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Compiler correctness is an old problem, but with the emergence of smart contracts on blockchains 
that problem presents itself in a new light. Smart contracts are self-contained pieces of software 
that control (valuable) assets in an adversarial environment; once committed to the blockchain, 
these smart contracts cannot be modified. Smart contracts are typically developed in a high-level 
contract language and compiled to low-level virtual machine code before being committed to the 
blockchain. For a smart contract user to trust a given piece of low-level code on the blockchain, 
they must convince themselves that (a) they are in possession of the matching source code and 
(b) that the compiler has correctly translated the source code to the given low-level code.
Classic approaches to compiler correctness tackle the second point. We argue that translation 
certification also squarely addresses the first. We describe the proof architecture of a translation 
certification framework and demonstrate how we can model the compilation pipeline as a 
sequence of translation relations. We give a detailed account of such relations for most passes 
of the Plutus Tx compiler, which we formalised in Coq. This approach facilitates a modular 
verification methodology and is robust in the face of an evolving compiler implementation.

1. Introduction

Compiler correctness is an old problem that has received renewed interest in the context of smart contracts—that is, compiled code 
on public blockchains, such as Ethereum or Cardano. This code often controls a significant amount of financial assets, must operate 
under adversarial conditions, and can no longer be updated once it has been committed to the blockchain. Bugs in smart contracts 
are a significant problem in practice [5]. Recent work has also established that smart contract language compilers can exacerbate 
this problem [31, Section 3], in this case, the Vyper compiler. More specifically, the authors report (a) that they did find bugs in 
the Vyper compiler that compromised smart contract security and (b) that they performed verification on generated low-level code, 
because they were wary of compiler bugs.

Hence, to support reasoning about smart contract source code, we need to get a handle on the correctness of smart contract 
compilers. On top of that, we do also need a verifiable link between the source code and its compiled code to prevent code substitution 
attacks, where an adversary presents the user with source code that doesn’t match the low-level code committed on-chain.
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Fig. 1. Architecture for a single compiler pass. The grey area (left) represents the compiler, orange (centre) and blue (right) represent the certification component in 
Coq. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

In our previous work [21], we have reported on our ongoing effort to develop a certification engine for the open-source on-chain 
code compiler of the Plutus smart contract system1 for the Cardano blockchain.2 In this paper, we formally describe the specification

of a significant part of the Plutus compiler, enabling us to reason formally about its behaviour. In particular, this paper describes two 
crucial aspects of our certification effort:

• We describe the architecture for a translation certifier based on translation relations, which allows us to generate translation 
certificates—proof objects that relate the source code to the resulting compiled code and to establish the correctness of the 
translation (Section 2).

• We demonstrate the various compiler passes that optimise and translate Plutus Intermediate Representation (PIR) step-by-step 
to Plutus Core (PLC) and explain how we have implemented their specification with translation relations in Coq (Section 3).

This paper elaborates on previous work [21] and makes the following novel contributions:

• Instead of discussing a simplified subset of PIR, we now cover the complete intermediate language and have modified the 
specification of the passes accordingly in Section 3. This required us to deal with more involved binding structures and types.

• We describe specifications of a few new compiler passes that were only recently implemented in the compiler or were not 
included in the previous work in Sections 3.4, 3.5.3, 3.5.4 and 3.5.5

• We consider one optimisation pass (dead-code-elimination) and describe in detail its specification in Section 4.1, we then show 
its decision procedure in Section 4.2 and show how to construct a proof of the translation relation for a concrete program in 
Section 4.3.

• We provide an implementation of the translation relations in the Coq proof assistant.3

• We reflect on some practical proof engineering considerations that we encountered while implementing translation relations in 
the Coq proof assistant in Section 5.4.

2. The architecture of the certifier

On-chain code in the Plutus smart contract system is written in a subset of Haskell called Plutus Tx [18]. The Plutus Tx compiler is 
implemented as a plugin for the widely-used, industrial-strength GHC Haskell compiler, combining large parts of the GHC compilation 
pipeline with custom translation steps to generate Plutus Core. Unfortunately, it is infeasible to apply full-scale compiler verification 
à la CompCert [23], which was build from scratch with verification in mind, on existing, complex software such as GHC. We will 
therefore outline the design of a certification engine that, using the Coq proof assistant [6,9], generates a proof object, or a translation 
certificate, asserting the validity of a Plutus Core program with respect to a given Plutus Tx source contract. In addition to asserting 
the correct translation of this one program, the translation certificate serves as a verifiable link between source and generated code.

We can view the compiler as a composition of pure functions that transform one abstract syntax tree (AST) into another. Fig. 1
illustrates our certifier architecture for a single compiler pass, where the grey area represents the compiler implementation as series 
of functions 𝑓 ∶ AST𝑖 → AST𝑖+1. We use a family of types AST𝑖 to illustrate that the representation of the abstract syntax might change 
after each transformation.

To support certification, the compiler outputs each intermediate AST so that we can parse these in our Coq implementation of 
the certifier. Within Coq, we define a high-level specification of each pass. We call such a specification a translation relation: a binary 

1 https://developers .cardano .org /docs /smart -contracts /plutus/.
2 http://cardano .org is, at the time of writing, the 5th largest public blockchain by market capitalisation.
2

3 https://zenodo .org /record /8084418.

https://developers.cardano.org/docs/smart-contracts/plutus/
http://cardano.org
https://zenodo.org/record/8084418
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Γ(𝑥) = 𝑡 Γ ⊢ 𝑡 ⊳ 𝑡′
[Inline-Var1]Γ ⊢ 𝑥⊳ 𝑡′

[Inline-Var2]Γ ⊢ 𝑥⊳ 𝑥
Γ ⊢ 𝑡1 ⊳ 𝑡′1 (𝑥, 𝑡1),Γ ⊢ 𝑡2 ⊳ 𝑡′2

[Inline-Let]
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 ⊳ let 𝑥 = 𝑡′1 in 𝑡′2

Γ ⊢ 𝑡1 ⊳ 𝑡′1 Γ ⊢ 𝑡2 ⊳ 𝑡′2
[Inline-App]

Γ ⊢ 𝑡1 𝑡2 ⊳ 𝑡′1 𝑡
′
2

Γ ⊢ 𝑡1 ⊳ 𝑡′1
[Inline-Lam]

Γ ⊢ 𝜆𝑥.𝑡1 ⊳ 𝜆𝑥.𝑡′1

Fig. 2. Characterisation of an inliner.

relation on abstract syntax trees that specifies the possible behaviour of the compiler pass. The orange area in Fig. 1 displays the 
translation relation ⊳ of one pass, where the vertical dashed line indicates that 𝑡𝑖 ⊳ 𝑡𝑖+1 holds. To establish this, we define a decision 
procedure that, given two subsequent trees produced by the compiler, can find a proof.

The translation relation is purely syntactic—it does not assert anything about the correctness of the compiler—but rather specifies

the behaviour of a particular compiler pass. To verify that the compilation preserves language semantics requires an additional proof, 
the blue area in Fig. 1, that establishes that any two terms related by ⊳ have the same semantics.

To illustrate our approach in this section, we will use an untyped lambda calculus, extended with non-recursive let-bindings.

𝑡 ∶∶= 𝑥 | 𝜆𝑥. 𝑡 | 𝑡 𝑡 | let 𝑥 = 𝑡 in 𝑡

In Section 3, we will consider full PIR (Plutus Intermediate Representation), which is a typed lambda calculus with many extensions.

2.1. Characterising a transformation

To assert the correctness of a single compiler pass 𝑓 ∶ AST𝑖 → AST𝑖+1, we begin by defining a translation relation ⊳ on a pair of 
terms 𝑡𝑖 and 𝑡𝑖+1 which we call the “pre-term” and “post-term”, respectively. This relation should capture the admissible translations 
of that compiler stage, but it may be more general. In other words, 𝑓 (𝑡𝑖) = 𝑡𝑖+1 ⇒𝑅(𝑡𝑖, 𝑡𝑖+1).

As a concrete example, consider an inlining pass. We have characterised this as an inductively defined relation in Fig. 2. Here, 
Γ ⊢ 𝑠 ⊳ 𝑡 asserts that program 𝑠 can be translated into 𝑡 given an environment Γ of let-bound variables, paired with their definition. 
According to Rule [Inline-Var1] the variable 𝑥 may be replaced by 𝑡′ when the pair (𝑥, 𝑡) can be looked up in Γ and 𝑡 can be 
translated to 𝑡′, accounting for repeated inlining. The remaining rules are congruence rules, where Rule [Inline-Let] also extends 
the environment Γ with (𝑥, 𝑡1). Another option would be to extend Γ with (𝑥, 𝑡′1), but this is less general: 𝑡′1 may have had some 
variables inlined, whereas 𝑡1 is the original expression. At each occurrence of 𝑥, we decide how its definition (in this case 𝑡1) itself
is transformed, as can be seen in the second hypothesis of [Inline-Var1]. We omitted details about handling variable capture to keep 
the presentation simple: hence, we assume that variable names are globally unique.

Crucially, these rules do not prescribe which variable occurrences should be inlined, since the [Inline-Var1] and [Inline-Var2] rules 
overlap. The implementation of the pass may rely on a complex set of heuristics internal to the compiler. Instead, we merely define 
a relation capturing the possible ways in which the compiler may behave. This allows for a certification engine that is robust with 
respect to changes in the compiler, such as the particular heuristics used to decide whether to replace a variable with its definition 
or not.

We can then encode the relation ⋅ ⊢ ⋅ ⊳ ⋅ in Coq as an inductive type Inline, which is indexed by an environment and two ASTs, 
as shown in Fig. 3. This inductive type is a straightforward encoding of the rules of Fig. 2: we define exactly one constructor per rule, 
and Γ is implemented as a cons-list.

These inductive types implement the translation relation: its inhabitants are proof derivations which will be a key ingredient of a 
compilation certificate.

2.2. Decidability of translation relations

After defining a translation relation ⊳ for a single compiler pass, we need a way to construct a proof that 𝑡𝑖 ⊳ 𝑡𝑖+1 holds, for two 
particular terms 𝑡𝑖 and 𝑡𝑖+1, produced by a run of the compiler.

We typically start by writing some derivation trees by hand for simple compilations using Coq’s tactics. For straightforward 
relations, like the inline example sketched above, a proof can often be found with a handful of tactics such as auto or constructor. 
This is particularly useful as a simple way of testing the design of our relations. The drawback of this approach is, however, that it is 
difficult to reason when such a proof search may succeed or fail, or even terminate. Furthermore, the proof search quickly becomes 
slow for bigger ASTs and may result in large proof terms.

To address these issues, we write a semi-decision procedure in the style of ssreflect [17] of type
3

decide_inliner : term -> term -> bool
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Fig. 3. Characterisation of an inliner in Coq.

together with a proof of:

∀ 𝑡 𝑡′. decide_inliner 𝑡 𝑡′ = true→ 𝑡 ⊳ 𝑡′

which states that the decision procedure is sound with respect to the translation relation. Proofs can then be constructed with 
the proof term sound t t' eq_refl, which we further explain at the end of Section 4.3. Such decision procedures are usually 
straightforward to implement with induction on the pre-term. In Section 4.2 we provide an example of a decision procedure of a 
translation relation.

2.3. Verifying a translation relation

Given the relational specification ⊳ of a compiler pass, we can now establish correctness properties of this pass. In the simplest 
case, this could be asserting the preservation of the type of a program. On the other end of the spectrum, we can demonstrate that 
related terms are semantically equivalent.

In Fig. 1, we denote such correctness properties of ⊳ in the blue area by means of an abstract binary relation ∼ on semantic 
objects �⋅� of ASTs 𝑡𝑖. In the case of static semantics, we choose typing derivations as semantic objects, and syntactic equivalence (=) 
of the types for ∼. The theorem then has the following form:

𝑡𝑖 ⊳ 𝑡𝑖+1 ∧ (Γ ⊢ 𝑡𝑖 ∶ 𝜏) → (Γ ⊢ 𝑡𝑖+1 ∶ 𝜏′) ∧ 𝜏 = 𝜏′

Where (Γ ⊢ 𝑡 ∶ 𝜏) asserts the existence of a typing derivation for term 𝑡. More details on PIR’s type system can be found in earlier 
work [13]. Type preservation is an important property to prove for two reasons. Firstly, it excludes non-sensical translation relations, 
since they may only relate well-typed pre-terms to well-typed post-terms, preserving type-safety. Secondly, it is a necessary lemma 
for proving semantic program equivalence.

For full semantic equivalence, which is ongoing work [14], we have implemented a step-indexed logical relation and proven that 
it implies contextual equivalence [2]. In this case, the semantic objects are (well-typed) terms, and ∼ is our contextual equivalence 
relation. Contextual equivalence of terms 𝑡 and 𝑡′, written 𝑡 ≈ 𝑡′ means that for an arbitrary one-hole context 𝐶 , both 𝐶[𝑡] and 𝐶[𝑡′]
will have equivalent termination behaviour. Contextual equivalence implies that terms (of base type) will evaluate to the same value. 
The definitions of operational semantics, the logical relation, and contextual equivalence have largely been implemented now in Coq. 
Our operational semantics of PIR are directly based on the original papers introducing PIR and PLC [13][19] as well as the compiler 
implementation. Since PLC is a subset of PIR, we can reuse the operational semantics for that language.

Writing these semantic preservation proofs can be done independently and gradually (e.g. preservation of types first and con-
textual equivalence second) for each translation relation of the compiler pipeline. In fact, even without any formal verification of 
the translation relation, we can still provide some degree of confidence about the correctness of a compilation: one can inspect the 
(relatively concise) rules of a translation relation and run a decision procedure to confirm the terms of the compilation are related 
by it. After all, the translation relation is an independent specification of the admissible behaviour of the compiler pass.
4

This verification effort of translation relations is ongoing work and goes beyond the scope of this paper.
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terms 𝑡, 𝑢 ∶∶= 𝑥 variable
𝜆𝑥 ∶ 𝑇 .𝑡 lambda abstraction
𝑡 𝑡 function application
Λ𝑋 ∶∶𝐾.𝑡 type abstraction
𝑡 {𝑇 } type application
wrap 𝑇 𝑈 𝑡 wrap
unwrap 𝑡 unwrap
builtin 𝑓 built-in functions
constant 𝑘 constant values
error 𝑇 error

let [rec] 𝑏 in 𝑡 let

bindings 𝑏 ∶∶= 𝑥 ∶ 𝑇 = 𝑡 strict term binding

∼𝑥 ∶ 𝑇 = 𝑡 non-strict term binding

𝑋 ∶∶𝐾 = 𝑇 type binding

data 𝑋 (𝑌 ∶∶𝐾) = 𝑐 with 𝑥 datatype binding

constructors

𝑐 ∶∶= 𝑥 (𝑇 )

types 𝑇 ,𝑈 ∶∶= 𝑋 type variable
𝑇 →𝑈 arrow type
∀𝑋 ∶∶𝐾.𝑇 universal type
𝜆𝑋 ∶∶𝐾.𝑇 function type
𝑇 𝑈 function application
builtin 𝐶 built-in types
ifix 𝑇 𝑈 fixpoint type

kind 𝐾 ∶∶= ∗ type kind
𝐾 ⇒𝐾 arrow kind

constants 𝑘 ∶∶= …
built-in 𝑓 ∶∶= … built-in functions
built-in 𝐶 ∶∶= … built-in type

Fig. 4. Syntax of PIR and PLC, PIR-specific constructs are highlighted.

2.4. Certificate generation

This leads us to sketching the design of the certifier that generates certificates (or verifiable links) between the Plutus Intermediate 
Representation (PIR) and the generated Plutus Core (PLC) target code. A certificate is a Coq proof script that is generated during the 
compilation of the code. First, it includes all intermediate ASTs 𝑡1, … , 𝑡𝑛, which the compiler emitted. Second, we relate every two 
subsequent ASTs in the appropriate translation relation 𝑡𝑖 ⊳ 𝑡𝑖+1, by using the corresponding decision procedure and its soundness 
proof. Finally, we can include verification results: ideally this constitutes contextual equivalence proofs for each pass, which by 
transitivity show the semantic equivalence of source and target program.

In principle, we could instead include only the list of ASTs in the certificate, and distribute the Coq tool so that a user may run the 
verified decision procedures, and establish the semantic equivalence themselves. However, this method incurs a dependency on the 
specific definitions of translation relations and decision procedures. We expect that compiler passes (and therefore the translation 
relations) may be subject to change as the compiler is further developed. In contrast, we do not expect the definition of the operational 
semantics and semantic equivalence to change much. Therefore, including the semantic equivalence proof is a more robust solution.

Such a certificate can then be distributed alongside source code, giving the means for anyone to check it without having to trust 
the provider of the source code: they can inspect the involved ASTs, the translation relations and the theorems. Above all, the script 
can be run in the Coq kernel [9], to check the validity of the proofs. One can then be confident that the compiled code of the program 
is a faithful translation of the source code.

3. Translation relations of the Plutus Tx compiler

The Plutus Tx compiler translates Plutus Tx (a subset of Haskell) to Plutus Core, a variant of System 𝐹
𝜇
𝜔 [13]. A hash of the Plutus 
5

Core code is committed to the Cardano blockchain, constituting the definitive reference to any deployed smart contract.
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The compiler reuses parts of the GHC infrastructure and implements its custom passes by installing a core-to-core pass plugin [15]
in the GHC compiler pipeline. On a high level, the compiler comprises three steps:

1. The parsing, type-checking and desugaring phases of GHC are reused to translate a surface-level Haskell program into a GHC 
Core program.

2. A large subset of GHC Core is directly translated into an intermediate language named Plutus Intermediate Representation (PIR). 
These languages are similar and both based on System F, with some extensions. Additionally, the definitions of all referenced 
functions and types are included as local definitions so that the program is self-contained.

3. The PIR program is then transformed and compiled down into Plutus Core.

The certification effort reported here focuses on Step 3, which is the most crucial component: it consists of multiple optimisations and 
translation schemes. PIR is a superset of the Plutus Core language: it adds several language constructs for the sake of convenience, 
such as user-defined datatypes, strict and non-strict let-bindings that may be (mutually) recursive. Some of the compilation steps 
translate these constructs into simpler language constructs.

In the rest of this section, we will give some examples of transformations that are performed on PIR code (3.1), discuss the syntax 
of PIR and Plutus Core (Section 3.2), introduce notational conventions (Section 3.3) and discuss the various properties (Section 3.4) 
and translation relations (Section 3.5) for the compiler passes.

3.1. Example transformations

In Fig. 5a we present a Haskell program to introduce some of the compiler passes that the Plutus Tx compiler performs. This 
program is a basic implementation of a timelock, a contract that states that funds may be moved after a certain date, or not at all. It 
contains a few contrived bindings (false and n') that will be useful to illustrate some transformations.

In Fig. 5b, we can see that the only occurrence of false has been inlined. Next in Fig. 5c, the dead code elimination pass cleans 
up the now unused definition of false. Finally, we can see in Fig. 5d how the definition of n' is floated up one level.

The above transformations are presented using the Haskell surface syntax, but in reality they happen on the PIR representation. 
Later in Section 4.3 we will show the timelock program and a transformation with the actual PIR syntax.

3.2. Syntax

In Fig. 4 we present the syntax of PIR and Plutus Core, adapted from previous work [19]. The highlighted productions are specific 
to PIR, whereas the others are common to both languages. Expressions that have an overline, such as (𝑌 ∶∶𝐾), should be read as any 
number of copies of that expression. [rec] indicates an optional occurrence of that keyword.

The first five term productions are familiar constructs of System F. The constructs wrap and unwrap form the isomorphism for 
iso-recursive types [19]. The let construct contains a group of bindings, which can be mutually recursive when the rec keyword 
is used. Otherwise, the bound names are scoped linearly. PIR supports two forms of term bindings: strict (which are evaluated at 
the binding site) and non-strict (which will be evaluated at their usage site). A lazy binding is indicated by a ∼ symbol before the 
variable name. Furthermore there are let-bindings for types and for defining algebraic datatypes with constructors and an eliminator.

The language of types again follows System F, but is extended with type abstraction and application for supporting higher kinds, 
as well as ifix for recursive types. Kinds are simple and can be either of function or base sort.

Finally, PIR comes with a set of built-in functions, constants and types. None of these plays an important role in the translation 
relations, so we omit them in the syntax for brevity. They include for example string and integer types with corresponding operations, 
as well as some cryptographic functions. In our Coq implementation, we have defined this grammar as a family of mutually recursive 
datatypes. We chose to represent variables as names, instead of the often used de Bruijn representation. We motivate this choice 
further in Section 5.4.4.

3.3. Notational conventions

We will write translation relations with the ⊳ symbol, but disambiguate different relations with text over it, such as 
inl
⊳ for 

the inlining relation. We may re-use the symbol for any of the different type of constructs in the AST grammar (terms, types and 
bindings).

Often, a translation relation is defined in some context that contains information about binders. We write Γ for contexts of term 
variables and Δ for contexts of type variables, and write the translation relation as Δ; Γ ⊢ 𝑡 ⊳ 𝑡′. Again, to disambiguate, we use a 
subscript that identifies that specific translation relation, such as Γws for term contexts in the well-scopedness property. We model 
such contexts as a list with information about the variables in scope. Often this is a list of pairs, where the keys are variable names, 
and the values may have different types depending on the translation relation. We write Γ(𝑥) = 𝑦 when (𝑥, 𝑦) is the first occurrence 
of a pair in the list. We write the empty list as 𝜀.

We sometimes write square brackets around individual bindings from a let group to clearly delimit that expression: [∼𝑥 ∶ 𝜏 = 𝑡]. 
When convenient, we omit type and kind annotations on binding sites like 𝜆 and let. Finally, we write let [rec] 𝑏𝑠 to describe a 
6

let binding that may be either recursive or non-recursive.
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- | Either a specific end date, or "never".

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let false = False

in case end of

Fixed n -> (let n' = if current >= 0 then n else 0 in n')

<= current

Never -> false

(a) Implementation of a time-lock

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let false = False

in case end of

Fixed n -> (let n' = if current >= 0 then n else 0 in n')

<= current

Never -> False

(b) Result after inlining

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

case end of

Fixed n -> (let n' = if current >= 0 then n else 0 in n')

<= current

Never -> False

(c) Result of dead code elimination

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

in case end of

Fixed n -> let n' = if current >= 0 then n else 0 in

n' <= current

Never -> False

(d) Result of let-floating

Fig. 5. Code of a timelock, with several example compiler transformations.

3.4. Properties of terms

The specification of some passes will reuse a few common properties of programs. For example, the let-floating pass in Sec-
tion 3.5.7 requires that the pre-term has globally unique variable names. We formalise these properties as inductive relations on 
a single abstract syntax tree using inference rules. Since the AST of PIR is rather large, we demonstrate only the important rules. 
For more detail and full definitions we refer to Section 4, which discusses some properties in detail with figures containing all the 
inference rules.

3.4.1. Globally unique variables

For some passes it is assumed that variable names are globally unique, also known as the Barendregt-convention. It simply states 
that each variable name can only be bound once in the program. We first define BOUNDIN, which relates a variable to a term in 
which it is bound.

[BoundIn-Lam-1]
BOUNDIN(𝑥,𝜆𝑥. 𝑡)

𝑥 ≠ 𝑦 BOUNDIN(𝑥, 𝑡)
[BoundIn-Lam-2]

BOUNDIN(𝑥,𝜆𝑦. 𝑡)
7
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Other binding constructs such as let have analogous rules. The constructs in an AST that do not bind variable names simply 
require the property holds for each any sub-tree. We will sometimes also use FREEIN, which is defined similarly, but relates a variable 
to a term in which it occurs freely.

Then we define the global uniqueness property as a relation UNIQUE:

UNIQUE(𝑡) UNIQUE(𝜏) ¬BOUNDIN(𝑥, 𝑡)
[Unique-Lam]

UNIQUE(𝜆𝑥 ∶ 𝜏. 𝑡)

Note that in the second hypothesis of [Unique-Lam], we have overloaded UNIQUE for types, which is analogously defined with 
respect to type variable binders such as ∀.

3.4.2. Well-scoped expressions

Some of the compiler passes will reorder binders. In such cases, we require that the post-term is well-scoped. In other words, that 
the term contains no free variables. We define this property with an inductive well-scopedness relation Δws; Γws ⊢ 𝑡, which, similar to 
a typing relation, maintains a context Γws. In this case, it is a list of variable names in scope, and Δws is the context for type variables 
in scope.

Δws; (𝑥,Γws) ⊢ 𝑡 Δws ⊢ 𝜏
[WellScoped-Lam]

Δws; Γws ⊢ 𝜆(𝑥 ∶ 𝜏). 𝑡

𝑥 ∈ Γws
[WellScoped-Var]

Δws; Γws ⊢ 𝑥

Once again, this property extends to types with the relation Δws ⊢ 𝜏 . We define the following abbreviation:

CLOSED(𝑡) ∶= 𝜀; 𝜀 ⊢ 𝑡

A closed term is well-scoped in the empty contexts.

3.4.3. Pure bindings

Several passes manipulate let bindings, but only when it is safe to do so: special care has to be taken with strict bindings, which 
may diverge. Moving them may therefore change the meaning of a program.

For example, the following transformation is not semantics preserving, since the former program terminates (it is a lambda 
function, which itself is a value), but the latter does not (it will try to evaluate 𝑦, before returning the lambda function):

𝜆𝑥. let𝑦 = ⊥ in3 → let𝑦 = ⊥ in𝜆𝑥. 3

To ensure that let bindings are only transformed when it is safe to do so, the Plutus compiler tries to analyse if a strict binding is 
“pure”, that is, the bound term terminates. Since this is undecidable in general, it considers a few simple cases, which we model in 
the relations PURE, PUREBINDING and PUREBINDINGS.

𝑡 is a value
Γstr ⊢ PURE(𝑡)

Γstr(𝑥) = strict

Γstr ⊢ PURE(𝑥)

The relation Γstr ⊢ PURE(𝑡) classifies a subset of terms that are pure: those that are values, and variables that were bound strictly 
(meaning they are bound to a value). In this case, the environment Γstr consists of pairs of variable names and their strictness 
(strict or nonstrict) for each variable in scope. Note that this is relation does not have any recursive cases, and it relies on the 
environment Γstr.

We then define PUREBINDING as follows:

Γstr ⊢ PUREBINDING(∼𝑥 = 𝑡)

Γstr ⊢ PURE(𝑡)
Γstr ⊢ PUREBINDING(𝑥 = 𝑡)

Γstr ⊢ PUREBINDING(data 𝑋 (𝑌 ∶∶𝐾) = 𝑐 with 𝑥)
8

Γstr ⊢ PUREBINDING(𝑇 ∶∶𝐾 = 𝜏)
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The PUREBINDINGS relation then simply extends PUREBINDING to a binding group, requiring that all bindings are a PUREBINDING.
Although these relations require an environment Γstr for strictness information about free variables, we will generally omit it in 

the presentation of translation relations, and write PURE(𝑡) for simplicity. In reality however, the rules of the translation relations 
also take care to construct the required context Γstr.

3.5. Translation relations

The PIR-PLC pipeline consists of twelve passes that we will discuss in this section. They can be split in two groups:

PIR-to-PIR Passes that are focused on transforming and optimising the program: Renaming (Section 3.5.1), Inlining (Section 3.5.2), 
Beta-to-Let (Section 3.5.3), Let-splitting (Section 3.5.4), Unwrap-wrap elimination (Section 3.5.5), dead-code elimination 
(Section 3.5.6), Let-floating (Section 3.5.7).

PIR-to-PLC Passes that translate (or desugar) PIR-specific constructs into PLC: Encoding of non-strict bindings (Section 3.5.8), 
Thunking of recursive bindings (Section 3.5.9), Recursive bindings (Section 3.5.10), Scott encoding (Section 3.5.10), en-
coding non-recursive bindings (Section 3.5.11).

Just as in Section 3.4, we will only discuss the most important parts of the relations to convey the essence of each compiler pass. 
For more detail we refer to Section 4, which describes the dead-code elimination pass in great detail.

3.5.1. Variable renaming

In this pass, the compiler transforms a program into an 𝛼-equivalent program, such that all variable names are globally unique, i.e. 
UNIQUE(𝑡) holds on the post-term 𝑡 (Section 3.4.1). This is a useful property for subsequent optimisations, which don’t have to worry 
about name shadowing when manipulating binders. We express variable renaming as a translation relation Δren; Γren ⊢ 𝑡 

ren
⊳ 𝑡′, stating 

that under the renaming environments Δren (for type-variables) and Γren (for term variables), 𝑡 is renamed to 𝑡′. Both environments 
record the free variables, paired with their corresponding name in the post-term. Similarly, type-variables can be renamed within 
types, which we denote as Δren ⊢ 𝜏

ren
⊳ 𝜏′.

The case for lambda abstractions is defined as follows:

Δren; (𝑥, 𝑦),Γren ⊢ 𝑡
ren
⊳ 𝑡′ Δren ⊢ 𝜏

ren
⊳ 𝜏′ NOCAPTURE(𝑦,Γren, 𝑡)

[Rename-Abs]
Δren; Γren ⊢ 𝜆(𝑥 ∶ 𝜏). 𝑡

ren
⊳ 𝜆(𝑦 ∶ 𝜏′). 𝑡′

The [Rename-Abs] rule states that a lambda-bound variable 𝑥 may be renamed at its binding-site to 𝑦, when 𝑡 can be renamed to 𝑡′
and 𝜏 to 𝜏′. Of course, 𝑥 may equal 𝑦, witnessing that no renaming took place. The last hypothesis NOCAPTURE(𝑦, Γren, 𝑡) guarantees 
that we avoid incorrect renamings due to shadowing, such as:

(𝜆𝑥. 𝜆𝑧. 𝑥)��
ren
⊳ (𝜆𝑦. 𝜆𝑦. 𝑦)

A perhaps simpler way of enforcing this would be to add a hypothesis in [Rename-Abs] that ∀𝑣. (𝑣, 𝑦) ∉ Γren, disallowing any 
shadowing in the post-term, but to remain as general as possible, we instead consider the free variables, and require that a new 
binder name 𝑦 does not capture any free variable 𝑣 in the pre-term that is also renamed to 𝑦 in the post-term. This is more general, 
because 𝑦 may shadow an existing 𝑦 if it has no occurrences. We define NOCAPTURE as an implication:

NOCAPTURE(𝑦, Γren, 𝑡) ∶= ∀𝑣. (𝑣, 𝑦) ∈ Γren ⇒ ¬FREEIN(𝑣, 𝑡)

Rules of 
ren
⊳ for other binding constructs such as let or Λ are very similar.

The variable case simply follows from the environment Γren:

Γren(𝑥) = 𝑦
[Rename-Var]

Δren; Γren ⊢ 𝑥
ren
⊳ 𝑦

Note that in contrast to the Plutus Tx compiler, this translation relation does not establish global uniqueness of binders in the 
post-term, i.e. 𝑡

ren
⊳ 𝑡′�⇒ UNIQUE(𝑡′). We consider that a specific property of the compiler implementation, allowing this renaming 

relation to be as general as possible.
Whenever a subsequent translation relation does require the UNIQUE property on the pre-term, we will establish it separately by 

running the appropriate decision procedure.

3.5.2. Inlining

The rules of the translation relation for inlining in PIR are very similar to those of the untyped lambda calculus in Section 2.1. In 
addition, the Plutus Tx inliner also considers let-bound types let𝛼 ∶∶𝐾 = 𝜏 , which may be inlined in type expressions. We therefore 
9

maintain a separate environment Δ of type bindings.
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However, the Plutus Tx compiler does more than just inlining let-bound definitions. It also removes let-bindings that have been 
exhaustively inlined (this is known as dead-code elimination) and it renames variables in inlined terms to preserve the property of 
global uniqueness. That is, we can model the pass as a composition of translation relations

ren
⊳ ◦ 

dce
⊳ ◦ 

inl
⊳

where ◦ is relational composition, i.e. (𝑅◦𝑆)(𝑥, 𝑦) ∶= ∃𝑧.𝑅(𝑥, 𝑧) ∧𝑆(𝑧, 𝑦).
This introduces a problem for our certification approach: we cannot observe and dump these “intermediate” ASTs, since they do 

not exist in the compiler! There, the three transformations are fused into a single pass.
To construct a proof relating two terms, then amounts to also finding the intermediate term, as part of the decision procedure. To 

simplify the search of these intermediate ASTs, we adapt the compiler to also emit supporting information about the performed pass; 
in this case, the compiler emits a list of the eliminated variables. If the compiler emits incorrect information, we may fail to construct 
a certificate, but we will never produce an incorrect certificate.

3.5.3. Beta redexes

Another obvious candidate for inlining is a beta-redex (𝜆𝑥.𝑡1) 𝑡2, which can be seen as another way of writing let 𝑥 = 𝑡2 in 𝑡1. 
Instead of changing the inlining pass described in Section 3.5.2, the compiler has a small pass that rewrites such beta-redexes into 
(non-recursive) let constructs, after which the inlining pass takes care of the actual inlining.

More generally, the pass considers expressions of the form:

(𝜆𝑥1… 𝑥𝑛.𝑡) 𝑡1… 𝑡𝑛

It is important to notice that this is different from simply nesting normal beta redexes, which would look like this:

(𝜆𝑥1. … ((𝜆𝑥𝑛.𝑡) 𝑡𝑛) … ) 𝑡1

So in order to handle the former, we define a relation BETAS to inductively relate such a term to a list of bindings 𝑏𝑠 and 𝑡in, as they 
would appear in let 𝑏𝑠 in 𝑡in form. The key rule of the translation relation is then defined as:

BETAS(𝑡, 𝑏𝑠, 𝑡in) 𝑡in

𝛽-let
⊳ 𝑡′in 𝑏𝑠

𝛽-let
⊳ 𝑏𝑠′

[Betas]

𝑡
𝛽-let
⊳ let 𝑏𝑠′ in 𝑡′in

The pass does not only consider beta-redexes, but also instantiated type abstractions of the form (Λ(𝛼 ∶∶ 𝜅). 𝑡) {𝜏} which can 
similarly be treated as a let binding of a type and for which there is a rule analogous to [Betas] in the translation relation.

3.5.4. Splitting recursive let groups

Since the inlining pass does not consider bindings from a let rec, it is worth it to analyse whether such bindings are truly 
recursive. If not, any non-recursive bindings can be split out into a regular let, making them available for inlining. The compiler 
implements this pass by a strongly connected component analysis on the dependency graph obtained from the bindings.

To formalise this in a translation relation, we will first use a helper relation OUTERBINDS that can decompose a term of the 
following shape:

let [rec] 𝑏𝑠1 in

…

let [rec] 𝑏𝑠𝑛 in 𝑡𝑖𝑛

That is, a sequence of let groups that can be recursive or non-recursive. The ternary relation OUTERBINDS(𝑡, 𝑏𝑠1 ++ … ++ 𝑏𝑠𝑛, 𝑡𝑖𝑛)
holds if term 𝑡 has such a shape. It relates 𝑡 to a list of “outer” bindings and an “inner” term 𝑡𝑖𝑛 (we write ‘++’ for list concatenation). 
Note that OUTERBINDS is not a function, since a term 𝑡 can have multiple sequences of let groups.

When the compiler splits a let rec in the pre-term, OUTERBINDS now allows us to describe the structure of the post-term: it has 
to start with a sequence of let groups with bindings that match those of the pre-term. Those let groups may be either recursive or 
non-recursive.

We define 
split
⊳ in the let rec case as:

OUTERBINDS(𝑡𝑝𝑜𝑠𝑡, 𝑏𝑠′, 𝑡′𝑖𝑛) 𝑏𝑠
split
⊳ 𝑏𝑠′ 𝑡𝑖𝑛

split
⊳ 𝑡′

𝑖𝑛
[Split-let-rec]

let rec 𝑏𝑠 in 𝑡𝑖𝑛

split
⊳ 𝑡𝑝𝑜𝑠𝑡

The first premise decomposes the post-term as described above. As usual, we also require the relation holds inductively over the 
bindings and sub-terms in the second and third premise respectively.

OUTERBINDS does not prescribe whether the split let groups are recursive or non-recursive, which may lead to incorrect scoping 
10

in the post-term. To avoid such problems, we define the overall translation relation as follows:
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𝑡 
split
⊳ 𝑡′ ∧ UNIQUE(𝑡) ∧ CLOSED(𝑡′)

This definition states that in addition to the rules of 
split
⊳ , the pre-term must have unique global binders and the post-term must be 

well-scoped. This implies the correct scoping for the new let groups in the post-term. We will see this pattern of using UNIQUE and 
CLOSED as part of a translation relation more often. We found it especially convenient to factor out scoping-related concerns.

3.5.5. Unwrap-wrap elimination

After inlining, it can happen that some expressions can be simplified. The unwrap-wrap pass cleans up a specific artifact which 
may appear:

𝑡
wrap
⊳ 𝑡′

[Unwrap-Wrap]
unwrap (wrap 𝑇 𝑈 𝑡)

wrap
⊳ 𝑡′

The wrap and unwrap constructs form the isomorphism of iso-recursive types [19], hence their composition is the identity.

3.5.6. Dead code elimination

By means of a live variable analysis, the compiler determines which let-bound definitions are unused and can be removed. This 
is often useful for definitions that are introduced by other compiler passes. Since PIR is a strict language, however, the compiler can 
only eliminate those bindings for which it can determine they are a PUREBINDING (Section 3.4.3), otherwise a diverging program 
may suddenly become terminating.

The analysis in the compiler is not as straightforward as counting occurences. Even a let-bound variable that does occur in the 
code, may be dead code, when it is only used in other dead bindings. This is also known as strongly live variable analysis [16].

We define the translation relation 
dce
⊳ as follows:

𝑡 
dce
⊳ 𝑡′ ∶= 𝑡 

elim
⊳ 𝑡′ ∧ UNIQUE(𝑡) ∧ CLOSED(𝑡′)

In the translation relation we require that binders in the pre-term are unique, and that the post-term is well-scoped. We will now 

define 
elim
⊳ , that characterises the removal of bindings.

Let us first consider the case of 
elim
⊳ where a complete let has been eliminated:

PUREBINDINGS(𝑏𝑠) 𝑡
elim
⊳ 𝑡′

[Elim-Let-1]

let [rec] 𝑏𝑠in 𝑡
elim
⊳ 𝑡′

Given that all bindings are pure, they can be removed. Note that we do not mention any conditions about whether the bindings are 
actually dead code: this is covered by the requirement that the pre-term is UNIQUE and post term is CLOSED. We elaborate on why 
both conditions are necessary in Section 4.1

This pass may also eliminate some, but not all bindings in a let. We treat that as a different case:

∀𝑏 ∈ 𝑏𝑠. REMOVED(𝑏, 𝑏𝑠′)⇒ PUREBINDING(𝑏)

∀𝑏′ ∈ 𝑏𝑠′. ∃𝑏 ∈ 𝑏𝑠.NAME(𝑏′) = NAME(𝑏) ∧ 𝑏
elim
⊳ 𝑏′

𝑡
elim
⊳ 𝑡′

[Elim-Let-2]

let [rec] 𝑏𝑠in 𝑡
elim
⊳ let [rec] 𝑏𝑠′ in 𝑡′

The first hypothesis states that any binding which is not present in the binding group of the post-term must be a PUREBINDING. 
Second, we require that any binding in the post-term has a related binding in the pre-term. These two conditions imply that the 
bindings of the post-term form a subset of those in the pre-term (allowing for potential reordering). The function NAME simply 
returns the name of the bound variable of a let-binding, and REMOVED(𝑏, 𝑏𝑠′) checks that the name of 𝑏 is not bound in any binding 
in 𝑏𝑠′. Lastly, the let bodies must also be related.

3.5.7. Let-floating

During let-floating, let-bindings can be moved upwards in the program. This may save unnecessarily repeated computation and 
makes the generated code more readable. The Plutus Tx compiler constructs a dependency graph to maintain a correct ordering when 
multiple definitions are floated. For the translation relation, we first consider the interaction of a let expression with its parent node 
in the AST. For example, consider the case of a lambda with a let directly under it:

PUREBINDINGS(𝑏𝑠)
[Float-Let-Lam]

𝜆𝑥. let [rec] 𝑏𝑠 in 𝑡

float
11

⊳
let [rec] 𝑏𝑠 in (𝜆𝑥. 𝑡)
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This rule states that a (possibly recursive) binding group consisting of only pure bindings may float up past a lambda. This 
restriction is necessary for preserving termination behaviour. Similar rules express how a let can float past other language constructs. 

Since the compiler pass may float lets more than just one step up, we use the transitive closure 
float
⊳

+
as part of the final definition.

Furthermore, the pass may reorder bindings within a binding group (
reorder
⊳ ), and combine the bindings of adjacent let groups 

into a single group (
merge
⊳ ). We omit the details of these relations, as the former is defined similarly to the reordering that can occur 

in dead-code elimination (Section 3.5.6), and the latter is based on OUTERBINDS, as described in Section 3.5.4.
The complete translation relation for pre-term 𝑡 and post-term 𝑡′ is then defined as:

(
merge
⊳ ◦ 

reorder
⊳ ◦ 

float
⊳

+
)(𝑡, 𝑡′) ∧ UNIQUE(𝑡)

Again, we use the UNIQUE precondition, to avoid having to reason about shadowing, which becomes complicated when, for example, 
reordering bindings. Note that in this specification we do not need to maintain a dependency graph in the certifier, but only need to 
assert that transformations do not break dependencies.

3.5.8. Encoding of non-strict bindings

The PIR language has both strict and non-strict let-bindings, but Plutus Core does not. The thunking transformation is used to 

eliminate non-strict let-bindings, by encoding them as strict bindings. We define the rules as a relation Γstr ⊢ 𝑡 
thunk
⊳ 𝑡′, where Γstr

records for every bound variable whether it was bound strict or nonstrict. We first consider how a non-recursive, non-strict 
binding is translated:

Γstr ⊢ 𝑡1
thunk
⊳ 𝑡′1 ¬FREEIN(𝑦, 𝑡1)

(𝑥,nonstrict),Γstr ⊢ 𝑡2
thunk
⊳ 𝑡′2 [Thunk-NR-NS]

Γstr ⊢ [∼𝑥 = 𝑡1 in 𝑡2]
thunk
⊳ [𝑥 = 𝜆(𝑦 ∶ ()). 𝑡′1 in 𝑡′2]

This rule states that the bound term is thunked by introducing a lambda abstraction that expects a value 𝑦 of unit type as its 
argument (we require 𝑦 is fresh, i.e. it does not occur free in 𝑡1). The rule for a recursive let-binding is very similar, but also extends 
the environment under which 𝑡1 is transformed.

Finally, we also have to replace the occurrences of these non-strict variables, adding an application to the unit value (), thereby 
forcing evaluation.

Γstr(𝑥) = nonstrict
[Thunk-Var]

Γstr ⊢ 𝑥
thunk
⊳ 𝑥 ()

3.5.9. Thunking of recursive bindings

This pass changes strict bindings in a letrec to non-strict bindings, which are then directly forced again by the addition of a 
strict binding with the same name, in order to preserve termination behaviour. For example:

letrec (𝑥 ∶ 𝜏) = 𝑡1 in 𝑡2
rec→
⊳ letrec ∼(𝑥 ∶ 𝜏) = 𝑡1 inlet (𝑥 ∶ 𝜏) = 𝑥 in 𝑡2

The point of this transformation is that the thunking transformation (Section 3.5.8), which runs after this pass, will translate the 
non-strict binding of 𝑥 back into a strict (but now thunked) form:

letrec (𝑥 ∶ ()→ 𝜏) = 𝑡1 inlet (𝑥 ∶ 𝜏) = 𝑥 ()in 𝑡2

This combination of two passes establishes the property that all recursive bindings are of function type, which is a precondition for 
the compilation of letrec (Section 3.5.10).

We capture the first part of this transformation in a rule for a strict binding:

𝑡
rec→
⊳ 𝑡′

[Thunk-TermBind-1]
[𝑥 = 𝑡]

rec→
⊳ [∼𝑥 = 𝑡′] | {𝑥}

When relating individual bindings, we write 𝑏 
rec→
⊳ 𝑏′ | 𝑉 . Here the set 𝑉 contains those variables that will need additional strict 

bindings in the post-term. In the above rule, this is a singleton set with 𝑥. This set may be empty when bindings do not change their 
associated strictness:

𝑡
rec→
⊳ 𝑡′

[Thunk-Bind-Cong]
12

[𝑥 = 𝑡]
rec→
⊳ [𝑥 = 𝑡′] | ∅
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In fact, when strictness is changed, but the bound term is known to be PURE (i.e. terminating), the compiler does not introduce the 
additional strict counterpart, since termination behaviour will not change. For this case we have an additional rule which again has 
the empty set for 𝑉 :

𝑡
rec→
⊳ 𝑡′ PURE(𝑡)

[Thunk-TermBind-2]
[𝑥 = 𝑡]

rec→
⊳ [∼𝑥 = 𝑡′] | ∅

The case of 
rec→
⊳ for let now becomes:

𝑏𝑠
rec→
⊳ 𝑏𝑠′ | 𝑉 𝑡

rec→
⊳ 𝑡′ 𝑏𝑠𝑉 = {[𝑥 = 𝑥] | 𝑥 ∈ 𝑉 }

[Thunk-Let-Rec]
letrec 𝑏𝑠 in 𝑡

rec→
⊳ letrec 𝑏𝑠′ in (let 𝑏𝑠𝑉 in 𝑡′)

Here, the first hypothesis relates the bindings in 𝑏𝑠 and 𝑏𝑠′ point-wise, where 𝑉 is the union of all their sets of variables. The bindings 
𝑏𝑠𝑉 in the post-term should then be exactly the strict bindings for the variables in 𝑉 .

3.5.10. Further passes

There are two other passes in the PIR-to-PLC pipline: the compilation of (mutually) recursive let-bindings and compilation of 
algebraic datatypes.

• The compilation of recursive binding groups is achieved by encoding them as non-recursive lets, which happens in two concep-
tual steps: first the group is converted into a single (recursive) binding of tuple type, where each component corresponds to one 
of the original bindings. Second, a fixpoint combinator is introduced, specific to the size of the tuple. This fixpoint is then used 
to translate the recursively bound tuple into a non-recursive binding. The original names of the binding group are then simply 
projected out of the tuple.

• The compilation of algebraic datatypes considers data definitions, such as:

let data Maybe 𝛼 = Just 𝛼 | Nothing with 𝑚𝑎𝑦𝑏𝑒 in 𝑡

By means of the Scott encoding [1], they are transformed to a term that uses type and term abstractions with equivalent 
definitions, of the form:

(ΛMaybe.𝜆Just.𝜆Nothing.𝜆𝑚𝑎𝑦𝑏𝑒. 𝑡′) 𝜏Maybe 𝑡Just 𝑡Nothing 𝑡𝑚𝑎𝑦𝑏𝑒

Both of these passes have already been described in great detail elsewhere [19]. They rely on the Scott encoding for handling 
algebraic datatypes (in the first case: Scott-encoded tuples), but that approach will likely change soon with the introduction of native 
sum and product types in PLC.4 We have therefore not formalised these passes.

3.5.11. Encoding of non-recursive bindings

At this point in the compiler pipeline, there is only one type of let construct that may still occur: strict, non-recursive bindings. 
Such bindings are simply compiled into function application:

𝑡1
let
⊳ 𝑡′1 … 𝑡𝑛

let
⊳ 𝑡′

𝑛
𝑡

let
⊳ 𝑡′

let𝑥1 = 𝑡1 … 𝑥𝑛 = 𝑡𝑛 in 𝑡
let
⊳ (𝜆𝑥1 … 𝑥𝑛. 𝑡

′) 𝑡′1 … 𝑡′
𝑛

[Redex-Let]

4. In depth: dead code elimination

We will now discuss in detail the specification of the dead-code elimination pass and its decision procedure. Then we will show 
how the timelock program of Section 3.1 is transformed by a pass of the compiler, and how the proof of its translation relation is 
constructed.

4.1. Specification of the pass

In Section 3.5.6 we defined the specification of this pass:

𝑡 
dce
⊳ 𝑡′ ∶= 𝑡 

elim
⊳ 𝑡′ ∧ UNIQUE(𝑡) ∧ CLOSED(𝑡′)

Why is this a correct specification? The 
elim
⊳ relation allows pure (i.e. terminating) bindings to be eliminated from the AST, even if 

they are not dead code. For example:
13

4 https://github .com /input -output -hk /plutus /pull /4330.

https://github.com/input-output-hk/plutus/pull/4330
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UNIQUE(𝑡) UNIQUE𝜏 (𝜏) ¬BOUNDIN(𝑥, 𝑡)
[U-Lam]

UNIQUE(𝜆𝑥 ∶ 𝜏. 𝑡)

[U-Var]
UNIQUE(𝑥)

UNIQUE(𝑠) UNIQUE(𝑡)
[U-App]

UNIQUE(𝑠 𝑡)

UNIQUE(𝑡) ¬BOUNDIN𝜏 (𝛼, 𝑡)
[U-TyAbs]

Λ𝛼 ∶∶𝐾.𝑡

UNIQUE(𝑡) UNIQUE𝜏 (𝜏)
[U-TyInst]

UNIQUE(𝑡 {𝜏})

UNIQUE(𝑡) UNIQUE𝜏 (𝑇 ) UNIQUE𝜏 (𝑈 )
[U-Wrap]

UNIQUE(wrap 𝑇 𝑈 𝑡)

UNIQUE(𝑡)
[U-Unwrap]

UNIQUE(unwrap 𝑡)
[U-Constant]

UNIQUE(constant 𝑘)

[U-Builtin]
UNIQUE(builtin 𝑓 )

UNIQUE𝜏 (𝜏)
[U-Error]

UNIQUE(error 𝜏)

UNIQUE𝜏 (𝜏) UNIQUE(𝑡𝑥) UNIQUE(let [rec] 𝑏𝑠in 𝑡)
¬BOUNDIN(𝑥,let [rec] 𝑏𝑠in 𝑡) ¬BOUNDIN(𝑥, 𝑡𝑥)

[U-Let-Term]
let [rec] 𝑥 ∶ 𝜏 = 𝑡𝑥;𝑏𝑠in 𝑡

UNIQUE𝜏 (𝜏) UNIQUE(let [rec] 𝑏𝑠in 𝑡)
¬BOUNDIN𝜏 (𝛼,let [rec] 𝑏𝑠in 𝑡) ¬BOUNDIN𝜏 (𝛼, 𝜏)

U-Let-Ty
UNIQUE(let 𝛼 ∶∶𝐾 = 𝜏;𝑏𝑠in 𝑡)

∀𝑐(𝜏) ∈ 𝑐𝑠.( ¬BOUNDIN𝜏 (𝑋,𝜏) ∧ UNIQUE𝜏 (𝜏))
¬BOUNDIN𝜏 (𝑋,let𝑏𝑠in 𝑡)

¬BOUNDIN(𝑚,let𝑏𝑠in 𝑡) UNIQUE(let𝑏𝑠in 𝑡)
[U-Let-Data]

UNIQUE(letdata 𝑋 = 𝑐𝑠 with 𝑚;𝑏𝑠in 𝑡)

UNIQUE(𝑡)
[U-Let-Empty]

UNIQUE(let𝜀in 𝑡)

Fig. 6. Inference Rules of UNIQUE.

UNIQUE𝜏 (𝜏) UNIQUE𝜏 (𝜏)
[U-Fun]

UNIQUE𝜏 (𝜏 → 𝜏 ′)

[U-Builtin-Ty]
UNIQUE𝜏 (builtin 𝐶)

[U-TyVar]
UNIQUE𝜏 (𝛼)

¬BOUNDIN𝜏 (𝛼, 𝜏) UNIQUE𝜏 (𝜏)
[U-Forall]

UNIQUE𝜏 (∀𝛼 ∶∶𝐾. 𝜏)

UNIQUE𝜏 (𝐹 ) UNIQUE𝜏 (𝑇 )
[U-Fix]

UNIQUE𝜏 (ifix 𝐹 𝑇 )

UNIQUE𝜏 (𝜏) UNIQUE𝜏 (𝜏 ′)
[U-TyApp]

UNIQUE𝜏 (𝜏 𝜏 ′)

¬BOUNDIN𝜏 (𝛼, 𝜏) UNIQUE𝜏 (𝜏)
[U-TyLam]

UNIQUE𝜏 (𝜆𝛼 ∶∶𝐾.𝜏)

Fig. 7. Inference Rules of UNIQUE𝜏 .

let 𝑥 = 5 in𝑥 + 𝑥
elim
⊳ 𝑥 + 𝑥

The post-term has free variables, so it is clearly not semantically equivalent to the pre-term. This is why we include the CLOSED(𝑡′)

condition in 
dce
⊳ . As always, we also need to be careful about shadowing:

let 𝑥 = 3 inlet 𝑥 = 5 in𝑥 + 𝑥
elim
⊳ let 𝑥 = 3 in𝑥 + 𝑥

Here, the post-term is closed, but not equivalent to the pre-term. To prevent relating such programs, we also include UNIQUE(𝑡)
as a condition on the pre-term to require unique variable names. It is not necessary to require UNIQUE(𝑡′), since it is implied by 

𝑡 
elim
⊳ 𝑡′ ∧ UNIQUE(𝑡).

In Fig. 6 and Fig. 7 we give the rules of UNIQUE (for terms) and UNIQUE𝜏 (for types) respectively. The rules follow a common 
14

pattern: constructs that bind names have a precondition which asserts that the name is not bound again in any of its sub-terms. For 
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𝛼 ∈Δ
[WS-TyVar]

Δ ⊢∗ 𝛼

Δ ⊢∗ 𝜏 Δ ⊢∗ 𝜏 ′
[WS-Fun]

Δ ⊢∗ 𝜏 → 𝜏 ′

Δ ⊢∗ 𝐹 Δ ⊢∗ 𝑇
[WS-IFix]

Δ ⊢∗ ifix 𝐹 𝑇

𝛼,Δ ⊢∗ 𝜏
[WS-Forall]

Δ ⊢∗ ∀𝛼 ∶∶𝐾.𝜏

[WS-TyBuiltin]
Δ ⊢∗ builtin 𝐶

𝛼,Δ ⊢∗ 𝜏
[WS-TyLam]

Δ ⊢∗ 𝜆𝛼 ∶∶𝐾. 𝜏

Δ ⊢∗ 𝜏 Δ ⊢∗ 𝜏 ′
[WS-TyApp]

Δ ⊢∗ 𝜏 𝜏 ′

Δ; (𝑥,Γ) ⊢ 𝑡 Δ ⊢ 𝜏
[WS-Lam]

Δ;Γ ⊢ 𝜆(𝑥 ∶ 𝜏). 𝑡

𝑥 ∈ Γ
[WS-Var]

Δ;Γ ⊢ 𝑥

Δ;Γ ⊢ 𝑡 Δ;Γ ⊢ 𝑡′
[WS-App]

Δ;Γ ⊢ 𝑡 𝑡′
(𝛼,Δ);Γ ⊢ 𝑡

[WS-TyAbs]
Δ;Γ ⊢Λ𝛼 ∶∶𝐾.𝑡

Δ;Γ ⊢ 𝑡 Δ ⊢∗ 𝜏
[WS-TyInst]

Δ;Γ ⊢ 𝑡{𝜏}

Δ ⊢∗ 𝐹 Δ ⊢∗ 𝑇 Δ;Γ ⊢ 𝑡
[WS-Wrap]

Δ;Γ ⊢ wrap 𝐹 𝑇 𝑡

Δ;Γ ⊢ 𝑡
[WS-Unwrap]

Δ;Γ ⊢ unwrap 𝑡
[WS-Constant]

Δ;Γ ⊢ constant 𝑘

[WS-Builtin]
Δ;Γ ⊢ builtin 𝑓

Δ ⊢∗ 𝜏
[WS-Error]

Δ;Γ ⊢ error 𝜏
Δ′ = TYVARS(𝑏𝑠) ++Δ Γ′ = VARS(𝑏𝑠) ++ Γ

Δ;Γ ⊢𝑛𝑟 𝑏𝑠 Δ′;Γ′ ⊢ 𝑡
[WS-Let]

Δ;Γ ⊢ let 𝑏𝑠 in 𝑡

Δ′ = VARS(𝑏𝑠) ++Δ Γ′ = VARS(𝑏𝑠) ++ Γ
∀𝑏 ∈ 𝑏𝑠. Δ′;Γ′ ⊢𝑏 𝑏 Δ′;Γ′ ⊢ 𝑡

[WS-LetRec]
Δ;Γ ⊢ let 𝑏𝑠 in 𝑡

[WS-NonRec-Nil]
Δ;Γ ⊢𝑛𝑟 𝜀

Δ;Γ ⊢𝑏 𝑏 TYVARS(𝑏) ++Δ;VARS(𝑏) ++ Γ ⊢𝑛𝑟 𝑏𝑠
[WS-NonRec-Cons]

Δ;Γ ⊢𝑛𝑟 𝑏;𝑏𝑠

Δ ⊢∗ 𝜏 Δ;Γ ⊢ 𝑡
[WS-TermBind]

Δ;Γ ⊢𝑏 [𝑥 ∶ 𝜏 = 𝑡]
Δ ⊢∗ 𝜏

[WS-TypeBind]
Δ;Γ ⊢𝑏 [𝛼 ∶∶𝐾 = 𝜏]

Δ′ = TYVARS(𝑣𝑠),Δ ∀𝑐 ∈ 𝑐𝑠. Δ′ ⊢𝑐 𝑐
[WS-DataBind]

Δ;Γ ⊢𝑏 [data 𝑋 𝑣𝑠 = 𝑐 with 𝑥]

Δ ⊢∗ 𝜏
[WS-Constructor]

Δ ⊢ 𝑐(𝜏)

Fig. 8. Inference Rules of well-scopedness of types and terms.

example, the U-Lam rule for lambda expressions of the form 𝜆𝑥 ∶ 𝜏. 𝑡 requires ¬(BOUNDIN(𝑥, 𝑡)). Furthermore, the lambda body as 
well as the type annotation of the bound variable have to have the uniqueness property. Note that type variables and term variables 
live in different namespaces, hence we do not require ¬(BOUNDIN(𝑥, 𝜏)). The other rules are defined inductively on their sub-terms, 
such as U-App. Special care for scoping is taken in let-related rules. For example, in U-Let-Term, we consider one term-binding at 
a time by defining it inductively over the list of bindings. The first three hypotheses state that the bound term, its type and a let
group with the rest of the bindings 𝑏𝑠 have to have the uniqueness property. Finally, 𝑥 may not be bound again in 𝑡𝑥 nor in the rest 
of the let expression.

We write Δ; Γ ⊢ 𝑡 for a well-scoped term 𝑡, where Δ is a list of the type variables in scope and Γ a list of the term variables 
in scope. In Fig. 8, we give the rules for well-scopedness. Similar to UNIQUE, we also have a relation for well-scoped types (⊢∗), 
and for well-scoped bindings (⊢𝑏). The rule WS-Var requires that a free variable must occur in Γ, and rules that introduce binders 
(including the various rules of ⊢𝑏) extend the appropriate context for their sub-terms, such as WS-Lam and WS-TyAbs. Other rules 
require well-scopedness on their sub-terms without change of either context.

We define the CLOSED property in terms of well-scopedness: a term is closed when it is well-scoped in a pair of empty contexts: 
𝜀; 𝜀 ⊢ 𝑡.

The dead-code-elimination pass may only remove bindings that are pure (i.e. terms that reduce to values). In Fig. 9 we first define 
the PURE predicate which is a safe approximation of such terms. We write Γ ⊢ 𝑡, where Γ is a list of pairs: for each variable in scope, 
it is recorded whether it was bound strictly or lazily. The Pure-Value rule states that values are trivially pure. Pure-Var states that 
a bound variable is pure, if it was bound strictly: in that case it must have been fully evaluated at the binding site. Then we define 
PUREBINDING, which we write as Γ ⊢ PUREBINDING(𝑏). A binding is pure if it defines a datatype (Pure-Data) or a type-synonym 
15

(Pure-Type). If it binds a term, that term needs to be PURE.
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Fig. 9. Inference Rules of PURE and PUREBINDING.

𝑅(𝑡, 𝑡′)
[C-Lam]

COMPAT𝑅(𝜆𝑥 ∶ 𝜏. 𝑡, 𝜆𝑥 ∶ 𝜏. 𝑡′)

𝑅(𝑠, 𝑠′) 𝑅(𝑡, 𝑡′)
[C-App]

COMPAT𝑅(𝑠 𝑡, 𝑠′ 𝑡′)

[C-Var]
COMPAT𝑅(𝑥,𝑥)

𝑅(𝑡, 𝑡′)
[C-TyAbs]

COMPAT𝑅(Λ𝛼 ∶∶𝐾. 𝑡,Λ𝛼 ∶∶𝐾. 𝑡′)

𝑅(𝑡, 𝑡′)
[C-TyInst]

COMPAT𝑅(𝑠 {𝜏}, 𝑡′ {𝜏})

[C-Error]
COMPAT𝑅(error 𝜏,error 𝜏)

[C-Constant]
COMPAT𝑅(constant 𝑘,constant 𝑘)

[C-Builtin]
COMPAT𝑅(builtin 𝑓 ,error 𝑓 )

𝑅(𝑡, 𝑡′)
[C-Wrap]

COMPAT𝑅(wrap 𝑇 𝑈 𝑡,wrap 𝑇 𝑈 𝑡′)

𝑅(𝑡, 𝑡′)
[C-Unwrap]

COMPAT𝑅(unwrap 𝑡,unwrap 𝑡)

COMPATlet
𝑅

(𝑏𝑠, 𝑏𝑠′) 𝑅(𝑡, 𝑡′)
[C-Let]

COMPAT𝑅(let [rec] 𝑏𝑠in 𝑡,COMPAT𝑅(let [rec] 𝑏𝑠′ in 𝑡′)

COMPAT𝑏
𝑅
(𝑏, 𝑏′) COMPATlet

𝑅
(𝑏𝑠, 𝑏𝑠′)

[C-Let-Cons]
COMPATlet

𝑅
(𝑏 ∶∶ 𝑏𝑠, 𝑏′ ∶∶ 𝑏𝑠′)

[C-Let-Nil]
COMPATlet

𝑅
(𝜀, 𝜀)

𝑅(𝑡, 𝑡′)
[C-TermBind]

COMPAT𝑏
𝑅
(𝑥 ∶ 𝜏 = 𝑡, 𝑥 ∶ 𝜏 = 𝑡′)

𝑏 = 𝛼 ∶∶𝐾 = 𝜏
[C-TypeBind]

COMPAT𝑏
𝑅
(𝑏, 𝑏)

𝑏 = data 𝑋 (𝑌 ∶∶𝐾) = 𝑐 with 𝑥
[C-DataBind]

COMPAT𝑏
𝑅
(𝑏, 𝑏)

Fig. 10. Inference Rules of COMPAT.

Before defining the 
elim
⊳ translation relation, we introduce a useful helper relation COMPAT. A binary relation 𝑅 is compatible with 

the structure of the AST when related sub-terms imply a related term. For example, in the case of application, we often have that if 
𝑅(𝑠) and 𝑅(𝑡) then 𝑅(𝑠 𝑡). To abstract over that pattern, we introduce the rules of COMPAT in Fig. 10. This relation is parametrised 
by an arbitrary relation 𝑅 and defines a single rule for each constructor of the PIR term AST. When the relation 𝑅 is an equivalence 
relation, compatibility is often referred to as congruence.

In Fig. 11, we give the inference rules for 
elim
⊳ . Rules Elim-Let-1 and Elim-Let-2 allow for the removal of bindings or complete 

binding groups respectively, we refer back to Section 3.5.6 for their explanation. The Elim-Compat rule states that the relation is 
16

compatible with all constructors of the AST.
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∀𝑏 ∈ 𝑏𝑠. 𝜀 ⊢ PUREBINDING(𝑏) 𝑡
elim
⊳ 𝑡′

[Elim-Let-1]

let [rec] 𝑏𝑠in 𝑡
elim
⊳ 𝑡′

∀𝑏 ∈ 𝑏𝑠. REMOVED(𝑏, 𝑏𝑠′)⇒ PUREBINDING(𝑏)

∀𝑏′ ∈ 𝑏𝑠′ . ∃𝑏 ∈ 𝑏𝑠.NAME(𝑏′) = NAME(𝑏) ∧ 𝑏
elim
⊳ 𝑏′

𝑡
elim
⊳ 𝑡′

[Elim-Let-2]

let [rec] 𝑏𝑠in 𝑡
elim
⊳ let [rec] 𝑏𝑠′ in 𝑡′

COMPATelim
⊳
(𝑡, 𝑡′)

[Elim-Compat]

𝑡
elim
⊳ 𝑡′

Fig. 11. Inference Rules of
elim
⊳ .

The corresponding Coq definitions can be found in the accompanying code.5 Each rule is straightforwardly implemented as a 
constructor of an inductive type.

4.2. Decision procedures of the pass

Showing that relations are semi-decidable consists of two parts, a boolean decision procedure and a proof that shows it is sound 

with respect to the relation. We show the type signatures of those decision procedures for PURE and 
elim
⊳ in Fig. 12. Each of the 

relations has a corresponding decision procedure which we prefix with dec_. To save space, we only unfold the implementation of 
dec_elim. The various decision procedures are used as helper functions and are grouped in a separate section that abstracts over 
a common argument: the decision procedure for terms. This is needed for Coq’s termination checker in order to see that mutual 
recursive calls (for example between dec_elim_Term and dec_elim_Binding) are structurally recursive.

The function dec_elim is defined recursively over its first argument x, which is the pre-term of the pass. In the case it is a 
Let r bs t, there are two possibilities: either some bindings (possibly zero) in bs have been eliminated, corresponding to rule
ELIM-LET-2, or the complete let was eliminated, corresponding to ELIM-LET-1. This is reflected in the first two cases of match x, y. 
In the first case, when y is also a let-group, we use the decision procedure for binding groups (dec_elim_Bindings) to determine 
if any of the pure bindings were removed (dec_pure_binding) and if the remaining bindings are related to their counterparts 
in the pre-term (dec_elim_Binding). If the whole let-group was removed, we check that all bindings in the pre-term were pure, 
corresponding to the rule ELIM-LET-1.

In all other cases, we use dec_compat to decide whether the ELIM-COMPAT rule applies. This function simply compares both 
AST constructors for equality and whether its recursive sub-terms are related with dec_elim_Term.

For each of the decision procedures we prove a corresponding soundness Lemma, prefixed with sound_. These proofs are straight-
forward with induction on the pre-term.

Implementation of the dec_ functions is usually a mechanical process: they can roughly be read of from the inference rules 
in Fig. 11. Indeed, it should be possible to generate such decision procedures from their inductive definitions. We discuss this in 
Section 5.4.6.

4.3. Relating a pre- and post-term

To produce a compilation certificate, the certifier needs to construct a proof for every pass: the pre- and post-term are related in 
their appropriate translation relation. In Section 3 we gave an example of a very basic smart contract: a timelock (Fig. 5a). In this 
subsection, we show how it is transformed by the dead-code elimination pass of the Plutus Tx compiler.

Instead of illustrating the transformation on the source code, as we did in Section 3, we now show the actual terms in the PIR 
intermediate language. These programs were obtained by running the compiler with debugging flags that dump the intermediate 
programs. We adjusted the pretty-printer to output a more compact presentation and we omit some sub-terms to improve readability 
(replacing them with the ellipses ...).

The Plutus Tx compiler translates the timelock code into the PIR program in Fig. 13. In the abstract syntax of PIR, a variable is 
represented as a pair of a string and an integer. The string is the variable name as written in the source code, retained for pretty-
printing and error reporting, whereas the integer is globally unique and used internally to reference variables during the compiler 
passes. In this example, we pretty-print the integer in subscript after the name.

In the code of Fig. 13 the compiler has included let definitions for all the built-in types and functions that may be used in a 
PIR program. This is a necessary step, since deployed Plutus Core programs have to be self-contained (they cannot, for example, 
link to other on-chain code). Moreover, it enables whole-program optimisation. Starting from line 25 we can recognise the timelock 
17

5 https://github .com /jaccokrijnen /2022 -scp -translation -relations.

https://github.com/jaccokrijnen/2022-scp-translation-relations
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Fig. 12. Decision procedures for PURE and
elim
⊳ and soundness lemmas.

code. Note that Haskell’s lazy case expression has been translated to a call to EndDate_match, and the case branches have been 
“thunked” by abstracting over a unit value. This thunking prevents PIR’s (strict) function application of EndDate_match from 
evaluating all case branches.

Since most Plutus Tx programs do not use all available built-ins, many of the let-bound definitions are dead code. After the 
first run of the dead-code elimination pass, we obtain the post-term shown in Fig. 14, in which those unused definitions have been 
removed. For example, the type definition of ByteString is dead code, and therefore the pre- and post-term can be related using 
the ELIM-LET-1 rule:

Pure-Type
PUREBINDINGS(type ByteString = ...)

⋯

𝑡
elim
⊳ 𝑡′

Elim-Let-1

let nonrec type ByteString = ... in 𝑡
elim
⊳ 𝑡′

Here, 𝑡 and 𝑡′ are placeholders for the rest of the pre- and post-term. The Elim-Let-1 rule has two premises: firstly, the bindings (in 
this case just a single binding) should be pure, which we establish with the Pure-Type rule. Secondly, the terms in the bodies of the 
lets should be related. We omit the rest of the proof tree because of its size.

In Coq, a common way to build such derivation trees is by using tactics. To build the above proof tree for example, one can write:

Lemma Example1 : elim_Term t_pre t_post.

Proof.
apply Elim_Let_1.

- apply PureBinds_Cons.
18

+ apply Pure_Type.
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1 let type ByteString0 = ... in

2 let data Bool1 = True2 : ... | False3 : ...

3 with Bool_match4 in

4 let verifySignature5 = ... in

5 let type String10 = ... in

6 let data Unit11 = Unit12 : ... with Unit_match13 in

7 let trace14 = ... in

8 let type Integer17 = ... in

9 let takeByteString18 = ... in

10 let subtractInteger19 = ... in

11 let sha3_20 = ... in

12 let sha2_21 = ... in

13 let remainderInteger22 = ... in

14 let quotientInteger23 = ... in

15 let multiplyInteger24 = ... in

16 let modInteger25 = ... in

17 let lessThanInteger26 = ... in

18 let lessThanEqInteger30 = ... in

19 let lessThanByteString34 = ... in

20 let greaterThanInteger38 = ... in

21 let greaterThanEqInteger42 = ... in

22 let greaterThanByteString46 = ... in

23 let error50 = ... in

24 ...

25 let data EndDate71 = Fixed72 : ... | Never73 : ...

26 with EndDate_match74 in

27 𝜆end75 : EndDate71 .

28 𝜆current76 : Integer .

29 let ~false77 = ... in

30 EndDate_match74 end75 { Unit11 -> Bool1 }

31 (𝜆n79 : Integer . 𝜆thunk80 : Unit11 . ...)

32 (𝜆thunk81 : Unit11 . false77)

33 Unit12

Fig. 13. The pre-term of the dead-code elimination pass.

1 let nonrec data Bool1 = True2 : ... | False3 : ...

2 with Bool_match4 in

3 let nonrec data Unit11 = Unit12 : ... with Unit_match13 in

4 let nonrec strict lessThanEqInteger30 = ... in

5 let nonrec strict greaterThanEqInteger42 = ... in

6 let data EndDate71 = Fixed72 : ... | Never73 : ...

7 with EndDate_match74 in

8 𝜆end75 : EndDate71 .

9 𝜆current76 : Integer .

10 let ~false77 = ... in

11 EndDate_match74 end75 { Unit11 -> Bool1 }

12 (𝜆n79 : Integer . 𝜆thunk80 : Unit11 . ...)

13 (𝜆thunk81 : Unit11 . false77)

14 Unit12

Fig. 14. The post-term of the dead-code elimination pass.

+ apply PureBinds_Nil.

- (* construct the rest of the tree... *)

Qed.

Of course, such proof terms are infeasible to write by hand for real programs, and automation tactics like auto can be used instead 
to search and construct it. This process can be rather inefficient however, so we avoid this altogether by using the technique of proof 
by reflection:

Lemma Example2 : elim_Term t_pre t_post.

Proof.

exact (sound_dec_elim_Term t_pre t_post eq_refl).
19

Qed.
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The term eq_refl : forall (A : Type) (x : a), a = a is the constructor of Coq’s equality type. When the type-checker 
encounters eq_refl (here of type dec_elim_Term t_pre t_post = true), its type has to be normalised, executing the deci-
sion procedure. If it runs successfully, the whole proof term is well-typed, and since its type is in the Prop universe, it won’t be 
reduced to the proof tree. If the decision procedure fails, the program won’t typecheck, signalling a problem with the compiler or its 
specification.

Although we have not performed any comprehensive benchmarks, execution of the decision procedures appears to be fast. This 
is not very surprising, since they can usually be implemented as a single linear pass over the AST. As a rough indication: running 
dec_elim_Term on the terms of Fig. 13 and 14 takes a handful of milliseconds on a commodity laptop.

5. Engineering considerations

In this section, we evaluate our approach to certifying an independently developed, constantly evolving compiler under the 
application constraints imposed by smart contracts. We also describe lessons learnt regarding the architecture of proofs, such that 
they are robust and maintainable.

5.1. Gradual verification

The certifier architecture outlined in this paper allows for a gradual approach to verification: during the development of the 
certification engine, each individual step in the process increases our overall confidence in the compiler’s correctness, even if we 
have not yet completed the end-to-end semantic verification of the compiler pipeline.

By defining only the translation relations, we have an independent formal specification of the compiler’s behaviour. This makes 
it easier to reason informally and to spot potential mistakes or problems with the implementation.

Implementing the decision procedures for translation relations ties the implementation to the specification: we can show on a 
per-compilation basis that a pass is sound with respect to its specification as a translation relation. Furthermore, it will allow us to 
test that the translation relations accurately model the compiler’s behaviour by automatically constructing proof for input programs, 
such as those contained in the testsuite of the compiler. We have now successfully run the decision procedure of the dead-code 
elimination pass on such input programs and we hope to report on this experiment soon.

Finally, by proving semantics preservation of a translation relation, we establish that the corresponding pass of the compiler is 
correct; for each of run of the compiler for which we can establish that the translation relation holds, we know that the semantics of 
the pre-term and post-term coincide.

5.2. Agility

The Plutus Tx compiler is developed independently of our certification effort. Moreover, it relies on a substantial existing code 
base—namely, that of the Glasgow Haskell Compiler (GHC). In addition, both GHC and the Plutus Tx-specific parts evolve on a 
constant basis, improving code generation or fixing bugs.

Given these constraints, full verification of the compiler appears to be in conflict with the ongoing maintenance of the compiler. 
A proof on the basis of the compiler source code would constantly have to adapt to the evolving compiler source. Hence, the 
architecture of our certification engine is based on a grey box approach, where the certifier matches the general outline (such as the 
phases of the compiler pipeline), but not all of the implementation details of the compiler. For example, our translation relation for 
the inliner admits any valid inlining. Any changes to the compiler’s heuristics to produce more efficient programs by being selective 
about what precisely to inline do not affect the inliner’s translation relation, and hence, do not affect the certifier.

5.3. Trusted computing base (TCB)

The fact that the Plutus Tx compiler is not implemented in a proof assistant, but in Haskell complicates direct compiler verification. 
It might be possible to use a tool like hs-to-coq [35], which translates a subset of Haskell into Coq’s Gallina and has been used for 
proving various properties about Haskell code [11]. However, given that those tools often only cover language subsets, it is not clear 
that they are applicable. More importantly, such an approach would increase the size of the trusted computing base (TCB), as the 
translation from Haskell into Coq’s Gallina is not verified. Similarly, extraction-based approaches suffer from the same problem if 
the extraction itself is not verified, although there are projects like CertiCoq [3] that try to address that issue.

In any case, our architecture has a relatively small TCB. We directly relate the source and target programs via a chain of interme-
diate ASTs, taking the compiler implementation out of the equation. Trusting a translation certificate comes down to trusting the Coq 
kernel that checks the proof, the theorem with its supporting definitions and soundness of the Plutus Core interpreter with respect 
to the formalised semantics. Of course, these components are part of the TCB of a verified compiler too. This aspect also motivated 
our choice of Coq over other languages such as Agda, due to its relatively small and mature kernel.

5.4. Proof architecture

Since the original implementation [21], we have extended and revised several of the implementations of the translation relations. 
20

We describe some insights obtained in the process.
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5.4.1. Composed translation relations

A convenient pattern that we have found is to define some relations as a conjunction of simpler relations and predicates, such as 
the translation relation for splitting recursive let groups (Section 3.5.4):

𝑡 
split
⊳ 𝑡′ ∧ UNIQUE(𝑡) ∧ CLOSED(𝑡′)

Here we compose the relation out of 
split
⊳ and various side conditions. The definition of 

split
⊳ is easy to specify; in contrast, a transforma-

tion that would simultaneously guarantee to preserve scoping of the post-term would be significantly harder to realise. Instead, we 
require the UNIQUE and CLOSED conditions separately, ensuring that bindings in a let binding group may be reordered arbitrarily 
in a compiler pass as long as these separate conditions hold.

Another case where this decomposition of the relation is useful, is the dead code elimination pass (Section 3.5.6). The rules of 
elim
⊳ merely assert that only pure bindings can be removed, UNIQUE and CLOSED predicates ensure that only dead code is removed. 

Note that for dead code, CLOSED(𝑡′) on its own is not a sufficient condition. For example, consider the following program, where 
shadowing occurs:

let𝑥 = trueinlet𝑥 = falsein𝑥

Removing the second binding of 𝑥 results in a CLOSED term, but is not a safe transformation! Admittedly, the translation relation 
could be slightly more general by requiring that each eliminated binding was not shadowing other bindings. However, we prefer our 

formulation as a conjunction of three simple properties, because it keeps the rules of 
split
⊳ straightforward due to avoiding the need 

for an additional context or non-local information about variable bindings. Furthermore, it still accurately describes the compiler’s 
implementation, which also assumes global uniqueness on the pre-term.

5.4.2. Reducing boilerplate rules

Many inductive translation relations contain boilerplate constructors; typically there are only a handful of interesting rules, and 
all other AST constructs correspond to congruence rules, specifying the translation relation contains the identity relation.

In our Coq implementation, we factor out this boilerplate by defining a separate congruence relation, COMPAT. This is a ternary 
relation, between some translation relation ⊳ and two terms, that requires that each construct in the AST that the direct sub-terms 
to be related by ⊳. For example, in the case of function application, we have:

𝑠 ⊳ 𝑠′ 𝑡 ⊳ 𝑡′
[COMPAT-App]

COMPAT⊳(𝑠 𝑡, 𝑠′ 𝑡′)

The use of COMPAT simplifies some relations such as dead-code elimination (Section 3.5.6) or splitting recursive binding groups 
(Section 3.5.4), but is not general enough for relations that use environments Γ and Δ with binder-specific information, such as 
renaming. In the future, we may extend these congruences with more arguments, enabling further reuse.

5.4.3. Relational versus functional specifications

Often, we prefer relational specifications over functions, since they are more general and can express many-to-many relations, 
such as in the specification of inlining (Section 3.5.2). On the other hand, some passes do not need this level of generality and we 
can model that pass as a total Coq function. The benefit of doing so is that a functional specification does not require a separate 
decision procedure: by simply running the function on the pre-term and syntactically comparing its output with the post-term we 
can establish the validity of the translation.

Therefore, we have sometimes chosen to formalise the specification as a function. One example is the encoding of non-recursive 
bindings (Section 3.5.11), which uses a clear translation scheme that applies to every non-recursive let definition. We have (partially) 
implemented that pass as a Coq function:

Fixpoint compile_term : Term -> Term

Similarly, the compilation of recursive binding groups can be implemented as a Coq function encode_let_rec. However, we 
noticed that it is cumbersome to try and replicate the compiler’s strategy of generating fresh variables. Therefore, we combined this 
functional specification with the relational specification of renaming of Section 3.5.1:

𝑡 ⊳ 𝑡′ ∶= (encode_let_rec 𝑡) ⊳RENAME 𝑡′

5.4.4. Variable representation

A common way of representing variables is by using de Bruijn indices. However the Plutus compiler uses named variables. 
Specifically, a variable is a pair of type String ×ℕ, where the first component is the name of the variable as it appears in the source 
code and the second is the identifier used internally by the compiler. The compiler goes through quite some effort to keep the natural 
21

number globally unique, as we discussed in Section 3.4.1.
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Our Coq AST type is flexible and parametrised by the type that is used for binders. This allows us some more freedom for 
experimentation, but at the moment, we have only instantiated this with (globally unique) String identifiers. We plan to change this 
to match the compiler implementation in the near future, which should be a straightforward refactoring.

By design, we are staying close to the compiler’s internal representation of ASTs: we want to specify syntactic translation relations 
that stay as close as possible to the compiler’s behaviour. Any more abstract notion of binding — such as well-typed or well-scoped 
de Bruijn indices — would require additional checks and conversions of each intermediate AST. Furthermore, we would have to trust 
that the static or dynamic semantics that we formalise correspond to the semantics of the original form.

5.4.5. “Big-step” versus transitive closure of “small-step”

Most translation relations are inductive: they have hypotheses that require sub-trees to be related inductively. In the case of 
let-floating (Section 3.5.7), we used a different approach, since it is not a local transformation. Instead, we first specified a single 
“floating” step, and then took the transitive closure of that relation to describe the entire the pass. In fact, many pass specifications 
could be described in that way but we foresee that this approach can become problematic when defining the corresponding decision 
procedure: we effectively require a (potentially long) list of intermediate AST’s, which are not all emitted by the compiler. For that 
reason, we prefer inductively defined relations.

5.4.6. Deriving sound decision procedures

Since we are currently writing decision procedures for translation relations by hand, we are investigating ways to automate this 
process. In many cases one can “read of” a (naive) strategy for a decision procedure from the rules of a relation. Indeed, recent work 
[30] by Paraskevopoulou et al. has shown how to derive computational content, including verified decision procedures, from Coq’s 
inductive definitions. We hope that by building on this work, we can lower the (maintenance) cost associated with the specification 
of a compiler pass even further.

6. Related work

6.1. Compilers and correctness

The standard approach to compiler correctness is full compiler verification: a proof that asserts that the compiler is correct as it 
demonstrates that, for any valid source program, the translation produces a semantically equivalent target program. Examples of 
this approach include the CompCert [23] and CakeML [22] projects, showing that (with significant effort) it is possible to verify a 
compiler end-to-end. To do so, the compiler is typically implemented in a language suitable for verification, such as the Coq proof 
assistant or the HOL theorem prover. A more recent development is PureCake [20], which builds on the CakeML development. It is a 
verified compiler for a pure lazy functional language, which uses specifications for compiler passes that are in the same style as our 
translation relations.

In contrast, the technique that we propose for the Plutus Tx compiler is based on translation validation [32]. Instead of asserting 
an entire compiler correct, translation validation establishes the correctness of individual compiler runs.

A statement of full compiler correctness is, of course, the stronger of the two statements. Translation validation may fail to assert 
the correctness of some compiler runs; either because the compiler did not produce correct code or because the translation certifier 
is incomplete. In exchange for being the weaker property, translation validation is potentially (1) less costly to realise, (2) easier to 
retrofit to an existing compiler, and (3) more robust in the face of changes to the compiler.

The Cogent certifying compiler [29] has shown that it is possible to use translation validation for lowering the cost of functional 
verification of low-level code: a program can be written and reasoned about in a high-level functional language, which is compiled 
down to C. The generated certificate then proves a refinement relation, capable of transporting the verification results to the corre-
sponding C code. The situation is different from ours: the Cogent compiler goes through a range of languages with different semantic 
models and uses the forward-simulation technique as a consequence. In contrast, we are working with variations of lambda calculi 
that have similar semantics, allowing us to use logical relations and translation relations.

The idea of proof-carrying code [26] is closely related to translation validation, shifting the focus to compiled programs, rather 
than the compiler itself. A program is distributed together with a proof of a property such as memory or type safety. Such a proof 
excludes certain classes of bugs and gives direct evidence to the users of such a program, who may independently check the proof 
before running the program. Our certification effort, while related, differs in that we keep proof and program separate and in that 
we are interested in full semantic correctness and not just certain properties like memory and type safety.

In their Coq framework [24], Li and Appel use a technique similar to ours for specifying compiler passes as inductive relations in 
Coq. Their tool reduces the effort of implementing program transformations and corresponding correctness proofs. The tool is able 
to generate large parts of an implementation together with a partial soundness proof with respect to those relations. The approach is 
used to implement parts of the CertiCoq backend.

6.2. Certificates and smart contracts

Smart contracts often manage significant amounts of financial and other assets. Before a user engages with such a contract, which 
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has been committed to the blockchain as compiled code, they may want to inspect the source code to assert that it behaves as they 



Science of Computer Programming 233 (2024) 103051J.O.G. Krijnen, M.M.T. Chakravarty, G. Keller et al.

expect. In order to be able to rely on that inspection, they need to know without doubt that (1) they are looking at the correct source 
code and (2) that the source code has been compiled correctly.

While a verified smart contract compiler addresses the second point, it doesn’t help with the first. An infrastructure of reproducible 
builds, on the other hand, solves only the first point. The latter is the approach taken by Etherscan6: to verify that a deployed Ethereum 
smart contract was the result of a compiler run, one provides the source code and build information such as the compiler version 
and optimisation settings.

In contrast, a certifying compiler [27] that generates an independently verifiable certificate of correct translation, squarely ad-
dresses both points. By verifying a smart contract’s translation certificate, a smart contract user can convince themselves that they 
are in possession of the matching source code and that this was correctly compiled to the code committed to the blockchain.

6.3. Verification in the smart contract domain

Ethereum was the first blockchain to popularise use of smart contracts, written in the Solidity programming language. Solidity 
is an imperative programming language that is compiled to EVM bytecode, which runs on a stack machine operating on persistent 
mutable state. The DAO vulnerability [12] has underlined the importance of formal verification of smart contracts. Notably, a veri-
fication framework has been presented [10] for reasoning about embedded Solidity programs in F*. The work includes a decompiler 
to convert EVM bytecode, generated by a compiler, into Solidity programs in F*. The authors propose that correctness of compila-
tion can be shown by proving equivalence of the embedded source and (decompiled) target program using relational reasoning [7]. 
However, this would involve a manual proof effort on a per-program basis, and relies on the F* semantics since the embeddings are 
shallow. Furthermore, components such as the decompiler are not formally verified, adding to the size of the TCB.

The translation validation technique has been used for the verification of a particular critical Ethereum smart contract [31]
using the K framework. The work demonstrates how translation validation can successfully be applied to construct proofs about the 
low-level EVM bytecode by mostly reasoning on the (much more understandable) source code. The actual refinement proof is still 
constructed manually, however.

The Tezos blockchain also uses a stack-like language, called Michelson. The Mi-Cho-Coq framework [8] formalises the language 
and supports reasoning with a weakest precondition logic. Alternatively, the Helmholtz tool [28] enables formal verification of 
smart contracts using refinement types. There is ongoing work for developing a certified compiler in Coq for the Albert intermediate 
language, intended as a target language for certified compilers of higher-level languages. This differs from our approach as it requires 
the compiler to be implemented in the proof assistant.

ConCert is a smart contract verification framework in Coq [4]. It enables formal reasoning about the source code of a smart 
contracts, defined in a different (functional) language. The programs are translated and shallowly embedded in Coq’s Gallina. In-
terestingly, the translation is proven sound, in contrast with approaches such as hs-to-coq [35], since it is implemented using Coq’s 
metaprogramming and reasoning facility MetaCoq [34].

7. Conclusions and further work

The Plutus Tx compiler translates a Haskell subset into Plutus Core. The compiler consists of three main parts: the first one reuses 
various stages of GHC to compile the Haskell subset to GHC Core—the principal intermediate language used by GHC. The second 
part translates GHC Core to PIR and the final part compiles PIR to Plutus Core. As Plutus Core is strict and does not directly support 
datatypes, the corresponding translation scheme is quite complex. Moreover, it contains numerous transformation and optimization 
passes.

In this paper, we focused on the certification effort covering the third part of that pipeline; specifically, the translation steps 
from PIR to Plutus Core. While the other passes are certainly important for end to end verification, they are largely syntactic 
transformations that desugar user defined programs to a smaller core language. We have developed translation relations for all 
passes described in Section 3, such that we can, for example, produce a proof relating the previously described timelock example 
in PIR to its final form in Plutus Core. For some of these passes, such as inlining and dead-code elimination, we have implemented 
a verified decision procedure, but for other passes, we have generated proof trees of the translation relations using Coq tactics. We 
have not yet covered all transformations in their full generality; for example, we do not cover (mutually) recursive datatypes yet. 
We have also started the semantic verification of key passes of the translation [14] and are investigating different ways to automate 
decision procedures for larger programs effectively.

We believe that our approach of translation relations can be applied to the other two parts of the compiler pipeline too. For 
the first part (from Plutus Tx to GHC Core) we would need a formalisation of both Plutus Tx and GHC Core syntax and semantics, 
which would be an enormous undertaking. Plutus Tx is a large subset of Haskell and in fact, there exists no complete semantics for 
the Haskell language as far as we are aware. So although translation relations seem feasible since they only relate syntax, semantic 
verification of those relations would be difficult. Instead, we could view Haskell as syntactic sugar for Core and define its semantics 
in terms of the desugared Core semantics. GHC Core has been formalised as System FC [36], and in anticipation of Dependent Haskell 
a mechanisation of System DC has been developed as part of the CoreSpec project [37]. The GHC repository also contains an Ott 
specification [33] of the syntax and semantics.7 Certifying the second part of the pipeline (from GHC Core to PIR) therefore seems 

6 https://etherscan .io /verifyContract.
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7 https://github .com /ghc /ghc /tree /master /docs /core -spec.

https://etherscan.io/verifyContract
https://github.com/ghc/ghc/tree/master/docs/core-spec


Science of Computer Programming 233 (2024) 103051J.O.G. Krijnen, M.M.T. Chakravarty, G. Keller et al.

much more feasible. An additional challenge is that we would need a more general notion of semantic equivalence, because our 
current approach of contextual equivalence is only applicable to programs within the same language. Instead, we will consider using 
techniques such as refinement or forward simulation [25].

In the future, we hope to continue this line of work in four directions: (1) filling in the remaining gaps in translation relations 
(such as covering mutually recursive datatypes); (2) completing the decision procedures associated with each translation relation; 
(3) continuing the semantic verification of the compiler passes; and (4) further automating our approach and improve the efficiency 
and maintainability of the certifier.
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