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ABSTRACT: Childhood exposure to endocrine-disrupting chem-
icals (EDCs), either alone or in mixtures, may affect metabolic
outcomes, yet existing evidence remains inconclusive. In our study
of 372 adolescents from the Flemish Environment and Health
Study (FLEHS IV, 2017−2018), we measured 40 known and
suspected EDCs and assessed metabolic outcomes, including body
mass index z-score (zBMI), abdominal obesity (AO), total
cholesterol (TC), and triglycerides (TG). We applied Bayesian
kernel machine regression (BKMR) and Bayesian penalized
horseshoe regression for variable selection and then built
multivariate generalized propensity score (mvGPS) models to
provide an overview of the effects of selected EDCs on metabolic
outcomes. As a result, BKMR and horseshoe together identified five EDCs associated with zBMI, three with AO, three with TC, and
five with TG. Through mvGPS analysis, monoiso-butyl phthalate (MIBP), polychlorinated biphenyl (PCB-170), and
hexachlorobenzene (HCB) each showed an inverse association with zBMI, as did PCB-170 with AO. Copper (Cu) was associated
with higher TC and TG, except in boys where it was linked to lower TG. Additionally, monoethyl phthalate (MEP) and monobenzyl
phthalate (MBzP) were associated with higher TG. To conclude, our findings support the association between certain chemicals
(Cu, MEP, and MBzP) and elevated lipid levels, aligning with prior studies. Further investigation is needed for sex-specific effects.
KEYWORDS: endocrine-disrupting chemicals, body mass index, abdominal obesity, cholesterol, triglycerides, adolescence

1. INTRODUCTION
Childhood, including adolescence, is a vulnerable period when
it comes to exposure to environmental chemicals and their
mixtures.1 Many of these chemicals are endocrine-disrupting
chemicals (EDCs) since they can interfere with the hormonal
system in the body, and exposure to these chemicals during
critical developmental stages may lead to adverse health effects
later in life.2 EDCs are widely present in the environment,
including both persistent chemicals such as organochlorinated
pesticides (OCPs), polychlorinated biphenyls (PCBs), per-
and polyfluoroalkyl substances (PFAS), some metals, and
nonpersistent chemicals such as organophosphate flame
retardants (OPFRs), bisphenols, and phthalates. Their
exposures can occur through ingestion, inhalation, or
absorption through the skin.3

Metabolic outcomes, such as sex- and age-specific body mass
index z-score (zBMI), abdominal obesity (AO), total
cholesterol (TC), and triglyceride (TG) levels, are commonly
used as important indicators to assess the risk of developing
chronic diseases, including cardiovascular disease, type 2
diabetes, and metabolic syndrome. zBMI is a body measure
relative to an individual’s weight and height, with values higher
than 1 standard deviation (SD) above the WHO Growth

Reference median being considered as overweight or obese for
children aged between 5 and 19 years.4 AO is particularly
hazardous because the fat accumulated in the abdomen is
metabolically active, and can release substances that contribute
to inflammation and insulin resistance.5,6 TC level is a measure
of the amount of cholesterol in the blood, including both high-
density lipoprotein (HDL) cholesterol and low-density
lipoprotein (LDL) cholesterol. Higher levels of TC and LDL
cholesterol are associated with an increased risk of heart
disease and stroke.7 TG are lipids found in the blood that can
increase the risk of hypothyroidism and heart disease when
levels are too high.8

Exposure to EDCs can lead to changes in metabolic
outcomes by disrupting hormone signaling, promoting
inflammation, increasing oxidative stress, and altering the
composition of the gut microbiota.9 Epidemiological studies
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have been instrumental in determining the potential health
effects of exposure to EDCs on metabolic outcomes in
adolescents.10−18 However, the current evidence is incon-
clusive and the majority of these studies have focused on
individual chemicals ignoring coexposures, despite the fact that
humans are exposed to multiple chemicals simultaneously, and
mixtures can have synergistic or antagonistic effects on human
health that may be different from the effects of individual
chemicals.19 The human body also metabolizes these chemicals
in complex ways that can result in a variety of metabolites with
different mechanisms of toxicity, leading to different health
outcomes. Hence, a traditional single-exposure model that
does not consider other exposures may not capture the
complexity of real-life risks, and there is growing interest in
using advanced statistical methods to investigate the effects of
EDC mixtures on metabolic outcomes.
Understanding the relationship between EDC mixtures and

metabolic outcomes is crucial in policy-making to develop
effective prevention of chronic diseases. Using a cross-sectional
design, we studied the real−world associations between a large
mixture of known and suspected EDCs (OCPs, PCBs, PFAS,
metals, OPFRs, bisphenols, and phthalate metabolites),20−22

and several metabolic outcomes (zBMI, AO, TC, and TG
levels) in Belgian adolescents.

2. METHODS
2.1. Study Design and Population. We used data from

the fourth campaign of the Flemish Environment and Health
Study (FLEHS IV, 2017−2018), a sample of 428 adolescents
aged 14 to 15 years living in the Flemish region of Belgium.
The details of the sampling strategy have been described
previously.23 Briefly, adolescents who had lived in Flanders for
at least five years and were able to fill out a questionnaire in
Dutch were eligible to participate. The selection process
employed a stratified clustered two-stage sampling design,
where the first stratification was with Flemish provinces
followed by a random selection of schools from each province.
As a result, the participation rate was proportional to the
population size of each province. The schools chosen were at
least 20 km apart, and within each province, one school from
the highest quartile of socially deprived attendees was included
to ensure representation from all socio-economic categories.
Exclusions from participation encompassed individuals with
more than one unanswered questionnaire, missing blood or
urine samples, experiencing retention of one or more years in
their school grade, attending a boarding school, or being
pregnant. Approval for the FLEHS IV study protocol was
granted in June 2017 by the Ethics Committee of Antwerp
University Hospital (Belgian registration number
B300201732753). The current study was restricted to
adolescents who had all measurements available for the
relevant exposures, outcomes, and covariates, resulting in a
total of 372 adolescents.
2.2. Exposure Assessment. To account for the complex

and often unknown ways that multiple chemicals can interact
to affect human metabolic health, we intended to explore a
wide range of substances. An extensive set of chemicals have
been measured in FLEHS IV. Of these chemicals, we included
40 suspected and established EDCs with a detection rate above
60% for this study.24 In detail, they were measured in blood
(metals, OCPs, PCBs, PFAS) and urine samples (OPFRs,
bisphenols, phthalate metabolites) (Table S1): two OCPs
[dichloro-diphenyl-dichloroethylene (DDE), hexachloroben-

zene (HCB)], six PCB congeners [PCB-118, PCB-138, PCB-
153, PCB-170, PCB-180, PCB-187], four PFAS [perfluor-
ooctanoic acid (PFOA), perfluorononan-1-oic acid (PFNA),
perfluoro-1-hexanesulfonate (PFHxS), perfluorooctanesulfo-
nate (PFOS)], six metals [cadmium (Cd), thallium (Tl),
lead (Pb), manganese (Mn), copper (Cu), zinc (Zn)], five
OPFR metabolites [bis(1,3-dichloro-2-propyl) phosphate
(BDCIPP), diphenyl phosphate (DPHP), 1-hydroxy-2-propyl
bis(1-chloro-2-propyl) phosphate (BCIPHIPP), 2-ethylhexyl
phenyl phosphate (EHPHP), 2-hydroxyethyl bis(2-butoxyeth-
yl) phosphate (BBOEHEP)], three bisphenols [bisphenol A
(BPA), bisphenol F (BPA), bisphenol S (BPS)], and fourteen
phthalate and other plasticizer metabolites [monoethyl
phthalate (MEP), monoiso-butyl phthalate (MIBP), mono-
normal-butyl phthalate (MnBP), monobenzyl phthalate
(MBzP), mono-(2-ethyl-5-carboxypentyl) phthalate (5-cx-
MEPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate
(MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (5-oxo-
MEHP), mono-(2-ethylhexyl) phthalate (MEHP), mono(2-
ethyl-5-hydroxyhexyl) terephthalate (OH-MEHTP), OH-
monoisononyl phthalate (OH-MINP), carboxy-mono octyl
phthalate (cx-MINP), OH-monohydroxy-isodecyl phthalate
(OH-MIDP), monocarboxy-isodecyl phthalate (cx-MIDP),
mono-oxo-isodecyl phthalate (oxo-MIDP)]. A detailed de-
scription of exposure assessment was provided elsewhere.23 In
short, spot urine and nonfasting blood samples were stored at
−20 and −80 °C, respectively, until the applicable chemicals
were measured. Metals were measured by high-resolution
inductively coupled plasma mass spectrometry (HR-ICP-MS),
OPFRs and phthalate metabolites by liquid chromatography
with tandem mass spectrometry (LC−MS/MS), OCPs and
PCBs by gas chromatograph with electron-capture negative
ionization mass spectrometry (GC-ECNI/MS), bisphenols by
gas chromatography with tandem mass spectrometry (GC−
MS/MS), and PFAS by ultrahigh-performance liquid chroma-
tography with tandem mass spectrometry (UPLC-MS/
MS).11,23,25−27 Concentration values below the limits of
detection (LODs) or limits of quantification (LOQs) were
imputed using maximum likelihood estimation, assuming a
censored log−normal distribution for values above the LODs
or LOQs and conditional on the observed values for other
biomarkers in the cohort.24,28 Lipid-soluble chemicals DDE,
HCB, and PCBs were standardized by total blood lipid
concentration [total lipids = 1.33 × TG + 1.12 × TC × 148
(g/L)] and their concentrations were therefore expressed in
ng/g lipid. Urinary exposure concentrations were normalized
for the specific gravity (SG) of the urine sample using the
following formula: CSG = Cexposure × (1.024 − 1)/(SG − 1).
2.3. Outcome Assessment. We assessed four metabolic

outcomes of interest: zBMI, calculated based on an individual’s
weight, height, and the World Health Organization (WHO)
reference curves;4 AO, defined by waist-to-height ratio ≥ 0.5;29

as well as TC and TG levels measured from blood samples.
Trained field staff conducted clinical measurements of height,
weight, and waist circumference with participants fully clothed,
excluding shoes.
2.4. Covariates. Using a directed acyclic graph (DAG;

Figure S1), we identified a set of covariates to be adjusted for
in the statistical analyses: sex (boy, girl), age (years), sampling
season (spring, autumn, winter), ever breastfed (yes, no),
highest education in the household [low (lower secondary
school or less), medium (higher secondary school), high
(higher education attainment)], and physical activity (never or
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rarely, 1−2 times a week, 3 or more times a week involved in
sports). Information on all of those variables was obtained
from the questionnaires filled out by participants and parents
before the clinical measurements.
2.5. Statistical Analysis. We used the geometric mean,

median, or frequency (%) to describe demographic character-
istics as well as the distributions of exposures and outcomes.
We calculated Pearson correlation coefficients between
exposures and between outcomes. In order to improve the
comparability and model fits, all exposures were centered and
scaled to have a mean of 0 and SD of 1 for all of the analyses,
and all the obtained effect estimates were expressed in β or
odds ratio (OR) per SD of exposure.
We employed two Bayesian variable selection methods,

namely, Bayesian kernel machine regression (BKMR) and
Bayesian penalized (horseshoe) regression, to identify the
main contributors among the 40 EDCs for the examined
outcomes. These methods were chosen for their ability to
handle high-dimensional and correlated data and effectively
identify relevant variables while simultaneously controlling for
overfitting. BKMR is a supervised nonparametric flexible
method that allows for nonlinear exposure-outcome associa-
tion and interaction between exposures.30,31 Its Bayesian
framework enables estimation of the posterior distribution of
regression coefficients for each exposure, providing a measure
of their importance with respect to the outcome, as well as
estimation of the overall mixture effect, i.e., the change in
outcome if all exposures were fixed at incrementally higher
quantiles. In this study, most exposures were only weakly
correlated with other exposures, but some were correlated
more strongly (Figure S2). Based on the correlation patterns
and information on chemical properties, we grouped exposures
within a same chemical class with a moderate-to-high
correlation (r > 0.60) into a single group. This resulted in a
total of 25 exposure groups for the hierarchical variable
selection (Table S2). Then BKMR models were fitted using 4
chains and 50,000 iterations per chain and checked for
convergence by visual inspection of trace plots. The embedded
hierarchical variable selection provided the models with
information about those 25 exposure groups to obtain an
estimate of the relative importance of each group (group
posterior inclusion probabilities, GroupPIP) and each exposure
therein (conditional PIP, CondPIP). With regard to horseshoe
regression, the “horseshoe” in the name refers to the shape of
the shrinkage prior distribution used in this method. The
horseshoe prior is designed to be particularly effective when
dealing with situations where there might be a large number of
irrelevant variables but a few truly significant ones. In this
study, this method was employed to help identify important
exposures by retaining their coefficients while shrinking
irrelevant exposure coefficients toward zero. Following the
recommendations for the horseshoe prior and hyperparameter
settings from previous studies,32,33 we left the degrees of
freedom (df) of the global and local shrinkage parameters at
the default value of 1, and the df of the regularization
parameter at the default value of 4. The scale prior to the
regularization parameter was set to 2.5. We increased the
parameter adapt_delta to 0.999 to avert divergent transitions.
The combination of those two methods effectively identified
sparse signals from a mixture and increased the confidence of
the variable selection.
The selected exposures, determined by the aforementioned

variable selection methods, were included as inputs in the

multivariate generalized propensity score (mvGPS) models,
which facilitated us to better estimate the effects of the selected
exposures on the outcomes of interest and provided an
overview. mvGPS is an extension of the generalized propensity
score to estimate weights for multivariate continuous exposures
simultaneously.34 It assumes a multivariate normal distribution
for multiple exposures thereby generating stabilized inverse
probability treatment weights (IPTWs) as a way to balance
confounders and exposures and so provide unbiased causal
effect estimates.34,35 During the propensity score weighting
procedure, we used a default upper bound of 0.99, which was
shown to be effective in trimming the weights.36 In addition,
we conducted sex-stratified analyses on the selected exposures
to evaluate the possible effect modification by sex.
As a sensitivity analysis, we refitted BKMR models without

the hierarchy (i.e., component-wise variable selection) to
explore different modeling assumptions, as component-wise
variable selection assumes that each exposure has an
independent effect, whereas hierarchical variable selection
assumes that there may be shared effects among exposures
within the same group. In another sensitivity analysis, given
that current smoking is a potential confounder but the
prevalence of smoking in our study population was too low
(4.8%), we did not include smoking as a covariate in our main
analyses and instead conducted a separate analysis that
excluded adolescents who smoked.
All statistical analyses were performed in R 4.2.2.37

Horseshoe, BKMR and mvGPS were fitted using brms,
bkmrhat, and mvGPS packages, respectively.31,34,38

3. RESULTS
3.1. Descriptive Statistics. The sociodemographic and

clinical characteristics of the adolescents included in this study
are provided in Table 1. Of the 372 participants, 48% were
boys and 52% were girls. Most participants had a member in
their household with high education (60%), were ever
breastfed (66%), and did not have AO (88%). Half of them
performed physical activity 3 or more times a week. They were
sampled in either spring (45%), autumn (22%), or winter
(33%). On average, the participants were 14.8 years of age, had
a zBMI of 0.2, and had TC and TG levels of 155.8 and 85.4
mg/dL, respectively. The three continuous metabolic out-
comes were weakly correlated with each other (r = 0.04−0.17).
The concentrations of the 40 EDCs spanned a wide range and
are stated in Table S1. Some of them (e.g., PFAS, PCBs, and
certain phthalate metabolites) were moderately to highly
correlated (r > 0.60) while the rest had lower correlations with
each other (Figure S2).
3.2. Overall Mixture Effects and Exposure Variable

Selection. Using BKMR, we observed an overall inverse trend
of the EDC mixture with zBMI and AO, and an overall positive
trend with TC and TG levels (Figure 1). The univariate
exposure−response functions showed that most EDCs had a
linear relationship with metabolic outcomes, but a few
nonlinear relationships were also observed (Figure S3). The
bivariate exposure−response functions displayed the effect on
a metabolic outcome of exposure 1 when exposure 2 was fixed
at its 10th, 50th, or 90th percentiles and all remaining
exposures were fixed at their median (Figure S4). However,
interpretation of exposure interactions was limited due to
inevitable sparsity issues that arose in pairwise interaction
surface plots given the large number of exposures in the
mixture. Finally, associations with metabolic outcomes were
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observed for certain EDCs identified as noteworthy contrib-
utors (Table 2): BDCIPP, HCB, PCB-170, and MIBP for
zBMI; BPF, PCB-170, and MEHHP for AO; Cu and
BBOEHEP for TC levels; Cu, HCB, MBzP, MEP, and
MIBP for TG levels. This selection depended on the following
criteria: when a chemical was the only exposure of a group, its
group PIP exceeded 0.5; when a chemical was one of the
multiple exposures of a group, its group PIP and CondPIP
both exceeded 0.5.
Through the application of horseshoe regression, we

identified several exposures that exhibited the strongest
associations with specific metabolic outcomes. MBzP demon-
strated a notable positive association, whereas HCB showed an
inverse association with zBMI (Figure 2A); BPF was positively
associated with AO, and PCB-170 showed a protective effect
against it (Figure 2B). Additionally, per SD increase in Cu,
OH-MEHTP, and BBOEHEP demonstrated the positive
associations with TC levels, with estimated βs [mg/dL, 95%
credible intervals (Crls)] of 2.00 (−0.14, 5.58), 1.48 (−0.29,
5.16), 1.32 (−0.24, 4.57), respectively (Figure 2C); Cu was
suggested as the main EDCs contributing to higher TG levels
with an estimated β (95% CrI, mg/dL) of 0.65 (−0.38, 4.41)
(Figure 2D).
3.3. Effects of Selected Exposures on Metabolic

Outcomes. Table 3 presents results from the mvGPS analysis.
All chemical exposures selected from BKMR and horseshoe
regression were included in the mvGPS models. Per SD
increase in MIBP [β = −0.18, 95% confidence interval (CI):

−0.31, −0.06], PCB-170 (β = −0.13, 95% CI: −0.22, −0.04),
and HCB (β = −0.45, 95% CI: −0.58, −0.04) were linked to
lower zBMI; PCB-170 (OR = 0.02, 95% CI: 0.004, 0.09) was
related to a lower risk of AO. Cu (β = 5.02 mg/dL, 95% CI:
1.99, 8.05) showed an association with increased TC level,
while MEP (β = 7.26 mg/dL, 95% CI: 3.85, 10.67), MBzP (β
= 7.00 mg/dL, 95% CI: 2.19, 11.81) and Cu (β = 5.10 mg/dL,
95% CI: 0.94, 9.27) showed associations with increased TG
levels. After stratification by child’s sex, most of the observed
associations remained. Nevertheless, TG levels tended to
increase only in girls but decreased in boys with Cu exposure.
3.4. Sensitivity Analysis. Minor variations were observed

between the results of hierarchical variable selection and
component-wise variable selection for BKMR model fits
(Tables 2 and S3). Specifically, the latter approach selected
two PCBs (PCB-153 and −170) for zBMI instead of just PCB-
170 as in the former approach. Furthermore, when current
smokers were excluded, negligible differences were observed
(data not shown).

4. DISCUSSION
The aim of this study was to determine whether exposure to
EDCs was associated with metabolic health risks among
adolescents enrolled in FLEHS IV. Through the investigation
of anthropometric measures and lipid profiles, we found a
decreasing trend of zBMI and AO with an overall mixture of 40
EDCs, whereas an increasing trend of TC and TG. More
importantly, several specific EDCs were identified to have
detrimental effects that warrant attention and require further
research to validate and understand the underlying mecha-
nisms.
Consistent with our findings, a study of Iranian children and

adolescents revealed that MBzP was associated with elevated
TG levels,39 and a positive correlation between MEP and TG
has been observed in Chinese adults.40 We found associations
of Cu with increased TG and TC levels, which were in line
with the results from a large population-based study of 27,576
participants in Canada.41 We also noticed possible sex
difference, with an inverse relationship between Cu and TG
levels in boys. Although reduced TG levels after dietary copper
supplementation were found in male rats,42 no sex difference
has been reported in previous epidemiological studies. We
hypothesize that the reason for the sex difference we observed
may be the different dietary habits among boys and girls and
possibly the effects of estrogen on Cu metabolism, but it may
also be due to insufficient statistical power due to the reduced
sample size for sex-stratified analysis. To the best of our
knowledge, this is the first time that the potential association of
BBOEHEP and OH-MEHTP with TC has been explored in
humans, which requires further validation. Nevertheless,
rodent studies have shown a similar relationship between the
parent compound of OH-MEHTP, di(2-ethylhexyl) tereph-
thalate (DEHT), and reduced TC, aligning with our
observations.43,44 Also, the parent compound of BBOEHEP,
tris(2-butoxyethyl) phosphate (TBOEP), has previously been
linked to altered lipid metabolism.45 Overall, it is important to
highlight that several longitudinal studies have shown that high
TC and TG levels during adolescence can track into
adulthood, leading to an increased risk of developing
cardiovascular disease later in life.46,47 Therefore, particular
attention should be given to the screening and prevention of
disrupted lipid profiles in adolescents, along with the

Table 1. Sociodemographic Characteristics and Metabolic
Outcomes among FLEHS IV Adolescents (n = 372)a

Characteristic Value

Age (years), mean 14.8
Sex, n (%)

boy 177 (48)
girl 195 (52)

Highest Education in the Household, n (%)
low 22 (6)

medium 125 (34)
high 225 (60)

Sampling Season, n (%)
spring 168 (45)
autumn 83 (22)
winter 121 (33)

Physical Activity, n (%)
never or rarely 52 (14)

1−2 times a week 134 (36)
3 or more times a week 186 (50)
Ever Breastfed, n (%)

no 126 (34)
yes 246 (66)

Current Smoking, n (%)
no 354 (95)
yes 18 (5)

zBMI, mean 0.2
TC (mg/dL), mean 155.8
TG (mg/dL), mean 85.4

AO, n (%)
no 328 (88)
yes 44 (12)

azBMI, body mass index z-score; AO, abdominal obesity; TC, total
cholesterol; TG, triglycerides.
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biomonitoring of chemicals that could potentially be associated
with these lipid profiles.
In two recent meta-analysis, associations between PCBs and

BMI were inconclusive but HCB and MIBP were associated
with higher BMI in childhood, which is contradictory to our
findings.13,48However, given the cross-sectional design of our
study, reverse causality may exist. As shown in a previous study
of Belgian adolescents, there was an increase of 1.6−2.3% in
PCBs and HCB levels per unit decrease in zBMI, which may
be attributed to the fact that some chemicals are released from

adipose tissues during periods of weight lose through lipid
metabolism leading to higher circulating blood concentra-
tions.49 Likewise, in line with our finding on higher PCB-170
levels with lower AO risk, another dietary intervention study in
obese adults reported an inverse correlation between total
PCBs and abdominal adiposity.50 Given that MIBP has a short
half-life of approximately four hours, a single measurement of
MIBP may primarily reflect recent or short-term exposure
rather than long-term exposure patterns, and thus this
imprecise assessment of exposure may result in an inaccurate

Figure 1. Overall mixture effects and 95% credible intervals (Crls) of endocrine-disrupting chemicals (EDCs) on metabolic outcomes [(A) body
mass index z-score (zBMI), (B) abdominal obesity (AO), (C) total cholesterol levels (TC), (D) triglycerides (TG) levels], estimated using
Bayesian kernel machine regression (BKMR). Note: models were adjusted for sex (except when the outcome was zBMI), age (except when the
outcome was zBMI), sampling season, ever breastfed, highest education in the household, and physical activity.
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inverse relationship between MIBP and zBMI observed in this
study. Altogether, the mixture of short- and long-lived
chemicals and the yet unknown sensitive window of exposure
may hamper further interpretation.
We presented here a metabolic health study with one of the

largest number of chemicals evaluated either separately or as a
mixture. With the combination of several state-of-the-art
statistical methods, we addressed the top concerns surrounding
mixture studies, including multicollinearity among individual
EDCs, as well as their collective impact, thus providing more
accurate variable selection and precise effect estimates. The
statistical framework of variable selection plus propensity score

used in this study could potentially be used in causal inference
estimation with an appropriate study design.36 By assessing
multiple outcomes, we gained a more comprehensive under-
standing of metabolic health in adolescents, as each indicator
offers distinct insights into different aspects of metabolic
disruption, including overall obesity, central obesity, lipid
profile, etc. Furthermore, several sensitivity analyses helped
assess the stability and robustness of the results.
This study has certain limitations, including the possible

exposure misclassification due to relying on a single spot-
blood/urine sample and challenges in establishing causality
given the nature of the cross-sectional design. For a

Table 2. Posterior Inclusion Probabilities for Group and Conditional Inclusions into Metabolic Outcome Models, Using
Bayesian Kernel Machine Regression (BKMR) Hierarchical Variable Selectiona

Exposure (n = 40) Exposure group used in analysis (n = 25) zBMI AO TC TG

GroupPIPb CondPIPc GroupPIP CondPIP GroupPIP CondPIP GroupPIP CondPIP

Cd 1 0.04 0.08 0.05 0.29
Tl 2 0.45 0.01 0.07 0.24
Pb 3 0.08 0.01 0.01 0.16
Mn 4 0.15 0.23 0.03 0.35
Cu 5 0.05 0.01 0.58 0.68
Zn 6 0.02 0.02 0.23 0.27

BDCIPP 7 0.79 0.01 0.08 0.15
DPHP 8 0.09 0.01 0.06 0.03

BCIPHIPP 9 0.12 0.04 0.07 0.32
EHPHP 10 0.13 0.25 0.04 0.14

BBOEHEP 11 0.01 0.02 0.83 0.11
DDE 12 0.12 0.03 0.1 0.14
HCB 13 0.99 0.12 0.04 0.79

PCB-118 14 1 0 0.99 0 0.07 0.21 0.29 0.15
PCB-138 14 1 0 0.99 0.17 0.07 0.17 0.29 0.15
PCB-153 14 1 0.25 0.99 0.07 0.07 0.15 0.29 0.15
PCB-170 14 1 0.75 0.99 0.72 0.07 0.16 0.29 0.17
PCB-180 14 1 0 0.99 0.03 0.07 0.09 0.29 0.22
PCB-187 14 1 0 0.99 0.01 0.07 0.22 0.29 0.16
BPA 15 0.34 0.05 0.04 0.06
BPF 16 0.11 0.99 0.08 0.11
BPS 17 0.32 0.01 0.05 0.14
PFOA 18 0.18 0.05 0.04 0.14 0.14 0.72 0.03 0.26
PFNA 18 0.18 0.09 0.04 0.79 0.14 0.13 0.03 0.21
PFHSX 18 0.18 0.83 0.04 0 0.14 0.11 0.03 0.30
PFOS 18 0.18 0.03 0.04 0.07 0.14 0.05 0.03 0.22
MEP 19 0.01 0.53 0.05 0.62
MIBP 20 0.64 0.01 0.05 0.58
MnBP 21 0.03 0.02 0.01 0.17
MBzP 22 0.15 0.41 0.04 0.64

5cx-MEPP 23 0.05 0.23 0.98 0.09 0.05 0.28 0.05 0.25
MEHHP 23 0.05 0.27 0.98 0.67 0.05 0.19 0.05 0.25

5oxo-MEHP 23 0.05 0.34 0.98 0.24 0.05 0.2 0.05 0.25
MEHP 23 0.05 0.16 0.98 0.01 0.05 0.33 0.05 0.25

OH-MEHTP 24 0.21 0.44 0.01 0.52 0.23 0.74 0.46 0.52
OH-MINP 24 0.21 0.56 0.01 0.48 0.23 0.26 0.46 0.48
cx-MINP 25 0.09 0.14 0.03 0.2 0.05 0.1 0.13 0.23
OH-MIDP 25 0.09 0.52 0.03 0.26 0.05 0.2 0.13 0.29
cx-MIDP 25 0.09 0.15 0.03 0.36 0.05 0.38 0.13 0.22
oxo-MIDP 25 0.09 0.19 0.03 0.18 0.05 0.32 0.13 0.26

azBMI, body mass index z-score; AO, abdominal obesity; TC, total cholesterol; TG, triglycerides. Note: numbers in bold refer to ones with
GroupPIP > 0.5 (when there is only one chemical in a group), or with both GroupPIP and CondPIP > 0.5 (when there is more than one chemical
in a group). bGroupPIP indicates the posterior probability that an exposure group was included in the BKMR model from the Markov chain Monte
Carlo (MCMC) sampler. cCondPIP indicates the posterior probability that a particular exposure within an exposure group was included in the
BKMR model from the MCMC sampler.
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Figure 2. Point estimates and 95% credible intervals (Crls) of metabolic outcomes [(A) body mass index z-score (zBMI), (B) abdominal obesity,
(C) total cholesterol levels, (D) triglycerides levels] per standard deviation increase in EDC exposures, evaluated with penalized horseshoe
regression. Note: models were adjusted for sex (except when the outcome was zBMI), age (except when the outcome was zBMI), sampling season,
ever breastfed, highest education in the household, and physical activity.
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comprehensive evaluation of the lasting effects of EDC
exposures on metabolic health, it would be beneficial to
incorporate repeated or longitudinal measurements of both
exposures (especially those with short half-lives) and outcomes
to accurately account for fluctuations in exposure timing and
potential changes in outcomes over time. In addition, there
may be residual confounders, notably unmeasured variables,
such as dietary factors, with which the lipid profiles may
fluctuate.
This study provides valuable insights on how environmental

chemical exposures may affect metabolic health, informing
potential future public health policies aimed at reducing
exposure to certain chemicals such as Cu, MEP, and MBzP,
with the goal of improving lipid profiles and preventing chronic
diseases in vulnerable populations.
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zBMI, β (95% CI) BDCIPP 0.17 (−0.04, 0.37) 0.29 (−0.12, 0.71) 0.42 (0.03, 0.82)
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AO, OR (95% CI) BPF 1.71 (0.71, 4.69) 2.17 (0.50, 11.88) 1.56 (0.16, 10.15)
MEHHP 1.27 (0.89, 1.81) 1.06 (0.56, 2.00) 1.76 (0.91, 3.40)
PCB-170 0.02 (0.004, 0.09) 0.01 (0.0004, 0.08) 0.04 (0.004, 0.23)
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BBOEHEP 4.10 (−0.14, 8.35) 5.90 (−1.41, 13.21) −2.47 (−9.69, 4.75)
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MBzP 7.00 (2.19, 11.81) 3.53 (−5.88, 12.93) 5.87 (−0.81, 12.55)
Cu 5.10 (0.94, 9.27) −8.26 (−19.15, 2.62) 10.6 (7.38, 13.83)
HCB −5.35 (−11.98, 1.09) −8.48 (−14.76, −2.21) −5.3 (−12.48, 1.89)
MIBP −7.17 (−16.14, 1.80) −8.78 (−20.99, 3.42) −7.68 (−15.5, 0.13)

azBMI, body mass index z-score; AO, abdominal obesity; TC, total cholesterol; TG, triglycerides; CI, confidence interval; OR, odds ratio. Note:
models were adjusted for sex (except when the outcome was zBMI), age (except when the outcome was zBMI), sampling season, ever breastfed,
highest education in the household, and physical activity.
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