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Abstract: Decision support systems (DSSs) in agriculture are becoming increasingly popular, and
have begun adopting visualisations to facilitate insights into complex data. However, DSSs for
agriculture are often designed as standalone applications, which limits their flexibility and portability.
They also rarely provide interactivity, visualise uncertainty and are evaluated with end-users. To
address these gaps, we developed six web-based visual-assisted DSSs for various agricultural use
cases, including biological efficacy correlation analysis, water stress and irrigation requirement
analysis, product price prediction, etc. We then evaluated our DSSs with domain experts, focusing
on usability, workload, acceptance and trust. Results showed that our systems were easy to use and
understand, and participants perceived them as highly performant, even though they required a
slightly high mental demand, temporal demand and effort. We also published the source code of our
proposed systems so that they can be re-used or adapted by the agricultural community.

Keywords: precision agriculture; data analytics; interactive visualisations; decision support systems;
user evaluation

1. Introduction

The digital revolution is transforming agriculture; the rapid spread of several cutting-
edge technologies such as Global Positioning System (GPS), remote sensing, artificial
intelligence, robotics and the Internet of Things [1] has led to a big increase in the data
volumes available from farms [2]. In addition, there is an increasing use of unmanned aerial
vehicles (UAVs) in recent years for various tasks, including monitoring, yield estimation,
etc. [3], which further increases the data volume. Many agri-food operators, therefore, often
find themselves surrounded by large volumes of data [4], and need powerful techniques for
decision-making tasks. Fortunately, with the emergence of the precision agriculture concept,
modern machinery, computerised tools and information and communication technologies
are being used to support agri-food operators with optimised input management, decision
making and improved productivity [5].

Information visualisation provides an additional layer of understanding on top of the
precision agriculture concept [4,6]. It provides a way to utilise “the processing power of
modern computers with human cognition and visual abilities to better support analysis
tasks” [7]. Interactive visualisations allow for better understanding of large volumes of
complex data by aggregating, filtering or exploring relevant information. Therefore, visu-
alisation tools have been widely used in various domains to assist with tasks that might
otherwise require significant cognitive effort. In agriculture, visualisations have proven
to be useful to effectively communicate uncertainty in seasonal climate prediction [8];
manage pests, crops, irrigation and fertilisers [9]; and support decision-making in precision
agriculture [10]. Nevertheless, the area of (precision) agriculture still lacks the support
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with a framework and reference systems to develop DSS [4,11]. Besides, the majority of the
interfaces have been designed for standalone computers, rather than adopting web tech-
nologies, thus hampering portability, reusability and cross-platform support [12]. Finally,
evaluation of agricultural DSSs using a user-centred evaluation approach is limited despite
its importance in understanding end-users and to potentially improve the system [13,14].

To address these gaps, we propose a set of reference visualisation libraries, visual
analytic components and an interaction framework and show their applicability by devel-
oping various web-based DSSs across six agricultural use cases, and made the systems
freely available to anyone. Then, we demonstrate an evaluation of these systems using a
user-centric evaluation method, an approach that is still limited in agriculture, by focusing
on usability, workload, acceptance and trust. A graphical overview of the identified gaps
and contributions of this work is presented in Figure 1.

Figure 1. A graphical abstract highlighting the gaps in precision agriculture and contributions of
this work.

In the following subsections, we discuss previous work related to existing decision support
systems in precision agriculture, visual analytic components and interaction framework.

1.1. Decision Support Systems in Precision Agriculture

DSSs are an important part of precision agriculture in supporting agri-food operators
with crucial decision making, farm management and planning tasks [9]. Typically, data is
first gathered from multiple sources such as sensors, satellites and in-field observations,
and analysed with statistical models. The analysis output is then displayed to the agri-food
operator who uses it for decision making.

Among the various DSSs developed to support precision agriculture, Vite.net [15], for
instance, supports crop management within vineyards. It provides important information
about vine growth, pest control and diseases in grape berries, and allows farmers to make
informed management decisions. Another system, DyNoFlo Dairy [16], is designed for
farmers and regulatory agencies. Its main purpose is to integrate nutrient budgeting, crop
and optimisation models to assess nitrogen leaching from dairy farm systems. The tool
provides a representation of all system modules and their connections, allowing users
to interact with different models to optimise nitrogen leaching and profit. In another
subdomain, AquaCrop [17] supports simulation analysis towards the impact of climate
change, especially rainfall, on wheat yield. Similarly, ATLAS [18] allows a simulation of
crop availability on a landscape across different crop scenarios in relation to pests, diseases
and biological control.

Additionally, there are DSSs that aim to optimise yield, while preserving resources [19]
such as fertiliser. An exemplar DSS in this field includes CropSAT [20], which assists in
calculating variable rate application for nitrogen fertilisation based on satellite images. The
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images generated in CropSAT show representations of crop biomass variation, which is
difficult to achieve by in-field assessments.

Visualisation has also become an important aspect of DSSs in precision agriculture.
By visualising a large volume of data with complex information, users can consume them
more easily. As such, a number of visual DSSs have been proposed for various use cases of
agriculture [9]. For example, Blauth and Ducati [21] developed a farm management tool
that visualises land usage in a vineyard by adding layers on a map. The tool keeps track of
vineyard data such as grape variety, yield and inventory, and shows important information
such as vegetation, bare soil and nearby urban areas. Another example is AgMine [22],
which assists wheat growers by illustrating seasonal rainfall and yield production. For
irrigation management, Byishimo and Garba [23] proposed a tool that visualises real-time
data collected from in-field sensors, allowing farmers to monitor the soil, temperature and
water. A different tool, DIDAS [24], allows farm evaluations based on soil, evaporation,
plant resistance and land structure and assists with the design and scheduling of the drip
irrigation systems. In particular, it provides visualisations to analyse water flow so that
farmers can create irrigation schedules when water is scarce.

Evidently, there has already been a large number of DSSs, with and without visualisa-
tions, proposed by previous research efforts. However, due to the lack of common interfaces
and reference systems, existing systems resulted in incompatibilities across the platforms
and end-users, hindering the uptake of precision agriculture [4]. Besides, according to a
recent systematic literature review [11], no framework is available in precision agriculture
to guide the implementation of the systems. Thus, in this work, we introduce reference
technologies and interaction frameworks to develop cross-platform compatible and highly
interactive DSSs for precision agriculture.

1.2. Visual Analytic Components

Our previous systematic review shows that almost all of the DSSs in agriculture
have been designed as standalone applications [9] which are not flexible and portable
in comparison to the web applications. Besides, as described in Section 1.1, there is a
need for common interfaces and reference systems. Fortunately, a number of open-source
visualisation libraries are available nowadays with extended documentations and supports
for popular web programming languages such as JavaScript. D3.js [25], for example, is the
most popular visualisation library for JavaScript applications with multiple out of the box
visualisation, customisations and data manipulation options. Vega [26] and Vega-lite [27]
are another family of popular visualisation libraries for web applications with a choice
for high-level language for rapid development. Chart.js [28] is another high-level open-
source visualisation library for rapid development, but it only supports eight common
chart types. To support the development of common interfaces and provide a reference
system, we have selected a set of visualisation components that have widely been used
in visual analytics systems and are also widely supported by the existing visualisation
libraries. These components are as follows:

1.2.1. Bar Chart and Histogram

Bar charts show comparisons among discrete categories. One axis of the chart shows
the specific categories being compared, and the other axis represents a measured value.
They can have bars clustered in groups, showing the values of grouped variables. A
histogram is a type of bar chart typically used to represent the distribution of data points in
a dataset. Thus, in most visualisation libraries, a single component is used to visualise the
bar chart and histogram (see Vega-Lite Bar for example https://vega.github.io/vega-lite
/docs/bar.html (accessed on 1 June 2022)).

1.2.2. Time Series

A time series is a distribution of data points visualised according to the time dimension.
It is usually presented as a sequence with successive equally spaced points in time. Time
series is a subset of line chart where the trend in data is visualised over equal intervals of

https://vega.github.io/vega-lite/docs/bar.html
https://vega.github.io/vega-lite/docs/bar.html
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time. Thus, the line chart type is typically used to create time series in most visualisation
libraries (e.g., Vega-Lite https://vega.github.io/vega-lite/docs/line.html (accessed on
1 June 2022) and Chart.js https://www.chartjs.org/docs/latest/charts/line.html (accessed
on 1 June 2022)).

1.2.3. Scatter Plot

Scatter plots are two-dimensional visualisations that use dots (also referred to as
circles) to represent the values for two different variables, one plotted along the x-axis
and the other plotted along the y-axis. Scatter plots are extremely useful in comparing the
relationship and correlation between two variables.

1.2.4. Radar Chart

Radar charts are representations of multivariate data in the form of a two-dimensional
radial chart. They visualise three or more quantitative variables represented on axes starting
from the same centre point. Despite their ability to represent multivariate data, due to
the nature of their circular design, the amount of variables they can represent without
hindering usability is finite. Thus, one must pay attention not to overpopulate the chart.

1.2.5. Pie Chart

Pie charts represent the proportion of a quantity using slices in a circular pie. The arc
length of each slice is proportional to the quantity it represents. Due to their circular design,
pie charts also have the same limitation as radar charts.

1.2.6. Choropleth Map

Choropleth maps are geographical representations of data which show changes across
a large geographic landscape such as countries, states, or watersheds. Note that many
visualisation libraries use the Mercator projection by default, which exaggerates the size
of the countries that are away from the equator. One should recognise such a limitation
of the Mercator projection and adapt the projection style as required. For instance, the D3
library https://github.com/d3/d3-geo (accessed on 1 June 2022) has geoNaturalEarth and
geoEqualEarth functions, which can render non-distorted earth projections.

1.2.7. Farm Map

Farm maps show a close-up view of a particular field visualising data such as yield
or quality on each subdivision of the field, instead of a large area view in the Choropleth
Map. Farm maps can have several layers representing various types of data. For instance,
maps with a combination of satellite-based image and heatmap layers are quite common in
the agriculture domain. Often times, data such as Normalised Difference Vegetation Index
(NDVI) is often shown as a layer of a heatmap on top of a geographical map.

1.2.8. Parallel Coordinates

Parallel coordinates, although not commonly used by the existing agriculture DSSs,
can visualise multidimensional data across interconnected parallel columns. Each column
(parallel lines) represents a variable and can span up to n parallel lines. Each horizontal
line represents a set of data points across the parallel lines.

1.2.9. Progress Circle

A progress circle is a circular progress bar typically representing the distribution
of several variables (like pie charts), the saturation of one variable or the completion of
certain tasks.

https://vega.github.io/vega-lite/docs/line.html
https://www.chartjs.org/docs/latest/charts/line.html
https://github.com/d3/d3-geo
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1.2.10. Uncertainty Graph

The uncertainty graph, similar to the time series chart, uses lines to connect individual
data points that display quantitative values over a specified time interval. Unlike the time
series chart, the uncertainty graph contains a set of confidence bends that represent how
likely the data could deviate from its trajectory in the future. Such an uncertainty repre-
sentation is often seen in use cases involving prediction tasks. In the agriculture domain,
CropGIS [29], for example, uses a time series to show data about biomass development of
maize with a range of confidence bends in predicting various meteorological scenarios.

1.2.11. Word Cloud

Word clouds visualise text data that are typically in the form of words or tags repre-
senting a particular topic. These words or tags are usually single words and the importance
of a word is highlighted by its size. Additionally, colour can be used to depict importance
or to cluster the words. Word clouds are not commonly used in the agriculture DSSs but
could be useful in use cases involving text data, such as consumer feedback, field expert
reports, etc.

1.3. Interaction Framework

Interactive visualisations allow users to better understand data by aggregating, fil-
tering or exploring relevant information. The existing tools in precision agriculture have
limited interactions. For instance, a tool designed to support irrigation decisions that visu-
alises real-time field data in a time series [23] should also allow users to filter and explore
the data. In other words, to assist with complex problem solving, systems should allow
end-users to engage in open-ended inquiry and support the exploration processes [30].
Gotz and Zhou [31] identified a set of actions available for users in different visual analysis
environments. A few examples of the actions include annotate, merge, brush, sort, revisit,
zoom and pan. Gotz and Zhou also grouped these actions into three categories: exploration,
insight and meta. Exploration actions include filter, inspect, brush, sort, etc.; insight actions
include annotate, bookmark, create, modify and remove; and meta actions include delete,
edit, redo, revisit and undo. Another established categorisation of interaction techniques
for information visualisation systems has been proposed by Yi et al. [32]. The categories
are select, explore, reconfigure, encode, abstract/elaborate, filter and connect, which have
influenced the design of the visual-assisted DSSs presented in this paper. Details of these
categories are described in the following paragraphs.

Select enables users to mark data items of interest. The technique is used to select items
that may be interesting to revisit at a later stage.

Explore enables users to examine a different subset of the data. A typical explore
operation is panning, that enables users to see a different part of a geographic map.

Reconfigure enables users to change the arrangement of representations to provide
them with different perspectives onto the dataset. Reconfigure interaction techniques allow
users to change the way data items are arranged in order to provide different perspectives
on the dataset. Examples include the selection of different data elements to represent in
parallel coordinates or changing the attributes assigned to the x- and y-axis of scatter plots.

Encode enables users to alter the representation of data, such as changing a pie chart
to a histogram. As with other interaction techniques, the purpose of changing the type
of representation is to uncover new aspects or patterns. In addition to changing the
visualisation techniques, some tools also allow users to change the colour scheme or size.

Abstract / elaborate allows users to adjust the level of abstraction of a data representation.
A tool-tip interaction technique that provides the user with additional information belongs
to this category. Another common abstract/elaborate technique is zooming. Through
zooming, users can change the scale of a representation so that they can see an overview of
a larger dataset (using zoom-out) or the detailed view of a smaller dataset (using zoom-in).
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Filter allows users to change the set of data items based on some specific conditions. In
this type of interaction, users specify a range or condition, so that only data items meeting
those criteria are presented. Sliders are, for instance, commonly used to filter the time
period that is of interest. Users select ranges by moving sliders to show the data items that
meet particular constraints. Many other systems provide a check or input box that enables
users to filter the data items.

Connect allows users to “(1) highlight associations and relationships between data
items that are already represented and (2) show hidden data items that are relevant to a
specified item”. A typical example is a brushing technique that highlights a data element
that is selected in one view in other related views.

2. Materials and Methods
2.1. Use Cases

To demonstrate an application of the visual analytic components, open-source visu-
alisation libraries and interaction framework that were discussed in the previous section,
we devised six agricultural use cases in collaboration with five industries and research
institutes from Greece, France and Italy. These use cases therefore represent some of the
most critical and timely decision support tasks in agriculture. The following subsections
describe each of these use cases and the visual-assisted DSSs that were developed for each
use case. Unlike previously proposed work, these DSSs have been designed using the
common visual analytic components, open-source visualisation libraries, and interaction
framework, and show their flexibility across various use cases.

2.1.1. Correlation Analysis of Multivariate Data

Soil properties, climate conditions and cultivation techniques constitute significant
variables, which affect the quality of the final agricultural product [33–35]. It is, therefore,
important for domain experts to be able to correlate all these relevant data in a simple
and timely way, in an effort to answer intelligence and data competence questions on how
some attributes, such as soil properties, affect product quality and yield. Based on sensor,
farming and phenological data derived from test sites, the domain experts have to be able
to understand the existing correlations and associations between the various types of data.

To improve the identification of relationships between the different data variables
by domain experts, we adapted an existing tool, GaCoVi [36], which is short for Gapped
Correlation Visualisation. To that end, we used a dataset from a vineyard where the
variables are divided into the sensor, farming and phenological variables derived from the
field (i.e., independent variables or features) and those that describe the quality of the final
product (i.e., dependent or target variables). Figure 2a shows the correlation of each feature
derived from the field with each of the target variables that describe the final product
quality. The longer the bar, the higher the correlation strength. The colour encodes the
correlation direction: red indicates a negative correlation, and green a positive correlation.
Figure 2b shows the correlation within the different features derived from the field. The
grayscale encodes the correlation strength. Hovering the cursor on a square displays the
correlation’s direction in its stroke colour (green or red), and reveals a tooltip with the
correlation details. The same tooltip is available by hovering the cursor on any of the bars
in Figure 2a.
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Figure 2. Interface for correlation analysis of multivariate data: (a) the bars showing the correlation of
each feature with each of the target variables; (b) the grayscale showing the strength of the correlation
between the features; (c) toolbar.

Features are ordered in such a way that closer rows have a higher correlation. In most
datasets, this is not perfectly possible, but the visualisation is optimised to minimise the
error [36]. To increase the efficacy of checking how correlated two consecutive rows are,
there is a gap between rows where the bigger the gap, the lower the correlation strength is.
If two consecutive rows are not correlated at all (i.e., correlation is 0), the gap will be the
size of one square. Details on the algorithms that rule the row order and the gaps can be
found in [36].

Finally, features can be removed and restored using the controls in Figure 2c. Remov-
ing features can be helpful when many features are available since it improves the row
ordering of the remaining features, easing the domain expert in identifying relationships
and insights.

The dashboard’s front-end is developed using the Svelte framework [37], Carbon
Components Svelte [38] for the user interface (UI) components, and Vega [26] for the
visualisations. The dashboard requires a separate back-end that calculates the correlations
and optimal row ordering, and exposes an application programming interface (API) for
the front-end to receive the outputs. The back-end is developed in R with data.table [39]
for data wrangling, seriation [40] for the rows ordering algorithm and plumber [41] to
generate the API. The source code for this tool is available at https://github.com/Augme
ntHCI/agriviz_public/tree/main/gacovi (accessed on 1 June 2022).

2.1.2. Analysis of Plant Growth

In agriculture, plant growth and conditions are closely observed to achieve maximal
yield or to understand the effect of growth conditions on plants [42]. Counting leaves of a
plant gives a clear idea of the plant’s health and its current development stage. In addition,
analysing plant growth enables experts to feed agronomic models used in DSSs in precision
agriculture. However, as a large number of plants go through various development stages
under differing conditions, recalling individual plants’ development stages under various
conditions and analysing their growth over time can become a demanding task.

To support the analysis of plant growth at various stages, we built a visual-assisted DSS
that visualises the number of leaves derived from plant images. For our showcase, we used
a dataset that contains images of grapevines in various growth stages, the plants’ genotype,

https://github.com/AugmentHCI/agriviz_public/tree/main/gacovi
https://github.com/AugmentHCI/agriviz_public/tree/main/gacovi
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the experimental condition under which the plants were grown (i.e., well watered, water
deficit, or severe water deficit), the number of leaves counted by human experts and the
number of leaves predicted by a deep learning technique from the images. The deep
learning technique is out of scope in this paper and is therefore not described in detail.

The dashboard visualises the data in a line chart (Figure 3b), where the x- and y-axis
represent the timeline and the number of leaves, respectively. Each line thus represents
a plant’s growth over time. Clicking a data point reveals a popup window (Figure 3c)
showing an image of the corresponding plant from the given date. In this window, users
can add their observation notes in the comment textbox. Users can also compare the real
label (i.e., average number of leaves found by human experts) and predicted label (i.e.,
number of leaves found by the deep learning technique).

Figure 3. Interface for the analysis of plant growth: (a) toolbar; (b) the line graph representing the
plants; (c) a popup window showing an image of the plant captured on the given day.

The toolbar at the top of the interface (Figure 3a) contains functionalities to make
global changes to the interface. From the toolbar, users can filter the plants by genotype
and experimental conditions, switch between the real and predicted leaf count to encode
on the y-axis of the chart and export the selected data after exploration.

The chart is developed using the D3 [25] and D3-tip [43] visualisation libraries.
The interface itself is a web application developed with vanilla JavaScript using the
Micromodal [44], jQuery [45] and Underscore [46] libraries. The source code for this tool is
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available at https://github.com/AugmentHCI/agriviz_public/tree/main/Leaf-Counting
(accessed on 1 June 2022).

2.1.3. Exploratory Analysis of Heterogeneous Data

Organisations often possess large amounts of heterogeneous data from different steps
in the production process (e.g., data on climate, soil, harvest and lab analyses). To filter and
analyse these heterogeneous data, experts need to run complex search queries [47,48]. In
contrast, well-designed data visualisations can immediately show this information, such
that experts can actively explore the data without relying on serendipitous discoveries and
complex search queries.

To support experts in analysing heterogeneous datasets, we developed a dashboard fol-
lowing Shneiderman’s mantra of “overview first, zoom and filter, then details on demand.” [49].
A dataset that contains multiple linked data from grape harvesting to wine making is used
as an example. Figure 4 shows our dashboard, which consists of several components that
serve as visual filters to help explore the complex heterogeneous dataset.

Figure 4. Interface for the exploratory analysis of heterogeneous data: (a) toolbar; (b) parallel
coordinates (see Figure 5 for details); (c) filters (see Figure 6 for details); (d) data table (see Figure 7
for details).

Figure 5. A section of the parallel coordinates from Figure 4b where the brushing technique is
applied to filter the data. Due to linked data, such a filter in the parallel coordinates also affect the
other components.

https://github.com/AugmentHCI/agriviz_public/tree/main/Leaf-Counting
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Figure 6. The filter components from Figure 4c showing that the data can be filtered by Grape Variety,
Year, Wine Colour and Aromas.

Figure 7. The data table from Figure 4d showing the same data as the parallel coordinates.

Parallel coordinates (Figure 4b) are used as the prominent part of the dashboard since
they provide an efficient way to visualise and explore heterogeneous data [50]. The vertical,
equally spaced axes represent the variables of the dataset, and wines are visualised as
connected sets of points, one for each variable on every axis. The data table at the bottom
of the dashboard (Figures 4d and 7) shows the exact values of each wine that appears in
the parallel coordinates.

Brushing [51], also simply known as selecting a subset of data, can be applied on
multiple variables simultaneously in the parallel coordinates. For example, experts can
select wines with a harvest date between 240 and 250 days per year and a fermentation
length between 20 and 40 days (see Figure 5). Experts can also filter the dataset using the
grape variety, harvest year, wine colour and wine aroma (Figures 4c and 6 for details). Wine
aromas are typically noted by experts during the sensory analysis stage of wine making.
A word cloud is used to visualise these aromas, which encodes the frequency of detected
aroma to the size of the words. For example, “balanced” and “bitterness” are the most
frequent aromas in the dataset, hence reflected by their largest sizes in the word cloud.

Thanks to the linked views, for every visual filter applied, either in the parallel
coordinates or in Figure 4c, all other components immediately update to the current
selection. For example, by applying the brushing technique in the parallel coordinates
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Figure 4b, the aromas will also be filtered in Figure 4c. The same constraint also applies to
the data table (Figure 4d).

The toolbar (Figure 4a) provides a number of functions such as (1) enabling/disabling
tooltip, which shows the name of the wine when hovering in the parallel coordinates;
(2) selecting/deselecting the variables to be displayed in the parallel coordinates; and
(3) exporting currently selected data.

The dashboard itself is a web application developed using jQuery [45], Underscore [46],
SlickGrid [52] and parcoords-es [53] libraries. It is styled with Materialize [54], a front-
end framework based on Material Design. The source code for this tool is available at
https://github.com/AugmentHCI/agriviz_public/tree/main/VinetoWine (accessed on
1 June 2022).

2.1.4. Analysis of Water Stress and Irrigation Requirements

Optimising irrigation is one of the practices that has a high economical impact on
the food chain industry [55]. The correct irrigation of the crops is connected to the quality
and quantity of the final product. DSSs can offer valuable information on water stress and
irrigation requirements, combining various data types gathered from weather stations.

We designed a dashboard that allows farmers and agricultural experts to visually in-
spect irrigation data for each lot independently and receive a decision support on irrigation
requirements (see Figure 8). Through the partner institutions, we received (1) real-time
data from sensors such as precipitation, evapotranspiration, available water in soil reser-
voir and water displacement; (2) satellite-derived data such as the Normalised Difference
Water Index (NDWI) and Normalised Difference Vegetation Index (NDVI); and (3) other
calculated data such as water stress levels, water storage capacity of the soil and daily
irrigation amount. These data from different sources are integrated in the dashboard to
offer real-time decision support.

The toolbar at the top of the dashboard (Figure 8a) allows users to configure a number
of settings. First, users can select a lot they wish to inspect. After selecting a lot, they can
select/deselect the sensors and satellite parameters to be visualised in the dashboard. The
expert mode allows users to add additional parameters to analyse, including temperature,
wind and humidity fluctuations. These parameters are hidden from the toolbar by default
to reduce information overload.

The parameters selected in the toolbar are visualised in the chart below (Figure 8b).
Single point values such as usable precipitation are represented with vertical bars in the
chart, while connected data such as evapotranspiration or temperature are represented with
lines. Percentage data such as water storage capacity of the soil and water availability in
the soil reservoir are represented with areas in the chart. Thus, the graph supports multiple
data types with varying units. In addition to these data, the water balance level of the lot is
also highlighted using a gauge in the lower right bottom of the dashboard (Figure 8d). The
water balance level is calculated as H2Disp

AWC · 100, where H2Disp is the available water in soil
reservoir and AWC is the water storage capacity of the soil. The gauge uses thresholds to
provide text-based suggestions on irrigation requirements.

The map widget (Figure 8c) allows users to inspect their lots using satellite parameters
over a longer time period. This widget is provided by Geocledian GmbH https://www.
geocledian.com (accessed on 1 June 2022) and can display heatmap overlays of not just
NDWI and NDVI but also Normalised Difference Red Edge Index normalised difference
red edge index (NDRE1 and NDRE2), Enhanced Vegetation Index (EVI2) and Soil Adjusted
Vegetation Index (SAVI).

https://github.com/AugmentHCI/agriviz_public/tree/main/VinetoWine
https://www.geocledian.com
https://www.geocledian.com
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Figure 8. Interface for the analysis of water stress and irrigation requirements: (a) toolbar; (b) chart
visualising the parameters selected in the toolbar; (c) map widget visualising satellite data for the
selected lot; (d) gauge visualising the water balance level with a text-based irrigation suggestion.

The dashboard is developed using jQuery [45] and Underscore [46] libraries. It is
styled with the Materialize framework [54]. The chart is developed using the D3 library [25]
and the gauge is based on JustGage [56]. The source code for this tool is available at
https://github.com/AugmentHCI/agriviz_public/tree/main/Irrigation (accessed on
1 June 2022).

2.1.5. Analysis of Biological Efficacy in by-Products

Agricultural products often go through multiple stages of processing which produce
various by-products [57]. For both economic and environmental reasons, it is considered
best to extract the most out of agricultural products during multiple stages of processing.
Wine making, for example, produces a lot of by-products [58], which may have a significant
biological value for cosmetics and food supplements. With adequate data and tools, experts
can make informed decisions about the selection of by-products in order to produce high
value-added ingredients for cosmetics and food supplements. This use case focuses on
selecting the best farming by-products for producing natural cosmetics using wine making
as an example scenario.

Grapevine leaves’ biological efficacy and their correlation with weather and satellite
vegetation indices can help in selecting fields or vineyards that could supply the best quality
leaves for next year’s natural cosmetics production. To improve the field selection process
carried out by decision makers, we designed and developed a dashboard that communicates
biological efficacy of grapevine by-products from various fields (see Figure 9). This visual-
assisted DSS contains three main sections. First, Figure 9a allows users to select a laboratory
property and a laboratory extraction method. A bar chart visualises the weather and
satellite vegetation indices that are most correlated with the selected laboratory property.
Second, Figure 9b shows the candidate fields with their last available data for the chosen
laboratory property. By clicking on the bars in Figure 9a, the fields in Figure 9b can be
ordered by available weather and satellite vegetation indices. Finally, the side-panel in
Figure 9c shows extra field details, which is displayed when the user clicks on “View
Details” in Figure 9b. The side-panel contains a map showing the field’s location, the

https://github.com/AugmentHCI/agriviz_public/tree/main/Irrigation
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current and historical weather data or satellite vegetation indices based on what is selected
in the bar chart in Figure 9a, and all the available historical laboratory results of biological
efficacy analysis.

Figure 9. Interface for the analysis of biological efficacy in by-products: (a) by-product extraction
method and correlation visualisation; (b) candidate fields ordered by rain fall; (c) detailed data of a
field selected in (b).

The dashboard is developed using the React framework [59] together with Vega-
Lite [27] for the bar chart visualisation, react-map-gl [60] (a Mapbox GL JS [61] wrapper for
React) for the map component, and Ant Design [62] for the remaining UI components. The
source code for this tool is available at https://github.com/AugmentHCI/agriviz_public/
tree/main/biological-efficacy (accessed on 1 June 2022).

2.1.6. Uncertainty-Aware Price Prediction

Uncertainty plays a central role in data analysis [63] and is relevant in various contexts,
ranging from climate and meteorological studies [64–66] to the interpretation of medical
data [67]. By understanding that point estimates may vary, users can make more informed
decisions. This holds especially when working with DSSs [68], so visualising their uncer-
tainty is crucial. However, in agriculture, the application of uncertainty visualisations is
limited [9]. Therefore, there is a need for more uncertainty-aware applications such as
CropGIS [29], which visualises the biomass development of maize under various uncertain
meteorological conditions.

Selling prices of agricultural products are also prone to uncertainty [69], as they
are affected by many factors, including economic events, meteorological fluctuations
and political decisions. Therefore, predictive statistical methods and machine learning
models should capture this uncertainty, and their prediction outcomes should be visualised
accordingly. To meet the latter requirement, we developed an interactive uncertainty-aware
dashboard with which users can explore an extensive dataset of product prices in European
countries, along with a forecast of their evolution.

The dashboard consists of a classical line chart (see Figure 10b), which shows the
historical price evolution of a food product in one or more countries. Users can change the
product, and add or remove countries via autocomplete drop-down lists at the top of the
dashboard (Figure 10a). It is possible to compare multiple countries simultaneously, and to
get details on demand by hovering over the chart.

https://github.com/AugmentHCI/agriviz_public/tree/main/biological-efficacy
https://github.com/AugmentHCI/agriviz_public/tree/main/biological-efficacy
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Figure 10. Interface for uncertainty-aware price prediction: (a) toolbar; (b) price data for the product
and countries selected in toolbar; (c) visualisation settings.

In addition, by clicking the checkboxes at the bottom of the dashboard, as shown
in Figure 10c,c.1, users can enrich the visualisation with four extra components related
to prediction and uncertainty. First, a dashed line indicates the predicted price for five
years after the last known data point. For demonstration, this prediction is made via linear
regression. Second, the uncertainty of the future prediction is visualised as fans; shaded
areas corresponding to prediction intervals (50–95% in steps of 5, and 99%), which can
be hovered over to see details about their upper and lower bounds at a specific date, as
shown in Figure 10b.1. The lighter the colour, the farther away from the predicted price.
Third, a dashed past fit line demonstrates the prediction model’s approximation of the
historical product prices. Fourth, the past uncertainty is visualised as fans, similar to the
future uncertainty.

The freedom to activate any combination of components allows users to gain different
insights. For example, combining past data, future prediction and future uncertainty gives
a fine-grained idea of the future price evolution, while communicating how reliable specific
values are. Alternatively, the past data, past fit and past uncertainty together express the
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accuracy of the prediction model for the known historical data. Finally, only combining the
past fit and future uncertainty allows to analyse main trends in price changes.

The dashboard is developed using the React framework [59] together with the D3
library [25]. The linear regression model and uncertainty intervals are implemented in R.
The source code for this tool is available at https://github.com/AugmentHCI/agriviz_p
ublic/tree/main/product-prices (accessed on 1 June 2022).

2.2. Evaluation Procedure

Following the research approach in Human-Computer Interaction [70], the interfaces
were evaluated by target users who were either clients or researchers at the respective indus-
tries and research institutes with which the use cases were developed. The demographics
of the participants are described further under each subsection in Figure 3.

Figure 11 shows an overview of the evaluation procedure. In every use case, par-
ticipants first filled out a demographics questionnaire that captured their age, gender,
occupation, education, and openness towards new technology. We then briefly introduced
them to the tool under evaluation and explained its purpose. Next, participants performed
a number of predefined tasks in the tool, and after they completed those successfully
and had no further questions, a set of questionnaires or a semi-structured interview was
administered, depending on the use case.

Figure 11. An overview of the evaluation procedure.

Table 1 presents an overview of all metrics used in the evaluations. For the first five
use cases, we measured usability, workload and acceptance with the System Usability
Scale (SUS) [71], the NASA Task Load Index (NASA-TLX) [72], and select questions from
the Unified Theory of Acceptance and Use of Technology (UTAUT) [73], respectively. To
capture additional usability feedback from the participants, we also added an optional
open-ended question to the first five use cases. The SUS questionnaire contains a set of
10 questions with 5 response options, from Strongly agree to Strongly disagree [74]. The
SUS score can range from 0 (negative) to 100 (positive) [75]. Previous work has proposed
a number of ways to interpret the SUS score [76]. For example, according to Sauro [77], a
SUS score of 68 is considered average, meaning it is at the 50th percentile. Bangor et al. [75]
proposed a method that is easier for non-human factor experts to interpret in terms of
adjectives such as “poor”, “okay”, “good” or “excellent” (see Figure 12). We used the
method of Bangor et al. to interpret the SUS scores in this paper.

https://github.com/AugmentHCI/agriviz_public/tree/main/product-prices
https://github.com/AugmentHCI/agriviz_public/tree/main/product-prices
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Figure 12. Adjective rating scale for the SUS score showing different regions ranging from ‘worst
imaginable’ to ‘best imaginable’ [75].

NASA-TLX contains a set of six questions for six dimensions, designed to obtain
workload estimates from users. The dimensions are mental demand, physical demand,
temporal demand, overall performance, effort and frustration level. While the original
approach to analyse NASA-TLX was to generate a single overall workload score, we
analyse and present the responses to individual dimension instead, which is also a common
practise [72]. In addition, we also reduced the original 100-points range to a 10-points
range while still allowing the participants to indicate the task load from very low (1) to
very high (10). The UTAUT questionnaire contains four key dimensions: performance
expectancy, effort expectancy, social influence and facilitating conditions. According to
Venkatesh et al. [73], performance expectancy refers to “the degree to which an individual
believes that using the system will help them attain gains in job performance”. Social
influence refers to “the degree to which an individual perceives that important others
believe they should use the new system”. Effort expectancy refers to “the degree of ease
associated with the use of the system”. Facilitating conditions refers to “the degree to which
an individual believes that an organisational and technical infrastructure exists to support
the use of the system”. While these dimensions, together with gender, age, experience and
voluntariness of use, were originally used to model usage intention and behaviour of users,
we analysed each of the four dimensions separately to focus on the users’ current situations.

Table 1. Use cases and respective evaluation metrics.

Use Cases Metrics

Correlation analysis of multivariate data SUS, NASA-TLX and UTAUT
Analysis of plant growth SUS, NASA-TLX and UTAUT
Exploratory analysis of heterogeneous data SUS, NASA-TLX and UTAUT
Analysis of water stress and irrigation requirements SUS, NASA-TLX and UTAUT
Analysis of biological efficacy in by-products SUS, NASA-TLX and UTAUT

Uncertainty-aware price prediction Semi-structured interview focusing on usabil-
ity and trust

SUS = System Usability Scale [71]; NASA-TLX = NASA Task Load Index [72]; UTAUT = Unified Theory of
Acceptance and Use of Technology [73].

For the last use case, we investigated usability and user trust using a semi-structured
interview. The interview responses were recorded, and later transcribed and analysed
thematically. The questions were as follows:

• What do you see while you are using the tool? What strikes you?
• Do you trust the prediction model? Which parts of the visualisation made you say that?
• Is it clear how the prediction model works? Which parts of the visualisation made you

say that? Would you like to explore other things to get insights in the prediction model?
• Would you use this visualisation for your job activities? If no, do you think we

can change the visualisation such that it would be more useful? If yes, does the
visualisation contain enough information to fulfil these activities?
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3. Results
3.1. Correlation Analysis of Multivariate Data

The interface developed for this use case can be found in Figure 2. It was evaluated
by sixteen participants from various agricultural industries, including vine growers, wine
makers, agronomists, oenologists and researchers. Most participants were male (62.5%),
had a postgraduate degree (62.5%), were 18–44 years old (37.5%) and reported to be
open to try out new technology (81.3%). Half of the participants were also familiar with
statistical correlation.

Figure 13 shows the distribution of SUS scores among the participants. As described
earlier, we used the adjective rating scale of Bangor et al. [75] to interpret the SUS score (see
Figure 12). Although most of the responses were skewing towards a higher score, the mean
score for this interface was 61.7 (standard deviation (SD) = 14.7), which on the adjective
rating scale is between OK and GOOD.

Figure 13. SUS scores of the interface developed for the correlation analysis of multivariate data use case.
The X-axis indicates a certain range of the score. The Y-axis indicates the number of participants who
gave the score within the range.

Figure 14 shows the NASA-TLX results. The perceived mental demand, temporal
demand and effort were quite high, but the perceived performance received the highest
score among all six subscales, which indicates that participants were satisfied with their
performance despite the high mental and temporal demand and effort. Responses to the
open-ended question indicated that four of the participants found the tool to be complex
and required some time to understand it well. At the same time, they acknowledged that
the tool “has the potential to become even more useful on a practical level” (p1.8). To improve
user understanding, additional explanations for various components should be added to
the tool. One participant suggested that a textual explanation of the correlated variables
would be useful. Another participant mentioned that the variables could be sorted by their
correlation strength and importance to the use case.

Figure 15 shows that, in terms of user acceptance captured by the UTAUT ques-
tionnaire, most participants agreed with the effort expectancy and facilitating conditions
constructs. However, they disagreed with the performance expectancy construct and gave
neutral answers for the social influence construct. Half of the participants reported that
the tool does not yet allow them to accomplish tasks more quickly, although the majority
reported that the tool would be useful for their job.
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Figure 14. A boxplot of the NASA-TLX results for the correlation analysis of multivariate data use case.
Each of the six subscales was captured with a 10-points continuous scale from very low (1) to very high
(10). The X-axis indicates the sub-dimensions of the score. The Y-axis indicates the statistics for each
sub-dimension.

Figure 15. The UTAUT questionnaire results for the correlation analysis of multivariate data use case.
Each coloured section indicates the number of participants who responded between ‘strongly disagree’
and ‘strongly agree’ (i.e., frequency).

3.2. Analysis of Plant Growth

The interface developed for this use case can be found in Figure 3. It was evaluated
by fifteen participants from the wine industry: vine growers, engineers, consultants, re-
searchers working on viticulture and winemaking and one head of a cooperative winery.
Most participants were male (73.3%) and postgraduate (80%), and almost half of them were
55–64 years old (46.7%). The majority of the participants also reported to be open to try
new technology (93.4%).

The mean SUS score for this tool was 65.8 (SD = 10.6), which puts it in the region
between OK and GOOD. The SUS score distribution in Figure 16 shows that only one-third
(5/15) of the participants gave a score above 73 (i.e., above GOOD). No feedback was
received for the open-ended question.
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Figure 16. SUS scores of the interface developed for the analysis of plant growth use case. The X-axis
indicates a certain range of the score. The Y-axis indicates the number of participants who gave the
score within the range.

The NASA-TLX results in Figure 17 show that performance received the highest score
among all six subscales, indicating that participants were satisfied with their performance.
The rest of the subscales received lower scores (i.e., below 5 out of 10 points), which
indicates that mental, physical and temporal demands, effort and frustration were quite
low for this tool.

Figure 17. A boxplot of the NASA-TLX result for the analysis of plant growth use case. Each of the six
subscales was captured with a 10-point continuous scale from very low (1) to very high (10). The X-axis
indicates the sub-dimensions of the score. The Y-axis indicates the statistics for each sub-dimension.

The UTAUT results in Figure 18 reflect that effort expectancy received a high score,
meaning the tool was easy to use and understand. The same holds for facilitating conditions,
showing that participants had the necessary knowledge and resources to use the tool.
Interestingly, the social influence construct received a large number of neutral responses. It
appears that the participants were uncertain about the potential reception of the tool from
their organisation or senior management team.
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Figure 18. The UTAUT questionnaire results for the analysis of plant growth use case. Each coloured
section indicates the number of participants who responded between ‘strongly disagree’ and ‘strongly
agree’ (i.e., frequency).

3.3. Exploratory Analysis of Heterogeneous Data

The interface developed for this use case can be found in Figure 4. The participants
for this use case were identical to the ones from the ‘Analysis of Plant Growth’ use case in
Section 3.2. However, one participant did not complete the evaluation, which left this use
case with fourteen participants.

This tool obtained a mean SUS score of 68.2 (SD = 15.9), which puts it in a slightly
higher region between OK and GOOD. The score distribution in Figure 19 tells us that most
participants (10/14) gave a score between 52 and 73. No feedback was received for the
open-ended question.

Figure 19. SUS scores of the interface developed for the exploratory analysis of heterogeneous data use
case. The X-axis indicates a certain range of the score. The Y-axis indicates the number of participants
who gave the score within the range.

The NASA-TLX results in Figure 20 are quite similar to those of the previous use case:
the performance subscale again received the highest score, indicating that most participants
were satisfied with their performance. The other five subscales received quite low scores.
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Figure 20. A boxplot of the NASA-TLX result for the exploratory analysis of heterogeneous data use case.
Each of the six subscales was captured with a 10-points continuous scale from very low (1) to very high
(10). The X-axis indicates the sub-dimensions of the score. The Y-axis indicates the statistics for each
sub-dimension.

The UTAUT results in Figure 21 show that almost all participants believed the tool to
be useful for their job, but most felt uncertain about whether the tool would enable them to
accomplish tasks more quickly or increase the chance of getting a raise. Most participants
also responded positively in the effort expectancy construct, which indicates that the tool
was easy to use and understand. The social influence construct again received quite a lot of
neutral responses.

Figure 21. The UTAUT questionnaire result for the exploratory analysis of heterogeneous data use
case. Each coloured section indicates the number of participants who responded between ‘strongly
disagree’ and ‘strongly agree’ (i.e., frequency).

3.4. Analysis of Water Stress and Irrigation Requirements

The interface developed for this use case can be found in Figure 8. Sixteen participants
evaluated this interface, who were wine makers, farmers, researchers, software engineers
and agronomists. Most participants were male (75%), graduate (56.3%) and 18–34 (31.3%)
or 45–54 (31.3%) years old. Almost three quarters of the participants reported to be open to
try new technology (68.8%).
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This tool received a mean score of 64.4 (SD = 14.1), which puts it in the middle
percentile in the region between OK and GOOD. The score distribution in Figure 22 tells
us that almost half of the participants (7/16) gave a score between 52 and 73. Among the
remaining nine, five participants gave a score above 73 and the rest below 52. No feedback
was received for the open-ended question.

Figure 22. SUS scores of the interface developed for the analysis of water stress and irrigation requirements
use case. The X-axis indicates a certain range of the score. The Y-axis indicates the number of
participants who gave the score within the range.

From the NASA-TLX result, we found that this tool requires slightly high mental
demand, temporal demand and effort (see Figure 23). Perhaps related to these, the partici-
pants’ frustration was also high despite having increased perceived performance scores.

Figure 23. A boxplot of the NASA-TLX result for the analysis of water stress and irrigation requirements
use case. Each of the six subscales was captured with a 10-point continuous scale from very low (1) to
very high (10). The X axis indicates the sub-dimensions of the score. The Y-axis indicates the statistics
for each sub-dimension.

Looking at the UTAUT result, however, we did not find many negative responses (see
Figure 24). The social influence construct received quite a number of neutral responses.
The result of this construct is consistent with the previous use cases. Interestingly, 13 out of
16 participants disagreed that the tool is incompatible with other tools they use. Thus, the
compatibility of this tool appears to be good.
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Figure 24. The UTAUT questionnaire result for the analysis of water stress and irrigation requirements use
case. Each coloured section indicates the number of participants who responded between ‘strongly
disagree’ and ‘strongly agree’ (i.e., frequency).

3.5. Analysis of Biological Efficacy in By-Products

The interface developed for this use case can be found in Figure 9. Fifteen participants
evaluated this interface; ten of them were active in the natural cosmetics industry, four
in research on grapevine-related disciplines and one in winery. Slightly over half of the
participants were females (53.3%), post-graduates (66.7%) and between 35–44 (60%) years
old. Almost all participants reported to be open to try new technology (86.7%).

This tool, among the rest, received the highest SUS score with a mean of 75.2 and a
standard deviation of 11.3 putting it in the the region between GOOD and EXCELLENT.
Looking at the score distribution in Figure 25, we found that none of the participants rated
this tool below 52. Besides, over half of the participants (9/15) gave a score above 73 (i.e.,
above the GOOD region). No feedback was received for the open-ended question.

Figure 25. SUS scores of the interface developed for the analysis of biological efficacy in by-products use
case. The X-axis indicates a certain range of the score. The Y-axis indicates the number of participants
who gave the score within the range.

The NASA-TLX result shows that, in general, the tool had low mental, physical and
temporal demands, effort and frustration although a few participants reported slightly
higher mental demand and effort (see Figure 26). On the other hand, the perceived
performance of the tool was quite high.
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Figure 26. A boxplot of the NASA-TLX result for the analysis of biological efficacy in by-products use
case. Each of the six subscales was captured with a 10-point continuous scale from very low (1) to very
high (10). The X-axis indicates the sub-dimensions of the score. The Y-axis indicates the statistics for
each sub-dimension.

The UTAUT result also shows that very few negative responses were reported in all of
the four constructs (see Figure 27). However, there are still quite a large number of neutral
responses for the social influence construct. The same is true for the incompatibility with
other tools where almost half of the participants gave a neutral response. At the same
time, the same amount of participants also disagreed with the incompatibility of the tool,
indicating that for almost half of the participants this tool would be compatible with other
tools they use.

Figure 27. The UTAUT questionnaire result for the analysis of biological efficacy in by-products use
case. Each coloured section indicates the number of participants who responded between ‘strongly
disagree’ and ‘strongly agree’ (i.e., frequency).

3.6. Uncertainty-Aware Price Prediction

The interface developed for this use case can be found in Figure 10. Nine participants
evaluated this interface; one participant was active in the financial sector whereas all other
participants were active in a sector related to the food industry. All participants were
male and held a post-graduate degree, and the majority reported to be open to trying
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new technology (70%). A thematic analysis of the transcribed semi-structured interviews
resulted in three main themes, which are presented in the following subsections.

3.6.1. A Useful and Generic Tool

Even though analysing price evolution and predicting prices was not part of most
participants’ job activities, eight participants mentioned that (parts of) the visualisation
or a similar variant could be useful for their current job activities or for their sector in
general. For example, participants explained: “It is a good tool for the food industry. It helps
food companies to predict prices.” (p 5.2) and “Exploring the past data is interesting because it
allows to adapt strategies to different policies. [. . . ] I suppose that people who take decisions on
different levels would use this instrument to investigate particular markets.” (p 5.4).

The tool is also deemed useful for the financial sector. Changing the dataset would al-
low similar analyses within the same visualisation. For instance, one participant described:

“It’s a tool that I would use to predict future pricing. [. . . ] I like it, I would definitely use it. Not for
pricing in particular but rather for interest rates, for which [the visualisation] can be used because
the basic idea is the same. That would help me make better business decisions: low interest rates are
an incentive to spend more money, high interest rates to save more money.” (p 5.8)

3.6.2. Trust in Prediction Tools Is Multi-Faceted

Trust in the prediction model can be influenced by many factors. Users are less likely
to make important business decisions if they do not trust the model outputs. To trust a
model, participants described that it is first important to know where the data originated
from and whether it is of good quality. In addition, trust can be influenced by the assumed
expertise of the model developers, and whether they are associated with an official body.
For example, participants explained: “I generally accept the given information—the evolution,
the approach—as I suppose that the developers have the competence to develop a prediction model so I
can trust it.” (p 5.4) and “If this prediction comes from an official body then it could be more reliable
because it would be the fruit of a convergent opinion of different predicting scientists“ (p 5.5).

Next, participants also reported that the background information about the prediction
model is required to gain trust. For example, a participant explained: “In order to trust the
prediction model, I need to know how it was developed and how the model uses the raw data in order
to make a prediction.” (p 5.1). Similarly, another participant explained: “It is very critical to
me to understand what other factors the model takes into account to make such a strong increasing
claim, for example climate change or geopolitical considerations that can influence the price. Since I
do not know these, I cannot trust the model.” (p 5.3).

Interestingly, having clear visualisations with the ability to compare countries led to
increased trust. For instance, one participant mentioned, “With more countries [enabled], I
would feel more confident and trust the predictions more because I would have something to compare
the results.” (p5.7). This is most likely due to the belief that countries with historically
similar prices should also have similar predictions. A participant reported: “Historically, the
price in France is closely linked to the Netherlands, so I expect that the actual price went down like
in the Netherlands.” (p 5.1).

Related to the visualisation aspect, participants also stressed the importance of uncer-
tainty components: “[Adding uncertainty] is more reasonable, because when we need to predict
something, there is always uncertainty. This is what I would expect.” (p5.1). Another participant
described: “The past uncertainty makes the tool a bit more reliable. [. . . ] without uncertainty it
would be less reliable.” (p 5.2).

3.6.3. Usability

The visualisation and its main goal were clear to all participants. One of them de-
scribed: “It is very easy to understand the aim of the tool. [. . . ] The tool has a particular aim:
evaluate past and future in terms of price.” (p 5.4). Participants also pointed out a usability
issue: when showing the data for multiple countries simultaneously, the visualisation could
become confusing. For instance, “It causes some problems in the visualisation such as [overlap]
especially when adding more countries.” (p 5.5). However, it was acknowledged that “With
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more [than two] countries it is a little confusing because of all the colours, but in the end the user
decides how many countries are visible.” (p 5.2).

4. Discussion

In this paper, we introduced reference visualisation libraries, visual analytic compo-
nents and an interactive framework to support rapid prototyping and the development
of common interfaces, a crucial gap in precision agriculture [11]. To demonstrate their
applicability, we presented six visual-assisted DSSs for six use cases that represent some of
the most critical and timely decision support tasks in agriculture. These DSSs are different
from the previous tools in that they use common visualisation libraries, visual analytic com-
ponents and an interactive framework, while supporting highly diverse use cases. Next,
we demonstrated a user-centred evaluation technique and its relevance in understanding
end-users and ultimately in improving the tools.

In terms of usability, results from the SUS questionnaire have shown that the tools
received mean scores ranging from 61.7 to 75.2. According to the adjective rating scale of
Bangor et al. [75], usability of the proposed tools fell in the regions higher than 52, the OK
margin (see Figure 12). Looking at the distribution of the scores (Figures 13, 16, 19, 22 and 25),
we found that the majority of participants gave scores of above 52 (the OK margin on the
adjective rating scale) in all of the tools. The lower mean scores were contributed by a small
percentage of participants. For instance, in the Correlation Analysis of Multivariate Data use case
which received the lowest SUS score, 3 out of 16 participants gave scores lower than 52.

Even though the mean scores, according to the adjective rating scale, indicate that
they are in the OK and higher regions, should be pointed out that the adjective rating scale
is just one of many ways of interpreting the SUS score [75]. For example, according to
Sauro [77], a SUS score below 68 is considered below average. The SUS score allows us
to quickly detect usability issues. However, it should not be used solely to make absolute
judgements about the “goodness” of a system [71]. How usable a system is should be
determined by factors such as success rate and the type of the failures observed when the
system was tested [75]. Additional feedback from participants and context often provide a
better understanding of the underlying usability issues. As shown by the final use case,
interviews are a great method to activate the participants to provide elaborate feedback.
One should also consider that interviews are often resource intensive requiring additional
time from both participants and researchers.

We used NASA-TLX and UTAUT questionnaires in the first five use cases to gain more
insights into the perceptions of workload and acceptance of the tools. The NASA-TLX
results showed that most of the tools presented in this work required slightly high mental
demand, temporal demand and effort. Therefore, the participants felt that a slightly high
(1) mental and perceptual activity, (2) rapid pace (due to time pressure) and (3) mental
and physical effort was required when using the tools. These should be addressed by
providing intuitive explanations of various components in the interface and reiterating the
development cycle taking into account the expectation, interpretation and knowledge of the
target users [78]. While the tools presented in this work were designed with particular use
cases in mind, their contributions are with the ability to customise and the demonstrations
of interactive visualisation components in various agricultural use cases.

Interestingly, despite a slightly high mental demand, temporal demand and effort, the
participants’ frustration was generally low. Among all the tools, the one designed for the
analysis of water stress and irrigation requirements use case (see Figure 8) had a slightly higher
frustration. Regardless, the participants reported high perceived performance scores across
the tools. The UTAUT results showed that the effort expectancy construct received constantly
higher scores, which indicates that the tools were easy to use and understand. On the other
hand, the social influence construct received a large number of neutral scores. Therefore, in
almost all cases, the participants were uncertain about the potential reception of the tool
from their organisation or senior management team. A recent meta-analysis has shown
that perceived profitability is a driving factor for the adoption of precision agriculture tools
tey2022meta. Therefore, for practical application and adoption of any given tool, one should
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consider involving multiple stakeholders from the target organisations and management
teams. Following a participatory design approach could allow all the stakeholders to steer
the development process [79]. The UTAUT results also showed that the participants were
divided between being positive and neutral about the compatibility of the tools with other
tools they use. The compatibility of a tool with the existing infrastructure may depend on
the way data is processed and the technology being used. Given the flexibility of the visual
analytic components and visualisation libraries introduced in this paper, the proposed
DSSs can also be easily customised to improve their compatibility.

As this paper is the first attempt to demonstrate the applicability of reference vi-
sualisation libraries, visual analytic components and an interactive framework, it is not
without limitations. First, the DSS designed for each use case was evaluated for the first
time with end-users who had varying backgrounds and expectations. Thus, additional
iterations will help improve usability of the tools and meet the specific requirements of the
end-users. Second, recruiting participants for evaluation has proven to be a difficult task in
this domain. Most of the end-users, who were the clients of the industries and research
institutes we collaborated with, had limited time during the time frame of this research.
With more time, focus group interviews with all end-users would have provided us with a
better understanding of their specific requirements.

5. Conclusions

Despite a large number of DSSs proposed for the domain of precision agriculture,
there is a lack of common interfaces, reference systems and frameworks to guide the devel-
opment of DSSs [4,11] Besides, the practice of user-centred evaluation of DSSs is limited
in this domain. To address these gaps, in this paper, we proposed a number of visual
analytic components, open-source visualisation libraries and an interaction framework.
We then demonstrated the applicability of these components, libraries and frameworks
by developing six visual-assisted DSSs in various agricultural use cases. Using the ex-
perts from various agricultural domains as participants, we evaluated the tools focusing
on usability, workload, acceptance and trust. The results showed that in terms of usability,
measured by the SUS questionnaire [74], the proposed DSSs achieved acceptable usability
scores by obtaining OK, GOOD and EXCELLENT ratings on the adjective rating scale [75].
The NASA-TLX [72] results showed that despite having a slightly high mental demand,
temporal demand and effort, the perceived performance by the participants was high with the
systems. The UTAUT questionnaire [73] showed that the systems were easy to use and un-
derstand, but the participants were uncertain about the potential reception of the tool from
their organisation or senior management team. Source code for all the systems proposed
in this work are also published so that they can be adapted and improved further. In the
future, we intend to reuse the proposed components, libraries and interaction framework
to create a flexible dashboard that allows non-technical users to explore heterogeneous
datasets by calling interconnected visualisation components.
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