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ABSTRACT
The gut microbiota evolves rapidly after birth, responding dynamically to environmental factors and 
playing a key role in short- and long-term health. Lifestyle and rurality have been shown to contribute 
to differences in the gut microbiome, including Bifidobacterium levels, between infants. We studied the 
composition, function and variability of the gut microbiomes of 6- to 11-month-old Kenyan infants 
(n = 105). Shotgun metagenomics showed Bifidobacterium longum to be the dominant species. 
A pangenomic analysis of B. longum in gut metagenomes revealed a high prevalence of B. longum 
subsp. infantis (B. infantis) in Kenyan infants (80%), and possible co-existence of this subspecies with 
B. longum subsp. longum. Stratification of the gut microbiome into community (GMC) types revealed 
differences in composition and functional features. GMC types with a higher prevalence of B. infantis 
and abundance of B. breve also had a lower pH and a lower abundance of genes encoding pathogenic 
features. An analysis of human milk oligosaccharides (HMOs) classified the human milk (HM) samples 
into four groups defined on the basis of secretor and Lewis polymorphisms revealed a higher 
prevalence of HM group III (Se+, Le-) (22%) than in most previously studied populations, with an 
enrichment in 2′-fucosyllactose. Our results show that the gut microbiome of partially breastfed Kenyan 
infants over the age of six months is enriched in bacteria from the Bifidobacterium community, 
including B. infantis, and that the high prevalence of a specific HM group may indicate a specific HMO- 
gut microbiome association. This study sheds light on gut microbiome variation in an understudied 
population with limited exposure to modern microbiome-altering factors.
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Introduction

The gut microbiota evolves rapidly after birth in 
response to host and environmental factors. Its com-
position and function affect short- and long-term 
health.1 Increasing numbers of studies monitoring 
the dynamics of gut microbiota establishment and 
maturation during the first few years of life and their 
effects on health and disease across populations are 
revealing both common global patterns of gut 
microbiota development,2,3 and distinctive 
features.4,5 The gut microbiome of infants living in 
rural areas and with low rates of immune disorders 
has consistently been shown to be enriched in 
Bifidobacterium, and, specifically, in B. longum 
subsp. infantis (B. infantis)6–10 relative to that of 

infants living in more urbanized or industrial 
settings.8,10–12 These findings were recently borne 
out by a global meta-analysis of 1900 fecal samples 
from healthy infants from 18 populations with dif-
ferent lifestyles.13 There are growing clinical evi-
dence to support an association between low levels 
of Bifidobacterium and the prevalence of chronic 
and autoimmune diseases (reviewed by)14 and sys-
temic inflammation.15 In resource-poor countries, 
infants are exposed to different environmental fac-
tors, the rate of vaginal delivery is higher and infants 
are breastfed for longer periods. Human milk (HM) 
has multiple nutritional and immunological benefits 
and is associated with both short- and long-term 
health benefits, and with a lower risk of developing 
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several chronic diseases later in life (reviewed by).16 

HM contains various bioactive compounds, includ-
ing secretory IgA, antimicrobial factors, and human 
milk oligosaccharides (HMOs), which can be meta-
bolized by various gut bacteria, including 
Bifidobacterium in particular (reviewed by).17 The 
HMO profile of HM is highly variable and affected 
by multiple factors, including geographic location, 
lactation stage, and genetics.18 Genetic factors make 
the largest contribution to the high variability of 
HMO profile, which depends on the maternal 
Secretor (Se) and Lewis (Le) genes. Mothers with 
a functional α-1-2-fucosyltransferase (FUT2) are 
described as having the secretor phenotype. They 
produce milk that contains HMOs, with residual 
amounts of α-1-2-fucose (reviewed elsewhere).19,20 

Most mothers in diverse populations have the secre-
tor phenotype.21 The reported association between 
secretor status and the infant gut microbiome varies 
between studies.22–28 Mothers with a functional 
α1-3/4-fucosyltransferase gene (FUT3) are referred 
to as “Lewis-positive”.18 FUT2/FUT3 polymorph-
isms result in four different milk groups: HM 
group I (Se+,Le+), HM group II (Se–, Le+), HM 
group III (Se+, Le–), and HM group IV (Se–, Le–), 
with HM groups I and II typically accounting for > 
80% of mothers across different populations 
(reviewed by).29 However, fewer studies have inves-
tigated FUT2/FUT3 polymorphism and its associa-
tion with the gut microbiome in African 
populations.28,30 Previous studies have shown that 
the gut microbiota of Kenyan infants breastfed for 
six to nine months and given supplementary food is 
dominated by Bifidobacterium.28,31,32 However, the 
taxonomic resolution of these studies was limited, 
and no functional assessment of the gut micro-
biome was performed. We conducted a single- 
blind randomized study in infants from rural 
Kenya, to evaluate the effects on iron absorption, 
inflammation and fecal microbiota composition 
of an iron-fortified wheat-based cereal 
(NCT03894358) containing two different doses 
of a prebiotic mixture including short chain 
galacto-oligosaccharides (GOS) and long chain 
fructo-oligosaccharides (FOS) (9:1 ratio). Here, 
we describe the use of shotgun metagenomics to 
assess the variability of the gut microbiome at 

baseline in a subset of these Kenyan infants (105 
infants, 6 to 11 months postpartum).

Results

Gut microbiome of infants from rural Kenya

We included 105 infants aged 8.31 ± 1.38 months 
(mean ± SD) and with a weight-for-age z-score of 
−0.43 ± 1.23 in this study. All infants received 
complementary foods (starting at the age of 
5.72 ± 1.05 months), mostly in the form of maize 
porridge, and 104 infants were still partially 
breastfed at the time of the study. The gut micro-
biome was profiled by shotgun metagenomics, its 
composition was determined, and a functional ana-
lysis was performed (Figure S1). Species-level ana-
lysis showed that B. longum was the most abundant 
species (42.67 ± 20.10%), followed by B. breve 
(17.30 ± 8.52%), B. bifidum (12.82 ± 13.09%), and 
B. kashiwanohense (5.94 ± 5.02%) (Figure 1a and 
Table S1). Network analysis was performed by CLR 
normalization and SparCC correlation based on 
the 20 most abundant species. Two subnetworks 
(i.e. species highly correlated with each other) of 
Bifidobacterium species were identified. One sub-
network was based on a positive association 
between B. kashiwanohense, B. catenulatum, 
B. pseudocatenulatum, and B. angulatum. The 
other was based on a positive association between 
B. breve, B. longum, and B. reuteri. The species with 
the largest number of connections and associations 
was B. kashiwanohense, followed by B. longum 
(Figure 1b). The gut microbiome of partially 
breastfed infants from rural Kenyan was, thus, 
enriched in Bifidobacterium, with specific connec-
tions between species.

Pangenomic analysis of B. longum in the gut 
microbiome of infants from rural Kenya

Given the high abundance of the species B. longum 
in our study cohort, and previous studies showing 
a high prevalence of B. longum subsp. infantis 
(B. infantis) in infants from non-industrialized 
countries,13 we assessed the prevalence of 
B. infantis in our study cohort. We used a strain- 
specific metagenomic approach on the pangenome 
of species B. longum with PanPhlAn (Figure 2 and 
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Figure 1. Gut microbiome of the infants from rural Kenya included in the study cohort. A. Abundance of bacterial species in the study 
cohort. B. Network based on the 20 most abundant species. Blue edges correspond to positive estimated associations; Red edges 
correspond to negative estimated associations and the thickness of the lines indicates the strength of the correlation between taxa.

Figure 2. Identification of B. longum subsp. longum and B. longum subsp. infantis in metagenomes. Detection of genes related to 
B. longum subsp infantis (HMO clusters) and B. longum subsp. longum (araD and araA) in metagenomes from rural Kenyan and 
Swedish infants (dark and light green, respectively) and in reference genomes of B. longum subsp. longum and B. infantis. Clusters 
indicate the resulting stratification of metagenomes with the exclusive detection of B. infantis (yellow and blue) and B. longum subsp. 
longum (Orange) or the detection of both B. infantis and B. longum subsp. longum (red); clustering was performed by complete linkage 
analysis (Euclidean distance).
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Table S2). We focused on a cluster of genes encod-
ing enzymes relating to HMOs import and meta-
bolism (Blon_2331–Blon_2361) that is part of the 
larger H-1 cluster shown to be conserved in 
B. infantis genomes33 and two genes encoding pro-
teins involved in arabinose consumption (araA and 
araD) used for the identification of B. longum 
subsp. longum in a previous study.34 Most of 
B. infantis genomes harbored almost all the genes 
from the HMO cluster. The araA and araD genes 
were detected in all the B. longum subsp. longum 
genomes and none of the B. infantis genomes 
included in the study. We then compared the meta-
genomes from our study cohort with 98 metagen-
omes from four-month-old infants from a Swedish 
cohort35 (Figure 2). In this Swedish cohort, 85% of 
infants were vaginally delivered and 68.8% of 
infants were exclusively breast-fed, 19.8% mixed 
fed, and 11.4% exclusively formula fed. B. longum 
was the major Bifidobacterium species, but its 
abundance was lower (21.23 ± 24.63%) than that 
in the infants from rural Kenya. A first set of 
metagenomic samples (39% from Kenyan infants 
and 15% from Swedish infants) clustered together 
with B. infantis genomes with positive detection of 
the HMO cluster and no detection of araA and 
araD. This cluster was considered to correspond 
exclusively to B. infantis. A second set of samples 
(12% of metagenomes from Kenyan infants and 5% 
from Swedish infants) displayed partial HMO clus-
ter detection, mostly with an absence of araA and 
araD, and was considered to be a putative 
B. infantis group. A third set of samples (46% of 
Kenyan infants and 2% of Swedish infants) had 
both a detectable HMO cluster and detectable 
araA and araD genes, consistent with the co- 
existence of the two B. longum subspecies, whereas 
4% of samples from Kenyan infants and 78% of 
those from Swedish infants clustered together with 
B. longum subsp. longum genomes, lacked the 
HMO cluster and had detectable araA and araD 
genes. This last cluster was considered to corre-
spond exclusively to B. longum subsp. longum. 
A previous studies reported a lack of detection of 
genes Blon 2175_2177 (LNT transporter) in 
B. infantis from Bangladeshi infants.36 We assessed 
whether these genes were detected in metagenomes 
of Kenyan infants. We found that 80% of metagen-
omes that harbored Blon 2331–2361 had at least 

two genes of Blon 2175_2177 (Table S2). Overall, 
our pangenomic analysis, showed that B. infantis 
was highly prevalent in the gut microbiome of 
partially breastfed infants from rural Kenya.

Gut microbiome community types in infants from 
rural Kenya

We further explored gut microbiota variation between 
infants by clustering-based approaches. Dirichlet 
multinomial mixtures (DMM) based on genus rela-
tive abundance, as previously described,37,38 revealed 
that the infant gut microbiotas could be split optimally 
into three to four gut microbiome community (GMC) 
types (Laplace) (Figure S2), three of which were 
retained for further characterization to increase statis-
tical power. GMC type 1 (50.5% of infants) had the 
highest levels of Bifidobacterium (Kruskal-Wallis test 
followed by a post-hoc Dunn test, FDR <0.001) 
(Figure 3a, Table S1 and Table S3), particularly for 
B. longum, the abundance of which decreased with 
increasing GMC type number (53.38 ± 16.10% for 
GMC type 1, 34.12 ± 17.61% for GMC type 2, and 
19.91 ± 12.93% for GMC type 3) (Figure 3b, Table S1). 
GMC type 2 (40.0% of infants) was also enriched in 
Bifidobacterium, specifically B. bifidum (Kruskal- 
Wallis test followed by a post-hoc Dunn test, FDR 
<0.05), and was the GMC type most enriched in 
Megasphaera elsdenii (Figure S3A, Table S1 and 
Table S3). GMC type 3 (9.5% of infants) was the 
most enriched in various other genera, including 
those related to Enterobacteriaceae Escherichia and 
Klebsiella, and had the lowest abundance of 
Bifidobacterium (44.10 ± 16.09% (Table S1), notably 
B. breve (Table S3). Alpha-diversity differed between 
GMC types, with the lowest values obtained for GMC 
type 1 (Figure 3c).

Linear mixed models implemented in MaAsLin2 
(adjusted for subject and age) for the relationships 
between the most abundant bacterial species 
(accounting for 93.84 ± 6.19% of the gut microbiota) 
and pH revealed positive correlations for 
A. muciniphila, B. fragilis, R. gnavus, and Klebsiella 
quasipneumoniae and a negative correlation for 
B. breve (FDR <0.1). The abundances of B. longum 
and B. kashiwanohense were negatively related to pH 
(p= .06) and calprotectin levels (p= .008) respectively, 
before but not after FDR adjustment (FDR = 0.14– 
0.16) (Figure 4a and Table S4). Fecal pH varied with 

4 M. DERRIEN ET AL.

https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793


Figure 3. Gut microbiota community types in infants from rural Kenya. A. Abundances of the highest ranked bacterial genera that 
were statistically significantly different between the three GMC types. B. Abundance of significant Bifidobacterium species (Kruskal- 
Wallis test, followed by a post-hoc Dunn test; for details see Table S3 for panels A and B). C. Species-based alpha-diversity (species 
richness and Shannon index). ***p < .001 (Kruskal-Wallis test, followed by a post-hoc Dunn test).

Figure 4. Association between host microbiota markers and the gut microbiota. A. Heatmap of the model coefficient values resulting 
from the MaAsLin2 analysis of the top 20 species, fecal calprotectin levels and pH. * indicates FDR<0.1 # indicates p< .1. B. Age, pH and 
calprotectin level distributions between GMC types (Kruskal-Wallis test, followed by a post-hoc Dunn test). “.”p= .05, *** p < .001. 
C. Exclusive presence of B. infantis or B. longum subsp. longum or the presence of both species in the three GMC types.
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GMC type (Kruskal-Wallis p< .001) with a lower pH 
for GMC type 1 (5.01 ± 0.65) than for GMC type 2 
(5.70 ± 0.81) and GMC type 3 (5.68 ± 1.24) (p< .001 
and p= .05, respectively, in post-hoc Dunn tests) 
(Figure 4b). Age and calprotectin levels did not differ 
significantly between GMC types (Kruskal-Wallis 
p= .17 and 0.62, respectively) (Figure 4b). Given pre-
vious reports of the association between low pH and 
the presence of B. infantis,39 we further investigated 
whether the detection of the HMO cluster only 
(B. infantis) differed between the GMC types. We 
found that GMC type 1, for which the lowest pH 
values were recorded, had a higher percentage of 
metagenomes corresponding exclusively to 
B. infantis (60%) than the other types (Figure 4c).

We then assessed the functional differences 
between the three GMC types. We focused on carbo-
hydrate metabolism, particularly that mediated by 
glycoside hydrolases (GH), and features relating to 
pathogen carriage. GH repertoire profiling showed 
that GH13, GH2, GH77, GH3, and GH20, which 
target both fiber and milk carbohydrates, were the 
most abundant in the gut microbiome, regardless of 
GMC type (Figure 5a, Table S1). Multiple GHs dif-
fered in abundance between the three GMC types 
(Figure 5a, Table S3). Specifically, GMC type 1 

differed from the other two types in terms of the 
abundance of several GHs related to host glycan 
metabolism: GH29 (fucosidase), GH33 (sialidase), 
and GH112 (GNB/LNB phosphorylase) (Figure 5a, 
Figure S3B, and Table S3). We then investigated the 
differences between GMC types in terms of the abun-
dance of genes encoding pathogenic factors with 
Pathofact, a pipeline that can predict functions related 
to pathogens from metagenomic data. We found that 
the relative abundance of antimicrobial resistance 
genes, virulence factors, and toxins was higher in 
GMC type 3 than in the other GMC types (Kruskal- 
Wallis test, followed by a post-hoc Dunn test, p < .001 
(Figure 5b). Overall, our findings reveal differences in 
both the composition and functional features 
between community types for the gut microbiomes 
of infants from rural Kenya.

Maternal human milk phenotype and HMO 
composition

We then investigated the HMO profiles (based on 
relative abundances) of 90 HM samples. In total, 
250 valid peaks (equivalent to at least as many 
different HMOs) were detected in at least one of 

Figure 5. Functional assessment of gut microbiota in the three GMC types. A. Heatmap of the most abundant glycoside hydrolases 
(GH). Significance (on the left) of differences between GMC types (log2 of mean relative abundance) (Kruskal-Wallis test, followed by 
a post-hoc Dunn test; FDR<0.05). GHs are ordered in decreasing abundance. The substrates for GHs were taken from Qin et al40 

B. Relative abundances of antimicrobial resistance genes (ARG), toxins and virulence factors (VF), as predicted by PathoFact (* p < .05, 
** p < .01, and *** p < .001). Kruskal-Wallis test, followed by a post-hoc Dunn test.

6 M. DERRIEN ET AL.

https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793
https://doi.org/10.1080/19490976.2023.2178793


Figure 6. Abundance of the major HMOs stratified by maternal HM group. A. Boxplot of HMOs ranked in descending order of 
abundance (Mann-Whitney test, * FDR <0.05, ** FDR <0.01, and *** FDR <0.001). B. Mean proportion of HMOs in the different HM 
groups. Neutral fucosylated HMOs are shown as an orange-red gradient, neutral non-fucosylated HMOs are shown as a blue-green 
gradient and sialylated acids are shown as a pink-purple gradient C. Heatmap of MaAsLin2 correlation coefficients for the relationship 
between HMO abundance and bacterial species. HMOs are shown in descending order of abundance.
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the 90 HM samples. We focused on 24 HMOs 
accounting for about 80% of total HMO content: 
2’- fucosyllactose (2’-FL), 3-fucosyllactose (3-FL); 
2’- and 3’-fucosyllacto-N-hexaose (2’- and 3’- 
F-LNH); 3’- and 6’-sialyllactose (3’- and 6’-SL); 
difucosyllactose (DFL); disialyllacto-N-tetraose 
(DSLNT); LNFP I, LNFP II, LNFP III, and LNFP 
V; LNDFH I and LNDFH II; lacto-N-hexaose 
(LNH); lacto-N-neohexaose (LNnH); lacto- 
neotetraose (LNnT); lacto-tetraose (LNT); sialyl-
lacto-N-tetraose (LST)a, LSTb, and LSTc; β1-3’-, 
β1-4’-, and β1-6’-galactosyllactose (β3-, β4-, and 
β6-GL) (Figure 6). The least prevalent HMOs 
were β4-GL (present in 17% of all donors, but in 
57% of all secretor-negative HM samples). The 
abundance of LNDFH II was low in all secretor 
HM samples with values above the LOQ. Maternal 
secretor and Lewis (SeLe) phenotype or HM group 
was assigned based on the presence of specific 
fucosylated HMOs. HM typing showed that 
48.9% of the HM samples corresponded to HM 
group I (Se+, Le+), 22.2% to HM group II (Se−, 
Le+), 22.2% to HM group III (Se+, Le−) and 6.7% 
to HM group IV (Se−, Le−). After grouping by 
secretor and Lewis status, 71% of the mothers 
were found to be secretors (HM groups I and III) 
and 29% were non-secretors (HM groups II and 
IV). Similarly, 71% of the mothers were Lewis- 
positive (HM groups I and II) and 29% were Lewis- 
negative (HM groups III and IV); the prevalence of 
Lewis positivity was higher in this population than 
in a European population studied in more detail.41 

The most abundant HMOs in all 90 HM samples, 
regardless of Se or Le status, were 3-FL, LNT, and 
LNFP III. The abundance of 3-FL, LNT, LNFP II, 
LNFP III, LNFP V, LSTb, and LNDFH II was 
higher in milk from non-secretors than in milk 
from secretors (Mann-Whitney test, FDR<0.05) 
(Figure S4). More detailed studies of the four HM 
groups showed that 3-FL and LNFP V were more 
abundant in HM of group II (Se-, Le+), LNFP I and 
2’-FL were more abundant in HM of group III (Se 
+, Le-), and LNT was more abundant in HM of 
group IV (Se-, Le-) (Figure 6a and b). Overall, in 
this cohort of infants with prolonged breastfeeding, 
the occurrence and abundance of HMOs differed 
between maternal HM phenotypes.

Association of HMO profiles and HM groups with the 
infant gut microbiota

Previous studies have investigated the association 
between maternal HMOs, HM phenotype and the 
infant gut microbiota in different populations, and 
at various stages of lactation. We first investigated 
the association of individual HMOs with the gut 
microbiome in a linear mixed model analysis based 
on the 20 most abundant bacterial species (Table 
S4). Only positive correlations were retained after 
FDR adjustment (FDR <0.1) (Figure 6c), with 
Streptococcus salivarius having the largest number 
of significant correlations with fucosylated HMOs 
such as 3-FL, LNFP II, and LNDFH II. We then 
investigated the association between HM secretor 
status and the infant gut microbiome. The abun-
dances of multiple bacterial species (including 
Escherichia coli, Streptococcus salivarius, 
Bifidobacterium saguini, and Bacteroides thetaio-
taomicron) were higher in the gut microbiota of 
the infants of non-secretor mothers, whereas the 
gut microbiota of the infants of secretor mothers 
was enriched in Bifidobacterium pullorum and 
Clostridium saccharolyticum (Table S5) (DESeq2, 
FDR<0.05, age as a covariate). No difference in the 
overall gut microbiota (alpha- and beta-diversity), 
or in the prevalence of gut microbiota community 
types was observed (Figure S5 A-C).

Finally, given the higher prevalence of HM 
group III than in most previous studies, we 
explored the possible differential association of 
this HM group with the gut microbiome. The 
abundance of Bifidobacterium pseudocatenulatum 
was higher and that of Klebsiella pneumoniae was 
lower in HM group III than in HM groups I and II, 
respectively (DESeq2, FDR<0.05) (Figure S6A), 
with no overall difference in the global gut micro-
biota (Figure S6 B and C). There was a trend of 
lower pH in HM group III compared to HM group 
I (Mann-Whitney, p = .06). A network analysis of 
bacterial species of the three major HM groups 
showed differential co-variation between bacterial 
species including Bifidobacterium (Figure S7).

Our results indicate that associations between 
HMOs and the gut microbiota may be population- 
specific.
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Discussion

During early life, the gut microbiota is highly 
dynamic, responds to the environment and is cru-
cial for health. In this study, we used metagenomics 
to explore the variability and function of the gut 
microbiome in an understudied population, 6 to 
11-month-old infants living in rural Kenya. We 
found that the gut microbiome of the infants stu-
died here were enriched in B. longum and, specifi-
cally, B. longum subsp. infantis. Several gut 
microbiota community types were identified that 
differed in composition and functional features.

In previous studies, Bifidobacterium was found 
to be the most abundant genus in the gut micro-
biota in six- to nine-month-old Kenyan 
infants.28,31,32 Here, using shotgun metagenomics, 
we showed that the gut microbiome of breastfed 
Kenyan infants also receiving complementary food 
is dominated by B. longum species, consistent with 
the findings of other studies of infants of similar 
age living in rural environments in Malawi,42,43 

and Indonesia.8

This indicates that there is a sustained enrich-
ment in bacteria from the Bifidobacterium commu-
nity in partially breastfed infants. B. breve, 
B. bifidum, and B. kashiwanohense were the other 
most abundant Bifidobacterium species; these spe-
cies are known to metabolize HMOs, albeit with 
different efficiencies.44–47 Network analysis identi-
fied B. kashiwanohense as key to the interaction 
between two Bifidobacterium subnetworks, sug-
gesting a possible ecological role in shaping 
Bifidobacterium community despite the lower 
abundance and narrower range of HMOs metabo-
lized by this species relative to B. longum, B. breve, 
and B. bifidum, which have a wider metabolic 
range.44,45 We further differentiated between 
B. longum subsp. longum and B. longum subsp. 
infantis in a pangenomic analysis of the B. longum 
species. We focused on an HMO cluster of genes 
encoding proteins involved in both the import and 
metabolism of HMOs12,48 and genes encoding pro-
teins involved in arabinose metabolism.34 The pre-
valence of B. infantis was high in metagenomes 
from Kenyan infants (> 80%), contrasting with its 
much lower levels in a cohort of mostly exclusively 
breastfed four-month-old Swedish infants (20%),35 

in which B. longum subsp. longum was the more 

abundant of the two subspecies. Our results are 
consistent with studies reporting a higher preva-
lence of B. infantis, typically reaching more than 
70%, in infants from countries with limited 
resources, such as Gambia (76.9%) and 
Bangladesh (86%),7 or from rural settings in the 
USA.10 The prevalence of this subspecies is lower 
(<20%) in more developed countries with higher 
rates of immune disorders,11,12,49 as recently shown 
in a global meta-analysis.13 We then studied the 
variation of the gut microbiome among the infants 
of our study cohort. We identified GMC types by 
the Dirichlet multimodal mixture method,50 

a clustering approach widely used in studies of 
the gut microbiome, including investigations in 
infants.37,38 Previous studies have shown that 
GMC type is influenced by age, feeding and geo-
graphic location.8,11,12,51,52 Here, in a cohort with 
a narrow range of age and feeding practices, we 
found differences in alpha-diversity between GMC 
types, the least diverse of which was enriched in 
Bifidobacterium, whereas the most diverse was 
enriched in multiple genera including 
Enterobacteriaceae. The GMC type with the high-
est abundance of B. longum and in which B. infantis 
and B. breve were most frequently exclusively 
detected had the lowest pH and alpha-diversity, 
and a higher abundance of some glycoside hydro-
lases involved in host/animal glycan metabolism, 
possibly reflecting the metabolism of HMOs and/ 
or mucosal glycans.53 Analysis of Metagenomes- 
assembled genomes would allow to compare the 
diversity and function of gut microbiome across 
populations in early life.54 Furthermore, the fre-
quency of genes encoding antimicrobial resistance, 
virulence factors and toxins was lower in GMC 
type 1, consistent with the lower abundance of 
Enterobacteriaceae species and a lower pH than 
for the other two GMC types. Fecal pH was gen-
erally low in this study (mean of 5.3), consistent 
with the high levels of Bifidobacterium (specifically 
B. infantis and B. breve), reflecting the production 
of organic acids, such as lactic acid and acetic 
acid.55 In Western infants, fecal pH typically 
exceeds 6, and the abundance of Bifidobacterium 
is lower.56 The least prevalent GMC (GMC type 3) 
had the highest alpha-diversity and displayed the 
greatest enrichment in genera other than 
Bifidobacterium, regardless of age and calprotectin 
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levels, a surrogate marker of inflammation. Diet is 
considered as a major determinant of gut micro-
biome composition and function. A previous study 
in infants showed that the cessation of breastfeed-
ing, rather than the introduction of other foods, 
drove maturation of gut microbiome.35 In our 
study, most of the infants received cereals in addi-
tion to human milk. While this study provides 
a first insight into the variation of the gut micro-
biome in infants from rural Kenya, larger studies, 
with detailed and quantified recording of dietary 
habits, are now required.

We assessed the association with HMOs further, 
as most infants were still partially breastfed. Several 
factors, including genetic background and lactation 
stage, are known to affect HMO profile.18 The 
composition of HMOs in this study cohort was 
consistent with previous studies performed during 
the late lactation stage (> 6 months), as 3-FL levels 
have been shown to increase during the course of 
lactation.41,57 The association between individual 
HMOs, secretor status and the gut microbiome 
varies considerably between studies.22–28 We 
found several associations between individual 
HMOs and bacterial species, including known 
HMO-metabolizing species from the genera 
Akkermansia, Bifidobacterium, Bacteroides, and 
Streptococcus. The lack of association between 
abundant Bifidobacterium species (B. longum, 
B breve and B. bifidum) and individual HMOs, 
despite the observed enrichment in 
Bifidobacterium, may reflect metabolic cooperation 
between species, as observed in studies performed 
in vitro.46,58 We further evaluated the association of 
maternal HMO secretor status, with functional α- 
1-2-fucosyltransferase (FUT2) status, HMO abun-
dance and infant gut microbiome. In our study, 
71% of the mothers were secretors, which is in the 
range with other studies from different populations 
as well as in African countries such as South Africa, 
Gambia, Ghana, Ethiopia, and Malawi.21,59 

Stratification into four HM groups based on Se/Le 
genes revealed a higher prevalence of Lewis- 
negative samples, belonging to HM group III 
(22.2%) in particular in line with a recent study,60 

than in most other populations studied.29,57 2’-FL, 
a HMO widely studied due to its effects on the gut 
microbiome, such as the stimulation of 
Bifidobacterium and the inhibition of 

pathogens,61,62 was more abundant in HM group 
III, consistent with previous studies.29,57 Despite 
the limited sample size of this study, the abundance 
of B. pseudocatenulatum was higher, and that of 
Klebsiella spp. lower, in HM group III. 
Interestingly, Newburg et al. reported that infants 
fed with HM group III were significantly less likely 
to be infected with a pathogenic E. coli63 potentially 
suggesting a specific association between HMOs 
and gut microbiome in our cohort, and potentially 
rural African population. Further larger studies are 
required to confirm these differences in abun-
dances between HM groups and, specifically, to 
determine whether the higher prevalence of HM 
group III resulted from the evolutionary pressure 
imposed by pathogens in rural regions like those 
studied here in Kenya.28,41,57

Overall, this study provides new insight into the 
composition and function of the gut microbiota of 
infants from rural Kenya, and the variability of 
genetic factors and HMO profiles. The enrichment 
of the gut microbiome in specific species of 
Bifidobacterium is associated with functional dif-
ferences such as a low pH, and low frequencies of 
antimicrobial resistance genes and virulence fac-
tors. Our study also highlights the existence of 
variable patterns, with some infants harboring 
a higher abundance of pathogens, which may be 
useful to guide microbiome-based nutritional 
interventions. The association between the baseline 
gut microbiota and clinical responses (iron absorp-
tion) to nutritional intervention (prebiotics) would 
also be of considerable interest in this study cohort. 
In addition, larger and longitudinal studies in rural 
Africa should improve our understanding of the 
structural and functional variation of the gut 
microbiome of African infants, and in generally 
understudied populations, shedding light on the 
contribution of intestinal symbionts to health.

Materials and methods

Study design and participants

We studied a subset of infants (n = 105) enrolled in 
a single-blind, randomized controlled intervention 
trial with three arms, conducted in Msambweni 
and the surrounding rural communities in Kwale 
County on the southern coast of Kenya. The study 
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was conducted from July 2019 (rainy season) to 
January 2020 (dry season). We enrolled 6 to 11- 
month-old infants with no reported current acute 
or chronic illness, and z-scores for weight-for-age 
and weight-for-length ≥-3. Infants were excluded if 
they were severely anemic (Hb <70 g/L), had reg-
ularly been given iron-containing mineral and vita-
min supplements within the last two months, or 
had received antibiotics in the month before study 
enrollment.

Stool collection and DNA extraction

We analyzed fecal samples from 105 infants. The 
caregivers were asked to collect the fecal samples 
carefully from the infant on the evening before or 
the morning of the study visit. They were provided 
with: i) a specific tube (OMNIgene GUT, OM-200, 
DNAgenotek, Canada) for the analysis of gut 
microbiota profile; and ii) polystyrene stool tubes 
(Sarstedt, Sevelen, Switzerland) for the determina-
tion of fecal calprotectin levels and fecal pH. Fecal 
samples were split into aliquots and frozen at 
−20°C. All aliquots were stored at the study site 
until shipment on dry ice to the ETH Zurich, 
Switzerland, for further analyses. Fecal calprotectin 
was determined with an ELISA kit (Eurospital, 
Italy) and fecal pH was determined with a digital 
pH meter (Metrohm, Switzerland). For fecal DNA 
extraction, samples were vortexed for 60s and incu-
bated at 50°C for 30 min (as recommended by 
OMNIgene.GUT for viscous samples). The pellet 
obtained after centrifugation (1 min at 13. 800 g) 
was incubated with 200 μL enzyme cocktail (50 mg/ 
mL lysozyme, 20 U/mL lysostaphin and 150 U/mL 
mutanolysin, all from Sigma-Aldrich, St. Louis, 
USA), at 37°C for 30 min before mechanical dis-
ruption with a FastPrep 24™ instrument (MP 
Biomedicals™) set at speed 6.0, for two 60-second 
periods. DNA was isolated with the 
QIAamp®PowerFecal®Pro DNA-kit (QIAGEN®, 
Hilden, Germany) according to the manufacturer’s 
instructions. DNA was eluted in a final volume of 
75 μL. The DNA preparation was subjected to 
quality control by spectrophotometry on 
a NanoDrop™ 2000c spectrophotometer (Thermo 
Fisher Scientific, Waltham, USA), according to the 
manufacturer’s instructions.

Metagenomic shotgun sequencing and pre-
processing. In total, 105 samples were analyzed 
by Shotgun metagenomics at ADM-Biopolis 
(Paterna, Spain). DNA was quantified fluorome-
trically with a Qubit Fluorometer (Themo Fisher 
Scientific, Carlsbad, USA). Sequencing libraries 
were prepared with the Nextera XT DNA sam-
ple preparation kit, according to the manufac-
turer’s instructions. Samples were sequenced on 
a NovaSeq 6000 platform with the kit for 151 bp 
paired-end reads, resulting in 34.7 million (± 
7.8 million) paired-end reads per sample. 
Demultiplexed reads were filtered with 
BBTools64 and quality filtering was performed 
with NGLess v1.0.0-Linux64 software.65 Reads 
were filtered for 97% identity to the human 
genome (hg19), to obtain Q20 reads with 
a minimal length of 45 nt and no trace of 
human DNA contamination. After filtering, 
a mean of 26.6 million (± 5.6 million) paired- 
end reads per sample were retained.

Genomic assembly and annotation

Sequences were assembled with MetaSPADES gen-
ome assembler v3.13.0 (Nurk et al., 2017), with 
a range of k-mer sizes (21–127) and the assemblies 
were filtered to exclude sequences of less than 500 
bp in length. Assembly performance was analyzed 
with QUAST v.5.0.0,66 using the default para-
meters. Open reading frames (ORFs) were pre-
dicted with Prodigal v2.6.367 in metagenomic 
mode and then filtered to obtain ORFs with start 
or stop codons, yielding a mean of 53.085 (± 
24.138) genes per sample. Genes from all samples 
were clustered with CD-HIT v4.8.1.68 with the fol-
lowing criteria: 90% alignment coverage and 95% 
gene sequence identity, to generate a non- 
redundant de novo gene set. A count matrix for 
each sample was generated from the non- 
redundant de novo gene set with NGLess v.1.0.0,65 

retaining only primary mapped reads with 
a minimum match size of 45 nt displaying at least 
95% alignment, with a dist1 for multiple mapping 
reads. Pathogenic factors were identified with 
PathoFact software, using default parameters.69 

Carbohydrate-active enzyme (CAZy) was assessed 
with dbcan2.70 In short, a triple annotation was 
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performed with (i) HMMer against the dbCAN 
HMM database, (ii) DIAMOND search against 
the CAZy pre-annotated CAZyme sequence data-
base, and (iii) eCAMI run against the CAZyme 
database; CAZy terms annotated with at least two 
methods were retained for downstream analysis.

For taxonomic analysis, the filtered reads were 
aligned with single-copy marker genes present in 
almost all bacteria, viruses, and archaea. The rela-
tive abundances of the taxa identified were calcu-
lated with the MetaPhlAn3 v.3 pipeline.71 The 
pipeline used is depicted in Figure S1. 
Bifidobacterium longum subsp. infantis 
(B. infantis) and B. longum subsp. longum were 
detected with PanPhlAn software72 applied to the 
B. longum pangenome (14 B. infantis and 30 
B. longum reference genomes) (Table S2). In 
short, B. infantis HMO cluster genes (Blon_2331– 
Blon_2361) were selected from the B. longum (spe-
cies) pangenome (Sela et al., 2008), together with 
the B. longum subsp. longum-specific genes (araA 
and araD),34 to assess the presence of these sub-
species in the metagenomes for Kenyan and 
Swedish infants. We excluded 18 samples from 
Swedish infants (18% of the sample set) and two 
samples (2% of the sample set) from Kenyan 
infants from the analysis (below the default 
PanPhlAn threshold for the presence of B. longum 
genes).

External dataset. A four-month-old infant 
microbiome gene set catalog was obtained from 
the GIGAdb website (gigadb.org/dataset/ 
100145)35 and compared with the non-redundant 
de novo gene set.

Human milk collection and HMO profiling

Human milk samples for HMO analysis were 
obtained by manual milk expression by the mother 
into a clean plastic container. The samples were 
kept cool until homogenization by the study 
team. They were then split into 1–2 mL portions 
and stored at −20°C. All aliquots were stored at 
−20°C at the study site until shipment on dry ice to 
the ETH Zurich, Switzerland. For the HMO com-
position analysis reported here, the HM samples 
were transported on dry ice to the glycoanalytical 
laboratory (glyXera GmbH, Magdeburg, 
Germany). The qualitative and quantitative HMO 

composition of each individual HM sample was 
determined with the glyXboxCE™ system (glyXera 
GmbH, Magdeburg, Germany) based on multi-
plexed capillary gel electrophoresis with laser- 
induced fluorescence detection (xCGE-LIF).73 In 
accordance with the glyXera GmbH kit protocol 
(KIT-glyX-OS.P-APTS, glyXera GmbH, 
Magdeburg, Germany), the pure HM samples 
were diluted 1:100, spiked with an internal stan-
dard (IS) (oligosaccharide (OS) quantification 
standard solution, OS-A5-N-1 mL-01; part of the 
KIT-glyX-Quant-DP5, all from glyXera GmbH, 
Magdeburg, Germany) and treated with 
a denaturation solution. The free OS were labeled 
with 8-aminopyrene-1,3,6-trisulfonic acid (APTS), 
purified and determined with the glyXbox™ system. 
All measurements included the addition of 
a migration time alignment standard (glyXalign4; 
STD-glyXalign-4-S, glyXera GmbH) to the sample. 
Finally, glyXtoolGUI™ software (Beta v0.8.11, 
glyXera GmbH, Magdeburg, Germany) was used 
for the processing and analysis of the HMO 
Fingerprints data (normalized electropherograms). 
The limit of quantification (LOQ) was determined 
from the signal-to-noise ratio (SNR) of each HMO 
Fingerprint calculated as described by Ullsten et al.-
74 The LOQ was defined as an SNR of 10 and the 
limit of detection (LOD) was defined as an SNR of 
3. The respective noise for each sample was deter-
mined after migration time alignment of the 
unsmoothed data in the late migration time range 
(approximation range = degree of polymerization 
(DP) 18< DP<20). Peaks with intensities below the 
LOQ but above the LOD were picked. All peaks 
≥LOQ were considered and their IS-normalized 
peak areas were calculated (as percentages relative 
to the peak area of the IS [% IS] (= nPA)). All peaks 
≥LOD but <LOQ were replaced with a fixed value; 
the peaks followed a triangular distribution, so the 
respective peak areas were replaced with LOQ/ 
√2.75 All HM samples were assigned to a maternal 
secretor and Lewis (Se/Le) phenotype (HM groups 
I–IV) based on the presence or absence of specific 
α1-2- and/or α1-4-fucosylated HMOs, as pre-
viously described.73 The assignment of maternal 
secretor status was based on the presence of 2’- 
fucosyllactose (2’-FL), difucosyllactose (DFL), and 
lacto-N-fucopentaose (LNFP) I, and the determi-
nation of Lewis status was based on the presence of 
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LNFP II and lacto-N-difucohexaose (LNDFH) II. 
Differences in HMO abundance between maternal 
secretor status and HM types were assessed with 
Mann-Whitney tests or Kruskal-Wallis tests fol-
lowed by post-hoc Dunn’s test, respectively, with 
adjustment for false discovery rate (FDR) by the 
Benjamini-Hochberg mechanism (FDR<0.05).

Gut microbiota statistical analysis

All analyses were performed with R version 3.6.0. 
The R package Vegan (function richness) was used 
to calculate alpha-diversity metrics (Shannon’s H, 
inverse Simpson’s index, and feature richness). 
Samples were rarefied with the phyloseq library in 
R (rarefy_even_depth function). Bray-Curtis dis-
similarity was used for the analysis of beta- 
diversity. Permutational testing of variance 
(PERMANOVA) between groups was performed 
with the adonis2 function (R package Vegan). For 
the identification of gut microbiota community 
types (GMC types) at genus level (relative abun-
dance), we used the Dirichlet multinomial mixture 
(DMM) approach50 with Laplace number selection. 
Kruskal-Wallis tests were performed, followed by 
post-hoc Dunn’s tests, for comparisons between 
GMC types for the parameters studied (CAZy, 
main genera and species, age, fecal pH, and fecal 
calprotectin level, alpha-diversity, and ARG) fol-
lowed by FDR correction by the Benjamini- 
Hochberg method for CAZy, main genera, and 
species. A Pearson’s Chi-squared test was used to 
determine whether GMC types were associated 
with secretor status. Network analysis was per-
formed by center log ratio (CLR) normalization 
and SparCC correlation with the NetCoMi 
R package, based on the top 20 species with 
a prevalence of at least 25%, and a correlation 
threshold of 0.2. We used DESeq2 package (version 
1.26.0) to identify species with differential abun-
dances, and different CAZy levels between secre-
tors and non-secretors, with age as a covariate 
(count sums > 5, and present in at least five sub-
jects). Significant fold-change differences between 
groups were evaluated with the negative binomial 
model-based Wald test implemented in DESeq2 
(alpha risk = 0.05). A linear mixed model analysis 
was performed to analyze the relationships 

between the 20 most abundant bacterial species 
and 1) calprotectin level, 2) pH, and 3) the abun-
dance of individual HMOs, in MaAsLin2 with 
default settings (v.1.0.0).76 Age was considered as 
a random effect and individual HMO, pH and 
calprotectin levels were considered as fixed effects. 
Heatmaps based on the correlation coefficients 
(effect size) with FDR <0.1 (Benjamini-Hochberg) 
or p< .1 were generated for individual variables 
(pH, calprotectin, and HMOs).
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