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Abstract

Phylogenetic profiling in eukaryotes is of continued interest to study and predict the func-

tional relationships between proteins. This interest is likely driven by the increased number

of available diverse genomes and computational methods to infer orthologies. The evalua-

tion of phylogenetic profiles has mainly focussed on reference genome selection in prokary-

otes. However, it has been proven to be challenging to obtain high prediction accuracies in

eukaryotes. As part of our recent comparison of orthology inference methods for eukaryotic

genomes, we observed a surprisingly high performance for predicting interacting ortholo-

gous groups. This high performance, in turn, prompted the question of what factors influ-

ence the success of phylogenetic profiling when applied to eukaryotic genomes. Here we

analyse the effect of species, orthologous group and interactome selection on protein inter-

action prediction using phylogenetic profiles. We select species based on the diversity and

quality of the genomes and compare this supervised selection with randomly generated

genome subsets. We also analyse the effect on the performance of orthologous groups

defined to be in the last eukaryotic common ancestor of eukaryotes to that of orthologous

groups that are not. Finally, we consider the effects of reference interactome set filtering and

reference interactome species. In agreement with other studies, we find an effect of genome

selection based on quality, less of an effect based on genome diversity, but a more notable

effect based on the amount of information contained within the genomes. Most importantly,

we find it is not merely selecting the correct genomes that is important for high prediction

performance. Other choices in meta parameters such as orthologous group selection, the

reference species of the interaction set, and the quality of the interaction set have a much

larger impact on the performance when predicting protein interactions using phylogenetic

profiles. These findings shed light on the differences in reported performance amongst phy-

logenetic profiles approaches, and reveal on a more fundamental level for which types of

protein interactions this method has most promise when applied to eukaryotes.
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1. Introduction

The post-genomic era has provided us with a wealth of eukaryotic genomes of diverse and

underrepresented phyla [1]. Most of the sequences in these new genomes are without precise

function assignment and a challenge remains, protein function and interaction discovery [2,

3]. Computational approaches that are available for large scale analyses of protein function

and interactions include phylogenetic profiling. Phylogenetic profiling uses correlations of

the presences and absences of groups of orthologous proteins (orthologous groups or OGs)

across a set of species [4]. Phylogenetic profiling is a seemingly straightforward method

proven to be a valuable alternative resource for studying functional relationships between

proteins. Recently the method has played an integral part in identifying the cellular func-

tional role of CENATAC that is a key player in a rare aneuploidy condition in humans [5],

identifying eukaryotic reproduction genes [6], and identifying eukaryotic novel recombina-

tion repair genes [7].

The information in the phylogenetic profiles given by presence and absence patterns, are

shaped by a diverse range of evolutionary forces. These forces include horizontal gene transfer,

secondary endosymbiosis and gene loss. The method relies on the principle that proteins with

a similar profile indicate that the proteins co-evolved due to them belonging to the same func-

tional pathway or complex. There are countless observations that co-occurring proteins tend

to interact [8–10]. Phylogenetic profiling can be a powerful tool for function prediction. By

comparing, or even clustering, profiles of proteins with unknown function to those with

known function enables us to infer to which complexes or functional pathways the uncharac-

terized proteins likely belong and, in turn, infer their function.

Multiple studies have shown the effectiveness of phylogenetic profiling in large scale anal-

yses of eukaryotes [9, 11], which has become possible with the large increase in genomic data

and computational methods to (automatically) infer orthologies [12–14] or cluster genes

[11]. However, benchmarking and analysing the performance of large-scale phylogenetic

profiling has been limited to prokaryotes, for which good performance can be obtained

when predicting protein interactions [15–18]. The performance decreases when benchmark-

ing is done solely with eukaryotes or when eukaryotes are combined with prokaryotes [15,

16]. Likely, the performance reduction is caused by the different forces driving eukaryotic

genome evolution, compared to the dynamic pan genomes of prokaryotes where the inter-

play of rampant horizontal gene transfer of operons and loss of genes that create highly

informative patterns.

We recently obtained a high protein interaction prediction performance in a large set of

eukaryotes in the context of evaluating a diverse set of orthologous group inference methods

[19]. The surprisingly high prediction performance only marginally depended on the ortholo-

gous group inference methods (which was the focus of the study), suggesting that its cause

could be any of the other underlying choices. Therefore, a more elaborate analysis of the

choices made for phylogenetic profiling is warranted. Here we evaluate in-depth the meta

parameters influencing the performance of phylogenetic profiles in eukaryotes.

Multiple studies have understandably focused their analysis on reference genome selection

or the amount of genomes/data needed to increase prediction performance [16–18, 20, 21].

Besides genome diversity and quality, we analyse orthologous groups (filtered to be eukaryotic

ancestral (LECA OGs), non-ancestral (post-LECA OGs) or not filtered at all), and reference

interactome selection (human or yeast). Our results demonstrate that an interplay of biological

and technical aspects influence phylogenetic profiling. Most importantly, our results show that

prediction performance is influenced not only by genome selection but mostly by orthologous

and interactome selection.
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2. Results

Each results section describes the analyses of meta parameters encompassing five main con-

cepts: genome quality, genome diversity, performance directed genome selection, orthologous

group (OG) selection, and reference interactome selection. Fig 1 summarizes our workflow

and highlights meta parameters in the analysis pipeline, corresponding to the five main con-

cepts (numbered 1 to 5) and in turn corresponding to the five results sections. To rule out any

orthology specific issues, we performed the analyses using two orthology inference methods,

Sonicparanoid [13] and Broccoli [14] (Fig 1). Sonicparanoid performed the best in our previ-

ous study using phylogenetic profiles for protein interaction prediction [19]. We chose Sonic-

paranoid as the primary method, while Broccoli serves to determine to what extent the results

are contingent on a specific orthology method. The results for Broccoli can be found in Sup-

plementary figures and are overall in agreement with the results of Sonicparanoid.

2.1. Lesser quality genomes have more effect on the prediction performance

than higher-quality genomes

Phylogenetic profiles can be noisy due to multiple technical reasons, such as gene annotation

and genome assembly errors. Consequently, the quality of genomes can be an essential factor,

as profiles with a lot of noise would be akin to noisy gene expression or protein interaction

measurements. We expect noisy genomes to give much weaker prediction performance. Given

this expectation, the first meta parameter assessed was genome quality. We calculated genomes

quality using two independent metrics, BUSCO [22] and one of our design (Supplementary

figures and Methods and Materials). For clarity, we use only the BUSCO metric in the main

text since both metrics generally agree with each other.

The BUSCO metric assesses genome completeness based on the (in our case) absence of single-

copy orthologs that are highly conserved among eukaryotic species. The absences of these orthologs

can result from incomplete draft genomes or false negatives in gene prediction, which in both cases

leads to false absences of orthologs. We selected 50 high-quality genomes with the lowest BUSCO

values, i.e., genomes with the least number of unexpected absences. We also selected 50 lower quality

genomes with the highest BUSCO values, i.e., genomes with the most number unexpected absences

(Fig 2A). We compared the quality filtered genome sets with 1000 randomly generated genome sets

of 50 genomes each to see if quality-based selection differs from any random sampling of genomes.

The results show that the performance using the highest quality genomes with the least sus-

pect absences falls within the distribution of random genome prediction performance (AUC:

0.765). In contrast, the lower quality genomes fall below the distribution of random prediction

performance (AUC: 0.748) (inset Fig 2B). This suggests that it is more beneficial to filter out

lesser-quality genomes than it is to select for high-quality genomes. This result is consistent

between two independent scores of genome quality (S1 Fig).

With these results, it seems prudent to select genomes only based on quality when applying

phylogenetic profiles. However, there is an inherent bias between genome quality and phyloge-

netic distribution (Fig 2A). For instance, eukaryotes belonging to the Opisthokonta super-

group have overall lower BUSCO absences, biassing the selection of good genomes towards

one eukaryotic supergroup. A priori, species diversity seems another meta parameter in

genome selection with potential impact. In the next section, we will look at the diversity of spe-

cies and how that influences phylogenetic profiling.

2.2. Genome diversity has little effect on prediction performance in eukaryotes

The diversity of species plays a role in the performance of phylogenetic profiles in prokaryotes

[16]. We also expect high species diversity to improve how informative profiles are by giving
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Fig 1. Summary of the workflow used to evaluate the different meta parameters. The workflow summarizes the pipeline and the meta parameters we

evaluated, each numbered according to the five main concepts and results sections: (1) genome quality, (2) genome diversity, (3) performance directed

genome selection, (4) orthologous group (OG) selection, and (5) reference interactome selection by quality of (5.I.) interactions or (5.II.) species. We

checked the quality of genomes using BUSCO (1), the diversity between species with cosine distance (2), and influential genomes by checking the

performance when a genome was removed (3). Then we selected these genomes form the phylogenetic profiles set for further analysis. Orthologous groups
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high-resolution information on how genes co-evolve in different organisms. More species

diversity allows to maximally discern the effect of evolutionary forces shaping co-evolving pro-

teins, which might not be apparent in, e.g., an animal only data set. There will be no discernible

and informative phylogenetic pattern in a homogeneous species set where most ancestral pro-

tein complexes are not frequently lost. A previous study showed that the maximum phyloge-

netic diversity in Bacteria gives the best predictive performance [18]. It seems logical to choose

a species set that is highly diverse if we want to increase predictive performance. Here we want

to test how maximal and minimal diversity affects prediction performance in eukaryotes if we

were to select purely based on between-species diversity.

We analysed the impact of eukaryotic diversity by selecting two sets of 50 genomes, one

containing the most similar species (Fig 3A) and the other the most diverse species (Fig 3B) from

our initial species set. The (dis)similarity was measured using an iterative all-vs-all comparison

using the cosine distance between genomes and their orthologous group content. We started with

the most diverse or similar species pairs and iteratively added to this set the species with the high-

est (dis)similarity until we obtained 50 genomes (Materials and Methods). We recalculated the

protein-interaction prediction performance for both these sets. The prediction performance is

lower than the initial set for both sets, but not worse than any randomly selected genome sets

(AUC: 0.760 for the dissimilar set and AUC: 0.764 for the similar set) (Fig 3C inset).

(OGs) can be divided into sets of: all inferred, LECA inferred or post-LECA inferred OGs (4). Per set the profiles were selected for further analysis. The

reference interactions can be quality selected using PubMed IDs or not (5.I.). The reference interaction set is either human or yeast (5.II.).

https://doi.org/10.1371/journal.pone.0251833.g001

Fig 2. Lesser quality genomes have more impact on protein interaction prediction performance. A. BUSCO absences as a function of retained LECA OGs

in different species. Filled data points are the selected genomes for the prediction accuracy calculations. B. Receiver-operator Curve of two species sets (n = 50)

with the most and least BUSCO absences. The inset gives the Area Under the Curve (AUC) values compared with the random backdrop of 1000 random

species sets (violin plot) and the initial species set (teal diamond). S2 Fig shows the results for Broccoli OGs.

https://doi.org/10.1371/journal.pone.0251833.g002
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Fig 3. Both high and low diversity sets have little impact on protein interaction prediction performance. A. The most similar species form more

clusters and are overall more similar to each other. B. The most diverse species show no clustering and are overall less similar to each other. C. Receiver-

operator Curve of two species sets (n = 50) with the most diverse and most similar species. The inset gives the Area Under the Curve (AUC) values

compared with the random backdrop of 1000 random species sets (violin plot) and the initial species set (green diamond). S3 Fig shows the results for

Broccoli OGs.

https://doi.org/10.1371/journal.pone.0251833.g003
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Similar species will naturally show more cohesion in profiles, with little separation of pro-

tein co-evolution. Highly diverse species will naturally show more discordance, with little

information left to see protein co-evolution. In both cases, there will not be a gene-specific sig-

nal. A combination of the two should give good separation of actual co-evolving genes.

Together with the effects of genome quality (Fig 2), genome diversity can be an important fac-

tor for the performance of phylogenetic profiles. However, the interplay between these two fac-

tors is complex, and as we previously determined, high genome quality corresponds with

lower phylogenetic diversity. This finding is highlighted in S4 Fig that shows that highly

diverse genomes have more BUSCO absences compared to the similar genomes (S4A Fig), and

genomes close to human (S4B Fig). The similar set is likely enriched with high quality Opistho-

konta. To look into this further, we investigate the influence of single genomes on predictive

performance.

2.3. Single influential genomes and their combined effect on prediction

performance reveal the importance of the type of information in the

profiles

Diversity and quality both impact performance and we expect it to have a combined influence

on phylogenetic profiling. Instead of a priori selecting genomes based on a measure for each of

these two criteria, we can also objectively evaluate the prediction performance by removing

genomes from the initial species set one-by-one (Fig 4A). Genomes that decrease prediction

performance when removed from the initial set we can consider as advantageous to phyloge-

netic profiling, while genomes that increase prediction performance when removed from the

initial set we can consider as disadvantageous to phylogenetic profiling. We selected the top 50

advantageous and top 50 disadvantageous genomes to see whether these genomes together in

their respective sets also influence the prediction performance.

For both the advantageous and disadvantageous set we can see a large difference in predic-

tion performance (Fig 4B) and a larger difference than the selection based on the measures for

either quality or diversity. With the advantageous genome set, the performance increases

(AUC: 0.801). In contrast, for the disadvantageous set the performance drops (AUC: 0.729).

Both values fall well outside the distribution of 1000 randomly generated genome subsets.

Although a large cumulative effect on performance because we used the genomes’ perfor-

mance to select the genomes, it is still very interesting to see what these genomes share if it is

not quality or diversity. We therefore examined the role of different genomes in these genome

sets. Comparison of a large number of factors (S6 Fig) revealed that that the difference in pre-

diction performance of the advantageous and disadvantageous genome sets is related to the

(human) interactions retained in the genomes (Fig 4C and S6A Fig). The illogical absence

ratios and the complete interactions present (or co-presences) (Fig 4C I & II) show intermedi-

ate values for the disadvantageous genome set. At the same time, these values are either high

or low for the advantageous genome set.

We can also directly relate the differences between these genome sets to how close the

genomes in the sets are to the human genome. The cosine distance and the shared OGs of the

genomes with the human genome (Fig 4C III & IV) show intermediate values for the disadvan-

tageous set, while the values are either high or low for the advantageous genome set. For the

OGs inferred by Broccoli this signal is even more pronounced (S6B Fig). A surprising finding

is that the advantageous set contains numerous parasitic organisms (S1 Table).

In other words, genomes boosting the performance share either a lot or a little similarity

with the reference interactome across a range of dimensions. Thus, phylogenetic profiling in

eukaryotes benefits from genomes with a little or a lot of interactions present with regards to

PLOS ONE Phylogenetic profiling in eukaryotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0251833 April 14, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0251833


Fig 4. Influential genomes and their combined effect. A. Recalculated Area Under the Curve (AUC) values when a single species is removed from the initial

species set. Genomes that increase the AUC value when removed can be considered disadvantages compared to the initial set when predicting protein

interactions with phylogenetic profiles. Genomes that decrease the AUC value when removed can be considered advantageous for predicting protein

interactions. Top 50 advantageous and top 50 disadvantageous genomes shown in the scatter plot. Genomes that are not selected have a white fill. The colour of

the scatter plot points is according to the cosine distance to human, with a maximum cosine distance found to be 0.57. The plot is sorted according to most

advantageous (left) to most disadvantageous (right). B. Receiver-operator Curve of two species sets (n = 50) with the most advantageous and disadvantageous
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the reference interactome. These results reveal the importance of selecting genomes based on

the evolutionary information contained within them relative to the query species, and is criti-

cal for high performance when predicting interacting proteins.

2.4. Orthologous group (pre-)selection improves prediction performance

by (inadvertently) enriching co-evolving proteins in profiles

Phylogenetic profiling benefits from clear modular co-evolution of proteins and subsets of

proteins showing similar evolutionary behaviour [16, 23]. A myriad of factors limit the modu-

lar co-evolution of interacting protein [24–26]. In previous research [19], which provides the

starting meta parameters of this study, we evaluated orthology methods by their ability to reca-

pitulate gene family dynamics in LECA. Consequently, the results so far are based on OGs esti-

mated to be in LECA. To see if this selection criterion was a factor in the strong performance,

we performed phylogenetic profiling with other OGs selections: groups estimated to be post-

LECA, or groups not filtered on any criteria (post-LECA + LECA), i.e., the raw output of the

orthology inference methods. We compared these OG sets with 1000 subsets of randomly

selected LECA OGs. The prediction performance was indeed reduced (AUC: 0.691 post-LECA

and AUC: 0.734 all OGs) compared to that of LECA OGs or any randomly selected set of OGs

(Fig 5). After some reflection, a myriad of explanations likely factor into this effect. Profiles of

LECA proteins have many losses, and thus a lot of information (entropy) (S7 and S9 Figs). Pro-

files of post-LECA proteins have less loss and, by definition, are restricted to specific lineages,

and thus contain less information. Combining LECA and post-LECA OGs produce a set of

phylogenetic profiles with an overall much lower similarity.

We now have identified a key meta parameter choice explaining why our previous research

found such high performance [19]. However, it is unclear what the reason for this effect is and

why for specific pairs of proteins, one protein was in LECA and the other not. This separation

could be biological reality, i.e., innovations in the evolution from LECA to human, or issues in

orthology assignment, i.e., one protein is evolving much more rapidly that causes the protein’s

predicted OG to give an artifactually lineage-specific distribution in the profile. Consequently,

the protein is falsely inferred as a more recent addition or innovation. Manual inspection of

this set (S10 Fig) does not obviously point towards one of the explanations. It is likely a combi-

nation of factors, including orthology prediction errors (e.g., oversplitting) and actual lineage-

specific additions/inventions. In any case, the meta parameter of OG selection is perhaps easily

overlooked or made implicitly in the OG creation itself. Still, it is highly impactful, and our

results show that OG selection improves prediction performance by enriching co-evolving

proteins in profiles.

2.5. Choice of reference interactome and interaction filtering improves

prediction performance by increasing the amount of co-evolving proteins

and quality of interactions

Phylogenetic profiling attempts to predict which pairs of proteins are part of the same func-

tion, pathway, or complex. The performance of phylogenetic profiles can be measured using a

data set of proteins that interact or are otherwise functionally linked. For example, we can take

KEGG pathways as measuring units, as done in the STRING database [27]. However, these

genomes. The inset gives the Area Under the Curve (AUC) values compared with the random backdrop of 1000 random species sets (violin plot) and the initial

species set (green diamond). C. Comparison of the counts (histogram) and kernel density estimates (line plot) of (I) illogical absence ratios (illogical absences

divided by total interaction absences (co-absences + illogical absences)), (II) present interactions, (III) the cosine distance to human, and (IV) total shared OGs

with human. S5 Fig shows the results for Broccoli OGs.

https://doi.org/10.1371/journal.pone.0251833.g004
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pathways often have an excess of 30 proteins and not all of them are expected to have the

mutual functional dependence that results in co-evolution. This unwantedly biases the predic-

tor by having supposedly interacting proteins with little correlation. Similarly, if we would take

a very small well-curated set of compact/short linear metabolic pathways as was used to seed

the CLIME searches [11], then the choice of what protein pairs to count as false negatives

becomes difficult. Hence, our decision in previous work was to parse human interactions from

BioGRID to contain only interactions found in at least five independent studies (Methods and

Materials). This filtering of interactions has been repeatedly demonstrated to effectively

increase the quality and reduce the noise in the interaction data [27, 28]. Moreover, the same

data set contains a very good indication of which proteins are not functionally related. Proteins

that are well studied and repeatedly surface in high throughput assays and are subject to

repeated investigations are indeed likely to have no functional relation since these proteins are

evidently never identified to interact.

The results in section 3 (Fig 4C) reinforce the notion that the reference interaction set plays

a role in the performance of predicting interacting proteins. For these reasons, we analysed

how the filtering and choice of reference interactome influences protein interaction prediction

performance in eukaryotes. Using an unfiltered human protein interaction dataset reduces the

prediction performance from an AUC of 0.779 to an AUC of 0.638 (Fig 6A). This performance

Fig 5. Orthologous group selection has a large impact on prediction performance. Receiver-operator Curve of post-

LECA OGs and unfiltered OGs. The inset gives the Area Under the Curve (AUC) values compared with the random

backdrop of randomly selected LECA OGs (violin plot) and the initial species set (green diamond). S8 Fig shows the

results for Broccoli OGs.

https://doi.org/10.1371/journal.pone.0251833.g005
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is also lower than any set of randomly selected LECA OGs (inset). The quality of the interac-

tion data used clearly plays a role in prediction performance, i.e., if we take a noisy “ground

truth” it turns out to be difficult to predict this truth. It is difficult to predict interactions with a

set littered with false, virtually random, pairs.

We further analysed the choice of reference organism for protein interactions. Specifically

for eukaryotes, the prediction performance was sensitive to the reference species for protein

interactions [21]. Yeast has been the organism of choice as the reference interaction set for

eukaryotes. Yeast is a popular model organism that has been extensively researched, and it is

with yeast that many protein-protein interaction high throughput methods were pioneered. As

Fig 6. Interactome selection is important for prediction performance. A. Receiver-operator Curve of post-LECA OGs and unfiltered OGs. The inset gives

the Area Under the Curve (AUC) values compared with the random backdrop of randomly selected LECA OGs (violin plot) and the initial species set (green

diamond). B. GO-enrichment analysis for genes enriched in interactions present in only human compared to interactions present in human and yeast. OGs

can contain multiple genes. We randomly selected genes from an OG to generate a new sample and population sets ten times and recalculated the enrichment

(shown by multiple points in the figure rows). S11 Fig shows the results for Broccoli OGs.

https://doi.org/10.1371/journal.pone.0251833.g006
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a result, we also expect the interaction data of yeast to be of higher quality than that of human

and, consequently, interaction predictions to be better.

We used Saccharomyces cerevisiae interactions from BioGRID (Materials and Methods) fil-

tered with the same number of publications strictness criterion. Surprisingly, and contrary to

for instance [6], the human interaction set performed better with an AUC of 0.779 compared to

the yeast interaction set with an AUC of 0.713 (Fig 6A). One reason could be that ascomycete

fungi and yeast in particular, has lost many co-evolving LECA complexes found in most eukary-

otes [29, 30]. These losses include Complex I, essential functions in chromatin modification

[31], spliceosomal introns and RNAi machinery giving patchy patterns of canonical Dicer and

Argonaute [32], ciliary genes [8, 33], and the WASH complex [9, 11, 34]. These observations

prompted us to look at the GO term enrichment of interacting LECA OGs that contain only

human genes versus interacting LECA OGs that have both human and yeast genes.

We indeed find evidence of multiple genes belonging to ancestral complexes enriched in

the human interaction set (Fig 6B), including enrichment in more straightforward GO terms

related to mitochondria and respiration (e.g., GO:0005747, GO:0006120, GO:0032981 and

GO:0070469), cilium (e.g., GO:0005929) and spliceosomal components (e.g., SMN complex

GO:0032797). We also find evidence in higher-level GO terms that at lower levels reflect com-

plexes known to be present in human and absent in yeast (S2 Table), such as chromatin modi-

fication (e.g., GO:0042127). For the broccoli inferred OGs, more enriched GO terms reflect at

lower-level complexes known to be present in human and not in yeast: Argonaute and Dicer

(GO:0010629, GO:0048471 and GO:0030426), WASH (GO:0005814, GO:0005856 and

GO:0043005) and chromatin modification (e.g., GO:0007399) (S11 Fig and S3 Table).

Even though there are more yeast than human interactions present in multiple species, the

entropies of the profiles participating in yeast interactions are lower (S12 Fig). This observa-

tion and the GO analysis reveal a clear reason why the performance we reported is high relative

to others. Namely, we use the human reference interaction set with ancestral complexes that

have been frequently lost throughout eukaryotic evolution and are absent in yeast.

3. Discussion

Phylogenetic profiling is complicated due to many biological and technical issues. These issues

include the complex histories of proteins and the choices in the meta parameters for phyloge-

netic profiling, such as the quantity, quality and diversity of reference genomes and annota-

tions. Meta parameter choices in phylogenetic profiling has been extensively studied in mostly

prokaryotes, where generally the focus is on the choice of reference genomes, phylogenetic

profile methods, and/or the amount of data. We focus on eukaryotes and investigate qualita-

tive different meta parameters for phylogenetic profiling. We showed that phylogenetic profile

performance when predicting protein interactions is influenced by a complex interplay of mul-

tiple technical and biological parameters.

Genome diversity plays an important role in prediction performance for prokaryotes [16,

18]. In contrast, our measures of eukaryotic diversity did not significantly influence prediction

performance. Selecting lesser-quality genomes has a larger effect on prediction performance,

while selecting higher-quality genomes does not. Genome selection and the interplay between

quality and diversity does matter. However, other meta parameters have a much larger impact

on prediction performance, such as the amount of information in the phylogenetic profiles in

relation to the reference interaction dataset. This discrepancy suggests that more complex fea-

ture selection procedures should be explored for reference genome set selection, especially

since (non-linear) interactions between subsets of genomes and combinations of subsets could

drastically boost performance.
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Other meta parameters, such as orthologous group and reference interactions, have a much

larger effect than genome selection. Some results make a lot of sense from a technical point of

view. For example, low quality/noisy functional data (unfiltered BioGRID) or mixing phyloge-

netic profiles that are at least 50% inconsistent (post-LECA + LECA OGs) have poor perfor-

mance. A drawback to filtering out post-LECA OGs is that we remove lineage-specific

interactions that are still a part of a protein complex and show clear co-evolution. Our analysis

shows that we should consider these often hidden choices when encountering large differences

in performance between reported studies.

One very counterintuitive finding is that the yeast interaction set showed lower predictive

performance. Compared to the human interaction set, yeast should be of equal quality by all

accounts, arguably even better. Together with the observation that LECA OGs performed bet-

ter than post-LECA OGs, this suggests that the performance of phylogenetic profiles in eukary-

otes is optimal for modules that fulfil a very particular set of conditions. These modules (i)

were present in LECA, (ii) were repeatedly lost in eukaryotic lineages, and (iii) the genes in the

module conserved most of their function. Such systems are often lost in yeast. These observa-

tions fit with notable examples from the WASH complex and cilium [8, 9, 11], or proteins with

great success in predicting its components like the minor spliceosome [5] and RNAi machin-

ery genes including Dicer and Argonaute [32]. These biological patterns should explain the

very strong signal found by studies such as [9, 11]. Note, both studies show very strong signals

for complexes as well as pathways. We excluded pathways due to the problem of defining a

quality negative interaction set.

The above findings suggest that systematic exploration of subsets of genomes to infer pro-

tein interactions might give increased performance when we consider relevant ancient mecha-

nisms that emerged during eukaryotic evolution within a particular subset of species. For

instance, metazoan mechanisms that include immunity (Tol receptor family) [35], intracellu-

lar signalling (Wnt, Notch) [36–38], or cellular polarity establishment (PCP) [39], that are old

mechanisms and could be differentially lost amongst animals.

In conclusion, we find that for eukaryotes more genomes and better-quality genomes are

not necessarily better. It is instead the type of information in the genomes. The information in

these genomes is not directly related to larger genomes, for instance parasites increase predic-

tion performance. Instead, the information is related to the interactions of the reference spe-

cies present in a given genome. The presence of this signal is compelling, but is currently

eluded by the lack of available data. For instance, there is likely too small a number of protein

systems that were gained after LECA, e.g., from a fungal ancestor, with components lost a suffi-

cient number of times to produce an informative phylogenetic profile.

Genome selection has a minor influence compared to orthologous groups selection and

interactome selection, which both greatly improve the performance when predicting protein

interactions. Interactome and orthologous group selection is likely the major source for the

large variance in reported performances. Ancestral complexes that are repeatedly lost are

responsible for the strong performance of phylogenetic profiles in eukaryotes and it is these

hidden choices in orthologous group selection that we should consider when we find large dif-

ferences in performance between studies.

4. Material and methods

4.1. Initial datasets and methods

We started our investigation from the analysis done in our previous work [19], to investigate

the influence of different parameters on the performance of predicting protein-protein inter-

actions using phylogenetic profiles. We showed a relatively high prediction performance using
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a large set of diverse eukaryotes and orthologous groups (OGs) inferred to be in the Last

Eukaryotic Common Ancestor (LECA). This reference set is called the initial set. Any changes

that we made are changes in this initial set. In the sections below, we will briefly describe the

composition of this initial set and the methods we used to obtain it.

4.1.1. Large scale eukaryotic dataset and LECA OGs. We inferred OGs on a diverse

genome set of 167 eukaryotes using different OG inference methods in our previous work. For

this analysis, we chose the best performing method regarding protein interaction prediction,

Sonicparanoid (version 1.3.0) [13]. To rule out any large orthology specific issues during our

current analyses, we chose at least one other method: Broccoli (version 1.0) [14].

Ancestral eukaryotic complexes have been lost together multiple times [38]. Phylogenetic

profiles should benefit from this clear modular evolution of proteins. Therefore, we selected

OGs estimated to be in LECA. Briefly, we inferred LECA OGs using the Dollo parsimony

approach [40] with additional strict inclusion criteria [19]. The Dollo parsimony method

assumes that genes can be gained only once while minimizing gene loss. Before we assigned an

OG to LECA, it must be in at least three supergroups (See S1 Table) distributed over the

Amorphae and Diaphoretickes (previously known as opimoda and diphoda) [41].

4.1.2. Phylogenetic profiling and measuring co-occurrence of proteins. We constructed

phylogenetic profiles by determining the presence (1) and absence (0) of OGs in 167 species.

To evaluate prediction accuracy, we obtained a higher quality reference interaction set by fil-

tering the human BioGRID interaction database (version 3.5.172 May 2019) [42, 43]. BioGRID

contains physical interactions between proteins. We filtered this interaction set to keep non

redundant interaction pairs found in at least five independent studies (PubMed IDs). The

number of independent studies is a measure of how thoroughly these proteins were investi-

gated and how receptive the proteins are to high-throughput measurements. We mapped the

interacting genes to their corresponding OGs.

We used the best performing negative protein interaction set from our previous analyses

[19]. We inferred this negative set by taking pairs of interacting proteins that were found to be

interacting at least five times, but not with each other. This excludes the possibility that the

negative set contains interacting proteins that were not found due to manifold technical

reasons.

To calculate the (dis)similarities between phylogenetic profiles we used the from our previ-

ous analysis best performing distance measure, the cosine distance.

4.2. Genome selection procedures

We compared the results of all the genome selection procedures to 1000 sets of genomes ran-

domly selected to exemplify that the differences in prediction accuracies are not due to ran-

dom variations in genome composition. We calculated the protein interaction prediction

performance for each of these random genome sets.

4.2.1. Selecting better and worse quality genomes. To measure the quality of the

genomes, we used two quality metrics. The first metric is the out of the box BUSCO metric

that works by calculating the absences of highly conserved single-copy orthologs [22]. The

BUSCO Eukaryota database (odb9) was aligned to the genomes using the hmmsearch align-

ment tool from the HMMER package 3.1b2 (dated February 2015) [44]. We took the HMM

specific quality score given by BUSCO to validate the hits in the alignments.

The second metric is of our own devising. The second quality metric we used was the Illogi-

cal absences (IA) metric of our design. We added this second independent metric to remove

the dependence of quality on a single measure to establish the completeness of the genomes

and gene prediction. The IA metric calculates the number of absences of protein interaction
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partners, which we termed Illogical absences. Illogical absences follow from the assumption

underlying phylogenetic profiling that interacting proteins are often evolutionary conserved.

Therefore, it can be considered suspect when a protein interaction partner is absent. A possible

reason could be that the absence is due to gene prediction, genome annotation or even homol-

ogy detection errors.

We selected the strongest interacting OG pairs by selecting their phylogenetic profiles with

the least cosine distance. This selection removes the complex interplay between interacting

groups of orthologs. For every interacting OG pair, we calculated the absences of interaction

partners in every species. These absences we termed illogical absences or the IA metric.

We can consider the genomes with the most BUSCO absences and illogical absences as

lesser quality genomes. In contrast, we can consider the genomes with the least BUSCO

absences and illogical absences as higher-quality genomes. We selected 50 genomes of lesser-

quality and 50 genomes of higher-quality for each of the metrics and recalculated the protein-

protein interaction prediction performance.

4.2.2. Selecting highly diverse and similar genomes. We calculated the pairwise cosine

distance between all species with the presence and absence profiles of LECA OGs to obtain

species sets of maximum diversity and maximum similarity. We then iterated through the

resulting pairwise distance matrix and selected the maximally distant pairs for the diverse set

or minimally distant pairs for the similar set. Before adding a species of a species pair to a set,

we checked to see if the species also had a distance above a certain arbitrary threshold to the

other species in the growing set (cosine value� 0.38 for the dissimilar, cosine value� 0.58 for

the similar set). We did this until we obtained the desired amount of 50 genomes per set. The

maximum diverse and maximum similar genome sets were each used to recalculate the pro-

tein-protein interaction prediction performance.

4.2.3. Selecting single influential genomes and their combined effect on prediction per-

formance. We removed genomes one-by-one from the initial species set of 167 eukaryotes to

see how the different genomes influence the performance of protein interaction prediction

with phylogenetic profiling. We recalculated the performance for each of these 167 sets. The

50 genomes that increased the performance compared to the initial species set the most when

removed from the initial set were labelled as disadvantageous. The 50 genomes that decreased

the performance the most when removed from the initial set were labelled advantageous. For

both the disadvantage and advantageous set we recalculated the protein interaction prediction

performance.

4.3. Gene and interactome selection procedures

We compared the results of the OG selection procedures to randomly selected LECA OGs to

exemplify that the differences in prediction accuracy is not due to random variations in OG

composition. We made a thousand LECA OG sets containing a random selection of 63% of

the OGs. We calculated each of these set’s protein interaction prediction performance.

4.3.1. Selecting OGs. In our initial species set, we used OGs estimated to be in LECA

(Methods section 1.1.). We took the raw output of the orthology inference methods and fil-

tered out the LECA OGs to get a set that contains post-LECA OGs. We also recalculated the

prediction performance with the raw output of the orthology prediction methods, which is all

inferred OGs.

4.3.2. Selecting different reference interactomes. We compared the five PubMed ID fil-

tered human BioGRID set with the unfiltered human BioGRID dataset. Every interaction with

less than five PubMed IDs is now included as well. Removing the five PubMed ID filter should

indicate how quality filtering of reference interactions influences prediction performance.
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We selected next to the human interactions the Saccharomyces cerevisiae BioGRID interac-

tion database (version 3.5.175 July 2019) [43] to analyse the influence of the reference interac-

tome. We filtered the interactions to keep only the interaction pairs found in at least five

publications (PubMed IDs). We followed the same procedure as with the human interaction

set (Methods section 1.2.).

Following this analysis, we hypothesized that the drop in prediction performance for yeast

is caused by the loss of ancestral protein complexes in yeast. To test this, we chose interacting

LECA OGs that contained only human genes (sample set) and calculated the enrichment to

the set with interacting LECA OGs containing human and yeast genes (population set). We

calculated the enrichment using the following equation: n
m�

k
q, where n is the total number of

genes associated with a GO term (Downloaded GO terms Januari 2021 biomart) in the sample

set (overlap), m is the total numbers of genes in the sample set, k is the total number of genes

associated with a specific GO term in the population set, and q is the total number of genes in

the population set. Since enrichment does not work well for small overlaps, we filtered for a

minimum overlap (n) of 3. Enrichment was considered significant for p-values below 0.01.

Since OGs can contain multiple genes, we randomly selected genes from an orthologous group

to generate a new sample and population sets ten times and recalculated the enrichment.

Supporting information

S1 Fig. Illogical absences and genome quality selection based on illogical absences using

Sonicparanoid inferred OGs. A. Illogical absences as a function of retained LECA OGs in dif-

ferent species. We see that where most Opisthokonta scores similarly low with the BUSCO

metric, they score lower with the IA metric indicating a difference between the two metrics.

However, the performance of genomes selected with both metrics are similar to each other.

Filled data points are the selected genomes for the prediction accuracy calculations. B.

Receiver-operator Curve of two species sets (n = 50) with the most and least illogical absences.

The inset gives the Area Under the Curve (AUC) values compared with the random backdrop

of 1000 random species sets (violin plot) and the initial species set (teal diamond). Human has

a perfect score of 0 illogical absences since the interactions are from the human reference inter-

actome. Therefore, we did not select human for the genome set.

(PDF)

S2 Fig. Lesser quality genomes have more impact on protein interaction prediction perfor-

mance also for Broccoli inferred OGs. A. BUSCO and Illogical absences as a function of

retained LECA OGs in different species. Filled data points are the selected genomes for the

prediction accuracy calculations. B. Receiver-operator Curve of two species sets (n = 50) with

the most and least BUSCO and illogical absences. The inset gives the Area Under the Curve

(AUC) values compared with the random backdrop of 1000 random species sets (violin plot)

and the initial species set (teal diamond).

(PDF)

S3 Fig. Both high and low diversity sets have little impact on protein interaction prediction

performance also for Broccoli inferred OGs. A. The most similar species form more clusters

and are overall more similar to each other. B. The most diverse species show no clustering and

are overall less similar to each other. C. Receiver-operator Curve of two species sets (n = 50)

with the most diverse and most similar species. The inset gives the Area Under the Curve

(AUC) values compared with the random backdrop of 1000 random species sets (violin plot)

and the initial species set (green diamond).

(PDF)
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S4 Fig. Interplay between the quality of genomes and diversity of the genomes. A. BUSCO

absences in the most diverse species set are higher than in the most similar species set. B. The

BUSCO absences vs. the cosine distance to human shows that most similar species set is more

similar to the human genome, and likely enriched with high quality Opisthokonta genomes

(as can also be seen in Fig 3A).

(PDF)

S5 Fig. Influential genomes and their combined effect for Broccoli inferred OGs. A. Recal-

culated Area Under the Curve (AUC) values when a single species is removed from the initial

species set. Genomes that increase the AUC value when removed can be considered disadvan-

tages compared to the initial set when predicting protein interactions with phylogenetic pro-

files. Genomes that decrease the AUC value when removed can be considered advantageous

for predicting protein interactions. Top 50 advantageous and top 50 disadvantageous genomes

shown with the black fill in the scatter plot. B. Receiver-operator Curve of two species sets

(n = 50) with the most advantageous and disadvantageous genomes. The inset gives the Area

Under the Curve (AUC) values compared with the random backdrop of 1000 random species

sets (violin plot) and the initial species set (green diamond). C. Comparison of the counts (his-

togram) and kernel density estimates (line plot) of (I) illogical absence ratios (illogical absences

divided by total interaction absences (co-absences + illogical absences)), (II) present interac-

tions, (III) the cosine distance to human, and (IV) total shared OGs with human.

(PDF)

S6 Fig. Correlations between multiple parameters in the advantageous and disadvanta-

geous genome set. Given for A. Sonicparanoid and B. Broccoli inferred OGs. From top to bot-

tom (or left to right) the interactions that are co-absent; illogically absent; and present; the

ratio of illogical absences to total absences; number of OGs shared with the human genome;

the cosine distance to the human genome; LECA OGs loss (Dollo parsimony inferred); species

(lineage) specific loss; (clade) ancestral loss; and the difference in AUC from the initial set

AUC when a genome is removed.

(PDF)

S7 Fig. Entropy of phylogenetic profiles that have interactions. Given for A. Sonicparanoid

and B. Broccoli inferred OGs. From top to bottom, the entropy is shown in profiles for LECA,

post-LECA and all OGs. Median entropy is presented with a black arrow. Mann-Whitney U

test shows significant difference between distributions of LECA, post-LECA and all OGs, p-

value < 0.001.

(PDF)

S8 Fig. Orthologous group selection has a large impact on prediction performance also for

Broccoli inferred OGs. Receiver-operator Curve of post-LECA OGs and unfiltered OGs. The

inset gives the Area Under the Curve (AUC) values compared with the random backdrop of

randomly selected LECA OGs (violin plot) and the initial species set (green diamond).

(PDF)

S9 Fig. Dollo parsimony inferred loss of LECA and post-LECA OGs. Given for A. Sonicpar-

anoid and B. Broccoli inferred OGs. Mann-Whitney U test shows significant difference

between distributions.

(PDF)

S10 Fig. Groups of interacting OGs where one is in LECA (always the last row in a group

subplot) and the others are not. The profiles are sorted according to the species tree.

(PDF)
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S11 Fig. Interactome selection is important for prediction performance. A. Receiver-opera-

tor Curve of post-LECA and unfiltered OGs of Broccoli. The inset gives the Area Under the

Curve (AUC) values compared with the random backdrop of randomly selected LECA OGs

(violin plot) and the initial species set (green diamond). B. GO-enrichment analysis for genes

enriched in interactions present in only human vs. interactions present in human and yeast.

OGs can contain multiple genes. We randomly selected genes from an OG to generate new

sample and population sets 10 times and recalculated the enrichment (shown by multiple

points in the figure rows).

(PDF)

S12 Fig. Interactions of human and yeast interactome present in different species (left)

and entropy for LECA profiles that have interactions in human and yeast (right). Given for

A. Sonicparanoid inferred and B. Broccoli inferred OGs. Median values are presented with the

arrows. Mann-Whitney U test shows significant difference between distributions.

(PDF)

S1 Table. Species table for species used in this study. Green marked species are the species

that are in the advantageous set, and red marked species in the disadvantageous set (Sonicpara-

noid). The measured values are shown in S6 Fig.

(XLSX)

S2 Table. GO-enrichment table for Sonicparanoid inferred OGs. Since there can be multiple

genes in an OG, we randomly selected one of the genes for the GO-enrichment analysis. We

did this ten times, creating ten foreground and background sets (set_num). These values are

shown in Fig 6.

(TSV)

S3 Table. GO-enrichment table for Broccoli inferred OGs. Since there can be multiple genes

in an OG, we randomly selected one of the genes for the GO-enrichment analysis. We did this

ten times, creating ten foreground and background sets (set_num). These values are shown in

S11 Fig.

(TSV)
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41. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the Classification,

Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol. 2019; 66: 4–119. https://doi.org/10.

1111/jeu.12691 PMID: 30257078

42. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository

for interaction datasets. Nucleic Acids Res. 2006; 34: D535–D539. https://doi.org/10.1093/nar/gkj109

PMID: 16381927

PLOS ONE Phylogenetic profiling in eukaryotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0251833 April 14, 2022 20 / 21

https://doi.org/10.1093/molbev/msx319
http://www.ncbi.nlm.nih.gov/pubmed/29220515
https://doi.org/10.1093/bioinformatics/btaa281
http://www.ncbi.nlm.nih.gov/pubmed/32353123
https://doi.org/10.1101/gr.1969504
http://www.ncbi.nlm.nih.gov/pubmed/14993205
https://doi.org/10.1101/gr.4336406
https://doi.org/10.1101/gr.4336406
http://www.ncbi.nlm.nih.gov/pubmed/16449501
https://doi.org/10.1371/journal.pcbi.1000276
http://www.ncbi.nlm.nih.gov/pubmed/19180181
https://doi.org/10.1093/nar/gkg034
https://doi.org/10.1093/nar/gkg034
http://www.ncbi.nlm.nih.gov/pubmed/12519996
https://doi.org/10.1038/nature750
https://doi.org/10.1038/nature750
http://www.ncbi.nlm.nih.gov/pubmed/12000970
https://doi.org/10.1073/pnas.200346997
https://doi.org/10.1073/pnas.200346997
http://www.ncbi.nlm.nih.gov/pubmed/11016957
https://doi.org/10.1186/1471-2164-8-1
https://doi.org/10.1186/1471-2164-8-1
http://www.ncbi.nlm.nih.gov/pubmed/17199895
https://doi.org/10.1534/genetics.116.199216
http://www.ncbi.nlm.nih.gov/pubmed/28592505
https://doi.org/10.1038/nature11779
http://www.ncbi.nlm.nih.gov/pubmed/23364702
https://doi.org/10.1186/1471-2164-15-1
https://doi.org/10.1186/1471-2164-15-1
http://www.ncbi.nlm.nih.gov/pubmed/24382143
https://doi.org/10.1186/1756-0500-5-88
http://www.ncbi.nlm.nih.gov/pubmed/22316129
https://doi.org/10.1186/s12862-020-01734-0
https://doi.org/10.1186/s12862-020-01734-0
http://www.ncbi.nlm.nih.gov/pubmed/33514311
https://doi.org/10.1186/1471-2148-9-1
http://www.ncbi.nlm.nih.gov/pubmed/19121213
https://doi.org/10.1101/cshperspect.a007922
https://doi.org/10.1101/cshperspect.a007922
http://www.ncbi.nlm.nih.gov/pubmed/22751150
https://doi.org/10.1038/nrg.2016.39
https://doi.org/10.1038/nrg.2016.39
http://www.ncbi.nlm.nih.gov/pubmed/27087500
https://doi.org/10.1186/s12862-015-0575-y
http://www.ncbi.nlm.nih.gov/pubmed/26727998
https://doi.org/10.1093/acprof
https://doi.org/10.1093/acprof
https://doi.org/10.1111/jeu.12691
https://doi.org/10.1111/jeu.12691
http://www.ncbi.nlm.nih.gov/pubmed/30257078
https://doi.org/10.1093/nar/gkj109
http://www.ncbi.nlm.nih.gov/pubmed/16381927
https://doi.org/10.1371/journal.pone.0251833


43. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The BioGRID interaction data-

base: 2019 update. Nucleic Acids Res. 2019; 47: D529–D541. https://doi.org/10.1093/nar/gky1079

PMID: 30476227

44. Eddy SR. HMMER. Available: http://hmmer.org

PLOS ONE Phylogenetic profiling in eukaryotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0251833 April 14, 2022 21 / 21

https://doi.org/10.1093/nar/gky1079
http://www.ncbi.nlm.nih.gov/pubmed/30476227
http://hmmer.org
https://doi.org/10.1371/journal.pone.0251833

