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Abstract
Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young 
seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum 
lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic 
variation, as well as the maternal environment in which the seeds develop and mature. The genetic contribution to variation 
in seed and seedling quality traits and environmental responsiveness can be estimated at transcriptome level in the dry seed 
by mapping genomic loci that affect gene expression (expression QTLs) in contrasting maternal environments. In this study, 
we applied RNA-sequencing to construct a linkage map and measure gene expression of seeds of a tomato recombinant inbred 
line (RIL) population derived from a cross between S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium (G1.1554). 
The seeds matured on plants cultivated under different nutritional environments, i.e., on high phosphorus or low nitrogen. 
The obtained single-nucleotide polymorphisms (SNPs) were subsequently used to construct a genetic map. We show how 
the genetic landscape of plasticity in gene regulation in dry seeds is affected by the maternal nutrient environment. The 
combined information on natural genetic variation mediating (variation in) responsiveness to the environment may contribute 
to knowledge-based breeding programs aiming to develop crop cultivars that are resilient to stressful environments.

Mark G. Sterken and Basten L. Snoek have equally contributed to 
this work.
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Introduction

Seeds are essential for reproduction and dispersal of plants 
and function as survival structures to overcome harsh 
environmental conditions unfavorable for plant growth. 
Well-timed development and ripening of seeds, to ensure 
optimal seed performance and the ability to germinate in 
a permissive environment, are therefore essential for plant 
fitness. Successful germination strongly depends on seed 
performance, which is affected by environmental condi-
tions, such as temperature, water availability, light condi-
tions, and the nutrient status that the maternal plant expe-
rienced (de Souza et al. 2020; Delouche and Baskin 1971; 
Delouche 1980; Donohue 2009; Rowse and Finch-Savage 
2003). More specifically, seed performance/germination 
in species such as tomato and the model plant Arabidop-
sis thaliana is determined during seed development and 
maturation and depends on temperature (Demir et  al. 
2004; He et al. 2014; Schmuths et al. 2006), photoperiod 
(Munir et al. 2001; Pourrat and Jacques 1975), nutrient 
composition, and levels (Alboresi et al. 2005; Geshnizjani 
et al. 2019; He et al. 2014). Seed quality, germination, 
and seedling establishment traits also have strong genetic 
determinants, and (natural) genetic variation in quality 
traits, including Quantitative Trait Loci (QTLs), has been 
reported (Geshnizjani et al. 2019, 2020; He et al. 2014; 
Joosen et al. 2012; Khan et al. 2012; Serin et al. 2017).

Phosphate and nitrate are essential plant nutrients 
with profound effects on plant growth (Schachtman 
et al. 1998; Urbanczyk-Wochniak and Fernie 2005) and 
seed performance/germination traits (Alboresi et  al. 
2005; Geshnizjani et  al. 2019, 2020; He et  al. 2014). 
In Arabidopsis, it has been shown that seeds produced 
by plants fertilized with higher-than-normal levels of 
phosphate showed increased germination rates under 
stressful conditions (He et al. 2014). Nitrate is known 
to have a strong effect on seed germination and seed 
dormancy in multiple plant species (Duermeyer et  al. 
2018), with high concentrations of nitrate supplied to 
the mother plant leading to lower dormancy of the seeds 
(Alboresi et al. 2005). This is attributed to nitrogen effects 
on the gibberellin/abscisic acid (GA/ABA) balance in the 
seeds, with higher endogenous nitrate levels resulting in 
lower ABA levels in seeds and hence shallower dormancy 
(Matakiadis et al. 2009). In Arabidopsis, altered nitrate 
levels experienced by the mother plant also have a 
substantial effect on the levels of multiple metabolites 
and transcripts in the seeds, with a notable reduction in 
nitrogen metabolism-related metabolites and genes (He 
et al. 2016).

Tomato (Solanum lycopersicum) is one of the most 
important vegetable crops worldwide and is a model 

organism for research on fruit-bearing crops (Giovannoni 
2001; Schauer et al. 2006; Tomato Genome 2012; Tomato 
Genome Sequencing et al. 2014). However, in the process 
of domestication, breeding selection and propagation, 
a substantial fraction of the genetic variation in the 
founder’s germplasms has been lost (Razifard et al. 2020; 
Tomato Genome 2012; Tomato Genome Sequencing 
et al. 2014). Moreover, due to a focus on fruit quality, 
resistance, and yield traits, other desirable traits that have 
not been directly selected for could have been lost over 
time in modern varieties (McCouch 2004; Razifard et al. 
2020; Wang et al. 2020). In plants other than tomato, this 
includes several seed quality traits (Bauchet et al. 2014; 
Doebley et al. 2006; McCouch 2004; Razifard et al. 2020; 
Wang et al. 2020). Trait variation loss could be restored by 
including wild cultivars/ancestors of modern commercial 
tomato such as Solanum pimpinellifolium. Yet, although 
wild ancestors represent a rich source of genetic variation 
(although also underlying negative traits) in breeding 
programs and in studies on tomato (quantitative) genetics 
(Blanca et al. 2015; Lin et al. 2014; Pascual et al. 2016; 
Razali et  al. 2018; Tomato Genome 2012; Yang et  al. 
2014). For instance, wild cultivars have been used in 
genetic screens and genome wide association studies 
(GWAS) to discover genomic loci and genes involved 
in variation in metabolic traits (Bauchet et  al. 2017; 
Sauvage et al. 2014; Ye et al. 2019; Zhang et al. 2015; 
Zhao et al. 2019), insect resistance (Vosman et al. 2018), 
floral meristem identity (Bauchet et al. 2014), trichome 
formation (Chang et  al. 2018), microbial rhizosphere 
composition (Oyserman et al. 2022), and fruit shape and 
size (Albert et al. 2016; Blanca et al. 2015; Razifard et al. 
2020). In addition to GWAS, Recombinant Inbred Line 
(RIL) populations, derived from experimental crossing 
between S. lycopersicum and S. pimpinellifolium, are 
frequently used to uncover the effect of genetic variation 
on tomato traits (Capel et al. 2015, 2017; Celik et al. 2017; 
Kazmi et al. 2017; Viquez-Zamora et al. 2014; Voorrips 
et al. 2000; Zhang et al. 2018), including various seed 
quality traits (de Souza et al. 2016; Geshnizjani et al. 
2018, 2019, 2020; Khan et al. 2012).

The introduction and improved feasibility of diverse 
omics techniques have accelerated studies into the molecular 
mechanisms underlying natural variation in tomato traits 
in the past two decades (Rothan et al. 2019). In particular, 
advances in transcriptomics techniques such as microarray 
analysis and later RNA-sequencing have proved useful in 
this context, by enabling, e.g., GWAS studies. Moreover, 
measuring gene expression in RILs has enabled expression-
QTL (eQTL) analysis as a powerful tool to detect gene 
regulatory loci (Jansen and Nap 2001; Jimenez-Gomez 
et al. 2010; Kawakatsu et al. 2016; Keurentjes et al. 2007; 
Snoek et al. 2012; West et al. 2007). Combining the wealth 
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of information obtained by mapping eQTLs enables (re)
construction of regulatory networks underlying plant traits 
(Jimenez-Gomez et al. 2010; Keurentjes et al. 2007; Terpstra 
et al. 2010). In addition, comparison of eQTL profiles from 
multiple environments may aid our understanding of how 
genetic variation shapes the effects the environment has on 
the appearance of phenotypes (Hartanto et al. 2020; Nijveen 
et al. 2017; Snoek et al. 2012). In plant (Arabidopsis) and 
worm (Caenorhabditis elegans) model systems, it has been 
shown that especially trans-eQTLs are dynamic and can 
be highly specific for a certain environment (Cubillos et al. 
2014; Hartanto et al. 2020; Nijveen et al. 2017; Snoek et al. 
2017, 2012; Sterken et al. 2019; Vinuela et al. 2010).

Although seed quality and seedling establishment 
characteristics are determined by both genetic variation and 
the maternal environment in which the seeds develop and 
mature (Geshnizjani et al. 2019, 2020; He et al. 2014), it 
is currently unknown if the maternal environment causes a 
perturbated eQTL landscape in the progeny seeds and how 
the nutrient environment of the mother plant affects these 
landscapes. We therefore followed an RNA-seq approach 
and quantified natural variation in mRNA levels in the dry 
seeds of a tomato RIL population from a cross derived from 
S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium 
(G1.1554) parents (Khan et al. 2012; Voorrips et al. 2000) 
that were cultivated either in a low nitrogen or a high 
phosphorus environment. In this work, we first present a 
high-density RNA-seq-derived genetic map of tomato, and 
subsequently, we demonstrate how the genetic landscape 
of gene regulation of tomato dry seeds is affected by the 
nutritional environment of the mother plant. Altogether, our 
detailed analysis of the genetic underpinning of plasticity 
in gene expression as responsiveness to the maternal 
environment, attributed to the progeny seeds, may contribute 
to knowledge-based breeding programs aiming to develop 
crop cultivars that are resilient to stressful environments, 
including production of high-quality seeds under sub-
optimal environmental conditions.

Results

An RNA‑seq‑derived genetic map of tomato

We performed an RNA-sequencing experiment to uncover 
the interplay between genetic variation, the nutritional status 
of the maternal environment, and mRNA abundances in 
progeny tomato seeds. The used seeds were derived from 
101 tomato RIL plants of a cross between S. lycopersicum 
(cv. Moneymaker; MM) and S. pimpinellifolium (G1.1554 
or CGN14498; PI) (Kazmi et  al. 2012; Voorrips et  al. 
2000) and their parental lines. All maternal plants were 
pre-cultivated on standard nutrient conditions and upon 

flowering transferred to either low nitrogen (LN; 52 RILs) 
or high phosphate (HP; 49 RILs) nutrition. The two RIL sets 
were non-overlapping (Geshnizjani et al. 2020).

In addition to estimating expression differences among 
individuals, RNA-seq reads allowed for the identification 
of single-nucleotide polymorphisms (SNPs) in transcribed 
genes of the parental lines and the RILs. These SNPs were 
subsequently used to construct genetic and physical maps of 
the RIL population, to facilitate QTL and eQTL mappings 
(Serin et al. 2017; Snoek et al. 2019). In total, we detected 
43,188 consistent SNPs between the parental lines. These 
SNPs were subsequently used to reconstruct the genotypes 
(i.e., determine the crossover locations) of the RILs (Fig. 1a, 
b). Across our RIL set, a balanced distribution of the paren-
tal alleles was observed genome-wide, with the notable 
exception of chromosome 2, which had a substantial higher 
frequency of PI alleles (Supplementary Fig. 1). Measured 
over all RILs, 2847 recombination (crossover) events were 
detected. As expected, the crossovers were found almost 
exclusively in euchromatic regions of the chromosomes, 
causing severe distortion between the physical and genetic 
maps, as described before (Demirci et al. 2017) (Fig. 1c). 
On average, two recombination events were detected per 
RIL per chromosome. Altogether, the population size and 
recombination events provided 4515 unique genetic mark-
ers and 4568 distinguishable genomic loci/bins suitable for 
mapping, improving the previously available map (Kazmi 
et al. 2012) (Supplementary Table 1). The detected loci had 
a size range from 60 to 1.7 Kb, with an average locus size 
of 180 Kb and a median of 11 Kb (Supplementary Table 2). 
Given the high local recombination frequency, relatively 
small loci were overrepresented toward the chromosome 
tips (Fig. 1c). Together, our dataset enables precise map-
ping of QTLs and eQTLs, especially toward the tips of the 
chromosomes but with poor resolution near the centromeres.

The maternal nutrient environment affects mRNA 
abundances in seeds

Next, we compared mRNA abundances in all HP-treated 
lines (RILs and parental lines) with the mRNA abundances 
in LN-treated lines, to identify genes contributing to differ-
ences between the two environments. Principal Component 
Analysis (PCA) demonstrated the presence of a substantial 
effect of the maternal nutrient environment on transcript lev-
els in seeds (Fig. 2a). A linear model was used to identify 
which mRNAs were differentially expressed between the two 
maternal environments. A multiple testing correction was 
applied, and differential expression of 2871 mRNAs (out of 
14,772 detected mRNAs) was found (Bonferroni corrected 
p-value < 0.05) to depend on the nutritional conditions the 
mother plant experienced during the seed maturation phase 
(i.e., LN or HP) (Supplementary Table 3). Of these 2871 
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mRNAs, 922 were more abundant in seeds developed and 
ripened in HP conditions compared to LN, and 1949 mRNAs 
were significantly more abundant in LN conditions com-
pared to HP. The mRNAs of genes that were more abundant 
after LN treatment were among others enriched for Gene 
Ontology (GO) terms: ‘chloroplast,’ ‘ATP binding,’ ‘pro-
teasome,’ and ‘nitrate transport’ (Supplementary table 4). 
mRNAs that were more abundant in seeds grown in HP con-
ditions were enriched for the GO terms: ‘cellular response 
to hypoxia,’ ‘pectin esterase activity,’ and ‘glucosinolate 
metabolic process’ (Supplementary Table 4).

We also inquired the differences of the mRNA abun-
dances between the MM and PI parental lines, within and 
between treatments. To this end, we again employed a lin-
ear model, but were less stringent in the statistical thresh-
olds (as there were no confounding effects). We found 2976 
mRNAs differentially expressed between the two parental 
lines regardless of treatment and 382 mRNAs that were 
differentially expressed between the lines due to treatment 
(linear model, FDR ≤ 0.05; Fig.  2b and Supplementary 
table 5). GO enrichment indicated that the 1240 mRNAs 
more abundant in MM compared to PI were, among other 
categories, enriched, for ‘transcription factor activity,’ 
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Fig. 1  a Genetic map showing the genotypes of the RILs that were 
included in the low nitrogen (LN) treatment experiment. The map 
represents the most probable genotype per marker location. Yel-
low indicates MM; brown indicates PI. Position on the chromosome 
is indicated in centimorgans (cM). b As in (a), but for the RILs that 
were included in the high phosphorous (HP) treatment experiment. 

c Recombination events per chromosome for the whole population 
(black) and the LN-(orange) and HP-treated (green) sub-populations. 
The physical position is given on the x-axis in million bases (Mb); the 
genetic position is given on the y-axis in centimorgans (cM). Chro-
mosome numbers are indicated above panels (color figure online)
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‘oxidation–reduction,’ ‘protein -binding,’ ‘-phosphoryla-
tion,’ ‘-ubiquitination,’ ‘chloroplast,’ ‘circadian rhythm,’ 
and ‘metal ion binding’ (Supplementary Table 6a). The 
1736 mRNAs that were more abundant in PI compared to 
MM were, among other categories, enriched for ‘cytosol,’ 
‘chloroplast,’ ‘nucleus,’ ‘mitochondrion,’ ‘cytoplasm,’ ‘ribo-
some,’ ‘translation,’ ‘nucleolus,’ ‘endoplasmic reticulum,’ 
‘oxidation–reduction,’ ‘vacuole,’ and ‘copper ion binding’ 
(Supplementary table 6a). The 382 genes showing a sig-
nificant interaction effect between the parental background 
and maternal environment showed an enrichment for the 
GO terms ‘oxidation–reduction,’ ‘extracellular region,’ 
‘transcript regulation,’ ‘iron ion binding,’ and ‘response to 
gibberellin’ (Supplementary table 6b). Of note, the ‘oxida-
tion–reduction process’ and ‘transcript regulation’ GO terms 
are enriched in the upregulated genes of both MM and PI, 
which is not surprising since both GO terms are quite gen-
eral and each represents many genes. These results show 
that the nutrition status of the mother plant (environment; 
E) as well as genotype (G), and the interaction between the 
two (G × E), modulates mRNA abundances in dry seeds of 
tomato.

Heritability and transgression in mRNA abundances

To estimate the contribution of genetic variation to dif-
ferences in mRNA abundance between the genetic back-
grounds (plant lines) and treatments (nutrient status), 
we calculated the Broad-Sense Heritability (BSH). It 
should be noted that the method used in general gives an 
upper-bound estimation of the BSH (Brem and Kruglyak 
2005; Keurentjes et al. 2007; Rockman et al. 2010; Snoek 
et al. 2012; Sterken et al. 2019). In addition, replicated 

measurements in the parental lines were used to estimate 
non-genetic variance. We found 5112 genes in HP and 
5332 genes in LN that showed significant heritability 
for mRNA abundance, of which 2973 genes overlapped 
(39.8%; permutation, FDR < 0.05; Fig. 3a; Supplemen-
tary Table 7a). Subsequently, we checked if genes with 
significant heritable contribution to mRNA abundance 
differences were predominantly affected by the maternal 
nutrient environment. However, we did not find such an 
enrichment for any of the overlapping groups of genes 
(hypergeometric test, p > 0.01; Supplementary Fig. 2a). 
We thus conclude that, overall, the number of genes 
with significant heritability for mRNA abundance was 
not specifically responsive to the maternal nutrient treat-
ments. The genes with heritable mRNA abundance in 
HP alone were enriched for the GO terms: ‘translation,’ 
‘ribosome,’ ‘mitochondrion,’ and more (Supplementary 
Table 7b). Those that showed significant heritability only 
in LN were enriched for the GO terms: ‘ABA metabolic 
process,’ and others (Supplementary table 7b). The genes 
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Fig. 2  Nutrition status-related mRNA abundance differences. a The 
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the mean transcripts per million (TPM) values. The first axis (PCO1) 
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abundant mRNAs in the two parental lines not affected by treatment 
(2976 genes, line) and affected by treatment (382 genes, interaction). 
Lower abundance is shown in purple and higher in green. The genes 
can be found in Supplementary Table 5 (color figure online)

Fig. 3  Venn diagrams showing the overlap and differences of a genes 
with significant heritability and b genes exhibiting significant trans-
gression, of mRNA abundance levels between LN (orange) and HP 
(green; FDR < 0.05) (color figure online)
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that showed significant heritability in both environments 
were enriched for various GO terms: ‘oxidation–reduction 
process,’ ‘ribosome/translation,’ ‘nucleolus,’ ‘cell wall,’ 
‘heme binding,’ ‘ion binding,’ and ‘vacuole’ (Supplemen-
tary Table 7b).

We next assessed the complexity of the genetic regulation 
underlying mRNA abundance differences. To this end, the 
transgression was calculated, i.e., trait values in RILs that 
extent beyond the parental means. We found significant 
transgression in mRNA abundance (trait) levels for 1043 
genes in the maternal HP treatment and 1145 genes in 
the maternal LN treatment (permutation, FDR < 0.05; 
Supplementary Table 8a). This suggests a polygenic genetic 
architecture for mRNA abundance. Of these, the mRNA 
abundances of 185 genes showed significant transgression 
beyond the parental means in both treatments (Fig. 3b). 
Also, here, we tested for significant overlap with treatment-
related genes. Yet, with 18% response to treatment of the 
transgressive mRNAs, there was no significant enrichment 
for transgressive mRNA abundances with treatment-related 
differences (hypergeometric test, p > 0.01; Supplementary 
Fig. 2b). So, alike heritability, transgression is apparently not 
linked to a reduction of nitrogen or increase in phosphorus 
content in the maternal growth environment. Moreover, 
compared to genes showing significant heritability, many 
fewer GO terms were enriched in the genes showing 
transgression, and those GO terms that were enriched 
generally had a lower level of significance. For genes 
showing transgression in HP alone, the GO terms ‘cell 
periphery,’ ‘positive gravitropism,’ ‘cysteine biosynthetic 
process,’ ‘symporter activity,’ and ‘response to heat’ were 
enriched, whereas for genes only showing transgression in 
LN the GO-terms ‘beta-glucosidase activity,’ ‘preprophase 
band,’ and ‘phragmoplast’ were enriched. The GO term 
‘DNA-binding transcription factor activity’ was enriched 
in genes showing transgression in both environments 
(Supplementary Table 8b).

The maternal nutrient environment produces 
specific eQTL landscapes

Altogether, our analyses revealed both a considerable effect 
of the maternal nutrient environment (HP versus LN) and 
a significant influence of genetic variation in the RIL panel 
(heritability) on the detected mRNA abundance levels. 
By combining our constructed SNP genetic map (Fig. 1a, 
Supplementary table 1) with the obtained mRNA abun-
dance dataset (Fig. 2), we were able to identify eQTLs that 
potentially contribute to the variation in mRNA abundance 
(Fig. 4a–f). In other words, the identified eQTL have a high 
chance of harboring polymorphic regulatory factors (e.g., 
genes or other genetic elements) for mRNA abundance, 

prospectively explaining variation in the seed and germina-
tion trait phenotypes observed.

We detected a maternal environment-specific trans-
eQTL landscape, as the distribution of the position of 
the trans-eQTLs was very different between the two 
environments. For the HP environment, 4281 eQTLs 
for 3833 genes were identified, of which 2247 were 
cis-eQTLs and 2034 were trans-eQTLs. For the LN 
environment, 7487 eQTLs were detected for 6815 
genes, of which 2356 were cis-eQTLs and 5131 were 
trans-eQTLs (FDR < 0.05; −  log10(p) > 3.9; Fig. 4a–d; 
Supplementary Table 9; Supplementary Table 10). The 
confidence intervals of the eQTL locations were mostly 
dependent on the chromosomal area where the QTL was 
mapped, with small intervals at the chromosomal arms 
and large intervals nearer the centromeres (Supplementary 
Table 9). A significant overlap between cis-eQTLs of the 
two environments was noted (Fig. 4e; 1506 overlapping 
cis-eQTLs; 48.6%; hypergeometric test, p < 1*10–16). 
On the contrary, the trans-eQTLs were mainly specific 
for each tested maternal environment (Fig.  4f; 590 
overlapping trans-eQTLs; 9.7%; hypergeometric test, 
p = 1.0). However, both cis- and trans-eQTLs were not 
enriched for genes with differentially abundant mRNA 
levels based on the maternal environment (hypergeometric 
test, p > 0.01; Supplementary Fig. 3a and b). Together with 
the significant transgression (Supplementary Table 8a) 
and considerable heritability of mRNA abundances 
(Supplementary Table 7a; Fig. 3a), this indicates that 
trans-eQTLs represent a genotype-specific interaction 
with the maternal nutrient environment. Many different 
GO terms were found to be enriched in the genes with 
environment-specific eQTLs. For an overview, see 
Supplementary table 11.

The majority of the trans-eQTLs clustered in maternal 
nutrient environment-specific eQTL hotspots or trans-bands 
(Fig. 4a, c). Hence, these genomic regions harbor the main 
loci underlying the genetic variation in environment-specific 
gene expression regulation in our dataset. A total of 13 trans-
bands (9 in the HP treatment and 4 in the LN treatment; see 
Methods for the trans-band criteria) were identified, which 
account for 1206 of the trans-eQTLs in the HP treatment 
(59.3% of HP total) and 4181 of the trans-eQTLs in the LN 
treatment (81.5% of LN total; Table 1).

Thus, trans-bands are a major explanatory factor for 
trans-eQTLs. In other words, a relatively large proportion 
of trans-eQTLs are caused by a few pleiotropic major effect 
loci. Remarkably, the MM allele had a positive effect on 
mRNA abundance for the majority of the eQTLs of the 
trans-bands in the LN soil environment, whereas this was 
not so prevalent in the HP environment (Table 1; Fig. 4a, 
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c). Most of these trans-bands showed enrichment for spe-
cific GO terms, such as ‘translation’ and ‘specific cellular 

organelles' for LN and ‘oxidoreductase’ and ‘vacuole’ for 
HP (Table 1, Supplementary Table 12). Moreover, many of 
the trans-bands co-locate with known QTLs for germination 
and seed traits [Table 1 (Geshnizjani et al. 2020; Khan et al. 

Fig. 4  Characteristics of the detected eQTL landscapes in tomato dry 
seeds in a, b LN and c, d HP environments. a, c Cis–trans plots of 
eQTLs mapped (−  log10(p) > 3.9). The positions of the eQTL peaks 
are plotted on the x-axis and the positions of the corresponding genes 
on the y-axis. Chromosomes are indicated on the top and right in the 
gray labels. Colors indicate cis-eQTL (black), eQTL associated with 
higher mRNA abundance due to the MM allele (blue) or with higher 

abundance by the PI allele (red). b, d Histograms showing the distri-
bution of the cis- and trans-eQTL over the chromosomes, arranged 
by eQTL peak location counted per 2 million bases (Mb) bins. The 
dashed lines in the trans-eQTL panels indicate the threshold for call-
ing a trans-band (Poisson distribution, p < 0.0001). e The overlap of 
cis-eQTL in the two treatments and f the overlap of trans-eQTL in 
the two maternal environments (color figure online)
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2012)]. These eQTLs can therefore contribute to uncovering 
the molecular genetic mechanisms underlying the germina-
tion and seed trait QTLs.

Discussion

Our RNA-sequencing data obtained from a Tomato RIL 
population (S. lycopersicum (cv. Moneymaker; MM) × S. 
pimpinellifolium (G1.1554; PI)) (Kazmi et al. 2012; Voor-
rips et al. 2000) allowed for the construction of a genetic 

map, describing the genotypes using 4515 SNP markers. 
This is over five times more than previously reported in 
Kazmi et al. (2012), which used 865 markers. However, 
intrinsic to RNA-seq data, only SNPs present in the cod-
ing parts of the genes (mRNA’s) could be used. Therefore, 
determining the exact locus where recombination took place 
would need additional genome sequencing as described in 
(Demirci et al. 2017). Furthermore, recombination events 
were mostly limited to the chromosome arms, leading to 
a skew in mapping resolution, with more narrow QTLs on 

Table 1  Overview of detected trans-band (TB) eQTLs. Indicated are 
given ID’s, location on the physical genome (map position in Mb), 
number of eQTLs underlying the trans-band (+sign: MM > PI; −
sign PI > MM), GO terms enriched in the eQTLs underlying the 

trans-band in either MM or PI and co-location with known pheno-
typic QTLs for germination (Geshnizjani et  al. 2020; Khan et  al. 
2012); +sign: MM > PI; −sign PI > MM)

TB ID Position eQTLs GO enrichment (+ MM 
higher)

GO enrichment (−PI higher) Germination QTL Refs: 
(Geshnizjani et al. 2020)

LN_TB1 ch03: 56–64 Mb 2369 (2330+; 39−) Translation; ribosome; 
nucleolus; RNA binding; 
mitochondrion; cell wall; 
and more

None Th-I [57.5 Mb] (LN−)

LN_TB2 ch04:4–8 Mb 1348 (1311+; 37−) Telomere; nucleus; protein 
binding; ubiquitin; and 
more

None Gmax water [3.14 Mb] (LN+); 
T10 water [3.14 Mb] (LN+); 
T10 NaCl [3.14 Mb], mann 
[4.94 Mb], HT [3.14 Mb] 
(LN+); T50 water [3.14 Mb], 
mann [4.94 Mb], (LN+); 
AUC water [3.14 Mb], mann 
[3.14 Mb] (LN+)

LN_TB3 ch04:54–56 Mb 99 (45+; 54−) None Secretory vesicle; and more Gmax NaCl [55.0 Mb], mann 
[58.2 Mb] (LN+); SW 
[50.2 Mb] (LN+)

LN_TB4 ch12:62–66 Mb 365 (348+; 17−) Golgi; endosome; 
glycosylation; ER; and 
more

None None in LN

HP_TB1 ch01:2–4 Mb 41 (16+; 25−) None None None in HP
HP_TB2 ch04:6–8 Mb 38 (7+; 31−) None Heme binding; 

oxidoreductase; iron ion 
binding

Gmax mann [3.14 Mb], 
HT[3.14 Mb] (HP+); Th-I 
[1.90 Mb] (HP+)

HP_TB3 ch06:2–4 Mb 96 (5+; 91−) None None U8416 NaCl [9.03 Mb], 
HT[9.03 Mb] (HP+)

HP_TB4 ch06:32–34 Mb 254 (12+; 242−) None RNA processing Th-T [33.7 Mb] (HP+)
HP_TB5 ch06:44–48 Mb 182 (13+; 169−) None Tricarboxylic acid cycle; 

plastid; vacuolar 
membrane; cell wall

T10 NaCl [43.8 Mb], mann 
[43.8 Mb], HT [43.6b] 
(HP+); T50 NaCl [43.8 Mb], 
HAT [43.8 Mb] (HP+); AUC 
NaCl [43.8 Mb] (HP+)

HP_TB6 ch07:0–2 Mb 77 (32+; 45−) None None None in HP
HP_TB7 ch08:58–60 Mb 83 (80+; 3−) Vacuole; oxidoreductase; 

golgi
None Th-D [59.6 Mb] (HP+)

HP_TB8 ch11:0–6 Mb 371 (249+; 122−) chromosome, centromeric 
region; ubiquitin 
conjugating enzyme 
activity

Transferase activity; 
hydrolase activity; response 
to heat

None

HP_TB9 ch11:52–54 Mb 64 (63+; 1−) Ribosome; nucleolus; 
translation; and more

None T10 mann [48.3 Mb] (HP-)
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the arms when compared to those located more toward the 
centromere regions.

By measuring transcript levels (i.e., mRNA abundances) 
in the seeds of a tomato RIL population that had matured in 
different maternal nutrient environments, we show that the 
maternal environment affects both regulation and the genetic 
architecture of gene expression in progeny seeds. By design 
of the experiment which focusses on the role of genotypic 
variation within an environment, we can only observe 
the differences between the two (extreme) environments. 
However, this comparison would benefit from the contrasts 
between normal nutrient conditions and these more extreme 
environments. An RNAseq experiment on seeds coming 
from standard nitrogen/phosphorous conditions would 
surely benefit this analysis and might help identification of 
gene expression or even eQTL more specific to high nutrient 
environments.

The genetic analysis revealed that especially trans eQTLs 
proved environment specific, which is comparable to other 
species (Albert et al. 2018; Cubillos et al. 2014; Hartanto 
et al. 2020; Li et al. 2006; Nijveen et al. 2017; Snoek et al. 
2017, 2020, 2012; Vinuela et al. 2010). We found 3833 
genes (~ 26% of all detected expressed genes in the RILs), 
with an eQTL in HP and 6815 genes (~ 46% of all expressed 
genes in the RILs) with an eQTL in LN. This is comparable 
to the number detected by Ranjan et al. 2016 (Ranjan et al. 
2016), who used the upper part of five-day-old hypocotyls 
of introgression lines (ILs), developed from the wild 
desert-adapted species Solanum pennellii and domesticated 
Solanum lycopersicum cv. M82 (Eshed and Zamir 1995), 
and found 5300 genes (~ 25% of total expressed genes) to 
have an eQTL, with roughly half in cis and half in trans. 
We also found this close to 50/50 ratio in the HP condition, 
whereas in the LN condition the ratio of cis/trans eQTLs 
was increased to 30/70. Research in yeast indicated that the 
detection of trans-acting eQTLs is more strongly affected by 
the power of the study than detection of cis-acting eQTLs 
(Albert et al. 2018). So, it is likely that in our study we 
would have even more trans-eQTLs relative to cis-eQTLs.

By comparing two different maternal environments 
in a population originating from two different genetic 
backgrounds, many different maternal environment-
specific eQTLs were detected. This underlines the interplay 
between genetics and nutrient environment in our study. 
However, upon enrichment analysis of genes regulated 
by the environment-specific trans-eQTL hotspots, no 
obvious terms linking to the HP and LN environments 
were uncovered. Still, this information might be relevant 
for uncovering molecular mechanisms underlying the traits 
previously identified to co-locate with these trans-eQTL 
hotspots (Geshnizjani et al. 2020; Kazmi et al. 2012). Yet, 
we expect much of the variation caused by this interplay 

will be uncovered in future studies increasing numbers of 
different timepoints, environments, and genotypes. It should 
be noted that, considering the relatively limited amount of 
RILs (49 RILs in the HP treatment and 52 RILs in the LN 
treatment in this study), eQTL mapping power can be likely 
improved by measuring more RIL genotypes.

Mapping eQTL can help in the identification of 
causal genes underlying phenotypic QTL. In our study, 
the resolution for identifying causal genes is mostly 
limited by the recombination frequency in the population 
used, which is limited in RILs with on-average two 
crossovers per chromosome. Next to recombination 
events, identification of causal polymorphic genes in this 
and other eQTL studies can be assisted by using prior 
knowledge (Hartanto et  al. 2022), and more detailed 
data on the number and type of polymorphisms between 
tomato lines, such as frameshifts (Kevei et al. 2015) and 
copy number variations (Razali et al. 2018). Moreover, 
combining eQTLs with QTLs obtained using phenotypic 
trait data (Geshnizjani et al. 2019, 2020; Khan et al. 2012), 
as well as other molecular data such as proteomics and/
or metabolomics (Kazmi et al. 2017), will contribute to 
obtaining mechanistic insight on how genotypic variation 
leads to phenotypic variation between individuals at a 
systemic level. Furthermore, these eQTLs could be used 
as a lead in studies with a larger source of wild genotypes 
and combined with GWAS (Bauchet et al. 2017; Chang 
et  al. 2018; Mata-Nicolas et  al. 2020; Ye et  al. 2019; 
Zhang et al. 2015; Zhao et al. 2019), to pinpoint causal 
polymorphisms underlying variation at both the molecular 
and phenotypic levels.

Methods

Plant lines, growth conditions, and nutrient 
treatments

The mother plants (maternal conditions) were cultivated 
as described in Kazmi et  al. (2012) and Geshnizjani 
et  al. (2020) (Khan et  al. 2012), in the greenhouse at 
Wageningen University, the Netherlands. In short, the 
parental lines Solanum lycopersicum cv. Money maker 
(MM) and Solanum pimpinellifolium accession CGN14498 
(PI) as well as the derived recombinant inbred lines (RILs; 
(Voorrips et  al. 2000); Supplementary Table  1) were 
grown on rockwool under standard nutrient conditions 
(14 mM nitrate and 1 mM phosphate) with a 16-h light 
(25 °C) and 8-h darkness (15 °C) photoperiod. From the 
moment the first flower opened, the plants were fertilized 
with the specific nutrient solutions, low nitrate (2.4 mM 
Nitrate, 1 mM Phosphate), and high phosphate (14 mM 
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Nitrate, 5 mM Phosphate) in two biological replicates 
per environment. The seeds were collected from healthy 
and fully ripened fruits, and the pulp still attached to the 
seeds was removed with 1% hydrochloric acid (HCl) and 
a mesh sieve (for 30 min). Water was used to remove the 
remaining HCl and pulp. For disinfection, seeds were 
treated with trisodium phosphate  (Na3PO4⋅12H2O) for 
15 min. Subsequently, seeds were dried at 20 °C for 3 days 
on a clean filter paper in ambient conditions. The seeds 
were then stored in paper bags at room temperature.

RNA‑isolation, library prep, and RNA‑seq

We used 10 mg grinded powder derived from 30 whole, 
dry, brushed, after-ripened seeds (12 months after harvest) 
of parental lines, and the RILs grown under different 
nutrient environments in a generalized genetical genomics 
design (Li et al. 2008, 2009b) to extract total RNA. For 
the HP treatment, 3 replicates for the parental lines and 
49 unique RILs were sequenced (one replicate per RIL). 
For the LN treatment, 3 replicates for the parental lines 
and 52 unique RILs were sequenced (one replicate per 
RIL) (Supplementary Table 13). RNA was isolated using 
the NucleoSpin RNA plant isolation kit (Macherey–Nagel 
740,949) with on-column DNA digestion and adding 
Plant RNA isolation Aid (Life technologies) according 
to the manufacturer’s protocol and instructions. Strand-
specific RNA-seq libraries were prepared from each 
RNA sample using the TruSeq RNA kit from Illumina 
according to manufacturer’s instructions. Poly-A-selected 
mRNA was sequenced using the Illumina HiSeq2500 
sequencer, producing strand-specific single-end reads of 
100 nucleotides. Raw sequence reads can be found in the 
Sequence Read Archive (SRA; www. ncbi. nlm. nih. gov/ sra) 
under ID: PRJNA704909.

Alignment and SNP calling

Reads were trimmed using Trimmomatic (version 0.33, 
(Bolger et  al. 2014) to remove low-quality nucleotides. 
Trimmed reads were subsequently mapped to the Tomato 
SL4.0 reference genome with the ITAG4.0 annotation 
(Hosmani et al.2020) using the HISAT2 software (version 
2.1.0 (Kim et al. 2015) with the –dta-cufflinks option. The 
resulting SAM alignment files were sorted and indexed using 
samtools version1.9 (Li et al. 2009a). SNPs were called 
using bcftools mpileup with a minimum read depth of 3.

Generation of a physical and genetic map 
from RNA‑seq data

The physical map used for mapping the eQTLs was made 
from the RNA-seq data following the protocol described 

in Serin et al. (2017) and Snoek et al. (2019). With the 
following modifications: SNPs were filtered for those that 
were consistently found in all replicates of the parental lines 
and observed in all RILs. Then, the genotype per RIL was 
determined per sliding bin of 100 SNPs where the mean 
position of those SNPs was taken as the physical position of 
the obtained marker.

The genetic map was constructed by converting the 
genotype probabilities to the most likely genotype and 
subsequently determining the number of recombinations 
between subsequent markers. The chance of recombination 
was used to generate a centimorgan (cM) map.

Quantification of RNAseq

Before mRNA abundance analysis, between 12 and 31 M 
reads per sample were mapped to the SL4.0 genome with 
ITAG4.0 annotation (Hosmani et al. 2020) using HISAT2 
as described above. The mRNA abundance was quantified 
to counts using Stringtie (Pertea et  al. 2015) with the 
options -e, -B, and -G. In R, the counts were used to 
calculate transcripts per million (TPM). The TPM values 
were  log2-transformed by

Additionally, to use for statistics, also a ratio with the 
average was calculated, by

where the  log2 was calculated for each transcript i of sample 
j by dividing over the average value for that transcript TPM 
over all samples j. After transformation, the transcripts were 
filtered for  TPMlog > 0 and detection in all samples.

mRNA abundance analysis and QTL analyses

The analyses reported below were conducted in “R” 
(version 3.5.3, × 64) (R-Core-Team 2017) with custom 
written scripts, accessible via https:// git. wur. nl/ publi 
shed_ papers/ sterk en_ tomato- eqtl_ 2021. For analysis, the 
dplyr and tidyr packages were used for data organization 
(Wickham et al. 2018; Wickham 2018), and plots were 
generated using ggplot2 (Wickham 2009).

Treatment‑related mRNA abundance differences

The principal component analysis comparing the mRNA 
abundances was done on the TPMrat-transformed data, 

TPMlog = log2(TPM + 1)

TPMrat,i,j = log2

(

TPMi,j

TPMj

)

http://www.ncbi.nlm.nih.gov/sra
https://git.wur.nl/published_papers/sterken_tomato-eqtl_2021
https://git.wur.nl/published_papers/sterken_tomato-eqtl_2021
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using the prcomp function in “R.” The mRNA abundance 
differences between treatments were tested between the 
LN and HP treatments using the linear model

 where  TPMlog,i is the abundance level of transcript i (one 
of 14,772 transcripts) in RIL j (n = 55 for the HP treatment 
and n = 58 for the LN treatment; these include the RILs and 
the parental replicates per condition), T is the treatment 
(HP or LN), and e is the error term. To reduce the chance 
of detecting differences due to genetic variation, a strict 
multiple testing correction was applied (Bonferroni) using p. 
adjust. The threshold for significance was −  log10(p) > 5.47 
(FDR = 0.05).

To determine the effect of treatment on the differences in 
mRNA abundance between the parental lines, we ran a linear 
model explaining the differences due to treatment and line 
effects on the MM and PI parental data. The model used was

where  TPMlog,i,j is the abundance level of transcript i 
(one of 14,772 transcripts) in parental replicate j (n = 3 
for both treatments for MM and PI), T is the treatment 
(HP or LN), L is the line (MM or PI), and e is the error 
term. Values were corrected for multiple testing using p. 
adjust following the Benjamini–Hochberg algorithm. The 
thresholds for FDR = 0.05 were: −  log10(p) = 1.71 for line, 
−  log10(p) = 2.08 for treatment, and −  log10(p) = 2.89 for the 
interaction between line and treatment. We took the most 
stringent p value, −  log10(p) = 2.89 as threshold to determine 
significance.

Transgression

Transgression was calculated by counting the number of 
lines with expression levels beyond three standard deviations 
from the mean of the parental lines (as in Brem and 
Kruglyak 2005); µ ± 3*σ. This was done for both treatments 
separately. The lower boundary was established by the 
parental line with the lowest mean, and the upper boundary 
was established by the parental line with the highest mean. 
The standard deviation used to determine transgression (σ) 
was calculated as the pooled standard deviation of the two 
parental lines (n = 3 for both).

Significance of the transgression was calculated by 
permutation. The expression values were randomized 
over the line designations and the same test as above was 
conducted. This was repeated 1000 times for each transcript, 
so the obtained values could be used as the by-chance 
distribution. The 50th highest value was used as the false 
discovery rate (FDR) = 0.05 threshold.

TMPlog,i = Ti + ei

TMPlog,i,j = Ti,j + Li,j + Ti,j × Li,j + ei,j

Heritability

The heritability was calculated by estimating the genotypic 
variance in the RILs and the remaining variance (e.g., 
measurement error) in the parental lines (as in Keurentjes 
et al. (2007)). This was done for both treatments separately, 
by

where VRIL is the variance within the RIL population and Ve 
is the pooled variance of both parental lines.

To establish whether the heritability was significant and 
not outlier driven, we applied a permutation approach [as 
in Vinuela et al. (2012)]. The trait values were randomized 
over the line designations and the heritability calculation 
were repeated. This was done 1000 times for each 
transcript to generate a by-chance distribution. The 50th 
highest value was used as the FDR = 0.05 threshold.

eQTL mapping

For eQTL mapping a single marker model was used and 
was applied separately for both treatments (as in (Snoek 
et al. 2017; Sterken et al. 2017)). QTLs were mapped using 
the model

where  TPMlog,i,j is the expression level of transcript i (one 
of 14,772 transcripts) in RIL j (n = 49 for the HP treatment 
and n = 52 for the LN treatment). The expression levels were 
explained over the genotype on marker location x (x = 1, 
2,…, 4515) of RIL j.

To determine the reliability of the detected QTLs 
and correct for multiple testing, a permutation approach 
was used. As in the other permutations, the expression 
levels were randomly distributed over the lines and 
this randomized set was mapped again according to 
the procedure described above, which was repeated 10 
times. To determine the FDR, we applied a correction 
for multiple testing under dependency (Benjamini and 
Yekutieli 2001)

where FDS (false discovery) is the number of eQTLs 
detected in the permutation and the RDS (real discovery) 
is the number of eQTLs detected in the QTL mapping 
at a specific significance level. The number of true null 
hypotheses tested (m0) was 14,772-RDS, where the number 
of hypotheses tested (m) was the number of transcripts, 

H2

RIL
=

VRIL − Ve

VRIL

TPMlog,i,j = xj + ej

FDS

RDS
≤

m0

m
× q × log(m)
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14,772. The q-value was set at 0.05, which led to a threshold 
of −  log10(p) = 3.7 for the LN treatment and −  log10(p) = 3.9 
for the HP treatment. To keep comparisons straightforward 
(similar effect sizes), analyses were conducted at the most 
stringent threshold (−  log10(p) > 3.9).

The eQTL types (cis or trans) were called based on 
distance to the gene encoding the affected transcript. A 
trans-eQTL had to be located at least 1 Mb from the gene. 
Furthermore, we calculated the confidence interval of the 
QTL as a 1.5-drop from the highest −  log10(p). For a trans-
eQTL to be called, the location of the affect transcript was 
required to be outside of this confidence interval as well.

Trans‑band identification

Identification of regulatory hotspots (trans-bands) was 
based on assessing whether the number of trans-eQTLs 
mapped to a locus exceeded the expected number based on 
an equal genome-wide distribution [as in Rockman et al. 
2010; Snoek et al. 2017]. We used a Poisson distribution 
to ascertain the significance of eQTL abundances per 
2 Mb bin. For the HP treatment, we expected 15.8 trans-
eQTL per bin, and for the LN treatment we expected 40.8 
trans-eQTL per bin. We used a conservative threshold for 
calling a bin enriched in trans-eQTL, p < 0.0001. After 
identifying significant bins, adjacent bins (significant bins, 
with up to 1 non-significant bin in-between) were merged 
to a single trans-band.

Enrichment

GO enrichment was determined using the hypergeometric 
test in R on the GO annotation done for ITAG2.4 
downloaded from AgriGO (www. bioin fo. cau. edu. cn/ 
agriGO) (Tian et al. 2017) combined with the annotation 
for ITAG3.1 and expanded with the GO annotation of the 
Arabidopsis homologues. All expressed genes were used 
as background genes in the enrichment test.

Map and eQTL data in TomQTL

The physical map of the RIL population and the eQTL 
−log10(p-value) scores are available for download and 
online exploration in TomQTL at http:// www. bioin forma 
tics. nl/ TomQTL/, an interactive website based on AraQTL 
(Nijveen et al. 2017) and WormQTL2 (Snoek et al. 2020).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 023- 04322-0.
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