; Table 1), a is the mean of climate param-
eter k for the baseline period (1961–1990) at grid cell j, b is the
mean climate for the recent period (1991–2020) at grid cell i,
and skj is the standard deviation (SD) of the interannual vari-
ability for the baseline period [25]. Six climate metrics related
to temperature and precipitation were selected (Table 1):
annual mean temperature (BIO01, °C), maximum tempera-
ture of the warmest month (BIO05, °C), minimum tempera-
ture of the coldest month (BIO06, °C), annual precipitation
(BIO12, mm), precipitation of the wettest month (BIO13,
mm), and precipitation of the driest month (BIO14, mm)
[26–28]. These parameters were selected as they display a
general trend of temperature and precipitation means and
extremes [27], and were not found to be collinear (Pearson’s
r< 0.7 [29], Table S2). In above mentioned formula, all cli-
matic variables are standardized to place them on a common
scale and to emphasize on trends that are relatively large
compared to historic interannual variability [25, 30].
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To determine the degree of exposure to climate change at the
species level, we first retrieved presence-only data (i.e., a sample
with only observed presence and unknown absences), from 2008
until 2020, on the selected terrestrial mammalian wildlife species
(data provided by the DutchMammal Society). These data were
used to generate a database containing the presence per grid cell

with a spatial resolution of 1 km × 1 km (36,799 grid cells,
excluding sea grid cells). Differences in detectability between
species were not considered. We then divided the range of
SED values into sections by use of the tercile of the entire
range of SED values. The upper category was classified as 2,
themiddle category as 1, and the lowest category as 0 [15]. For
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FIGURE 1: Adapted framework for the assessment of the impact of national climate change on mammals according to the IUCN methodology
[11], additionally illustrating the link toward surveillance priorities for human and animal health risk. Mammals scoring high across all
dimensions (exposure, sensitivity, and low adaptive capacity) are classified as highly vulnerable (1). Biologically susceptible mammals (2) are
not exposed but have a high sensitivity and a low adaptive capacity. Potential adapters (3) are exposed and sensitive but have a high adaptive
capacity, and potential persisters (4) are exposed and have a low adaptive capacity but have a low sensitivity to climate change [11]. Species
not occurring in any of these four categories were classified as “exposed only” (5), “sensitive only” (6), “low adaptive capacity only” (7), or
“low vulnerability” (low risk in all dimensions of vulnerability; 8) [11].

TABLE 1: Bioclimatic predictorsa [26].

Metrics Unit Description

BIO01, annual mean temperature Degrees Celsius (°C)
The annual mean temperature was calculated based on
the monthly mean temperature

BIO05, maximum temperature of the
warmest month

Degrees Celsius (°C)
The maximum temperature recorded in the warmest
month for a given year

BIO06, minimum temperature of the
coldest month

Degrees Celsius (°C) The minimum temperature recorded in the coldest
month for a given year

BIO12, annual precipitation Millimeters (mm)
Annual precipitation is calculated by summation of total
monthly precipitation values

BIO13, precipitation of the wettest month Millimeters (mm) The total precipitation recorded within the wettest month
BIO14, precipitation of the driest month Millimeters (mm) The total precipitation recorded within the driest month

Note: aInterpolated data from 34 weather stations in the Netherlands were obtained on a 1 km2 spatial resolution as raster layers from the Royal Netherlands
Meteorological Institute (KNMI, https://dataplatform.knmi.nl/). These raster layers were used to extract values for daily precipitation and daily mean,
minimum, and maximum temperatures.
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each species’ geographical distribution, the number of cells
occurring per category were counted and used to determine
the exposure value [15]:

Exposure ¼ a × 0þ b × 1þ c × 2: ð2Þ

In this formula, a, b, and c are the percentage of cells in
each category (e.g., lower, middle, upper) [15]. Resulting
exposure values were standardized by max–min linear rescal-
ing [28] as follows:

xi − xmin

xmax − xmin
: ð3Þ

Species in the upper 25% were classified as exposed to
climate change [11]. An example of the determination of
the exposure value has been provided in Method S1 and
Figure S4.

2.3. Assessment Sensitivity and Adaptive Capacity TVA
Dimension. To characterize mammals’ sensitivity and adap-
tive capacity to climate change, we selected four traits per-
taining to high sensitivity (i.e., (1) body mass; (2) fossoriality;
(3) diurnality; (4) habitat specialism) [14, 19, 31–33] and
identified four traits as important factors affecting a mam-
mal’s adaptive capacity (i.e., (1) dispersal distance; (2) diet
specialism; (3) reproductive capacity; (4) generation length)
[3, 14, 18, 19, 31–35]. Data on dispersal distance were missing
for all species of the order Chiroptera. For these species, spatial
behavior (i.e., sedentary migrants (<10km), regional migrants
(10–100km), or long-distance migrants (>100km)) was there-
fore taken as a proxy [36, 37]. Traits and their hypothesized
impact in relation to climate change vulnerability are outlined
in Table 2.

To offer a quantitative ranking of species’ sensitivity and
adaptive capacity to climate change, we followed the meth-
odology described by Albouy et al. [15]. All traits were given
equal weights. Each trait was evaluated using a three-point
scale, with two being the most sensitive and zero being the
least sensitive, two having the lowest adaptive capacity, and
zero having the highest [15]. Traits described by categorical
values were scored according to categorical thresholds [15,
19]. For instance, species inhabiting five or more [50] classi-
fication type one habitats were scored as zero, species inha-
biting between two and four [50] habitats were scored as one,
and species inhabiting only one habitat type were scored as
two (Table S4). In the case of traits expressed as continuous
variables, categorization was done by using the tercile of the
range [15]. To assess the robustness of the thresholds
selected for continuous traits, an additional statistical sensi-
tivity test was performed [15]. This test was done by moving
either the first break or the second break of the initial tercile
categorization toward the minimum or maximum values.
The amount by which the breaks were moved varied between
1% and 33%. To assess the impact of moving the breaks, the
Pearson correlation between the initial classification and a
given scenario was determined (Method S2, Figure S5) [15].
Overall sensitivity and adaptive capacity scores were obtained

by summation of all trait values (each between 0 and 2). The
resulting values were standardized by max–min linear rescal-
ing [28]. Species were classified as highly sensitive when they
were among the 25% species with the highest overall sensitiv-
ity scores. Species were categorized as having a low adaptive
capacity when they belonged to the 25% species with the
highest adaptive capacity ranking.

2.4. General Surveillance System in the Netherlands. To deter-
mine the number of mammal species investigated in general
wildlife disease surveillance, we used a dataset from the Dutch
Wildlife Health Centre (DWHC) containing records between
January 2008 and August 2022. All records of completely or
partially necropsied specimens were included in this study,
provided there was valid location data (i.e., longitude and
latitude), and they were not collected for a specific (targeted)
research project. Complete necropsy referred to macroscopi-
cal and histological examination of at least five of the six
following key organs of the specimen: brain, heart, lungs,
liver, spleen, and kidneys, and sometimes with cytological
examination of the following organs: lung, liver, and spleen.
Specimens were classified as partially necropsied when two or
more key organs were missing or were too autolytic for his-
tological assessment, when the specimen was only assessed on
a macroscopical level, or when essential body parts of the
specimen were absent (e.g., head). See Table S3 for the
description of all examination levels used at the DWHC.

2.5. Software Used. Spatial data extraction and analyses were
conducted in R version 4.1.2. Spyder (Python 3.8) from the
anaconda navigator software was used for the retrieval of
climate data (KNMI, https://dataplatform.knmi.nl/).

3. Results

Our TVA initially included 60 terrestrial mammalian spe-
cies (Table S1). The European water vole (Arvicola sher-
man) was excluded preceding the assessment because
occurrence data were not available. The final sample
included species of the orders Chiroptera (30.5%, 18/59),
Rodentia (27.1%, 16/59), Carnivora (16.9%, 10/59), Eulipo-
typhla (13.5%, 8/59), Cetartiodactyla (8.5%, 5/59), and
Lagomorpha (3.4%, 2/59).

3.1. Assessment Exposure TVA Dimension. The mean magni-
tude of climate change, quantified as SEDs, was 2.28 and
ranged from 1.99 to 2.84 (SD= 0.14). Spatially, the overall
magnitude of climate change appeared to bemost prominent in
the coastal areas (Figure 2). Furthermore, based on the graphs
used to quantify climate change within the Netherlands, a cli-
matic shift between the baseline (1961–1990) and the recent
period (1991–2020) was recognizable with a trend towards
higher temperatures (BIO01, BIO05, BIO06) (Figure 3). Addi-
tionally, both the yearly amount of precipitation (BIO12) and
the amount of precipitation in the wettest month (BIO13)
increased throughout the recent period. Finally, a decrease in
the total amount of precipitation in the driest month was
detected when comparing the recent period to the baseline
period.
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The climate change exposure value, standardized to a
range between 0.00 and 1.00, had a median value of 0.45
(IQR: 0.08) for the species assessed. Considering the expo-
sure cutoff value of 0.5 (i.e., low exposure> 0.5 ≥ high

exposure), 15 species were highly exposed (25.4%, 15/59).
More specifically, 50% (4/8) of the Eulipotyphla, 33%
(6/18) of the Chiroptera, 25% (4/16) of the Rodentia, and
10% (1/10) of the Carnivora were classified as highly exposed

TABLE 2: Traits and their underlying hypothesized effects on species sensitivity and adaptive capacity in relation to climate changea.

Category Traits Description Hypothesized impact of climate change

Sensitivity

Body mass Adult mass (in grams)

Bigger species are more robust physically
and so may be less sensitive to climate
change. A bigger body mass is generally
associated with higher energy reserves,
which thus decreases sensitivity to
shortage of food [19, 38]

Fossorial
Yes or no, yes referred to mammal species
being adapted to digging and life
underground

Species that display fossorial behavior
may be less likely to be at risk of climate
change due to their ability to find shelter
from extreme temperatures [33, 39]

Diurnality
Yes or no, yes referred to mammal species
being diurnal only

Mammals that are only active throughout
the daytime are believed to be more
exposed to extreme temperatures and
more likely to be at risk of climate change
[19, 40]

Habitat specialism
Number of distinct levels of one habitat
type occupied by a mammalb

A specialized mammal is more tightly
dependent on specific environmental
requirements and conditions and is,
therefore, more likely to be at risk of
climate change [16, 31, 33, 41]

Adaptive capacity

Dispersal distance
The distance traveled between the place of
birth and the place of reproduction (in
kilometers)

Species with a low dispersal ability are
more likely to be at risk of climate change,
as these species might not be able to move
to novel suitable environments
[3, 31, 34, 41]

Diet specialism
Number of level 1 and level 2 dietary
items eaten by a speciesc

Species with broader dietary breadths are
assumed to have a higher ability to utilize
resources and to establish themselves in
novel areas [31–33]

Reproductive capacity

Number of offspring maximally produced
by amammal [42]. Calculated according to:
RC= Lmax − L1rð Þ ∗LS ∗LPYð Þ
In which:
(i) RC: reproductive capacity
(ii) Lmax: maximum lifespan
(iii) L1r: age first reproduction
(iv) LS: litter size
(v) LPY: number of litters per year

Species with a high reproductive output
will be less affected by the shifting climate
as they will produce a sufficient number of
offspring to compensate for potential
population losses [17, 18, 32, 43–45]

Generation length
The average age of parents of the current
cohort (in days)

Reflects the turnover rate of breeding
individuals within a population [46].
Longer generation lengths have been
demonstrated to be associated with a
heightened risk of extinction under
climate change [32, 35]

Note: Categorization of species traits using a three-point scale is displayed in Table S4. aFor our analysis, trait data were gathered using published literature [36]
and online databases (IUCN Red List (IUCN), COMBINE [47], MammalDiet2 [48, 49]). b[50] classes of level one habitat types: forest, savanna, shrubland,
grassland, wetlands (inland), rocky areas (e.g., inland cliffs, mountain peaks), caves & Subterranean Habitats (nonaquatic), desert, marine neritic, marine
oceanic, marine intertidal, marine coastal/supratidal, artificial—terrestrial, artificial—aquatic, introduced vegetation, and other (Figure S1) ([51]). cDietary
items: invertebrates, mammals, birds, herptiles, fish, woody (browser), herbaceous (grazer), seeds, fruit, nectar, roots, and other (buds/flowers/pollen/gum/
fungi/lichens) (Figure S1). The items most abundant in the diet of mammals were classified as level 1, dietary items regularly consumed by a mammal but in a
lower amount were classified as level 2 dietary items, dietary items rarely consumed are classified as level 3, and level 0 was ascribed to dietary items not
recorded in the diet of a species [48, 49].

Transboundary and Emerging Diseases 5



to climate change within their geographical ranges (based on
presence-only data). A Chiroptera, namely, the Western bar-
bastelle (Barbastella barbastellus), was the most exposed spe-
cies (Exposure = 1). It was followed by an Eulipotyphla, the
bicolored shrew (Crocidura leucodon) (Exposure = 0.91).

3.2. Assessment Sensitivity and Adaptive Capacity TVA
Dimension. Nearly 24% (14/59) of the assessed species
were classified as highly sensitive to climate change. These
consisted of 61% (11/18) of the Chiroptera and 19% (3/16) of
the Rodentia. A low body mass and not being adapted to
digging and life underground (i.e., fossoriality) were the
traits that contributed relatively most to the species being
deemed highly sensitive (Figure S3).

Furthermore, 22% of the species were scored to have a
low adaptive capacity. Of these, the order of Chiroptera addi-
tionally contained the highest percentage of species with a
low adaptive capacity (44%, 8/18), followed by the order
Eulipotyphla (37.5%, 3/8), Cetartiodactyla (20%, 1/5), and
Rodentia (6%, 1/16) (Table 3).

3.3. Assessment Vulnerability. A full breakdown of the vul-
nerability assessment, in accordance with the eight climate

change vulnerability categories, is presented in Table 3.
Under this framework, two species were classed as highly
vulnerable to climate change: the whiskered myotis (Myotis
mystacinus) and the garden dormouse (Eliomys quercinus)
(Category 1). Five species were categorized as biologically
susceptible (Category 2), three species as potential adapters
(Category 3), and two species as potential persisters (Category
4). More than half of the species (31/59) fell into Category 8
(i.e., low vulnerability). The spatial occurrence of Category 1
or 3 species, in which climate change is likely to have the
greatest direct effect on health, is shown in Figure 4.

3.4. Overview of the DWHC General Wildlife Disease
Surveillance System. Between 2008 and 2022, the DWHC
received a total of 3560 dead wild mammals (36 host species)
to be investigated through postmortem examination (Table S3).
Within this timeframe,we identified 69.2% (2,463/3,560) records
that were classified as completely or partially necropsied and
contained valid spatial coordinate data (mean 164Æ 67.2
records/year (min=17, max=256); Figure 5(a)). Mammals
from the order Lagomorpha (671/2,463, 27.2%) were most often
sent to the DWHC, followed by mammalian species from the
orders Carnivora (615/2,463, 25.0%), the Cetartiodactyla
(594/2,463, 24.1%), the Rodentia (271/2,463, 11%), the Eulipo-
typhla (205/2,463, 8.3%), and from species of the order Chirop-
tera (107/2,463, 4.3%) (Figure 5(b)). Geographically, most
investigated dead wild mammals originated from the middle
of the Netherlands (Figure 5(c)) and not necessarily from the
coastal areas in which climate dissimilarities were greatest
(Figure 2).

The species categorized as highly vulnerable (Category 1)
or as a potential adapter (Category 3) belonged to the orders
Chiroptera and Rodentia (Figure 6(a)). The proportion of
Category 8 species belonged mostly to the orders Lagomor-
pha, Cetartiodactyla, and Carnivora (Figure 6(a)). Most dead
wild mammals received by the DWHC were also mostly
Category 8 species (Figure 6(b)). This indicates that Category
1 and 3 species are relatively poorly represented in the
DWHC database sample. More specifically, the garden dor-
mouse and the whiskered myotis, both Category 1 species,
were not or only present twice, respectively. Additionally, no
Category 3 species were completely or partially necropsied
between 2008 and 2022.

4. Discussion

This study implemented a TVA for climate change at a
national level and linked it to general wildlife surveillance to
identify animal species of surveillance priority. We detected a
heterogenous pattern both in species’ presence distribution, as
well as in the spatial degree of climate change. Around 25% of
the mammalian species were found to have experienced a
relatively high degree of exposure to climate change in the
last 30 years, nearly 24% of the species possessed traits that
made them highly sensitive, and 22% were bestowed with a
low adaptive capacity.

A driver, such as climate change, may alter the diversity
and composition of local animal communities due to such
differences in vulnerability scores (e.g., range shifts, altered

Low
Medium

High

FIGURE 2: Extent of climate change in the Netherlands per 25 km2.
Areas in the Netherlands that are experiencing the highest degree of
change between the baseline period (1961–1990) and the recent
period (1991–2020) are shown in dark turquoise (SED≥ 2.33), areas
with a medium degree of change are displayed in turquoise
(2.20≤ SED< 2.33), and regions with a low amount of change
shown in light turquoise (SED< 2.20). Degree of change per
included bioclimatic factor is shown in Figure S2.
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relative abundance by changes in death and/or birth rates)
[12, 52–54]. Climate change might act as a long-term stressor
causing physiological responses in species that are exposed to
climate change, cannot accommodate to it, and have diffi-
culty to persist in situ when exposed (highly vulnerable spe-
cies, Category 1; the garden dormouse, and the whiskered
myotis) [55, 56]. Species that are exposed to climate change
and have difficulty to persist in situ may have higher initial
adaptability (potential adapters, Category 3; Western barbas-
telle, the Pond bat, and the Daubenton’s myotis), but this
might imply they are forced to change their geographical
distribution. This shift in species distribution is still difficult
to predict [57, 58] and can impose additional challenges,
such as contact with novel pathogens and may result in shift-
ing disease dynamics and (negative) health outcomes for the
host (e.g., changing species assemblages, host-pathogen inter-
actions, and altered interactions with endemic pathogens and
hosts) [9, 59–61]. This has repercussions for pathogen trans-
mission [53, 62, 63], for example, illustrated by exacerbated
declines (e.g., wild meerkats (Suricata suricatta) in Kalahari
[64]) and species extinction (e.g., the Monteverde harlequin
frog (Atelopus sp.) and the golden toad (Bufo periglenes) in
Costa Rica [65]) as a result of climate change driven diseases.

The disappearance of vulnerable host species from a com-
munity could, in addition, offer opportunities to those less
vulnerable.

Two out of the 59 Dutch mammal species were highly
vulnerable to climate change (Category 1): the garden dor-
mouse and the whiskered myotis. Both species are rare in the
Netherlands [66]. The Dutch Mammal Society has listed the
garden dormouse as critically endangered. This species has
an estimate of 50 reproducing individuals in three atlas
blocks (grid cells of 25 km2) and a distribution that has
declined with 77% since the 1950s [66]. The whiskered myo-
tis, with an estimated 1000 adult animals reproducing in 134
atlas blocks, was classified as vulnerable; its numbers have
declined with 38% in the last 10 years in the Netherlands
[66]. Cited causes underlying these declines include the dis-
turbance and disappearance of suitable habitats and the con-
tinued decline of flying insect populations [66]. Stress in
relation to climate change can be expected in both highly
vulnerable species, making them also more prone to infec-
tion and disease [67]. Nevertheless, even if climate change
enhanced disease emergence in one of these species in the
Netherlands, the small population sizes make it questionable
if this could progress within the Dutch populations into an
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TABLE 3: Summary of vulnerability scores in mammals relative to climate change according to the TVA framework (Figure 1) [11].

Vulnerability type
High

exposure
High

sensitivity
Low adaptive

capacity
N (%) Species namea Order

1. Highly vulnerable 2 (3.4)
Whiskered myotis
Garden dormouse

Chiroptera
Rodentia

2. Biologically susceptible 5 (8.5)

Bechstein’s myotis
Brown long-eared bat

Geoffroy’s bat
Gray long-eared bat
Soprano pipistrelle

Chiroptera
Chiroptera
Chiroptera
Chiroptera
Chiroptera

3. Potential adapter 3 (5.1)
Daubenton’s myotis Pond bat Western

barbastelle

Chiroptera
Chiroptera
Chiroptera

4. Potential persister 2 (3.4)
Eurasian pygmy shrew
Greater mouse-eared bat

Eulipotyphla
Chiroptera

5. Exposed only 8 (13.6)

Stoat
Brandt’s myotis Bicolored shrew

Crowned shrew Greater white-toothed
shrew Yellow-necked field mouse

European pine vole
Tundra vole

Carnivora
Chiroptera
Eulipotyphla
Eulipotyphla
Eulipotyphla
Rodentia
Rodentia
Rodentia

6. Sensitive only 4 (6.8)

Common pipistrelle
Nathusius’ pipistrelle
Eurasian red squirrel
Hazel dormouse

Chiroptera
Chiroptera
Rodentia
Rodentia

7. Low adaptive capacity
only

4 (6.8)

Fallow deer
Natterer’s bat

Eurasian water shrew
European mole

Cetartiodactyla
Chiroptera
Eulipotyphla
Eulipotyphla

8. Low vulnerability
31

(52.5)

Beech marten
Eurasian badger
Eurasian otter
Gray wolf
Least weasel
Pine marten
Red fox

Western polecat
Wildcat

European bison
Red deer
Roe deer
Wild boar

Common noctule
Lesser noctule
Particolored bat
Serotine bat

Common shrew
European hedgehog

European hare
Rabbit

Bank vole
Black rat
Brown rat

Common hamster
Common vole
Eurasian beaver

Eurasian harvest mouse
Field vole

Carnivora
Carnivora
Carnivora
Carnivora
Carnivora
Carnivora
Carnivora
Carnivora
Carnivora

Cetartiodactyla
Cetartiodactyla
Cetartiodactyla
Cetartiodactyla
Chiroptera
Chiroptera
Chiroptera
Chiroptera
Eulipotyphla
Eulipotyphla
Lagomorpha
Lagomorpha
Rodentia
Rodentia
Rodentia
Rodentia
Rodentia
Rodentia
Rodentia
Rodentia
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emerging infectious disease of more general concern. The
small numbers also make it unlikely that either species will
be found dead and submitted for surveillance in the Nether-
lands. However, if submitted, a thorough investigation of
such cases is warranted, with possibly the use of metage-
nomics for the detection of untargeted pathogens [68].

Three out of the 59 Dutch mammal species were classi-
fied as potential adapters to climate change (Category 3): the
Western barbastelle (Barbastella barbastellus barbastellus),
the pond bat (Myotis dasycneme), and the Daubenton’s myo-
tis (Myotis daubentonii). The Western barbastelle was classi-
fied as regionally extinct because there is currently no
indication that this species procreates within the Netherlands
[66]. The Pond bat is considered endangered in the Nether-
lands because its population of an estimated 4,500 adult
animals is fragmented, reproduces only in 65 atlas blocks,
and has decreased by 32% in the last decade [66]. Dauben-
ton’s myotis is classified as a species of least concern (an

estimated number of 15,000 adult animals reproducing in
454 atlas blocks). Bat species are generally sensitive to envi-
ronmental changes [69]. Both the pond bat and Daubenton’s
myotis species might show an adaptive response to climate
change as changes in temperature and rainfall patterns are
expected to continue (e.g., wetter winters, higher tempera-
tures, more intense rain showers, and higher chances of drier
summers) [70]. Their high adaptive response is not related to
reproductive rate and generation length [69]. Rather, it is
related to high dispersal capacity, making it easier for these
species to move to novel environments. While both bat spe-
cies are still rare, they are more common than the highly
vulnerable whiskered myotis, and they occur in higher den-
sities. We conclude that both species of bats are interesting
for further detection of infectious (zoonotic) diseases emer-
gence because of climate change in the Netherlands. While
their numbers make it more likely that they are found dead
and are submitted for general disease surveillance than the

TABLE 3: Continued.

Vulnerability type
High

exposure
High

sensitivity
Low adaptive

capacity
N (%) Species namea Order

House mouse
Long-tailed field mouse

Rodentia
Rodentia

Total number of mammal
species

59

Note: aScientific names of included species are presented in Table S1.

Category 1
Category 3

Categories 1 and 3

FIGURE 4: The presence of species classed as highly vulnerable (Category 1) or as potential adapters (Category 3) per 25-square-kilometer
block.
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whiskered myotis, a longitudinal surveillance program may
also be considered for detecting changes in pathogen com-
position in these Category 3 species.

Evaluation of the current wildlife disease surveillance by
the DWHC from 2008 to 2022 showed a discrepancy between
the species frequently submitted to the DWHC (i.e., lago-
morphs, carnivores, and ungulates; Figure 6(b)) and the spe-
cies allocated most into the vulnerability categories (i.e., bats,
rodents; Figure 6(a)). This discrepancy suggests that species
that are more susceptible to climate change are less well repre-
sented in the general surveillance database. However, the two

highly vulnerable species (i.e., Category 1) occur in such low
numbers that detection is limited from the beginning. General
wildlife surveillance offers an ideal setting for emerging wild-
life disease discovery. Yet the underrepresentation of certain
species and geographical sample locations is, and will con-
tinue to be a problem [71, 72]. For a carcass to reach a sur-
veillance institute, it needs to persist in the environment, it
needs to be detected and reported in time, and it needs to be
delivered to the institute [72]. The persistence of the carcass in
the environment differs per species and is often surprisingly
brief [73]. Moreover, potential differences arising because of
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reporting bias (i.e., the chance that a detected species is
reported to the DWHC) should also be considered [72].
The reporting of a carcass is dependent on initial detection
by citizens. Consequently, this process is controlled by what
the public perceives as a valuable species (e.g., game versus
non-game species) and their perceived need to submit the
carcass (e.g., single case versus mass mortality, pathogen
spread awareness) [71, 72].

This paper has demonstrated that one can assess wildlife
vulnerability with accurate data on geographical distribution
and on ecological traits. This improved understanding of
potential vulnerability in relation to a driver may enable
wildlife health surveillance institutes to focus surveillance
efforts relating to emerging wildlife disease discovery. How-
ever, inherent to any TVA, our study comes with a degree of
uncertainty: (i) a driver might not affect every mammalian
species in the same manner, thereby introducing uncertain-
ties in the underlying assumptions about the traits [16, 19,
74–77]; (ii) species ranges might have changed, and popula-
tion measurement programs between various species differ.
This may have led to over- or underestimating the actual
degree of exposure to the driver within the chosen time
window; (iii) while conducting the assessment, the possibility
that either species’ sensitivity and/or their adaptive capacity
may vary over time was not addressed [19]; (iv) the degree of
species’ vulnerability to the impacts of a driver is strongly

attributable to the included traits, selected species, and
underlying available data [21, 78]. The traits included here
were based on the previous studies, but they were only a few,
making each one weigh heavily. This means that the out-
comes of TVAs represent relative vulnerability scores, which
makes it hard to meaningfully compare them with other
studies [11, 79]. In addition, as species vulnerability is not
universally defined, different classification systems are avail-
able depending on exposure, sensitivity, or adaptive capacity.
Many of these use different thresholds to classify species into
vulnerability categories [11, 12, 14, 15, 41]. Future research
should therefore clarify which method and which ecological
characteristics will lead to the best predictions of climate
change vulnerability.

To reduce these causes of uncertainty, empirical valida-
tion of the framework and the ecological robustness of the
assessment in future work are essential (e.g., case–control
field studies) [80]. Future developments can further broaden
the scope of this study by incorporating pathogens’ traits
associated with (changes in) infection risk and/or disease
emergence. Describing the effect of a driver across all partic-
ipating species in pathogen transmission is crucial in under-
standing zoonotic risks. Similarly, our analysis included only
the driver of climate change, although species are rarely
threatened by one driver [81]. The cumulative risk presented
by the presence of multiple drivers could, however, be
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relatively easily constructed based on the methods provided
within this paper. Finally, our analysis focused on mammal
species, but bird species and their interactions might addi-
tionally be an important target for risk predictions, especially
with the ongoing Avian influenza epidemic and the impact a
driver can have on successful migration [82–85].

5. Conclusions

Improving wildlife health surveillance is challenging for sev-
eral reasons. Ecosystems are changing due to the synergetic
impact of many drivers across temporal, organizational, and
spatial scales [86]. In addition, the fundamental biology of
host, vector, and pathogens continues to be an understudied
field, especially in the context of novel anthropogenic changes
presented to species. By using a TVA, we were able to enhance
and contextualize our understanding on how a driver is likely
to affect a species in a certain area of interest. We determined
that two species are potentially highly vulnerable to climate
change relative to other Dutch wild mammals (Category 1).
Additionally, we were able to identify three sensitive and
exposed species (Category 3). Because these species are likely
coping with the changing climate situation by adapting to
potential disturbances in ecological balances, this may result
in (new) wildlife diseases. Consequently, we think that using a
TVA to determine the impact of a driver can serve as a start-
ing point of guiding current surveillance strategies and may
help refining hypotheses, even though validation via field
studies remains essential. The TVA presented in this study
is a tool that could be adapted to include extra drivers (e.g.,
pollution and urbanization) and species (e.g., birds and
pathogens), and we would therefore recommend surveillance
institutes to consider integrating these kinds of assessments.

Data Availability

Historical and current climate data are available at https://da
taplatform.knmi.nl/. Data on species diet breadth is available
at https://doi.org/10.1111/mam.12119. Data on the dispersal
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report “Action Plan for the Conservation of All Bat Species
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persal distance, maximum lifespan, age first reproduction,
litter size, and the number of litters per year is available at
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Supplementary Materials

Figure S1: Dietary categories: invertebrates, mammals, birds,
herptiles, fish, woody (browser), herbaceous (grazer), seeds,
fruit, nectar, roots, and other (buds/flowers/pollen/gum/
fungi/lichens). The items most abundant in the diet of mam-
mals were classified as level 1, dietary items regularly con-
sumed by a mammal but in a lower amount were classified as
level 2 dietary items, dietary items rarely consumed are clas-
sified as level 3, and level 0 was ascribed to dietary items not
recorded in the diet of a species [28, 41]. [36] classification
type 1 habitats: forest, savanna, shrubland, grassland, wet-
lands (inland), rocky areas (e.g., inland cliffs, mountain
peaks), caves & Subterranean Habitats (non-aquatic), desert,
marine neritic, marine oceanic, marine intertidal, marine
coastal/supratidal, artificial – terrestrial, artificial – aquatic,
introduced vegetation, and other ([37]). Figure S2: Areas in
the Netherlands that are experiencing the highest degree of
change between the baseline period (1961 – 1990) and the
recent period (1991 – 2020) are shown in dark turquoise,
areas with a medium degree of change are displayed in tur-
quoise, and regions with a low amount of change in those
shown in light turquoise. Figure S3: Proportion of species
per trait per category for sensitivity (0 = low sensitivity,
1 =medium sensitivity, 2 = high sensitivity; Figure S3A). Pro-
portion of species per trait per category for adaptive capacity
(0 = high adaptive capacity, 1 =medium adaptive capacity,
2 = low adaptive capacity; Figure S3B). Figure S4: Calculated
degree of climate change within the geographical range of the
Whiskered Myotis (Figure S4A) and the Geoffrey’s Bat (Fig-
ure S4B). Colours indicate the degree of climate dissimilarity
(low, medium, and upper) between the baseline (1961 – 1990)
and the recent period (1991 – 2020). The black points on the
map visualize the geographical range of theWhiskeredMyotis
and the Geoffrey’s Bat. The barcharts show of the number of
cells in which the species is present per category of climate
dissimilarity. Figure S5: Pearson correlation between the sen-
sitivity and adaptive capacity results of the initial scenario and
the calculated sensitivity and adaptive scores based on given
scenarios. On the y-axis, the amount by which the breaks were
moved is shown between 1% and 33%. On the x-as, the mul-
tiple scenarios are shown. Namely, moving of the first break
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towards the maximum (break 1-max), moving of the first
break towards the minimum (break 1-min), moving of the
second break towards themaximum (break 2-max), andmov-
ing of the second break towards the minimum (break 2-max)
[2]. Table S1: Ranking of included mammals according to
their vulnerability category (i.e., potential adapter (PA),
potential persister (PP), high latent risk (HLR), high vulnera-
bility (HV), sensitive only (SO), low adaptive capacity only
(LACO), and low vulnerability (LV)) and their abundance in
the DWHC database. Table S2: Pearson correlation between
the bioclimatic variables during the baseline (above the diago-
nal line) and the recent period (below the diagonal line). Table
S3: Definitions of necropsy levels and the number of records
per necropsy level within the DWHC database. Table S4: Cate-
gorisation of species traits using a three-point scale. Each trait
was evaluated based on their mechanisms to heighten sensitiv-
ity and to lower the adaptive capacity of species. Trait values
were summed per species, which resulted in an overall sensi-
tivity and adaptive capacity ranking. Method S1: Calculated
degree of climate dissimilarity (low, medium, and upper)
between the baseline (1961–1990) and the recent period
(1991–2020) within geographical range of two species. Method
S2: Sensitivity analysis of the sensitivity and adaptive capacity
index. (Supplementary Materials)
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