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• Active denitrifiers in a 9 m agricultural 
soil profile were identified using SIP. 

• Active denitrifiers were compositionally 
different between the topsoil and 
subsoil. 

• The composition of active denitrifiers 
could be linked to N transformation 
function.  
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A B S T R A C T   

Denitrifying microbial communities in the vadose zone play an essential role in eliminating the nitrate leached 
from agricultural practices. This nitrate could otherwise contaminate groundwater and threaten public health. 
Here, we utilized stable isotope probing combined with amplicon sequencing and functional gene quantification 
to inspect the composition and function of heterotrophic denitrifying microorganisms along a 9-m soil profile in 
an intensive agricultural area. Dramatic differences in the composition of the active denitrifiers were uncovered 
between the surface soil and deep layers of the vadose zone. The main denitrifying bacterial taxa identified from 
13C-DNA fractions were Pseudomonadaceae (Pseudomonas), Rhodocyclaceae (Azoarcus), and Burkholderiaceae in 
the surface soil (0–0.2 m), and were Pseudomonadaceae (Pseudomonas), Burkholderiaceae, Bacillaceae (Bacillus), 
and Paenibacillaceae (Ammoniphilus) in the deep layers (0.5–9.0 m). Analysis of the functional genes (nirS, nirK, 
and nosZ) in isotope-labeled DNA revealed an upward nos/nir ratio with increasing soil depth, which may ac-
count for the higher nitrous oxide emission potential in the surface soil, as compared to the deeper sand-rich, low 

* Corresponding author. 
E-mail address: binbinliu@sjziam.ac.cn (B. Liu).  

Contents lists available at ScienceDirect 

Science of the Total Environment 

journal homepage: www.elsevier.com/locate/scitotenv 

https://doi.org/10.1016/j.scitotenv.2023.167968 
Received 14 August 2023; Received in revised form 16 October 2023; Accepted 18 October 2023   

mailto:binbinliu@sjziam.ac.cn
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2023.167968
https://doi.org/10.1016/j.scitotenv.2023.167968
https://doi.org/10.1016/j.scitotenv.2023.167968
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2023.167968&domain=pdf


Science of the Total Environment 907 (2024) 167968

2

organic carbon layers. This study improves our understanding of active denitrifying microbes in the vadose zone 
and helps in developing techniques to reduce nitrate pollution in groundwater.   

1. Introduction 

Anthropogenic activities have increased nitrogen (N) inputs in 
terrestrial ecosystems globally in recent decades (Galloway et al., 2004; 
Fierer et al., 2011), and elevated reactive N in the environment is 

perceived as an escalating threat due to its impacts on water quality and 
the atmosphere (Stark and Richards, 2008). Nitrate leaching in agri-
cultural ecosystems may result in contamination of groundwater and has 
gained significant attention due to its impacts on public health (Wolfe 
and Patz, 2002). Denitrification converts nitrate or nitrite to gaseous 

Fig. 1. (A) Schematic diagram of the experimental design in this study. It included three parts: (i) Incubation; (ii) Ultracentrifugation; and (iii) Identification of active 
denitrifier communities. (B) Kinetics of N2O and N2 production of various layer vadose zone samples during the incubation under denitrifying conditions. The arrows 
indicated the three additions of 13CH3

13COONa (at 84 h, 192 h, and 264 h). Three shapes represented three repetitions. (C) Quantitative distribution of the 16S rRNA 
gene along the CsCl density gradient of various layer vadose zone samples that were incubated for 312 h under denitrifying conditions. Three shapes represented 
three repetitions. 
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nitrogen compounds and is therefore an important process for control-
ling the quantity of nitrate that may leach into groundwater. 

A series of studies have focused on the process of denitrification in 
the vadose zone. Microbial denitrification was observed at depths of 
several meters and this process is limited in deep layers because of the 
scarcity of organic carbon and the low abundance of denitrification 
microorganisms (Chen et al., 2018; Liu et al., 2020; Han et al., 2023). 
Prior studies have attempted to inspect the composition of denitrifying 
communities through monitoring shifts in microbial community 
composition in laboratory incubation experiments where carbon and 
nitrate was supplemented (Chen et al., 2018; Oh et al., 2023). In these 
studies, denitrifying communities were identified by comparing the 
microbial communities before and after incubation under denitrifying 
conditions. The structure of the microbial community was assessed by 
analyzing 16S rRNA gene sequences. Although some denitrifying mi-
croorganisms have been identified, one limitation of this method is that 
it may overlook functionally important denitrifiers whose relative 
abundance did not significantly change during the incubation. 

Stable isotope probing (SIP) technique is an effective approach for 
identifying functionally active communities from background pop-
ulations (Radajewski et al., 2000; Costa et al., 2020), and has been 
recently applied to identify active denitrifiers in environmental samples 
(Bellini et al., 2018; Xing et al., 2018). In the current study, we devel-
oped a strategy to inspect the active denitrifiers in the deep vadose zone 
samples. The soil carbon that can support denitrification was depleted 
during a pre-incubation stage. Then 13C‑carbon was added to the vadose 
zone samples and taken up by the denitrifiers as the carbon source for 
denitrification. These active denitrifiers were subsequently identified by 
separating 13C-DNA from 12C-DNA using ultracentrifugation. The 13C- 
DNA represents the active denitrifiers in the incubation process, and the 
12C-DNA represents the rest of the microbial community present in the 
system. 

2. Materials and methods 

The vadose zone samples were taken in a typical intensive agricul-
tural area in the North China Plain. The details of the field experiment 
and sampling procedure were described in our prior study (Chen et al., 
2018). In this study, four layers (0–0.2 m, 0.5–1.0 m, 3.0–4.0 m, and 
7.0–9.0 m) vadose zone samples in a long-term fertilization field 
experiment (600 kg N ha− 1 yr− 1) were selected. The depth of 0–4.5 m 
consists of a sandy loam layer, while the depth of 4.5–9.0 m is composed 
of a sand layer. Soil organic carbon decreased significantly with depth, 
dropping below 2.0 g kg− 1 in the layers deeper than 1.5 m (Table S1). 
Moreover, the microbial community composition has been investigated, 
and significant differences were discovered between depths below and 
above 2.5 m (Wang et al., 2021). 

The experimental procedure is illustrated in Fig. 1A. (i) Incubation. 
Soil samples weighing 10.0 g were prepared in 120 ml serum vials and 
made anaerobic using a method described previously (Chen et al., 
2018). A pre-incubation was performed with excess potassium nitrate 
(21 μmol-N g− 1 soil) to deplete the available soil organic carbon for 
denitrification (electron donors). During the incubation, the denitrifi-
cation gas products (N2O and N2) were monitored using a robotized 
incubation system (Molstad et al., 2007). When the dinitrogen (N2) gas 
concentration reached a plateau, isotope-labeled carbon 
(13CH3

13COONa) was supplemented as the new electron donor for 
denitrification. This process was repeated three times, with 5 μmol g− 1 

soil of isotope-labeled carbon being added each time. (ii) Ultracentri-
fugation. Soil total DNA was extracted after incubation, and mixed with 
cesium chloride (CsCl) for gradient ultracentrifugation. After fraction-
ation and DNA recovery, real-time quantitative PCR was performed to 
quantify the abundance of bacterial 16S rRNA gene in each individual 
fraction to identify the 12C-DNA and 13C-DNA. (iii) Identification of 
active denitrifier communities. The bacterial community in the 13C-DNA 
fractions, 12C-DNA fractions, and soil samples without incubation 

(original soil, O) were analyzed through 16S rRNA gene sequencing, and 
functional denitrification genes (nirS, nirK, and nosZ) in the 13C-DNA 
fractions were quantified using real-time PCR. Detailed methods are 
presented in the Supplementary Materials and Methods. 

3. Results and discussion 

The vadose zone samples from all four layers exhibited denitrifica-
tion activity when carbon and nitrate were added (Fig. 1B). A higher rate 
of denitrification gas production (N2O + N2) was observed in the surface 
soil compared to the deeper layers. It should be noted that nitrate 
ammonifiers, which perform the process of dissimilatory nitrate reduc-
tion to ammonium (DNRA), can compete with denitrifiers for nitrate and 
carbon. However, analyzing the ammonia concentration before and 
after incubation indicated that the DNRA process was much less effec-
tive than denitrification (Table S2). In addition, a noticeable increase in 
the rate of denitrification gas production was observed every time after 
isotope-labeled carbon was added (Fig. 1B), suggesting that the deni-
trification process in the incubation system was limited by the amount of 
available carbon, and the isotope-labeled carbon was successfully taken 
up by the active denitrifiers. 

The 12C-DNA and 13C-DNA fractions were identified at buoyant 
densities of 1.721–1.733 g ml− 1 and 1.749–1.761 g ml− 1, respectively, 
by quantifying the abundance of the bacterial 16S rRNA gene (Fig. 1C). 
The microbial community compositions of 13C-DNA fractions were 
dramatically different from those of 12C-DNA fractions and O samples. 
Phyla Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, 
Rokubacteria, Proteobacteria and Firmicutes were found dominant in most 
of the layers of the vadose zone samples, as indicated in the composition 
of O samples (Fig. 2A). Among them, phyla Proteobacteria and Firmicutes 
were identified the dominant phyla in the 13C-DNA fractions (Fig. 2A), 
and the relative abundance of these two phyla was greater than 93 % in 
all the four layer samples, indicating taxa in these phyla were actively 
performing denitrification and assimilating isotope-labeled carbon 
during the incubation. Taxonomic classification results at family and 
genus level (Fig. 2, Table S3) suggested that the main active denitrifying 
bacterial taxa were Pseudomonadaceae (Pseudomonas), Rhodocyclaceae 
(Azoarcus), and Burkholderiaceae in the surface soil and Pseudomonada-
ceae (Pseudomonas), Burkholderiaceae, Bacillaceae (Bacillus), and Paeni-
bacillaceae (Ammoniphilus) in the deep layers. Many strains of these taxa 
have been previously identified as denitrifiers, and studies have reported 
that they possess denitrification genes (Ishii et al., 2010; Verbaendert 
et al., 2011; Wei et al., 2015; Liu et al., 2019; Hetz and Horn, 2021). A 
prominent finding was that the family Pseudomonadaceae was signifi-
cantly more abundant, accounting for over 53 % of the total microbial 
community in the 13C-DNA samples for all four layers. However, its 
abundance was much lower in the 12C-DNA and O samples, especially in 
the surface soil where it constituted less than 0.5 %. This indicates that 
the less dominant or even the rare taxa in the system might have 
important functions. 

During the incubation, the surface soil (0–0.2 m) exhibited a higher 
potential for nitrous oxide emissions compared to the deeper layers 
(Fig. 1B). This function change could be linked to shifts in the compo-
sition of the active denitrifying community. The ratios of nosZ/(nirS +
nirK) and nirK/nirS in the 13C-DNA exhibited upward trends as soil depth 
increased (Fig. 2C), suggesting that there is an increase in the proportion 
of N2O reducers and nirK-type denitrifiers in the deeper layers. Although 
the denitrification process is also regulated at transcriptional and post-
transcriptional levels, these changes could be one of the reasons for the 
variations in N2O emission potential across different layers (Fig. 1B). 

In summary, dramatic compositional and functional differences were 
discovered between the surface soil and the deep layers of the vadose 
zone. The active denitrifiers present in the 9-m soil profile were iden-
tified using Stable Isotope Probing (SIP). This study has provided a 
deeper understanding of the composition and function of denitrifiers in 
the vadose zone. It is also beneficial for the development of bio- 
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techniques that aim to reduce nitrate leaching to groundwater by 
enhancing microbial denitrification. 
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