
Structural bioinformatics

How sticky are our proteins? Quantifying hydrophobicity

of the human proteome

Juami Hermine Mariama van Gils *, Dea Gogishvili, Jan van Eck,

Robbin Bouwmeester, Erik van Dijk and Sanne Abeln *

Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland,

The Netherlands

*To whom correspondence should be addressed.

Associate Editor: Michael Gromiha

Received on September 30, 2021; revised on December 19, 2021; editorial decision on January 7, 2022; accepted on January 24, 2022

Abstract

Summary: Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stabil-
ity to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some ‘sticky’ hydrophobic
residues to the solvent. These residues can play an important functional role, e.g. in protein–protein and membrane
interactions. Here, we first investigate how hydrophobic protein surfaces are by providing three measures for sur-
face hydrophobicity: the total hydrophobic surface area, the relative hydrophobic surface area and—using our
MolPatch method—the largest hydrophobic patch. Secondly, we analyze how difficult it is to predict these measures
from sequence: by adapting solvent accessibility predictions from NetSurfP2.0, we obtain well-performing predic-
tion methods for the THSA and RHSA, while predicting LHP is more challenging. Finally, we analyze implications of
exposed hydrophobic surfaces: we show that hydrophobic proteins typically have low expression, suggesting cells
avoid an overabundance of sticky proteins.

Availability and implementation: The data underlying this article are available in GitHub at https://github.com/ibivu/
hydrophobic_patches.

Contact: j.h.m.van.gils@vu.nl or s.abeln@vu.nl

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Hydrophobic residues tend to be buried inside the core of a protein
to avoid contact with their hydrophilic surroundings (the hydro-
phobic effect; Dill, 1985, 1990). Hydrophobic residues that do
occur on the protein surface often play a functional role, e.g. for
protein–protein interactions and membrane binding (Chothia and
Janin, 1975; Gowder et al., 2014; Young et al., 1994).
Additionally, exposed hydrophobic residues can play a role in the
progression of diseases. For example, it has become apparent that
hydrophobicity may play a major role in the formation and stabil-
ization of amyloid fibrils (Iadanza et al., 2018; Tuttle et al., 2016;
van Gils et al., 2020), which are linked to aggregation diseases
such as Alzheimer and Parkinson (Chiti and Dobson, 2006;
Dobson, 2001; Koo et al., 1999; Ross and Poirier, 2004). In fact,
burying the hydrophobic residues inside the folded protein is also
thought to prevent aggregation (Abeln and Frenkel, 2008, 2011;
Dobson, 2003). Therefore, hydrophobic patches and residue con-
tributions have been previously used for identifying aggregation-
prone regions (Sankar et al., 2018). Abundant exposed hydropho-
bic residues can also affect experimental outcomes: exposed

hydrophobic residues may cause gel formation and prevent crystal-
lization for protein structure determination (Wright and Dyson,
1999); in liquid chromatography surface hydrophobicity is used to
separate proteins for further experiments (Moruz and Käll, 2017).
All these examples suggests that the more hydrophobic a protein
surface, the more ‘sticky’ this protein is to its surrounding (see also
panel 1 in Fig. 1).

The hydrophobic surface area can be defined in different ways.
Here, we use three different structure-based measures to describe
surface hydrophobicity (see panel 1 in Fig. 1):

1. The total hydrophobic surface area (THSA) is the sum of the

exposed surface area of all the hydrophobic residues.

2. The relative hydrophobic surface area (RHSA) is the fraction of

the protein surface that is hydrophobic, i.e. the THSA divided by

the total accessible surface area (TASA).

3. The largest hydrophobic patch (LHP) is the largest connected

hydrophobic area on the protein surface (and is therefore always

smaller than or equal to the THSA). It has been shown that LHP

size affects protein solubility (Bahadur et al., 2003; Huang and
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Chandler, 2000; Lijnzaad and Argos, 1997) and function

(Dobson, 2004; Larsen et al., 1998).

Note that THSA, RHSA and LHP may not always correlate. For
example, a large THSA value can be due to the size of the protein,
and a protein with many scattered hydrophobic residues on its sur-
face may have a small LHP but a large THSA and RHSA.

Experimentally, the exposed hydrophobic surface area can be
estimated using differential scanning calorimetry, for which the heat
capacity temperature relation for the folded protein is directly
related to the THSA (Dijk et al., 2016; Gomez et al., 1995).

In this work, our main goal is to investigate how hydrophobic
protein surfaces are within the human proteome. We also provide
some insight how hydrophobicity is related to cellular expression
levels, giving an idea of the overall hydrophobicity in the cellular en-
vironment. The question why some of the human proteome is
hydrophobic is not the main focus of our investigation, but is con-
sidered in some cases to interpret results.

We use 3D structural information from the Protein Data Bank
(PDB) to determine the THSA, RHSA and LHP from structure. The
THSA and RHSA can be derived by summing over the exposed sur-
face area per residue calculated by DSSP (Kabsch and Sander,
1983). To calculate the LHP, we introduce a novel method named
MolPatch, which is loosely based on a method developed by
Lijnzaad et al. (1996) and Lijnzaad and Argos (1997).

Since many protein structures have not yet been determined ex-
perimentally, we subsequently use the values we obtain from the
PDB structures to train/assess predictors for these three hydrophobi-
city measures. There is a wide range of methods that can predict the
surface accessibility for a single residue (Faraggi et al., 2012; Garg
et al., 2005; Joo et al., 2012; Klausen et al., 2019; Petersen et al.,
2009). However, to predict whether a hydrophobic residue will be
exposed to the surface is not a trivial task: the earlier methods
tended to predict the majority of hydrophobic residues to be fully
buried (see Supplementary Fig. S2), as may be expected since the
hydrophobicity of residues is strongly associated with being buried
inside the protein (Kyte and Doolittle, 1982). The current generation
of residue-based surface accessibility predictors use deep neural net-
works. For example, NetSurfP2.0 is a deep learning-based multitask
predictor, which uses evolutionary profiles to make sequence-based
predictions of structural features (Klausen et al., 2019). It uses both
convolutional and long short-term memory neural layers in the deep
learning architecture, with the ability to predict both secondary
structure and solvent accessibility (Klausen et al., 2019). Here, we
will show NetSurfP2.0 is able to make accurate enough surface ac-
cessibility predictions for hydrophobic residues, which in turn can
be used to predict the global hydrophobic surface measures
described above. Previously, hydrophobic patches have been used to
predict the aggregation propensity of protein regions using 3D struc-
tures as input (Sankar et al., 2018). This AggScore method, trained
on a small (31) number of adnectin proteins, is focused on amyloid-

like proteins. In this work, we are interested in generic hydrophobi-
city of a proteome.

Finally, we use the best-performing prediction methods to pre-
dict the THSA, RHSA and LHP of all proteins in the human prote-
ome, and correlate this to cellular expression levels, providing
effectively an indication of proteome hydrophobicity per cell type.
Subsequently, we use our predictions to provide a glance into the po-
tential implications of a highly hydrophobic proteome in terms of
human disease.

2 Methods and materials

Figure 1 indicates how our approach is split into three stages. First,
we created a database of filtered PDB structures (Fig. 2) using
PISCES (Wang and Dunbrack, 2003). We used this culled set to de-
fine measures for surface hydrophobicity: THSA, RHSA and LHP.
For the latter, we used a newly developed tool named MolPatch.
Second, using the same dataset, we investigated how well we can
predict these measures from sequence using the output generated by
NetSurfP2.0. Finally, we determined the biological impact of the
THSA, RHSA and LHP. To this end, we created a dataset of human
proteins from UniProt (Consortium, 2019). We used the best predic-
tion models to predict the THSA, RHSA and LHP for each of these
proteins. The structure-based data include protein structures from
all organisms, while the sequence-based data only includes human
proteins. Subsequently, we correlated gene expression to the hydro-
phobicity in the human proteome for different cell types.

2.1 Calculating the measures for hydrophobicity
To calculate the THSA, we sum over the surface areas of all hydro-
phobic residues in the protein. For proteins with an available 3D
structure in the PDB, this quantity can be determined by calculating
the surface area of each residue using DSSP (we used the DSSP mod-
ule in Biopython version 1.76; Cock et al., 2009). To calculate
RHSA, THSA was divided by the total surface area of all residues in
the protein. Residues, r, were considered hydrophobic in this work,
if: r 2 fA;C; F; I;L;M;V;W;Yg.

2.2 MolPatch
In order to calculate the surface area of the LHP given a protein
structure, we need to find the largest connected hydrophobic surface
area on the protein’s surface. For this purpose, we developed the
tool MolPatch (also see Supplementary Fig. S1). Given the PDB
structure of a protein, MolPatch creates a point cloud on the
solvent-excluded protein surface (SES) using MSMS (Sanner et al.,
1996). In this work, the SES was constructed using a probe of 1.5 Å
and a density of 1.5 points per Å2. Each point on the point surface
was labelled hydrophobic or hydrophilic based on the hydrophobi-
city classification of the closest residue. Initial edges between points

Fig. 1. Outline of the study. (1) Structure-based definition represents the three hydrophobic measures: red and yellow colours indicate the surface of hydrophobic residues, the

blue colour indicates the surface of hydrophilic residues. The THSA is calculated by summing the area of all hydrophobic residues (red and yellow). The RHSA is calculated by

dividing the THSA by the TASA (red, yellow and blue). The LHP is the largest area of adjacent hydrophobic residues (only red). (2) We train and benchmark sequence-based

prediction methods of the three hydrophobic measures. (3) THSA, RHSA and LHP values for the human proteome were predicted by the best-performing methods and used to

estimate the abundance of hydrophobic proteins in various diseases and tissues
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were then created if the points existed within a range of 1.25 Å of
each other. This search was performed with the KDTree algorithm
to speed up the process (Bentley, 1975). Finally, only the edges be-
tween node pairs labelled as hydrophobic were retained. This cre-
ated a network of isolated hydrophobic patches. The individual
network components were then extracted for accessible surface area
estimation. MolPatch is available on GitHub, this version can also
carry out hydrophobic patch identification using atom-based defini-
tions of hydrophobicity for each SES point rather than residue-based
definitions. In this work, we only use the residue-based method.

2.3 Sequence-based predictions
2.3.1 Data curation

To predict the THSA, RHSA and LHP, a dataset of PDB structures
was generated using PISCES. PISCES is a public server for culling sets
of protein sequences from the PDB by sequence identity and structural
quality criteria (Wang and Dunbrack, 2003). This is important, be-
cause using structures with a high sequence identity can introduce
bias in the dataset, and factors such as the resolution can affect the ac-
curacy of the results. The chosen parameters were as follows: se-
quence percentage identity lower or equal to 25%, resolution lower
or equal to 3.0 Å, R-factor lower or equal to 0.3, sequence length
within the range of 40–10 000 amino acids and non-X-ray entries and
Ca-only entries were excluded as we aimed at constructing a homoge-
neous training dataset for interpretable results. The culled dataset
consisted of 13 858 unique protein structures with a selection of
14 604 chains. Two obsolete PDB chains were removed.

In order to avoid bias from hydrophobic patches that may never
be exposed in a cellular environment, we filtered multimeric and
transmembrane proteins. Multimeric protein structures were filtered
out, which resulted in a dataset of 5110 unique monomeric protein
structures. Multimers often interact through hydrophobic patches,
and if strongly bound such patches will not be exposed in the native
environment. Finally, transmembrane proteins have a relatively
large hydrophobic surface area. Transmembrane Hidden Markov
Model (TMHMM) (Möller et al., 2001; Sonnhammer et al., 1998)
was used to filter transmembrane proteins from the dataset (>18
amino acids in transmembrane helices).

2.3.2 Machine learning models

The final dataset for training and testing of the models contained
4917 monomers. For the THSA and RHSA, the values calculated by
Define Secondary Structure of Proteins (DSSP) (as described above)
were used as training output labels. MolPatch was used to create
training output labels for evaluating the LHP predictions. For all
models, a training–test split of 80% and 20% was used. Within the
training set, a 3-fold cross-validation scheme was used to train the
models. Predictions for the THSA, RHSA and LHP were acquired
with the following models:

1. The three-feature model (TFM) uses the sequence length, num-

ber of hydrophobic amino acids and number of hydrophilic

amino acids as input. This model is trained using a cubist regres-

sion in the CARET module (Kuhn, 2008).

2. The global feature model (GFM) uses 31 global features (the

total count of each of the 20 possible amino acids in the se-

quence, sequence length, entropy, hydrophobic amino acid

count, polar amino acid count, molecular weight, aromaticity,

instability index, gravy score, buried, isoelectric point and molar

extinction coefficient) as input. This model is trained using an

XGBoost regressor (Chen and Guestrin, 2016).

3. (THSA and RSHA only) NetSurfP2.0 (Klausen et al., 2019) was

used to predict the accessible surface area of all the amino acids

in a protein. Subsequently, the THSA was calculated by sum-

ming over the predicted surface areas of the hydrophobic resi-

dues in the protein sequence. The RHSA was calculated by

dividing the predicted THSA by the sum of the surface areas of

all the residues in the protein as predicted by NetSurfP2.0. Note

that we did not perform any model training for this approach;

NetSurfP2.0 was used as publicly available with default settings.

4. (LHP only) The LHP cannot be calculated from NetSurfP2.0

predictions directly, as the connections between the residues on

the surface are not known from these sequence-based predic-

tions. A random forest model was trained using the RHSA and

THSA predicted by NetSurfP2.0 (as described above) as input

features. This model was called the NetSurfP-based model

(NBM).

The data were randomly split into a training and test set of 80%
and 20%, respectively. To assess the models, a cross-validation
scheme was used. First two-thirds of the training data were used for
a 5-fold cross-validation scheme, in which the best-performing
parameters for each of the models were optimized using a grid
search method. Subsequently the remaining one-third of data, i.e.
the validation set, was used to choose the best-performing model.
Note that the performance of the models and model parameters was
optimized on the R2. Finally, the 20% of test data was used to esti-
mate the performance of the best-performing model and the
NetSurfP2.0 based calculations (code available on GitHub).

2.3.3 Estimation of prediction errors

In order to evaluate the predictions, the structure-based definitions
and sequence-based predictions can be compared, by calculating the
correlation coefficient R2. Nevertheless, for difficult regression
tasks, this value will put a lot of weight on the outliers, and will not
produce results that are easy to interpret. In addition to the R2 meas-
ure, we also evaluated the performance of the prediction model by
examining the relative error threshold curve given a certain thresh-
old, partially inspired by the GDT_TS score (Zemla et al., 2001). A
major benefit of this method is that it is robust against extreme out-
liers. For each prediction, the relative THSA error (dTHSAi

), RHSA

Fig. 2. Data curation scheme representing the main steps used to generate datasets for this study. The boxes show the filtering steps and the arrows indicate the number of

entries (structures or sequences) passed through. The structure-based definitions dataset used the protein 3D structure information and the human proteome dataset was con-

structed of protein sequences. The distribution of the measures for surface hydrophobicity within the datasets is represented by the Figure 5 and are colour-coded
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error (dRHSAi
) and LHP error (dLHPi

) for each protein i are defined
by the following formulas:

dTHSAi
¼
jTHSApredi

� THSADSSPi
j

THSADSSPi

; (1)

dRHSAi
¼
jRHSApredi

� RHSADSSPi
j

RHSADSSPi

; (2)

dLHPi
¼
jLHPpredi

� LHPMolPatchi
j

LHPMolPatchi

; (3)

where THSApredi
; RHSApredi

and LHPpredi
are the predicted THSA,

RHSA and LHP of a protein. THSADSSPi
and RHSADSSPi

are the
THSA and RHSA of a protein estimated using DSSP. LHPMolPatchi

is
the predicted LHP of a protein, determined by MolPatch. The per-
formance of the methods over the whole set of structures is eval-
uated by plotting the percentage correctly predicted instances
(protein chains) versus a varying error threshold t. The threshold
curve, F(t), shows the percentage of correctly predicted THSA and
RHSA of proteins for a given relative error threshold, t

FðtÞ ¼ jfiji 2 chains ^ d < tgj
jfiji 2 chainsgj � 100: (4)

The relative error for all chains in the chain dataset is calculated
to determine the fraction of correctly predicted chains for the thresh-
old, see also Supplementary Figure S9. The d is here interchangeably
used for dTHSAi

; dRHSAi
or dLHPi

. Unlike in an ROC-curve, the
amount of correctly predicted chains does not necessarily have to be
100% when the threshold t¼1.0, since the size of the relative error
can be >100%.

2.4 Human proteome mapping
2.4.1 Data curation

All reviewed protein sequences for the human genome were
extracted from UniProt (Consortium, 2019; accessed 1 October
2020). In total 20 384 sequences were analyzed with NetSurfP2.0
for predicting solvent accessibility and structural disorder among
other characteristics. THSA and RHSA values were calculated from
NetSurfP2.0 predictions as described above. The LHP for each pro-
tein has been predicted using the NBM. The following data curation
steps have been administered to remove unreliable predictions: (i)
highly disordered proteins have been discarded: when more than a
half of the residues have been classified as disordered; (ii) large pro-
teins (>800 AA residues) have been discarded in order to match the
protein sizes in the structure-based definitions dataset as the major-
ity (99.2%) of proteins are in this range for the training data. (iii)
duplicate gene IDs were filtered out and the ones with the highest
THSA value were retained. This quality filter resulted in a curated
dataset of 14 533 proteins. Separate datasets were created with 4913
proteins annotated as transmembrane and 6825—as multimeric by
UniProt (Fig. 2).

Additionally, the final curated dataset described above was used
to analyze the link between the expression levels and measures for
surface hydrophobicity. RNA consensus tissue gene data were
downloaded from Human Protein Atlas (Pont�en et al., 2008; Uhl�en
et al., 2015; accessed on https://www.proteinatlas.org/about/down
load 24 December 2020). In order to obtain a single expression
value for each gene, the highest expression value was selected among
all the tissues each gene is expressed in. Subsequently, the genes
were divided in deciles based on these values.

2.4.2 Gene Set Enrichment Analysis

To identify tissue types enriched in proteins with large hydrophobic
surface area, Gene Set Enrichment Analysis (GSEA) was used.
THSA, RHSA and LHP values were centred (such that 0 fell be-
tween two parts of a bimodal distribution or between the main bulk
and the tail of the distribution, see Supporting Information and Fig.
S10) and scaled (Supplementary Fig. S1) prior to the preranked

GSEA analysis (Mootha et al., 2003; Subramanian et al., 2005).
Tissue-enriched gene sets were downloaded from the Human
Protein Atlas (accessed 10 November 2020). 375 disease-associated
gene sets were extracted from the GSEA website (accessed on
https://www.gsea-msigdb.org/gsea/msigdb/search.jsp 5 November
2020). GSEA was used with the following parameters: number of
permutations¼1000; collapse; chip platform: human UniProt IDs
MSigDB.v7.2.chip; enrichment statistic: weighted; max size¼1000,
min size¼15.

2.4.3 Tissue-specific average surface hydrophobicity

Tissue-specific average surface hydrophobicity (TASH) was calcu-
lated across all the genes with the following formula with and with-
out transmembrane proteins

TASHt ¼
P

g NXg;t � hg
P

g NXg;t
(5)

where TASHt is the TASH for tissue t, NXg;t is the normalized ex-
pression of gene g in tissue t and h is the predicted hydrophobicity of
gene g for one of the three measures (THSA, RHSA or LHP). The
results are shown in Supplementary Figure S7.

3 Results

3.1 Structure-based definitions—MolPatch
To quantify the exposed hydrophobic areas on the protein surface,
we defined three different structure-based measures for surface
hydrophobicity, the THSA, RHSA and LHP. Using DSSP (Kabsch
and Sander, 1983), we can calculate the THSA and RHSA directly
from the surface area per residue (Fig. 3), see methods for further
details.

To define the LHP on a protein surface, we developed a novel
tool named MolPatch. This tool takes the 3D coordinates in PDB
format and identifies networks of adjacent hydrophobic residues to
find hydrophobic patches on the protein surface. Hydrophobic
patches of 4250 structures of soluble proteins were analyzed using

Fig. 3. THSA, RHSA and LHP, as identified by MolPatch for two different protein

structures. Top: SabA, PDB¼4O5J. Bottom: Leishmanolysin, PDB¼1LML. The

surface of hydrophobic residues is displayed in yellow and red. Those in the LHP

are displayed in red. The surfaces of the hydrophilic residues are displayed in blue.

Note that Leishmanolysin is much larger (465 residues) and has a much larger

THSA (5046 Å2) compared to SabA (370 residues, 3691 Å2), while the RHSA is

quite similar between the two proteins, 26% versus 20%. The difference in the LHP

is even larger, with 2459 Å2 versus 877 Å2, respectively; a nearly 3-fold difference
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MolPatch (see Section 2). Figure 3 highlights the importance of hav-
ing three measures by observing the LHP of two proteins with very
different surface areas. Although the difference in RHSA between
the two proteins is only 6%, the THSA and LHP of Leishmanolysin
are approximately 1.5 and 3 times larger than the LHP of SabA.
Generally, we see that there is no trivial correlation between THSA,
RHSA and LHP (Supplementary Fig. S3).

To determine whether our structure-based largest patch defin-
ition is reasonable in biological terms, we overlapped the residues in
the 20 LHPs of each protein in our database with those in the
PiSITE protein interaction database (also see Supporting Methods).
We would expect that large hydrophobic patches, functionally may
serve as a protein–protein interaction interfaces. Indeed, we found
that overall, the three largest patches in a protein were significantly
enriched in protein interaction sites (Supplementary Fig. S4).

3.2 Sequence-based predictions—THSA and RHSA can

be predicted with reasonable accuracy
Since there are many more protein sequences available than struc-
tures, it is highly valuable to be able to predict the THSA, RHSA
and LHP from sequence, which will allow us to characterize
much broader set of proteins. Thus, we aimed to determine how
well we can currently predict the three measures, and identify
which sequence features contribute most to the accuracy of these
predictions. We used our structure-based definition set to develop
sequence-based predictors in a double cross-validation scheme
(see Section 2).

To predict the THSA and RHSA, we used NetSurfP2.0, a
neural-network-based method that takes evolutionary conserva-
tion profiles as input, and is currently one of the best (non-ensem-
ble) predictors for surface accessibility and secondary structure
(Fereshteh et al., 2020; Klausen et al., 2019; Xu et al., 2020).
NetSurfP2.0 provides surface area predictions per residue. To ob-
tain the THSA, we summed over the predicted accessible surface
areas of all hydrophobic residues. To obtain the RHSA, we
summed over the predicted accessible surface area of all residues
and divided the THSA by this value. Previous results (see
Supporting Information and Fig. S2) indicate that the sequence
length and hydrophobicity are strong predictors for the THSA
and RHSA, and even outperformed a previous version of
NetSurfP2.0 (Supplementary Fig. S5). Therefore, we trained two
additional models, one that incorporates the sequence length, the
number of hydrophobic residues and the number of hydrophilic
residues (three-feature model, TFM), and one that includes a
larger number of features derived from the sequence (GFM see
Section 2). Figure 4 and Table 1 show that the NetSurfP2.0-based
predictions are clearly superior.

The TFM, which only includes the features sequence length,
number of hydrophobic and number of hydrophilic residues,
also performs significantly better than random for both the
THSA and RHSA, indicating that these features are of major sig-
nificance for predicting these two properties. The GFM, which
includes 31 features, performs only marginally better than the
TFM, indicating that sequence length and sequence hydrophobi-
city are some of the main determinants for the hydrophobic sur-
face area. Since it is difficult to obtain feature importance from
neural network models such as NetSurfP2.0, we also analyzed
the feature importance measures from the GFM. This analysis
showed that the hydrophobicity of the sequence is another major
predictor for the THSA and RHSA [Supplementary Fig. S5,
gravy score (Kyte and Doolittle, 1982), aromaticity (Lobry and
Gautier, 1994), hydr_count].

To predict the LHP from sequence, the LHP determined by
MolPatch was used as a gold standard. The training procedure for
the TFM and GFM for predicting the LHP was performed in a simi-
lar fashion to the training for THSA and RHSA. Since the
NetSurfP2.0 predictions cannot readily be used to predict the LHP,
a model was trained that uses the THSA and RHSA predicted by
NetSurfP2.0 as input features to predict the LHP (NetSurfP-based
model, NBM). The results are shown in Figure 4 and Table 1. One

can see that the NBM outperforms the other two methods. The se-
quence hydrophobicity again appears to have a major contribution
to the prediction results (Supplementary Fig. S5). Nevertheless, each

of these prediction models perform significantly worse than the
models for the THSA and RHSA predictions (Table 1), suggesting

LHP prediction is less straightforward than THSA or RHSA
predictions.

3.3 Human proteome mapping
3.3.1 Transmembrane proteins—the most hydrophobic part of the

human proteome

For 14 533 proteins in the human proteome, we were able to predict
THSA, RHSA and LHP values (see Section 2). Figure 5 shows a
comparison of the distributions of the definitions of these values on

Fig. 4. Accuracy of the predictions of the total, relative and largest patch hydropho-

bic surface area for NetSurfP2.0-based models, the NBM, TFM and GFM. The frac-

tion of correctly predicted proteins within a certain error margin for each of the

methods is shown as calculated over the test set

Table 1. R2 of each of the prediction models for the THSA, RHSA

and LHP for the four different prediction models as calculated over

the test set

THSA RHSA LHP Features

NetSurfP2.0 0.92 0.77 — Evolutionary profiles

NBM — — 0.43 THSA and RHSA predic-

tions by NetSurfP2.0

TFM 0.71 0.13 0.00 Sequence length, number of

hydrophobic residues,

number of hydrophilic

residues

GFM 0.75 0.49 0.12 31 sequence-based features

Note: For all three measures, the NBM/NetSurfP2.0 models performed sig-

nificantly better than the other models [P< 0.001, t-test for correlations

(Fisher, 1921)].
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the structural dataset and of the predicted values on the human
proteome dataset. One can see from the figure that proteins in the
structure-based dataset appear to be smaller compared to those in
the curated human proteome. In line with this, we see that the pre-
dicted THSA and LHP distributions are strongly shifted towards the
right-hand side compared to the structure-based data, most likely
due to the larger size of proteins in the human proteome.

Moreover, the structure-based set (blue) does not show a peak of
very large hydrophobic patches (LHP, �6500 Å2) as observed for
the human proteome dataset (red). Importantly, structure-based
data analyzed by MolPatch neither contain proteins with more than
one chain in the PDB structure nor transmembrane proteins; both
groups of proteins maybe expected to have a very large hydrophobic
patch. To investigate if this peak for the human proteome may be
due to transmembrane or multimeric proteins, we selected those
proteins annotated by UniProt (Consortium, 2019) as ‘transmem-
brane’ (yellow), or ‘part of the protein complex’ (grey). Note that
these sequence-based curated UniProt annotations are not identical
to the structure-based exclusion criteria for the training dataset (see
Section 2).

Indeed, when comparing transmembrane proteins from the
human proteome dataset to the predictions for the entire human
proteome, the composition of peak of the large hydrophobic
patches, as well as the shoulder in the RHSA distribution can be
explained predominantly through the transmembrane annotated
proteins (Fig. 5). Note that the two distinct peaks in the predicted
LHP for the transmembrane proteins can be explained by the size of
the transmembrane domain: some proteins contain a large trans-
membrane domain (LHP�6500 Å2), while other proteins are anch-
ored to the membrane with a single transmembrane helix
(LHP�2000 Å2). THSA and RHSA do not show two distinct peaks
for the LHP, instead we see a shoulder at higher values—corre-
sponding to large transmembrane domains.

Multimeric proteins mostly follow the distribution of the whole
human proteome and do not appear to be much more hydrophobic
in general. The results in Figure 5 also suggest that our ML model
(NBM) successfully predicted transmembrane proteins to have large
hydrophobic patches, despite the lack of transmembrane proteins in
the training dataset.

3.3.2 Cells avoid the over expression of proteins with a large

hydrophobic surface area

Since hydrophobic characteristics are associated with the aggrega-
tion tendencies, we wanted to investigate whether proteins with
large hydrophobic surface areas have different expression levels. We
used the RNA consensus tissue gene data from the Human Proteome
Atlas to explore a link with expression levels. For this, we relate nor-
malized expression (NX) data to measures for surface hydrophobi-
city. To obtain a single expression value for each gene we took the
highest expression value among all the tissues each gene is expressed
in, and subsequently divided the genes into deciles based on these
values. Figure 6 shows the lowest and highest deciles for each of the
hydrophobic measures. When comparing the lowest and highest dec-
iles, it is clear that only in the lowly expressed proteins, a group of
proteins with very hydrophobic surfaces is present (red circles in
Fig. 6).

Since it is not trivial to define a measure of expression across dif-
ferent tissue types, we also explored the a median NX value across
all the tissues that a particular gene appears in. The resulting deciles
show a similar trend in terms of hydrophobicity of the surface (see
Supplementary Fig. S6) compared to the data based on the highest
NX value. Interestingly, proteins that do not follow the general
trend, i.e. those that are highly expressed while having a large
THSA, RHSA and LHP value, are typically protein subunits assem-
bling large multimeric complexes. In such complexes, the proteins
are likely to be stably bound, and are hence able to shield the hydro-
phobic surfaces from the solvent.

3.3.3 The brain- and kidney-specific proteomes are enriched with

hydrophobic proteins

To investigate if genes that are enriched in specific tissues are associ-
ated with the hydrophobic properties of the proteins, we carried out
GSEA. We downloaded five tissue-enriched gene sets from the
Human Protein Atlas (HPA; Pont�en et al., 2008; Uhl�en et al., 2015).
Table 2 shows that the brain tissue-enriched gene set has a high en-
richment in predicted THSA and LHP values. Kidney-enriched genes
show the highest enrichment in THSA, RHSA and LHP of the
ranked gene lists (P-values <0.001). A possible explanation for this

Fig. 5. The distribution of the protein length, THSA, RHSA and LHP values from the whole curated human proteome (red, predicted values), annotated transmembrane (yel-

low, predicted values) and multimeric (grey, predicted values) proteins and the same values in the structure-based dataset (blue, structure-based values) for the comparison.

The structure-based dataset generally contains smaller proteins than the human proteome datasets, as may be observed from the length distribution. The numbers in brackets

in the legend indicate the sizes of the datasets analyzed. The figure also shows that transmembrane proteins are predicted to have large hydrophobic surface areas, as can be

observed in the LHP plot: �2000 Å2; �6500 Å2
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is the major role of kidney tissue in maintaining homeostasis
through various membrane-bound receptors and transporters (Lote,
1994). Indeed, 79% of the kidney-enriched proteome is annotated
as transmembrane by UniProt (Consortium, 2019). Interestingly,
liver tissue revealed no enrichment. The skin and blood tissue-
enriched gene sets exhibited significant enrichment in the RHSA
ranked list. Furthermore, both tissue groups were significantly
depleted in the THSA ranked list, indicating that they may contain
the smaller proteins in the human proteome.

To investigate the overall tissue hydrophobicity, we introduced
TASH for all proteins based on the expression levels in a specific tis-
sue (Equation 5 and Supplementary Fig. S7). The TASH-THSA
value provides an indication of the THSA present in a specific cell
type. The tissues with the highest TASH-THSA values occur in the
brain, such as the cerebellum, corpus callosum, thalamus, cerebral
cortex and basal ganglia (Supplementary Fig. S7).

3.3.4 Increased relative hydrophobicity is associated with

(aggregation) diseases

To investigate the association of surface hydrophobicity with human
diseases, a GSEA preranked analysis of 375 various disease-

associated gene sets was carried out, of which 44 gene sets show a
significant (P-value <0.05) enrichment [<�0.2 (negative enrich-
ment) and >0.2 (positive enrichment)] in at least two hydrophobic
measures (see Supplementary Fig. S8). Among the enriched gene
sets, we can observe several KEGG (Kanehisa and Goto, 2000) path-
ways that are associated with neurological disorders. The RHSA
showed a significant (P-value <0.05) enrichment in Parkinson’s
(ES¼0.43), Alzheimer’s (ES¼0.24) and Huntington’s disease
(ES¼0.23) gene sets. The analysis shows a significant (P-value
<0.001) enrichment of sticky proteins (based on LHP) in the KEGG
Parkinson’s disease map (ES¼0.66). In contrast to the GSEA ana-
lysis results on tissue-specific proteome, the THSA shows a negative
enrichment in these sets, suggesting that the proteins involved in
pathological pathways have large hydrophobic surfaces and patches,
but are smaller in size (median length 171–180 residues).

4 Discussion

In this work, we analyzed the predictability of hydrophobic areas on
protein surfaces, which until recently was a difficult problem. We
show that THSA and RHSA values can be predicted with high ac-
curacy (>75% within a 20% error margin, Fig. 4). The improved
predictions of NetSurfP2.0, compared to the earlier secondary struc-
ture prediction methods (Supplementary Fig. S2), make this possible
by straightforward calculations of the THSA and RHSA using the
predictions of the surface accessibility per residue from NetSurfP2.0.
Note that the problem of predicting the THSA, RHSA and LHP for
a protein sequence, means we are trying to predict a global feature
of the protein, while NetSurfP2.0 (Klausen et al., 2019) makes
residue-based predictions; residue-based models can be trained on
many more labels that are available from protein structures, and
hence can reach a richer model representation.

On the other hand, the LHP cannot be directly obtained from
NetSurfP2.0 (Klausen et al., 2019) and needs additional model
training. The major difficulty herein is that NetSurfP2.0 cannot pre-
dict which hydrophobic residue form a continuous patch in the pro-
tein 3D structure. Nevertheless, we believe that recent advances in
deep neural nets, contact map prediction and structure prediction
(Li et al., 2019; Senior et al., 2020; Xu et al., 2020; Zheng et al.,
2019) should make it possible to make these predictions more accur-
ate in the near future, e.g. by using structure or contact predictions
to predict the hydrophobic patches, or by training a purpose specific

Fig. 6. Relationship between normalized expression (NX) and THSA, RHSA and LHP values. For each gene, the highest NX value was selected across all tissues. The genes

were grouped in 10 bins based on their expression levels. Each violin represents one decile of genes grouped by their normalized expression values (x axis). Boxplots inside the

violins show the median and quartiles for the surface hydrophobicity measures (y axis). As presented in the legend, dark red indicates the decile with the lowest NX values and

black indicates the decile with the highest NX values. The deciles with the lowest NX values show significantly higher THSA, RHSA and LHP values (indicated by red circles),

compared to the deciles with the highest NX values. Significance was calculated using Wilcoxon signed-rank test and shown between the lowest and the highest expression dec-

iles. The three asterisks indicate P-values <2.22e�16. Note that the intermediate groups in the case of RHSA and LHP are excluded from the plot, as they show the similar

trend to the THSA

Table 2. Preranked GSEA enrichment statistics in different tissues

Gene set ES (THSA ES (RHSA) ES (LHP) TM (%) Multimeric (%)

Brain (488) 0.33** 0.14 0.64** 47.0 47.0

Kidney (53) 0.62** 0.53** 0.78** 79.2 35.8

Skin (113) �0.46* 0.30** 0.44 7.9 15.9

Liver (242) �0.22 �0.16 0.45 26.0 59.9

Blood (57) �0.41* 0.40** 0.68* 47.4 28.0

Note: Various tissue-enriched gene sets were obtained from the HPA

(Pont�en et al., 2008; Uhl�en et al., 2015). THSA, RHSA and LHP values were

central-scaled prior to the GSEA analysis. The enrichment score (ES) is the

maximum deviation from zero showing the degree to which the gene set is

over-represented at the top (positive ES score) or bottom (negative ES score)

of the entire ranked list of genes. The fraction of transmembrane (TM) and

multimeric proteins in the following gene sets is shown in percentages.

*P< 0.05.

**P< 0.001.
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deep neural net. Recently, language models, especially bidirectional
encoder representations from transformers (BERT), have been
shown to be a promising model achieving novel state-of-the-art per-
formance (Shah and Ou, 2021). BERT adopted the concept of con-
textualized word embedding to capture the semantics and sequence
information, opening a new avenue in biological modelling. Such
models trained on LHP data per residue might also lead to a better
performance in predicting such a complex characteristic.

When investigating the link between tissue-based expression lev-
els and the measures for surface hydrophobicity, we clearly observe
that highly expressed proteins typically do not have a large hydro-
phobic surface area (THSA, RHSA and LHP as seen in Fig. 6). A
similar trend has previously been observed for proteins with a strong
tendency to form amyloid fibrils (Tartaglia et al., 2009), suggesting
an evolutionary pressure to avoid proteins with high aggregation
propensities being present at high concentrations in the cell. Based
on our data, if we assume that the high expression values correlate
with high protein abundance in the cell, it is conceivable that there
is also an evolutionary pressure against proteins with a large hydro-
phobic surface area to be overly abundant in the cell.

Note that while the THSA and RHSA sequence-based predic-
tions show a reasonable correlation with the structure-based defini-
tions, this does not necessarily mean that the predicted amount of
accessible hydrophobic surface area is actually exposed to the cellu-
lar environment. For example, a hydrophobic patch may be buried
in a stable macromolecular complex, or may be buried inside a
membrane. Additionally, a high hydrophobic surface area does not
necessarily mean a protein will be insoluble; this will also be very
much dependent on the amount of polar and charged residues that
may surround the hydrophobic residues or patches (Kramer et al.,
2012), as well as disordered regions (Abeln and Frenkel, 2008).

Despite the general tendency to avoid highly expressed proteins
with a large hydrophobic surface area, the brain appears to be highly
hydrophobic in its overall expression patterns (THSA in cerebellum,
cerebral and cortex as shown in Supplementary Fig. S7) and in pro-
teins enriched in the brain (THSA and LHP as shown in Table 2).
This high expression of proteins with a large hydrophobic surface
area may be rationalized by functional requirements: genes enriched
in brain tissue are involved in organizing and maintaining synaptic
signalling, requiring various cell adhesion proteins with large hydro-
phobic surface areas (Sytnyk et al., 2017); the cellular morphology
of neurons including the dendrite means that there is a relatively
large transmembrane surface area per cell. Additionally, the struc-
tural integrity of neuronal axons is facilitated by myelin
(Stadelmann et al., 2019), a fatty substance surrounding neurons,
and by myelin-associated proteins, which are all very hydrophobic.

Furthermore, brain tissue has been associated with various ag-
gregation diseases (Chiti and Dobson, 2006; Dobson, 2001; Koo
et al., 1999; Ross and Poirier, 2004). Based on our data, it may be
hypothesized that the brain is specifically vulnerable to such diseases
due to its high expression of proteins with a large hydrophobic sur-
face. Hydrophobic patches play a role in the folding and/or misfold-
ing of proteins (Dobson, 2004; Ross and Poirier, 2004), and can
possibly provide nucleation sites for the formation of oligomers and
amyloid fibrils. This hypothesis would be supported by the relatively
high hydrophobic surface area in molecular pathways associated
with Parkinson’s, Huntington’s and Alzheimer’s disease (as observed
for the RHSA and LHP, see Supplementary Fig. S8).

5 Conclusion

In conclusion, in this work, we defined three measures for hydro-
phobicity: the THSA, RHSA and LHP. To determine the LHP from
structure, we developed a novel method named MolPatch. The
THSA and RHSA can be accurately predicted from sequence by
adapting the output from NetSurfP2.0, while predicting the LHP
from sequence remains challenging. We have investigated the poten-
tial impact of the three measures by investigating the relation be-
tween these measures and protein expression in the human
proteome. Cells tend to avoid high expression of proteins with a
large amount of hydrophobic surface, probably to reduce the risk of

protein aggregation or unspecific binding. However, some tissue
types have a relatively hydrophobic environment, like the brain. In
these tissues, proteins with a strongly hydrophobic surface are more
common. This may perhaps explain why the brain is especially
prone to aggregation diseases.

Acknowledgements

We would like to thank Dr. Bent Petersen for providing us with NetSurfP2.0

predictions for human genome dataset, Prof. Jaap Heringa and Dr. Bernd

Brandt for helpful discussion.

Author contributions

J.v.E., R.B. and E.v.D. performed the benchmark analyses for the prediction

methods. J.v.E. developed MolPatch. D.G. and J.v.G. performed the expres-

sion and enrichment analyses. J.v.G., D.G. and S.A. wrote the manuscript.

J.v.G., E.v.D. and S.A. supervised the project and S.A. was responsible for

conceptualization and funding acquisition of the project. All authors reviewed

the manuscript.

Funding

J.v.G. and S.A. thank the Nederlandse Organisatie voor Wetenschappelijk

Onderzoek (https://www.nwo.nl/over-nwo/organisatie/nwo-onderdelen/enw)

for funding under project number 680-91-112 (NWO). D.G. received funding

from the European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie Skłodowska-Curie Grant 860197, the MIRIADE

project. R.B. has received funding from the Vlaams Agentschap Innoveren en

Ondernemen under project HBC.2020.2205.

Conflict of Interest: none declared.

References

Abeln,S. and Frenkel,D. (2008) Disordered flanks prevent peptide aggregation.

PLoS Comput. Biol., 4, e1000241.

Abeln,S. and Frenkel,D. (2011) Accounting for protein-solvent contacts facili-

tates design of nonaggregating lattice proteins. Biophys. J., 100, 693–700.

Bahadur,R.P. et al. (2003) Dissecting subunit interfaces in homodimeric pro-

teins. Proteins, 53, 708–719.

Bentley,J.L. (1975) Multidimensional binary search trees used for associative

searching. Commun. ACM, 18, 509–517.

Chen,T. and Guestrin,C. (2016) XGBoost: a scalable tree boosting system. In:

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16. Association for

Computing Machinery, New York, NY, pp. 785–794.

Chiti,F. and Dobson,C.M. (2006) Protein misfolding, functional amyloid, and

human disease. Annu. Rev. Biochem., 75, 333–366.

Chothia,C. and Janin,J. (1975) Principles of protein–protein recognition.

Nature, 256, 705–708.

Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for computa-

tional molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Dijk,E.V. et al. (2016) Consistent treatment of hydrophobicity in protein lat-

tice models accounts for cold denaturation. Phys. Rev. Lett., 116, 078101.

Dill,K.A. (1985) Theory for the folding and stability of globular proteins.

Biochemistry, 24, 1501–1509.

Dill,K.A. (1990) Dominant forces in protein folding. Biochemistry, 29,

7133–7155.

Dobson,C.M. (2001) The structural basis of protein folding and its links with

human disease. Philos. Trans. R. Soc. Lond. Ser. B, 356, 133–145.

Dobson,C.M. (2003) Protein folding and disease: a view from the first horizon

symposium. Nat. Rev. Drug Disc., 2, 154–160.

Dobson,C.M. (2004) Principles of protein folding, misfolding and aggregation.

In: Seminars in Cell & Developmental Biology, Vol. 15. Elsevier, pp. 3–16.

Faraggi,E. et al. (2012) SPINE X: improving protein secondary structure

prediction by multistep learning coupled with prediction of solvent ac-

cessible surface area and backbone torsion angles. J. Comput. Chem., 33,

259–267.

Fereshteh,M. et al. (2020) Enhancing protein backbone angle prediction by

using simpler models of deep neural networks. Sci. Rep., 10, 19430.

8 J.H.M. van Gils et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac002/6515307 by U
niversiteitsbibliotheek U

trecht user on 15 N
ovem

ber 2023

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac002#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac002#supplementary-data
https://www.nwo.nl/over-nwo/organisatie/nwo-onderdelen/enw


Fisher,R.A. (1921) On the ‘probable error’ of a coefficient of correlation

deduced from a small sample. Metron, 1, 1–32.

Garg,A. et al. (2005) Real value prediction of solvent accessibility in proteins

using multiple sequence alignment and secondary structure. Proteins, 61,

318–324.

Gomez,J. et al. (1995) The heat capacity of proteins. Proteins, 22,

404–412.

Gowder,S.M. et al. (2014) Prediction and analysis of surface hydrophobic resi-

dues in tertiary structure of proteins. Sci. World J., 2014, 971258.

Huang,D.M. and Chandler,D. (2000) Temperature and length scale depend-

ence of hydrophobic effects and their possible implications for protein fold-

ing. Proc. Natl. Acad. Sci. USA, 97, 8324–8327.

Iadanza,M.G. et al. (2018) The structure of a b2-microglobulin fibril suggests

a molecular basis for its amyloid polymorphism. Nat. Commun., 9, 4517.

Joo,K. et al. (2012) Sann: solvent accessibility prediction of proteins by nearest

neighbor method. Proteins, 80, 1791–1797.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure:

pattern recognition of hydrogen-bonded and geometrical features.

Biopolymers, 22, 2577–2637.

Kanehisa,M. and Goto,S. (2000) Kegg: Kyoto encyclopedia of genes and

genomes. Nucleic Acids Res., 28, 27–30.

Klausen,M.S. et al. (2019) NetSurfP-2.0: improved prediction of protein struc-

tural features by integrated deep learning. Proteins, 87, 520–527.

Koo,E.H. et al. (1999) Amyloid diseases: abnormal protein aggregation in neu-

rodegeneration. Proc. Natl. Acad. Sci. USA, 96, 9989–9990.

Kramer,R.M. et al. (2012) Toward a molecular understanding of protein solu-

bility: increased negative surface charge correlates with increased solubility.

Biophys. J., 102, 1907–1915.

Kuhn,M. (2008) Building predictive models in r using the caret package. J.

Stat. Softw., 28, 1–26.

Kyte,J. and Doolittle,R.F. (1982) A simple method for displaying the hydro-

pathic character of a protein. J. Mol. Biol., 157, 105–132.

Larsen,T.A. et al. (1998) Morphology of protein–protein interfaces. Structure,

6, 421–427.

Li,Y. et al. (2019) ResPRE: high-accuracy protein contact prediction by cou-

pling precision matrix with deep residual neural networks. Bioinformatics,

35, 4647–4655.

Lijnzaad,P. and Argos,P. (1997) Hydrophobic patches on protein subunit

interfaces: characteristics and prediction. Proteins, 28, 333–343.

Lijnzaad,P. et al. (1996) A method for detecting hydrophobic patches on pro-

tein surfaces. Proteins, 26, 192–203.

Lobry,J. and Gautier,C. (1994) Hydrophobicity, expressivity and aromaticity

are the major trends of amino-acid usage in 999 Escherichia coli

chromosome-encoded genes. Nucleic Acids Res., 22, 3174–3180.

Lote,C.J. (1994) Principles of Renal Physiology (No. QP211 L88 1994).

London: Springer.
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