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A B S T R A C T   

The evidence of selective daily mobility bias distorting exposure-health associations is limited. Using 7-day 
smartphone-based global positioning system (GPS) tracking data for 67 Dutch adults aged 25–45, we conduct
ed paired Wilcoxon tests to compare the absolute and relative exposure to food outlets along actual and modelled 
commuting routes. We fitted Tobit regressions to examine their associations with three daily snack and soft drink 
intake outcomes. We found significant differences in absolute food outlet exposure between two types of routes. 
Adjusted regression analyses yielded unexpected associations between dietary intakes and food outlet exposures. 
Our results suggested no evidence of a selective daily mobility bias in the association between the food envi
ronment along commuting routes and adults’ snacks and soft drink consumption in this sample.   

1. Introduction 

The food environment is considered a critical determinant of dietary 
behaviors (Caspi et al., 2012; Herforth and Ahmed, 2015). Unhealthy 
dietary intake characterized by increases in the consumption of 
low-nutrient and energy-dense foods has contributed, in Europe, to the 
increase in the prevalence of overweight from 53% in 2019 (Eurostat, 
2021) to 59% in 2022 (World Health Organization, 2022). This increase 
threatens public health (Ng et al., 2014), calling for a better under
standing of the interactions between the food environment and dietary 
intake. 

Earlier studies have identified two potential mechanisms for how the 
food environment might be associated with dietary intake. One pathway 
relates exposure to food outlets to the direct consumption of food 
products at these food outlets (Mackenbach et al., 2019). At the same 
time, another indirect mechanism presumes that exposure to food out
lets may not lead to immediate dietary behaviors (Van Rongen et al., 

2020). However, there are inconsistent associations between food 
exposure and dietary intake in the evidence for these mechanisms, partly 
due to the inconsistent measurement of food exposure (Bivoltsis et al., 
2018). 

A typical measure of exposure to the food environment is the avail
ability of food outlets within an area (Caspi et al., 2012; Bivoltsis et al., 
2018; Lytle, 2009; McKinnon et al., 2009). Past studies primarily 
measured exposure to food outlets at home locations using different 
contextual units (e.g., administrative units or buffers centered on resi
dential addresses) (Lytle and Sokol, 2017; Poelman et al., 2018). How
ever, such approaches have been criticized for ignoring people’s daily 
mobility outside their homes (Perchoux et al., 2013; Wei et al., 2023) 
and thus likely incorrectly estimating the actual food exposure in peo
ple’s day-to-day lives (Chen and Kwan, 2015). To more accurately depict 
the actual exposure to the food environment, the use of the global 
positioning system (GPS) has been suggested to track people’s daily 
mobility and their food exposure along actual travel routes accurately 
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and in fine spatial and temporal resolution (Clary et al., 2017); however, 
previously such an approach has rarely been realized in food environ
ment studies (Cetateanu and Jones, 2016; Liu et al., 2020; Wang and 
Kwan, 2018). 

Concerns about using GPS data for causal statements on health 
outcomes have mounted, which is articulated as the ‘selective daily 
mobility bias’ (SDMB) (Chaix et al., 2013). The SDMB refers to the sit
uation in which people are more exposed to a certain environment due 
to making conscious decisions to conduct specific activities (Plue et al., 
2020). While GPS records capture people’s actual food exposure accu
rately, it remains largely unclear whether people are actively or 
passively exposed to the food environment (Plue et al., 2020). Active 
exposure is when exposure to a specific environment is attributable to 
individuals’ intention to visit such locations (Chaix et al., 2013). This 
may lead to SDMB because the exposure also reflects intentional 
behavior in addition to objective exposure. Consequently, the observed 
exposure-health associations could potentially be erroneous as they can 
be the relationships between intentional behavior and the outcomes. 
One methodological choice that may induce a SDMB is using 
GPS-tracked routes instead of modelled shortest routes based on 
geographic information systems (GIS), which possibly mis-estimate 
exposure to food environments (Chaix et al., 2013). For example, in
dividuals’ possible purposeful travel route choices (e.g., preference for 
consuming fast food) might change their food exposure (e.g., to a 
particular fast food retailer). Such differences in route choice might 
increase exposure to the fast food environment. In turn, the food 
consumption-exposure to the fast food environment association might 
(wrongly) appear positive. However, as speculated by Zenk et al. (2011), 
the results of such observed associations are possibly overestimated due 
to the SDMB. 

Although some studies have emphasized the potential influence of 
SDMB on environment-health associations (Cetateanu and Jones, 2016; 
Zenk et al., 2011; Kestens et al., 2012), only a few have empirically 
tested its existence (Burgoine et al., 2015; Klein et al., 2021). For 
example, Burgoine et al. (2015) examined the relationships between 
body mass index and fast food exposure along children’s actual and 
shortest commuting routes. However, they found that using actual route 
exposure did not confound the exposure-body mass index associations. 
By contrast, Klein et al. (2021) tested the associations between envi
ronmental exposures along older adults’ actual and shortest 
non-commuting routes and their detour behaviors. Their findings sug
gested a potential SDMB that people tend to choose travel-friendly 
environments. 

However, these conflicting findings were based on population groups 
(i.e., children or older adults) with limited mobility. Children have 
restricted daily mobility as they are under the regulation and supervi
sion of adults (Christensen et al., 2011). Their choices of school 
commuting routes, both to and from, are also determined by parents 
(Oluyomi et al., 2014). Similarly, the elderly often experience daily 
mobility impairment (Webber et al., 2010). By contrast, adults are 
autonomous and typically visit several activity locations along their 
daily commuting routes (Wei et al., 2023; Noland and Thomas, 2007; Ye 
et al., 2007). Consequently, the possibility of actively making choices to 
visit specific activity locations is greater among adults than any other 
age group, rendering them an ideal population group to examine 
possible SDMB. 

To bridge the knowledge gap, we aimed to examine whether SDMB 
influences the associations between food outlet exposure to snacks and 
soft drinks along the commuting route and small snack intake, large 
snack intake, and soft drinks intake among young Dutch adults. First, we 
compared the differences in food outlet exposure based on GPS-tracked 
and GIS-modelled commuting routes. Second, we assessed the associa
tions of captured food outlet exposure and dietary intakes between GPS- 
tracked and GIS-modelled commuting routes. Our first hypothesis was 
that the GPS-tracked routes had greater food outlet exposure than the 
GIS-modelled routes because we expect individuals to detour for snacks 

and soft drinks and thus have higher exposures. Second, we hypothe
sized that food outlet exposure was positively associated with dietary 
intakes, and the exposure along GPS-tracked routes more strongly 
associated with dietary intakes than modelled routes. If individuals 
detour because of their dietary preference for snacks and soft drinks, the 
associations between exposure and dietary intakes should be stronger on 
the route they actually undertook than the modelled route. 

2. Materials and methods 

2.1. Study design and participants 

We conducted a cross-sectional analysis in the Netherlands as a part 
of the FoodTrack study (Poelman et al., 2020). In short, the FoodTrack 
study examines people’s exposure to the food environment and its 
relation to their food choices. Eligible criteria for participation in the 
FoodTrack study were: 1) being between 25 and 45 years of age; 2) 
living in an urban area; 3) not being a full-time student; 4) owning a 
smartphone; 5) being free from physical disabilities, not having a gastric 
bypass, not having an eating disorder, not using a medicine that affects 
appetite, and not being on a prescribed diet. Between March and July 
2018, adults (N = 648) were recruited via offline and online platforms 
(e.g., newspapers and Facebook). Respondents were asked to complete 
an online application form. 

Participants who did not meet the eligibility criteria (N = 414) were 
discarded at this data collection stage. The remaining participants (N =
234) provided informed consent before completing an online baseline 
questionnaire on socio-demographics and some related dietary ques
tions. In total, 143 participants were included and tracked with their 
GPS-enabled smartphones over 7 days, yielding a response rate of 
58.8%. The study design was approved by the ethical committee of the 
Faculty of Social Sciences at Utrecht University (FETC18-014). 

2.2. GPS data collection and preprocessing 

After baseline questionnaire completion, participants received a text 
message including a link for downloading the FoodTrack smartphone 
app developed by Locatinent, the commercial company, from the App 
Store or Google Play (Broll et al., 2012). Another email provided the 
smartphone app log-in information and a randomly assigned tracking 
start day (i.e., Monday to Sunday). After a user granted in-app permis
sion to monitor locational data, the app ran in the background. 
GPS-based location information was recorded every 30s, a typical 
sampling interval used in previous studies (Zenk et al., 2011; Tamura 
et al., 2018). When the device was stationary (i.e., a phone displacement 
less than <150 m), the location was recorded once per minute. If a 
displacement of >150 m relative to the prior location was detected, the 
app continued to record the locational data. If there was no displace
ment for 8 min, a trip session ended. The recorded trip data were 
transferred to a backend server at Locatinent for further processing (Bie 
et al., 2012). The transport mode of each trip (i.e., foot, bike, car, 
bus/tram, or train) was inferred based on trip characteristics (i.e., 
average, standard deviation, 95% quantile of speed, acceleration, and 
heading) using the C5.0 decision tree-based classifier (Kuhn and Quin
lan, 2018). 

2.3. Deriving commute routes 

2.3.1. GPS-tracked routes 
To derive daily commute routes, we initially excluded unemployed 

participants (N = 9) from the 143 study participants (Fig. 1). For the 
rest, we estimated their home and workplace locations based on GPS 
data as these details were not collected. We assumed that people spent 
most of their daily time (i.e., dwell time) in the first place at home and in 
second place at work (Chen et al., 2014). We also assumed that a min
imum of two daily trips must be recorded between estimated home and 
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work locations. We were unable to determine work and home locations 
for participants who travelled outside the Netherlands (N = 4) and for 
those with GPS data quality issues such as missing locational data (N =
63). For the other participants, the GPS-tracked trips from home to work 
(and vice versa) were determined. Trips were matched with the 2018 
road network extracted from OpenStreetMap using the Leuven.Map
Matching (Meert and Verbeke, 2018) and OSMnx (Boeing, 2017) 
packages, available in Python 3.9.7. 

2.3.2. Shortest path-based routes 
Based on the common assumption that individuals seek to minimize 

daily commuting (Nuhn and Timpf, 2022; Rodríguez and Joo, 2004), we 
computed the shortest path between home and work for each travel 
mode during the tracking period (Dalton et al., 2015). We applied the 
following rules for modeling the mode-specific trips. All road network 
segments that pedestrians could traverse (except private roads and 
highways) were included for walking trips. For cycling and car trips, 
bicycle and car route networks were used. For public transport-based 
trips (i.e., train, bus, and tram), the shortest path route was computed 
in two steps. First, we considered the shortest train/bus/tram trip be
tween the nearest stops to home and work because data on the exact 
routes in operation were not available. Second, the shortest path routes 
for the rest of the trips (i.e., between home/work and stops) were 
computed. The analysis was performed using OSMnx packages (Boeing, 
2017). We reclassified the trips into active travel trips (i.e., walking, 
cycling), car trips, and public transport trips (i.e., train/bus/tram). 

2.3.3. Trip characteristics 
Two trip characteristics were determined to compare the GPS- 

tracked routes and the shortest path routes guided by earlier studies 
(Burgoine et al., 2015; Klein et al., 2021; Dalton et al., 2015). Route 
length (in km) was measured by the origin-destination distance along 
the road network. Detour percentage captured the difference in length 
between observed and modelled routes divided by the modelled route 
length. Both measures were computed for each commuting trip. 

2.4. Food exposure 

Food exposures were assessed based on food retailer data from 2018 
obtained from Locatus, a commercial company that collects food re
tailers’ information (e.g., location, size, and type) in the Netherlands. A 
field audit validated the data’s geocoding and food type classification 
accuracy and found it to be ‘good’ to ‘excellent’ (Canalia et al., 2020). 
Guided by Mackenbach et al. (2022), we considered all supermarkets, 
bakeries, mini-markets (e.g., small grocery stores, convenience stores), 
gas stations, Toko (ethnic stores), sweet stores, and coffee/tea as food 
outlets where people could obtain snacks and soft drinks. We assessed 
food outlet exposures using 100 m Euclidean trip buffers, which is seen 
as an appropriate buffer size for capturing route-based characteristics 
(Panter et al., 2010), and 250 m Euclidean trip buffers for comparison. 
Similar buffer sizes have been used previously (Burgoine et al., 2015; 
Klein et al., 2021; Kestens et al., 2018; Seto et al., 2016). We adopted the 
following two measures to capture food outlet exposure: 1) The number 
of food outlets within the buffers (i.e., an absolute measure), and 2) the 
percentage of our target food outlets relative to the total number of all 
types of available food outlets (e.g., supermarkets, restaurants, café) 
within the buffers (i.e., a relative measure) (Mason et al., 2013; Clary 
et al., 2015). We determined the mean value of food outlet exposures 
over all measured trips for each participant as the participant’s exposure 
level. 

2.5. Environmental exposures 

Commuting route choices, for other than personal purposes, could be 
conditioned by many factors related to the natural and built environ
ments (Basu et al., 2021; Ye et al., 2007). As a result, such factors might 
steer commuters away from the shortest route (Zhu and Levinson, 
2015). Thus, it was necessary to characterize route characteristics to 
understand people’s route choices. We assessed three typical environ
mental exposures within 100 m and 250 m buffers (Klein et al., 2021; 
Böcker et al., 2017; Krenn et al., 2014). 

Green space was assessed using the Normalized Difference Vegeta
tion Index (NDVI) (Tucker, 1979) applied to route-based buffers. We 

Fig. 1. Flowchart of participants of the FoodTrack study included in the Selective Daily Mobility Bias analyses.  
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computed the NDVI with a 30 m spatial resolution using Landsat-8 im
agery captured between May and September 2018. Images with cloud 
coverage >40% and pixels with cloud scores >25 were disregarded. 
NDVI values range from − 1 to 1, with greater positive values indicating 
more vegetative cover. To avoid distortions of the results, pixels with 
negative values were masked before averaging the NDVI values for each 
buffer, as negative values represent areas covered by water. 

Address density was calculated by dividing the number of buildings 
within the buffers by the buffer area. Building information for 2018 was 
extracted from the ‘Addresses and Building Register’ maintained by the 
Dutch land register. 

Street connectivity refers to the design of the road network. We 
included all intersections within the buffers. Road network nodes were 
mapped from the 2018 TOP10NL topographical dataset. The greater the 
number of intersections, the better connected (and thus accessible) 
street segments were considered to be. 

2.6. Average snack and soft drink consumption outcome 

We included the consumption of three types of products as outcome 
variables in our analysis, namely daily soft drink consumption, daily 
small snack consumption, and daily large snack consumption. Soft 
drinks included all types of fruit juice (fresh or packaged), soft drinks, 
soda, and lemonade with sugar, except for ‘light’ variants, which did not 
contain sugar. ‘Small snacks’ were exemplified by a few licorice pieces 
or wine gums, a piece of chocolate, a small biscuit, a handful of crisps or 
other snacks, or a ‘bitterbal’ (typical Dutch fried snack). ‘Large snacks’ 
were exemplified by a large biscuit, a chocolate bar, a slice of cake, or a 
bag of crisps. Single servings were defined as 200 mL for soft drinks, one 
or two pieces or handfuls for small snacks, and one piece for large 
snacks. 

For each dietary outcome, the baseline questionnaire included a 
question on the frequency and quantity of consumption (e.g., for small 
snacks: ’How many days a week do you usually eat small snacks?’). 
Frequency of consumption was measured on a 9-point Likert scale with 
values ranging from: 0 = ‘(almost) never’, 0.5 = ‘1–3 days per month’, 1 
= ‘1 day a week’, 2 = ‘2 days a week’, 3 = ‘3 days a week’, 4 = ‘4 days a 
week’, 5 = ‘5 days a week’, 6 = ‘6 days a week’, and 7 = ‘everyday’. 
Response options for the quantity of consumption items were 0.5 = ‘less 
than 1 serving’, 1 = ‘1 serving’, 2 = ‘2 servings’, 3 = ‘3 servings’, 4 = ‘4 
servings’, 5 = ‘5 servings’, and 6 = ‘more than 5 servings’. We multiplied 
the response values for both questions and divided them by 7 to estimate 
the respondent’s daily consumption of soft drinks, small snacks, and 
large snacks (Mujcic and Oswald, 2016). The outcomes were 
self-reported prior to the GPS data collection and they represented 
participants’ typical daily consumption of snacks and soft drinks. 

2.7. Statistical analyses 

The analytical sample consisted of 67 participants with 488 
commuting trips. Descriptive statistics, including the median and the 
first (Q1) and third (Q3) quartiles, were used to summarize the trip 
characteristics, environmental exposures, and food outlet exposures 
along the GPS-tracked and shortest-path routes. Paired Wilcoxon signed- 
rank tests examined food outlet exposures and environmental exposures 
along the two routes. Wilcoxon rank sum tests were used to test the 
statistical differences in dietary intakes between the whole and retained 
sample and trip characteristics between active travel trips (i.e., walking 
and cycling), car trips, and public transport trips (i.e., train/bus/tram). 

Regression analyses were performed at the individual level as the 
daily dietary intake variables were person-based. Since these outcome 
variables were interval censored (i.e., the response had to be between 
0 and 6), we employed covariate-adjusted Tobit regression models to 
assess the associations between each daily dietary intake outcome and 
food outlet exposures along observed and modelled routes. Based on the 
baseline survey, models adjusted for age (in years), sex (male, female), 

education level (low [up to lower secondary education], medium [up to 
upper secondary education], high [university education and above]), 
marital status (married, never been married, unmarried), monthly 
household income (low [<€2000], medium [€2000 - €4000], high 
[>€4000]), and household type ((un)married cohabitation without 
child (ren), (un)married cohabitation with child (ren), single without 
child (ren), single with child (ren), others). We did not include ethnic 
origin because 97% of our participants were Dutch. There were no 
missing values in these demographic variables. The analyses were con
ducted using the R software, version 4.1.2 (R Core Team. R, 2021). 

3. Results 

3.1. Sample characteristics 

Participants, on average, had 7.3 (standard deviation (SD) ± 3.4) 
commuting trips per week and spent 10 h (SD ± 6.0) at home and 6.2 h 
(SD ± 4.5) at work locations. Table 1 provides descriptive statistics of 
the participants. Respondents were predominantly females (85.1%). 
Their mean age was 32.8 ± 6.2 years, 79.1% had never been married, 
and 76.1% were highly educated. Most participants consumed slightly 
more servings of small snacks than soft drinks and large snacks, with 
small snacks intake exhibiting a greater variation among participants 
than other products. Wilcoxon tests showed no statistically significant 
differences in daily intakes (p = 0.64 for sugary drinks, p = 0.59 for small 
snacks, and p = 0.87 for large snacks) between the entire (N = 143) and 
the retained sample (N = 67). 

Fig. 2 compares food outlet exposures along GPS-tracked and 
shortest path routes. Median absolute food outlet exposures were higher 
for 250 m buffers than for 100 m buffers. Compared to the shortest path 
route, median absolute food outlet exposures along the GPS-tracked 
route were significantly lower (p < 0.01 for 100 m buffers; p < 0.05 
for 250 m buffers). Regardless of the buffer sizes, relative food outlet 
exposures along the two routes showed no statistically significant 
differences. 

Table 1 
Characteristics of the FoodTrack study participants included in selective daily 
mobility bias analyses (N = 67).  

Category n (%)/mean (SD) 

Number of trips 7.3 (3.4) 
Age (years) 32.8 (6.2) 
Sex: 

Male 10 (14.9%) 
Female 57 (85.1%) 

Education level: 
Low 2 (3.0%) 
Medium 14 (20.9%) 
High 51 (76.1%) 

Marital status: 
Married 11 (16.4%) 
Never been married 53 (79.1%) 
Unmarried 3 (4.5%) 

Household income: 
Low (<€2000) 14 (20.9%) 
Medium (€2000-€4000) 31 (46.3%) 
High (>€4000) 22 (32.8%) 

Household type: 
(Un)married cohabitation, without child (ren) 22 (32.8%) 
(Un)married cohabitation, with child (ren) 16 (23.9%) 
Single, without child (ren) 23 (34.3%) 
Single, with child (ren) 2 (3.0%) 
Others 4 (6.0%) 

Daily dietary habits (glasses/day, servings/day) 
Soft drinks intake (Median (Q1, Q3)) 0.1 (0, 0.4) 
Small snacks intake (Median (Q1, Q3)) 1.7 (0.7, 2.6) 
Large snacks intake (Median (Q1, Q3)) 0.3 (0.1, 0.4)  

L. Wei et al.                                                                                                                                                                                                                                      



Health and Place 83 (2023) 103088

5

3.2. Characteristics of the commute trips and food exposures 

Table 2 summarizes the descriptive statistics of the commute trips. 
Median GPS-tracked trip lengths, at 8.3 km, were longer than the me
dian shortest path routes at 6.6 km. The median detour percentage from 
the shortest path route was 9.1%. Trip characteristics significantly 
differed between travel modes. Active travel trips were significantly 
shorter than other trips, while public transport trips had the longest 
length but with the least detour percentage. 

All GPS-tracked commute trips had environmental exposures that 
differed significantly from those on the shortest path routes (see Sup
plementary Tables S1 and S2). GPS-tracked routes of all travel had more 
green space and lower exposure to building density than the shortest 
path route. Moreover, less connectivity (i.e., fewer intersections) was 
observed for active travels on the GPS-tracked route compared to the 
shortest path. 

The absolute and relative measures of food outlet exposure along the 
GPS-tracked versus shortest-path routes were compared for active 
travels, car trips and public transport trips (Fig. 3). For car trips, median 
absolute food outlet exposures on the shortest-path routes were always 
significantly higher than on the GPS-tracked routes. There were small 
but significant differences in median absolute food outlet exposures for 
active travel. Unlike in the case of active travel, the relative food outlet 
exposures on the GPS-tracked versus shortest path routes were not sta
tistically different for car trips within the 100 m and 250 m buffers. 
Results for public transport trips were mixed. 

3.3. Associations between food exposure and average consumption of 
snacks and soft drinks 

Fig. 4 summarizes the associations between the absolute and relative 
food outlet exposure along the GPS-tracked routes and shortest path 
routes across buffer sizes and average consumption of soft drinks, small 
snacks, and large snacks. Full numeric results are provided in Supple
mentary Tables S3–S5. All food outlet exposures based on the shortest 
path route were insignificantly associated with any daily dietary intakes 
and so do the absolute measure of food outlet exposure along all routes. 
However, the relative measure of food outlet exposure along the GPS- 
tracked routes within the 100 m and 250 m buffers was significantly 
associated with soft drink intake. In other words, participants with 
higher food outlet exposures consumed fewer soft drinks. 

4. Discussion 

4.1. Main findings 

We investigated whether SDMB may affect the associations between 
food outlet exposure and average daily small snack intake, large snack 
intake, and soft drink intake among Dutch adults. Our findings did not 
provide evidence of SDMB in the food environment-food intake rela
tionship along commuting routes in the Netherlands. Although people 
commonly deviated from the shortest commuting route, purchasing 

Fig. 2. Differences in individual-level food outlet exposures along GPS-tracked routes and shortest path routes across 100 m and 250 m buffers in the FoodTrack 
study (N = 69). Mean differences were statistically tested by means of paired Wilcoxon signed rank tests. 

Table 2 
Descriptive statistics of trip characteristics for active travel trips (N = 242), car 
trips (N = 196), public transport trips (N = 50), and pooled (N = 488) in the 
FoodTrack study. Mean differences between active travel trips, car trips, and 
public transport trips were statistically tested by means of Wilcoxon rank sum 
tests and were all significant (p < 0.01).  

Characteristics GPS-tracked 
route 

Shortest path 
route 

Length (km) 
Active travel trips (Median (Q1, Q3)) 5.6 (2.9, 7.9) 5.1 (2.5, 6.4) 
Car trips (Median (Q1, Q3)) 15.0 (7.5, 33.8) 9.3 (6.5, 31.6) 
Public transport trips (Median (Q1, 
Q3)) 

39.3 (18.2, 43.1) 39.0 (18.3, 41.1) 

All trips (Median (Q1, Q3)) 8.3 (5.3, 19.7) 6.6 (4.5, 17.7) 
Detour (%) 

Active travel trips (Median (Q1, Q3)) 6.9 (2.2, 15.5)  
Car trips (Median (Q1, Q3)) 15.6 (7.8, 31.6)  
Public transport trips (Median (Q1, 
Q3)) 

1.1 (0.3, 3.6)  

All trips (Median (Q1, Q3)) 9.1 (2.5, 22.5)   
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snacks and soft drinks appeared not to be the cause. 
We found that trip characteristics and environmental exposures 

differed between traveling actively, by car and by public transport. 
People making car trips typically travelled along routes with lower 
building density, while active travellers tended to choose routes with 
less street connectivity. In contrast to our first hypothesis, the absolute 
food outlet exposures based on the GPS-tracked routes were significantly 
lower than those along the shortest paths. No statistical differences were 
observed regarding relative food outlet exposures between the two 
routes. Therefore, our results tentatively suggest that the shortest path 
between activity locations may accurately approximates people’s 
exposure on their actual routes when using the relative measure of 
exposure to food outlets. However, these findings varied across travel 

modes. The differences in absolute food outlet exposures between the 
GPS-tracked and the shortest path routes were higher for car trips than 
active travel. We found null associations between all dietary outcomes 
and all measures of food outlet exposures along the shortest path route. 
Only soft drink intake was observed to be significantly associated with 
relative food outlet exposures on the GPS-tracked routes. These negative 
associations were unexpected and ran counter to our second hypothesis. 

4.2. Different aspects of the food environment along commuting routes 

Our findings showed that, on average, GPS-tracked routes were 30% 
longer (median = 9.1%) than the shortest paths in terms of all travel, 
which replicated earlier findings from Luxembourg (21%) (Klein et al., 

Fig. 3. Differences in trip-level food outlet exposures along GPS-tracked and shortest path routes for active travel trips (N = 242), car trips (N = 196) and public 
transport trips (N = 50) in the FoodTrack study. Mean differences were statistically tested by paired Wilcoxon signed-rank tests. 
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2021) and Cambridge (UK; 27%) (Dalton et al., 2015). Commuters chose 
routes with more green space and greater street connectivity over all 
travel modes. Our results on trip characteristics and environmental 
exposure along travelled routes corroborated evidence from previous 
studies (Klein et al., 2021; Krenn et al., 2014). 

We found that the absolute food outlet exposure on GPS-tracked 
routes was significantly lower than that of shortest path routes for 
active travel and car trips, as reported in earlier studies (Burgoine et al., 
2015; Dalton et al., 2015). The active travel routes had higher building 
density, featuring more food outlets. Although people could make de
tours, absolute food outlet exposures were similar at the trip level. 
However, GPS-tracked routes of car trips might bypass highly urbanized 
inner-cities compared to the shortest path routes, due to the preference 
for more travel-friendly (e.g., faster and less congested) environments 
(Klein et al., 2021). Consequently, the absolute numbers of food outlets 
on GPS-tracked routes were lower than along the shortest paths. 
Considering people drive longer distances than actively travel, the dif
ference in the absolute food outlet exposure between different routes for 
car trips can be larger than active travel trips. Besides, the mixed results 
for public transport trips could be attributed to the fact that people have 
less freedom to choose routes, thus, the results only reflected the food
scape along certain public transit routes. 

No significant differences were observed regarding relative food 
outlet exposures at the individual level. Relative food outlet exposures 
reflected the availability of competing food outlets within the buffer. 
These co-located food outlets could be attributed to the small size of 
Dutch cities and the consequent high density of food outlets within the 
urban areas. Another factor is that food outlets often congregate at lo
cations with the greatest potential client density. However, it should be 
noted that shorter trips within Dutch cities engender significant differ
ences in the relative food environment compared to longer trips or trips 
including detours through urban areas. 

4.3. Selective daily mobility bias in the food environment 

Corresponding to previous studies (Roy et al., 2019; Shareck et al., 
2018), we found null associations between small and large snack intake 
and all food outlet exposures on two routes. However, we unexpectedly 
observed negative associations between relative food outlet exposure 
along 100 m and 250 m buffered GPS-tracked routes and average daily 
soft drink intake. Possible reasons for this finding could be three-fold. 
First, the food outlet exposure might not include some potential loca
tions where people could obtain soft drinks. Although we included the 

most important locations for purchasing snacks, we could not exclude 
the possibility that other avenues for obtaining snacks, such as vending 
machines, online purchases, or snacks or drinks received from family/
friends, could have been impossible to acquire or unsuccessfully geo
coded (Mackenbach et al., 2022). Nevertheless, the geocoded food 
outlets we used in this study were field confirmed to be accurate and 
reliable for food studies. Second, participants might have responded 
differently to the survey questions due to different levels of knowledge 
of soft drinks (Rampersaud et al., 2014). For example, the perception of 
whether diet soft drinks (e.g., Diet Coke and Diet Pepsi) are sugary is 
mixed (Rampersaud et al., 2014). Consequently, the reported con
sumption of soft drinks could differ between participants. Third, this 
population group could be less interested in consuming soft drinks, 
which was reflected by the low level of soft drink intake. Therefore, our 
observed counterintuitive association may be accidental. 

Consistent with Burgoine et al. (2015), we found no evidence of a 
SDMB in the food environment regarding snacks and soft drinks along 
commuting routes in this sample. People tended not to make detours for 
the purpose of obtaining snacks or soft drinks. As a result, it is unlikely 
that utilizing GPS-tracked commuting routes in snacks and soft drinks 
related food studies will result in SDMB. We note, however, that col
lecting GPS data for large populations is typically less practicable for 
many reasons, including high cost and many participants’ reluctance to 
be tracked. Therefore, surveys recording people’s activity locations 
remain popular as alternative data sources (Burgoine and Monsivais, 
2013; Burgoine et al., 2014; Mackenbach et al., 2023). When using 
survey data, the travel routes between activity locations can only be 
simulated using the shortest path routes (Burgoine et al., 2014). 
Although our study showed that compared to the GPS-tracked route, the 
absolute food outlet exposure along the shortest path routes was 
significantly higher, the relative exposure was similar on both routes. 
Thus, measurement of the relative exposure to food outlets on shortest 
path routes might provide adequately accurate estimates of the relative 
exposure participants would experience on potential actual GPS-tracked 
routes. Despite ongoing debates on the effectiveness of such relative 
measures (Shareck et al., 2018; Burgoine et al., 2018; Thornton et al., 
2020), applying a relative measure of food outlet exposure could pro
vide a new lens for understanding the food environment. It is worth 
noting that the relative measure should also be tested in other envi
ronmental settings (i.e., other countries or target food outlets). Different 
foodscapes or food outlet distributions could potentially significantly 
influence the usage of relative measures. 

Our finding that a SDMB might not exist only applies to studies on 

Fig. 4. Regression coefficients (i.e., servings per day) and 95% confidence intervals (CIs) for the absolute and relative food outlet exposures along the GPS-tracked 
route and shortest path routes associated with daily average soft drinks, small snacks, and large snacks intakes across 100 m and 250 m buffers in the FoodTrack study 
(N = 67). Model was adjusted for age, sex, education level, marital status, monthly household income, and household type. 
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the food environment of snacks and soft drinks during commuting. 
Previous studies have confirmed SDMB for other exposure-outcome re
lationships (e.g., sports practices and accessibility to sports facilities) 
when people actively visit locations (Perchoux et al., 2016; Shrestha 
et al., 2019). However, the food environment appears not to encourage 
people to make snack-related detours, whereas environmental exposures 
do induce detour-making behavior (Klein et al., 2021; Dalton et al., 
2015; Krenn et al., 2014). Since these two environments are intertwined, 
disentangling their interaction is the key to a better future understand
ing of SDMB-related effects. First, though many transport studies have 
revealed individuals’ preference for route choices (Noland and Thomas, 
2007; Kestens et al., 2018; Verhoeven et al., 2018), how people weigh 
route characteristics (e.g., safety, less congestion) and the motivation to 
purchase food remains unknown. In our sample, participants’ preference 
for commuting routes’ environmental characteristics might outweigh 
the motivation to purchase snacks or soft drinks, and thus our results 
didn’t provide evidence of a SDMB. However, other types of food outlets 
may have a stronger attraction to people over the route characteristics 
and may lead them to detour. A possible way to unravel such an 
attraction could be done by comparing the route when people actually 
purchase food and the most frequently used commuting route. A 
commuting route a person used most frequently could be a reflection of 
people’s trade-offs between route environmental characteristics and 
available food outlets along the route. Those trips deviating from the 
most frequent commuting route could explain why people detour. 
However, it should be noted that such analysis requires a more nuanced 
study design (e.g., using measures of food consumption or purchases at 
the trip level), additional information on individuals’ motivation of 
route choices, a larger sample size, and longer tracking duration. Sec
ond, our study was only limited to commuting and excluded other trip 
purposes (e.g., shopping, leisure). People may have more freedom and 
willingness to detour for purposes in such a non-commuting travel 
environment than the highly repetitive and routinely commuting trips. 

4.4. Strengths and limitations 

This study was among the first to examine the influence of SDMB in 
the food environment using new free-living mobility data by focusing 
specifically on the consumption of snacks and beverages. We broke new 
ground by depicting the food environment along commuting routes from 
the food environment’s absolute and relative perspectives, which pro
vided a more comprehensive understanding of how SDMB might influ
ence food exposure. Moreover, this study linked exposure to food outlets 
to people’s average daily food consumption, which might provide a 
closer causal relationship between exposure and food consumption 
versus the exposure-body mass index relationship (Burgoine et al., 
2015). 

This study also had some limitations. First, as already criticized by a 
review (Cetateanu and Jones, 2016), we used a relatively small sample 
with primarily female participants. Consequently, our results may likely 
not apply to other population groups, and replications in larger or more 
representative population groups are needed. Second, since our re
spondents primarily resided in urban areas, signal reception might have 
affected the GPS data quality (e.g., dense tree canopy and tall buildings). 
Some commuting trips could be missed, potentially impacting exposure 
assessments. However, this impact was likely negligible due to the 
Netherlands’ paucity of high-rise urban canyons. Third, home and work 
locations were estimated from the GPS data, which may face some 
displacement errors. However, given the smartphone’s GPS accuracy 
(Merry and Bettinger, 2019), the influence of such displacement is 
supposed to be minor. Fourth, the baseline questionnaire on re
spondents’ dietary intakes was a crude measure collected prior to the 
GPS tracking. Such a temporal mismatch between exposure and 
outcome could potentially affect the associations between daily intake of 
soft drinks and food outlet exposure. However, the food frequency 
questionnaire has been shown to be a valid tool to estimate the 

frequency of or portion size of dietary intake over a period of time 
(Willett, 2012; Kim and Holowaty, 2003). Besides, given the fact that 
commuting is a habitual and repetitive behavior in people’s daily life 
(Deng et al., 2023), GPS-tracked commuting routes could be represen
tative and less subject to change compared to other daily trips to some 
extent. Therefore, the influence of the temporal mismatch could be 
limited. Finally, participants in our study were not recruited via random 
sampling but via online and offline platforms. Although recruitment 
through these platforms has shown good performance in sample repre
sentativeness and effectiveness in sample size (Blom et al., 2017; Loxton 
et al., 2015), certain groups of people were likely excluded. 

5. Conclusions 

Our study showed no evidence of a SDMB in the relationship between 
exposure to food retailers regarding snack and soft drinks along 
commuting routes and snacks and beverage consumption in this sample. 
The relative exposure to food outlets on the shortest path routes was 
sufficiently similar to that on GPS-tracked routes to allow for shortest 
path route data to act as a potentially surrogate for GPS-tracked route 
data. It should be noted that our findings might be limitedly generaliz
able to other food environment and were based on a small but nuanced 
dataset. 
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