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Direct observations of causal links in plastic events and relevance to earthquake seismology
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Earthquakes are complex physical processes driven by stick-slip motion on a sliding fault. After the main
event, a series of aftershocks is usually observed. The latter are loosely defined as earthquakes that follow a
parent event and occur within a prescribed space-time window. In seismology, it is currently not possible to
establish an unambiguous causal relation between events, and the nearest-neighbor metric is commonly used to
distinguish aftershocks from independent events. Here, we employ a soft-glass model as a proxy for earthquake
dynamics, previously shown to be able to correctly reproduce the phenomenology of earthquakes, together with
a technique that allows us to clearly separate independent and triggered events. We show that aftershocks in our
plastic event catalog follow Omori’s law with slopes depending on the triggering mode, an observation possibly
useful for seismology. Finally, we confirm that the nearest-neighbor metric is indeed effective in separating
independent events from aftershocks.
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I. INTRODUCTION

Aftershocks are earthquakes that follow a given event and
occur within prescribed space-time windows. The notion of
aftershocks, therefore, implies causality. Separate fields of
science dealing with dynamical systems treat causality very
differently, varying from a theoretical notion in physics [1]
to a common-sense approach in the legal domain [2], via a
complex system analysis in epidemiology [3] to name just
a few. Establishing causality between events can take the
form of direct perception, logical reasoning, or statistical tests
of varying sophistication. In certain cases, after the careful
exclusion of confounding variables, one observes that when a
certain action/event occurs, another event always occurs later
in time, and when the former event is missing, the latter never
occurs. This can be labeled as direct evidence of causality.
When the elimination of confounding variables is not easy, or
a direct observation of the dynamic processes is not possible,
one is often forced to resort to statistical testing, which neces-
sarily involves ad hoc thresholds, above which causal claims
can be made. In this paper, we will present direct observations
of causal links between plastic events in a soft glass, which
has been shown to be a good proxy for earthquakes [4]. While
the statistics of plastic and tectonic events are the same, we
note however that this does not suggest a common underlying
process.
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Earthquakes cluster in the space-time-magnitude domain,
which is most readily observed by sequences of aftershocks
said to be triggered by a prior main event. The rate of occur-
rence of aftershocks follows the well-known Omori law [5].
The causal link implied between a mainshock and aftershock
is assumed to be through static or dynamic triggering [6],
but the direct observation of this link via relevant dynamic
variables inside the Earth remains elusive. The techniques to
identify aftershocks have included space-time window-based
approaches [7–9], stochastic declustering of earthquakes mod-
eled as a point process [10], evolving random graphs [11],
machine learning techniques such as diffusion maps [12] and
neural networks [13], and a nearest-neighbor (NN) rescaled
space-time-magnitude metric [14,15]. This last method has
seen wider adoption in seismology [4,16–20]. The NN metric
combines the phenomenological Gutenberg-Richter (GR) law
with the fact that earthquake epicenters have a fractal distribu-
tion and is an estimate of the number of expected events within
a certain radius, time, and magnitude range [14]. The prob-
ability distribution of this NN measure is close to bimodal,
with one mode corresponding to that of a Poissonian field and
the other to clustered events. Our unambiguous causal catalog
of aftershocks exhibits two triggering modes, each following
Omori’s law with a distinct slope. Furthermore, by applying
the NN measure to our catalog, we provide a validation to this
widely used statistical declustering tool in seismology.

In this paper we first present a means of establishing
causality by the direct observation of mainshocks and after-
shocks, then we check whether aftershocks in our catalog
follow Omori’s law, and finally whether the NN measure is in-
deed a valid tool to decluster parent-child catalogs. The aim of
this paper is not to investigate the underlying mechanisms nor
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FIG. 1. (a) Density field of our binary fluid soft glass with drops
of one component dispersed at a high packing fraction in the other.
The geometrical shape of a quartet of neighboring drops about to
undergo a topological rearrangement is extracted. Each drop is sub-
jected to a vibratory forcing along an axis from the drop’s center to
the quartet’s center of mass, thus turning the local potential energy
hill into a valley and arresting the droplets. (b) Schematic approach
for establishing causality. A simulation labeled the “parent” is run
and events are identified. To find the causal aftershocks of a given
event, a “child” simulation where this event is arrested is run starting
from a checkpoint of the LB population just prior to said event. All
subsequent events, which are present in the parent timeline but miss-
ing from the child timeline, are labeled aftershocks or, if otherwise,
independent. Figure reproduced from the author’s own work [25].

the physical origins of the observations, but to report observa-
tions that confirm that NN allows one to separate mainshocks
and aftershocks and that different triggering mechanisms very
likely result in different Omori slopes.

II. METHOD

To investigate event causality, we adopt a numerical
scheme based on a multicomponent lattice Boltzmann (LB)
method [21], which we have shown to be a good in sil-
ico earthquake proxy [4]. We briefly describe the method
here. Our system comprises a binary fluid, with compet-
ing long- and short-range inter- and intrafluid interactions
which promote frustration of the interface. At higher packing
fractions, glassy dynamics sets in with very long relaxation
times resulting in a soft glass [see Fig. 1(a)], aging behavior
[21], and Herschel-Bulkley rheology [22]. The system relaxes
through irreversible topological rearrangements of neighbor-
ing droplets which deform plastically. These plastic events,
always comprising four droplets (a quartet) in two dimensions
(2D), radiate a part of the released energy away from the site

and are accompanied by stress drops [23]. When experiencing
a Couette shear slightly below the yield stress, the system
exhibits a long-range correlation in stress and the plastic event
sizes, duration, and interevent times follow well-established
empirical seismic scaling laws [4,24].

Our method for establishing direct causality is sketched in
Fig. 1(b). We first run our LB simulation with regular check-
points of the LB populations and collect plastic event data, and
this simulation run is labeled the “parent run.” For each event
identified in the parent run, we rerun another LB simulation
called the “child run” where the simulation is restarted from a
checkpoint just prior to a target event, and where that event
is stopped from occurring. We then check to see how the
downstream dynamics differ in the child run—specifically
which events from the parent run disappear and which remain
the same.

In Ref. [25] we presented a method to stop a plastic event
from occurring inspired by the stabilization of the Kapitza
pendulum. Kapitza [26] showed that fast vibrations with a
small amplitude could stabilize an inverted pendulum by sep-
arating the resulting vibrations into slow and fast components.
Here, the term fast is relative to the natural frequency of the
system which is slower. Kapitza then showed that the faster
vibrations effectively modified the local potential landscape so
that the vertical position became a point of stable equilibrium.
In a similar vein, we applied small fast vibrations to the quartet
of drops about to undergo a plastic event. This lowered the
local potential energy hill, and since events only occur as a
way to release energy, this prevented the event from occurring.
This topological arrest of a quartet required modifications to
the usual LB scheme as

f ∗ = (1 − ε)

(
f − 1

τ
( f − f eq ) + F

)
︸ ︷︷ ︸

Normal LB update

+ ε( f eq−Arrest ). (1)

The normal LB update is highlighted, with f representing
the LB population distribution, τ being the time to relax to
the local Maxwellian equilibrium f eq, and F is the intra- and
intermolecular forcing term. Just putting F to zero will not
provide the desired clean catalog due to aging [21]. We mod-
ify this and introduce the term f eq−Arrest, which corresponds
to the equilibrium population distributions of the set of points
making up the droplet quartet immediately prior to the event,
and a scalar ε which is a spatiotemporal function—spatially
it takes the value of unity at the points belonging to the drop
quartet and zero elsewhere while the temporal part is periodic
with magnitude between 0 and 1. In effect what is achieved is
an operation where the quartet is frozen in time and space, i.e.,
arrested and then released periodically. This can be visualized
in Fig. 1(a) by imagining the four drops to be vibrating along
an axis connecting their individual center of mass and the
collective center of mass of the quartet. The amplitude of the
vibrations is very small and is of the order of the random
diffusive current in the interface, and we have demonstrated
in Ref. [25] that this technique does not disturb neighboring
drops and allows us to achieve a “clean” arrest of an event.
Whenever we stop an event there is a stress redistribution, and
given a sufficiently large amount of time, some new events
will be created. We took care to ensure that for the duration
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for which we have gathered statistics, no new events were
present.

Using the modified LB scheme, we built a database of
event sequences with the aim to analyze a large number of
these sequences to extract causal relations. In this database,
each event is associated to two simulations: a parent run where
the event occurs and a child run where the event has been
prevented from occurring. The criteria for classifying event
pairs as being either causally connected or independent is
as follows: Those events from the parent timeline which do
not occur in the child timeline subsequent to a plastic event
having been stopped, are said to be causally connected or
in the language of seismology are aftershocks. On the other
hand, those events from the parent timeline which reoccur at
the exact same time and location in the child timeline despite
the plastic event being stopped, are said to be independent
events. The premise behind the above classification is simple.
A change in the local topology due to a parent event manifests
itself as a propagating disturbance and becomes the cause for
triggering those events which have now disappeared after the
parent has been stopped. In a similar vein, independent events
have their origin in other factors but not the stopped event. All
event pairs in our database are classified accordingly, yielding
1310 event-aftershock pairs. When a single event has multiple
aftershocks we call it an aftershock sequence. Some sequences
have several events and the causal chain can span a long time
duration (up to 400k timesteps), while in other cases the chain
terminates more quickly (30k timesteps).

III. RESULTS

For every sequence or causal chain in our database, we cal-
culated the time elapsed between the parent event and its child
(aftershock) and this time difference is used to fit Omori’s law.
Omori’s law, originating in seismology, as shown in Eq. (2),
states that the rate r of aftershocks resulting from a parent
earthquake scales roughly with the inverse of time. In prac-
tice, from earthquake catalogs it has been estimated that the
exponent p ∈ [0.8, 1.5] with productivity k and time delay c
being constant for a given system [5],

r = k

(c + t )p
, (2)

where t is the time elapsed since the parent event. Given
that we have access to the precise occurrence times of
events and their aftershocks, evaluating the aftershock rate
is straightforward. Inferring the three parameters in Omori’s
law, however, is an ill-posed optimization problem full of
trade-offs. We opted for a Bayesian estimation [27], including
a reparametrization, which separates the determination of the
productivity k from the shape parameters p and c. Further-
more, in this reformulation, the shortest and longest elapsed
times between parent and aftershock in the catalog determine
a large part of the uncertainty in the shape parameters [27].
The advantage of the Bayesian analysis is that the formula-
tion works directly with the occurrence times without having
to construct r, which is not directly observed. It measures
the degree of belief we have in Eq. (2) given some prior
information. The prior we used is a noninformative Jeffreys
prior on the reformulated productivity, p = 1 and c = 1/cmax,

FIG. 2. Left panel: Aftershock rate against the time elapsed since
the parent event. The observed rate (red circles) is derived from the
histogram of our complete catalog of 1310 parent-aftershock pairs.
The blue line corresponds to the curve from the Bayesian maximum
likelihood parameters, which has been used to fit Eq. (2) and serves
as an illustration only. Right panel: Normalized joint probability
density for p and c from a Bayesian fit to Eq. (2) using the occurrence
times of the same 1310 aftershocks in our database. The yellow
contour has a value of 1 and the purple one a value of 0. The goodness
of fit should be judged from the contours and the corresponding
parameter uncertainties are given in the text.

where we searched for c ∈ [103, 105]. In Fig. 2, we plot the
aftershock rate versus time elapsed since the parent event. Our
Bayesian inference gives p = 0.78 ± 0.03, c = (10 ± 3)103,
and k = (232 ± 51)103. There is a trade-off between p and
c, but they do not depend on the maximum elapsed time
used in the analysis. The uncertainties directly depend on the
number of aftershocks and hence the maximum elapsed time
in the catalog. k is independent of the shape parameters and
increases linearly with the number of events in the catalog
determined by the maximum elapsed time [27].

Since we know the position and timing of the aftershocks
with respect to the main event, we can analyze the speed of
information propagation v between the pairs. In this analy-
sis, we only consider the first aftershock to each parent to
avoid secondary effects due to triggering by other aftershocks
and wave reflections from domain walls, which could bias
estimates of information speed. In Fig. 3, we present the
probability distribution of log v. Also shown are two speeds,
vshear and vsound, representative of our system. Our implemen-
tation gives us access to the bulk thermodynamic pressure and
under the constraints of mass and momentum conservation
and lattice isotropy, the speed of sound is then simply vsound =√

dP/dρ = 1/
√

3. Since we are forcing our soft glass in a
regime just below the yield stress, it has the properties of a
solid, and thus can sustain both compression and shear waves,
unlike fluids that cannot transmit shear waves. vshear ≈ 0.02
has been determined previously for our system [28]. Roughly
80% of first aftershocks fall within the light cone of the elastic
shear wave while all first aftershocks fall within the light cone
of the speed of sound. The fact that almost 20% of events
are triggered before the elastic shear waves can reach them
is interesting. On closer inspection, we found that for those
events, the involved droplets are either directly in contact with
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FIG. 3. Probability distribution of the log of speed (v) of infor-
mation propagation to the first aftershock. A kernel density estimate
is applied to obtain the smooth distribution shown. The black
dashed line indicates the speed of propagation of elastic shear waves
(vshear = 0.02) and the blue dotted line shows the speed of sound
(vsound = 0.58) in the lattice Boltzmann scheme.

the droplets belonging to the parent event or are second neigh-
bors. Due to the constraints of geometry imposed by the rigid
interface these neighbor drops are forced to deform almost
simultaneously with the parent event compared to drops that
are further away. In summary, all aftershocks in our system are
triggered by two means: (i) by geometrical constraints (of a
rigid interface) arising from the deformation of neighbors who
are undergoing a plastic event and (ii) passing elastic shear
wave perturbations that overcome the local balance of forces.

IV. DISCUSSION

We have identified two modes of event triggering, by
contact and by passage of shear waves. This is similar to
(quasi)static versus dynamic stress triggering identified in
seismology [6,29]. Static stress triggering refers to the stress
change just before an earthquake and after the dynamic
stresses transported by seismic waves have dissipated, which
then triggers an event on a nearby fault close to the Coulomb
failure threshold. Quasistatic triggering takes viscous dissipa-
tion of static stresses into account. The oscillatory dynamic
stresses transported by elastic waves have a longer reach, and
especially surface waves can bring a region close to failure.
We observe that events triggered by seismic waves can ef-
fect the whole medium and hence are spread out in time,
while the contact events (static stress changes) act locally
and fast (Fig. 3). Having clearly identified the two classes
of triggered events, we fitted Omori’s law to them both in-
dependently (Fig. 4). In our Bayesian analysis, it was shown
[27] that the Omori parameters do not depend on the number
(or begin and end times) of aftershock catalogs but the un-
certainties do. The contact aftershocks occur quickly after the
main event, and therefore we limited the shear wave triggered
events to the same short time interval. This is to ensure that
we can make a robust comparison between parameters. The
interesting observation is that shear wave triggered events

FIG. 4. Top: Normalized joined probability density for p and c
[from Eq. (2)] for events triggered by contact (fast) mode (109 after-
shocks) and shear wave (slow) mode (362 aftershocks). The yellow
contour has a value of 1 and the purple one a value of 0. Bottom:
Cumulative number of aftershocks which clearly shows that our most
likely parameters fit the data very well. Additionally, the cumulative
distributions are smooth without kinks, indicating that secondary
aftershocks, which might be present, do not bias the analysis.

have a notably lower Omori slope p = 0.55 ± 0.05 (event rate
decays more slowly) than contact events p = 1.13 ± 0.10.
Both series contain roughly the same order of events and
therefore their uncertainties are comparable. We can thus
state with 99% confidence (within 3 standard deviations) that
the values of p do not overlap. The time delay c and the
event productivity k are statistically not separable for the two
modes. Given that a large range of Omori slopes has been
reported in seismology, we suggest that it might be interesting
to investigate whether static versus dynamic triggering also
results in two distinct Omori slopes for earthquakes. In a spa-
tial analysis of aftershocks [30], it appears that the density of
aftershocks as a function of distance from the parent event also
shows different power laws for static and dynmaic trigger-
ing. Unfortunately our system is too small (1024 × 1024 LB
units—roughly fitting 500 droplets) to derive spatial power
laws. An additional question worth pursuing is whether the
two observations in time (present paper) and space [30] might
even be linked.

Aftershock identification in the case of earthquakes is
more subjective and mostly statistical. Having a ground
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FIG. 5. Probability distribution of the nearest-neighbor “dis-
tance” measure Npq of Eq. (3) with the red curve representing
aftershocks and the blue curve representing independent events. The
major peaks for the two scenarios show a clear bimodality of the
combined distribution, as in the case of earthquakes. The highest
peak of the aftershock distribution log(Npq ) ≈ 8.5 corresponds to
shear wave triggered events and the smaller peak log(Npq ) ≈ 6 to
contact aftershocks.

truth aftershock catalog puts us in a position to evaluate the
popularly used statistical approach of the nearest-neighbor
(NN) metric [15] in seismology. For every pair of events (i, j)
in the event database, such that i occurred before j, the NN
measure is defined as

Ni j = �T (�L)d f 10−BGR log Mi , (3)

where �T = Tj − Ti is the interevent time, �L is the spatial
separation, d f is the fractal dimension of event centers, BGR

is the slope of the Gutenberg-Richter law, and Mi is the
magnitude of event i. �T and �L are directly available
from our database of events, Mi is taken to be the squared
displacement of the parent event, while BGR = 0.7 and d f =
1.5 are values from Ref. [4], as they used the same soft-glass
model. Through empirical observations [17], it was shown
that the distribution of Ni j for real earthquakes exhibits a
bimodality, which permits discriminating between aftershocks
and independent events. Since we already know which events

are aftershocks and which are independent, we plot the re-
spective NN metric distribution in Fig. 5. The distributions of
Ni j for aftershocks and independent events mainly show two
distinct clusters. The aftershock cluster exhibits two peaks,
a small one corresponding to the fast mode and a main one
for the slow mode. The independent event cluster shows one
dominant peak. There is some small overlap between after-
shock and independent events where events are not perfectly
separable. Thus we can state that the separation in distinct
modes of the distribution of all event pairs is not a statistical
artifact but emerges naturally from the combination of the
distributions of aftershocks and independent events. Note that
a synthetic earthquake catalog generated numerically from a
Poisson point process would give a unimodal distribution.

V. CONCLUSION

We devised a technique which allows us to separate plastic
events into independent and triggered events or aftershocks.
A Bayesian analysis showed that the aftershocks in our cata-
log follow Omori’s law. We further noticed that aftershocks
are triggered by two different modes: by contact and by a
passing shear wave. While the two classes of aftershocks
independently follow Omori’s law, their temporal decay is
significantly different. We suggest that this might allow seis-
mologists to separate dynamically from statically triggered
aftershocks, similar to aftershock density distributions as a
function of distance. Finally, we showed that, in the absence
of a direct way to establish causality, the popular nearest-
neighbor metric used in seismology is indeed a good way to
separate aftershocks from independent events.
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