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Abstract
Preparation methods of cubic core-shell particles with specific functionality are limited. Here we demonstrate the possibility 
to transform cuprous oxide cubes coated with mesoporous silica into functional core-shell particles, while retaining their 
cubic shape. Cuprous oxide nanocubes are coated with mesoporous silica using cetyltrimethylammonium bromide as a tem-
plate, after which the cuprous oxide core is transformed using liquid phase calcination and galvanic replacement. Nitrogen 
physisorption and electron microscopy confirm that mesoporous silica coatings are obtained with tuneable thickness. The 
successful transformation of cuprous oxide into gold and silver is assessed via UV–VIS spectroscopy and energy dispersive 
X-ray spectroscopy. Particles with a silver core and a cubic mesoporous silica shell are demonstrated to be catalytically active 
in the degradation of the dye Congo red.
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1 Introduction

Colloidal cubes are able to form dense packings when 
assembled by gravity [1, 2], the depletion interaction [3], or 
confinement in 2D [4] and 3D [5, 6]. Cubic colloids can be 
prepared as noble metals [7–9], metal oxides [10, 11], and 
perovskites [12], all of which have properties depending on 
their detailed size, shape and chemistry. For applications it 
is desirable to combine the catalytic [8] or plasmonic proper-
ties [13] of nanomaterials with a specific shape, arranged in 
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a crystal lattice which is only obtainable by assembling par-
ticles with a different shape. The formation of bicontinuous 
Pickering emulsions illustrates this point, as specific particle 
shape and surface chemistry are beneficial, but the inclusion 
of shape decoupled functionality is not yet achieved. [14, 15] 
A method commonly proposed to add functionality to parti-
cles, is the impregnation of porous materials with functional 
materials [16], sometimes referred to as the “ship-in-a-bottle 
approach” [17]. Although this approach allows to incorpo-
rate different functional materials in a carrier material, the 
product often has low specificity and a low fraction of filled 
particles [18]. Here we propose a different route towards the 
deposition of functional material into an anisotropic carrier 
material, using the morphology of silica on cuprous oxide 
cubic-core-shell particles [19]. By using a method that alters 
the core but does not affect the silica shell, it is possible to 
completely transform the cuprous-oxide to gold or silver, 
while maintaining the outer shape of the particles.

Core-shell particles, or hollow materials containing func-
tional materials, have been the subject of various studies. 
Since these hierarchical and complex morphologies often 
have a large surface area, they are expected to find applica-
tions as catalysts, energy storage or drug carriers [20–23]. 
One method to obtain functional core-shell particles is the 
self-templating method [21], via which functional colloids 
with complex morphologies, including cubes [24] and plates 
[25], have been prepared. The self-templating method uses 
the nanoparticle as a template to obtain a core-shell parti-
cle and complete transformation often results in a differ-
ent morphology of the particle [21]. Functional materials 
deposited in an inert carrier material, such as silica, allows 
for the complete transformation of the functional material 
while preserving the shape and stability provided by the 
silica shell. An example of transformation in a silica shell, 
is the etching and overgrowth procedure of gold nanorods 
coated with mesoporous silica [26, 27]. Using the etching 
and overgrowth method, it is possible to obtain rods with 
a tuneable surface plasmon resonance. Similar procedures 
could be used to transform cubic core-shell particles. How-
ever, preparation methods of cubic particles coated with 
mesoporous silica are limited [28–32] and to the best of 
our knowledge no reports have been presented yet on the 
transformation of functional materials inside mesoporous 
silica nanocubes. A mesoporous silica coating on functional 
cores provides stability while allowing free transport of mol-
ecules to the core [33, 34]. A common method to obtain 
mesoporous silica is by the deposition of silica in the pres-
ence of surfactants [35]. For instance, using cetyltrimethyl-
ammonium bromide (CTAB) micelles it is possible to obtain 
free standing mesoporous silica [36] or core-shell particles 
[37]. The CTAB template can afterwards be extracted by 
ion exchange [38] or calcination [36, 39] resulting in silica 
with mesoscale pores. Characteristic for mesoporous silica 

obtained from CTAB micelles are pores with a diameter of 
2 nm and surface areas over 1000  m2  g−1 [35].

The aim of the present work is to explore the coating of 
cuprous oxide cubes with a mesoporous silica shell and the 
subsequent transformation of the cuprous oxide core into a 
functional material while conserving the cubic mesoporous 
silica. First, we attempt coating cuprous oxide nanocubes 
[19, 40] with a mesoporous silica shell using the CTAB soft 
template. The formed shells are then characterized using 
TEM and nitrogen physisorption. Using a high-temperature 
boiling solvent, the silica shell can afterwards be calcined 
while simultaneously thermolyzing the cuprous oxide into 
metallic copper. Finally, using galvanic replacement, the 
copper core can be substituted by noble metals like silver or 
gold. The resulting particles are characterized with UV–VIS 
spectroscopy and energy dispersive X-ray spectroscopy. The 
functionality of the newly formed particles is assessed by the 
catalytic dye degradation of Congo red.

2  Experimental

2.1  Materials

L-ascorbic acid (Reagent grade), ammonium chloride 
(≥ 99.5%), Congo red (91 wt% dye), gold chloride trihy-
drate (99.9%), silver nitrate (99%), tetraethyl orthosilicate 
(TEOS, ≥ 99.0%), polyvinylpyrrolidone (PVP-55, aver-
age molar weight of 55 kDa) and trioctylphosphine oxide 
(TOPO, 99%) were obtained from Sigma-Aldrich. Cetyltri-
methylammonium bromide (CTAB, ≥ 99%) was purchased 
from Acrös Organics, ethanol (Technical grade) from VWR, 
sodium hydroxide (≥ 99%) from Merck, and nitric acid (65% 
aqueous solution) from Emsure. All water used was purified 
using a Millipore apparatus (18.2 Ω∙cm @ 25 °C).

2.2  Cuprous oxide cube synthesis

The  Cu2O cubic template was produced using a method 
developed in our group [19]. To a 500 mL 3-neck round-
bottom flask equipped with reflux and dripping funnel, 
223 g 1,5-pentanediol and 25.3 g PVP-55 were added. The 
reflux condenser and dripping funnel were connected to a 
N2/Vacuum Schlenk line. The mixture was vacuum flushed 
three times at room temperature, heated to 100 °C by oil 
bath and vacuum flushed three times. 5.2 g Cu(acac)2 and 
75 g 1,5-pentanediol were weighed in a 100 ml bottle and 
mixed by a combination of shaking and sonication. The 
Cu(acac)2 mixture was transferred to the dripping funnel 
and flushed four times. The PVP-55 solution was heated to 
200 °C and the Cu(acac)2 mixture was added over 30 s aided 
by  N2 pressure. After 22 min, heating was discontinued, and 
the mixture was allowed to cool down to room temperature, 
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yielding a brown mixture. The product was collected 
with 500 ml acetone. The resulting sol was separated by 
centrifugation (3000 g, 2.5 h) and washed twice with ethanol 
by centrifugation (12,000 g, 30 min). Finally, the sample was 
dispersed in 50 mL ethanol.

2.3  Mesoporous shell synthesis

Cubic cuprous oxide core, mesoporous silica shell particles 
 (Cu2O@mSiO2) were obtained by coating  Cu2O cubic tem-
plate particles with silica according to a modified proce-
dure from Jiang et al. [41].  Cu2O particles (100 mg in 164 
mL of ethanol) were added to a 500 mL round-bottom flask 
equipped with mechanical stirrer. Water (36 mL), TEOS 
(0.125 mL), and CTAB (0.2 g) were added to the nanocubes 
and the mixture was stirred and sonicated for 15 min. An 
aqueous sodium hydroxide solution (20 mM, 10 mL) was 
added over 10 min using a Gilson peristaltic pump. Soni-
cation was continued for 2 h after which the reaction was 
stirred overnight. The particles were washed by centrifuga-
tion (12,000 g, 30 min) three times and finally dispersed in 
ethanol (5 mL).

2.4  Template removal

Template extraction was performed to obtain hollow 
mesoporous particles with a cubic void  (mSiO2 shells) by 
a method adapted from Deekamwong et al. [38]. To a 100 
mL 2-neck round-bottom flask equipped with magnetic stir-
ring and a reflux condenser, silica coated cubes (50 mg) and 
ethanol (35 mL) were added. Ammonium chloride (1.02 g) 
was added and the mixture was refluxed for 45 min. The 
mixture was allowed to cool down, yielding an aqua-col-
oured mixture. Water (33 mL) followed by a drop a nitric 
acid were added, resulting in a clear dispersion. The product 
was washed by centrifugation, first three times with water, 
followed by three times with ethanol (20,000 g, 40 min). 
Finally, the particles were dispersed in ethanol (5 mL).

2.5  Liquid phase calcination and cuprous oxide 
thermolysis

Liquid Phase Calcination (LPC) was performed in a high 
boiling point solvent, trioctylphosphine oxide (TOPO), 
under nitrogen atmosphere to obtain Cu@mSiO2 particles. 
[39] TOPO (7.1 g) was heated to 60 °C in a 100 mL round-
bottom flask equipped with reflux condenser and stir bar. 
Cuprous oxide cubes coated with mesoporous silica  (Cu2O@
mSiO2, 50 mg in 2.5 mL ethanol) were added to the liquified 
TOPO, followed by removal of the ethanol by heating under 
vacuum. The mixture was heated to 350 °C under nitrogen 

atmosphere, and allowed to react for 1 h, after which the 
mixture was cooled down to 100 °C. Water (25 mL) was 
added and the sample was washed by centrifugation with 
water, three times, and ethanol, three times. The mixture was 
finally dispersed in ethanol (50 mL).

2.6  Galvanic replacement

Galvanic replacement of copper into silver was done fol-
lowing a procedure adapted from Stewart et al. [42]. The 
Cu@mSiO2 (0.4 mg) obtained from LPC was dispersed 
in water (0.5 mL) after which freshly prepared solution of 
ascorbic acid (0.5 mL, 1.16 M in water) was added. The 
mixture was vortexed for 10 s and directly washed by cen-
trifugation (16,000 g, 10 min) with water twice, and then 
dispersed in water (0.5 mL). Silver nitrate (0.5 mL, 50 mM 
in water) was added, the mixture was vortexed for 10 s and 
then directly washed by centrifugation with water (twice) 
and ethanol (twice). Finally, the particles were dispersed in 
ethanol (5 mL). For the galvanic replacement of copper with 
gold,  HAuCl4 (0.5 mL, 25 mM in water) was added instead 
of the silver nitrate.

2.7  Catalytic dye degradation

Catalytic dye hydrogenation by Ag@mSiO2 particles was 
demonstrated by degradation of Congo red. To water (9 mL) 
Ag@mSiO2 particles were added (0.4 mL, 0.1 mg  mL−1). 
To this dispersion an aqueous Congo red solution (70 µL, 
5 mM) was added. Freshly prepared sodium borohydride 
(0.5 mL, 1 M) was added to initiate the dye hydrogenation, 
and changes in colour were monitored visually and with 
UV–VIS, with time intervals of approximately six minutes. 
During the reaction gas bubbles develop on the surface of 
the cuvet, a baseline correction was performed to account for 
scattering caused by these bubbles. Two control experiments 
were performed, one with  mSiO2 particles (0.01 mL, 0.4 mg 
 mL−1) with  NaBH4 and Congo red, and one with  NaBH4 and 
Congo red in the absence of any particles.

2.8  Characterization

Transmission Electron Microscopy (TEM) was performed 
on a TecNAI 12 and TecNAI 20 electron microscope. 
Images were recorded on an SIS CCD Megaview II cam-
era. Samples were prepared by diluting a drop of analyte in 
water and casting a drop of dilute analyte on a copper grid, 
followed by drying of the copper grid under a heating lamp. 
Energy-dispersive X-ray spectroscopy (EDX) maps were 
obtained from a FEI Talos F200X, with samples prepared on 
an aluminum grid. Nitrogen physisorption isotherms were 
obtained with a Micrometrics Tristar II plus. Prior to the 
measurements the samples were dried overnight at 250 °C. 
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The surface area was determined using the BET isotherm 
[43], and the micropore size distribution was determined 
using the BJH method assuming cylindrical pores. UV–VIS 
spectra were obtained using a PerkinElmer Lambda 35 UV-
VIS spectrometer. Samples were measured in quartz cuvettes 
and the obtained spectra, ranging 250–700 nm, were normal-
ized using Wolfram Mathematica. IR spectra were obtained 
using a PerkinElmer FT-IR/FIR Frontier spectrometer in 
transmission mode. 250 mg KBr with 1 mg sample was 
dried in a Memmert oven at 70 °C overnight. Copper core 
samples were dried under vacuum and nitrogen flow.

3  Results and discussion

3.1  Template synthesis and mesoporous coating

For coating with mesoporous silica (MCM-41) cuprous 
oxide cubes were synthesized with edge lengths of 
96 ± 10 nm. MCM-41 silica is commonly prepared with 
ammonia as a base catalyst. Ammonia, however, dissolves 
the cuprous oxide core [44], which required us to find an 
alternative method. Using tetramethyl ammonium hydroxide 
as base catalyst results in non-uniform coatings, and adding 
TEOS to  Cu2O cubes with sodium hydroxide results in 

damaged cubes. By drop-wise addition of sodium hydroxide 
to the precursor mixture, it is possible to obtain cubes coated 
with mesoporous silica. Below,  Cu2O nanocubes are visible 
before (Fig. 1ab) and after (Fig. 1cd) coating, showing a 
lower contrast shell around the cubic core after the coating 
step.

Close up inspection of the obtained silica shells, Fig. 1c, 
reveals distinct features with sizes ranging between 2 and 
4 nm. Similar to the microporous silica, the coating thickness 
can be controlled by increasing the amount of added TEOS 
(Fig. 2b). The main differences between Stöber silica coating 
previously studied in our group, [19] and the here explored 
mesoporous coating, are the thickness of the coating with 
respect to the TEOS/Cu2O ratio, and the thickness of the 
coating at low amounts of added TEOS, visible in Fig. 2. 
For a given TEOS/Cu2O ratio the mesoporous silica coatings 
are significantly thicker than for Stöber silica. This increased 
thickness is a direct result from the incorporated CTAB 
micelles in the coating, increasing the total volume of the 
silica shell. At low amounts of added TEOS, (below 1.20 
µL/mg) the thickness drops down sharply, and suggests 
that adding less than 0.7 µL/mg TEOS would not result in a 
mesoporous coating. This is in contrast to the Stöber silica, 
where the data fit intersects the origin. [19] The reason for 
this difference can be attributed to the different reaction 

Fig. 1  a b TEM imaging of  Cu2O cubes, 92 ± 8 nm and c d  Cu2O@mSiO2 cubes, 18 ± 2 nm silica. Scalebar 100 nm (white) and 500 nm (black)

Fig. 2  a  Cu2O cubes coated with silica of an increasing layer thickness. Scale bar 100 nm. b After reaching a treshold concentration, silica coat-
ing thickness increases with TEOS addition. The normalized standard deviation in coating thickness stays below 10% for the entire range
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conditions. If instead of the layer thickness, the silica volume 
 nm3 is plotted, the trend is expected to be linear. This is the 
case above 1.5 µL/mg (TEOS/Cu2O), and is shown in SI.1.

After extraction of the cuprous oxide template, the poros-
ity of cubic mesoporous  mSiO2 shells was assessed with 
nitrogen physisorption (Fig. 3). In Fig. 3b, the  N2 physisorp-
tion isotherm of  mSiO2 shells is presented, showing a step 
increase at p/p0 ≈ 0.2, and a large hysteresis loop with sud-
den desorption at p/p0 ≈ 0.5, both typical for mesoporous 
materials [43]. The pore size distribution of  mSiO2 shells 
is depicted in the inset of Fig. 3b. From Fig. 3b it is appar-
ent that mesopores are present in the silica obtained with 
CTAB, showing a distinct peak in the pore size distribu-
tion around 2 nm. This peak is not visible in the analysis of 
the nitrogen physisorption isotherm of Stöber silica shells 
(SI.2). The peak around 4 nm in de desorption curve is an 
artefact caused by meniscus instabilities, often observed in 
mesoporous materials [45]. Additionally, the  mSiO2 shells 
show a small peak in the desorption curve around 60–90 nm, 
which roughly corresponds with the size of the cubic void 
present in the hollow particles. The BET surface area was 
determined to be 1156 ± 17  m2  g−1. The density of the 
mesoporous silica was found to be 0.8 g/cm3 by comparing 
the relative weight increase to the relative volume increase. 
This is in agreement with the 0.8 to 0.9 g/cm3 found in lit-
erature. [46] Further insight into this calculation is given 
in SI.3.

3.2  Cuprous oxide transformation and galvanic 
replacement

Liquid phase calcination (LPC) [39] was used to calcine 
the cubic  CuO2@mSiO2 particles while maintaining their 
colloidal stability. It was found that conventionally applied 
air calcination [36] resulted in aggregated particles that 

could not be dispersed in water or ethanol. During LPC 
of  Cu2O@mSiO2 it was found that the calcination trans-
formed the cuprous oxide core in a metallic copper core. 
This was earlier observed by Gao et al. for  Cu2O micro-
cubes, who attributed the transformation to thermolysis 
[47]. After LPC, it is visible in Fig. 4a that the cubic 
cuprous oxide core evolves into a smaller rounded core, 
which is a result of the expulsion of oxygen. This trans-
formation of the  Cu2O into metallic copper is also visible 
on IR and UV–VIS spectra. In Fig. 4b a clear decrease of 
the Cu-O stretching vibration at 650  cm−1 is visible after 
LPC, indicating the absence of cuprous oxide. Addition-
ally, a decrease in O-H stretching and bending vibrations 
at 3500  cm−1 and 1650  cm−1, respectively, is observed, 
indicating a loss of hydroxyl groups present in the parti-
cles. Furthermore, the UV–VIS spectra in Fig. 4c show a 
clear transformation from a typical  Cu2O spectrum (blue) 
[8] to the absorption spectrum of Cu (red) [48]. After LPC 
the particles could be dispersed in ethanol and regained 
stabilities comparable to before the calcination step, indi-
cating the LPC method is a good way to calcine particles 
while retaining colloidal stability. In SI.4 TEM image are 
shown of samples taken during the LPC process, display-
ing the effects of the oxygen expulsion and subsequent 
surface melting.

Fig. 3  a TEM imaging of cubes before and after removal of the cubic 
 Cu2O template by heating in ammonium chloride solution. Scale bar 
200  nm. b  Nitrogen physisorption isotherm for cubic void@mSiO2 

shells. The inset shows the dV/dD pore volume, with a characteristic 
pore size of 2–3 nm found in mesoporous silica prepared with CTAB

Table 1  Half reaction standard potentials [49]

Half reaction Standard Potential (V)

Au3+(aq) + 3e−

⃗
Au(s) 1.498

Ag+(aq) + 1e−

⃗
Ag(s) 0.7996

Cu2+(aq) + 2e−

⃗
Cu(s) 0.3419
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Since the copper cores are present in all Cu@mSiO2 
cubes, and can be readily accessed by reagents, they can 
function as seeds for further modification. Using galvanic 
replacement, it is possible to transform the copper cores into 
silver or gold. This transformation is visible from the change 
in UV–VIS spectra after galvanic replacement, Fig. 4c show-
ing distinct UV–VIS absorption of both silver (green) and 

gold (yellow). Another indication of the successful galvanic 
replacement of copper with silver and gold, is the change in 
volume. Since the galvanic replacement follows standard 
half-reaction stoichiometry, as listed below in table 1, every 
three copper atoms are replaced by either two gold atoms or 
six silver atoms.

Fig. 4  a  TEM images of  Cu2O@mSiO2 (blue), Cu@mSiO2 (red), 
Ag@mSiO2 (green) and Ag@mSiO2 (yellow). Scale bar 100 nm b IR 
spectroscopy before  (Cu2O@mSiO2) and after (Cu@mSiO2) liquid 

phase calcination demonstrating the removal of cuprous oide. c UV-
Vis spectra displaying surface plasmon resonance peaks characteristic 
of metallic copper, silver and gold

Fig. 5  TEM EDX elemental mapping of Au@mSiO2. Scale bar 100 nm. EDX spectra available in SI.6
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The result is an increase in core volume after the galvanic 
replacement with silver and a decrease in core volume after 
replacement with gold, both visible in Fig. 4a.

Since the changes observed by TEM and UV–VIS are 
not conclusive whether the formed material is indeed sil-
ver or gold, energy-dispersive X-ray spectroscopy (EDX) 
was employed to determine the nature of the formed core. 
In Fig. 5, high angle annular dark field (HAADF/DF) 
micrographs of the particles after galvanic replacement 
with gold are shown in combination with EDX maps. 
The EDX signals of gold overlap with the core visible 
in HAADF, indicating the high-contrast material inside 
the cubes is indeed gold. Furthermore, EDX indicates 
that some trace amounts of copper are still present. Also, 
the EDX maps of Si and O are shown, which also coin-
cide with the HAADF image of the low contrast silica 
shell. The carbon signal observed on the particle is specu-
lated to be a result of adsorbed organic contaminants. 
The core-shell structure becomes apparent when the gold 

and silicon maps are combined, as visualized in Fig. 5, 
showing a clear silicium shell around the silver core. In 
Fig. 6, similar EDX maps of the particles obtained by the 
galvanic replacement with silver are presented, showing 
the same general features as the Ag@mSiO2 particles. In 
contrast to the golden core, the silver core leaves a central 
void and covers the inner silica confinement, these shapes 
are not unusual for galvanic replacement and are attrib-
uted to the Kirkendall effect [50]. The noble nature of the 
gold core is confirmed via the traditional “acid test” and 
is discussed in SI.5.

3.3  Catalytic dye degradation

The functionality of the silver cores was assessed by the cata-
lytic degradation of Congo red (Fig. 7). Congo red is readily 
hydrogenated by  NaBH4 in the presence of silver nanoparticles 
to colourless biphenyl and 4-amino-1-naphtalene-sulfonate 
[51]. Because Congo red degrades into colourless reaction 

Fig. 6  TEM EDX elemental mapping of Ag@mSiO2. Scale bar 100 nm. EDX spectra available in SI.6

Fig. 7  a  Congo red degradation rate with functional Ag@mSiO2, 
empty void@mSiO2 and a control without nanoparticles. b progres-
sion of UV–Vis spectrum during congo red degradation with Ag@

mSiO2. Note the isobestic point of the conversion at circa 300  nm. 
The degradation rate is further discussed in SI.7
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products, the reaction is easily monitored by UV–VIS. After 
addition of  NaBH4, the Ag@mSiO2 particles quickly discol-
oured the Congo red solution, resulting in very little absorption 
after 47 min (Fig. 7b). In Fig. 7a the Congo red concentra-
tion, determined from a calibration curve, is plotted against 
time for the dye degradation with Ag@mSiO2,  mSiO2 shells, 
and without particles. It is clearly visible that the silver-con-
taining nanocubes quickly degrade the dye, while the hollow 
mesoporous silica particles and the control (no particles) show 
only a slow degradation of Congo red. The spread in the data 
is likely caused by the production of gas bubbles in the cuvette 
by sodium borohydride, which interferes with the light-beam 
in the UV–VIS spectrophotometer.

4  Conclusions and outlook

Using a combination of liquid phase calcination and gal-
vanic replacement it is possible to transform cuprous oxide 
– mesoporous silica core-shell nanocubes into nanocubes 
with functional cores. Cuprous oxide nanocubes are coated 
with mesoporous silica by using a micellar cetyltrimethyl-
ammonium bromide template. The thickness of the coat-
ing can be tuned between 10 and 70 nm by controlling 
the tetraethyl orthosilicate concentration in the reaction 
mixture. Nitrogen physisorption shows the colloidal cubic 
mesoporous silica shells to have a BET surface area of 
1156 ± 17  m2  g−1 and mesopores in the 2–3 nm range. 
With liquid phase calcination, the cubic cuprous oxide 
core is transformed in a spherical metallic copper core, 
which can be transformed into silver and gold using gal-
vanic replacement reactions. Purely based on their stand-
ard potential, also other catalytically potent metals, such 
as platinum, palladium and rubidium, could potentially be 
used to replace the copper. [52] It is demonstrated that the 
silver core catalyzes the degradation of Congo red in the 
presence of sodium borohydride.

With a route to transform cubic core-shell particles into 
functional materials, it is possible to explore the deposition 
of different functional materials in the cubic void. Since gal-
vanic replacement is limited to reductions with higher stand-
ard reaction potentials compared to the reduction of  Cu2+, 
ion exchange might offer a possibility to deposit materials 
other than noble metals. Another possible functionalization 
is by using the copper core as catalyst for controlled radical 
polymerization, which might allow the selective deposition 
of functional polymers in the voids.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10934- 023- 01471-x.
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