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ABSTRACT

It has been known for decades that codon usage con-
tributes to translation efficiency and hence to protein
production levels. However, its role in protein synthe-
sis is still only partly understood. This lack of under-
standing hampers the design of synthetic genes for
efficient protein production. In this study, we gener-
ated a synonymous codon-randomized library of the
complete coding sequence of red fluorescent pro-
tein. Protein production levels and the full coding
sequences were determined for 1459 gene variants
in Escherichia coli. Using different machine learning
approaches, these data were used to reveal corre-
lations between codon usage and protein produc-
tion. Interestingly, protein production levels can be
relatively accurately predicted (Pearson correlation
of 0.762) by a Random Forest model that only re-
lies on the sequence information of the first eight
codons. In this region, close to the translation ini-
tiation site, mRNA secondary structure rather than
Codon Adaptation Index (CAI) is the key determi-
nant of protein production. This study clearly demon-
strates the key role of codons at the start of the cod-
ing sequence. Furthermore, these results imply that
commonly used CAI-based codon optimization of the
full coding sequence is not a very effective strategy.
One should rather focus on optimizing protein pro-
duction via reducing mRNA secondary structure for-
mation with the first few codons.

INTRODUCTION

Due to degeneracy in the genetic code, a protein with a sin-
gle amino acid sequence can be encoded by an extremely
large number of different coding sequences (CDS). While
different synonymous codons do not alter the amino acid
sequence, they are known to influence translation efficiency
and in some cases even protein folding properties (1–5).
However, many questions about the roles of codons and
their often subtle and intertwined effects are still unan-
swered. Several studies have revealed the importance of the
first few codons on overall protein production but there is
still no full consensus on the underlying mechanisms (2,4,6–
10). Also it is unclear to what extent codons further down-
stream the coding sequence influence protein production
(1). Understanding codon usage is key to grasping one of
the fundamental processes of life: the translation of mRNA
into proteins. In addition, precise control over translation
efficiency is highly desirable in both biotechnology and syn-
thetic biology to make the process of protein production
and cell engineering more predictable.

Since the early days of DNA sequencing it has been ob-
served that, depending on the organism, specific codons
are overrepresented (11). This led to the hypothesis that
frequently occurring codons could be translated more ef-
ficiently, e.g. due to a higher abundance of corresponding
tRNAs. It also led to the so-called Codon Adaptation In-
dex (CAI) (11), which is defined as the geometric mean of
the relative codon usage in a specific coding sequence (based
on the average codon usage in the genome or a subset of
highly expressed genes). In other words, a CDS with a high
CAI primarily uses frequent codons, while a CDS with a
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low CAI contains more rare codons. However, the hypoth-
esis that a high CAI is related to high protein production
has been disputed in several studies in recent years (2,4,12).
Especially the hallmark study by Kudla et al., in the bac-
terium Escherichia coli, revealed that the CAI does not seem
a major determinant of high protein production. In this
study, a set of 154 codon variants of the Green Fluores-
cent Protein (GFP) was generated. The authors could not
correlate the CAI to the protein production levels. How-
ever, the predicted folding energy of the mRNA around the
start codon did correlate with protein production. They hy-
pothesised that the protein production efficiency in E. coli is
mostly influenced by the availability of the ribosome bind-
ing site (RBS) for translation initiation. Relatedly, already
in the 1980s it had been observed that the codon identity
in the 5′ of the CDS has major effects on protein produc-
tion efficiency of some recombinantly expressed genes in
E. coli (7,13). Several studies have since followed up on
this and suggest a key role of mRNA secondary structures
(4,6,14,15) around the RBS and start codon. The codon
usage at the 5′ CDS has also been hypothesised to be in-
volved in a so-called codon ramp, as these regions gener-
ally contain more rare codons (9,16). This ramp would re-
sult in a slow initial translation elongation speed, reducing
the risk of detrimental ribosomal collisions along the length
of the CDS. Finally, codon usage has also been associ-
ated with mRNA stability (1,3,17). Especially in eukaryotes,
slow-moving ribosomes can initiate RNA decay, thereby
linking translation elongation efficiency to mRNA decay
(18).

Despite a range of studies in this field, there are still many
open questions about the complex role of codon usage on
protein production in different organisms and which are the
key determinants and if weaker determinants play a role
and in what cases. Consequently, reliable models for predict-
ing protein production based on codon usage are unavail-
able. Many of the algorithms used for ‘codon optimization’
are based on the CAI score or variations thereof, which in
practice often fail to give optimal results (19).

To further contribute to the understanding and pre-
dictability of protein production based on codon usage,
aiming to understand influences throughout the whole
coding sequence, we decided to generate a large, gene-
wide synonymous codon library of the gene encoding the
monomeric Red Fluorescent Protein (mRFP), and express
this library in E. coli. This reporter protein has rarely been
used in studies that focus on codon usage, as opposed to
GFP, which is predominantly used in this field. We chose a
different reporter protein to examine if a different gene can-
didate would lead to new findings on the determinants of
codon usage. To improve our fundamental understanding
of the impact of codon usage, and in an attempt to improve
the predictability of optimal codon usage for protein pro-
duction, we decided to test different interpretable machine
learning approaches. Very recently, some studies have suc-
cessfully utilised machine learning methods to predict pro-
tein production efficiency based on randomised sequence
libraries for non-coding gene regions, such as promoters
and 5′ untranslated regions (5′ UTR) in E. coli and Sac-
charomyces cerevisiae (20,21), as well as for a factorially de-
signed 5′ end of the CDS (22).

In this study, we constructed mRFP gene libraries for
which the codon usage throughout almost the whole gene
was fully randomised. To this end, we used an assembly ap-
proach based on type IIS restriction and ligation, which
has not been used before for whole-gene codon random-
ization. After library assembly, high-quality curated protein
production levels were measured for 1459 individual clones,
and their specific coding sequences were accurately deter-
mined. We then used these pairs of CDS sequences and cor-
responding expression values as training data for our ma-
chine learning algorithm MEW (mRNA Expression Wiz-
ard), to establish an algorithm that can predict protein pro-
duction from the CDS. Remarkably, we show that only
a window covering codons 2–8 is required to accurately
predict mRFP production, based on sequence information
only. This further strengthens the conclusions from previ-
ous studies and demonstrates that other codons later in the
CDS in this study are not important to explain protein pro-
duction. This also underlines that future studies aiming to
optimize protein production should focus mostly on the
codon usage of the 5′ start of the coding sequence, rather
than the current practice of full CDS optimization.

MATERIALS AND METHODS

mRFP codon randomization

The amino acid sequence of the monomeric Red Fluores-
cent Protein (mRFP) was used to generate three degener-
ate DNA sequences representing our libraries (CAIL, CAIM
and CAIH). Libraries were designed as such that they could
be assembled from DNA oligos via a Type IIS restriction
enzyme-based assembly method. Each degenerate library
sequence was split into blocks of roughly equal sizes (80–
90 nucleotides) in such a way that each block has a unique
4-bp overhang with neighbouring blocks. Overhangs were
selected from a set that is optimised for high ligation fi-
delity via Type IIS assembly (23). To create each required
fixed overhang sequence, we attempted to fix degenerate
codons in such a way that the separate blocks were roughly
equal in size, and that loss of degeneracy stayed limited. For
example, fixing the degenerate sequence ARAT to AAAT
would result in the loss of 1 codon possibility, while fix-
ing the degenerate sequence YGCN to CGCC would result
in the loss of seven codon possibilities. 5′ and 3′ flanking
sequences containing recognition sites for the Type IIS re-
striction enzyme BsaI-HF®v2 (NEB, R3733) were added
to each DNA block, to generate unique single-stranded
overhangs after digestion. The 5′ end of the first block
and the 3′ end of the last block contained SapI (NEB,
R0569) recognition sites instead. Each block was ordered
as a DNA oligo (Ultramer® DNA Oligonucleotides, IDT)
(Supplementary Table S2) and using a strand-displacing
Taq polymerase (NEB, M0482), the ssDNA was converted
to double-stranded DNA via PCR. PCR reactions contain-
ing the dsDNA block were cleaned and concentrated to 20
�l mQ using the DNA Clean & Concentrator™-5 kit (Zymo,
D4004). 4 �l Gel Loading Dye, Purple (6×) (NEB, B7024)
was added to each block and they were loaded on a 1%
agarose gel and ran for 30 min at 100 V. The dsDNA blocks
were excised from the gel and purified to 20 �l mQ using the
Zymoclean™ Gel DNA Recovery Kit (Zymo, D4002). 5 �l
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of the dsDNA was used to quantify the DNA concentration
with the Qubit assay (Invitrogen, Q32853) according to the
manufacture’s protocol.

The dsDNA blocks were mixed in an equal molar ra-
tio to a total volume of 41 �l, with 5 �l T4 Ligase Buffer
(NEB, B0202), 400 units T4 Ligase (NEB, M0202) and
60 units BsaI-HF®v2 (NEB, R3733). Assembly reaction
was done overnight at 37◦C for 18 h, followed by 5 min at
60◦C and a holding step at 12◦C. The assembly is cleaned
and concentrated to 15 �l mQ using the DNA Clean &
Concentrator™-5 kit (Zymo, D4004). 3 �l Gel Loading Dye,
Purple (6×) (NEB, B7024) was added and the assembly
mixture was loaded on a 1% agarose gel and was run for
40 min at 100 V. The full-length assembled product was ex-
cised from the gel and purified to 44 �l mQ using the Zy-
moclean™ Gel DNA Recovery Kit by Zymo (D4002). 10
units of SapI (NEB, R0569) were added with 5 �l CutSmart
Buffer (NEB, B7204) and digested for 2 h at 37◦C. The di-
gested codon random mRFP library with single-stranded
overhangs was cleaned and concentrated to 15 �l mQ using
the DNA Clean & Concentrator™-5 kit by Zymo (D4004).
The complete 15 �l containing the codon random mRFP li-
brary was used in a ligation reaction to generate the plasmid
library.

Plasmid preparation and library generation

The pFAB3909 plasmid (24) (Addgene #47812) with a
P15A origin, kanamycin resistance gene and bicistronic de-
sign element was modified to be able to accept the codon
randomised mRFP library and include a constitutively ex-
pressed GFPuv gene. The relatively weak bla promoter was
used to drive the mRFP expression, keeping the total pro-
tein yield relatively low to prevent overburdening of the pro-
tein production machinery and negative growth effects on
production for high producing mRFP codon variants. A
strong terminator was used for efficient transcription ter-
mination and to enhance mRNA stability (25). The open
reading frame was replaced by SapI recognition sites to gen-
erate the sticky overhangs that accept the mRFP library and
a large fragment of nonsense DNA was inserted between the
SapI sites to be able to easily separate the double SapI di-
gested plasmid from linear product based on size on a gel.
A GFPuv gene, driven by the P4 promoter (24), was added
to the plasmid as an internal standard for gene expression.
Expression of GFPuv by this promoter is weak as to not
interfere with the mRFP expression efficiency, but strong
enough for detection with flow cytometry, to allow for data
normalization.

About 3 �g plasmid was digested with 20 units SapI
(NEB, R0569) and dephosphorylated with 3 units rSAP
(NEB, M0371) with 6 �l CutSmart Buffer (NEB, B7204)
in a total volume of 60 �l for 3 h at 37◦C, followed by
an inactivation step at 65◦C for 20 min. The linear plas-
mid was excised from the gel and purified to 30 �l mQ
using the Zymoclean™ Gel DNA Recovery Kit by Zymo
(D4002). The codon random mRFP library (15 �l) was lig-
ated into 30 ng linear plasmid with 400 units of T4 ligase
(NEB, M0202) and 2 �l T4 Ligase Buffer (NEB, B0202) in
a total volume of 30 �l for 18 h at 16◦C. The ligation mix-

ture was cleaned and concentrated to 10 �l mQ using the
DNA Clean & Concentrator™-5 kit by Zymo (D4004). 1 �l
of the codon randomised mRFP library was transformed
into electrocompetent DH10B cells (20 �l competent cells,
2 mm cuvette, voltage: 2500 V, resistor: 200 �, capacitor 25
�F, BTX® ECM630). Cells were recovered in 1 ml NEB®
10-beta/Stable Outgrowth Medium (NEB, B9035) at 37◦C
for 1 h. The cells were transferred to a 50 ml tube and
9 ml LB (10 g/l Peptone (OXOID, LP0037), 10 g/l NaCl
(ACROS, 207790010) and 5 g/l yeast extract (BD, 211929))
were added with 50 �g/l kanamycin (ACROS, 450810500)
and incubated for 18 h at 37◦C.

Expression range enrichment and selection

A Fluorescence Activated Cell Sorter (FACS) (Sony,
SH800S Cell Sorter; GFPuv excitation at 488 nm, emis-
sion at 525/50 nm; mRFP excitation at 561 nm, emission
at 617/30 nm) was used to sort 50 000 cells of the overnight
cell culture into three groups based on protein production
levels. The left and right tail of the normal distribution and
a part of the middle peak were sorted to create 3 groups
of low, medium and high production. The three cell groups
were put on individual agar plates (10 g/l Peptone (OXOID,
LP0037), 10 g/l NaCl (ACROS, 207790010), 5 g/l yeast ex-
tract (BD, 211929), 15 g/l agar (OXOID, LP0011), 50 mg/l
kanamycin (ACROS, 450810500)) and grown overnight at
37◦C. From these plates, individual colonies were picked
and grown in 2 ml 96-well plates with 200 �l LB with
kanamycin (10 g/l peptone (OXOID, LP0037), 10 g/l NaCl
(ACROS, 207790010), 5 g/l yeast extract (BD, 211929), 15
g/l agar (OXOID, LP0011), 50 mg/l kanamycin (ACROS,
450810500)) for 18 h at 37◦C.

Measurements and sequencing

The cell cultures were diluted 100× in PBS (8 g/l
NaCl (ACROS, 207790010), 200 mg/l KCl (ACROS,
196770010), 144 mg/l Na2HPO4 (ACROS, 12499010), 240
mg/l KH2PO4 (ACROS, 447670010)). mRFP expression
was measured using a flow cytometer (Thermo, Attune NxT
Flow Cytometer; GFPuv excitation at 405 nm, emission at
512/25 nm; mRFP excitation at 561 nm, emission at 620/15
nm; stop option 200 000 single cells). A gate was used to
exclude GFPuv outliers (±10% of the total population)
aiming to reduce unrelated biological variance as GFPuv
expression levels are expected to stay constant. From the
overnight cultures, 1 �l of cells were used in a PCR reaction
to amplify the DNA for Sanger sequencing using Q5 (NEB,
M0492). The PCR reaction was sent to Macrogen Europe
B.V. for sample clean-up and Sanger sequencing.

All cell cultures were also measured using a microplate
reader (BioTek, Synergy Mx). 50 �l overnight cell cul-
tures were diluted in 50 �l PBS (8 g/l NaCl (ACROS,
207790010), 200 mg/l KCl (ACROS, 196770010), 144
mg/l Na2HPO4 (ACROS, 12499010), 240 mg/l KH2PO4
(ACROS, 447670010)). The plates were incubated at room
temperature for 1 h before measuring (cell density mea-
sured at 600 nm; GFPuv excitation at 395/9 nm, emission
at 508/9 nm; mRFP excitation at 584/9, emission at 607/9
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nm). The microplate reader fluorescent readings were nor-
malised with the OD600 for both the GFPuv and mRFP
readings.

Data validation

Before using the measurements in our machine learning ap-
proach, we set a few criteria that the data had to meet,
in order to exclude artefacts in our dataset. First, the se-
quencing data should be of sufficient quality and the en-
coded amino acid sequence should be correct. The raw se-
quence data was validated by extracting the open reading
frame sequence using in-house scripts. All bases in the open
reading frame needed a Phred quality score >20 (a base
call accuracy of at least 99%) and the translated sequence
should match the mRFP amino acid sequence in order to
pass. Second, any double populations or clear changes in
cell morphology or culture density were excluded. Double
populations were apparent in the flow cytometry data (see
Supplementary Figure S2A) but were already automatically
excluded due to the sequencing quality criteria as a dou-
ble population will result in poor Sanger sequencing data.
However, very rarely, we observed an unexplained shift in
cell morphology as increased forward and side scatter val-
ues were obtained during flow cytometry (Supplementary
Figure S2B). Finally, rarely, a difference was observed in flu-
orescence between our flow cytometry measurements and
microplate reader measurements. Based on a set threshold
of 25% deviation from the average relationship between the
two measurement methods we excluded these deviating cell
cultures (see Materials and Methods and Supplementary
Figure S3). All exclusions were made prior to our analy-
sis in an attempt to generate high-quality data to feed the
machine learning algorithm. For the remaining data points,
we assessed dataset-wide biases and correlations, such as
assembly bias and the correlation between protein produc-
tion level and GC content to ensure the dataset as a whole
was appropriate for machine learning. All raw data and val-
idated data are available in Supplementary Data S1 and S2.

Proteomics sample preparation and digestion

For 10 strains with a wide linear range of fluorescence lev-
els, mRFP levels were also verified using proteomics. For
each, 10 ml cell culture was grown overnight at 37◦C. The
cell pellets were resuspended in 1 ml lysis buffer contain-
ing 20 mM HEPES, 150 mM NaCl, 1.5 mM MgCl2, 0.5 mM
dithiothreitol, 20 units/ml DNAse and cOmplete protease
inhibitor cocktail (Roche) (pH 7.8). 400 �l of lysate was
sonicated using a Qsonica Q500 sonicator (Qsonica LLC)
operating at 80% amplitude with on/off interval of 2 and
8 s, respectively, then pelleted at 13 000 RPM for 15 min.
Protein concentrations for supernatants (soluble fractions)
were measured using the Qubit Protein Assay Kit (Invit-
rogen) and concentration for the pellet fraction were esti-
mated by assuming 1.5 mg total protein in a 10 ml culture
and subtracting the measured amount of soluble protein.
Pellets were resuspended in 400 �l lysis buffer (insoluble
fractions). Urea was added to all soluble and insoluble frac-
tion samples to a final concentration of 8 M. 100 �l (∼12.5
�g protein) of each sample was reduced and alkylated by

incubation with 8.4 �M dithiothreitol at 60◦C for 1 h, fol-
lowed by incubation with 19 �M iodoacetamide in the dark
at room temperature for 30 min. Samples were incubated
overnight at 37◦C with trypsin (Sigma-Aldrich) and LysC
(Wako) with enzyme:substrate ratios of 1:26 and 1:44, re-
spectively. Samples were acidified with 10% trifluoroacetic
acid to pH <3 to quench the digestion, then desalted via
SPE using an Oasis PRiME HLB 96 well plate (Waters) and
stored at –20◦C until further analysis.

Liquid chromatography–mass spectrometric proteomics
analysis

Proteomics samples were reconstituted in 10 �l 2% formic
acid and analysed using an Ultimate 3000 HPLC system
coupled on-line to an Orbitrap Fusion mass spectrometer
(both Thermo Fisher Scientific). Trapping was performed
on a 300 �m × 5 mm PepMap Neo trap cartridge (Thermo
Fisher) in 100% solvent A (0.1% formic acid) at 300 nl/min
for 5 min, prior to separation on a 75 �m × 500 mm col-
umn packed in-house with ReproSil-Pur 120 C18-AQ 2.4
�m resin (Dr Maisch) at 300 nl/min using a 90 min gradi-
ent as follows: 9% B (80% acetonitrile, 0.1% formic acid) for
1 min, 9–13% B for 1 min, 13–44% B for 70 min, 44–99% B
for 3 min, 99% B for 4 min, 99–9% B for 1 min, 9% B for
10 min. Peptides were ionized using a 2.0 kV spray voltage.
MS scans were acquired within a 375–1500 m/z range with
a maximum injection time of 50 ms at a mass resolution of
60 000 and an automatic gain control (AGC) target value
of 4 × 105 in the Orbitrap mass analyzer. Dynamic exclu-
sion was set to 12 s for an exclusion window of 10 ppm with
a cycle time of 1 s. MS/MS scans were performed for pre-
cursors with 2+ to 8+ charge states and intensities above
5 × 104 at a constant normalized collision energy of 30%.
MS/MS scans were acquired within a 100–2300 m/z range
with a maximum injection time of 22 ms at a mass resolu-
tion of 15 000 at AGC target of 5 × 104 in the Orbitrap mass
analyzer.

Proteomics data analysis

Raw files were processed using MaxQuant version 2.0.3.1.
Proteins and peptides were identified using a target-decoy
approach with a reversed database, using the Andromeda
search engine integrated into the MaxQuant environment.
The database search was performed against the E. coli
(strain K12) Swiss-Prot database (version October 2022)
supplemented with the full protein sequence for mRFP, and
against the common contaminants database integrated in
MaxQuant. Default search settings were used, including
methionine oxidation and protein N-term acetylation as
variable modifications, enzyme specificity set to trypsin with
maximum two missed cleavages, a minimum peptide length
of seven amino acids, a maximum peptide mass of 4600 Da
and 1% false discovery rates. Label-free quantification via
MaxLFQ algorithm (26) was performed, and ‘match be-
tween runs’ was enabled. Microsoft Excel 2016 and Graph-
Pad Prism 9 were used for further data analysis and plotting
graphs. Adjusted mRFP LFQ intensities were calculated to
estimate the truly insoluble mRFP abundance, as part of
the pellet contained unlysed cells with soluble protein. The
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adjusted insoluble mRFP LFQ intensity was calculated by
multiplying the LFQs of mRFP for the peptide fraction
by the ratio of pellet:soluble LFQ intensities for peptide
deformylase (DEF, UniProtKB P0A6K3, a highly soluble
cytosolic protein) in the same fraction, and then sub-
tracting this value from the original insoluble LFQ
intensity:

Ad justed Insoluble mRF P = LF QmRF P (pellet.)

−
(

LF QmRF P (sol.) × LF QDEF (pellet.)

LF QDEF (sol.)

)

Building machine learning regressors

To assess if protein production levels could be pre-
dicted from sequence, we employed two different ma-
chine learning approaches: Random Forest (RF) Regres-
sor and LASSO. We implemented RF and LASSO using
the scikit-learn package (v0.23.0, ref) in python (v3.7.6),
with the sklearn.ensemble.RandomForestRegressor and
sklearn.linear model.Lasso modules respectively. For RF,
default settings were used, while for LASSO, various val-
ues for alpha were assessed (0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0,
20.0, 50.0 and 100.0 for all regressors, in addition to 500.0
and 1000.0 for regressors trained on full-length sequences;
max iterations = 10 000). An alpha of 100.0 gave rise to
the best predictions for full-length sequences (Supplemen-
tary Figure S4); for windows, different alphas performed
better for different featurizations, but differences were min-
imal. Separate regressors were constructed for full-length
featurised mRNA sequences and for featurised sliding win-
dows of 10, 20, 30, or 40 bases. Prior to training, an inde-
pendent test set comprising 10% of the data was set aside.
Regressor accuracies were then evaluated on the remaining
training data through 10-fold cross-validation, where 90%
of the training data were used to predict the translation ef-
ficiency of the other 10%. This was done for each 10% of
the data, such that we obtained a predicted translation effi-
ciency, measured with flow cytometry, for each data point.
From these predictions, Pearson and Spearman correla-
tions were computed for actual flow versus predicted flow
and used as measures for model accuracy. Feature impor-
tances were extracted from all ten regressors built in cross-
validation, averaged, and plotted and visualized with mat-
plotlib (v3.2.1). Finally, for regressors trained on the full-
length sequences and the best-performing sequence win-
dows (Supplementary Figures S5 and S6), new regressors
were trained using all training data, and model accuracies
were re-evaluated on the independent test-set. Code and
regressors are made available at https://zenodo.org/record/
7547381#.Y8jvJi8w1qs.

RESULTS AND DISCUSSION

Type IIS assembly method allows for generation of codon
randomized libraries at different CAI levels

To randomize synonymous codon usage throughout the
whole mRFP CDS, we developed a randomization-
assembly method based on Type IIS restriction and ligation.

We used this approach to generate three codon random-
ized mRFP libraries with either fully randomized codon us-
age or with a focus on more frequent or rare codons. The
first CAI library (‘medium’, CAIM) is fully randomized and
uses an equal distribution of all synonymous codons for
each amino acid. Only for the 6-codon amino acids argi-
nine, leucine and serine, as well as the stop codons, the
full codon space could not be covered due to the sequence
limitations in degenerate oligos. For each of the three 6-
codon amino acids four of the six possible codons were in-
cluded, while the stop codon was kept constant at TGA.
Theoretically, the maximum number of CDSs coding for
the mRFP protein is 3.19 × 10104. By limiting the aforemen-
tioned amino acids, the stop codon and a few fixed codons
needed for assembly purposes the library still contains at
most 3.68 × 1093 variants. Obviously, this is an astronomi-
cally large number and generated libraries and experimen-
tal efforts can only cover a very small fraction of this
diversity.

The randomized design approach results in a uniform
codon bias distribution across the gene, with an overall
medium CAI of 0.67 (Supplementary Figure S1). To see
if codon randomization with an overrepresentation of fre-
quent or rare codons affects translation differently, we
generated two additional libraries. By restricting the al-
lowed relative adaptiveness (the usage ratio of a codon to
that of the most abundant synonymous codon), we gen-
erated libraries that use more frequent or rare codons.
The library limited to rare codons used only synonymous
codons with a relative adaptiveness <0.60, or the lowest
relative adaptiveness in the case the synonymous codons
are used in a close to equal ratio. This rare codon li-
brary (CAIL) had an overall CAI of 0.41 (Supplemen-
tary Figure S1). The library using frequent codons (CAIH)
used only synonymous codons with a relative adaptive-
ness >0.50, resulting in a library with an overall CAI
of 0.83 (Supplementary Figure S1). The sequence spaces
for each of the libraries are reported in Supplementary
Table S1.

To create the three libraries, we divided the complete de-
generate CDS into eight blocks of ∼85 bases, which can be
assembled with unique overhangs between each adjacent
part. In order to generate complementary four base pair
overhangs between the parts, some codons with multiple
synonymous options needed to be fixed to a single codon.
The eight DNA parts were ordered as single-stranded oli-
gos with additional Type IIS restriction sites flanking the
blocks. The oligos were converted to double-stranded DNA
using PCR and consequently assembled using Type IIS re-
striction and ligation (Figure 1A, B). Only a small fraction
of the total DNA parts assembled into the full product of
707 bp (Figure 1B, indicated with the ‘mRFP’ label). Seven
intermediate products were observed that did not further
assemble into the full gene. The assembly limitations could
for example originate from synthesis errors in the initial oli-
gos, preventing Type IIS restriction or resulting in incorrect
overhangs. The band corresponding to the fully assembled
product was purified and ligated into an expression vector
(Figure 1C).

The expression vector contains a native, relatively
weak, beta-lactamase promoter (Pbla). A weak promoter
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Figure 1. Codon randomized library generation and analysis. (A) PCR is used to generate dsDNA from oligos and an electrophoresis gel yields the eight
dsDNA blocks used to build codon randomized mRFP. (B) The assembly reaction and the electrophoresis gel result of the assembly. The complete assembly
of all eight blocks is indicated with the mRFP tag. The seven bands below are intermediate products. (C) The expression vector used to express the codon
random mRFP. (D) FACS enrichment for a wide expression range within the library is used to obtain a higher representation of the high and low expressing
codon variants. (E) Flow cytometry analysis of cultures and Sanger sequencing data are QA passed and used in machine learning models.

poses less burden on transcriptional and/or translational
processes, reducing the risk of reaching an upper limit in the
protein production process and thus preserving the full ex-
pression range as determined by the coding sequences. For
the 5′ UTR, a medium-strength bicistronic design (BCD)
was chosen based on the work of Mutalik et al. (27). This
BCD element (BCD5) was previously reported to reduce

the influence of mRNA secondary structures on expression.
Including this element allows us to study the more nuanced
features associated with codon usage and should reduce
strong effects on translation caused by mRNA structure
formation between the coding sequence and the constant
5′ UTR.
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Figure 2. Normalized flow cytometry overlay of the mRFP fluorescence
intensity from the CAIL, CAIM and CAIH libraries. The left peak is part of
the population showing no fluorescence, mainly due to assembly errors in
the CDS. The right peak shows the mRFP expression of each library. The
average expression of the CAIL, CAIM and CAIH increases with average
library CAI, but high expressing variants are found in all libraries (right
tail). The ratio between the left and right peaks is a measure of library
fidelity, as the left peak consists of autofluorescence of non-expressing or
non-functional variants.

Expression of libraries in E. Coli results in a wide expression
range and allows for high-quality data collection

The library containing codon randomized mRFP was trans-
formed into E. coli DH10B. A single transformation of the
libraries in E. coli yielded between 150 000 and 320 000
colonies. After 18-h cultivation on liquid, roughly 70%
of the cells gave a detectable level of red fluorescence
(measured using flow cytometry, Figure 2). The remaining
30%, for which no or very little fluorescence was measured,
was later confirmed via sequencing to mainly comprise con-
structs that had a frameshift in the ORF. This is not unex-
pected, as some blocks are likely missing one or multiple nu-
cleotides since the coupling efficiency of oligos is not 100%.
These errors eventually lead to frameshifts and thus protein
truncations or mutations.

The flow cytometric evaluation of the three library pop-
ulations showed that the average expression of the CAIL,
CAIM and CAIH libraries increases with average library
CAI (Figure 2). This suggests that an overall higher CAI
leads to higher expressing constructs on average. How-
ever, for all three libraries, expression could be observed
at the highest end of the expression spectrum, suggesting
that a high CAI is not the leading factor for high protein
production.

To obtain high-quality expression and sequence data
for the downstream machine learning analyses, we decided
to study expression levels and related sequences of indi-
vidual clones. We favoured this method over previously
used FlowSeq methods, which perform sequencing analy-
sis on large mixes of clones obtained in certain bins dur-
ing fluorescence activated cell sorting (FACS). FlowSeq
typically employs short-read sequencing (Illumina), which
will not cover the full CDS length in a single read and
due to the whole-gene codon degeneracy in this study, it
would be difficult to assemble reads into contigs. Alterna-
tive long-read single-molecule methods (e.g. PacBio) would
offer a solution, but it was questionable whether a suffi-
ciently high coverage could be achieved to reach mean-

ingful conclusions. FlowSeq has another limitation, as the
fluorescence level detected from cells with the same geno-
type already can cover a relatively wide range (28). This
increases the likelihood that individual cells are binned in-
correctly and that the resulting dataset is too noisy to be
analysed meaningfully through statistical analyses and ma-
chine learning. This can potentially be solved by sequenc-
ing with a very high coverage; however, this is hard to
achieve for high-quality long reads as mentioned above.
We chose to select a limited number of individual clones
for which mean expression values can be accurately deter-
mined, as well as their full gene sequences using Sanger
sequencing.

To allow the selected clones to cover a wide range of low,
medium and high expressing constructs, and exclude non-
expressing (e.g. frameshifted) constructs, three expression-
level groups were preselected for each CAI library using
FACS (Figure 1D). After sorting, we picked colonies from
each group. These clones were all inoculated in liquid cul-
ture (for a total of 480, 1440 and 480 individual cultures
for CAIL, CAIM and CAIH respectively). The fluorescence
of the cell cultures was measured using both flow cytome-
try and a microplate reader. mRFP expression was normal-
ized through comparison with the constant constitutively
expressed GFP (Figure 1C). The mRFP coding sequence
(and untranslated regions) was amplified using colony PCR
and amplicons were analysed by Sanger sequencing. Next,
the data were evaluated to exclude low-quality sequenc-
ing reads, amino acid mutations, mixed populations (Sup-
plementary Figure S2A), and rare deviations in cell mor-
phology (notable increase in FSC and SSC as observed in
the flow cytometer, Supplementary Figure S2B) or culture
density (deviation between measurements by flow cytome-
try and microplate reader, Supplementary Figure S3). Af-
ter this exclusion, 1459 sequences which showed a high se-
quence diversity for each of the variable bases in the CDS
(Supplementary Data S3) were selected for further analysis.
The exclusion criteria are further described in the Materials
and Methods – Data validation section. This yielded 1459
high-quality data points that we could use in our machine
learning approach (Figure 1E).

LC–MS/MS-based proteomics demonstrates fluorescence
intensities correlate well with mRFP levels

It was previously reported that codon changes can also
influence the folding properties, which can result in dif-
ferent protein functionalities or misfolding for some pro-
teins (29,30). Misfolded or differently folded mRFP could
in theory influence fluorescence levels. So far, this poten-
tial influence of codon variation on fluorescence levels
has been typically ignored in studies using fluorescent pro-
teins (mostly GFP) as reporter protein. In this study, we
verified that the measured fluorescence levels correlate to
the mRFP protein levels by cross-checking abundances with
quantitative LC–MS/MS-based proteomics. We selected 10
mRFP gene variants that cover the complete observed fluo-
rescence range in our libraries. For strains harbouring these
variants, the soluble and insoluble protein fractions were
quantified from the mass spectrometry data. This analysis
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Figure 3. Relation between LC–MS/MS based quantification of mRPF
and fluorescent intensity for the soluble (red) and insoluble (gray) protein
fractions of 10 mRFP codon variants. LC–MS/MS based quantification of
mRFP was performed to determine relative, label-free quantities (LFQ) of
both soluble and insoluble mRPF. Insoluble LFQ intensities are adjusted
for soluble mRFP ending up in the pellet fraction (in non-lysed cells) by
correcting these values based on LFQ intensities for a highly soluble E. coli
protein in the pellet fraction.

revealed that fluorescence levels correlated well with the de-
termined abundances (Pearson correlation 0.901) and that
only a minor part of mRFP ends up in the insoluble fraction
(Figure 3). Hence, we conclude that the fluorescence lev-
els are an effective approximation of mRFP protein abun-
dances in the cell and that fluorescence intensity data can
be used for machine learning.

Different machine learning approaches can predict mRPF
production levels

To identify the determinants of protein production lev-
els and to assess if the protein production levels could be
predicted from gene sequence, we employed two different
machine learning approaches: Random Forest Regressor
(RFR) and LASSO (Least Absolute Shrinkage and Selec-
tion Operator). For this purpose, we developed MEW: the
mRNA Expression Wizard, which can train and test a vari-
ety of machine learning models to predict the protein pro-
duction level from mRNA sequence, using different types
of featurizations. These featurizations include methods that
focus on the base pair composition of the coding sequence,
to observe the effects of factors like translation elongation
efficiency, and featurizations that reflect the probability that
a base is paired in the context of an mRNA secondary struc-
ture.

Our rationale to use both LASSO and RFR is that due to
their stepwise decision making, RFRs can model non-linear
interdependencies between bases, while LASSO is better
suited to straight-forward linear regression and feature se-
lection. Importantly, for each regressor we extracted the fea-
ture importances as this could help to identify determinants
of translation efficiency. We trained separate regressors for
both full-length featurized mRNA sequences and for sliding
windows of varying sizes along the entirety of the mRNA,
to assess if certain windows are more predictive of transla-
tion efficiency than others.

As performance of machine learning algorithms depends
greatly on their input data, featurizing our mRFP data in a
way that captures most information was key. We used three

featurization methods: one based on one-hot encoding of
base identity, another based on predicted base pairing prob-
abilities for each individual base via calculating the mRNA
secondary structure probabilities or the whole transcript
using ViennaRNA (31), and a third featurization method
which combines these two. One-hot encoding could also
capture base pairing probability. However, we decided to in-
clude a specific, predicted mRNA secondary structure fea-
turization as this can to some extent ‘isolate’ this feature
from all other features linked to specific bases and codons.
We will call the three types of featurizations one-hot, BPP
(base pairing probability), and one-hot + BPP respectively.

We trained and validated the RFR and LASSO regres-
sors with our flow cytometry data and Sanger sequencing
data, using 10-fold cross-validation, yielding a value of pre-
dicted mRFP production level for each data point. Depen-
dent on the method used (LASSO or RFR) and the featur-
ization method, the prediction accuracy somewhat varies.
However, all methods can predict protein levels reason-
ably well, with Pearson correlation coefficients ranging from
0.546 up to 0.776 (Figure 4, Supplementary Table S3).

The predictive strength of one-hot encoding featurization
is stronger than that of BPP featurization. This is not un-
expected, as BPP featurization assumes that mRNA sec-
ondary structures are the only cause of expression vari-
ance, and base pairing featurization is done based on cal-
culated mRNA secondary structure probabilities (Vien-
naRNA), which likely cannot perfectly predict exact base
pairing. Still, BPP featurization yields reasonable perfor-
mance, which suggests that mRNA structures are a key fac-
tor in predicting protein production levels. One-hot encod-
ing captures all information in the sequence and expectedly
gives substantially better performance. Combining one-hot
encoding with BPP featurization does not substantially im-
prove predictions, in line with our expectation that all in-
formation on base pairing probability should already be
captured by one-hot encoding. No large differences in per-
formance between the two regression methods LASSO and
RFR are observed. When only BPP is used as feature, RFR
performs slightly better than LASSO; when one-hot or one-
hot + BPP are provided, LASSO slightly outperforms RFR.

Bases surrounding the start codon and the RBS are most pre-
dictive of translation efficiency

Next, we assessed which features, and by extension which
bases, are most predictive for translation efficiency. We did
this by extracting the coefficients for LASSO and the fea-
ture importances for RFR and plotting them against se-
quence position (Figure 5). For the BPP featurization, in-
formation can be obtained for every nucleotide, including
constant nucleotides in the CDS and the constant UTRs, as
they are still involved in the overall secondary structure for-
mation predictions. For the one-hot featurization however,
the information is only limited to changing nucleotides and
can therefore be plotted per codon as only every third base
varies across gene variants.

Overall, we found that independent of the algorithms
used, the most predictive bases were always close to the
start of the CDS, including the 5–10 bases before the start
codon for BPP featurizations and the first 25 bases follow-
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Figure 4. Actual expression data vs predicted expression using various machine learning algorithms and featurizations. Blue, yellow and red points indicate
data points from the leave-out test sets for the CAIL, CAIM and CAIH libraries respectively. (A) Actual expression data vs predicted expression using
LASSO. (B) Actual expression data vs predicted expression using the Random Forest Regressor (RFR). Regressor accuracies were evaluated through
10-fold cross-validation.

ing the start codon for all featurizations. In comparison, the
remaining codons play a minimal role in predicting trans-
lation efficiency. This strongly suggests that mRNA sec-
ondary structure or other factors around the start of the
coding sequence play a dominant role in determining trans-
lation efficiency. This is in agreement with previous stud-
ies that found the same effect for GFP and attributed this
mostly to the necessity for an accessible RBS for translation
initiation (2,4). However, in this study we used a BCD de-
sign in the 5′ UTR, which should in theory improve RBS
accessibility, independent of sequence context. The BCD
design encodes an RBS1 which initiates the translation of
a short leader peptide. This RBS1 should lead to efficient
ribosome recruitment for the translation of mRFP, as the
ribosomes translating the leader peptide can unfold the
mRNA structures around the RBS2. The latter RBS is the
translation initiation site for mRFP. Due to the translating
ribosomes from the leader peptide, this ‘unfolded’ mRNA
region should be better available for translation initiation
and mRNA structures should have less influence on trans-
lation initiation. Still, we observe that the first codons and
their base pairing probabilities explain a large part of the
protein production levels. This could be explained by the
fact that the BCD design may be unable to completely re-
solve inhibitory secondary structure effects, or other factors
at the start of the coding sequence may still play a dominant
role.

Interestingly, the LASSO regressor using BPP for featur-
ization assigns positive coefficients to the bases immediately
succeeding the RBS2 in the BCD region (Figure 5A, first

panel). A positive coefficient indicates that involvement in
mRNA secondary structures at this position is positively
correlated with gene expression levels. In contrast, the bases
in the RBS2 itself and the 5′ of the coding region are over-
whelmingly assigned negative coefficients, which supports
the hypothesis that minimal secondary structure for bases
involved in the RBS is beneficial for high protein production
levels. In concordance, the presence of A or T bases in the 5′
of the coding region, particularly ‘A’, is strongly positively
correlated with protein production levels, while the presence
of G or C bases tends to be negatively correlated with pro-
tein production levels in this region (Figure 5B, first panel).
As A–T base pairs, and their A–U equivalents in mRNA,
only form two hydrogen bonds versus three in G–C base
pairs, the resulting secondary structures are weaker, and as
a result, the RBS may be more accessible.

A sequence window covering first eight codons can predict
protein production

To further substantiate our finding that bases surrounding
the start codon dictate translation efficiency, we trained re-
gressors on sliding windows of 10, 20, 30 or 40 bases to vi-
sualize which regions of the mRNA were most predictive
of translation efficiency. For each sliding window, we per-
formed a 10-fold cross-validation and plotted the correla-
tion between actual expression data and the predicted ex-
pression data as a function of the position of the sliding win-
dow (Figure 6). Clear peaks of increased predictive power
can be observed around the start codon, which corrobo-
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Figure 5. Feature importances for various machine learning algorithms and featurizations. LASSO feature importances are coefficients: a positive coef-
ficient indicates a positive correlation between a base and translation efficiency, a negative coefficient indicates a negative correlation. In RFR, feature
importances are always positive and therefore not indicative of the directionality of the correlation. (A) Feature importances for algorithms using BPP
featurization. (B) Feature importances for algorithms using one-hot encoding. Since only every third one-hot encoded base of the coding sequence varies,
only every third base of the coding sequence was plotted. (C) Feature importances for algorithms using BPP + one-hot featurization. BCD = bicistronic
design 5′ untranslated region; RBS = ribosome binding site; CDS = coding sequence; TER = terminator.

rates our earlier finding that this region primarily dictates
translation efficiency. This is especially apparent in models
trained with one-hot encoded features and BPP + one-hot
encoded features. Specifically, the 20 nucleotides surround-
ing base 15 (bases 6–25) lead to high prediction accuracy
(Figure 6B, C, window size 20; Supplementary Figures S5
and S6). This window covers codons 2–8 and logically does
not cover the start codon or the first two nucleotides of the
second codon, as these are constant in our design and thus
cannot have any predictive power in one-hot featurization.

It should be noted that the remainder of the CDS, while
a lot less predictive than its 5′ region, still holds some
predictive power (Pearson correlation ∼ 0.4). We ascribe
this to the inclusion of the CAIH and CAIL libraries in
our dataset. These datasets use completely different sets of
codons, meaning that the machine learning approaches can
infer from small sequence windows the identity of the li-
brary from which the sequence originated. Since data points
from the CAIH library on average display higher expression
levels than data points from the CAIL library (Figure 2),
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Figure 6. Predictive regions of translation efficiency in mRFP mRNA. The x-axis represents the central base of a sliding window of indicated lengths, the
y-axis the correlation between actual expression data and the expression as predicted by a machine learning algorithm trained on solely that sliding window.
(A) Predictive regions found by algorithms trained with BPP featurization. (B) Predictive regions found by algorithms trained with one-hot encoding. As
the one-hot encoded features for the UTRs are constant and thus contain no predictive information, windows that only contain residues in the UTR were
omitted. (C) Predictive regions found by algorithms trained with BPP + one-hot featurization.

we attribute the non-zero Pearson correlations observed
for windows downstream of the 5′ end of the CDS mostly
to the algorithm’s ability to detect the library of origin of
CAIH and CAIL data points. Inspection of scatter plots for
windows in these regions confirmed this (Supplementary
Figure S7).

We also observed some ‘dips’ in predictability perfor-
mance in the sliding window analysis. One such dip can be
seen for small window sizes in the 3′ UTR with the BPP
featurization and LASSO regressor (Figure 6A, C). This re-

gion is very invariable both in terms of sequence and sec-
ondary structure: since the terminator almost always forms
a strong secondary structure, the bases directly before it are
less likely to be involved in secondary structures. As a re-
sult, the BPP features representing this region hold prac-
tically no information. The effect is exacerbated for small
windows, as they are less likely to capture predictive residues
upstream or downstream of an information-devoid region.
In contrast, the secondary structure of the terminator it-
self does appear to be slightly informative. A perhaps un-
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likely but possible explanation could be that certain codon
sequences interfere with the terminator stem formation and
thereby influence mRNA stability. However, it is impor-
tant to keep in mind that correlations between actual and
predicted expression data for regressors trained on this re-
gion are still extremely low. Therefore, while the 3′ UTR
region holds some information, it is not likely to be very
influential.

A second dip is located around base 165 and 166 for re-
gressors using one-hot-encoded featurizations (Figure 6B).
This information valley is caused by an unusually constant
region in the mRFP gene, particularly in the CAIH library,
due to the low codon variability of local amino acids and
a fixed boundary region of two assembly blocks. This is an
artefact of our method, and hence not a biologically rel-
evant observation. This dip is not observed for featuriza-
tion methods that also include base pairing probabilities,
as base pairing interactions of constant regions with other
bases can still be informative.

To better understand which sequence elements in the 20-
base window surrounding base 15 affect translation effi-
ciency, we plotted feature importances for each regressor
trained on this window (Supplementary Figure S8). From
this, we inferred that especially at position 15 (codon 5),
low probabilities of involvement in mRNA secondary struc-
ture are predictive of high expression. This is in line with the
current consensus that minimal mRNA secondary structure
surrounding the 5′ end of the coding region is conducive to
efficient translation. In the case of mRFP, this low base pair-
ing probability seems to be primarily achieved by placing an
‘A’ at position 15 (Supplementary Figure S8B, C).

Of all our regressors, six random forest regressors out-
performed the rest (Supplementary Figures S5 and S6). As
these six regressors were comparable in performance, we se-
lected the model that used the fewest features, and retrained
the model using our full training set. We then plotted actual
expression data against predicted expression for each data
point in our leave-out test set. This revealed a very strong
correlation (Pearson r = 0.762) for all three libraries (Fig-
ure 7), which demonstrates that mRFP protein production
can be correlated extremely well to sequence by just looking
at bases 6–25 of the entire coding sequence.

The bases 6–25 correspond to codons 2–8. The nu-
cleotides in the third position of these codons that con-
tribute to high expression are mostly A, as well as T in
codon 2 (as shown earlier by the feature importances, Fig-
ure 5B). An important question in the field is if the benefit
of these codons at the start of the coding sequence is re-
lated to mRNA secondary structures and/or the efficient
translation of these codons. To approximate which codons
can be translated efficiently, commonly indices such as the
CAI and tRNA adaptation index (tAI) (32) are used. In-
terestingly, the beneficial A-ending codons in most cases
have a lower CAI and tAI index than other synonymous
codons (Supplementary Table S4, Supplementary Figures
S9 and S10), but still are highly important for high ex-
pression. This indicates that there is an advantage of these
codons, likely unrelated to translation elongation efficiency.
The most plausible explanation of their mechanistic roles
is the lower secondary structure propensity of A/T-ending
codons due to general weaker A-T/U binding. This is fur-

Pearson: 0.762 (p=5.7e-29)
Spearman: 0.729 (p=1.6e-25)
Slope: 0.936
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Figure 7. Actual vs predicted expression for one of our six best perform-
ing regressors. The RFR regressor on one-hot featurization and a window
size of 20 located at base 15 showed a high correlation between actual and
predicted expression (Pearson correlation 0.762).

ther supported by the second codon: the T-ending variant
is also related to high expression but is the ‘least efficient’
codon, based on CAI and tAI. However, for the eighth and
last codon of the important codon window, there is a re-
verse situation where a C is favoured over an A for high ex-
pression. The A-ending codon has a very low tAI and CAI
value, lower than any available codon in the first 8 codons.
For this codon, the relevance of ‘optimal translation’ seems
to be dominant over the influence of secondary structure
binding propensity of C/G-ending codons. Since this codon
within our codon window is furthest away from the trans-
lation initiation region it is less likely to form detrimental
RBS-obscuring secondary structures.

Because translation initiation is the major rate-limiting
factor, the effects of codon usage throughout the gene seem
less apparent. This is also exemplified by our finding that
the highest expressing variants originate from our CAIM li-
brary. This library contains more codon variance than the
CAIH library (Supplementary Table S1), which is particu-
larly important for the 5′ of the CDS.

Altogether, our results show that while the CAI has some
influence on gene expression (Figure 2), the majority of the
translation regulation arises from codon usage in the 5′ of
the CDS. This matches the conclusion made by Kudla et al.,
which proposed the secondary structures predicted a win-
dow of base -4 to +37 (spanning codon 1–13) as a key de-
terminant for GFP production. In our analysis a slightly
smaller window of codon 2–8 is sufficient to predict pro-
tein production. The same 8-codon window was also found
in another systematic effort parallel to our study, using an
alternative non-fluorescent reporter system (Bxb1 recombi-
nase). This suggests that the relevance of this window may
be a general phenomenon, at least for gene expression in
E. coli (33).

Our study also suggests that the 5′ UTR may influence ex-
pression based on the observed BPP feature importance for
the bases in that region. However this region was kept con-
stant in this work on purpose. The parallel study by Höllerer
et al. (this issue) randomized bases –25 to –1 in the 5′ UTR
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alongside codons 2–16 of their reporter protein Bxb1. In-
deed, this study confirmed a large contribution to expres-
sion variance from both the 5′ UTR (50%) and the CDS
(20%) (33).

Due to the partial black box nature of machine learn-
ing, design rules for the 5′ CDS are not fully apparent.
However, our analysis suggests that secondary structure is
likely a key determinant of translation efficiency for these
codons. It is clear that if high protein production is desired
the focus should be on optimizing the start of the coding
sequence and the 5′ UTR in E. coli, and possible in other
bacterial hosts. Typically, codon optimization algorithms
and approaches optimize for parameters such as CAI over
the full CDS but ignore the 5′ UTR sequence, and there-
fore may introduce detrimental secondary structures. We
suggest a shift in these approaches to specifically tackle op-
timization of the first ∼8 codons. Some previous studies
have proposed randomization approaches in the 5′ UTR
and/or first codons (13,34), but these approaches are cur-
rently hardly applied. Alternatively, existing or new in sil-
ico design tools considering secondary structures in the 5′
UTR––CDS start region (such as RBS Calculator (35))
could be considered to improve gene expression. This sys-
tematic study provides a clear rationale for adopting these
methods, rather than commonly used whole-gene codon op-
timization algorithms, to improve protein production.
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