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ABSTRACT

Measurement invariance (MI) describes the equivalence of a construct across groups. To be able to
meaningfully compare latent factor means between groups, it is crucial to establish MI. Although meth-
ods exist that test for MI, these methods do not perform well when many groups have to be com-
pared or when there are no hypotheses about them. We suggest a method called Exploratory Factor
Analysis Trees (EFA trees) that are an extension to SEM trees. EFA trees combine EFA with a recursive
partitioning algorithm that can uncover non-invariant subgroups in a data-driven manner. An EFA is
estimated and then tested for parameter instability on multiple covariates (e.g., age, education, etc.) by
a decision tree based method. Our goal is to provide a method with which Ml can be addressed in the
earliest stages of questionnaire development or prior to analyses between groups. We show how EFA
trees can be implemented in the software R using lavaan and partykit. In a simulation, we demonstrate
the ability of EFA trees to detect a lack of Ml under various conditions. Our online material contains a
template script that can be used to apply EFA trees on one’s own questionnaire data. Limitations and
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future research ideas are discussed.

1. Introduction

In psychometrics, measurement invariance (MI) describes the
equivalence of measurements of a construct across groups
(Putnick & Bornstein, 2016; Vandenberg & Lance, 2000).
This concerns different groups of a population (e.g., women
and men) or subsequent measurement occasions of the same
group (e.g., pre- and post-treatment). If MI does not hold
between two or more groups, it cannot be readily assumed
that the construct of interest has the same meaning to people
between these groups. Consequently, analyses like compari-
sons of means and variances across groups or measurement
occasions will not be meaningful or will even yield distorted
results. Multi-group confirmatory factor analysis (MG-CFA)
is one of the most commonly used methods to test for MI
(Millsap, 2012). However, it is mostly used for comparing
two groups. When comparing many groups, the performance
of MG-CFA is reduced because the number of measurement
parameters to pairwisely compare increases exponentially
with the number of groups and non-invariance is falsely
detected more easily (Kim et al., 2017; Rutkowski & Svetina,
2014). Additionally, researchers have to determine the groups
or at least the grouping variable a priori (e.g., age or gender;
in the following called covariates) (Kim et al, 2017). This
often happens with a special application in mind (e.g., cross-
cultural comparisons; Milfont & Fischer, 2010) and is mostly
done for questionnaires that have already been constructed.

We argue that MI should ideally be addressed in the earliest
stages of questionnaire development, when changes to the
item pool are still easily possible. To address this issue, we
want to introduce a method that can help researchers to
explore MI in their sample and to automatically identify non-
invariant groups: exploratory factor analysis trees (EFA trees).
EFA trees can be seen as an extension of structural equation
model (SEM) trees introduced by Brandmaier et al. (2013b).
SEM trees combine SEM with a recursive partitioning algo-
rithm. A SEM is estimated and then tested for parameter
instability by a decision tree based method. Thereby, they
allow for testing for MI with regard to categorical and con-
tinuous covariates (Brandmaier et al., 2013a). This is done in
a data-driven manner, that is, no covariate has to be chosen
in advance. Although decision trees and, thus, SEM trees are
already exploratory in nature, so far SEM trees have mainly
been applied in the context of CFA or to longitudinal data
but to the best of our knowledge not in the context of EFA
(Ammerman et al., 2019; Brandmaier et al., 2016, 2017, 2018;
de Mooij et al., 2018; Simpson-Kent et al., 2020; Usami et al,,
2017, 2019). By introducing EFA trees, we want to extend the
SEM tree literature and provide researchers with an easy-to-
use method that grasps the full exploratory potential of SEM
trees (Goretzko & Bithner, 2022; Jacobucci et al., 2017). We
illustrate how EFA trees can be built within the partykit R
package (Hothorn & Zeileis, 2015) that provides tools for
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model-based recursive partitioning (Hothorn et al, 2006;
Zeileis et al., 2008).

The remainder of the paper is structured as follows. First,
we describe the concept of MI and its relevance for ques-
tionnaire development in more detail. Second, we provide
an introduction to EFA. Third, we describe the recursive
partitioning algorithm and EFA trees in particular. Last, we
show exemplary applications of EFA trees and investigate
the performance in identifying a lack of MI under different
conditions in simulated examples.

2. Measurement Invariance

Assessing MI can be a tedious task. In a factor-analytic frame-
work, four nested levels of MI between groups are considered
(Putnick & Bornstein, 2016): a) configural (equal construct
architecture; i.e., same number of latent factors and same loca-
tion of zero loadings in the loading matrices across groups.
Note that zero loadings are only imposed in CFA, not in
EFA.), b) metric (equal loading sizes), c¢) scalar (equal inter-
cepts), d) residual (equal unique variance). As already men-
tioned, MG-CFA is a straightforward way to test for MI (see
Putnick & Bornstein, 2016 for an illustrative step-by-step
example). However, if there are many groups that have to be
compared, this simple approach reaches its limits. The prob-
ability of falsely detecting non-invariance increases with number
of groups to be compared and model fit might be poor due to
strict fit index cut offs (Kim et al, 2017). Rutkowski and
Svetina (2014) provided a first remedy to tackle this issue by
suggesting adapted cut-offs for model fit measures. Even fur-
ther, scholars developed other CFA-based methods to test MI
in these cases with many groups, for example multilevel factor
mixture modelling or alignment optimization (Asparouhov &
Muthén, 2014). Because going into detail about these methods
would be beyond the scope of this article, we refer readers
interested in CFA-based methods to Kim et al. (2017) for a
comprehensive overview. Sass (2011) and Van de Schoot et al.
(2012) provide general guidelines on testing for ML

In addition to these CFA-based methods, other EFA-based
methods have been developed recently. This resolves some of
the aforementioned issues, for example that no restrictive
zero loadings have to be imposed. For example, De Roover
and Vermunt (2019) developed multigroup factor rotation to
pinpoint non-invariant loadings between groups. Mixture
multigroup factor analysis was suggested as a method to clus-
ter groups according to levels of MI, specifically metric (De
Roover et al., 2022) and scalar (De Roover, 2021) invariance.

Even though some of these advanced methods can handle
many groups, problems arise when there are no particular
hypotheses with regard to the covariates defining these groups
(Brandmaier et al, 2013b). When there are many covariates
(e.g., age, gender, education, ethnicity, etc.), it quickly becomes
impossible to test for all of them with all potential group con-
stellations. Usually when researchers test for MI, they define a
small number of groups based on one or two covariates (e.g.,
ethnicity in cross-cultural research). In this, other covariates
(or interactions between them) that may define theoretically
relevant groups and for which MI cannot be assumed might

remain undetected. As Brandmaier et al. (2013b) described,
SEM trees can be used to explore the data for non-invariant
groups in a data-driven manner (rather than by theoretically
deriving hypotheses a priori). Thus, the concept of recursive
partitioning seems suitable for exploration of MI with many
covariates. To expand this potential to the earliest stages of
questionnaire development, we extend SEM trees by EFA
trees. Our aim is to add a method to the tool box that can aid
researchers in exploring and testing for MI in order to develop
questionnaires that considered MI right from the start.
Admittedly, this will not render tests for MI prior to actual
analyses between two or more defined groups unnecessary.
However, EFA trees may improve the measurement quality of
psychological constructs and hopefully prevent later issues
with data collection and analysis (Jacobucci & Grimm, 2020).

3. Exploratory Factor Analysis

EFA is arguably one of the most widely used methods in
psychometrics and questionnaire development more specif-
ically. Compared to CFA, there are no constraints on load-
ing paths between the observed variables and the latent
factors. Hence, EFA can be used to uncover the relation-
ships between observed and latent variables (Goretzko et al.,
2021; Mulaik, 2010). More formally, let x = (x1, ..., xp)T be
the p-dimensional vector of observed variables. This vector
can be described as a linear function of the m latent factors
(Hirose & Yamamoto, 2014; Mulaik, 2010):

x=1t+Aé+e (1)

where 7 = (14, .. .,tp)T is the p-dimensional vector of inter-
cepts, A is the pxm matrix of factor loadings, &=
(& ovns £,) is the m-dimensional vector of latent factor
scores, and € = (e, ..., ep)T is the p-dimensional vector of
error terms of the observed variables. The error terms are
assumed to be normally distributed with mean 0 and vari-
ance ¥. V¥ is a p x p diagonal matrix with the diagonal ele-
ments being the unique variances of the observed variables.
The factor correlations are captured as the elements of the
m x m matrix @. In EFA, the factors have rotational free-
dom, that is, there exist different sets of factor solutions
which have an identical fit to the data but might be easier
to interpret. We resolve the issue of rotational freedom by
using regularization (an explanation will follow in a later
section). The vector x is usually assumed to be multivariate-
normally distributed with mean vector 7 and variance-
covariance matrix £ = A®AT + ¥ (Joreskog, 1967). In the
single-group context, the data are usually standardized so
that £ = 0 and diag(X) = 1. In the multi-group context, it
is common to keep the data unstandardized and instead use
the covariance matrices for model estimation.

We later want to understand how EFA trees detect meas-
urement non-invariance. For this, we have to introduce an
estimation function with which the model parameters (i.e.,
factor loadings, factor correlations, and unique variances)
are estimated. The algorithm uses maximum likelihood esti-
mation (MLE). In MLE, parameters are estimated so that
the discrepancy between the model-implied covariance



matrix X and the observed covariance matrix S is mini-
mized (Joreskog, 1967):

Frrp(E,S) = In|Z| + tr(X7'S) — In|S| — p. (2)

MLE has some convenient properties (Fabrigar et al,
1999): In the estimation process, standard errors of the
model parameters are computed. These can be used to cal-
culate confidence intervals and assess the statistical signifi-
cance of factor loadings'. Additionally, fit indexes (e.g.,
RMSEA, CFI, etc.) can be computed that are useful for
model evaluation and comparison.

4, Score-Based Recursive Partitioning

Now that we have elaborated on how the EFA model is esti-
mated, we turn to the score-based recursive partitioning algo-
rithm (Hothorn et al,, 2006; Zeileis et al., 2008). Specifically,
how the algorithm finds parameter instability in the model
with respect to some covariate and splits the data into hetero-
geneous groups. The algorithm is based on a tree structure
common in machine learning. In detail, the algorithm works
as follows (Hothorn et al., 2006; Zeileis et al., 2008):

1. A model (in our case, an EFA) is fit to the entire sam-
ple by estimating the model parameters via MLE (see
equation (2)). Let TI(Y, 0) be the estimation function in
equation (2), 0 = (A, ®,¥) the vector of model param-
eters (i.e, factor loadings, factor correlations, and
unique variances) and Y the observations, with ele-
ments Y;, i=1,...,N. The parameter estimates 0 can
be obtained by solving the first order condition

N
ZTC(Yi,é) =0 (3)
i=1

whereby
oI(Y, 0)
o0

is the score function of I1(Y, @).

2. A test for parameter stability is performed with regard to
every covariate by means of null hypothesis tests (struc-
tural change test). For this, we assess whether the corre-
sponding scores evaluated at the parameter estimates,
7t; = n(Y;,0), fluctuate randomly around their mean 0.
The scores are ordered according to their deviation from
0 with regard to a covariate. Under the null hypothesis of
invariant measurement, the deviations should fluctuate
randomly. If, however, the measurement is not invariant,
systematic changes in the deviations will be shown by the
ordering. The hypothesis tests use different test statistics
depending on whether a categorical or continuous covari-
ate is evaluated. In this study, we used a > test for cat-
egorical covariates and the supLM statistic (a type of
Lagrange Multiplier statistic) for continuous covariates.
The model needs to be estimated only once to assess MI

n(Y,0) = (4)

To be able to test hypotheses about obliquely rotated factor loadings,
Jennrich (1973) showed how to derive the required standard errors.
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with regard to different covariates. This is because the
amount of score deviations stays the same, only the order-
ing changes. After every covariate has been evaluated, the
one associated with the lowest (Bonferroni-corrected) p-
value below a significance level o is selected for splitting
the model. Note that by Bonferroni-correcting the p-val-
ues, the prespecified significance level o is ensured for the
whole tree and the issue of multiple testing is
accounted for.

3. Once a covariate for splitting is found, the optimal split
point on this covariate has to be computed. When split-
ting the model into B segments, two potential segmen-
tations can be compared by evaluating the segmented
estimation functions 3}, > ier, 11(Yi, 0p). For continu-
ous covariates, an exhaustive search over all potential
segmentations is performed. For a split into B = 2 seg-
ments, this can be performed in O(N) operations,
where N is the sample size. As an example, suppose the
continuous variable age was identified in step 2 as a
covariate that explains parameter instability. To find the
optimal split point, the algorithm now loops over every
value of age from lowest to highest and compares the
segmented estimation functions for the groups that
would result from splitting at the evaluated value. The
value of age for which the two segmented estimation
functions are optimized is then selected as the split
point. For categorical covariates, all potential constella-
tions are evaluated. For a split into B =2 segments,
this can be performed in O(2¢~!) operations, with C
being the number of categories. For example, on the
categorical variable marital status with four categories,
the segmented estimation functions of every group con-
stellation are compared. Again, the constellation for
which the estimation functions are optimized is selected
for splitting. Theoretically, the model could be split into
more than two nodes. However, this diminishes inter-
pretability while simultaneously increasing computa-
tional demand (e.g., for continuous variables, a split
into more than two groups, B > 2, would result in an
exhaustive search of order O(N®71)). In the following,
we only consider the case where the model is split into
two nodes (cf. Brandmaier et al., 2013b; Strobl et al.,
2015; Zeileis et al., 2008). Note that if there were three
non-invariant groups, they could still be identified by
performing binary splits. For this, the algorithm would
simply split twice on the same covariate.

4. These steps are repeated until a) no parameter instabil-
ity in a leaf node becomes statistically significant, b) a
prespecified depth of the tree is reached, or c) sample
size in a leaf node falls below a prespecified minimal
value. For a thorough mathematical introduction see
Hothorn et al. (2006), Zeileis and Hornik (2007) and
Zeileis et al. (2008).

This algorithm has some convincing advantages (Hothorn
et al., 2006; Zeileis et al., 2008): First, it is possible to efficiently
test multiple covariates for parameter instability, even without
hypotheses about split points. This is especially powerful in the
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case of continuous covariates like age where manually assessing
every potential split point is not feasible (Putnick & Bornstein,
2016). Second, (non-linear) interactions between covariates can
be considered. This can be done either by adding the inter-
action term as a potential covariate or by allowing “deeper”
trees. Nodes are conditional on all prior covariates and split
points. Hence, in a tree that was split twice on two different
covariates, these can be seen as an interaction. Third, the algo-
rithm is unbiased. Other tree algorithms (like CART or C4.5)
often tend to favor covariates with many potential split points
and are thus biased toward selecting these covariates for split-
ting. In the score-based recursive partitioning algorithm, this
selection bias is eliminated by separating the steps of covariate
selection and split point selection. Additionally, the algorithm
works on formal parameter stability tests, which also ensures
unbiasedness. That is, if the parameters in a node are stable, a
false decision to split on any of the covariates will only be
made with a probability of approximately o. Conversely, if the
parameters are in fact unstable, and this instability can be
explained by a covariate, the instability will be detected for a
sufficient sample size N. This is because the tests are consistent
at rate /N (Zeileis & Hornik, 2007).

We want to point out that using this recursive partition-
ing approach is not new in psychometrics and has repeat-
edly shown good performance. In recent years, it was
primarily employed to models in the IRT framework like
dichotomous (Strobl et al., 2015) and polytomous (Komboz
et al., 2018) Rasch models. They can be used to detect differ-
ential item functioning (DIF; Holland & Wainer, 2012)
between multiple covariates (Debelak & Strobl, 2019).
Schneider et al. (2021) provide a tutorial on score-based MI
tests in IRT models. We want to extend this literature by
combining recursive partitioning with EFA. This might be
especially useful for complex constructs where multiple
scales ought to be tested for MI simultaneously (Meade &
Lautenschlager, 2004). Merkle and Zeileis (2013) and Merkle
et al. (2014) introduced this algorithm in a factor-analytic
context. Their work evaluated the performance of the statis-
tical tests used in our study and thus prepared the technical
ground on which our study is built. Both of their studies
focused on comparing different test statistics for continuous
(Merkle & Zeileis, 2013) and ordinal (Merkle et al., 2014)
covariates. We aim to add to this literature by carrying the
method to typical psychological research situations. We
hope to provide a broader context, for example by consider-
ing different violations of MI and types of covariates at the
same time. In this, we want to enable substantive research-
ers to draw on a well-known and commonly used method
in psychological questionnaire development when evaluating
MI (Fabrigar et al., 1999; Goretzko et al., 2021). This could
be especially useful in areas like personality or clinical
psychology where constructs are often multi-dimensional.

5. EFA Trees

The main purpose of EFA trees is to help researchers to
develop questionnaires and psychological tests that have
been constructed as measurement invariant as possible.

Once a preliminary item set has been built and data have
been collected, EFA trees can be used to automatically
uncover heterogeneous groups with regard to multiple cova-
riates. In this, EFA trees can be seen as fully exploratory.

The focus of the succeeding simulations will be on
detecting a lack of configural and metric MI (Putnick &
Bornstein, 2016; Vandenberg & Lance, 2000). That is, we
will primarily investigate the ability of EFA trees to assess
the construct architecture (i.e., number of latent factors and
location of zero loadings) and loading sizes across groups.
The two other types of MI, namely scalar (intercept) and
residual (unique variances) MI, build on configural and
metric MI. Because in EFA data are most often standar-
dized, the mean vector T becomes 0 and will not be relevant
anymore. Additionally, having equal unique variances across
groups is hard to achieve and not necessary for a compari-
son of latent means (Chen, 2007; Putnick & Bornstein,
2016; Vandenberg, 2002).

We investigated whether a lack of MI is actually detected
by EFA trees. For this, we first performed four simulations
which act as toy examples. In these, we aimed at demon-
strating the application and interpretation of EFA trees to
questionnaire data. Subsequently, we conducted a compre-
hensive simulation study in which we manipulated sample
size, group size ratio, type of covariate, number of distrac-
tion covariates, and type of lack of MI.

6. Method
6.1. Software

The complete code needed to reproduce all analyses can be
found at https://osf.io/7pgrb/. Additionally, we provide a
template script which can be used to run an EFA tree with
only small adjustments to the code. We conducted all analy-
ses using the statistical software R (R Core Team, 2021).
The manuscript was written in R markdown using the pack-
age papaja (Aust & Barth, 2020). We simulated standardized
data by drawing from a multivariate normal distribution
using the package mvtnorm (Genz et al., 2002). The recur-
sive partitioning algorithm was implemented using the pack-
age partykit (Hothorn & Zeileis, 2015). In the tree growing
function mob, a control argument can be defined that con-
tains parameters relevant for fitting the algorithm. All con-
trol parameters were set as their default values. Most
importantly, this means that for the significance level for
splitting, we set oo = 0.05 and p-values were Bonferroni-cor-
rected. For all analyses, we specified a three-dimensional
model with 18 observed variables using the package lavaan
(Rosseel, 2012). Every observed variable was allowed to load
freely on every factor. Because the recursive partitioning
algorithm cannot handle unidentified models, we first
defined a model with uncorrelated factors to ensure identifi-
cation. By setting the argument auto.efa = TRUE in the lav-
aan function, all constraints to identify a model were
imposed: factor correlations were set to 0, factor variances
were set to 1, and some factor loadings were constrained to
followed an echelon pattern (Rosseel, 2012). Because we
assume that no information about the items or the data is
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available in advance, it is difficult to provide a general rec-
ommendation regarding the selection of loadings to con-
strain. If the wrong loadings are constrained, parameter
differences that are critical for the assessment of non-invari-
ance might remain undetected. However, one can empiric-
ally assess whether different selections of constrained
loadings have a considerable influence (Dolan et al.,, 2009).
This can be done by growing more than one tree in parallel
with different constrained loadings and comparing the
results.

6.2. Toy Examples

6.2.1. Procedure

The algorithm was employed as described in the section
Software. To demonstrate exemplary applications and inter-
pretations of EFA trees, we further investigated the esti-
mated models in the leaf nodes after splitting. For this, we
extracted the data from these nodes and re-estimated an
unidentified model with correlated factors and all loading
paths freed using regularized EFA (Hirose & Yamamoto,
2014; Scharf & Nestler, 2019). We want to briefly explain
our rationale behind using regularized EFA: Once the EFA
model has been estimated, researchers often aim at obtain-
ing an interpretable solution of the matrix of factor loadings
A (Mulaik, 2010). The most common goal is to achieve a
so-called simple structure. That is, each item has one high
loading on one factor and low to no cross-loadings on all
other factors. The method of choice to obtain such a struc-
ture is rotation of factor solutions. EFA models are rotation-
ally indeterminate, that is, there is an infinite set of factor
solutions that fits a data set equally well (Mulaik, 2010).
Many rotation methods exist with no one best method
(Browne, 2001; Trendafilov, 2014). The best method to use
in a specific application depends on the true factor structure
in the population. Because this population factor structure is
almost always unknown, the choice of rotation method is
rather subjective (Asparouhov & Muthén, 2009; Sass &
Schmitt, 2010; trying different hyperparameter settings of
the simplimax rotation could help to find a solution with
most loadings close to zero; see Kiers, 1994 for more
details). The very goal of EFA trees is to uncover different
structures of a construct between groups. Thus, it is difficult
to pick an optimal rotation method for every EFA estimated
in a leaf node of the resulting tree’. Taking this into
account, we applied regularized EFA to obtain interpretable
factor solutions in the leaf nodes (Hirose & Yamamoto,
2014; Jacobucci et al.,, 2016). As Scharf and Nestler (2019)
demonstrated in a comprehensive comparison of common
rotation methods and regularization, the latter is not neces-
sarily “better” than rotation in recovering simple structure.
However, it proves more objective in the sense that the true

2An interesting extension could be to combine EFA trees with the
aforementioned multigroup factor rotation (MGFR; De Roover & Vermunt,
2019). Instead of regularizing the models in the nodes, MGFR could be
applied to investigate group-specific measurement models in the leaf nodes.
One advantage of this approach over regularization would be that one could
pinpoint the parameters that differ across the nodes.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL @ 875

structure of the construct does not have to be known.
Essentially, regularization switches the rotation problem of
EFA to a variable selection problem. The regularization was
implemented using the package regsem (Jacobucci et al.,
2016). We used elastic net regularization (Zou & Hastie,
2005) and penalized both the factor loadings and the factor
correlations. The hyperparameters y (controlling the amount
of regularization) and P (controlling the type of regulariza-
tion) were tuned by choosing values that minimized the
BIC over the whole sample (Jacobucci et al., 2016). For v,
we tested 100 values in a grid search starting from y =
0.001 with a step size of 107°. For f, we tested all values
between 0.05 and 0.95 with a step size of 0.05 (cf. Scharf &
Nestler, 2019). For regsem, an unidentified model was not
an issue because the cv_regsem function only requires the
model-implied covariance matrix, not an identified model.
In the process of estimation, the model eventually became
identified due to variable selection (Li et al., 2021).

6.2.2. Toy Example 1: Configural Invariance - Different
Number of Factors

In a first toy example, we investigated whether an EFA tree
would detect a violation of configural invariance caused by
differing numbers of latent factors between groups. Suppose
our construct that was measured by 18 indicators. For men,
these indicators were described by three latent factors,
whereas for women, there were four latent factors. The
standardized loading matrices on population level were (cf.
Scharf & Nestler, 2019):

075 0 0 075 0 0 0
075 0 0 075 0 0 0
075 0 0 075 0 0 0
075 0 0 075 0 0 0
075 0 0 075 0 0 0
075 0 0 0 0 0 075
0 075 0 0 075 0 0
0 075 0 0 075 0 0
Avten — 0 075 0 |, Awomen — 0 075 0 0
0 075 0 [’ 0 075 0 0
0 075 0 0 075 0 0
0 075 0 0 0 0 075
0 0 075 0 0 075 0
0 0 075 0 0 075 0
0 0 075 0 0 075 0
0 0 075 0 0 075 0
0 0 075 0 0 075 0
0 0 075 0 0 0 075

As can be seen, the loading matrices of both men and
women did not have cross-loadings. However, the last indi-
cator of each of the three factors in the group of men was
shifted to a forth factor in the group of women. We simu-
lated a data set with N =400 and the dichotomous covari-
ate sex, consisting of 200 men and 200 women.
Additionally, we simulated four covariates as “distractors” to
mimic a setting typical for questionnaire development: two
(standard-normally distributed) continuous, one other
dichotomous, and one categorical covariate with four cate-
gories. These covariates were independent from the factorial
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structure on population level but could have potentially
been selected by the EFA tree as a split variable. As
described above, we estimated a model with three factors
(i.e., a misspecified model for women). In parametric nota-
tion, the present violation of configural invariance means
that @ is a 3 x 3 matrix for men and a 4 x 4 matrix for
women. The results of the analysis are shown in Table 1.
The EFA tree successfully identified the covariate sex for
splitting and ignored the four other covariates. Thus, all
men and all women ended up in two different leaf nodes.
We also conducted a parallel analysis (Horn, 1965) on the
data in each leaf node, which correctly suggested three fac-
tors in the “male node” and four factors in the “female
node.” Especially in the early stages of questionnaire devel-
opment, a parallel analysis in each leaf node seems benefi-
cial. Table 2 shows the loading matrices of the regularized
EFA models in the two leaf nodes. The matrices with the
theoretically assumed three latent factors show no clear
cause of the violation of MI. However, in the matrix with
four latent factors in the female node, as indicated by the
data, it can be seen that the observed variables 6, 12, and 18
load on an additional factor not present in the male node.
Unfortunately, different number of factors cannot be eval-
uated directly because the algorithm can only handle one
pre-specified model. However, in these cases it would
remain unclear anyways what different numbers of latent
factors mean on a conceptual level. This emphasizes that
further analyses on the data in the leaf nodes are crucial to
better understand your data and, ultimately, the construct of
interest (cf. Brandmaier et al., 2013b).

Table 1. Test statistics and p-values for toy example 1.

sex covl cov2 cov3 cov4
statistic 152.45 80.20 122.47 57.43 208.36
p.value 0.00 1.00 0.02 1.00 0.95

Note. Test statistics were a y? test for categorical and the supLM statistic for
continuous covariates. cov1 - cov4 denote the distractor covariates.

Table 2. Regularized factor solution for toy example 1.

Men Women 3 Factors Women 4 Factors

F1 F2 F3 F1 F2 F3 F1 F2 F3 F4
0.72  0.01 013 073 0.08 003 072 009 000 0.03
072 0.04 007 064 009 003 063 010 0.01 0.02
075 0.00 0.1 076 0.00 000 076 000 006 -—0.02
0.80 0.07 0.1 0.78 —0.03 006 0.77 —0.01 —-0.02 0.06
073 0.06 —0.01 068 0.07 010 067 007 003 0.10
076 000 000 004 0179 023 003 004 068 0.09
0.11 072 007 014 072 003 014 072 002 004
000 073 011 —-0.03 070 0.0 —-0.03 071 0.00 0.11
0.11 071 —0.04 0.05 077 004 005 078 —001 0.5
0.04 075 007 006 070 000 006 069 004 0.00
010 075 000 000 073 —-002 000 069 015 —0.04

-005 077 015 000 022 016 0.00 0.7 072 0.00
013 000 069 000 002 073 000 002 000 0.74
0.02 0.06 073 —-0.03 000 083 —0.03 —0.01 0.08 0.81
000 016 072 002 005 074 002 006 —0.02 0.75
0.00 0.09 0.71 000 013 075 000 012 007 073
0.04 —0.01 076 002 000 073 002 000 004 072
0.02 013 071 0.01 016 026 0.00 0.00 070 0.2

Note. F1-F4 denote the latent factors. The factor solutions were achieved by
re-estimating the models in the leaf nodes via elastic net regularization.

6.2.3. Toy Example 2: Configural Invariance - Simple
Structure vs. Cross-Loadings

In the second toy example, we looked at a different form of
configural non-invariance, that is, simple structure in one
group and cross-loadings in the other group. We again used
the construct with 18 indicators from toy example 1. This
time, the number of latent factors was three for both
groups. However, the two groups were now defined by a
(standardized) continuous covariate age. We simulated the
groups based on the z-scores at the mean 0: z,, <0 was
the “younger” group and z,, > 0 the “older” group. This
yielded approximately equally sized groups. Note that while
this leads to two age-groups that have to be uncovered by
the EFA tree, it still has to treat age as a continuous variable
when assessing parameter instability on this covariate. The
standardized loading matrix on population level for the
younger group was the same as the one of the men used in
toy example 1. For the older group, cross-loadings were
added (cf. Scharf & Nestler, 2019):

075 0 0 0.67 022 0.13
075 0 0 0.68 0.09 0.23
075 0 0 0.68 027 0.05
075 0 0 0.65 0.39 0.09
075 0 0 0.64 0.13 0.39
075 0 0 0.67 0.18 0.18
0 075 0 0.05 0.68 027
0 075 0 028 0.63 0.38
0 075 0 038 0.63 0.21
Avounger = | (75 [iAoder =509 069 018
0 075 0 0.05 0.73 0.05
0 075 0 027 0.67 0.13
0O 0 075 0.04 0.40 0.66
0O 0 075 038 025 0.63
O 0 075 026 0.18 0.66
0O 0 075 0.14 0.09 0.70
O 0 075 022 022 0.66
0O 0 075 0.18 0.09 0.69

Aoiger had its main loadings at the same location as
Ayounger but had (considerable) cross-loadings (up to 0.4).
We simulated a data set with N = 1000 and the continuous
covariate age that defined the two groups as described
above. Again, we simulated four distractors: two other
(standard-normally distributed) continuous, one dichotom-
ous, and one categorical covariate with four categories.
Factor correlations on population level were 0.3, factor var-
iances were fixed to 1. The results are shown in Table 3.
The EFA tree identified the covariate age and split the data
approximately at z,, =0 (one observation from the
younger group near the mean 0 was falsely put in the leaf
node of the older group). It ignored all other covariates.
The standardized root mean square residuals (SRMR) of the
EFA models in the leaf nodes were 0.01 and 0.01 for the
younger and the older group, respectively, indicating good
fit. Additionally, regularization of the models in the leaf
nodes (approximately) recovered the simple structure in the
younger group and the considerable cross-loadings of some
observed variables in the older group (see Table 4). This



could be considered an indication of configural non-
invariance.

It should be mentioned here that even though an EFA
tree can efficiently test parameter stability on a continuous
covariate, in the end it still makes a binary split. While this
might fail to capture gradual differences in parameters, it
has the advantage of interpretability. If one is willing to
make the assumption that there are two discrete groups that
are defined along a continuous covariate, EFA trees yield
two fully interpretable and employable models. Additionally,
one does not have to prespecify any covariates that might
be associated with non-invariance in the data. We refer
readers who want to assess gradual parameter differences
along a known continuous covariate (without having to split
the data) to literature on multiple indicator multiple cause
models (MIMIC models; Muthén, 1989). Note, however, that
this approach does not use fewer assumptions. For example,
one assumption that is as strict as ours of two discrete
groups is the exact functional form of gradual differences
included in a MIMIC model (i.e., linear/quadratic/ ... ).

6.2.4. Toy Example 3: Metric Invariance - Different
Loading Sizes

In a third toy example, metric invariance of our three-
dimensional construct with 18 indicators was violated by a
categorical covariate marital status with four categories.
More specifically, loading sizes are different for observations
that are “single” from observations from all other categories.
The standardized loading matrix on population level for sin-
gle observations was the same as the one of the older group

Table 3. Test statistics and p-values for toy example 2.

age covl cov2 cov3 cov4
statistic 474.38 94.96 92.62 67.93 217.60
p.value 0.00 0.90 0.95 0.97 0.82

Note. Test statistics were a %2 test for categorical and the supLM statistic for
continuous covariates. covl - cov4 denote the distractor covariates.

Table 4. Regularized factor solution for toy example 2.

Younger Older

F1 F2 F3 F1 F2 F3
0.76 —0.01 0.01 0.70 0.11 0.11
0.76 0.00 0.00 0.65 0.00 0.29
0.72 0.04 0.06 0.72 0.20 0.00
0.76 0.06 —0.02 0.69 0.30 0.06
0.76 0.04 0.02 0.62 0.00 0.42
0.75 0.11 0.04 0.68 0.1 0.15

—0.06 0.78 0.04 0.00 0.66 0.26
0.01 0.77 0.01 0.27 0.59 0.36
0.00 0.78 0.06 0.42 0.57 0.17
0.01 0.73 0.05 0.11 0.64 0.16
0.05 0.76 0.00 0.05 0.78 —0.06
0.03 0.76 —0.03 0.28 0.65 0.07
0.01 0.00 0.72 —0.03 0.35 0.68
0.04 0.00 0.74 0.31 0.15 0.68
0.05 0.00 0.76 0.19 0.13 0.68

—0.01 0.03 0.72 0.08 0.00 0.76
0.00 0.06 0.77 0.15 0.09 0.74
0.02 0.00 0.78 0.08 0.04 0.75

Note. F1 - F3 denote the latent factors. The factor solutions were achieved by
re-estimating the models in the leaf nodes via elastic net regularization.
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used in toy example 2. For all other categories, cross-load-
ings were noticibly smaller (cf. Scharf & Nestler, 2019):

0.67 0.22 0.13 0.70 0.11 0.14

0.68 0.09 0.23 0.70 0.17 0.05

0.68 0.27 0.05 0.68 0.16 0.16

0.65 0.39 0.09 0.70 0.05 0.17

0.64 0.13 0.39 0.72 0.08 0.08

0.67 0.18 0.18 0.70 0.11 0.11

0.05 0.68 0.27 0.11 0.69 0.17

0.28 0.63 0.38 0.05 0.72 0.08

Acor — 0.38 0.63 0.21 Aw — 0.05 0.72 0.08
Single 0.09 0.69 0.18 |’ Rest 0.16 0.68 0.16
0.05 0.73 0.05 0.08 0.71 0.11

0.27 0.67 0.13 0.05 0.71 0.14

0.04 0.40 0.66 0.08 0.14 0.70

0.38 0.25 0.63 0.14 0.14 0.69

0.26 0.18 0.66 0.14 0.11 0.70

0.14 0.09 0.70 0.11 0.05 0.71

0.22 0.22 0.66 0.16 0.14 0.69

0.18 0.09 0.69 0.08 0.05 0.72

Cross-loadings of Aging, were as high as 0.40, whereas in
Apest they reached a maximum of 0.17. We simulated a data
set with N =400 and the categorical covariate marital sta-
tus. In marital status, each category had n = 100 observa-
tions. This time, we simulated eight distractors: four
(standard-normally distributed) continuous, two dichotom-
ous, one other categorical with four categories, and one
ordinal covariate with four categories. Factor correlations on
population level were 0.3, factor variances were fixed to 1. The
results are shown in Table 5. The EFA tree split the data into
single and non-single observations. Every observations was put
in the correct leaf node and no distractor was chosen for split-
ting. The SRMRs of the EFA models in the leaf nodes were
0.03 and 0.02 for the singles and the rest group, respectively,
indicating good fit. Further inspection of the models in the
leaf nodes showed that the recovery of the population loading
matrices was not perfect (see Table 6). It is important to con-
sider that regularization might yield imperfect solutions, for
example if some parameters are shrunk too much toward zero.
However, in our fully exploratory setting, one can still see that
cross-loadings differ in their amount between the two groups,
suggesting metric non-invariance.

6.2.5. Toy Example 4: Configural and Metric Invariance -
Interaction Effects Between Covariates

In a forth toy example, we investigated whether EFA trees
can capture interaction effects between covariates. Recall
that interactions can be detected by allowing the tree to split

Table 5. Test statistics and p-values for toy example 3.

marital

status covl cov2 cov3 cov4 cov5 cov6 cov7 cov8
statistic 276.70 92.67 87.40 85.69 82.11 7032 66.77 22231 21559
p.value 0.01 099 100 1.00 100 099 1.00 0.89 0.97

Note. Test statistics were a y? test for categorical and the supLM statistic for
continuous covariates. covl - cov8 denote the distractor covariates.



878 STERNER AND GORETZKO

more than once. If a tree subsequently splits data on two
different covariates, these splits can be seen as an interaction
between the two split covariates. Again, we assume our
three-dimensional construct with 18 indicators. MI was vio-
lated by a categorical variable sex in that the population
loading matrix for women showed a perfect simple structure
whereas for men, cross-loadings were present (i.e., a viola-
tion of configural MI). Additionally, in the “male” leaf node,
the population matrices for men above and below the mean
age differed with respect to the size of the cross-loadings
(i.e., a violation of metric MI; cf. toy example 2). That is,
there was an interaction effect between sex and age in the
sense that only the population matrices of men were
affected by age. The standardized loading matrices on popu-
lation level were the same as in toy example 2 and 3 (cf.
Scharf & Nestler, 2019):

[0.75 0 0 ] [0.67 0.22 0.13]
075 0 0 0.68 0.09 0.23
075 0 0 0.68 027 0.05
075 0 0 0.65 0.39 0.09
075 0 0 0.64 0.13 0.39
075 0 0 0.67 0.18 0.18
0 075 0 0.05 0.68 0.27
0 075 0 028 0.63 0.38
P 0 075 0  Avousger men = 0.38 0.63 0.21
0 075 0 0.09 0.69 0.18
0 075 0 0.05 0.73 0.05
0 075 0 027 0.67 0.13
0 0 075 0.04 0.40 0.66
0 0 075 0.38 025 0.63
0 0 075 0.26 0.18 0.66
0 0 075 0.14 0.09 0.70
0 0 075 022 022 0.66
Lo 0 075 [0.18 0.09 0.69 |

[0.70 0.11 0.14]

0.70 0.17 0.05

0.68 0.16 0.16

0.70 0.05 0.17

0.72 0.08 0.08

0.70 0.11 0.11

0.11 0.69 0.17

0.05 0.72 0.08

Aower men — 0.05 0.72 0.08

0.16 0.68 0.16

0.08 0.71 0.11

0.05 0.71 0.14

0.08 0.14 0.70

0.14 0.14 0.69

0.14 0.11 0.70

0.11 0.05 0.71

0.16 0.14 0.69

0.08 0.05 0.72

We simulated a data set with N = 1000 together with the
categorical covariate sex and the continuous covariate age. In

Table 6. Regularized factor solution for toy example 3.

Single Rest

F1 F2 F3 F1 F2 F3
0.70 0.02 0.10 0.73 0.04 0.10
0.64 0.00 0.30 0.77 0.04 0.00
0.76 0.12 —0.03 0.72 0.00 0.15
0.70 0.35 0.01 0.75 0.04 0.12
0.62 —0.01 0.45 0.69 0.00 0.09
0.76 0.1 0.00 0.73 0.00 0.12

—0.05 0.80 0.11 0.08 0.75 0.14
0.23 0.62 0.32 0.02 0.69 0.09
0.37 0.67 0.05 0.00 0.77 0.00
0.04 0.80 0.05 0.07 0.72 0.13
0.00 0.75 —0.03 0.10 0.70 0.05
0.26 0.69 0.00 0.06 0.71 0.06

—0.10 0.37 0.70 0.00 0.19 0.70
0.31 0.1 0.72 0.07 0.09 0.71
0.24 0.14 0.63 0.06 0.12 0.73
0.00 0.06 0.78 0.07 0.06 0.69
0.05 0.19 0.72 0.12 0.13 0.68
0.08 0.00 0.75 0.04 —0.06 0.79

Note. F1 - F3 denote the latent factors. The factor solutions were achieved by
re-estimating the models in the leaf nodes via elastic net regularization.

Table 7. Test statistics and p-values for the first node in toy example 4.

sex age covl cov2 cov3 cov4
statistic 269.00 235.69 81.69 106.02 85.48 187.68
p.value 0.00 0.00 1.00 0.43 0.42 1.00

Note. Test statistics were a y? test for categorical and the supLM statistic for
continuous covariates. covl - cov4 denote the distractor covariates.

sex, there were n = 300 women and # = 700 men. Of these
700 men, n = 354 were younger than the mean age and n =
346 were older. We simulated four distractors: two (standard-
normally distributed) continuous covariates, one dichotomous
covariate, and one categorical covariate with four categories.
Factor correlations on population level were 0.3, factor var-
iances were fixed to 1. The results are shown in Table 7 (for
the first node) and Table 8 (for the second node). Note that
the p-values for both covariates sex and age were below the
Bonferroni-correct level of significance of 0.05 but the p-value
of sex was lower than that of age. Thus, the EFA tree first
split the data on the covariate sex. Subsequently, it performed
a second split on the covariate age in the male leaf node at
Zage = —0.00455. This split point was not exactly optimal
because it led two observations that had values below the
mean 0 but above the split point (—0.00455 < zg < 0) to
falsely end up in the “older male” leaf node. Nonetheless, the
EFA tree correctly identified the interaction effect between
sex and age. The SRMRs of the EFA models in the leaf nodes
were 0.02, 0.01, and 0.02 for the female, the younger male,
and the older male groups, respectively. Further inspection of
the models in the leaf nodes showed an approximate simple
structure for women and cross-loadings for men, with high
cross-loadings for younger men and rather small cross-load-
ings for older men (see Table 9).

In summary, the toy examples showed that EFA trees
can uncover a lack of MI under typical questionnaire
research conditions. One of the main advantages of the
method is that it allows substantive researchers to do what
they are used to. They estimate an EFA and interpret factor
loadings by investigating the content of different items and



Table 8. Test statistics and p-values for the second node in toy example 4.

sex age covl cov2 cov3 cov4
statistic 0.00 328.80 87.54 100.67 88.89 195.11
p.value NA 0.00 0.99 0.68 0.24 1.00

Note. Test statistics were a y2 test for categorical and the supLM statistic for
continuous covariates. covl - cov8 denote the distractor covariates.

Table 9. Regularized factor solution for toy example 4.

Women Younger men Older men

F1 F2 F3 F1 F2 F3 F1 F2 F3
0.74 0.04 0.02 0.74 0.16 0.01 0.76  0.09 0.00
0.70 000 0.14 0.75 —0.04 0.15 0.71 0.20  0.00
0.71 0.05 0.00 0.75 0.16 0.00 072 011 0.07
0.77 0.09 0.00 0.72 0.31 —0.08 0.77 000 0.08
0.72 0.01 013 0.68 0.05 0.30 076  0.02 0.06
076  —0.02 0.02 0.80 0.00 0.13 066 016 0.02
0.02 0.76  0.00 0.00 0.61 0.34 0.10 068 0.15
0.00 0.72 0.04 0.28 0.54 036 —0.03 0.72 0.06
0.10 0.66 0.07 0.42 0.56 0.13 002 075 0.0
0.01 074 0.2 0.18 0.61 0.15 015 069 0.08

—0.02 0.71 0.08 0.09 0.72 0.00 0.00 076 0.00
0.04 0.71 0.00 0.26 0.64 0.08 0.00 080 0.04
0.04 013 069 —0.06 0.35 0.72 0.16 012  0.66
0.00 010 0.71 0.42 0.12 0.59 008 016 0.69
0.03 0.08 0.67 0.34 0.06 0.62 0.16 003 0.71
0.03 0.00 0.72 0.09 0.00 0.77 0.12 000 0.70
004 —004 076 0.24 0.10 0.67 0.17 012 0.64

—0.03 0.07 072 0.21 0.04 064 —006 000 0381

Note. F1 - F3 denote the latent factors. The factor solutions were achieved by
re-estimating the models in the leaf nodes via elastic net regularization.

by making sense of latent factors. The only difference is that
now researchers get to work with two (or possibly more)
loading matrices, being able to better understand heteroge-
neous groups in their data. However, you do not get statis-
tical information on which parameters differ across the
nodes. This highlights the need for thorough investigations
of the models in the leaf nodes with domain expertise’. As
already mentioned, an interesting future extension would be
to combine EFA trees with MGFR (De Roover & Vermunt,
2019) to identify specific parameters differences. In the fol-
lowing, we report the results of a structured simulation
study to investigate the performance of the trees under vari-
ous conditions.

6.3. Simulation Study

6.3.1. Procedure

The algorithm was employed as described in the section
Software. The simulation study was run on the Linux-cluster
of the Leibniz Supercomputing Centre of the Bavarian
Academy of Sciences and Humanities. We manipulated five
variables that mimic typical research conditions and could
potentially influence the performance of the trees:

3During the review process, one reviewer posed the question whether EFA
trees would also split the data if differences occured only in factor
correlations between groups. We have created an online supplement in which
we show that EFA trees split the data in this case and demonstrate what this
entails for the invariance of measurements. Additionally, we discuss the use of
covariance instead of correlation matrices when estimating the models in the
leaf nodes. The online supplement is openly available at https://osf.io/7pgrb/.
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o Sample size: 400 vs. 1,000 vs. 10,000. With sample sizes
of 400 and 1,000 we investigated conditions typical for
questionnaire research (Fabrigar et al., 1999; Goretzko
et al., 2021) and with a sample size of 10,000 we investi-
gated the asymptotic properties of EFA trees.

o Type of split covariate: categorical vs. continuous. The
split variable was either a categorical (binary) or a con-
tinuous  variable  (following a  standard-normal
distribution).

o Group size ratio: 50/50 vs. 20/80. The group sizes in the
leaf nodes were either equal, or skewed so that 20% of
the whole sample belonged to one leaf node and 80%
belonged to the other one. For some conditions with a
continuous split covariate, these ratios were only
approximately achieved due to random number gener-
ation from a normal distribution. That is, data for the
covariate were first drawn randomly from a standard-
normal distribution and were then split into two groups
by choosing a cut point that would lead to the desired
group size ratios (cf. toy example 2). For example, for
the ratio 50/50 that corresponded to a cut point at z =
0. Whereas in theory, this should divide the sample into
two equally sized groups, in practice it could happen
that the ratio is not exactly 50/50 because out of the N
observations, a few more might have been generated on
one side of the cut point than on the other.

o Number of distractor covariates: 4 vs. 8. For the condi-
tion with four distractors, we simulated one (standard-
normally distributed) continuous covariate, one binary
covariate, one categorical covariate with four categories,
and one ordinal covariate with four categories. For the
condition with eight distractors, we simulated two of
these covariates each.

o Type of lack of MI: configural vs. metric. In the condition
with lack of configural MI, we used the loading matrices
from toy example 2 (simple structure vs. cross-loadings).
In the condition with lack of metric MI, we used the
loading matrices from toy example 3 (small cross-load-
ings vs. considerable cross-loadings).

We refrained from including conditions in which the
covariates are correlated. This is a rather simplified setting,
but our goal was to provide a first large-scale simulation to
show the performance of model-based recursive partitioning
in combination with EFA. In future studies, we plan to
investigate the performance of EFA trees under more
nuanced conditions; e.g., U-shaped relations between par-
ameter instability and covariates, complicated interactions,
and also correlated covariates.

We also added six conditions in which MI was sup-
ported, i.e. in which EFA trees should not split the data (3
sample sizes x 2 numbers of distractors). In total, this
amounted to 54 conditions. We simulated 1,000 data sets
per condition, resulting in 54,000 data sets for the analysis.
As dependent variables, we compared the type I error rates
(i.e., the rate of falsely splitting invariant data) and type II
error rates (i.e, the rate of falsely missing a split of
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non-invariant data). Additionally, we looked at the mean
and standard deviation (SD) of the SRMR in the leaf nodes.

7. Results

Figure 1 shows the power (i.e., the rate of correctly detect-
ing a lack of MI; 1 - type II error rate) of EFA trees for all
conditions. Overall, EFA trees demonstrated a high power
of > 93% for all conditions. EFA trees only missed a split
in conditions where sample size was 400; for the conditions
of sample size 1,000 and 10,000 the data was always split.
However, in rare occasions for sample sizes 1,000 and
10,000, EFA trees chose the wrong covariate for splitting
and then encountered problems of estimating the EFA mod-
els in the leaf nodes. We assume that this was due to too
few observations in the nodes after a wrong split covariate
(and thus, a wrong split point) was chosen. For the two
conditions of sample size 400, ratio between groups 20/80,
continuous split covariate, lack of metric MI, and number
of distractors four and eight (ceteris paribus) the power was
markedly smaller than for all other conditions (95.5% and
93.6%, respectively). Nonetheless, the power for these condi-
tions can still be considered good and they are arguably the
most complex conditions (small sample size, unbalanced
groups, continuous covariate, and comparison of different
sizes of cross-loadings).

Figure 2 shows the type I error rates by sample size and
by number of covariates. Most notably, the rate increased
with sample size. The type I error rates did not markedly
exceed the significance level we set for the EFA trees
(0 =0.05). Only for a sample size of 10,000 and eight
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distractors the observed type I error rate was higher (0.057).
When constructing an approximate 95% Wald-confidence
interval (CI) around the observed type I error rates, the CI
for sample size 10,000 contained the nominal level of sig-
nificance oo = 0.05. However, for sample sizes 400 and 1,000
it did not contain 0.05. This could be an indication that the
parameter stability tests are overly conservative. While from
a statistical point of view this might not be ideal, the power
to detect non-invariance was still high in our study.
Nonetheless, future simulations should investigate the
behavior of the type I error rate with even larger sample
sizes or different test statistics.

Table 10 shows the SRMRs for all conditions in the leaf
nodes as well as the corresponding split rates (i.e., power
and type I error rate). As can be seen, all SRMRs were <
0.03 with SD < 0.01. Differences were most notable between
sample sizes, such that SRMRs were smaller with increasing
sample size. This seems reasonable as larger samples allow
for more accurate model estimation.

8. Discussion

We investigated EFA trees as a method to explore and test
for MI in a sample of questionnaire data. Our toy examples
showed that EFA trees can be used as a simple and straight-
forward extension of methods that substantive researchers
are familiar with. The comprehensive simulation study fur-
ther highlighted that EFA trees perform well under various
conditions. In all conditions, EFA trees demonstrated a high
power to detect non-invariance while keeping false-positive
splits in the pre-specified range. Ultimately, our goal is to
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Figure 1. Power (1 - type Il error rate) of EFA trees to detect lack of measurement invariance (MI) by sample size N. Configural and metric denote the type of lack
of MI. 20/80 and 50/50 denote the group size ratio. 4 and 8 denote the number of distractors.



0.100 -
Number of
distractors
B
0.075- . 8
2
N
S
o
& 0.050 -
©
o
>
'_
0.025-
0.000 -

400

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 881

1000 10000

N

Figure 2. Type | error rate (false-positive rate) of EFA trees by sample size N and number of distractors.

suggest a method that helps researchers to develop question-
naires that took MI into account from the beginning.
Additionally, EFA trees can be used as a first tool of explor-
ation when analyzing data before more rigorous steps to test
for MI are employed. This is particularly useful when there
are no hypotheses about covariates that might cause non-
invariance. Even for questionnaires developed as invariant
as possible, these tests for MI prior to analyses are indis-
pensable. One should keep in mind here that MI cannot be
considered a characteristic of a construct but needs to be
addressed for every construct in every study (Vandenberg,
2002).

8.1. Why Should You Use EFA Trees?

From a conceptually and theoretically broader perspective,
we see three main advantages of EFA trees (and the same
applies, in our opinion, to SEM trees and Rasch trees). First,
both the seminal review by Vandenberg and Lance (2000)
and the more recent one by Putnick and Bornstein (2016)
showed that there is a high interest and need for tools that
can explore and test for MI. This is good news because
addressing MI related issues helps to improve the quality of
psychological measurement. In all areas of psychology,
improving measurement quality should be a main goal
Otherwise, ever more sophisticated data analysis methods
(most notably, machine learning algorithms) cannot unfold
their full potential. In fact, as Jacobucci and Grimm (2020)
demonstrated, only small amounts of measurement error
already diminish the effectiveness of machine learning algo-
rithms to model non-linear effects. Of course, these tree-
based methods will not solve all measurement bias related
problems. But by equipping researchers with easy-to-use
methods whose outputs they are used to interpreting, we

can hopefully reduce measurement bias induced by non-
invariance or DIF.

Second, EFA trees can assist researchers in shortening
questionnaires or in item selection by enabling data-driven
exploration of your sample. In practice, one of the main
drivers when selecting “good” from “bad” items is the mag-
nitude of factor loadings (Kleka & Soroko, 2018). However,
this neglects the fact that even items with a small loading
might be important from a content validity standpoint.
Even further, there are various reasons why a lack of MI
might occur that are arguably more important than loadings
when deciding whether to keep or drop/exchange an item.
Chen (2008) states many reasons, for example: a) the con-
ceptual meaning or understanding of the construct differs
across groups (e.g., for cultural reasons), b) particular items
are more applicable for one group than another, c) the item
was not translated properly, and/or d) certain groups
respond to extreme items differently. EFA trees do not tell
you directly which of these reasons applies to your situation.
But they still identify items or whole scales that can then be
further explored®. In the broadest sense, this might even
inform psychological theory development if items are
repeatedly shown to be non-invariant between certain
groups (Brandmaier & Jacobucci, 2023). Put simply, an item
with a small loading might be preferable to an item that
works differently between groups (given that the small load-
ing is not due to non-invariance caused by a covariate that
was unmeasured and, thus, undetected by an EFA tree).

“Note that if factor solutions in the nodes are rotated instead of regularized,
the items or scales that are identified as non-invariant depend on the exact
factor rotation. This is because the solutions are no longer unique and thus
different rotations might lead to different interpretations of the solutions.
Regularized solutions are unique given a specific type of regularization (e.g.,
LASSO, ridge, or elastic net) and a specific set of hyperparameters. Changing
these settings might again yield different interpretations.
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Table 10. Mean and standard deviations of the standardized root mean squared residuals in the two leaf nodes and split rates for all

54 conditions.

Condition Child Node 1 Child Node 2 SD1 SD2 Split Rate
1000, 4, 20/80, categorical, configural 0.016 0.012 0.0014 0.0014 1.000
1000, 4, 20/80, categorical, metric 0.015 0.010 0.0015 0.0012 1.000
1000, 4, 20/80, continuous, configural 0.012 0.016 0.0009 0.0018 1.000
1000, 4, 20/80, continuous, metric 0.010 0.016 0.0008 0.0018 1.000
1000, 4, 50/50, categorical, configural 0.010 0.015 0.0008 0.0013 1.000
1000, 4, 50/50, categorical, metric 0.010 0.013 0.0008 0.0012 1.000
1000, 4, 50/50, continuous, configural 0.015 0.010 0.0012 0.0024 0.998
1000, 4, 50/50, continuous, metric 0.013 0.010 0.0011 0.0026 1.000
1000, 4, none, none, none 0.007 0.010 0.0013 0.0031 0.028
1000, 8, 20/80, categorical, configural 0.016 0.012 0.0014 0.0013 1.000
1000, 8, 20/80, categorical, metric 0.015 0.010 0.0014 0.0008 1.000
1000, 8, 20/80, continuous, configural 0.012 0.016 0.0009 0.0017 0.999
1000, 8, 20/80, continuous, metric 0.010 0.015 0.0008 0.0016 1.000
1000, 8, 50/50, categorical, configural 0.010 0.015 0.0008 0.0012 1.000
1000, 8, 50/50, categorical, metric 0.010 0.013 0.0008 0.0014 1.000
1000, 8, 50/50, continuous, configural 0.015 0.010 0.0012 0.0021 1.000
1000, 8, 50/50, continuous, metric 0.013 0.010 0.0010 0.0022 1.000
1000, 8, none, none, none 0.007 0.012 0.0010 0.0053 0.027
10000, 4, 20/80, categorical, configural 0.005 0.004 0.0004 0.0009 1.000
10000, 4, 20/80, categorical, metric 0.005 0.003 0.0004 0.0007 1.000
10000, 4, 20/80, continuous, configural 0.004 0.005 0.0003 0.0018 0.992
10000, 4, 20/80, continuous, metric 0.003 0.005 0.0002 0.0005 0.999
10000, 4, 50/50, categorical, configural 0.003 0.005 0.0002 0.0005 1.000
10000, 4, 50/50, categorical, metric 0.003 0.004 0.0002 0.0006 0.999
10000, 4, 50/50, continuous, configural 0.005 0.003 0.0003 0.0009 0.993
10000, 4, 50/50, continuous, metric 0.004 0.003 0.0003 0.0007 0.997
10000, 4, none, none, none 0.002 0.003 0.0004 0.0008 0.043
10000, 8, 20/80, categorical, configural 0.005 0.004 0.0004 0.0011 1.000
10000, 8, 20/80, categorical, metric 0.005 0.003 0.0004 0.0009 1.000
10000, 8, 20/80, continuous, configural 0.004 0.005 0.0003 0.0005 0.997
10000, 8, 20/80, continuous, metric 0.003 0.005 0.0002 0.0005 0.999
10000, 8, 50/50, categorical, configural 0.003 0.005 0.0002 0.0006 1.000
10000, 8, 50/50, categorical, metric 0.003 0.004 0.0002 0.0004 1.000
10000, 8, 50/50, continuous, configural 0.005 0.003 0.0003 0.0011 0.992
10000, 8, 50/50, continuous, metric 0.004 0.003 0.0003 0.0011 0.997
10000, 8, none, none, none 0.002 0.003 0.0004 0.0008 0.057
400, 4, 20/80, categorical, configural 0.025 0.019 0.0028 0.0014 1.000
400, 4, 20/80, categorical, metric 0.025 0.016 0.0027 0.0013 1.000
400, 4, 20/80, continuous, configural 0.019 0.026 0.0015 0.0032 0.998
400, 4, 20/80, continuous, metric 0.016 0.025 0.0014 0.0032 0.955
400, 4, 50/50, categorical, configural 0.015 0.024 0.0014 0.0020 1.000
400, 4, 50/50, categorical, metric 0.015 0.021 0.0015 0.0018 1.000
400, 4, 50/50, continuous, configural 0.024 0.016 0.0020 0.0021 1.000
400, 4, 50/50, continuous, metric 0.021 0.016 0.0019 0.0019 1.000
400, 4, none, none, none 0.011 0.017 0.0014 0.0065 0.016
400, 8, 20/80, categorical, configural 0.025 0.019 0.0030 0.0014 1.000
400, 8, 20/80, categorical, metric 0.026 0.016 0.0027 0.0014 0.999
400, 8, 20/80, continuous, configural 0.019 0.025 0.0015 0.0031 0.996
400, 8, 20/80, continuous, metric 0.016 0.025 0.0015 0.0031 0.936
400, 8, 50/50, categorical, configural 0.016 0.024 0.0014 0.0019 1.000
400, 8, 50/50, categorical, metric 0.015 0.021 0.0014 0.0018 1.000
400, 8, 50/50, continuous, configural 0.024 0.016 0.0020 0.0020 1.000
400, 8, 50/50, continuous, metric 0.021 0.015 0.0019 0.0021 1.000
400, 8, none, none, none 0.011 0.016 0.0014 0.0040 0.017

Note. SD: standard deviation. Condition: First entry corresponds to sample size, second to number of distractors, third to group size
ratio, fourth to type of split covariate, fifth to type of lack of measurement invariance.

Third, EFA trees might help to improve the quality of
decisions in single-case assessment. In general research, a
lack of MI might lead to meaningless results of comparisons
between groups. However, in diagnostic decision making on
the single-case level, a lack of MI might cause misclassifica-
tions. It is common to incorporate diagnostic evidence gath-
ered by tests like personality questionnaires or symptom
severity scales when assessing whether a person is suitable
for a job or eligible for a certain treatment. Ultimately,
besides researching human behavior, this is the main reason
why psychological tests are developed in the first place.
Thus, it is crucial to develop questionnaires that are as

invariant as possible between all potential target groups
(Borsboom, 2006). Of course, this is an overly optimistic
goal but we should then at least know for which groups a
questionnaire can be used. Imagine using a depression scale
that works differently for men and women, such that men
receive lower test scores of depressivity even though their
true score is equal to that of women. As a consequence,
men would on average receive less diagnoses and, thus, less
treatment for their depression or women would be overdiag-
nosed and overtreated in return. Therefore, easy-to-use
methods for the assessment of MI on a high level can be a
powerful tool to create fair and broadly applicable measures.



8.2. How Deep is Your Tree?

One important question we have not yet addressed directly
is the depth of EFA trees. We have mostly talked about
EFA trees that split the data once but have also shown that
deeper trees are possible, revealing interactions between
covariates. Theoretically, there is no limit on the depth of a
tree (e.g., see Brandmaier et al., 2013b for SEM trees with
up to four splits). However, we recommend that you decide
on the depth of your tree depending on the goal of your
analysis (if multiple interactions between covariates that are
associated with non-invariance are present). The main areas
of application of EFA trees are the earliest stages of ques-
tionnaire development and prior to specific analyses
between two groups. In both scenarios, we see two main
points to consider when deciding on the depth of your tree:
sample size and interpretability.

First, sample sizes in the nodes have to be sufficiently
large to allow for stable model estimations. Only then mean-
ingful conclusions about the structure can be drawn. When
we consider classic recommendations (Fabrigar et al., 1999)
and current practice (Goretzko et al., 2021) regarding sam-
ple sizes in EFA, splitting more than once or twice might
lead to too few observations in the leaf nodes.

Second, the heterogeneous groups identified by EFA trees
should be reasonably interpretable (cf. Zeileis et al., 2008).
As mentioned earlier, a split is always dependent on all
prior splits. Especially in the earliest stages of questionnaire
development, a main goal should be to identify non-invari-
ant groups on a high level. Additionally, as explained in the
Introduction, EFA trees use hierarchical clustering. That is,
each split is conditional on the previous split. While this
allows to determine the number of heterogeneous groups in
a data-driven manner, the allocation of observations to the
leaf nodes might not be optimal from a clustering perspec-
tive. This is less of a problem with shallow trees, whereas it
is amplified when trees become deeper because more inter-
actions are present. Thus, the deeper the tree is grown, we
would recommend to be more cautious not to overinterpret
the models in the leaf nodes.

8.3. Limitations and Future Directions

Inevitably, EFA trees come with a few limitations that
researchers should keep in mind when applying the method.
One issue when working with a single tree-based algorithm
is that it is dependent on the specific sample (Breiman,
2001). To counteract this dependency, ensemble learning
methods like random forests can be applied. In a random
forest, multiple decision trees are grown in parallel and the
results of all trees are aggregated into a single, more stable
prediction of unseen data. Brandmaier et al. (2016) suggest
SEM forests as an extension to SEM trees. They argue that
SEM forests should not be seen as a “better” version of
SEM trees but that both algorithms are complementary
analyses. While SEM trees captivate by their interpretability
and the information they yield about a sample at hand, spe-
cific partitions may not be optimal or may not generalize to
new samples. SEM forests, in turn, can be used to obtain
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more stable estimates about covariates that predict differ-
ence in data patterns. Analogously, EFA trees can be
extended to EFA forests. We want to point out two caution-
ary notes regarding this extension. First, it should be noted
that growing even a single tree can be very expensive from
a computational point of view. If a continuous covariate is
identified as a split variable, the exhaustive search of order
O(N) can take well over one hour to yield a split point (on
a standard local machine). Considering typical ensemble
sizes of random forest (say 500 single trees), this can be
time consuming even with parallelization on two or four
cores. Of course, researchers who have supercomputing
clusters available can make use of more cores for larger par-
allelization setups. Second, while the dependence on a spe-
cific sample makes decision trees unstable in their
predictions of new data, the assessment of MI with respect
to the present sample is the primary goal of EFA trees. The
main strength of EFA trees lays in interpretability which we
regard higher than predictive performance in this context
(cf. Zeileis et al., 2008). Although an ensemble approach like
random forests increases the generalizability of predictions,
it impedes the inspection of a specific partition. If the goal
is to obtain an interpretable structure for a sample at hand,
a single EFA tree should be preferred.

As mentioned earlier, EFA models in the tree are esti-
mated using maximum likelihood estimation (MLE).
Unfortunately, so far no other estimation method can be
applied because the hypothesis tests used to test for param-
eter differences need a well-defined likelihood (Hothorn
et al., 2006; Zeileis et al., 2008; Zeileis & Hornik, 2007).
Even though MLE is one of the most commonly used esti-
mation methods for EFA, it is only suitable for multivariate
normal data (Fabrigar et al, 1999; Goretzko et al, 2021).
With the typical use of Likert-type items in psychological
questionnaires (especially when answer options are few),
this assumption of normality is questionable. Researchers
should evaluate whether MLE is suitable for their data
before applying EFA trees. Additionally, future studies are
needed to assess the performance of EFA trees under non-
normal data, for example with a dichotomous item format.

Another limitation one should keep in mind is that the
sensitivity of the tree can only be governed by the level of
significance that is set for the hypothesis tests rather than
by considering effect sizes. That is, EFA trees are calibrated
in a frequentist manner without really taking into account
the impact of non-invariance on the subsequent analyses.
Measures exist that directly link the degree of non-invari-
ance to the impact it has on substantive analyses between
groups (e.g., EPC-interest, Oberski, 2014). Moreover, Chen
(2007) comprehensively evaluated the sensitivity of common
goodness-of-fit indexes like SRMR to lack of MI. However,
when using EFA trees, one can calibrate the trees only
abstractly by adjusting the level of significance. That is, the
higher the level of significance, the higher the sensitivity to
detect smaller degrees of non-invariance. Similarly, if sample
sizes become larger, smaller degrees of non-invariance
become statistically significant without being practically rele-
vant. It is crucial to thoroughly investigate the models in



884 STERNER AND GORETZKO

the leaf nodes to identify whether a split is actually mean-
ingful. Here, too, can domain expertise help to identify pos-
sible false-positive splits. Future research should investigate
measures that could govern the sensitivity of the tree by
considering minimum non-invariance thresholds (ie., a
minimum degree of non-invariance that is deemed relevant
for splitting).

The last limitation was raised by Strobl et al. (2015) in
the context of Rasch trees and equally applies to EFA trees:
If a covariate that causes non-invariance has not been meas-
ured, it cannot be detected by the tree. However, if a covari-
ate that is correlated with the relevant missing one is
available, non-invariance may still be detected (Strobl et al.,
2015). For this reason, a covariate identified for splitting the
data cannot simply be interpreted as the root cause of the
lack of MI. That is, any split covariate might well be just
the observed version of a latent variable causing non-invari-
ance. This again highlights the importance of thoroughly
investigating the data and to use EFA trees as a means of
exploration.

9. Conclusion

EFA trees offer an easy-to-use and well-known approach to
exploring data and testing for MI. They are especially useful
in areas like personality or clinical psychology where con-
structs can be multidimensional and complex. We hope to
motivate researchers to test for MI in the earliest stages of
questionnaire development but also before substantive group
comparisons. In this, measurement bias in general research
will hopefully be reduced and diagnostic decisions might
even become fairer. When it comes down to it, there is
hardly any area of psychology or any research question that
would not benefit from more measurement invariance. Or,
to put it in the words of Meredith (1993) (p. 540): “It
should be obvious that measurement invariance [...] are
idealizations. They are, however, enormously useful idealiza-
tions in their application to psychological theory building
and evaluation.”
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