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SUMMARY
Patients with early-stage HER2-overexpressing breast cancer struggle with treatment resistance in 20%–
40% of cases. More information is needed to predict HER2 therapy response and resistance in vivo. In this
study, we perform (phospho)proteomics analysis of pre-treatment HER2+ needle biopsies of early-stage
invasive breast cancer to identify molecular signatures predictive of treatment response to trastuzumab, per-
tuzumab, and chemotherapy. Our data show that accurate quantification of the estrogen receptor (ER) and
HER2 biomarkers, combined with the assessment of associated biological features, has the potential to
enable better treatment outcome prediction. In addition, we identify cellular mechanisms that potentially
precondition tumors to resist therapy. We find proteins with expression changes that correlate with resis-
tance and constitute to a strong predictive signature for treatment success in our patient cohort. Our results
highlight the multifactorial nature of drug resistance in vivo and demonstrate the necessity of deep tumor
profiling.
INTRODUCTION

Invasive breast cancer (IBC) is a highly heterogeneous disease

that relies on subtype classification to prognosticate the disease

course and to select treatment strategies.1 Current IBC patient

classification focuses on the expression of three receptor pro-

teins: the estrogen receptor (ER), the progesterone receptor

(PR), and the human epidermal growth factor receptor 2

(HER2). Subtype-specific treatment strategies are directed at

these receptors and their downstream signaling pathways

because these are considered to drive tumor progression. The

efficacy of these subtype-driven therapeutic interventions is

limited by our ability to further classify IBC within the main sub-

groups and identify tumors that are truly biologically driven by

these targeted receptors.

Approximately 15% of all IBC tumors overexpress HER2.2 The

current standard neo-adjuvant treatment for HER2+ IBC applies

targeted therapy using the monoclonal HER2-directed anti-

bodies trastuzumab (TTZ) and pertuzumab (Ptz) in combination

with conventional chemotherapy drugs, such as taxanes and

carboplatin.3–6 The introduction of these targeted therapies
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has improved the clinical outcome for this group of patients

considerably, yet treatment resistance, both intrinsic and ac-

quired, occurs because 20%–40% have only partial response

to neo-adjuvant treatment.7 A full understanding of themolecular

mechanisms underlying treatment resistance in vivo is lacking.

Although there has been progress in identifying genomic and

transcriptomic features that predict treatment success of

HER2-targeted therapies, no biomarkers are currently used in

clinic.8

The HER2+ subgroup represents a remarkably heterogeneous

population of tumors.9 Poor treatment response in some patients

has been attributed to this heterogeneity, because it represents

a mismatch between tumor biology and applied therapeutics.

For example, HER2+ tumors co-express varying levels of ER,

wherein ER expression correlates with treatment outcomes for

HER2-targeted therapy.10 Therefore, enhanced patient stratifi-

cation could improve clinical outcomes by identifying more

suitable therapeutic strategies in some cases and reduction of

overtreatment in others. Deep tumor profiling is required to

enhance IBC classification and uncover the in vivo biological

complexity and diversity of treatment resistance in HER2+
orts Medicine 4, 101203, October 17, 2023 ª 2023 The Authors. 1
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Figure 1. Pseudo-HER2+ signature is associated with treatment resistance

(A) Boxplot of HER2 protein expression by treatment outcome group. Protein abundances are normalized to the pooled reference channel. *Indicates p value <

0.05 in unpaired students t test.

(B) Heatmap of unsupervised clustering of HER2 and adjacent genes PGAP3, STARD3, and GRB7 (data are Z scored).

(C) Volcano plot comparing phosphosites between true HER2+ subgroup vs. pseudo-HER2+ subgroup. All phosphosites belonging to the HER2 protein are

indicated in red. Difference values are log2 ratios between subgroups.

(D) GSEA of HER2-related Reactome pathways and Gene Ontology. NES (normalized enrichment score) is shown on the x axis; the dot size represents the –

log10(FDR). Pseudo-HER2 samples are shown in black.

(E) Left: pCR rate (%) among the pseudo-HER2+ subgroup (n = 12) compared with the full dataset (n = 45). Right: number of No pCR samples (%) in pseudo-

HER2+ subgroup compared with IHC 2+ subgroup.

(legend continued on next page)
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tumors. Delineation of the dynamic and complex cellular net-

works in individual tumor samples opens the door to precision

oncology.

In the current study, we perform proteomics and phosphopro-

teomics profiling of 45 pre-treatment biopsies of patients with

early-stage HER2+ IBC (37 ER+ and 8 ER� cases) to identify mo-

lecular signatures predictive of treatment response to neo-adju-

vant carboplatin, paclitaxel, TTZ, and Ptz. We demonstrate the

feasibility of microscale clinical proteomics; we present deep

(phospho)proteomics profiling with high data quality using very

limited sample input (half of a 14G needle biopsy). Our data

show that IBC subtype classification by accurate quantification

of IBC biomarkers combined with the assessment of associated

biological features improves treatment outcome prediction. We

demonstrate an enhanced IBC classification scheme where sig-

natures of biological activity are used in combination with recep-

tor protein expression data to identify tumors that are HER2 or

ERdriven. Furthermore, we identify multiple cellularmechanisms

that precondition tumors to resist therapy: unfolded protein

response (UPR) induced cellular dormancy, a metabolic switch

toward oxidative phosphorylation (OXPHOS), and reduced

numbers of tumor-infiltrating leukocytes (TILs). Together, the

identified resistance mechanisms constitute to a strong signa-

ture associated with treatment success in this dataset.

RESULTS

To gain insight into molecular signatures predictive of treatment

response for paclitaxel, carboplatin, TTZ, and Ptz (PTC-Ptz), we

analyzed 45 treatment-naive early IBC needle biopsies using our

microscale (phospho)proteomics workflow (Figure S1). All pa-

tient biopsies included in this study were classified as HER2+

with a minimum tumor grade of 2 and tumor cell density of

60% or higher. After needle biopsies were taken, patients

completed multiple drug treatment cycles according to the

regimen of the TRAIN2 study.6,11 Finally, treatment response

was determined at surgery. The systemic treatment response

was categorized as pathological complete response (pCR =

ypT0/isypN0) (n = 26), near pCR (npCR) (n = 8), or No pCR

(n = 11). If pCR was not achieved, samples were referred to as

npCR if <10% of tumor remained and as treatment resistant

(No pCR) if >10% of tumor remained. A complete list of patient

biopsy details is provided in Table S1.

We obtained deep proteome and phosphoproteome coverage

of patient samples using tandem mass tag (TMT) isobaric label-

ing of digested proteins from limited tissue material (less than

half of a 14G needle biopsy, ca. 6–12 mg of fresh frozen tissue).

Labeled samples were multiplexed into separate TMT 10-plex

sets all sharing an identical pooled reference channel, enabling

accurate quantification across TMT sets. Protein and phospho-

peptide abundance values were normalized to this shared

pooled reference channel within each TMT set. Altogether,

11,088 protein groups and 37,696 phosphopeptides were quan-
(F) Heatmap of unsupervised clustering of HER2 family members (EGFR, HER3

clusters. Left cluster shows enrichment of pseudo-HER2+ patients with No pCR

(G) Boxplot of HER4 protein expression by treatment outcome group (FDR = 0.0
tified across the 45 breast cancer biopsies, of which 9,340 pro-

tein groups and 11,234 phosphopeptides were identified in at

least 75% of the samples (Figures S1B and S1C; Tables S2

and S3). We observed strong longitudinal reproducibility of our

peptide and protein quantification demonstrated by the high cor-

relation of the pooled TMT reference channel measurements

across TMT sample sets (Figure S1D). The quantitative repro-

ducibility was further determined by replicate samples that

were measured across different TMT sets. These replicates

showed high correlation in both their proteome and phosphopro-

teomemeasurements (Figure S1E) and tight grouping during un-

supervised clustering of our datasets (Figure S1F). Finally, we

performed unsupervised clustering to confirm that our data did

not suffer from any TMT batch effects or clustering bias based

on tumor percentages (Figure S1F). Together, these data

demonstrate the technical strength and quantitative reproduc-

ibility of our microscale (phospho)proteomics workflow.

Enhanced IBC subtype classification improves
treatment outcome prediction
Low HER2 activity contributes to treatment resistance

The efficacy of HER2-targeted therapy is partially attributed to

the inhibition of HER2 signaling in tumors that are dependent

on this pathway for cell growth and proliferation (i.e., HER2-

driven tumors).12 Low activity of HER2 signaling has therefore

been proposed as a resistance mechanism against HER2-tar-

geted therapy.13 Accordingly, we anticipated that identifying tu-

mors that are not HER2 driven would enable detection of poor

treatment response in patients.

To identify HER2-driven tumors, we first examined HER2

quantification within the patient biopsies. Current HER2 classifi-

cation is based on immunohistochemistry (IHC) scoring supple-

mented by in situ hybridization if IHC provides an ambiguous

score (2+). Tumors with a 2+ or 3+ score are eligible for HER2-

targeted therapy. We compared our proteomics measurements

with this classification and found that the IHC scores correlated

with HER2 protein levels in general but were inconsistent for

some tumors (Figure S2A). We found that a 2+ IHC score could

not sufficiently predict treatment response (Figure S2B),

whereas protein quantification of HER2 by proteomics measure-

ment showed a strong correlation with pCR status (Figure 1A).

HER2 was significantly lower among the No pCR samples in

our proteomic data (p < 0.05) (Figure 1A). To validate our mass

spectrometry (MS)-based measurements of HER2 abundance,

we performed western blot analysis on a subset of patient sam-

ples and found a strong correlation (R = 0.89, p = 3.7e�6) in rela-

tive protein expression levels (Figure S2C). Together, these data

indicate that a more quantitative readout for HER2 protein levels,

compared with current IHC semi-quantitative classification, may

better discern between treatment outcome groups.

To support the HER2 protein levels measured in our dataset,

we evaluated additional features that indicate HER2 activity.

Herein, we identified a subset of samples, referred to as
, HER4), ER, and IGF1R expression levels groups the samples into two main

and high levels of HER3, HER4, IGF1R, and ER. (data are Z scored).

2). *p < 0.05; **p < 0.01.
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‘‘pseudo-HER2+,’’ which do not appear HER2 driven despite

being eligible for HER2-targeted therapy. First, we evaluated

the expression of genes adjacent to HER2 in the genome

(PGAP3, STARD3, and GRB7) as a proxy for regional genome

activity. Pseudo-HER2 samples showed low protein expression

of these cis genes, indicating reduced genome activity and

consequently low HER2 expression, even in patients possess-

ing a high number of HER2 genome insertions (Figures 1B

and S2D). Expression levels of TOP2A, however, did not

correlate to HER2 expression levels and were similar for the

pseudo-HER2+ subgroup (Figures S2E and S2F). Second, we

observed that the pseudo-HER2+ subgroup displayed a lower

activation state of HER2 as demonstrated by significant down-

regulation of HER2 phosphorylation sites (false discovery

rate [FDR] < 0.05) (Figures 1C and S2G). Finally, we found

that HER2 downstream signaling was decreased within the

pseudo-HER2+ tumors (Figure 1D). We next assessed the

pCR status of the patients in our pseudo-HER2+ group and

found that pseudo-HER2+ classification was a far stronger pre-

dictor for treatment resistance compared with the HER2 IHC

score (Figure 1E). These data indicate that patient stratification

based on a multi-level assessment of HER2 features improves

predictions for patient response to treatment.

We next set out to explore the differences between the pCR

and No pCR patients within the pseudo-HER2+ subgroup. We

found that pseudo-HER2+ tumors with high expression levels

of HER2 family members (HER3 and HER4) and alternative hor-

mone receptors (ER and insulin growth factor 1 receptor [IGF1R])

were generally treatment resistant (Figure 1F). This finding sug-

gests that these receptors could provide a compensating mech-

anism, bypassing HER2 dependency in No pCR patients within

the pseudo-HER2+ subgroup. For HER3, this is in contrast with

previous research, in which low HER3 levels were linked to treat-

ment resistance.14 Notably, HER4 was also found to be signifi-

cantly upregulated (FDR = 0.02) among the treatment-resistant

tumors within the full dataset (regardless of the pseudo-HER2+

status) (Figure 1G). This was accompanied by increased down-

stream HER4 signaling (Figure S2H) and suggests a more wide-

spread role of HER4 in treatment resistance.

To validate our findings in a larger BC clinical dataset, we

analyzed biopsy data from the I-SPY2 neoadjuvant trial

(NIH identifier: NCT01042379), which contains pre-treatment bi-

opsies matched to patient outcomes for 10 different treatment

arms.15 We extracted reverse-phase protein array (RPPA) and

mRNA data for 43 HER2+ patients who received paclitaxel + per-

tuzumab + trastuzumab (PPT) treatment, of which 25 patients

achieved pCR. We first examined HER2 RPPA protein expres-

sion levels and found that, in agreement with our observations,

HER2 abundance and HER2 phosphorylation sites were signifi-

cantly lower in No pCR patients compared with pCR patients

(Figure S2I). We next evaluated the ‘‘pseudo-HER2’’ signature

in patient mRNA data and found that biopsies possessing low

expression of HER2 adjacent genes (PGAP3, STARD3 GRB7)

were enriched for No pCR treatment outcomes (Figure S2J),

supporting our proteomics findings. Finally, we examined the

expression of HER3 and HER4 family members and found

significant mRNA upregulation of HER4 in No pCR patients (Fig-

ure S2K). HER4 upregulation was even more pronounced when
4 Cell Reports Medicine 4, 101203, October 17, 2023
we evaluated treatment responsewithin the ‘‘pseudo-HER2’’ pa-

tient subset (Figure S2K). Interestingly, we did not find significant

HER4 upregulation in RPPA protein data. We also did not

observe any HER3 upregulation in No pCR patients in mRNA

or RPPA measurements (Figure S2M).

High ER signaling is associated with treatment

resistance, especially in combination with high IGF1R

activity

In addition to the determination of the HER2 status, IBC tumors

are also classified based on IHC staining of ER. A negative ER

IHC status has been associated with better treatment

response.10 Accordingly, we found a higher pCR rate among

ER tumors in our dataset (Figure S3A). Positive ER classification

by IHC scoring, however, did not show an enrichment of treat-

ment-resistant patients (Figure 2A). ER� tumors are likely

responsive to treatment, whereas the ER+ population has a het-

erogeneous treatment outcome. We found that ER protein

expression levels measured by MS were generally associated

with the IHC status (FDR < 0.05). However, there was a large

overlap in ER protein expression levels between the ER� and

ER+ tumors (Figure 2B). To validate our MS quantification, we

performed anti-ER WB analysis on a subset of patient biopsies

and found a strong correlation in our protein quantitation (R =

0.86, p = 1.5e�5) (Figures 2C and S3B). Together this demon-

strates that even though a negative ER IHC status is generally

predictive of pCR, ER+ tumors have a mixed treatment outcome

and thus treatment-resistant tumors cannot be detected by this

classification. Furthermore, for some tumors the ER protein

expression levels did not reflect the IHC classification. These ob-

servations indicate that further discrimination between ER+ pa-

tients is needed to better identify non-responsive patients.

We hypothesized that among the ER+ tumors a subset of sam-

ples was truly ER dependent, resulting in a poor treatment

response. To establish whether ER-dependent signaling could

be discerned within the ER+ tumors, we first analyzed the protein

expression levels of ER and ER-associated proteins GATA3 and

FOXA1. The results revealed that ER and GATA3 protein expres-

sion were significantly upregulated among the treatment-resis-

tant tumors within the ER+ subgroup (Figure S3C) (p = 0.007

and 0.046, respectively). FOXA1 contrarily did not significantly

differ between the outcome groups (Figure S3C). Second, we

quantified ER-dependent signatures in the tumor proteome us-

ing gene set enrichment analysis (GSEA). Combining the results

together identified a subgroup of tumors displaying an ER-

dependent signature, characterized by high expression levels

of ER, FOXA1, and GATA3 and enrichment of ER-related

signaling (Figure 2D). This classification of tumors, based on ac-

curate ER protein quantification by proteomics and ER-driven

biological features, was a better predictor of treatment resis-

tance than the ER IHC status (Figure 2A). ER-dependent tumors

showed >50% increase in No pCR patient enrichment compared

with IHC ER+ tumors.

We next set out to investigate the differences between the

pCR and No pCR tumors within the ER-dependent subgroup.

We found that the correlation between the ER and IGF1R

expression levels was very high and, in agreement with previ-

ous findings,16 that high expression levels of IGF1R and

ER were correlated with treatment resistance (Figure 2E).
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Figure 2. High ER signaling predicts poor treatment response, especially in combination with high IGF1R activity

(A) pCR rate (%) for the ER-dependent subgroup (n = 13), tumors with an ER + IHC status (n = 37), and the full dataset (n = 45).

(B) ER protein expression (determined by proteomics) by ER IHC status. * FDR < 0.05

(C) Correlation plot of ESR protein abundance as established by western blotting (WB) compared with MS.

(D) Heatmap showing increased ER signaling and increased levels of FOXA1 andGATA3 among a subgroup of tumors that were classified as ER dependent. (data

are Z scored).

(E) Correlation plot of the ER and IGF1R expression levels. Point color represents the treatment outcome. Pearson correlation: 0.78.

(F) Heatmap of unsupervised clustering of IGF1R and phospho-IGF1R-T1366 groups four patients together with the highest expression levels. These tumorswere

resistant to treatment and ER dependent. (data are Z scored).

(G) PTM-SEA analysis NESs averaged for the patients with a high IGF1R expression (in black) compared with the rest of the data. An increased enrichment score

was found for SGK1 kinase activity and IGF1 perturbation among the tumors expressing high levels of IGF1R.
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Unsupervised clustering identified a subset of four tumors that

were ER dependent, treatment resistant, and exhibited the

highest IGF1R and phospho-IGF1R levels (Figure 2F). These

elevated (phospho-)IGF1R expression levels were linked to

increased IGF1R downstream signaling, as demonstrated

by increased phosphorylation activity caused by IGF1 (an

important IGF1R ligand17) and high SGK1 activity (a kinase

downstream of IGF1R) (Figure 2G). Combined, these data

suggest that increased IGF1R activity within the ER-dependent

subgroup may contribute to treatment resistance. This is in

line with previous research that has suggested interplay be-

tween ER and IGF1R18,19 and a correlation with treatment

resistance.16

Our data revealed that patient stratification based on the quan-

titative assessment of ER by proteomics, combinedwith the anal-

ysis of ER-associated proteins (GATA3 and FOXA1) and ER-

related signaling, identified a subset of tumors with an ER-driven

signature. This signature was a better predictor for treatment
resistance than ER IHC scoring in this dataset. Tumors with an

ER-dependent signatureandhigh IGF1Ractivity hadanespecially

poor treatment response. Tovalidate thesefindings inan indepen-

dent patient cohort, we analyzed ER protein expression and ER,

IGFR1, FOXA1, and GATA2 mRNA expression levels in the

I-SPY2 neoadjuvant dataset.15 In alignment with our MS results,

we found that patient tumors possessing high expression of ER,

FOXA1, and GATA2 mRNA showed enrichment in No pCR

response (Figure S3D). We also saw a strong correlation between

ER and IGFR1 mRNA expression levels (Figure S3E). Lastly, we

found that within hormone-positive tumors, ER protein levels

were higher in No pCR patients than pCR patients (Figure S3F).

Treatment-resistant tumors are preconditioned to
evade therapy
Next, we performed an exhaustive analysis to identify further as-

sociations between molecular signatures and patient pCR status.

We focused on those proteins showing statical significant
Cell Reports Medicine 4, 101203, October 17, 2023 5
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Figure 3. Increased OXPHOS activity preconditions tumors to resist therapy

(A) Heatmap of unsupervised clustering of proteins involved in OXPHOS Reactome pathway grouped two patients together. They were treatment resistant and

showed clear increase in OXPHOS proteins. (data are Z scored).

(B) Volcano plot of GSEA of hallmark signatures of the two tumorsmarkedwith increased levels of OXPHOS. NESs plotted against the –log10(FDR). Hallmark term

OXPHOS indicated in the box.

(C) PTM-SEA analysis of AMPKA kinase activity. NESs are plotted on the x axis, dot size represents the FDR score, and color represents the metabolic switch.

(D) Dotplot showing the log2 normalized phosphosite and protein abundance. Dot color represents the metabolic switch.
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difference within the patient samples for further bioinformatics

analysis and literature mining. This resulted in the observation of

several important biological processes observed in subsets of

the patient samples that could be involved in therapy resistance.

Increased OXPHOS activity preconditions tumors to

resist therapy

To determine whether treatment-resistant tumors are metaboli-

cally preconditioned to evade drug therapy, either targeted treat-

ment or chemotherapy because these individual responses

cannot be distinguished in our dataset, we looked for upregula-

tion of metabolic pathways known to be associated with treat-

ment resistance. Our data revealed a distinct upregulation of

proteins involved in OXPHOS among two treatment-resistant tu-

mors (Figure 3A). GSEA showed a stark enrichment of OXPHOS

activity among these same tumor samples (Figure 3B), but not in

any of the other tumors (Figure S4A). OXPHOS metabolic re-

programming has been recognized as an emerging hallmark of

cancer and is associated with acquired drug resistance.20–22

Although our observation is in a very small number of patients,

the upregulation of the OXPHOS metabolic profile is exception-

ally strong and unambiguous.

The OXPHOS signature was accompanied by the highest

expression levels of ER (Figure 3A) and increased AMP-acti-

vated protein kinase (AMPK) activity (Figure 3C). This agrees
6 Cell Reports Medicine 4, 101203, October 17, 2023
with previous research showing that OXPHOS can be acti-

vated by ER-mediated activation of AMPK in response to

glucose deprivation.23 We also find increased phosphorylation

of known AMPK targets Transcription Factor A (TFAM) and

Acetyl-CoA carboxylase 1 (ACACA) (Figure 3D). AMPK-medi-

ated activation of TFAM and ACACA has been shown to stim-

ulate OXPHOS and mitochondrial biogenesis in vitro and

in vivo. 2224,25 The increased expression levels of mitochon-

drial proteins found in the two samples with high OXPHOS ac-

tivity could be the result of increased mitochondrial biogenesis

(Figure S4B). Together these data suggest that ER-mediated

activation of AMPK may be responsible for the increased

OXPHOS found in these tumors.

UPR-induced cellular dormancy preconditions tumors to

resist therapy

A significant decrease of the entire ribosomal machinery was

found among five tumor samples, of which four were treatment

resistant (Figure4A). These tumorsshoweddecreasedexpression

levels of proteins involved in translation, indicative of a dormant

cell type (Figures 4B and S5). We hypothesized that this non-pro-

liferative cell typemay prove less responsive to cell-cycle-depen-

dent chemotherapy, resulting in treatment resistance.

Among the tumors with this dormant cell type, we found

increased levels of Stanniocalcin-2 (STC2) (Figures 4B and 4C)
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Figure 4. UPR-induced cellular dormancy preconditions tumors to resist therapy

(A) Heatmap of unsupervised clustering of all ribosomal proteins grouped five patients together with the lowest abundance of these proteins. Four of these were

resistant to therapy. (data are Z scored).

(B) A t test was performed on the proteins within the dataset comparing the five tumor samples with the low-ribosomal proteins against the rest. Difference is

plotted on the x axis, and �log10(FDR) on the y axis. Proteins in yellow are involved in translation initiation (Reactome pathway).

(C) Boxplot of STC2 comparing the tumors expressing low amounts of ribosomal proteins vs. the rest. **p < 0.05. Dot color represents the treatment outcome.

(D) A t test was performed on PTM-SEA kinases NESs, including all kinases that were found enriched (FDR < 0.05) in at least one of the low-ribosomal tumors.

PDK1 was clearly upregulated among the low-ribosomal tumor samples.
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(p < 0.05). Previous research has shown that a rapid upregulation

of STC2 is associated with the UPR.26,27 UPR is triggered by

the accumulation of misfolded proteins within the endoplasmic

reticulum and aims to reinstate cellular homeostasis by clear-

ance of the endoplasmic reticulum and constriction of protein

synthesis. UPR-induced cellular dormancy has been associated

with chemotherapy resistance.28 The upregulation of STC2

among the dormant tumors suggests that UPRmay be activated

and responsible for the non-proliferative cell type.

We also found increased PDK1 activity among the dormant tu-

mors (Figure 4D). Upregulation of PDK1 has been shown to

circumvent endoplasmic reticulum stress-induced apoptosis in

tumor cells.29 Hence the increased PDK1 activity found in these

tumors could provide a pro-survival mechanism upon endo-

plasmic reticulum stress.

These data indicate that increased UPR could result in a

dormant cell type in a subset of tumors that were largely treat-

ment resistant. UPR and endoplasmic reticulum stress have

been linked to acquired therapy resistance againstmany chemo-

therapeutics.30–32 Our data suggest that these processes are not
merely secondary resistance mechanisms but can also play a

role in de novo treatment resistance.

Low immune cell infiltration in the TME indicates poor

treatment response

Evasionof immunesystemclearance isaprerequisite for success-

ful tumor progression, and excluding lymphocytes from the tumor

microenvironment is one mechanism that enables immune

escape. Accordingly, we anticipated that patients who respond

poorly to therapy possess low levels of immune cell infiltration in

their tumor biopsies. Using a validated selection of immune cell

markers,33 we found that >80% of No pCR tumors had depleted

levels of immunecells (Figures 5A and 5B). Furthermore,we found

that this ‘‘low immune infiltration’’ patient cohort showed strong

downregulation of immune-related signatures within their prote-

ome, whereas the opposite was true for ‘‘high immune infiltration’’

patients (Figure 5C). This demonstrates that both a curated list of

specific cell markers and a global analysis of proteome signatures

identify the vast majority of non-responders as being immune

depleted.Wenext validated this observation in the I-SPY2 neoad-

juvant dataset by clustering patient mRNA data based on the
Cell Reports Medicine 4, 101203, October 17, 2023 7



Figure 5. Low immune cell infiltration and high KALRN levels correlate with poor treatment response

(A) Unsupervised clustering of validated leukocyte markers shows a distinct grouping of tumors that contain reduced immune cells (Low TIL); this group includes

nine No pCR patients. Data represent scaled abundances.

(B) Downregulation of T cell marker proteins in the low TIL patient subset. Boxplot of T cell protein expression in all samples, grouped by clusters defined in (A).

**p < 5e�9. Dot color represents the treatment outcome.

(C) Downregulation of immune-related pathways in low-TIL sample subset. Dots represent individual GSEA pathways that were significantly enriched

(FDR < 0.05) in at least 75% of the samples in each group. Black dots represent immune-related GSEA terms; x axis represents average NES for each group.

(D) Upregulation of Kalirin in No pCR tumors within the low-TIL patient group. Volcano plot comparing protein abundance between low-TIL vs. high-TIL subgroup.

Vertical bars indicate 2-fold change in protein abundance. Blue and red dots denote significantly downregulated or upregulated proteins, respectively. Larger dot

size represents FDR < 0.1.

(E) Differentially regulated phosphosites in No pCR tumors within the low-TIL group show enrichment of Rho GTPase pathway (FDR < 0.001).

(F) ATM kinase activity is enriched in No pCR tumors within the low-TIL group. A t test was performed on PTM-SEA kinases NESs, including all kinases that were

found enriched (FDR < 0.05) in at least three patients.
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Danaher et al.33 immune cell marker panel. Herewe found that the

cluster of patients showing low levels of TILs was composed of

70% No pCR patients (Figure S6A).

The immune-depleted tumor subset we identified in our data-

set was not exclusive to No pCR patients. Therefore, we next

examined which features within the low-immune group were en-

riched specifically in treatment-resistant patients. We identified

the guanine nucleotide exchange factor Kalirin as the one of

the most upregulated proteins in the No pCR patient subset

(>3-fold increase, p < 0.0003, FDR < 0.1) (Figure 5D). Kalirin is
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known to regulate specific Rho GTPases and plays a vital role

in neuronal plasticity.34 Interestingly, loss-of-function mutations

in Kalirin were recently identified as a biomarker for positive

immunotherapy response across 10 different cancer types.35

Functional Kalirin protected tumors from DNA damage through

activated DNA-damage-repair mechanisms mediated by Rho

GTPases, thus contributing to reduced neoantigens and poor

immune clearance upon reactivation of the immune system.35

Accordingly, we found Rho GTPase signaling as the most differ-

entially regulated pathway between No pCR and pCR samples



Figure 6. Multifaceted nature of treatment resistance in vivo

(A) Overlap of resistance mechanisms was found among treatment-resistant tumors.

(B) ROC curve of proteins representative of the main resistance mechanisms shows great sensitivity and specificity.
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within the low-immune subset in our phosphoproteomics data

(Figure 5E). We also identified ATM kinase, a central activator

of DNA damage response, as significantly activated in No pCR

patients compared with pCR patients in this subset (Figure 5F).

In contrast with previous findings, however, we identified a pos-

itive correlation between Kalirin and PD-L1 protein expression

levels (p = 0.0014) in tumor biopsies35 (Figure S6B). Together,

our data demonstrate that non-responsive patients in the low-

immune patient cohort have uniquely elevated levels of Kalirin

and increased activation of associated downstream pathways.

This finding suggests that higher Kalirin levels may participate

in protecting tumors from immune cell clearance in No pCR pa-

tients, even after targeted therapy.

Treatment resistance ismultifaceted, and the combined
resistance mechanisms are strongly associated with
treatment success
We aimed to assess whether the resistance mechanisms we

identified constitute a protein signature associated with treat-

ment outcome. We found that multiple mechanisms coincide in

any given treatment-resistant tumor (Figure 6A). Thus, rather

than the alteration of a single protein or pathway, the combina-

tion of drug-evading mechanisms drives tumor fate. This high-

lights the multifaceted nature of drug resistance in vivo and illus-

trates the need to take a combination of these features into

account to enable a more accurate prediction of treatment

outcome. For example, a subset of treatment-resistant patients

had both a pseudo-HER2+ signature and showed ESR depen-

dency. This group of patients might benefit from ESR-directed

therapy rather than HER2-targeted therapy.

To evaluate the proteome signatures we identified, we

selected five proteins representative of themost prevailing resis-

tance mechanisms: HER2, HER4, ER, IGF1R, and Kalirin. Accu-
rate quantification of this panel of proteins by proteomics anal-

ysis was strongly associated with treatment response with high

sensitivity and specificity, yielding a receiver operating charac-

teristic (ROC) score of >0.95 (Figure 6B). The improved area un-

der the curve (AUC) for a combination of resistance mechanisms

compared with the individual proteins (Figure 6B) highlights the

complex nature of therapy resistance in vivo and underscores

the need for deep tumor profiling by system-wide quantitative

analysis.

DISCUSSION

In this study, we performed deep proteomics and phosphopro-

teomics profiling of 45 HER2+ breast cancer tumors prior to

the start of neo-adjuvant treatment with PTC-Ptz to identify mo-

lecular signatures predictive of treatment response. We show

that enhanced IBC subtype classification, based on proteomics

quantification of IBC biomarkers (HER2 and ER) combined with

the assessment of associated biological features (such as phos-

phorylation abundance, expression levels of related proteins and

activity of downstream signaling), improves treatment outcome

prediction. We demonstrate that these observations are

conserved in a second patient cohort of HER2+ pre-treatment bi-

opsies. Furthermore, we identify cellular mechanisms that

precondition tumors to evade drug treatment: UPR-induced

cellular dormancy, a metabolic switch toward OXPHOS and

low levels of immune cell infiltration. These resistance mecha-

nisms combined constitute a strong signature associated with

treatment success within our patient cohort. Our study highlights

the multifactorial nature of drug response in vivo and demon-

strates the necessity of deep tumor profiling.

We find that the current tumor classification of HER2 and ER

can be improved by quantification of these IBC biomarkers
Cell Reports Medicine 4, 101203, October 17, 2023 9
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combined with assessment of associated biological features. By

categorizing patients as pseudo-HER2 or ER-driven using this

combined approach, we were able to identify an enriched popu-

lation of patients whowere resistant to treatment. In contrast, we

did not observe any predictive value in the expression of PR in

IHC scores or proteome data (data not shown). This is in line

with common clinical standards in which PR scoring is not uti-

lized to drive treatment decisions.36 We validated our pseudo-

HER2 and ER-driven findings in an independent cohort of neoad-

juvant samples with matched treatment regimens in the I-SPY2

dataset. Extended analysis of the entire HER2+ patient group

within this large clinical trial further supports our observations

that no pCR outcomes for patients are associated with low

HER2+ protein expression and low HER2+ activity.37 The

concept that better patient stratification can be achieved

through enhanced IBC biomarker assessment is also in line

with research that demonstrates the highly heterogeneous na-

ture of tumors classified as HER2+ by IHC/fluorescence in situ

hybridization (FISH)9,14 and research showing the subjective na-

ture of ER classification by IHC scoring.38 It is important to note

that tumor heterogeneity can contribute to discrepancies be-

tween measurements and cannot be ruled out as a factor influ-

encing IHC and proteome differences in this study. Neverthe-

less, the shortcomings in the existing classification procedures

hamper the effective deployment of subtype-specific therapeu-

tic interventions. Improvements in patient stratification could

directly affect clinical decision-making because suitable treat-

ment strategies for the different IBC subtypes are readily

available.

Although our data and the data from Clark et al.37 indicate that

improved treatment precision can be achieved through

combining protein activation data with protein abundance mea-

surements in neoadjuvant biopsies, it is still challenging to suffi-

ciently stratify patients to a degree that warrants clinical imple-

mentation. In the current dataset, 30% of patients within the

‘‘ER-dependent’’ classification achieved pCR, indicating the

applied treatment regimen was appropriate. To achieve stronger

separation between pCR and No pCR patients using pre-treat-

ment biomarkers, more in vivo data are needed to identify molec-

ular signatures that correlate with patient response. Further-

more, quantification of relevant biomarkers must be translated

from relative to absolute abundances for clinical implementation.

This can be achieved by using multiplexed targeted proteomic

analysis with spiked-in standard for absolute quantification.

Our data suggest that overexpression of HER4 could compen-

sate for HER2 inhibition, contributing to therapy resistance. In

support of our findings, we observed a similar increase in

HER4 expression in pre-treatment biopsies from patients who

did not respond to PTT therapy in the I-SPY2 clinical trial. Never-

theless, the role of HER4 in breast cancer remains ambiguous;

increased HER4 levels have been linked to a favorable disease

course, yet have also been associated with poor outcomes

and trastuzumab resistance.14,39–41 Furthermore, our findings

are inconsistent with previous findings in which low HER2,

HER3, and HER4 levels were linked to treatment resistance

against trastuzumab and pertuzumab.14 This suggests that the

predictive value of HER4 expression is highly context dependent

and requires further investigation.
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Our results also indicate a potential role of IGF1R signaling in

therapy resistance. This finding is in agreement with previous

research and supports efforts into the development of IGF1R

inhibitors.16 The clinical benefits of these inhibitors have been

very limited, however, likely because of the lack of patient strat-

ification prior to study inclusion.42 Our data clearly indicate that

only a subset of treatment-resistant tumors could benefit from

IGF1R-targeted therapy (Figures 2D and 2E). Furthermore, the

efficacy of IGF1R inhibition is context dependent, as shown

by the potential interplay between the ER and IGF1R.18,19

This again highlights the need for precision oncology by sys-

tem-wide molecular profiling to identify these therapeutic vul-

nerabilities and put them in their biological context on an indi-

vidual patient basis.

Another factor we identified to be associated with poor treat-

ment response in our dataset is low levels of immune cell infiltra-

tion in the tumor biopsies. Consistent with previous findings in

triple-negative BC patients,43 where pCR rates correlated with

TIL abundance, we found that No pCRpatients were significantly

enriched in the low-TIL patient subset. We validated our findings

in the I-SPY2 patient cohort, where we saw similar enrichment of

no PCR patients within the low-TIL patient subset. Interestingly,

within our low-TIL subset, we observed a significant increase in

Kalirin protein expression and subsequent enrichment of Kalirin-

associated signaling. Mutations in the KALRN gene have been

identified as a biomarker for positive immunotherapy response,

which is attributed to the loss of Kalirin function in activating

DNA-damage repair.35 Accordingly, enhanced tumor mutational

burden was associated with KALRN mutations in six indepen-

dent patient cohorts.44 We hypothesize that the heightened Ka-

lirin levels within the low-TIL No pCR population we observe in

our dataset may contribute to treatment resistance through

enhanced DNA-damage-repair mechanisms. This could enable

improved resilience to chemotherapy treatment and continued

immune escape by reduced neoantigen loads. Assessing the

post-treatment mutational burden in these tumors would provide

useful information to support this hypothesis and an important

consideration for future study designs.

Taken together, our results indicate that there is no singular

mechanism that can be attributed to treatment resistance, but

rather a panel of molecular features. From this panel we identi-

fied a treatment-resistant signature that could predict response

based on the expression of five proteins (HER2, HER4, ESR,

IGF1R, Kalirin). It is important to note that this signature is

derived from a limited number of samples and requires further

validation at the protein level in additional patient cohorts. Inter-

estingly, we observed that in npCR tumors, the expression levels

of this treatment-resistance signature were halfway between the

pCR and No pCR tumors (Figures 1A, 1G, and S3B). In addition,

we were unable to identify npCR-specific protein signatures.

This indicates that the npCR tumors may harbor a mixed cell

population, composed of cells that are treatment responsive

and resistant. This group of patients likely benefits from the

administered therapy but may require additional therapeutic

intervention to exploit the therapeutic vulnerabilities of the resis-

tant tumor cells.

We think that this study highlights the feasibility and neces-

sity of clinical proteomics in the study of drug resistance. The
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lack of predictive protein biomarkers for treatment outcome

despite years of research is troubling and necessitates a

different approach.45 A shift toward system-wide analysis of

clinical samples can overcome the challenging translation of

in vitro findings to patient samples and provide insights into

the heavy crosstalk between signaling pathways in vivo. In

this study, we show that the technological advancements

made in recent years allow for great sampling depth of a

standard needle biopsy. Because no additional surgery is

needed, this approach could be applied to much larger co-

horts of patients, paving the path to accurate patient stratifi-

cation and precision oncology. Further research is needed to

gain insights into in vivo tumor biology, especially in the field

of phosphoproteomics. Our understanding of the biological

relevance and clinical significance of phosphosites is lacking,

hampering interpretation of phosphoproteomics data. To

make advancements in this field, large clinical phosphopro-

teomics datasets are needed to correlate phosphorylation

status with biological outcomes, such as our current study,

where we identified a treatment-resistant signature primarily

based on our proteome data, and further supported by the

phosphoproteomics data.

Limitations of the study
We emphasize that the identified resistance mechanisms

require further investigation, especially seeing the small sample

size of this study. The aim of this study was to gain insights into

resistance mechanisms observed in vivo. Some resistance

mechanisms were identified in only a very limited number of

patients (such as a switch toward OXPHOS). In addition,

because all patients within the cohort received both chemo-

therapy and targeted therapy, we cannot delineate which treat-

ment regimen correlates with our observed resistance signa-

tures, or if our observations are associated with the

combined effects from both PTC and TTZ/Ptz treatment

together. We acknowledge that these results should be inter-

preted cautiously and require further study before they can

be considered clinically actionable.
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30. Avril, T., Vauléon, E., and Chevet, E. (2017). Endoplasmic reticulum stress

signaling and chemotherapy resistance in solid cancers. Oncogenesis 6,

e373. https://doi.org/10.1038/oncsis.2017.72.

31. Reich, S., Nguyen, C.D.L., Has, C., Steltgens, S., Soni, H., Coman, C.,

Freyberg, M., Bichler, A., Seifert, N., Conrad, D., et al. (2020). A multi-

omics analysis reveals the unfolded protein response regulon and

stress-induced resistance to folate-based antimetabolites. Nat. Commun.

11, 2936–15. https://doi.org/10.1038/s41467-020-16747-y.

32. Bahar, E., Kim, J.Y., and Yoon, H. (2019). Chemotherapy resistance ex-

plained through endoplasmic reticulum stress-dependent signaling. Can-

cers 11, 338–20. https://doi.org/10.3390/cancers11030338.

33. Danaher, P., Warren, S., Dennis, L., D’Amico, L., White, A., Disis, M.L.,

Geller, M.A., Odunsi, K., Beechem, J., and Fling, S.P. (2017). Gene expres-

sion markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 5,

18. https://doi.org/10.1186/s40425-017-0215-8.

34. Remmers, C., Sweet, R.A., and Penzes, P. (2014). Abnormal kalirin

signaling in neuropsychiatric disorders. Brain Res. Bull. 103, 29–38.

https://doi.org/10.1016/j.brainresbull.2013.12.006.

35. Li, M., Ma, Y., Zhong, Y., Liu, Q., Chen, C., Qiang, L., and Wang, X. (2020).

KALRN mutations promote antitumor immunity and immunotherapy

response in cancer. J. Immunother. Cancer 8, e000293. https://doi.org/

10.1136/jitc-2019-000293.

36. Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P.,

Rubio, I.T., Zackrisson, S., and Senkus, E.; ESMO Guidelines Committee.

Electronic address: clinicalguidelines@esmo.org (2019). Early breast can-

cer: ESMO Clinical Practice Guidelines for diagnosis, treatment and

follow-up. Ann. Oncol. 30, 1194–1220. https://doi.org/10.1093/annonc/

mdz173.

37. Clark, A.S., Yau, C., Wolf, D.M., Petricoin, E.F., van ‘t Veer, L.J., Yee, D.,

Moulder, S.L., Wallace, A.M., Chien, A.J., Isaacs, C., et al. (2021). Neoad-

juvant T-DM1/pertuzumab and paclitaxel/trastuzumab/pertuzumab for

https://doi.org/10.1177/1758835919833519
https://doi.org/10.1158/1078-0432.CCR-17-3431
https://doi.org/10.1158/1078-0432.CCR-17-3431
https://doi.org/10.1016/j.cell.2020.10.036
https://doi.org/10.1200/JCO.2015.62.1268
https://doi.org/10.1016/S1470-2045(18)30570-9
https://doi.org/10.1016/S1470-2045(18)30570-9
https://doi.org/10.3389/fonc.2012.00062
https://doi.org/10.3389/fonc.2012.00062
https://doi.org/10.1016/j.critrevonc.2019.05.001
https://doi.org/10.1016/j.critrevonc.2019.05.001
https://doi.org/10.1038/s41467-020-14381-2
https://doi.org/10.1016/j.ccell.2022.05.005
https://doi.org/10.1038/s41698-017-0017-y
https://doi.org/10.1038/s41698-017-0017-y
https://doi.org/10.1007/PL00000744
http://refhub.elsevier.com/S2666-3791(23)00370-1/sref18
http://refhub.elsevier.com/S2666-3791(23)00370-1/sref18
http://refhub.elsevier.com/S2666-3791(23)00370-1/sref18
https://doi.org/10.3892/ijo.2017.3976
https://doi.org/10.3892/ijo.2017.3976
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1016/j.bbabio.2017.01.012
https://doi.org/10.1016/j.bbabio.2017.01.012
https://doi.org/10.1038/nrm.2016.122.Nuclear
https://doi.org/10.1038/nrm.2016.122.Nuclear
https://doi.org/10.1016/j.lfs.2019.04.039
https://doi.org/10.1038/cddiscovery.2015.63
https://doi.org/10.1128/mcb.24.21.9456-9469.2004
https://doi.org/10.1186/1471-2121-12-17
https://doi.org/10.3390/ijms20102518
https://doi.org/10.3390/ijms20102518
https://doi.org/10.1074/jbc.RA118.003311
https://doi.org/10.1074/jbc.RA118.003311
https://doi.org/10.1038/oncsis.2017.72
https://doi.org/10.1038/s41467-020-16747-y
https://doi.org/10.3390/cancers11030338
https://doi.org/10.1186/s40425-017-0215-8
https://doi.org/10.1016/j.brainresbull.2013.12.006
https://doi.org/10.1136/jitc-2019-000293
https://doi.org/10.1136/jitc-2019-000293
https://doi.org/10.1093/annonc/mdz173
https://doi.org/10.1093/annonc/mdz173


Article
ll

OPEN ACCESS
HER2+ breast cancer in the adaptively randomized I-SPY2 trial. Nat. Com-

mun. 12, 6428. https://doi.org/10.1038/s41467-021-26019-y.

38. Hammond, M.E.H., Hayes, D.F., Dowsett, M., Allred, D.C., Hagerty, K.L.,

Badve, S., Fitzgibbons, P.L., Francis, G., Goldstein, N.S., Hayes, M., et al.

(2010). American society of clinical oncology/college of american pathol-

ogists guideline recommendations for immunohistochemical testing of es-

trogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28,

2784–2795. https://doi.org/10.1200/JCO.2009.25.6529.

39. Brockhoff, G. (2019). Target HER four in breast cancer? Oncotarget 10,

3147–3150. https://doi.org/10.18632/oncotarget.26867.

40. Canfield, K., Li, J., Wilkins, O.M., Morrison, M.M., Ung, M., Wells, W., Wil-

liams, C.R., Liby, K.T., Vullhorst, D., Buonanno, A., et al. (2015). Receptor

tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors

in breast cancer cells. Cell Cycle 14, 648–655. https://doi.org/10.4161/

15384101.2014.994966.

41. Mohd Nafi, S.N., Generali, D., Kramer-Marek, G., Gijsen, M., Strina, C.,

Cappelletti, M., Andreis, D., Haider, S., Li, J.-L., Bridges, E., et al.

(2014). Nuclear HER4 mediates acquired resistance to trastuzumab and

is associated with poor outcome in HER2 positive breast cancer. Oncotar-

get 5, 5934–5949. https://doi.org/10.18632/oncotarget.1904.

42. Reinholz, M.M., Chen, B., Dueck, A.C., Tenner, K., Ballman, K., Riehle, D.,

Jenkins, R.B., Geiger, X.J., McCullough, A.E., and Perez, E.A. (2017).

IGF1R protein expression is not associated with differential benefit to con-

current trastuzumab in early-stage HER2+ breast cancer from the North

Central Cancer Treatment Group (Alliance) adjuvant trastuzumab trial

N9831. Clin. Cancer Res. 23, 4203–4211. https://doi.org/10.1158/1078-

0432.CCR-15-0574.

43. Schmid, P., Salgado, R., Park, Y.H., Muñoz-Couselo, E., Kim, S.B., Sohn,
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Data and code availability
d The mass spectrometry proteomics and phosphoproteomics data used in this study have been deposited to

ProteomeXchange Consortium via the PRIDE repository under the identification code PXD034643.

d This study did not generate original code.

d Any additional information required to reanalyses the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Forty-five patient biopsies of treatment-naive primary breast tumors were obtained from patients enrolled in the TRAIN-2 clinical trial

(NCT01996267)46 and were collected at the Netherlands Cancer Institute between 2013 and 2016. The use of biobank samples for

this study was approved by the institutional review board (IRB) of the Netherlands Cancer Institute under number CFMPB672. All

patients received neo-adjuvant treatment consisting of paclitaxel, carboplatin, TTZ, Ptz (PTC-Ptz). The proteomics study as pre-

sented here was performed on remaining frozen biopsies in the institute’s biobank. After careful consideration, we were able to

include 45 high quality biopsies for proteomics studies. As the current study is primarily explorative in nature we did not perform

a power calculation.

METHOD DETAILS

Biopsy preparation
Patient pre-treatment biopsies were taken with a 14G needle and flash frozen in liquid nitrogen. Biopsies were sliced and approxi-

mately one-third of the material was allocated for this study (ca. 6–12 mg of tissue). Only biopsies with >60% tumor cells were

selected for analysis. Patient information and tumor details can be found in SI Table S1.

Sample lysis and preparation
Tissue lysis was performed in a 1% (w/v) sodium deoxycholate lysis buffer containing 10mM TCEP, 100mM TRIS, 40mM chloroa-

cetamide, and protease inhibitor and phosphatase inhibitor tablet. Tissue slices were homogenized by multiple freeze-thaw cycles

in combination with grinding by pestle in a 1.7mL sample tube in lysis buffer. Samples were then boiled for 5 min at 95�C and son-

icated in a Bioruptor 300 (Diagenode) water bath for 30 min using 30 s cycles. Protein quantification was performed using Bradford

Protein Assay (Bio-Rad) and 150ug of protein per sample was digested overnight with Lys-C (1:75) and trypsin (1:25) at 37�C. Sam-

ples were acidified and desalted using C18 cartridges on the AssayMap BRAVO Platform (Agilent Technologies). The TMT reference

channel was made by pooling 25 mg of peptide from each sample. Samples were dried and resuspended in 50mM HEPES buffer,

randomized, and then labeled with 10-plex TMT reagent (Thermo Scientific) in a 1:2 ratio (peptide: label) for 1.5 h at room temper-

ature. TMT labeling reaction was quenched using a 5% hydroxylamine solution before samples were mixed in equal ratios to

generate 5 complete TMT sets. Pooled samples were then desalted using Sep-Pac C18 cartridges (Waters), and fractionated on

a high-pH reversed-phase C18 column (Kinetex 5u Evo C18 100A, 150 3 2.1mm, Phenomenex) coupled to an Agilent 1100 series

HPLC over a 60 min gradient. Fractions were concatenated to 20 fractions for proteome analysis and further pooled to 10 fractions

for phosphoproteome enrichment. Phosphoproteome samples were enrichened using Fe(III)-IMAC cartridges on the AssayMap

BRAVO platform (Agilent Technologies) following the method described previously.47

LC-MS/MS analysis
Fractionated TMT samples were analyzed by nanoLC-MS/MS on a Q Exactive HF-X mass spectrometer (Thermo Scientific) in-line

with an Agilent 1290HPLC systempossessing a Reprosil pur C18 trap column (100 mm3 2 cm, 3 mm,Dr. Maisch) and a Poroshell 120

EC C18 analytical column (75 mm 3 50 cm, 2.7 mm, Agilent Technologies). Samples were trapped for 5 min at a flow rate of

0.05 mL/min in 100% buffer A (0.1% FA) followed by elution with buffer B (0.1% FA, 80% ACN) at a flowrate of 300 nL/min over

an LC gradient of 65 min (15%–45% B) for proteome fractions and a 95 min gradient (9%–35% B) for phosphoproteome fractions.

MS settings were as follows: full MS scans (375–1500m/z) were acquired at 60,000 resolution with an AGC target of 3e6 charges and

max injection time of 20msec. HCDMS2 spectra were generated for the top 12 precursors using 45,000 resolution, 1e5 AGC target, a

max injection time of 80 msec, a fixed first mass of 120m/z, and a normalised collision energy of 32%. MS2 isolation windows were

0.7 Th for proteome samples and 1.2 Th for phosphoproteome samples.

Western Blot analysis
Tissue lysates containing a total of 40ug proteins were loaded on Criterion XT Gels (Bio-Rad). SDS-PAGE Electrophoresis was per-

formed in XT-MOPS running buffer (Bio-Rad), and afterward, proteins were transferred into Immun-Blot PVDFMembranes (Bio-Rad).

After blocking with 5% skim milk at room temperature for 1 h, membranes were incubated with primary antibodies at 4�C overnight.

The primary antibodies against Estrogen receptor a, Her-2 and b-Actin (Cell Signaling Technology) were diluted 1:1000 with tris-buff-

ered saline containing 1% Tween 20 (TBST). Incubation with secondary horseradish peroxidase-conjugated anti-rabbit antibody
Cell Reports Medicine 4, 101203, October 17, 2023 e2
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(Cell Signaling Technology) in 1:3000 dilution was performed at RT for 1h. The chemiluminescence detection was performed with

Pierce ECL PlusWestern Blotting Substrate (Thermo Fisher Scientific) and detected with Amersham Imager 600 (GEHealthcare, UK).

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing of datasets
Raw data files were processed with Proteome Discover 2.2 (Thermo Scientific) using a Sequest HT search against the Swissprot hu-

man database. Results were filtered using a 1%FDR cut off at the protein and peptide level. TMT fragment ions were quantified using

summed abundanceswith PSMfilters requiring an S/NR 10 and an isolation interference cut off of 35%or 50% (proteome and phos-

phoproteome respectively). Normalised protein and peptide abundanceswere extracted fromPD2.2 and further scaled and analyzed

using Rstudio. Data was normalised by the pooled reference, Log2 transformed and normalised by median subtraction. Phospho-

proteome data was filtered to include only phosphopeptides with a class I phosphosite localization (ptmRS score >0.75). Phospho-

peptides containing identical phosphorylation site localizations with different methionine oxidation sates or peptide missed cleav-

ages were summed together to generate one quantitative value per unique phosphosite. Phosphosites quantified in peptides with

different phosphorylation multiplicity states (i.e., doubly or singly phosphorylated) were not combined together and left as separate

quantified values.

Statistics
To compare three means, a one-way ANOVA test was used (using the aov-function, followed by TukeyHSD-function in Rstudio). To

compare two means, a two-sample T-test was used (using the t.test-function in Rstudio). A p value below 0.05 was regarded as sta-

tistically significant. Correlation analysis was performed by Pearson correlation using cor-function in RStudio. PTM-SEA analysis was

performed using PTMsigDB.48 Pathway enrichment analysis was performed using GSEA49,50 or Metascape using a custom back-

ground of all detected proteins in our MS analysis.51 Heatmaps were generated using pheatmap-function in Rstudio. Data was

z-scored and Euclidean distance was used for clustering. ROC analysis was performed using pROC-function in RStudio, comparing

No pCR and pCR patients only (near pCR patients were removed from the dataset prior to analysis). ROC curves for individual pro-

teins were generated using roc-function, ROC curve of the combination of proteins was generated using multiclass.roc-function.
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