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Abstract

Confirmatory factor analyses (CFA) are often used in psychological research when
developing measurement models for psychological constructs. Evaluating CFA model
fit can be quite challenging, as tests for exact model fit may focus on negligible
deviances, while fit indices cannot be interpreted absolutely without specifying
thresholds or cutoffs. In this study, we review how model fit in CFA is evaluated in
psychological research using fit indices and compare the reported values with estab-
lished cutoff rules. For this, we collected data on all CFA models in Psychological
Assessment from the years 2015 to 2020 (NStudies = 221). In addition, we reevaluate
model fit with newly developed methods that derive fit index cutoffs that are tailored
to the respective measurement model and the data characteristics at hand. The
results of our review indicate that the model fit in many studies has to be seen criti-
cally, especially with regard to the usually imposed independent clusters constraints.
In addition, many studies do not fully report all results that are necessary to re-
evaluate model fit. We discuss these findings against new developments in model fit
evaluation and methods for specification search.
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Introduction

Developing measurement models for psychological constructs is always challenging.

For questionnaire development and test construction, researchers conduct several fac-

tor analyses to carve out the latent variables representing a psychological concept

(e.g., Fabrigar et al., 1999). Usually, exploratory factor analysis (EFA) is used to

explore an item set associated with a construct (or specifically designed to measure a

certain psychological variable) and subsequently refine it. After several rounds of

EFAs applied to different item sets and samples, researchers come up with a hypothe-

sized factor model that describes how the latent variables are measured by the mani-

fest indicators. These hypothesized factor models that are usually built around an

assumption of independent clusters (i.e., that each indicator only measures one latent

factor and has no substantial cross-loading on a second factor) can be tested in a con-

firmatory setting with a confirmatory factor analysis (CFA). CFA evaluates whether

an assumed relationship among manifest indicators and latent factors is in line with

the empirical data by testing whether the model-implied covariance structure repro-

duces the empirical covariance matrix (or resembles it very strongly). When conduct-

ing a CFA, the researcher specifies the number of latent factors, which manifest

indicators are allowed to load on which latent factor (i.e., which loadings are freely

estimated and which are constrained to be zero), whether between-factor correlations

are allowed and whether there are any correlations among the residuals of the indica-

tors. These specifications are based on empirical findings in previous studies (often

based on EFA) as well as theoretical considerations (for a thorough introduction to

CFA, see, for example, Brown, 2015). Since previous findings might support differ-

ent models or contradict theoretical implications, different candidate models have to

be compared. Hence, CFA users need to know which models fit their data and which

model is the most plausible given their data. While there is a global model x2-test

that tests whether the model-implied covariance S(Y) is exactly the same as the pop-

ulation covariance matrix S, its null hypothesis (S = S(Y)) hardly ever holds for

empirical data (Bentler, 2007). Hence, the dichotomy of this global model test

(model-implied covariance matrix equals the population covariance matrix or differs

from it) is often replaced with a more nuanced perspective by taking so-called fit

indices into account which quantify the level of model (mis-)fit (e.g., Schermelleh-

Engel et al., 2003). In other words, instead of a clear decision on whether a proposed

model can be seen as the true population model, the model misfit is quantified (e.g.,

MacCallum, 2003).

In this study, we review the use of CFA in psychological research with a focus on

model selection and the assessment of model fit (particularly the use of model fit

indices). In doing so, we also reevaluate the model fit of published studies (where

possible) using the Dynamic Fit Index Cutoffs approach by McNeish and Wolf

(2021) as well as the ezCutoffs approach (Schmalbach et al., 2019). Based on our

findings, we discuss the need for methodological rigor in the model evaluation as

well as caveats that hinder the development of measurement models that better fit

empirical data.
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Fit Indices

A large set of fit indices have been developed to quantify the goodness of fit or the

deviance from the perfect model fit. The latter are error-focused measures that quan-

tify the difference between an empirical covariance matrix S and the estimated

model-implied covariance matrix S(Ŷ). The two most common measures of this kind

are the Root Mean Square Error of Approximation (RMSEA) and the Standardized

Root Mean Square Residual (SRMR).

The RMSEA (Steiger, 1998) quantifies the error of the approximate fit, that is, it

replaces the ‘‘exact fit’’-null-hypothesis of the global x2-test with a hypothesis of an

approximate or ‘‘close’’ fit. In doing so, the difference in the minus two log-

likelihood between the tested model and a saturated model1 for the empirical data x2

is compared to its expected value given that the proposed model is not misspecified

df (this expected value equals the degrees of freedom of the tested model).

RMSEA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

x2 � df

(N � 1)df
, 0

� �s
,

with N being the sample size. When the proposed model is not misspecified, the frac-

tion within the square root has the expected value of zero, which is why an RMSEA

close to zero indicates a ‘‘close’’ fit (RMSEA cannot be negative as negative devia-

tions from the expected value df are set to zero, so that the square root can always be

applied).

The SRMR is also a ‘‘badness of fit’’ measure as it quantifies the averaged

squared differences between each bivariate empirical correlation and the respective

model-implied counterpart (Hu & Bentler, 1998). Hence, the best possible value is

zero indicating a perfect reproduction of the empirical correlation matrix, while

higher SRMR values reflect a poorer model fit. By standardizing the residuals using

the standard deviations of the respective manifest items the SRMR is scaled (com-

pared with the Root Mean Square Residual [RMSR] index by Jöreskog & Sörbom,

1996) and its maximum possible value is one.

SRMR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i = 1

Pi

j = 1

sij�ŝij

sisj

h i2

p(p + 1)

vuuut
,

with p being the number of manifest variables, sij being the empirical covariance

between the ith and jth indicator, ŝij being the model-implied covariance between

the ith and jth indicator, and si and sj being the empirical standard deviation of the

ith and jth indicator, respectively.

Besides these measures of model misfit, goodness-of-fit measures such as the

Goodness-of-Fit Index (GFI; Jöreskog & Sörbom, 1984, as cited in Mulaik et al.,

1989), the Normed Fit Index (NFI; Bentler & Bonett, 1980), the non-NFI that is also

known as the Tucker–Lewis Index (TLI; Tucker & Lewis, 1973), or the Comparitive
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Fit Index (CFI; Bentler, 1990) exist. For these indices, a model comparison between

the proposed model and a baseline model is conducted. The GFI quantifies how

much better the proposed model fits the data compared to a null model as a baseline

model (i.e., a model that can be described as a ‘‘no-factor null model’’—it can also

be interpreted similar to a coefficient of determination as the proportion of the var-

iance/covariance that can be explained by the model, for more information on this

and different versions of the GFI, see Mulaik et al., 1989). A value of one indicates

that the proposed model provides the biggest improvement possible over the baseline

model and is able to fit the data perfectly, while a value of zero means that the pro-

posed model has no explanatory value.

GFI = 1� x2

x2
Null

:

The NFI follows the same idea. Contrary to the GFI, the baseline model used to cal-

culate the NFI is the so-called independence model which assumes the error variance

to be zero and no existing associations among the observed variables (i.e., only the

variances of the observed variables are estimated, so the independence model is basi-

cally a diagonal matrix with all off-diagonal elements—the covariances—being

zero). Accordingly, the NFI can be written as

NFI = 1� x2

x2
Independence

:

The TLI compares the proposed model to the independence model as well.

TLI =

x2
Independence

dfIndependence

� x2

df

x2
Independence

dfIndependence

� 1

:

Its values normally range from zero to one, but as it is not normed, values outside

this range that are less intuitive might occur. A TLI greater than one is possible (i.e.,

a value of one does not mean a perfect fit, contrary the other goodness of fit mea-

sures) and can be interpreted as indicative of a very good model fit.

The CFI also relies on the independence model for comparison. Contrary to the

NFI or GFI and comparable to the TLI, the degrees of freedom (i.e., the expected

value if the model is correctly specified) are taken into account.

CFI = 1� max½(x2 � df ), 0�
max½(x2

Independence � dfIndependence), (x2 � df ), 0� :

The CFI, just like both GFI and NFI,2 becomes one if the proposed model fits the

data perfectly and zero in a worst-case scenario where it is not superior to the base-

line model.
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While these and other fit indices are frequently applied to assess the model fit in

structural equation modeling (SEM) in general, and in CFA in particular, several

studies found them to be dependent on nuisance parameters and the underlying data

conditions. Hence, their ability to detect model misspecifications does not only

depend on the type of misspecification (e.g., Hu & Bentler, 1998) but also on the

sample size (e.g., Ainur et al., 2017; Fan & Wang, 1998), the size of the loading

parameters (e.g., Heene et al., 2011), the number of indicators per factor (e.g., Shi

et al., 2019) or the overall model complexity (e.g., Marsh et al., 1996), the amount of

missing data (e.g., Fitzgerald et al., 2021), and the estimation method (e.g., Fan

et al., 1999; Xia & Yang, 2019). Crucially, poorly measured indicators (Heene et al.,

2011; McNeish et al., 2018) as well as untreated missing data (Fitzgerald et al.,

2021) may disguise model misfit and substantial misspecifications as fit indices show

fallaciously good values indicating acceptable model fit.

Another problem that arises with the usage of fit indices is the challenge to deter-

mine which values are indicative of an ‘‘acceptable,’’ a ‘‘good’’ or an ‘‘excellent’’

model fit. When comparing candidate models and selecting a final model, relying on

different fit indices is less problematic. However, when the absolute fit of a specific

candidate model is evaluated, researchers usually look for cutoff values that categor-

ize the goodness of fit. Often simple cutoff rules that are based on simulation studies

with very narrow data conditions (e.g., Hu & Bentler, 1999) are used beyond the

scope of the study they are derived from. Marsh et al. (2004) describe the dangers of

overgeneralizing the results of these simulation studies and call for a more thoughtful

handling of suggested cutoffs.

Tailored Cutoffs for Model Evaluation

To both accommodate the desire for categorical decisions, for example, labeling a

model’s fit as ‘‘good/appropriate’’ or ‘‘bad,’’ and overcome the limitations of narrow

data conditions and model specifications that were considered when developing fixed

cutoffs for different fit indices, simulation-based methods were proposed to generate

individual cutoffs for specific models and data in real-life applications (Millsap,

2007, 2012; Pornprasertmanit et al., 2013). One implementation of this idea was sug-

gested by McNeish and Wolf (2021). The so-called Dynamic Fit Index Cutoff aims

to generalize the methods applied by Hu and Bentler (1999). Their basic algorithm,

also implemented in a Shiny web-application, first needs the user to specify the

hypothesized CFA model with standardized factor loadings as well as the sample

size. This information is then used to create an alternative model by adding an extra

path with a non-zero coefficient. This perturbed model is then used as a population

model in the data generating process to simulate R data sets. The hypothesized model

(i.e., the original model without the extra path) is fitted to these simulated data sets,

which yields R values for each fit index. Based on these values, an empirical distri-

bution can be specified. This process is repeated using the hypothesized model for

data generation. This way, a second set of fit indices and resulting empirical
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distributions are obtained. The distribution based on the perturbed model represents

the behavior of a fit index under misspecification, since the ‘‘wrong’’ model (i.e., the

model that should actually be evaluated) is fitted to data that stem from a data gener-

ating process with an extra path. The second distribution reflects a situation where

the model is correctly specified, that is, the model that is used for data generation, is

fitted to the simulated data.3 From these distributions, cutoff values (if existing) can

be derived that have both acceptable false positive and false negative rates. To con-

trol the false negative rate, a percentile of the distribution coming from the data gen-

eration using the perturbed models is used (e.g., the 5%-percentile for the RMSEA

and the SRMR or the 95%-percentile for the CFI). For simulated data, it is known

whether a model is misspecified. Accordingly, a cutoff for each fit index can be cho-

sen so that Pr(RMSEA � cutoff jmodelperturbed) = 0:05. The false-positive rate is con-

trolled by applying the same principle to the second distribution based on data

simulated using the hypothesized model. For example, using the 5%-quantile of this

distribution (i.e., accepting a correctly specified model 95% of the time),

Pr(RMSEA � cutoff jmodelhypothesized) = 0:05 is used to determine the cutoff. Note

that the two cutoff values derived this way are usually not identical. Thus, if the first

value, for example, for the RMSEA, is lower than the second, it is not possible to

distinguish between the ‘‘true’’ and the misspecified model at the prespecified rates.

It can be derived from simple probability calculations that the actual error rates are

higher than those aimed at when deriving the cutoffs. This also makes sense

intuitively—when the RMSEA-cutoff under misspecification is lower than under the

true model there is an area of ambiguity, where we would both accept the misspeci-

fied and the correctly specified model. As these cutoff values are derived using the

model fitted by the researcher, data and model characteristics such as the sample size

and factor loadings are automatically correctly specified. One can also see from this

example that for specific modeling situations, there might not even be a solution

which achieves reasonable error rates. As McNeish and Wolf (2021) demonstrated,

this is especially the case for scenarios where the scale reliability and sample size are

small.

A similar approach called ezCutoffs (Schmalbach et al., 2019) was developed to

derive tailored cutoff values for fit indices following the procedure of Hu and

Bentler (1999). Contrary to the Dynamic Fit Index Cutoffs of McNeish and Wolf

(2021), data are simulated for a specified model which is subsequently fitted to this

data. Accordingly, ezCutoffs focuses on the distribution of the fit indices of correctly

specified models and derives the cutoff values from a specific quantile of this distri-

bution. This approach can be compared with null hypothesis significance testing

where the test decision is solely based on the distribution of the test statistic under

the null hypothesis. Thus, no area of ambiguity where both misspecified and cor-

rectly specified models are deemed appropriate exists for this approach. However,

the ezCutoffs approach does not allow researchers to control the type-II error (as the

Dynamic Fit Index Cutoffs approach does).
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Groskurth et al. (2022) developed a different method to derive individual cutoffs

tailored to the application context and empirical data at hand. Other than the two

purely simulation-based approaches described earlier, Groskurth et al. (2022), in a

first step, repeatedly simulate data using a population model that either correspond to

the actual model that should be tested (i.e., treating the hypothesized model as a cor-

rectly specified model) or to a slightly altered model that serves as a misspecified

analysis model.4 In a second step, the receiver–operating characteristic (ROC) curves

for a set of fit indices are estimated and well-performing fit indices (i.e., indices that

reach a certain performance, e.g., an area under the curve � :80) are selected. For

these fit indices, tailored cutoffs are chosen by optimizing both sensitivity and speci-

ficity (or minimizing type I and II error).

Method

For our review, we scanned the full texts of each publication in Psychological

Assessment (PA) from 2015 to 2020 for the term ‘‘CFA OR confirmatory factor anal-

ysis’’ via PsycArticles. It was decided for PA due to its special focus on assessment-

and scale validation as well as its broad range of studies using CFAs. Our strategy

resulted in 456 initial studies, of which NStudies = 221 ended up in the final data set.

Included were only studies in which the CFAs were reported in the results section

(not appendices, footnotes, or preliminary analyses section), single- or multifactor

CFAs were used (i.e., complex SEM, bifactor models, and multigroup specifications

were excluded), the number of manifest variables per latent factor could be derived

and at least one common fit measure (e.g., CFI or RMSEA) was reported. These cri-

teria were applied because we wanted to keep the models comparable while extract-

ing as much information from the studies as possible.

To gain quantitative insight into how psychologists conduct CFA, we extracted

and calculated information on model-characteristics, estimation results and compat-

ibility with recommendations for fit evaluation (e.g., Hu & Bentler, 1999). The spe-

cific variables collected were: the number of manifest and latent variables, the

number of variables per factor, whether correlations between latent variables and/or

correlations among residuals were allowed, whether cross-loadings were specified or

an independent clusters model was assumed, the median of primary factor loadings,

if the same sample was used for preceding exploratory analyses, the sample size, the

estimation algorithm, four common fit measures (CFI, RMSEA, SRMR, and TLI),

the p value of x2-tests, and which justification for cutoff values was cited in the arti-

cle. Based on this information, we analyzed the compatibility of the model fit with

recommendations by Hu and Bentler (1999), Browne and Cudeck (1992), and

Schermelleh-Engel et al. (2003). To compute the dynamic cutoffs using the R Shiny

application Dynamic Model Fit (Wolf & McNeish, 2020), we selected 34 studies that

reported standardized factor loadings and used maximum-likelihood estimation (or a

modified version of it), as these are prerequisites to obtain unbiased estimates from

the simulation. If multiple models or samples were present in the study, we analyzed
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only the best-fitting model on the largest sample. We focused on ‘‘level-1’’-misspe-

cifications5 (McNeish & Wolf, 2021) which are conditions comparable to those eval-

uated in Hu and Bentler (1999). For comparison, we also calculated the ezCutoffs

(Schmalbach et al., 2019) for the same models.

We used R (Version 4.2.2; R Core Team, 2021) and the R-packages apaTables

(Version 2.0.8; Stanley, 2021), dplyr (Version 1.0.10; Wickham et al., 2021), ggplot2

(Version 3.4.0; Wickham, 2016), papaja (Version 0.1.1; Aust & Barth, 2020), shiny

(Chang et al., 2021), and tinylabels (Version 0.2.3; Barth, 2022) for all our analyses

and to write the article.

Results

First, we looked at the frequencies of sample size, number of variables per factor,

and most common fit indices (i.e., RMSEA, SRMR, CFI, GFI, and TLI) by range for

every single model (N = 1011 models from the NStudies = 221). We oriented the ranges

to common cutoffs (e.g., Hu & Bentler, 1999; Schermelleh-Engel et al., 2003) but

added more gradations to gain a more detailed insight (e.g., 0, 0:03, 0:05, 0:09, 0:11,

and . 0:11 for SRMR). We also calculated the frequencies of (a) whether indepen-

dent clusters were assumed or cross-loadings were allowed, (b) whether a different

sample was used for preceding models, the same sample was used, or the sample

was split, and (c) which estimation method was used. Because there is no clear

nomenclature of estimation methods, there often were many different names for the

same or highly similar methods. Borrowing from Jöreskog et al. (2016), we allocated

the estimation methods to one of the following: weighted least squares (WLS), maxi-

mum likelihood (ML), unweighted LS (ULS), generalized LS (GLS), diagonally

WLS (DWLS). The results of these analyses are shown in Tables 1 to 10 in the col-

umn ‘‘All models.’’ Most notably, for more than 50% (n = 639) of the models, a sam-

ple size of more than 400 was used; for approximately 25% (n = 252) of models the

sample size even exceeded 1,000 observations. The two most common fit indices

were RMSEA (n = 975) and CFI (n = 998), the least common was GFI (n = 30). It

also worth mentioning that for 91.3% (n = 923) of all models, an independent clusters

assumption was made. When models were fitted subsequently, a new sample to fit

each model was used for 70.2% (n = 710) of models. Unfortunately, for 24.3%

(n = 246) of models it was not stated whether a new sample was used, the same sam-

ple was used, or the sample was split prior to analysis. Regarding the estimation pro-

cess, ML (42.9%, n = 434, of which 99 used the Satorra-Bentler Correction to

account for non-normality) and WLS (43.1%, n = 436) were the two most common

choices as estimation algorithms. It should be mentioned, however, that every

method can be shown to be a special case of WLS anyways (Jöreskog et al., 2016).

In a second step, we extracted the ‘‘best fitting’’ model per paper based on CFI

and calculated the same frequencies as above for the resulting N = 220 models. We

decided to filter by CFI because it was the most used fit index. The results are shown
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in Tables 1 to 10 in the column ‘‘Best models.’’ When comparing the frequencies for

only the best models with the frequencies for all models, relative frequencies did not

differ noticeably.

Table 1. Frequencies of Sample Size Ranges for All Models and for the Best Models Per
Paper.

Sample size All models Best models

N % N %

\100 7 0.70 4 1.80
100-200 105 10.40 27 12.30
201-300 146 14.40 27 12.30
301-400 114 11.30 25 11.40
401-1,000 387 38.30 83 37.70
. 1,000 252 24.90 54 24.50

Table 2. Frequencies of Item to Factor Ratios for All Models and for the Best Models Per
Paper.

Item to factor ratio All models Best models

N % N %

[2:1, 5:1] 345 34.10 87 39.50
]5:1, 10:1] 365 36.10 85 38.60
]10:1, 15:1] 166 16.40 28 12.70
]15:1, 20:1] 57 5.60 14 6.40
. 20:1 78 7.70 6 2.70

Table 3. Frequencies of RMSEA Ranges for All Models and for the Best Models Per Paper.

RMSEA All models Best models

N % N %

[0, 0.03] 39 3.90 17 7.70
]0.03, 0.05] 160 15.80 53 24.10
]0.05, 0.08] 409 40.50 102 46.40
]0.08, 0.1] 159 15.70 19 8.60
. 0.1 208 20.60 20 9.10
NA 36 3.60 9 4.10

Note. RMSEA = root mean square error of approximation; NA = not available.
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Rules of Thumb

Applying common combinatory rules of thumb for fixed fit index cutoffs, a majority

of models shows quite poor model fit. Using a ‘‘best model’’ per study (N = 220),

Table 4. Frequencies of SRMR Ranges for All Models and for the Best Models Per Paper.

SRMR All models Best models

N % N %

[0, 0.03] 35 3.50 13 5.90
]0.03, 0.05] 158 15.60 40 18.20
]0.05, 0.09] 168 16.60 35 15.90
]0.09, 0.11] 18 1.80 1 0.50
. 0.11 41 4.10 2 0.90
NA 591 58.50 129 58.60

Note. SRMR = standardized root mean square residual; NA = not available.

Table 5. Frequencies of CFI Ranges for All Models and for the Best Models Per Paper.

CFI All models Best models

N % N %

[0, 0.80] 127 12.60 6 2.70
]0.80, 0.90] 192 19.00 28 12.70
]0.90, 0.95] 291 28.80 60 27.30
]0.95, 0.97] 172 17.00 43 19.50
. 0.97 216 21.40 78 35.50
NA 13 1.30 5 2.30

Note. CFI = comparative fit index; NA = not available.

Table 6. Frequencies of TLI Ranges for All Models and for the Best Models Per Paper.

TLI All models Best models

N % N %

[0, 0.80] 93 9.20 5 2.30
]0.80, 0.90] 135 13.40 18 8.20
]0.90, 0.95] 199 19.70 43 19.50
. 0.95 180 17.80 64 29.10
NA 404 40.00 90 40.90

Note. TLI = Tucker–Lewis index; NA = not available.
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64.50% of the respective models show an ‘‘unacceptable’’ model fit according to the

cutoffs derived from Hu and Bentler (1999). Browne and Cudeck (1992) advocate

for a less strict evaluation of model fit. Applying their respective cutoffs, 47.60% of

Table 7. Frequencies of Assumed Structures for All Models and for the Best Models Per
Paper.

Structure All models Best models

N % N %

Cl 43 4.30 15 6.80
Simple 923 91.30 196 89.10
NA 45 4.50 9 4.10

Note. Cl = cross-loadings allowed; Simple = independent clusters models; NA = not available.

Table 8. Frequencies of Sample Strategies for All Models and for the Best Models Per Paper.

Sample All models Best models

N % N %

New 710 70.20 139 63.20
Same 29 2.90 10 4.50
Split 26 2.60 13 5.90
NA 246 24.30 58 26.40

Note. New = new sample used for subsequent models; Same = same sample used for subsequent models;

Split = data set was split; NA = not available.

Table 9. Frequencies of Estimation Methods for All Models and for the Best Models Per
Paper.

Estimation method All models Best models

N % N %

DWLS 27 2.70 3 1.40
GLS 1 0.10 1 0.50
ML 434 42.90 93 42.30
ULS 5 0.50 3 1.40
WLS 436 43.10 82 37.30
NA 108 10.70 38 17.30

Note. 99 models were estimated using ML with the Satorra-Bentler correction which made it the most

frequently applied correction method for non-normality in this study. DWLS = diagonally weighted least

squares; GLS = generalized least squares; ML = maximum likelihood; ULS = unweighted least squares;

WLS = weighted least squares; NA = not available.
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the models are deemed to have a ‘‘reasonable’’ model fit, 7.90% are considered

‘‘employable,’’ 35.40% ‘‘close,’’ and only 9% of the models are labeled

‘‘unemployable.’’Schermelleh-Engel et al. (2003) also make suggestions on default

cutoffs for common fit indices but do not combine them to a rule of thumb to classify

a model fit as ‘‘acceptable,’’ ‘‘reasonable,’’ or something similar. When using their

cutoffs, no fit index indicated ‘‘good fit’’ for 40% of the models, while one fit index

showed ‘‘good fit’’ for 21.80% of the models (two fit indices: 21.80%, three fit

indices: 13.60%, four fit indices: 2.70%).6 Schermelleh-Engel et al. (2003) also pro-

vide guidelines for an ‘‘acceptable’’ model fit which is obviously less strict, so a

higher percentage of models are deemed to have an appropriate fit under these cut-

offs (zero acceptable fit indices: 8.20%, one acceptable fit index: 19.10%, two accep-

table fit indices: 30.90%, three acceptable fit indices: 34.10%, four acceptable fit

indices: 7.70%).

Tailored Cutoffs for Fit Indices

Calculating the tailored cutoffs for the 34 selected models for which enough

information was presented, the ezCutoffs approach yielded cutoffs of

CFIcutoff = 0:975, RMSEAcutoff = 0:024, and SRMRcutoff = 0:050 on average, while the

Dynamic Model Fit approach provided less strict cutoffs on average

(CFIcutoff = 0:973, RMSEAcutoff = 0:053, SRMRcutoff = 0:050)7 balancing the Type I

and Type-II errors. The largest mean absolute difference between the tailored cutoffs

of the two approaches is found for the RMSEA (MADRMSEA = 0:029; compared with

MADSRMR = 0:019 and MADCFI = 0:016). Comparing the empirical fit indices with

the respective cutoffs, 18.2% of the evaluated models show a good model fit accord-

ing to the CFIezCutoffs, 47.6% according to the SRMRezCutoffs, and no model according

Table 10. Frequencies of Fit Evaluation Methods for All Models and for the Best Models Per
Paper.

Fit evaluation All models Best models

N % N %

CFI 998 98.71 215 97.73
RMSEA 977 96.64 213 96.82
SRMR 420 41.54 91 41.36
TLI 607 60.04 130 59.09
GFI 30 2.97 11 5.00
Chi2 test 348 34.42 78 35.45
AIC 105 10.39 12 5.45

Note. CFI = comparative fit index; RMSEA = root mean square error of approximation; SRMR =

standardized root mean square residual; TLI = Tucker–Lewis index; GFI = goodness-of-fit index; AIC =

Akaike information criterion.
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to the RMSEAezCutoffs. In case of the Dynamic Model Fit cutoffs, 14.3% (CFI), 33.3%

(SRMR), and 14.3% (RMSEA) of the models are considered to fit the data well.8

Discussion

One reason for researchers to use fit indices instead of the exact model test to evalu-

ate the model fit is the fact that the x2-test detects smaller and smaller differences

between the empirical and the model-implied covariance matrix with increasing sam-

ple size (Steiger, 2007). While in general the higher statistical power that is associ-

ated with a greater sample size is desirable, evaluating model fit using a strict null

hypothesis ‘‘S = S(Y)’’ which is unrealistic in real-world settings (Bentler, 2007)

will inevitably lead to a rejection of the candidate model when the sample size is

large. Individual cutoffs tailored to the specific application context are also impacted

by the sample size as they are usually designed to control the type I error rates (e.g,

Pornprasertmanit et al., 2021; Schmalbach et al., 2019) and become smaller in case

of ‘‘badness-of-fit’’ measures (e.g., the RMSEA) or larger in case of goodness-of-fit

measures (e.g., CFI) with increasing sample size. Hence, while tailor-made cutoffs

promise to prevent misinterpretations and overly optimistic evaluations compared to

fixed cutoffs that were derived for rather specific data conditions and model specifi-

cations, larger samples foster more extreme cutoffs and more likely result in model

rejection, even if the actual misfit is negligible. In small samples though, the tailored

ezCutoffs (Schmalbach et al., 2019) seem to be too moderate as they tend to support

candidate models whose fit would have been deemed not appropriate by common

cutoffs (e.g., Hu & Bentler, 1999) or tailored cutoffs that take into account type II

error rates (e.g, Groskurth et al., 2022; McNeish & Wolf, 2021). This shows that the

ezCutoffs approach lacks power in small sample scenarios.

As individual cutoffs also depend on the sample size and seem to perform reason-

ably well only with moderate sample sizes (i.e., n 2 ½300; 700�), researchers might

have to dismiss the idea of exact model fit (for detailed discussion, see, for example

Bentler, 2007; MacCallum, 2003) and rely on a close-fit assessment instead.

Moshagen and Erdfelder (2016) discussed this idea arguing that an assessment of

close-fit instead of exact fit, which better reflects real-world phenomena anyway,

might be preferable as it does not penalize larger samples, but rather makes use of an

increase in statistical power. This idea of close fit has been discussed by several

authors before (e.g., Browne & Cudeck, 1992; MacCallum, 2003) and was also part

of the development of the RMSEA (Steiger, 1998). Moshagen and Erdfelder (2016)

build their model evaluation strategy on this premise and the Neyman-Pearson idea

of hypothesis testing fulfilling the applied researchers’ wish for a dichotomous deci-

sion whether a model fits the data or not. Following Moshagen and Erdfelder (2016),

researchers have to choose a minimal effect (i.e., the minimal amount of misfit) they

try to detect as all smaller deviations from the data are deemed practically irrelevant.

This way, a higher sample size is beneficial as the statistical power to detect mean-

ingful deviations increases, but no discrepancies below that threshold result in
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rejecting the model. By evaluating the performance of the model fit indices and tak-

ing into account Type II error rates, Groskurth et al. (2022) promise to assess the

model fit rather independently from the actual sample size similarly to the approach

of Moshagen and Erdfelder (2016). The latter may appeal to researchers as they

probably prefer choosing a critical value for close-fit (e.g., RMSEA = :03), rather than

using the ROC curve to derive a cutoff that balances Type I and Type II error rates

for a given setting where an alternative model specification has to be provided as

well. The close-fit approach of Moshagen and Erdfelder (2016), however, relies on

the known x2-distribution which makes it easy to calculate but limits its applicability

to related indices such as the RMSEA or the GFI as Groskurth et al. (2022) pointed

out.

An alternative to the close-fit approach of Moshagen and Erdfelder (2016) and the

simulation-based methods by McNeish and Wolf (2021) or Groskurth et al. (2022) is

equivalence testing as proposed by Yuan et al. (2016). The basic idea is to determine

a so-called T-size which describes the minimum tolerable amount of model misspeci-

fication for a specific context (e.g., an empirical study). This T-size can be related to

every common fit index that a researcher usually uses to quantify model (mis-)fit

(Yuan et al., 2016). Accordingly, instead of testing the rather unrealistic null hypoth-

esis that the proposed model exactly represents the population model (i.e., the x2-test

assuming the model-implied covariance matrix to exactly reproduce the population

covariance matrix, see Bentler, 2007), equivalence testing evaluates whether the level

of misspecification is smaller than a predefined value that represents tolerable or

even negligible deviations from the true model. In doing so, the method also allows

researchers to determine cutoffs for all common fit indices that take into account the

sample size n and the model complexity in terms of the model’s degrees of freedom

df . Yuan et al. (2016), for example, present adjusted cutoffs to distinguish ‘‘excel-

lent, close, fair, mediocre and poor’’ model fit given n and df that are adapted from a

point-estimate-based rule by Steiger and Lind (1980). K. M. Marcoulides and Yuan

(2017) provide a detailed walk-through example on how to use RMSEA- and CFI-

based equivalence testing to evaluate model fit beyond the conventional comparisons

of descriptive fit indices and arbitrary cutoffs. In comparison to the Dynamic Model

Fit approach, adjusting cutoffs with the equivalence testing method is less computa-

tionally expensive and therefore faster (no data have to be simulated). However, the

approach only takes the sample size and the degrees of freedom of the proposed

model into account when calculating the adjusted cutoffs, while the simulation-based

methods (e.g., Dynamic Model Fit) also consider the model dimensionality, the

amount of overdetermination, and the communalities of the items (e.g., McNeish and

Wolf, 2021). The T-size, on the contrary, is calculated for each model individually

and takes the specific model characteristics into account (Yuan et al., 2016).

When relying on individual cutoffs, it becomes apparent that often CFI and

SRMR show acceptable model fit while the RMSEA is higher than the tailored cut-

off indicating poor model fit. Hu and Bentler (1999) showed that the different fit

indices are sensitive to different types of misspecifications or model misfit. The
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SRMR signals misfit regarding the between-factor correlations, whereas the RMSEA

focuses more strongly on misspecified loading patterns. Given the high percentage

of articles that focus on models with a strict form of simple structure assumption

(i.e., independent cluster models), it does not come as a surprise that it is often the

RMSEA that questions the model fit for most of the evaluated models in our study.

The common assumption that each indicator can be assigned one latent factor and

substantial cross-loadings do not exist is quite appealing to researchers as it facili-

tates the interpretability of the factor model. However, this focus on overly simpli-

fied models is typically one reason why measurement models that were developed

using exploratory factor analysis cannot be successfully replicated in subsequent

CFAs (e.g., Hopwood & Donnellan, 2010; Sellbom & Tellegen, 2019). Hence,

researchers should probably consider ‘‘imperfect’’ measurement models with sub-

stantial cross-loadings, this might hamper the interpretability of their models because

a model with poor fit to the data potentially yields severe misinterpretations.

In this study, we can observe a tendency of models with higher overdetermination

(i.e., more indicators per latent factor) to fit the data worse compared to models with

a smaller item-to-factor ratio. This pattern of fit indices indicating worse fit for larger

and more complex models was also found in simulation studies (e.g., Shi et al.,

2019) and can be seen as a weak point of the discussed fit measures. The worse fit in

this study could be caused by actual misfit, though, as it appears quite obvious that

oftentimes high overdetermination may come at a price of some less suitable indica-

tors. However, this should not be seen as a call for using less indicators per factor to

reduce model complexity and artificially increase model fit. Higher overdetermina-

tion is in fact associated with higher estimation stability and fewer convergence

problems (e.g., Gagne & Hancock, 2006) and usually with higher reliability esti-

mates (e.g., Fabrigar et al., 1999). Besides psychometric considerations regarding the

model fit, researchers have to ensure content validity and should therefore be very

careful when reducing the number of indicators per factor (e.g., Goretzko et al.,

2021).

When focusing on the best-fitting model of each article and comparing the

reported fit indices to common cutoff recommendations (Browne & Cudeck, 1992;

Hu & Bentler, 1999; Schermelleh-Engel et al., 2003), it has to be stated that several

measurement models cannot be considered suitable for the empirical data. Given the

usually more strict tailored cutoffs (e.g., the Dynamic Model Fit cutoffs) that should

be preferred over fixed cutoffs, the comparable poor model fit of some measurement

models has to be critically analyzed. As discussed earlier and debated by several

authors (e.g., Hopwood & Donnellan, 2010; Marsh et al., 2009), interpretable, yet

overly simplistic independent clusters models (i.e., models with an item complexity

of one which means that each indicator is only allowed to load on a single factor) are

probably responsible for the largest part of the model misfit. Another problem with

how researchers usually develop measurement models may be found in earlier stages

of the construction process. Goretzko et al. (2021) report that a majority of EFAs still

rely on outdated factor retention criteria such as the infamously subjective Scree test
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or the eigenvalue-greater-one-rule to determine the number of latent factors, even

though simulation studies have repeatedly shown that these methods do not provide

accurate estimates for the dimensionality of a latent concept (e.g., Auerswald &

Moshagen, 2019; Goretzko & Bühner, 2020, 2022; Zwick & Velicer, 1986). If the

dimensionality assessment in a preceding EFA has been flawed, it is no surprise that

a confirmatory model building on the respective EFA results does not fit empirical

data well (e.g., Fabrigar et al., 1999). In combination with traditionally low item relia-

bilites and high measurement errors in psychological questionnaire data (Gnambs,

2015) and questionable measurement practices (Flake & Fried, 2020), poorly fitting

measurement models may severely distort empirical findings and hamper the progress

of certain research areas. As the vast majority of models were fitted to categorical

data (usually Likert-type items of questionnaires), the actual model fit might be even

worse than indicated by common fit indices (Savalei, 2021). In addition, researchers

should also keep in mind that cutoffs stemming from simulation studies such as the

ones proposed by Hu and Bentler (1999) or tailored cutoffs that are created by the

approach of McNeish and Wolf (2021) usually only consider normally distributed

data and ML estimation. Hence, the actual model misfit could be even higher for

many of the models in our study.

To improve the measurement models that lack model fit, more researchers might

consider using modification indices (MI, Saris et al., 1987) to revise their models (as

authors indicated to use MI only in 19.1% of the studies in our review). Whittaker

(2012) thoroughly describes how MI and related measures such as the expected para-

meter change (Saris et al., 1987) can be used iteratively to revise the model specifica-

tion and improve model fit. This so-called specification search can be quite tedious

so automated approaches using optimization algorithms have been discussed (G. A.

Marcoulides & Drezner, 2003; G. A. Marcoulides et al., 1998). More recently, an

automated specification search based on a combination of Tabu search (see also G.

A. Marcoulides et al., 1998) and ant-colony optimization (see G. A. Marcoulides &

Drezner, 2003) was developed (Jing et al., 2022). When engaging in specification

search (especially when automating the procedure), and therefore shifting from con-

firmatory to exploratory analyses, researchers have to be aware of the risk of over fit-

ting their models to the data (MacCallum et al., 1992). Accordingly, models that

were derived from specification search procedures should always be validated on

new data to ensure robustness of the measurement model.

While we want to urge psychologist to take the model evaluation of CFA models

seriously by using tailored cutoffs instead of fixed cutoffs that do not reflect the

respective data conditions and to revise poorly fitting measurement models by get-

ting rid of independent clusters models or at least by reducing the focus on indepen-

dent clusters factor patterns, we also want to emphasize that model misfit is normal

to some degree and that we will not be able to develop perfectly fitting models.

Depending on the application context of a scale or questionnaire, exact model fit

might be less important and researchers can choose a rather moderate criterion for

close model fit (Moshagen & Erdfelder, 2016). Especially in cases where the
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accuracy of an individual measurement is of little interest, for example, when group

means are compared or predictions of an outside criterion at group-level are evalu-

ated, a slightly misspecified model (that only closely fits the data according to an

adjusted cutoff for evaluation) can still be useful to gain some insights. In assessment

settings, however, where individuals are diagnosed and categorized based on a psy-

chological measure, higher standards have to be in place. Either way, when encoun-

tering model misfit, researchers should always investigate the reasons for

discrepancies between model predictions and observed data (Hayduk, 2014).

All in all, this study shows that many articles do not report all the necessary

results to conduct a ‘‘re-analysis’’ of the model fit with one of the individual cutoff

approaches. Especially the rather small number of studies reporting the full loading

matrices has to be criticized. Without detailed information on the loading matrices,

the respective measurement models can hardly be interpreted by readers or reana-

lyzed as in our case. Hence, we want to advocate for more thorough and detailed

reporting standards for CFA. A transparent depiction of all model parameters (i.e.,

factor loadings, between-factor correlations, residual variances, correlations among

residuals) as well as a comprehensive model evaluation should always be part of a

paper that reports a CFA or an SEM in general. The Journal of the Society for Social

Work and Research, for example, has developed rather strict rules how EFA and

CFA results have to be presented (Cabrera-Nguyen, 2010).
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Notes

1. A saturated model is a model without any degrees of freedom that is able to fully repro-

duce the empirical variance-covariance matrix and can be seen as the benchmark for the

best possible model fit.

2. As GFI and NFI, contrary to the CFI, do not include the degrees of freedom, it is very

unlikely to obtain a value of one which can only occur if the x2-value is exactly zero.

Even if the model fits the data well, the x2-value is expected to be around the degrees of

freedom and not zero.
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3. The hypothesized model is treated as if it were correctly specified, the perturbed model

that is used to determine the distribution of the fit index values under misspecification

might actually be the model that is closer to the true population model. Using the hypothe-

sized model as the starting point for the data simulation makes the approach comparable

to the idea of Hu and Bentler (1999)—more detailed information on how their method

compares to the simulations of Hu and Bentler (1999) can be found in the original article

by McNeish and Wolf (2021).

4. Again, as for the Dynamic Fit Index Cutoffs by McNeish and Wolf (2021), treating the

hypothesized model as the correctly specified model and using it as the data-generating

model in the simulation does not mean that the altered model that is the basis for the mis-

specified data conditions cannot be closer to the real population model.

5. The Dynamic Model Fit approach considers different levels of misspecification.

Depending on the model complexity (i.e., the number of latent factors in the CFA model)

the number of misspecified paths varies. McNeish and Wolf (2021) describe how their

‘‘level-1’’-misspecification is comparable to the type of misspecification considered by

Hu and Bentler (1999)—a cross-loading is added to one pair of factors in the alternative

‘‘misspecified’’ model, whereas higher levels of misspecification are achieved by adding

cross-loadings to different pairs of factors. A concentration of misspecifications on one

pair of factors (the authors refer to it as ‘‘hyperlocalized misspecification’’) would not

necessarily lead to a substantively higher increase in the discrepancy function, that is, to a

higher overall model misspecification which is why misspecifications are spread out

across different pairs of factors (McNeish and Wolf, 2021). Since smaller models (e.g.,

two-factor models) do not allow for higher level misspecifications, we decided to focus

solely on ‘‘level-1’’-misspecifications for all model evaluations.

6. Note that not all studies report all fit indices, so for some models only two fit indices could

indicate a good model fit.

7. For 13 models, not all cutoffs could be derived as areas of ambiguity existed (see also,

McNeish & Wolf, 2021).

8. The percentages are smaller for the Dynamic Model Fit approach because, for several mod-

els that show a good model fit according to the ezCutoffs approach, no unique cutoffs could

be determined.
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