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Abstract
In a wide variety of cognitive domains, participants have access to several alternative strategies to perform a particular task 
and, on each trial, one specific strategy is selected and executed. Determining how many strategies are used by a participant 
as well as their identification at a trial level is a challenging problem for researchers. In the current paper, we propose a new 
method – the non-parametric mixture model – to efficiently disentangle hidden strategies in cognitive psychological data, 
based on observed response times. The developed method derived from standard hidden Markov modeling. Importantly, 
we used a model-free approach where a particular shape of a response time distribution does not need to be assumed. This 
has the considerable advantage of avoiding potentially unreliable results when an inappropriate response time distribution 
is assumed. Through three simulation studies and two applications to real data, we repeatedly demonstrated that the non-
parametric mixture model is able to reliably recover hidden strategies present in the data as well as to accurately estimate the 
number of concurrent strategies. The results also showed that this new method is more efficient than a standard parametric 
approach. The non-parametric mixture model is therefore a useful statistical tool for strategy identification that can be applied 
in many areas of cognitive psychology. To this end, practical guidelines are provided for researchers wishing to apply the 
non-parametric mixture models on their own data set.
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Introduction

When people are faced with making a decision or solving a 
problem, often a number of alternative strategies can be applied. 
Using different strategies to perform a particular task has indeed 
been observed in a wide variety of cognitive domains such as 
arithmetic problem solving (e.g., Campbell & Xue, 2001; Sie-
gler & Lemaire 1997), economic decision-making (Couto, Van 
Maanen, & Lebreton, 2020 ; Lopez-Persem, Domenech, & Pes-
siglione, 2016; Payne, Bettman, Schakde, Schwarz, & Gregory, 

1999), lexical production (Kail, Lemaire, & Lecacheur, 2012; 
Sprenger & Van Rijn, 2013), categorization (Palatano, Smith, 
Jonides, & Koeppe, 2001; Smith, Patalano, & Jonides, 1998) or 
memory (e.g., Donkin, Nosofksy, Gold, & Shiffrin, 2013; Dun-
losky & Hertzog, 2001; Touron & Hertzog, 2009). Taking as an 
example the arithmetic field, solving simple arithmetic problems 
(e.g.,“7 x 6”) could be achieved by either retrieving the solution 
from long-term memory (e.g., Archambeau, De Visscher, Noël, 
& Gevers, 2019) or by using several cognitive processing steps 
(e.g., 7 x 6 = (6 x 6) + 6 = 42; LeFevre et al., 1996).

A difficult and as of yet unsolved problem pertains to the 
identification of such different strategies. A participant could 
select one specific strategy on a particular trial and then 
alternate for another strategy on the next trial. As a conse-
quence, the observed behavior over trials results from a mix-
ture of several strategies. However, it is typically unknown 
how many strategies are used by a participant to perform a 
task and which strategy is selected on a given trial.

In order to assess cognitive strategies, researchers fre-
quently administered self-report instruments where partici-
pants are asked to describe the strategy used to solve the task 
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(e.g., Campbell & Xue, 2001; LeFevre et al., 1996; Touron 
& Hertzog, 2009). However, self-report instruments are not 
ideal because asking for a report can influence the perfor-
mance or change the selected strategy (e.g., Fox, Ericsson, & 
Best, 2011). Additionally, participants are not always aware 
of the strategy they followed (e.g., Crutcher, 1994; Ericsson 
& Simon, 1984; Kirk & Ashcraft, 2001; Veenman, 2011).

A solution to the problems associated with self-report 
instruments is to rely on systematic differences in behavior 
that can be associated with different cognitive strategies. In 
the arithmetic example introduced before, it was observed 
that the multistep solution strategy requires more processing 
time than the long-term memory-based solution strategy, so 
faster responses are more likely to be the result of a single 
memory process rather than a sequence of cognitive process-
ing steps, as required for a multistep solution (e.g., Campbell 
& Xue, 2001; LeFevre et al., 1996).

A statistical method that quantifies differences in behav-
ior associated with different cognitive strategies is called 
a hidden Markov model (HMM). A HMM assumes that 
the observed data are generated by multiple hidden states 
that produce a specific pattern of observable behaviors 
(e.g., Visser, 2011; Zucchini, MacDonald, & Langrock, 
2017). For most applications in cognitive psychology, these 
observable behaviors are response times (RT) and accu-
racy data. Another core property of HMM is the transi-
tion dynamics between the hidden states. These transition 
dynamics are represented by the transition probabilities of 
a Markov chain, which are the probabilities of remaining 
in the same state and of switching to another state (Visser, 
Raijmakers, & van der Maas, 2009). Under the assump-
tion that each cognitive strategy is reflected by a different 
set of behaviors, they can be represented by different hid-
den states in HMM (for an example, see Dutilh, Wagen-
makers, Visser, & van der Maas, 2011)1. In short, HMM 
allows researchers to learn about latent strategies present 
in the data: their number, their behavioral characteristics, 
their transition dynamics, and their identification at a trial 
level. For an extensive explanation about HHM, we refer 
the interested reader to excellent tutorials already present 
in the literature (e.g., Rabiner, 1989; Visser 2011; Visser 
et al., 2009; Zucchini et al., 2017).

For applying HMM, the RT distribution within each state 
has to be specified and often the assumption of a normal 
distribution is made2 (e.g., Dutilh, 2011; Mair, 2018; Visser, 
2011; Visser et al., 2009 but for an exception see Kucharsky, 
Tran, Veldkamp, Raijmakers, & Visser,2021). However, it is 

typically observed that RT in cognitive psychological data 
are not normally distributed (e.g., Anders, Alario, & Van 
Maanen, 2016; Matzke & Wagenmakers, 2009; Wagenmak-
ers & Brown, 2007). Crucially, Molenaar et al. (2018) dem-
onstrated that a violation in the assumed RT base distribu-
tion could lead to unreliable results. That is, the incorrect 
number of states may be inferred and strategy categorization 
may be biased (Molenaar, Bolsinova, & Vermunt, 2018). 
One obvious solution to solve this is to use a more suitable 
RT distribution for the latent states. However, this solution 
is not that feasible since, as previously mentioned, the states 
are not directly observable. Therefore, determining the true 
base distribution is extremely challenging (for a similar pro-
posal, see Molenaar et al., 2018). In the current paper, we 
present another – model-free – solution that remains agnos-
tic about the particular shape of the RT distribution. More 
specifically, we categorized RT into ranges of equal length 
and we model this according to a multinomial frequency 
distribution. This means that the HMM only uses informa-
tion about what range of RT occurs more often than what 
other range, but ignores the actual RT. This is similar to the 
semi-parametric HMM developed by Molenaar et al., (2018; 
see also Molenaar, Rósza, & Bolsinova, 2019) but simplified 
in the sense that even the ordinal information with respect 
to the RT ranges is ignored. Given that our approach uses 
less information than the semi-parametric approach of Mole-
naar et al., (2018), we termed this method non-parametric 
mixture model, to be consistent with their terminology. The 
current method focuses then on one of the most measured 
variables used in cognitive psychology: RT. Note that other 
approaches, which are not based on HMM and on RT, have 
also been developed to efficiently disentangle cognitive strat-
egies. The current paper does not address those but see for 
instance, Lee, Gluck, & Walsh, (2019), Lee & Gluck, (2020) 
or Steingroever, Jepma, Lee, Jansen, & Huizenga, (2019) 
for more details.

The goal of the current paper is to investigate whether 
the non-parametric mixture model is a suitable method for 
disentangling hidden strategies in cognitive psychological 
data. More precisely, we aim at demonstrating that the non-
parametric mixture model is able to reliably recover hidden 
states present in the data as well as to accurately estimate the 
number of concurrent strategies. Additionally, we compared 
model performance of the non-parametric mixture approach 
to the semi-parametric and parametric mixture approaches. 
It should be noted that semi-parametric mixture model was 
only implemented in the psychometric field (Molenaar et al., 
2018; Molenaar et al., 2019). Therefore, its efficiency with 
typical cognitive psychological data needs to be validated. To 
achieve this, the non-parametric mixture model was tested by 
the way of two simulation studies and by its application on 
real data from two different domains of cognitive psychology. 
More precisely, in Simulation 1 and 2, the efficiency of the 

1 Therefore, throughout this paper, the terms “state” and “strategy” 
are used interchangeably to refer to a set of processes that entail a 
specific pattern of behavioral responses.
2 In many cases, the RTs are log-transformed to better conform to the 
normal distribution.
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method was first investigated on data where RT were simu-
lated according a shifted Wald distribution (SWD) and accu-
racy according to a binomial distribution. SWD was chosen 
because it typically mimics most of observed RT data in cog-
nitive psychology (Anders et al., 2016; Heathcote, 2004). In 
Simulation 3, the non-parametric mixture model was applied 
on accuracy and RT data generated using a cognitive model. 
After these three simulations studies, the method was tested 
on real data sets to demonstrate its applicability in different 
fields of cognitive psychology. First, we applied the method 
in the perceptual decision making field (Experiment 1) and 
then in the economic decision making field (Experiment 2).

Simulation studies

In order to validate the non-parametric mixture method, three 
simulation studies were run. Two simulations involved RT 
drawn from a SWD, and accuracy from a binomial distri-
bution. More precisely, the goal of the first simulation was 
to investigate which kind of mixture data could induce a poor 
model performance. The aim of the second simulation was 
to demonstrate that the proposed method is also efficient in 
recovering more than two hidden states. Finally, the third 
simulation involved RT and errors generated by a cognitive 
model of binary choices, the diffusion decision model (DDM).

Simulation 1: Which mixture data induces a poor 
model performance?

In Simulation 1, the non-parametric mixture method was 
applied to behavioral data where the RT of both states are 
generated according to a SWD. SWD was chosen because 
it has a right-skewed shape that typically mimics most RT 
distribution of cognitive psychological data (e.g., Anders 
et al., 2016; Heathcote, 2004). Accuracy for both states were 
sampled from two binomial distributions. In this first simu-
lation, we further investigated which kind of mixture data 
was susceptible to exhibit poorer model performance by sys-
tematically varying parameter features of the generated data 
(e.g., mean RT difference between both mixture, skewness 
of the distribution, number of trials).

Method

1.1.1.1. Baseline parameters RT data for both states were 
sampled from two SWDs. Given the location, shape, and 
shift parameters that determine the SWD (μ, λ, τ, respec-
tively), the expected M, SD, and skewness (SK) of RT are:

M = � + �SD =

√

�3

�
SK = 3

√

�

�

We used these mappings to compute the parameters for a 
particular combination of M, SD, and SK (see Supplemen-
tary Information3). The first state was generated with the 
following SWD parameters: M1 = 600 ms, SD1 = 100, SK1 
= 1.5. This state was also associated with an accuracy of 
70%. The second state was associated with an accuracy of 
90% and with the following SWD parameters : M2 = 900 ms, 
SD2 = 150, SK2 = 1.75. In short, the first state corresponds 
to relatively fast and more error-prone behavioral responses 
and the second state corresponds to relatively slow and more 
accurate behavioral responses. These arbitrary values seem 
a reasonable representation of a real cognitive psychological 
data set involving two different strategies (Luce, 1986). We 
generated 500 observations for each of the 100 simulated 
participants. The mixture proportion was equal between 
both states. That is, both states are equally likely and have 
the same number of observations (i.e., 250). The transition 
parameters of the Markov chain were set to 0.8 and 0.2 for 
both states, meaning that the probability of remaining in 
the same state is 0.8 and the probability of switching to the 
other state is 0.2. SWD and Markov chain were respectively 
generated using the “SuppDists” package (Wheeler, 2008) 
and the “markovchain” package (Spedicato et al., 2016) for 
R program (R Development Core Team, 2016).

1.1.1.2. Model specification The HMMs were fitted to indi-
vidual data using the “depmixS4” R package (Visser & 
Speekenbrink, 2010). The HMM specification of all three 
mixture models (i.e., parametric, semi-parametric, and non-
parametric) included multivariate data (RT and accuracy). 
For the three mixture models, the accuracy variable was 
modeled as a multinomial distribution with an identity link 
function. For the parametric mixture model, RT was mod-
eled assuming a Gaussian distribution. This is the default 
and usually chosen distribution (e.g., Dutilh et al., 2011; 
Visser 2011; Visser et al., 2009). Because, as previously 
mentioned, the states are hidden, there is no way to infer 
their specific distributions beforehand. For the semi-para-
metric and non-parametric mixture models, individual RT 
data were first discretized into bins of equal length (Mole-
naar et al., 2018). The number of bins was set to 20 for both 
mixture models. For the non-parametric mixture model, RT 
bins variable was modeled as a multinomial distribution with 
a logit link function. For the semi-parametric mixture model, 
the RT bins variable was modeled as an ordinal distribution 
with a logistic link function. Because the ordinal distribu-
tion was not present by default in the “depmixS4” R package 
(Visser & Speekenbrink, 2010), we implemented the ordi-
nal fitting using the polr function of the MASS R package 

3 Supplementary information is made available online (https:// osf. io/ 
87qju)

https://osf.io/87qju
https://osf.io/87qju
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(Ripley et al., 2013). All models assumed two hidden states. 
Parameters of HMMs were estimated with the expectation-
maximization algorithm. For each simulated participant and 
model, the fitting procedure was repeated 20 times and the 
iteration with the lowest BIC (Schwarz, 1978) was selected.

1.1.1.3. Parameter manipulation In order to investigate the 
impact of different features of the data on the efficiency of 
identifying hidden states, a series of simulations were run. 
For all features (except mixture proportion), we used two lev-
els (low and high) of manipulation. The low level refers to 
a decrease in the manipulated feature whereas the high level 
refers to an increase in the manipulated feature. When one 
feature was manipulated, the others were kept constant to their 
baseline value. Table 1 summarizes the manipulated features 
and their corresponding values for baseline, low and high lev-
els. As can be seen, some manipulated features concern the 
SWD: RT difference, standard deviation and skewness. For 
the RT difference manipulation, the mean difference between 
both states was modified by decreasing/increasing the mean 
RT of the slowest state. The standard deviation and skewness 
manipulations changed both state distributions by multiplying 
the baseline value with 2/3 and 4/3 for low and high levels, 
respectively. In a similar way of RT manipulation, the accuracy 
difference between both states was also examined by decreas-
ing/increasing the mean accuracy of the less accurate state. 
One manipulation investigated the impact of the sample size 
by varying the number of trials. One manipulation explored 
model stability (i.e., the probability of remaining in the same 
state) by varying transition parameters of the Markov chain. 
Because the number of bins is arbitrary set for semi-parametric 
and non-parametric mixture models, we explored how this fea-
ture is important and could influence model accuracy. Finally, 
the mixture proportion manipulation tested the influence of 
unequal proportion for the hidden states (i.e., one state is more 
likely and then associated with more trials than the other).

1.1.1.4. Model selection In a model selection procedure, 
we investigated how many states provides the best fit to the 
data. Therefore, four different models varying the number 
of states from 1 (i.e., assuming no mixture) to 4 were fit-
ted to the simulated data with the baseline values. All other 
model specifications were kept constant. We examined 
model selection according to two statistics for goodness-of-
fit : BIC (Schwarz, 1978) and AIC (Akaike, 1974). While 
BIC is commonly used in mixture data and HMM in par-
ticular (e.g., Visser, 2011), AIC was also provided because 
it is commonly used in mathematical psychology. BIC and 
AIC tend to complement each other as, typically, AIC favors 
more complex models, whereas BIC favors simpler models 
(e.g., Van Maanen et al. 2016). BIC and AIC were computed 
for each simulated participant and each model. The model 
with the lowest BIC and AIC for the majority of simulated 
participants is selected as the best model. All these steps 
were performed for each mixture model.

Results

In a first step, we analyzed how each mixture distribution 
correctly predicts the simulated hidden states with the base-
line values. To achieve this, we computed, by distribution, 
the proportion of correctly classified trials for every simu-
lated participant. A trial is correctly classified if simulated 
trials of the first state are assigned to the fastest and less 
accurate model-based state and if simulated trials of the 
second state are assigned to the slowest and more accurate 
model-based state. As shown in Table 2 and Fig. 1, the mean 
model accuracy for semi-parametric mixture model (M = 
93.25%, SD = 1.59) and non-parametric mixture model 
(M = 93.21%, SD = 1.62) were superior to the paramet-
ric mixture model (M = 89.31%, SD = 15.91). In order to 
investigate the potential discrepancies between model fit-
tings more in depth, model accuracy difference between each 
pair of mixture models (i.e., non-parametric minus paramet-
ric, semi-parametric minus parametric and semi-parametric 
minus non-parametric) was computed for each simulated 
participant. Regarding the comparison between semi-para-
metric and non-parametric mixture models, the mean differ-
ence was almost null (M = 0.05, SD = 0.22, range – 0.80 to 
1.00). This is explained by the fact that a large majority of 
simulated participants (83%) showed similar model accuracy 
with both mixture models. A small proportion of simulated 
participants (13%) had a slightly better model accuracy for 
the semi-parametric mixture model over the non-paramet-
ric mixture model whereas the remaining 4% showed the 
reverse. Logically, the difference between non-parametric 
and parametric mixture models and the difference between 
semi-parametric and parametric mixture models were highly 
similar. The mean difference between non-parametric and 
parametric mixture models was 3.90% (SD = 2.49, range 

Table 1  Manipulated features of the data for Simulation 1

Values for the baseline as well as the low and high levels of manipu-
lation for each manipulated features of the data. For each manipulated 
feature, the others are kept fixed to their baseline value (in italics)

Low Baseline High

Reaction times difference 150ms 300ms 600ms
Accuracy difference 10% 20% 40%
Skewness SK*2/3 SK*1 SK*4/3
Standard Deviation SD*2/3 SD*1 SD*4/3
Model Stability 0.65-0.35 0.8-0.2 0.95-0.05
Number of trials 126 500 2000
Number of bins 5 20 35
Mixture Proportion Unequal 

(proportion 
>.65)

Equal Unequal 
(proportion 
>.65)
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– 0.8 to 11.2), indicating an advantage for the non-paramet-
ric distribution. A better model accuracy for non-parametric 
model was observed for 97% of the simulated participants 
and a better model accuracy for the parametric model was 
found for the remaining 3%. Correspondingly, the mean dif-
ference between semi-parametric and parametric mixture 
models was 3.95% (SD = 2.45, range – 0.8 to 11.2), indi-
cating an advantage for the semi-parametric distribution. A 
better model accuracy for semi-parametric model was found 
for 98 % of the simulated participants and the remaining 2% 
show the reverse.

Figure 1 displays the parametric, semi-parametric and 
non-parametric model accuracies for each manipulated fea-
ture of the data. Table 2 provides the corresponding mean 
model accuracy and SD. For the RT manipulation, low and 
high levels influenced in a similar way the three mixture 
models with low level (i.e., increasing the overlap between 
both distributions) showing a worse model accuracy than 
high level (i.e., decreasing the overlap between both distri-
butions). In addition, we observed a more important impact 
of this manipulation on the parametric model than on semi-
parametric and non-parametric models. In other words, the 

difference in model performance between the baseline and 
low/high levels is larger for the parametric mixture model 
than non-parametric and semi-parametric mixture models. 
For all distributions, the accuracy manipulation has a small 
influence on model accuracy. A large difference (high level) 
in accuracy between both states is associated with a better 
model accuracy than a small difference (low level). It could 
also be noted that, regardless of the level of manipulation, 
non-parametric and semi-parametric mixture models always 
provided a better model accuracy. The skewness manipula-
tion did not influence similarly the mixture models. Paramet-
ric mixture model showed a better model accuracy for less 
skewed distributions (low level) and a worse model accuracy 
for more skewed distributions (high level). Surprisingly, the 
reverse is observed for semi-parametric and non-parametric 
mixture models. In addition, as for the accuracy manipula-
tion, non-parametric and semi-parametric mixture models 
provided a better model accuracy, regardless of the level of 
manipulation. The manipulation of standard deviation simi-
larly impacts model accuracy of the three mixture models 
(i.e., better model accuracy for low level of manipulation 
and worse model accuracy for high level of manipulation). 
For trial manipulation, the sample size did not have the same 
impact on the distributions. While parametric model did not 
seem to be influenced by the sample size, a drop in model 
accuracy was observed for semi-parametric and non-para-
metric mixture models when the number of trials decreases. 
Model stability manipulation impacted model accuracy in 
similar way for the three distributions (i.e., worse model 
performance for low level of manipulation and better perfor-
mance for high level of manipulation). The number of bins, 
defined for the semi-parametric and non-parametric mixture 
models, did not change model accuracy. This means that, in 
an acceptable range, this arbitrary parameter did not seem to 
have an impact on the performance of semi-parametric and 
non-parametric mixture models. Finally, varying the mixture 
proportion did not influence model accuracy and this for all 
mixture models.

Tables 3 and 4 (panel A) report model selection results 
varying the number of states for each of the three models 
with both statistics of goodness-of-fit, namely BIC and 
AIC. Non-parametric and semi-parametric mixture models 
correctly identified two states model as the optimal model 
with both AIC and BIC. Model selection with BIC showed 
that the two-states model fitted best for 71% and 88% of 
the simulated participants using the semi-parametric and 
the non-parametric distributions, respectively. An under-
estimation of states (i.e., one state as winning model) was 
observed for the remaining simulated participants. Model 
selection with AIC showed that, for these two distributions, 
the model with two states provided the best fit for all sim-
ulated participants. Parametric mixture model showed an 
overestimation of the number of states with both statistics 

Table 2  Model accuracy for Simulation 1

Mean and standard deviation (in parentheses) of parametric, semi-
parametric and non-parametric model accuracy for the baselines as 
well as the different levels of the manipulated features

Parametric Semi-parametric Non-parametric

Baseline 89.31 (2.82) 93.25 (1.59) 93.21 (1.62)
Reaction times difference
Low 69.41 (6.49) 78.33 (5.35) 78.05 (5.38)
High 98.36 (0.77) 97.91 (1.13) 97.88 (1.14)
Accuracy difference
Low 88.59 (3.06) 92.91 (1.69) 92.84 (1.70)
High 91.46 (2.55) 94.37 (1.29) 94.35 (1.28)
Skewness
Low 90.98 (2.31) 91.82 (1.84) 91.78 (1.86)
High 88.98 (2.37) 94.27 (1.56) 94.22 (1.57)
Standard deviation
Low 95.93 (1.32) 96.82 (1.22) 96.83 (1.23)
High 85.41 (3.66) 88.70 (2.25) 88.68 (2.29)
Model stability
Low 85.13 (2.43) 85.89 (5.88) 86.01 (5.92)
High 96.78 (1.32) 98.47 (0.78) 98.45 (0.80)
Number trials
Low 90.36 (4.67) 87.09 (10.35) 86.34 (11.08)
High 89.54 (1.44) 94.65 (0.70) 94.65 (0.70)
Number bins
Low NA 92.27 (2.20) 92.27 (2.20)
High NA 92.25 (1.80) 92.23 (1.90)
Mixture Proportion 89.10 (3.00) 92.90 (1.80) 92.80 (1.90)
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of goodness-of-fit. Using BIC, three states fitted best for 
82% of the simulated participants whereas the two-states 
model was correctly identified as the best-fitting model for 
the remaining 18%. Using AIC, the four-states model was 
selected as the best-fitting model for 99% of the simulated 
participants. For one participant, the best-fitting model was 
the model including three states.

Discussion

The findings of Simulation 1 showed that semi-parametric 
and non-parametric mixture models are associated with 
similar patterns of performance for the baseline values as 
well as for the different levels of manipulated parameters. 
The potential difference between both methods was further 
investigated with the baseline values. For a large majority of 
participants, no difference in model accuracy was observed 
between semi-parametric and non-parametric models.

The comparison of semi-parametric and non-paramet-
ric models with the parametric model indicated a better 

model accuracy for semi-parametric and non-parametric 
mixture models in almost all investigated situations. The 
only exceptions were the high level of RT manipulation 
and the low level of trials manipulation. Furthermore, 
the different levels of each manipulated parameter had, 
in most cases, the same influence on the distributions. 
One exception was the trials manipulation where a poor 
sample size seems to have a negative impact on semi-
parametric and non-parametric mixture models only. 
Another exception was the skewness manipulation where 
more skewed distributions were associated with worse 
performance for parametric mixture model and with bet-
ter performance for semi-parametric and non-parametric 
mixture models.

Finally and crucially, model selection results indicated 
that non-parametric and semi-parametric distributions cor-
rectly estimate the number of simulated states for both model 
selection criterions. This was not the case for the parametric 
distribution which overestimates the number of states with 
both model selection criterions.

Fig. 1  Model accuracy for Simulation 1. Within each manipulated feature, the different levels of non-parametric, semi-parametric, and paramet-
ric distributions are ordered according to model accuracy
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Simulation 2: Is parametric mixture model efficient 
to recover three hidden states?

It is not uncommon to find more than two strategies used 
by participants in cognitive psychological experiments (see 
for instance, arithmetic problems solving; LeFevre et al., 
1996). It is therefore important to demonstrate that the non-
parametric mixture method was able to efficiently identify 
more than two hidden states. In Simulation 2, three states 
rather than two were simulated. As for Simulation 1, RT 
and accuracy for each states were respectively drawn from a 
SWD and from a binomial distribution.

Method

RT and accuracy data for the three states were respectively 
sampled from three SWDs and three binomial distributions. 
More precisely, two states were identical to the baseline 
parameters of the Simulation 1. That is, the first state was 
associated with the following parameters: M1= 600 ms, SD1 
= 100, SK1 = 1.5,  accuracy1 = 70%. The second state had 
the following parameters: M2 = 900ms, SD2 = 150, SK2 = 
1.75,  accuracy2 = 90%. To stick as close as possible to the 
baseline features of Simulation 1 (i.e., 300 ms RT difference 
and 20% of accuracy difference), the new third state was 

generated with the following parameters: M3= 300 ms, SD3 
= 70, SK3 = 1.25,  accuracy3 = 50%. This new state could 
correspond to a participant not doing the task properly and/
or adopting a guessing strategy, resulting in fast responding 
at chance performance.

We simulated 750 observations per participant (100 in 
total) with an equal mixture proportion (i.e., 250 observa-
tions per state). The transition parameters of the Markov 
chain were 0.8, 0.1, and 0.1, meaning that the three states 
have a probability of 0.8 of staying in the same state and a 
probability of 0.1 of switching to one of the other states. 
For the semi-parametric and non-parametric mixture mod-
els, the number of bins was fixed to 20. Finally, the fitting 
and model selection procedures were set up in a similar way 
as Simulation 1.

Results

Because the comparison between semi-parametric and non-
parametric mixture models led to the same conclusion as 
Simulation 1, namely a model with or without the ordinal 
information elicited similar accuracy performance and 
model selection results, we only reported non-parametric 
and parametric results. Semi-parametric results of this sec-
tion as well as the ones concerning the last simulation and 

Table 3  Model selection procedure with Bayesian information crite-
rion (BIC)

The models (n best) columns represent the number of simulated par-
ticipants for which this was the best model by mixture distribution. 
The best model column depicts the winning model by distribution 
based on n best results. Model selection procedure for Simulation 1 
is depicted in panel A, for Simulation 2 in panel B, for Simulation 3 
in panel C, for Experiment 1 in panel D, for Experiment 2 in panel E.

Distribution Models (n best) Best Model

1 State 2 State 3 State 4 State

A) Simulation 1
Parametric 0 18 82 0 3 States
Semi-parametric 29 71 0 0 2 States
Non-parametric 12 88 0 0 2 States
B) Simulation 2
Parametric 0 0 22 78 4 States
Non-parametric 0 0 100 0 3 States
C) Simulation 3
Parametric 0 0 35 65 4 States
Non-parametric 2 98 0 0 2 States
D) Experiment 1
Parametric 0 1 30 25 3 States
Non-parametric 4 48 4 0 2 States
E) Experiment 2
Parametric 0 0 1 11 4 States
Non-parametric 0 12 0 0 2 States

Table 4  Model selection procedure with Akaike information criterion 
(AIC)

The models (n best) columns represent the number of simulated par-
ticipants for which this was the best model by mixture distribution. 
The best model column depicts the winning model by distribution 
based on n best results. Model selection procedure for Simulation 1 
is depicted in panel A, for Simulation 2 in panel B, for Simulation 3 
in panel C, for Experiment 1 in panel D, for Experiment 2 in panel E

Distribution Models (n best) Best Model

1 State 2 State 3 State 4 State

A) Simulation 1
Parametric 0 0 1 99 4 States
Semi-parametric 0 100 0 0 2 States
Non-parametric 0 100 0 0 2 States
B) Simulation 2
Parametric 0 0 0 100 4 States
Non-parametric 0 0 100 0 3 States
C) Simulation 3
Parametric 0 0 0 100 4 States
Non-parametric 0 100 0 0 2 States
D) Experiment 1
Parametric 0 0 0 56 4 States
Non-parametric 0 16 27 13 3 States
E) Experiment 2
Parametric 0 0 0 12 4 States
Non-parametric 0 4 6 2 3 States
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the two applications to real data are detailed in Supplemen-
tary Information.

The results showed that both mixture methods recov-
ered the three hidden states with a high accuracy. A slight 
advantage for the non-parametric (M = 95.65%, SD = 0.99) 
over the parametric model (M = 94.15%, SD = 1.63) was 
observed. In order to better capture individual differences 
between both mixture models, we computed the model 
accuracy difference for each simulated participant (non-
parametric model accuracy minus parametric model accu-
racy). The mean accuracy difference was 1.50% (SD = 1.67, 
range – 2.00 to 8.00). For 80% of the simulated participants, 
non-parametric mixture model provided a better model accu-
racy than parametric mixture model while 18% showed the 
reverse. No difference was observed for the remaining 2%.

As shown in Tables 3 and 4 (panel B) reporting the model 
selection results, non-parametric mixture model correctly 
identified the three-states model as the optimal model with 
both AIC and BIC. More precisely, model selection with 
BIC and AIC showed that the three-states model fitted best 
for all simulated participants. For the parametric mixture 
model, the four-states model is the winning model for 78% 
of the simulated participants. The correct model (i.e., three-
states model) was only identified in 22 simulated partici-
pants. Using AIC, an overestimation of the number of states 
(i.e., four-states model) was found for all participants.

Discussion

The specific aim of this second simulation was to demon-
strate that the non-parametric mixture method was also effi-
cient in recovering more than two hidden states. Therefore, 
a third simulated state was added to the two states already 
generated in Simulation 1. Results showed that all mixture 
methods recovered with a high precision (around 95%) 
the three hidden states. Again, no difference was found 
between semi-parametric and non-parametric mixture 
models, with a large proportion of simulated participants 
providing the same model accuracy (see Supplementary 
Information for more details). Regarding the comparison 
between non-parametric and parametric mixture mod-
els, a small advantage was found for the non-parametric 
one. In addition, an important proportion of the simulated 
participants showed a better model accuracy for non-par-
ametric mixture model than parametric mixture model. 
Importantly, the non-parametric mixture model was able 
to capture the correct number of hidden states whereas the 
parametric mixture model overestimated it. More precisely, 
the non-parametric mixture model identified three states for 
all simulated participants with both AIC and BIC criteria. 
In contrast, the parametric mixture model estimated four 
states for a large majority of participants with BIC criterion 
and for all participants with AIC criterion.

Simulation 3: Data generated by a cognitive model

Simulation 1 and 2 addressed the general question of what 
information of the RT distribution was required to reliably 
recover hidden cognitive states. We concluded that a non-
parametric mixture model which does not require the exact 
shape of the RT distribution, nor the ordinal information 
encoded in the ordering of RT, was a good approach to 
estimate hidden states. In Simulation, we aim at validat-
ing this result by generating data with a well-established 
cognitive model of binary choices, the DDM. This simula-
tion supports our claim that HMM-modeling of cognitive 
psychological data can be achieved when considering the 
right level of abstraction for the RT distribution.

As most sequential sampling models, the DDM assumes 
that decisions are based on the gradual accumulation of 
evidence for the various response alternatives until a pre-
set boundary is reached. At this point, a response is ini-
tiated (Ratcliff, 1978; Ratcliff & McKoon, 2008). DDM 
includes four key parameters. Drift rate is the average 
rate at which evidence is accumulated towards one of two 
boundaries. Boundary separation indicates the amount of 
information required before a decision is made. The start-
ing point of accumulation reflects a bias for one response 
over another. Finally, non-decision time quantifies the 
duration of processes outside the decision process (e.g., 
Mulder, Van Maanen, & Forstmann, 2014; Ratcliff & 
McKoon, 2008). Sequential sampling models, including 
the DDM, have been applied to many decision-making 
paradigms in order to study cognitive processes driving 
observed behavior (e.g., Archambeau, Forstmann, Van 
Maanen, & Gevers, 2020; Donkin & Van Maanen, 2014; 
Ratcliff, 1978; Ratcliff, Thapar, & McKoon, 2001; Van 
Maanen et al., 2012). Here, using DDM allows us to gen-
erate behavioral data (RT and accuracy) representative of 
latent cognitive states. Instead of random and arbitrary 
parameter values, DDM parameters were set to the fitted 
values of a participant taken from Mulder and collabora-
tors (2013). In their study, they applied DDM to auditory 
decision-making performance involving speed–accuracy 
trade-off manipulation (Mulder et al., 2013). We used the 
fitted parameter values of speed and accurate conditions to 
simulate mixture data representing the two latent cognitive 
states (i.e., the fastest/less accurate state and the slowest/
more accurate state, respectively).

Method

The data were generated from the DDM using the “rtdists” 
R package (Singmann et al., 2016). The DDM parameter 
values of participant “WB” (auditory stimuli, 10% coher-
ence) from Mulder et al., (2013) were used for the simu-
lation. More precisely, one state was generated based on 
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the DDM parameter values of the accuracy condition (i.e., 
drift rate = .081, boundary separation = .203, non-decision 
time = .203). The other state was generated according to 
the DDM parameter values of the speed condition (i.e., drift 
rate = .081, boundary separation = .081, non-decision time 
= .596). The starting point was fixed to half of the bound-
ary separation and the diffusion constant was s = .1. For the 
other simulation characteristics, we took the baseline values 
used in Simulation 1. That is, we simulated 500 observa-
tions per participant (100 in total) with an equal mixture 
proportion (i.e., 250 observations per state). The transition 
parameters of the Markov chain were 0.8 and 0.2, meaning 
that both states have a probability of 0.8 of staying in the 
same state and a probability of 0.2 of switching to the other 
state. For the semi-parametric and non-parametric mixture 
models, the number of bins was fixed to 20. Finally, the fit-
ting and model selection procedures were set up in a similar 
way as Simulation 1 and 2.

Results

First, we controlled that the speed and accuracy DDM 
parameters taken from Mulder et al. (2013), indeed gener-
ated a fast/less accurate state and a slow/more accurate state. 
Averaged over all simulated participants, the state generated 
with DDM parameters of the speed condition had a mean RT 
of 754.20 ms (SD = 7.53) and a mean accuracy of 66.12% 
(SD = 2.82). The state generated with DDM parameters of 
the accuracy condition had a mean RT of 1677.23 ms (SD = 
40.65) and a mean accuracy of 83.97% (SD = 2.33). There-
fore, the hidden states were associated with the expected 
behavioral responses.

Model accuracy results showed that both mixture 
methods provided a high accuracy in recovering hidden 
states, with a slight advantage for the non-parametric (M 
= 94.87%, SD = 1.51) over the parametric model (M = 
93.93%, SD = 1.67). As for Simulations 1 & 2, the model 
accuracy difference (non-parametric model accuracy minus 
parametric model accuracy) was computed for each simu-
lated participant. The mean accuracy difference was 0.94% 
(SD = 2.19, range – 4.60 to 6.20). For 66% of the simulated 
participants, non-parametric mixture model provided a bet-
ter model accuracy than parametric mixture model while 
31% showed the reverse. No difference was observed for 
the remaining 3%.

As shown in Tables 3 and 4 (panel C) describing the 
results of the model selection procedure, the non-parametric 
mixture model correctly identified the two-states model as 
the optimal model with both AIC and BIC. More precisely, 
model selection with BIC showed that a two-state model 
fitted best for 98% of the simulated participants. An under-
estimation of the number of states (i.e., one state as winning 
model) was observed for the remaining 2%. Model selection 

with AIC showed that the model with two states provided 
the best fit of all participants. For the parametric mixture 
model, two-states model was never estimated as the opti-
mal model with both AIC and BIC. Using BIC, four states 
fitted best for 65% of the simulated participants whereas 
three states fitted best for the remaining 35%. Using AIC, 
the four-states model was selected as the best model for all 
participants.

Discussion

The results of this section showed that all mixture meth-
ods identified with a high accuracy (> 90%) the hidden 
states simulated by the cognitive model. A very small 
advantage was observed for the non-parametric mixture 
model over the parametric one. Most of the simulated 
participants showed a better model accuracy for non-par-
ametric mixture model than parametric mixture model. 
Concerning the model selection procedure, non-paramet-
ric mixture model correctly estimated the number of sim-
ulated states for both model selection criterions (i.e., AIC 
and BIC). This was not the case for the parametric distri-
bution which always overestimated the number of states 
present in the data set of each simulated participants. 
This represents a crucial advantage for non-parametric 
over parametric mixture models. Indeed, even though the 
parametric mixture model accurately predicts the states 
when the correct number of states are assumed, there 
is no way to correctly assess the number of states in an 
initial model selection procedure. Accordingly, accurate 
state recovery at a trial level become only meaningful 
when one has strong theoretical arguments for assuming 
two states. Overall, the findings of Simulation 3 are fully 
in line with Simulation 1 and 2, therefore reinforcing 
their validity.

Application to real data

In this section, we demonstrate that the non-parametric 
mixture model can be used on different cognitive psy-
chological data to efficiently disentangle underlying 
states. To this end, the method was applied to two data 
sets from different fields of psychology: perceptual deci-
sion-making under time pressure and economic decision-
making. In both data sets, the experimental conditions are 
intended to elicit different cognitive strategies, making 
these experiments good candidates for the validation of 
state detection methods. Note however, that in practice 
the purpose of HMMs is to identify unknown states, and 
one would never identify known experimental conditions. 
However, for the purposes of validation this seems a rea-
sonable approach.
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Experiment 1: Perceptual decision‑making

In Experiment 1, we applied the mixture methods to data 
from Miletic & Van Maanen (2019; Experiment 2)4. The 
goal of their study was to investigate how timing ability 
affects decision-making under time pressure. Participants 
had to indicate which of the two displayed circles flashes 
most often (a so-called expanded judgment task; e.g., 
Brown, Steyvers, & Wagenmakers, 2009; Hawkins, Brown, 
Steyvers, & Wagenmakers, 2012; Katsimpokis, Hawkins, & 
Van Maanen, 2020; Smith & Vickers, 1989 ; Van Maanen, 
Fontanesi, Hawkins, & Forstmann, 2016). In a short dead-
line block, participants had to indicate their choice before an 
individually set deadline, inducing time pressure. In a long 
deadline block, the deadline was fixed to 5 s, ensuring no 
time pressure. The order of both blocks was counterbalanced 
across participants. The final sample size included 56 par-
ticipants (for more details about the experimental procedure, 
see Miletic & Van Maanen, 2019). Here, we address the 
hypothesis that the behavior between the two blocks differs 
categorically, resulting in a two-state HMM as the optimal 
model. That is, time pressure induced in the short deadline 
block favors speed over accuracy, resulting in a faster but 
less accurate state than in the long deadline block.

The fitting and model selection procedures were similar 
to the simulation studies. The experimental conditions were 
considered as ground truth to assess model accuracy. There-
fore, a trial is correctly classified if the model-based state 
assignment corresponds to the fastest model-based state in 

the short deadline block and to the slowest model-based state 
in the long deadline block.

Results

In a first quality check, we analyzed whether the ground 
truth (i.e., experimental conditions) and the two mix-
ture methods, non-parametric and parametric, have the 
expected behavioral responses. Compared to the long 
deadline block, the short deadline block was associ-
ated with faster RT (510 vs. 830 ms) and less accurate 
responses (73 vs. 80%). Both mixture models defined the 
behavioral characteristics of the states in agreement with 
the experimental conditions. That is, both mixture models 
estimated a relatively faster/less accurate state, which was 
associated with the short deadline block and a relatively 
slower/more accurate state which was associated with the 
short deadline block (see Fig. 2).

The mean model accuracies for parametric and non-
parametric mixture models were 86.36% (SD = 12.34) and 
88.41% (SD = 12.14) respectively. Again, the difference in 
model accuracy between both mixture models (i.e., non-
parametric minus parametric) was computed for each par-
ticipant. The mean difference between non-parametric and 
parametric mixture models was 2.05% (SD = 4.60), with a 
range from – 6.64 to 16.82 . For 30 of the 56 participants, 
the non-parametric mixture model provided a better model 
accuracy than the parametric mixture model. A better model 
accuracy for the parametric mixture model was observed for 
17 participants while no difference was found for the nine 
remaining participants.

Figure 3 shows the time series of the model-based state 
assignment for one selected participant according to the non-
parametric fitting (panel A) and the parametric fitting (panel 

A B

Fig. 2  Behavioral characteristics of perceptual decision making data. Boxplot displaying RT and accuracy for the ground truth (experimental 
conditions) and model-based states for parametric and non-parametric distributions

4 The perceptual decision-making task from Experiment 1 was not 
selected because we assumed only one processing state for this exper-
iment given the extremely simple experimental design.



2242 Behavior Research Methods (2023) 55:2232–2248

1 3

B). When the participant switched from one condition to 
another (represented by the dashed red line), we can see that 
both models are able to detect this strategy break in the data. 
That is, both models predicted a switch between states at this 
point in time. However, more strategy switches are observed 
in the model-based states of both non-parametric and par-
ametric models, in particular in the short-deadline block. 
Under the assumption that this participant perfectly followed 
instructions, Fig. 3 reveals how the parametric model incor-
rectly assigns, more often than the non-parametric one, the 
slow state to trials belonging to the fast state. This explains 
why, for this specific participant, the strategy recovery was 
better for non-parametric than parametric model.

Regarding model selection with BIC, the two-states 
model was the best model for the non-parametric mixture 
model for a large majority of participants (≅ 85%). For the 
parametric mixture model, the three-states model fit best 
for a small majority of participants (54%, 30 participants) 
while the four-states model was the best model for almost 
all remaining participants (45%, 25 participants; see Table 3, 
panel D). Using AIC, the three-states model was selected as 
the best model for the non-parametric mixture model for ≅ 
48% of participants (i.e., 27 participants). The remaining 
participants had two states (29%, 16 participants) or four 
states (23%, 13 participants) as the best model. Finally, the 
four-states model is the winning model of all participants for 
the parametric mixture model (Table 4, panel D). Under the 
assumption that participants follow instructions, this illus-
trates again how the parametric mixture model overestimates 
the number of cognitive strategies that are used.

Experiment 2: Economic decision‑making

In this section, we apply the non-parametric mixture model 
to disentangle strategies in economic decision-making such 
as choices between lotteries. This is an interesting case 
because research suggests that there are categorically differ-
ent strategies for making these kinds of choices (Kahneman, 
Knetsch, & Thaler, 1991; McFadden, 1999; Rabin, 1998; 
Thaler, 1980). Lotteries are characterized by an integration 
of an amount that can be won, and a probability of winning 
that amount. Typically, the choice has to be made between 
a lottery with a low amount but a high probability of get-
ting that amount versus a high amount but a low probabil-
ity of getting it (e.g., 70% of chance of winning 10 euros 
vs. 30% of chance of winning 25 euros). Previous studies 
provided empirical support that choices are made depend-
ing on two different strategies: a value-based strategy and 
a default-option strategy (Guo, Trueblood,& Diederich, 
2017; Kirchler et al., 2017; Kocher, Schindler, Trautmann, 
& Xu, 2019; Rubinstein, 2007; Couto et al., 2020). Under 
the value-based strategy, amount and probability are com-
bined into a single value and the option associated with the 
highest value is selected. This strategy is rational (i.e., based 
on the highest expected outcome) but slow and effortful. 
However, the better choice in term of expected outcome is 
not constantly chosen. On the contrary, individuals are often 
biased towards a default-option such as a risk-averse choice 
(i.e., option with the highest probability). Compared to the 
value-based strategy, the default-option strategy is fast and 
not effortful (Rubinstein, 2007).
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B) Parametric mixture model

Fig. 3  Time series of the model-based state assignment. Panel A dis-
plays the state assignment according to the non-parametric mixture 
model for one participant. Panel B displays the state assignment over 

time according to the parametric fitting for the same panel partici-
pant. The dashed red line represents the switching from one experi-
mental condition to another
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To demonstrate that the non-parametric mixture method 
correctly identifies both strategies, new data were collected 
where participants were instructed to use either the value-
based strategy or the default-option strategy. The given 
instructions were then used as ground truth to assess model 
accuracy.

Method

Twelve participants (M = 22 years, SD = 5; ten women) 
took part in Experiment 2. Participants received either a 
course credit or a monetary reward (base amount of 8 euros) 
for their participation, with the possibility to get an extra 
amount up to 4€, depending on two randomly chosen tri-
als (each trial corresponding to one instruction). The study 
protocol was approved by the local ethical committee of the 
University of Amsterdam. Informed consent was obtained by 
all participants included in the study. All participants were 
naïve with respect to the purpose of the experiment.

In the economic decision-making task, participants had 
to choose between two lotteries associated with different 
probabilities and amounts of potential gain. One lottery was 
characterized by a high probability (p > 50%; e.g., 80%) 
of winning a certain amount while the other had a smaller 
probability (100%-p ; e.g., 100-80 = 20%) of winning a 
higher amount. The lotteries were presented at the bottom-
left and bottom-right of the screen. A graphical representa-
tion summarizing both lotteries was also used. Probabilities 
were shown by means of complementary areas of a circle, 
displayed on the middle of the screen. Amounts were repre-
sented by varying the height of a vertical bar. The vertical 
bar was displayed on the same side as the corresponding lot-
tery (see supplementary Fig. 1). One lottery was associated 
with a higher expected value, with expected value computed 
as follows:

On half of the trials, the lottery with smaller probability/ 
higher amount had the highest expected value. On the other 
half, the lottery with higher probability/smaller amount had 
the highest expected value. Each trial started with a fixa-
tion cross (500 ms). Next, the two lotteries were displayed 
until a response was provided. The response was followed 
by a choice-confirmation screen (1000 ms), where a box was 
drawn around the selected lottery. Two experimental condi-
tions involving different instructions were used: the Calcu-
late condition and the Preference condition. These Calculate 
and Preference conditions refer to the value-based strategy 
and default-option strategy, respectively. In the Calculate 
condition, participants were instructed to choose the lot-
tery with the highest expected value. An explanation about 
the expected value and how to compute it was given at the 

Expected value = Probability × Amount

beginning of the experiment. In the Preference condition, 
participants were instructed to select the lottery according to 
their personal preference. There were five Calculate blocks 
and five Preference blocks of 64 trials each. The two condi-
tions were presented alternatingly and the starting condition 
was counterbalanced across participants.

The fitting procedure was highly similar to the previous 
sections with the difference that the accuracy variable was 
replaced by a dichotomous variable indicating whether the 
lottery with the highest expected value was selected or not. 
As for accuracy, expected value was modelled as a mul-
tinomial distribution with an identity link function. The 
instructions (i.e., Calculate and Preference conditions) were 
considered as ground truth for model accuracy. We assume 
that the value-based strategy is characterized by slower and 
more rational (i.e., highest expected value) choices than the 
default-option strategy. Consequently, we consider a trial 
correctly classified if the model-based state assignment cor-
responds to the fastest model-based state in the Preference 
blocks and to the slowest model-based state in the Calculate 
blocks. No change was made concerning the model selection 
procedure.

Results

As expected, both instructions were associated with different 
behavioral characteristics. As shown in Fig. 4, participants 
were, on average, slower and selected more often the high-
est expected value in the Calculate than in the Preference 
block. Importantly, both parametric and non-parametric 
mixture models estimated two states with similar behavio-
ral characteristics (i.e., faster/less expected value choices 
versus slower/more expected value choices) to the one of 
the instructions.

In agreement with previous results, the mean model accu-
racy for non-parametric model (M = 84.06%, SD = 15.72) 
was superior to the parametric model (M = 76.95%, SD 
= 15.91). The difference in model accuracy between both 
mixture models also provided a similar pattern of results as 
before. The mean difference between non-parametric and 
parametric was 7.11% (SD = 9.20), with a range from – 4.53 
to 26.56. For ten of the 12 participants, non-parametric mix-
ture model provided a better model accuracy than parametric 
mixture model while the two remaining participants showed 
the reverse.

Model selection with BIC showed that the two-states 
model is the best model for all participants with the non-
parametric distribution. For the parametric model, the four-
states model fit best for almost all participants (11 partici-
pants; Table 3, panel E). Using AIC, the three-states model 
is the best model for non-parametric distribution for 50% of 
participants (i.e., six participants). The remaining partici-
pants had two states (33%, four participants) or four states 
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(17%, two participants) as best model. Finally, the four-states 
model is selected as the best model of all participants for the 
parametric distribution (Table 4, panel E).

Discussion

The application of mixture methods on two different data 
sets revealed a highly consistent pattern of results. For both 
data sets, the methods identified states with behavioral char-
acteristics similar to the experimental manipulation (i.e., the 
ground truth). Importantly, the non-parametric mixture model 
provided a better model accuracy than the parametric mixture 
model. This advantage in performance was more robust for 
the economic decision making data set than for the percep-
tual decision-making data set. Finally, the non-parametric 
mixture model correctly estimated the number of states with 
BIC. This was not the case for the parametric model which 
overestimated the number of hidden states. Taken together, 
these results imply that the non-parametric mixture model 
can be used as an efficient tool to disentangle hidden states/
strategies in cognitive psychological data. Determining the 
number of hidden states/strategies, their behavioral charac-
teristics and their identification at the trial level is possible 
with the proposed method. It is interesting to observe that not 
all participants seem to have the same number of states. This 
may reflect an overestimation of the number states, but it may 
also reflect that our approximation of a ground truth by way of 
the experimental manipulation is not entirely accurate. That 
is, some participants may adopt more strategies to respond in 
a particular condition, increasing the number of states that we 
find. A similar reasoning could be applied to strategy recov-
ery. Indeed, a “wrong” strategy recovery could be due either 
to misclassification from the model or another strategy used 
by the participant (i.e., an incorrect ground truth for that trial).

General discussion

The aim of the present paper was to provide a reliable 
method to identify hidden strategies in cognitive psycho-
logical data. To this end, we developed the non-parametric 
mixture model based on a HMM. More precisely, we used a 
model-free approach where a particular shape of RT distri-
bution does not need to be assumed. This avoids potentially 
unreliable results when the incorrect RT base distribution is 
selected in the fitting process (Molenaar et al., 2018). After 
elaborating on the main findings of simulated and real data 
studies, we then provided some practical guidelines for 
researchers wishing to apply the non-parametric mixture 
model on their own data set.

In two simulation studies, we tested the proposed method 
on data simulated from a SWD for RT and binomial dis-
tribution for accuracy. More precisely, the first simulation 
aimed to investigate which kind of mixture data induce a 
poor model performance. We showed that non-parametric 
HMMs can reliably estimate underlying states in a wide 
range of behavioral patterns. The aim of the second simula-
tion was to demonstrate that the proposed method is also 
efficient in identifying more than two hidden states. This is 
an important result because it shows how a non-parametric 
HMM naturally generalizes to more likely scenarios with 
multiple underlying cognitive strategies. In a third simula-
tion study, the parametric mixture model was applied on RT 
and accuracy data generated by way of a cognitive model, 
the DDM. Results of all simulation studies showed that the 
non-parametric method identified, with a high accuracy, 
hidden cognitive strategies. Simulation 3 complements 
Simulations 1 and 2 by illustrating how the method fares 
with a more realistic data structure, including a dependency 
between RT and accuracy. Importantly, in all simulations, 

A B

Fig. 4  Behavioral characteristics of economic decision-making data. Boxplot displaying RT and accuracy for the ground truth (experimental 
conditions) and model-based states for parametric and non-parametric distributions
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the current method provided a better model performance 
than a parametric approach assuming a Gaussian RT distri-
bution. This implies that the shape of RT distribution is not 
necessary information to reliably recover hidden strategies. 
This conclusion is congruent with the study of Molenaar 
et al., (2018) implementing a semi-parametric approach in 
the psychometric domain (see also Molenaar et al., 2019). 
Crucially, our results go a step further showing that the ordi-
nal information encoded in the ordering of RT is not essen-
tial either. Indeed, the comparison between semi-parametric 
and non-parametric mixture models elicited similar accu-
racy performance with identical model fitting for the large 
majority of simulated participants. Only implemented in the 
psychometric field, this also demonstrated that the semi-par-
ametric mixture model can be considered as a valid approach 
when applied to typical cognitive psychological data.

In Simulation 1, we additionally varied parameter fea-
tures of the generated data to explore which kind of mixture 
data is susceptible to exhibit poorer model performance. 
Over all manipulations, decreasing the mean RT difference 
between both strategies has the strongest impact on model 
performance for the three approaches. Given that this RT 
manipulation induces more overlap between the distributions 
representing both strategies, disentangling hidden strategies 
becomes more difficult. For the rest, the different levels of 
each manipulated parameter had, in most cases, no discern-
ible effect on model accuracy. One exception was the skew-
ness manipulation where more skewed distributions were 
associated with worse performance for parametric mixture 
model only. Because semi-parametric and non-parametric 
mixture models remain agnostic about a particular shape 
of distribution, they are consequentially not affected by a 
factor violating an assumed distribution. To put it simply, 
it is expected that a factor influencing the normality of the 
distribution has only an impact on the model performance 
assuming this normality. The other exception was the sample 
size manipulation. Decreasing the number of trials exclu-
sively affected non-parametric and semi-parametric mixture 
models with a drop in model accuracy of approximately 6% 
compared to their respective baseline value. While it seems 
that the proposed method is more sensitive to the sample 
size, we argue that this effect could be reduced by adapting 
the number of bins. As shown in Simulation 1, the number 
of bins in an acceptable range did not seem to have an impact 
on the performance of semi-parametric and non-parametric 
mixture models. It is therefore possible that 20 bins is no 
longer an acceptable number of bins for this smaller sample 
size. To test this assumption, the Low level of trials manipu-
lation was refitted with a smaller number of bins (i.e., 10 bins 
instead of 20). This time, the mean accuracy was 90.55 and 
90.60% for the non-parametric and semi-parametric mixture 
models, respectively, reducing the gap with the baseline val-
ues at 2.5% and then, corroborating our hypothesis.

On top of investigating an accurate strategy recovery, 
we explored whether the proposed method could correctly 
determine the number of hidden strategies present in the 
data. Therefore, a model selection was performed where 
we varied the number of states from 1 to 4. The results of 
all simulation studies showed that only the non-parametric 
and semi-parametric mixture models accurately estimated 
the number of hidden states, regardless of the statistic for 
goodness-of-fit used (in the present paper, AIC and BIC). 
Critically, the parametric mixture model always overesti-
mated the number of hidden states. This is line with previ-
ous findings of Molenaar et al., (2018), which demonstrated 
that the parametric approach tends to predict a mixture in 
the data when only one state was generated. It is important 
to note that, even though the parametric mixture model also 
recovered the hidden states with a high precision, this state 
classification would become meaningless because not sup-
ported by a model selection procedure.

Finally, the non-parametric mixture model was tested 
on two real data sets to demonstrate its applicability in dif-
ferent fields of cognitive psychology. First, we applied the 
non-parametric mixture method to data from Miletic & Van 
Maanen (2019) which investigated how timing ability affects 
perceptual decision-making under time pressure. Their task 
included two blocks in which participants had to make per-
ceptual decisions. The blocks differed in the presence or 
absence of a response deadline. We hypothesized that the 
block with time pressure (i.e., a strict response deadline) 
favors speed over accuracy, resulting in a faster but less 
accurate strategy than in the block without time pressure. 
The second application concerned the economic decision 
making field. New data were collected where participants 
had to choose between either a lottery with a low amount but 
a high probability of getting that amount or a lottery with a 
high amount but a low probability of getting it (e.g., 70% of 
chance of winning 10 euros versus 30% of chance of win-
ning 25 euros). Participants were instructed to alternatively 
apply one of the two different strategies identified in the 
literature (e.g., Kahneman et al., 1991; McFadden, 1999; 
Rabin, 1998, Thaler, 1980): the value-based strategy and 
the default-option strategy. In one condition, participants 
had to choose the lottery with the highest expected outcome, 
referring then to the value-based strategy. In another condi-
tion, participants were instructed to use the default-option 
strategy which means choosing the lottery according to their 
personal preference. We assumed that the value-based strat-
egy was characterized by slower and more rational choices 
than the default-option strategy. For both data applications, 
we first ensured that the different conditions exhibited the 
expected behavioral responses. Moreover, we analyzed 
whether the mixture models defined similar behavioral char-
acteristics for the inferred states. The results indicated that 
the observed behavior was coherent with both experimental 
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manipulations and crucially, this was accurately captured 
by the different approaches. In a next step, the experimen-
tal manipulation was used as ground truth to assess model 
accuracy. As for simulation studies, non-parametric mixture 
model was superior to the parametric approach for both data 
sets. Finally, model selection results showed that the correct 
number of states was only determined by the non-parametric 
model and the semi-parametric model (see Supplementary 
Information) with BIC statistic for goodness-of-fit. In con-
trast, the parametric model again overestimated the num-
ber of hidden states present in the data. Taken together, the 
conclusions drawn in simulation studies hold in the context 
of real cognitive data sets, strengthening the validity of the 
non-parametric mixture model.

Practical guidelines

In a general way, the developed method focused on one of 
the most often used variables in cognitive psychology: RT5. 
We approached the issue of inferring a hidden RT distri-
bution by categorizing this variable into bins. Obviously, 
the method could be used with continuous variables other 
than RT as well. Moreover, the HMM approach allows to 
associate the categorized RT with other (multiple) variables 
apart from accuracy of the response (for a specific tutorial 
on HMM, see Visser 2011).

The major decision concerning the non-parametric mix-
ture model is the number of bins which discretize the indi-
vidual RT data. As previously demonstrated in Simulation 
1, this number does not have an impact on model perfor-
mance in an acceptable range number. The “ideal” number 
is intrinsically linked to number of trials present in the data. 
Based on our analyses, we suggest categorizing the RT data 
into bins in such a way that the ratio bins vs. total number of 
trials is approximately 0.05. In addition, the number of bins 
should be no less than 5 and no more than 35.

While our results did not show any potential effect from 
outliers in the data, we recommend being careful about 
extremely slow outliers. Imagine a scenario where the indi-
vidual RT distribution includes one extremely slow outlier. 
The categorization of RT would lead to a last bin with one 
trial, a lot of empty middle bins (i.e., bins without any trial) 
and one or two first bins with all the remaining trials. In such 
an extreme configuration, the fitting of the non-parametric 
model would lead to unreliable results, since the effective 
number of bins drops below our recommendation of a mini-
mum of five bins. In summary, we advise researchers to look 
to a good repartition of trials into the bins.

Thirdly, even though a specific set of cognitive strategies 
could be inferred from the literature, we suggest validating 
such a hypothesis by performing an initial model selection 
procedure at the individual level. Indeed, it is possible that 
a participant does not use all the set of the available strate-
gies to perform a task (e.g., applying one strategy even when 
multiple strategies are possible; e.g., Lemaire & Arnaud, 
2008). Consistent with previous applications of HMMs (e.g., 
Visser 2011) and in line with the results of this study, BIC 
should be preferred as a statistic for goodness of fit.

A final consideration concerns the variability of stimu-
lus materials. To reduce the complexity of the models, we 
refrained from explicitly modeling the items. This choice 
seems warranted given the high predictive accuracy, also in 
the applications to real data sets. Nevertheless, it is imagi-
nable that variation in stimulus materials covaries with state 
assignment. Taking this variation into account potentially 
improves the accuracy. An easy-to-use hierarchical non-
parametric model that includes item effects would therefore 
be a natural and desirable extension of this work.

Conclusions

In this paper, we proposed a new method – the non-para-
metric mixture model – to disentangle hidden strategies in 
cognitive psychological data. This method is based on an 
HMM fitting in which a particular shape of RT distribution 
does not need to be assumed. This has a considerable advan-
tage given that a wrong inference about the base distribu-
tion could lead to unreliable results (Molenaar et al., 2018). 
Through simulation studies and applications on real data, we 
repeatedly demonstrated that this method is more efficient 
than a parametric approach which typically tends to over-
estimate the number of states. The non-parametric mixture 
model allows researchers to accurately determine the num-
ber of hidden strategies present in the data, their behavioral 
characteristics and their identification at the trial level. It is 
therefore a useful statistical tool that can be applied in many 
areas of cognitive psychology.
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