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A B S T R A C T   

Skeletonization, a crucial step in pore network modeling, traditionally involves the extraction of skeleton pixels 
from binarized, segmented X-ray images of porous materials. However, this conventional approach often suffers 
from user bias during segmentation, potentially leading to the loss of essential image details. This study addresses 
this limitation by developing deep learning model, called PoreSkel, designed to directly perform skeletonization 
and distance map extraction from unprocessed grayscale images, thus eliminating the need for additional image 
processing steps. The model was trained, validated, and tested using an expansive databank of micro-CT images 
from 20 distinct sandstones, carbonates, and sand pack samples, a total of 10,240 images, with each sample 
represented by a cube of size 5123. A fifth of these images, specifically 15.6 % from sixteen sandstone and sand 
pack samples, were used for training, while the remainder served for model validation (4.4 %) and extensive 
testing (80 %). PoreSkel showed an excellent performance, achieving a mean f1-score of 0.964 for skeletoni
zation and an RMSE of 0.057 for distance map extraction during the testing phase. Our assessments revealed that 
the model is robust to bias toward the majority class, namely the background pixels. Furthermore, the model 
showed high generality, maintaining its performance when tested using unseen images from three carbonates 
and an additional sandstone. Notably, PoreSkel effectively handles disruptions caused often by the presence of 
minerals in pore spaces and perturbations on pore boundaries - a common challenge for the medial axis tech
nique - resulting in fewer nodes (i.e., pore junctions) and pore coordination numbers, but a higher number of 
connected skeletons. Therefore, PoreSkel provided a more precise and representative pore structures of porous 
material that is needed for accurate pore network generation and modeling.   

1. Introduction 

Characterizing porous materials, such as sedimentary deposits, has 
been subject of many studies (Blunt, 2017; Mahdaviara et al., 2022; 
Raoof and Hassanizadeh, 2010). Advances in high-resolution X-ray to
mography have enabled the investigation of internal structures within 
porous materials (Blunt et al., 2013; Bultreys et al., 2016). The acquired 
images allow us to accurately identify textures and even constituent 
minerals in rocks (Xiong et al., 2016), determine static parameters like 
porosity and tortuosity (Alqahtani et al., 2020; Graczyk and Matyka, 
2020), and simulate flow of single and multiple phases (Najafi et al., 
2023; Raoof et al., 2013). Representation and characterization of dy
namic processes can be achieved using direct numerical simulation 
(DNS, e.g., by Armstrong et al. 2016, Wang et al., 2020, Fathi et al. 
2017a) and pore network modeling approaches (PNM, e.g., by Raoof 

et al. 2013). In DNS, the governing equations of flow are numerically 
solved without simplifying the pore morphology, while in PNM, calcu
lations are performed by mapping the complex pore space structure into 
a reduced representation often consisting of regular geometrical shapes. 
Although DNS yields more realistic results, its notably high computa
tional costs limit its applicability to small portions of porous media 
(Blunt, 2001; Blunt et al., 2013; Fathi et al., 2017b)). Consequently, the 
PNM method is indispensable for large samples sizes. 

PNM reconstruction begins with the topological and geometrical 
characterization of porous media (Mahmoodlu et al., 2020; Vogel and 
Roth, 2001). Topological characterization involves identifying the lo
cations of pores and throats, as well as quantifying their interrelation
ships through connectivity and mean coordination number (Lindquist 
et al., 1996; Raoof and Hassanizadeh, 2010). Connectivity is often 
determined by the Euler number (or Euler–Poincaré characteristic), 
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Fig. 1. The x-ray images of diverse samples used for both training and validation of the constructed deep learning models. Within the provided samples, there are 15 
sandstones (located in rows 1 through 3 from the top), along with two sand packs and three carbonates (the last row). Samples show a wide range of petrophysical 
properties, pore structures, and imaging resolutions. 

Table 1 
Detailed description of the dataset utilized in this study. The samples have various porosity, permeability, and resolutions, changing in the wide ranges of 11.6–38 %, 
9–386 mD, and 2.25–8.30 µm, respectively.   

Sample Porosity (%) Permeability (mD) Resolution (µm) Dimension Refs. 

Sandstone Bandera Gray 18.10 9 2.25 5123 Neumann et al. (2020) 
Parker 14.77 10 2.25 5123 Neumann et al. (2020) 
Kirby 19.95 62 2.25 5123 Neumann et al. (2020) 
Bandera Brown 24.11 63 2.25 5123 Neumann et al. (2020) 
Berea Sister Gray 19.07 80 2.25 5123 Neumann et al. (2020) 
Berea Upper Gray 18.56 86 2.25 5123 Neumann et al. (2020) 
Berea 18.96 121 2.25 5123 Neumann et al. (2020) 
Castle Gate 26.54 269 2.25 5123 Neumann et al. (2020) 
Buff Berea 24.02 275 2.25 5123 Neumann et al. (2020) 
Leopard 20.22 327 2.25 5123 Neumann et al. (2020) 
Bentheimer 22.64 386 2.25 5123 Neumann et al. (2020) 
Mt. Simon 27.10 NA 2.80  5123 Kohanpur et al. (2019) 

Doddington NA NA 5.38 5123 Andrew et al. (2020) 
Fieldstone 18.16 NA 5.20 5123 Bultreys and De Boever (2020) 
Fontainebleau NA NA 3.28 5123 Garing et al. (2017) 

Sand pack Sand pack 35.40 48.72 4.98 5123 Singh et al. (2020) 
In-house sand pack 38.0 NA 8.30 5123 Mahmoodlu et al. (2020) 

Carbonate Estaillades NA NA 3.10  5123 Bultreys (2016a) 

Ketton NA NA 5.00  5123 Scanziani et al. (2018) 

Massangis Jaune 11.60 0.03–70 4.54  5123 Bultreys (2016b) 

NA stands for “Not Available”. 
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which quantifies the structure of a topological space, independent of any 
deformation or distortion it may undergo (Vogel and Roth, 2001). The 
mean coordination number refers to the average number of throats 
connected to each pore in porous media (Bakke and Øren, 1997; Tho
vert et al., 1993). Geometrical representation describes the shape and 
size of pores and throats using shape factors and aspect ratios. The shape 

factor is the dimensionless ratio of a pore space perimeter to its area, 
while the aspect ratio pertains to the diameter of a pore body relative to 
a pore throat (Joekar Niasar et al., 2009). Pore bodies are typically 
considered spherical or cubic (Joekar-Niasar et al., 2010; Koplik and 
Lasseter, 1985), while throat cross-sections can assume a wide variety of 
shapes to effectively represent the two-phase flow of non-wetting and 

Fig. 2. Schematic representation of the deep learning structure utilized in this study. The process begins with unprocessed grayscale images being used as input for 
skeleton extraction, which is done directly from the grayscale images. The model utilizes several layers such as convolutional, MaxPooling, and Transposed con
volutional layers, along with skip connections and an activation function. These layers are trained through an encoding and decoding process. A similar procedure is 
also used to extract the distance map. 

Fig. 3. Workflow describing the development of PoreSkel for direct skeletonization and distance map extraction. Preskel is trained to deduce the skeleton and 
distance map of porous media from grayscale images, eliminating the need for image processing, such as segmentation. 
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wetting phases in the pore space (Joekar-Niasar and Hassanizadeh, 
2012; Mason and Morrow, 1991; Pereira et al., 1996; van Dijke and 
Sorbie, 2006). The aforementioned parameters can be measured using 
statistical, geological (grain-based), and direct mapping techniques 
(Bryant and Blunt, 1992; Ioannidis and Chatzis, 2000). Statistical and 
geometrical methods employ information obtained from 2D thin sec
tions of rocks to reconstruct the pore structure. In contrast, the direct 
mapping approach extracts an irregular pore network directly from 3D 
computed tomography (CT) images, providing more reliable results. 

The extraction of pore body and throat coordinates from CT images is 
a vital aspect of pore network extraction (Jiang et al., 2007; Raoof and 
Hassanizadeh, 2010). This process is typically executed using a 
morphological technique known as skeletonization. This method cap
tures the essential depiction of porous media by extracting single-pixel 
or voxel skeleton lines that align with the medial axis of the pore 
space. The skeleton’s junction and non-junction points are viewed as 
pore and throat bodies, respectively. Moreover, it provides valuable data 
concerning throat length, redundant connections, connection co
efficients, isolated pores, enclosed cavities, and coordination numbers. 
The precision of this data is heavily dependent on the quality of the 
extracted skeleton. An optimal skeleton is centrally positioned within 
the pore space (medial-ness) and maintains the topological and 
geometrical characteristics of the original image (Jiang et al., 2007). 

Traditional methods for producing image skeletons encompass 
medial axis transformations (MAT) (Lee, 1982), thinning approaches 
(Pudney, 1998), and a blend of both to satisfy the above criteria. The 
MAT procedure involves obtaining a distance transform, or distance 
map, which represents the distance of each pixel or voxel of pore space 
from the nearest boundary. Local maxima, located in the center of the 
pore space, are extracted as skeleton pixels or voxels. Thinning methods 
utilize morphological operators for skeletonization, such as eroding pore 
space pixels or voxels from the boundaries repeatedly. Nevertheless, 
MAT and thinning techniques may struggle to preserve topology and 
medial-ness, respectively (Jiang et al., 2007). Several modifications and 
hybrid methods have been suggested to mitigate these limitations 
(Delerue et al., 1999; Lohou and Bertrand, 2005; Morgenthaler, 1981; 
Saito, 1995). Despite these improvements, the impact of image pro
cessing quality on skeletonization outcomes remains under-explored. To 
our knowledge, most, if not all, algorithms necessitate segmented image 
representations (binarized into voids and solids) for skeleton extraction. 
Image segmentation is considerably influenced by variables such as 
image resolution, overlapping noise/artifacts, segmentation methods, 
and user bias (Mahdaviara et al., 2023). Minor segmentation errors can 
cause substantial deviations in the extracted skeleton and the resultant 
topological and geometrical information. As a result, there exists 
disparity between PNM calculations and actual measurements. 

In this study, we aim to close this gap by circumventing segmentation 
and directly extracting the skeleton and distance map from the original 
(grayscale) images. We trained robust deep-learning algorithms on a 
substantial dataset comprising micro-CT images of 20 sandstones, car
bonates, and sand packs for this purpose. These trained models, called 
PoreSkel, were evaluated using statistical metrics and visual inspections. 
Additionally, their universality was assessed by testing them on unseen 
sandstone and carbonate images. This study is structured as follows: 
Section 2 provides the dataset used for training and evaluation, along 
with the modeling procedure. Section 3 discusses the results, and the 
final section presents the conclusions. 

2. Materials and methods 

2.1. Datasets 

To enhance the generality of PoreSkel, we assembled a diverse 
collection of X-ray CT data from 20 rock samples, each exhibiting 
distinct textures and petrophysical properties (Andrew et al., 2020; 
Bultreys, 2016a, 2016b, 2016c; Garing et al., 2017; Kohanpur et al., 
2019; Neumann et al., 2020; Scanziani et al., 2018; Singh et al., 2020). 
The databank encompasses Bandera Gray, Parker, Kirby, Bandera 
Brown, Berea, Berea Sister Gray, Berea Upper Gray, Castle Gate, Buff 
Berea, Leopard, Bentheimer, Doddington, Fieldstone, and Fontainebleau 
sandstones, two Sand packs, along with Estaillades, Ketton, and Mas
sangis Jaune carbonates (refer to Fig. 1). The description of these sam
ples can be found in Table 1. 

Fig. 4. The average metrics of (a) f1-score and (b) root mean squared error (RMSE) to assess the performance of PoreSkel in extracting skeletons and distance maps, 
respectively. The number of images (with the dimensions of 512 × 512) used for training, validation, and testing are 1200, 300, and 8240, respectively. 

Fig. 5. The f1-score of the individual classes of skeleton and background. Each 
point corresponds to the f1-score of a specific rock sample. The median f1-score, 
as depicted by the line within the interquartile range (IQR), is near to 1 for both 
the skeleton and background classes. This suggests that the model has suc
cessfully addressed the issue of class imbalance. Moreover, the size of the boxes 
is small, indicating the consistency of results for all samples. 
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2.2. Image processing 

We prepared a total of 10,240 2D grayscale images by picking 5123 

voxel volumes from each rock sample. The image histogram is illustrated 
in Fig. A.1, which reveals significant intensity differences among the 
various rocks, thus highlighting the challenge of training single models 
for skeletonization and distance map extraction across all samples. To 
establish the base-case data, the following procedure was performed; (i) 
a non-local mean filter was applied to the images to eliminate possible 
noise and artifacts, (ii) images were binarized (segmenting them into 
voids and solids) using a thresholding approach, and (iii) skeletons and 
distance maps were extracted from the binarized images by employing 
the medial axis transform (MAT) and Euclidean distance methods, 
respectively. Consequently, we compiled a databank of these grayscale 
images (each measuring 512 × 512) and their corresponding base-case 
data, which served as the foundation for training and evaluating the 
model in a supervised manner. 

2.3. Deep autoencoder modeling 

In this study, we utilized U-Net method for skeletonization and dis
tance map extraction from grayscale images. Autoencoders, which are 
feed-forward neural networks, learn a compressed representation of the 
input data, commonly referred to as a latent representation or encoding 
(Géron, 2022). The encoded data possess a lower dimensionality, which 
makes autoencoders excellent candidates for feature extraction and 
dimensionality reduction (Goodfellow et al., 2016). Contemporary 
autoencoders incorporate a decoder block that decodes the representa
tions back into their original dimensions. 

An autoencoder typically consists of two components: an encoder 
and a decoder. The encoder, a network that maps the data into a reduced 
dimensionality space, processes the input data. This dense representa
tion is then passed through the decoder, another neural network that 
translates the codes back to their primary dimensions. The output from 
the final layer is a reconstructed version of the input. The autoencoder’s 
objective is to minimize this reconstruction error, achieved by using an 
optimization algorithm to adjust the network weights. 

Fig. 6. Performance evaluation metrics for PoreSkel in extracting skeletons and distance maps across varied rock samples: (a) F1-score and (b) Root Mean Squared 
Error (RMSE). Horizontal bars denote the average scores for training, validation, and testing phases. The images of 16 sandstones and sand packes were used in thid 
step, while the images of carbonates and the Mt. Simon sandstone were excluded for further evaluation. 

M. Mahdaviara et al.                                                                                                                                                                                                                          



Advances in Water Resources 180 (2023) 104544

6

Fig. 7. A comparative visual depiction of skeletons and distance maps generated by the Medial Axis and PoreSkel methods for a range of samples. Notable areas 
where PoreSkel demonstrates superior performance to the base case technique are highlighted within squares. PoreSkel effectively accounts for discontinuities 
induced by minerals within the pore space, as illustrated by dashed circles in the Castle Gate sample (bottom plots). It also shows a distinct ability to maintain 
topological consistency despite boundary perturbations of pores, a feature that the base case method struggles to handle, as demonstrated in the circled regions of the 
Doddington sample. 
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Various autoencoder extensions exist to address specific challenges, 
including the denoising autoencoder (DAE) (Lu et al., 2013), variational 
autoencoder (VAE) (Kingma and Welling, 2013), recurrent autoencoder 
(RAE) (Gonzalez and Balajewicz, 2018), sparse autoencoder (Hinton 
and Salakhutdinov, 2006), and U-Net (Ronneberger et al., 2015). U-Net 
is a deep autoencoder specifically designed for image segmentation 
tasks, wherein image objects are identified and outlined. The encoder 
and decoder blocks of U-Net traditionally employ a multi-neuron con
volutional neural network (CNN), a deep-learning architecture widely 
used for image recognition, utilizing convolutional layers for feature 
extraction and maxpooling layers for reducing the output’s spatial di
mensions. For a comprehensive overview of CNNs, readers are referred 
to LeCun et al. (2015), Goodfellow et al. (2016). 

U-Net incorporates CNNs in a symmetric U-shape architecture, 
gradually decreasing and increasing the feature map scales in the 
encoder and decoder, respectively. This strategy reduces the network’s 
parameter count and helps prevent overfitting. The unique innovation of 
U-Net is the use of skip connections from the encoder to the decoder, 
facilitating the transfer of more information and leading to higher seg
mentation accuracy. Owing to its effectiveness in various medical image 
segmentation tasks, several variations and extensions of the original U- 
Net architecture, such as Attention U-Net (Oktay et al., 2018) and 
UNet++ (Zhou et al., 2018), have been developed to further enhance 
the accuracy and efficiency of image segmentation. 

The configuration employed in this study is depicted in Fig. 2. We 
divided the data bank into four subsets: training set (12.5 %), validation 
set (2.5 %), test set (60 %), and unseen data (25 %). The first three sets 
consist of images of sixteen sandstones and sand packs. The carbonates 
and the Mt. Simon sandstone were exclusively assigned to the unseen 
data, enabling a more comprehensive evaluation of the models on data 
excluded from the training and testing stages. The training sets were 
used for feature extraction in the encoder block. This block consists of 
five convolutional layers with 3 × 3 kernels, ranging from 64 to 1024. To 
ensure that the kernel convolves over the image one step at a time, the 
stride length was set to 1. The outputs of each convolutional layer were 
passed through a maxpooling layer to reduce the size of extracted fea
tures while preserving the most prominent features. 

The decoder block mirrors the architecture of the encoder but uses 
transposed convolutional layers for upsampling. The network’s output 
layer was tailored for classification and regression tasks of 

skeletonization and distance map extraction, respectively. We employed 
the Softmax (normalized exponential function) and Softplus activation 
functions for skeletonization and distance map extraction, respectively 
(Bishop and Nasrabadi, 2006; Goodfellow et al., 2016). 

The skeletonization model was trained based on the categorical 
cross-entropy loss function, while the mean square error (MSE) was used 
for distance map extraction. In both models, the weights were tuned by 
the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 1 ×
10− 4. After conducting multiple trials, we determined 10 epochs to be 
the optimal number to mitigate potential issues of overfitting and bias. 
For the sake of clarity, we named the trained models for skeleton and 
distance map extraction as PoreSkel. 

3. Results and discussions 

As previously highlighted, deep learning has been utilized to deduce 
the skeleton and distance map of porous media from grayscale images, 
eliminating the need for image processing, such as filtering and seg
mentation. The dataset employed spans micro-CT scans from 20 distinct 
sandstone and carbonate samples (a 5123 cube per sample, totaling 
10,240 images), all exhibiting various topological and geological attri
butes (refer to Table 1 and Fig. 1). A fifth (20 %) of sixteen sandstone 
images were earmarked for training (15.6 %) and evaluation (4.4 %), 
while the remaining bulk (80 %) was set aside for testing the model. The 
trained model, PoreSkel, was tested using statistical metrics, visual 
assessment, and the computation of topological and geometrical prop
erties. The steps undertaken during the development of PoreSkel are 
shown in Fig. 3. 

3.1. Evaluation by calculation of statistical metrics 

The overall efficiency of PoreSkel for skeletonization was assessed 
through accuracy, intersection over union (IoU) (Jaccard, 1912), and 
f1-score (Dice, 1945), also known as the dice similarity coefficient. 
Conversely, the deduced distance maps were evaluated via mean 
squared error (MSE) and root mean squared error (RMSE) metrics. Ac
curacy is defined as the ratio of the number of predictions congruent 
with the base-case data (medial axis) to the total number of pixels: 

Accuracy =
The number of accurate predictions

The total number of pixels
(1) 

Fig. 8. Evaluation of PoreSkel’s performance with both filtered and unfiltered input data, derived from in-house sand pack sample. The figure clearly illustrates the 
enhancement of PoreSkel’s performance when image pre-filtering is applied prior to the skeletonization process. 
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Fig. 9. Analysis of the extracted skeletons using (a) the number of nodes, (b) average coordinate number, and (c) connected skeletons. In compared to media axis 
method, PoreSkel provides a lower number of nodes and coordination numbers, while showing a higher number of connected skeletons. 
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Both the f1-score and IoU represent the ratios of the overlapping area 
between two images to the total pixel count and to the union of the areas 
between images, respectively. Let’s denote the predicted and base-case 
(medial axis) images as P and B. The corresponding f1-score and IoU 
can be calculated by the subsequent equations: 

f 1 − score =
2|P ∩ B|
|P| + |B|

(2)  

IoU =
|P ∩ B|
|P ∪ B|

(3) 

Fig. 10. The accuracy metrics of (a) f1-score and (b) root mean squared error (rmse) used to assess PoreSkel’s performance in extracting skeletons and distance maps 
from unseen data. The unseen data, which include the images of Estaillades, Ketton, and Massangis carbontes, as well as the Mt. Simon sandstone, were excluded 
from the training and the primary test and validation. 

Fig. 11. Visual comparison of skeleton and distance maps extracted using PoreSkel and base-case data for unseen carbonate (Estaillades, Ketton, and Massangis 
samples) and sandstone (Mt. Simon) samples. The distances are color-coded, ranging from dark blue to dark red. As marked by circles on the Ketton sample (as an 
example), the PoreSkel could effectively detect the boundary perturbations. 
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The Mean Squared Error (MSE) and Root Mean Squared Error 
(RMSE) can be utilized to estimate the deviation of the predicted dis
tance maps from the baseline or Euclidean distance as: 

MSE =
1
N

∑N

i=1
(Pi − Bi)

2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Pi − Bi)

2

√
√
√
√ (5)  

where, ’i’ and ’N’ denote the pixel number and total number of pixels, 
respectively. The higher the accuracy, f1-score, and Intersection over 
Union (IoU) values, the lower the discrepancies between the predicted 
and baseline images. Conversely, higher MSE and RMSE metrics imply a 
greater deviation from the base-case. 

The aforementioned metrics were computed for each pair of pre
dicted and baseline images, with the averages taken across all images 
subsequently. The mean f1-scores and RMSE values for the training 
(comprising 1200 images), validation (300 images), and testing (8240 
images) stages of the model are presented in Fig. 4, with additional 
metrics detailed in Table A.1. The data reveals mean f1-scores for 
skeletonization of 0.974, 0.964, and 0.964; and IoUs of 0.974, 0.974, 
and 0.974 for the training, validation, and testing stages, respectively. 
Additionally, the distance maps yielded RMSE values of 0.021, 0.022, 
and 0.057, respectively. The negligible differences between the training 
and testing phases suggest that PoreSkel is resilient to overfitting. 
Overall, these results underscore the impressive performance of deep 
learning in extracting the skeleton and distance map of porous media 
images, even when unprocessed grayscale images are employed as 
inputs. 

It is noteworthy that the allocation of the skeleton and background 
classes in the images is significantly skewed, with the skeleton repre
senting the minority class. This disparity presents a challenge for Por
eSkel as there is potential for bias toward the more dominant class. To 
understand how this class imbalance influenced the derived metrics, we 
calculated the f1-score for each individual class. Fig. 5 presents these 
results in a box plot format. The median f1-score, as depicted by the line 
within the interquartile range (IQR), stands at 0.975 and 0.949 for the 
skeleton and background classes, respectively. This outcome implies 

that PoreSkel effectively manages the class imbalance. 
Additionally, the f1-score and RMSE were computed for individual 

rock samples to provide a more granular assessment of PoreSkel. The 
results are illustrated in Fig. 6, with Table A.2 providing further details. 
The figure suggests the model is highly capable of extracting the skel
eton and distance map, as all samples exhibit f1-scores exceeding 0.954 
and RMSEs below 0.310. 

3.2. Visual evaluation 

The aforementioned statistical metrics were derived through a 
comparison between the predicted and base-case data. As previously 
highlighted, the base-case data can be prone to errors based on the 
generation technique and the image processing procedure (filtration and 
segmentation), which could impact the computed metrics. Thus, a 
thorough visual inspection was considered for a comprehensive evalu
ation. Fig. 7 showcases examples of PoreSkel outcomes alongside the 
base-case data (refer to Fig. A.2 for additional examples). Evidently, 
deep learning has detected the stochastic context of the pore space, 
extracting the skeleton and distance map within the midst of the pore 
space. As highlighted by squares in Fig. 7, PoreSkel demonstrates su
perior performance in some areas compared to the base case (high
lighted by the squares). A detailed examination of the Castle Gate 
skeletons reveals that the model accounts for discontinuities introduced 
by the minerals present in the pore space (see dashed circles in the Castle 
Gate sample). Furthermore, the circles highlighted in the Doddington 
sample demonstrate the model’s ability to preserve topology by 
addressing the perturbations on the pore boundaries ‒ a significant 
challenge for the medial axis technique. Therefore, PoreSkel enhances 
the depiction of porous media and can potentially yield more repre
sentative pore networks. 

It is important to note that the efficacy of PoreSkel can be influenced 
by the quality of the input images. For example, artificial contrasts 
caused by salt and pepper (i.e., impulse) noise could lead the model 
astray in identifying pore space, subsequently affecting skeleton 
extraction. This issue could be mitigated by applying suitable filters, 
such as non-local mean, to the input images (Refer to Fig. 8). 

3.3. Skeleton analysis 

We assessed topological parameters such as connectivity, coordinate 
number, and node count from medial axis and PoreSkel-extracted skel
etons of various rock samples (i.e., a volume of 5123 cubes per sample). 
To accomplish this, we generated graph representations of the 2D im
ages. These graphs were then presented as adjacency lists, outlining the 
indices of each node (junction) in the skeleton and their corresponding 
neighbors. We employed the breadth-first search (BFS) algorithm to 
calculate these parameters. BFS, a graph traversal algorithm, explores 
the skeleton starting from the root node and examines adjacent nodes 
queued in a list. This approach is commonly used in graph analysis to 
identify nodes, branches, and endpoints. The determined parameters are 
displayed in the box plots of Fig. 9. As illustrated in this figure, PoreSkel- 
extracted skeletons possess fewer nodes and coordinate numbers than 
the medial axis. This is attributed to the medial axis’s high sensitivity to 
perturbations. Minor perturbations can generate false nodes (pores) and 
branches (throats), leading to inaccurate representation of the pore 
space. In contrast, PoreSkel skeletons display a higher number of con
nected skeletons as PoreSkel accounts for minerals found in the pores. 
It’s noteworthy that these distinctions may have significant implications 
for the measurement of petrophysical properties, particularly absolute 
permeability. A network characterized by artificially elevated coordi
nation numbers, as observed with the medial axis, can potentially lead to 
an overestimation of permeability due to the greater number of in
terconnections between pores. Furthermore, the divergence between the 
network’s characteristics and the actual morphology of porous media 
may introduce deviations in predicting fluid flow pathways and trapping 

Fig. A.1. The histogram of the databank (i.e., the collection of x-ray images of 
20 rock samples) used in this study. The figure shows the percentage of voxels 
having certain intensities in each 3D image. There are high discrepancies be
tween the intensities of various rocks, highlighting the challenge of training 
single models for skeletonization and distance map extraction across 
all samples. 
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Fig. A.2. A visual description of the skeleton and distance maps extracted by the medial axis method and PoreSkel for several samples. The distances are 
demonstrated in a spectrum of colors ranging from dark blue to dark red. 
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mechanisms. These differences may subsequently influence the multi
phase flow parameters such as relative permeability and capillary 
pressure. 

3.4. Generality of the model 

As previously stated, PoreSkel was trained, validated, and tested 
using images of 16 different sandstones. To evaluate the model’s ability 
to generalize to unseen images, we introduced 5123 cubes from three 
carbonates (Estaillades, Ketton, and Massangis) and one sandstone (Mt. 
Simon) to the models. The results were compared to the base-case data, 
with findings illustrated in Figs. 10 and 11 (see Table A.3 for more in
formation). As shown in Fig. 10, the skeletons and distance maps were 

extracted with an average f1-score and RMSE of 0.961 and 0.066, 
respectively. Consequently, the models’ performance did not signifi
cantly decline when faced with unseen data. A visual examination of the 
results in Fig. 11 suggests that PoreSkel accurately identified the pore 
space and extracted the skeleton and distance map in relation to the 
boundaries. Additionally, a closer look at the Ketton sample reveals that 
PoreSkel effectively addresses the boundary perturbations, a common 
challenge with the medial axis technique (see dashed circles). 

Based on the aforementioned assessments, the PoreSkel model is 
capable of creating skeletonization and distance map extraction from 
grayscale images of porous media. This model provides a more 
comprehensive representation of pore space, ensuring that minerals 
within the pores are not overlooked. Additionally, the model remains 
unaffected by distortions in the pore boundaries, a complication that 
traditionally hinders the medial axis technique (e.g., shown in Figs. 7 
and 11). Owing to its extensive training and testing on 20 distinct 
sandstone and carbonate samples, PoreSkel boasts high generality. As a 
result, this approach can be broadly applied for pore network extraction 
from diverse porous materials, including but not limited to, sedimentary 
rocks, soil, membranes, and gas diffusion layers in fuel cells. 

4. Conclusions 

This study aimed to use deep learning in the characterization of 
porous media, thereby enhancing pore network analysis and modeling. 

Fig. A.2. (continued). 

Table A.1 
The performance of the PoreSkel for skeletonization and distance map extraction 
in the train, validation, and test steps.   

Skeletonization Distance Map Extraction  

Accuracy Mean IoU f1-score MSE RMSE 

Train 0.986 0.974 0.974 0.145 0.021 
Validation 0.985 0.974 0.964 0.147 0.022 
Test 0.985 0.974 0.964 0.206 0.057 
Avg. 0.985 0.974 0.967 0.166 0.033  
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In contrast to the traditional use of segmented (binarized) images, the 
developed model, PoreSkel, leverages deep learning to infer the skeleton 
and distance map of porous media from grayscale images, thereby 
eliminating the need for traditional image processing methods. 

A diverse collection of x-ray images, comprising 5123 cubes obtained 
from 20 different sandstones and carbonates, were gathered for this 
purpose to cover a wide range of pore structures and topological attri
butes. A fraction of 15.6 % of sixteen sandstones was designated for 
training, with the remaining samples reserved for validation and testing. 

Additionally, four samples - three carbonates and one sandstone - were 
set aside as unseen test data, not included in the aforementioned pro
cedure. PoreSkel was evaluated using both visual inspection and sta
tistical metrics and topological parameters. The results are as follows:  

• The PoreSkel model demonstrated high accuracy and flexibility, as 
demonstrated by the statistical metrics calculated for each phase of 
the model’s deployment. The mean f1-scores for skeletonization 
remained consistently high at 0.974, 0.964, and 0.964 for the 
training, validation, and testing stages, respectively. In parallel, the 
distance maps achieved low RMSE values of 0.021, 0.022, and 0.057, 
respectively. Despite the inherent class imbalance presented by the 
skeleton and background classes, PoreSkel could effectively navigate 
this disparity, achieving a median f1-score of 0.975 for the skeleton 
class.  

• In terms of visual evaluation, PoreSkel demonstrated a superior 
performance in capturing the stochastic context of the pore space, as 
well as addressing the perturbations on the pore boundaries, a sig
nificant challenge for the medial axis technique. This was further 
corroborated by the skeleton analysis, which revealed that PoreSkel- 
extracted skeletons possessed fewer nodes and coordinate numbers 
than those obtained from the medial axis, but a larger number of 
connected skeletons.  

• PoreSkel’s generalizability was also validated, which maintained 
high accuracy when introduced to unseen data from additional 
sandstone and carbonate samples, indicating the potential of Por
eSkel to be applied for pore network extraction across a diverse array 
of porous materials. 

To our knowledge, PoreSkel is the first methodology capable of 
extracting both skeletons and distance maps from grayscale images. 
Opportunities exist for refining PoreSkel to achieve superior precision 
and resilience against image artifacts. Future research should further 
explore expanding the model’s applicability to 3D images. 
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Table A.2 
The performance of the PoreSkel for skeletonization and distance map extraction 
for individual rock samples.    

Skeletonization Distance map extraction 

Sample Subdata IoU f1-score MSE RMSE 
Bandera Brown Train 0.973 0.963 0.089 0.205 

Validation 0.973 0.964 0.094 0.214 
Test 0.972 0.963 0.098 0.010 

Bandera Gray Train 0.973 0.964 0.281 0.436 
Validation 0.966 0.955 0.271 0.424 
Test 0.967 0.957 0.265 0.070 

Bentheimer Train 0.973 0.963 0.109 0.094 
Validation 0.978 0.970 0.111 0.098 
Test 0.976 0.969 0.362 0.131 

Berea Train 0.973 0.964 0.077 0.149 
Validation 0.977 0.969 0.077 0.148 
Test 0.976 0.965 0.123 0.015 

Berea Sister Gray Train 0.967 0.956 0.107 0.170 
Validation 0.977 0.969 0.128 0.183 
Test 0.978 0.969 0.124 0.015 

Berea Upper Gray Train 0.967 0.956 0.185 0.231 
Validation 0.975 0.966 0.209 0.242 
Test 0.977 0.968 0.266 0.071 

Buff Berea Train 0.966 0.955 0.147 0.189 
Validation 0.981 0.972 0.157 0.200 
Test 0.986 0.969 0.307 0.094 

Castle Gate Train 0.967 0.955 0.094 0.117 
Validation 0.975 0.967 0.100 0.121 
Test 0.975 0.967 0.144 0.021 

Doddington Train 0.977 0.969 0.091 0.140 
Validation 0.971 0.962 0.099 0.142 
Test 0.971 0.961 0.221 0.049 

Fieldstone Train 0.978 0.970 0.075 0.199 
Validation 0.961 0.949 0.077 0.198 
Test 0.960 0.948 0.076 0.006 

Fontainebleau Train 0.977 0.969 0.018 0.100 
Validation 0.989 0.986 0.020 0.104 
Test 0.989 0.986 0.018 0.000 

In-house sand pack Train 0.977 0.969 0.461 0.152 
Validation 0.964 0.951 0.422 0.148 
Test 0.964 0.950 0.487 0.237 

Kirby Train 0.978 0.971 0.140 0.243 
Validation 0.975 0.963 0.137 0.243 
Test 0.974 0.964 0.170 0.029 

Leopard Train 0.978 0.971 0.152 0.101 
Validation 0.980 0.974 0.157 0.101 
Test 0.980 0.973 0.317 0.101 

Parker Train 0.977 0.970 0.102 0.217 
Validation 0.978 0.968 0.112 0.220 
Test 0.980 0.972 0.094 0.009 

Sand pack Train 0.977 0.969 0.204 0.108 
Validation 0.962 0.947 0.177 0.101 
Test 0.962 0.948 0.227 0.051  

Table A.3 
The performance of the PoreSkel for skeletonization and distance map extraction for the unseen rock samples.   

Skeletonization Distance Map Extraction 

Sample Accuracy mean IoU f1-score f1-score (background) f1-score (skel.) MSE RMSE 
Mt. Simon 0.971 0.959 0.948 0.945 0.979 0.476 0.226 
Estaillades 0.974 0.960 0.955 0.965 0.976 0.104 0.011 
Ketton 0.989 0.981 0.977 0.970 0.987 0.122 0.015 
Massangis 0.978 0.968 0.965 0.962 0.982 0.117 0.014 
Average 0.978 0.967 0.961 0.961 0.981 0.205 0.066  
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