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Abstract: There is a large interest in the annotation of speech addressed to infants. Infant-directed
speech (IDS) has acoustic properties that might pose a challenge to automatic speech recognition
(ASR) tools developed for adult-directed speech (ADS). While ASR tools could potentially speed
up the annotation process, their effectiveness on this speech register is currently unknown. In this
study, we assessed to what extent open-source ASR tools can successfully transcribe IDS. We used
speech data from 21 Dutch mothers reading picture books containing target words to their 18- and
24-month-old children (IDS) and the experimenter (ADS). In Experiment 1, we examined how the
ASR tool Kaldi-NL performs at annotating target words in IDS vs. ADS. We found that Kaldi-NL
only found 55.8% of target words in IDS, while it annotated 66.8% correctly in ADS. In Experiment 2,
we aimed to assess the difficulties in annotating IDS more broadly by transcribing all IDS utterances
manually and comparing the word error rates (WERs) of two different ASR systems: Kaldi-NL and
WhisperX. We found that WhisperX performs significantly better than Kaldi-NL. While there is much
room for improvement, the results show that automatic transcriptions provide a promising starting
point for researchers who have to transcribe a large amount of speech directed at infants.

Keywords: infant-directed speech; automatic speech recognition; research tools; speech registers;
transcriptions

1. Introduction

When addressing infants, adults spontaneously adopt a different speech register
referred to as infant-directed speech (IDS) or baby talk [1–3]. This speech register is
characterised by a variety of intonational and prosodic characteristics, including a higher
mean pitch, a larger pitch range, and greater pitch variability compared to adult-directed
speech (ADS) (for a review, see [4]). IDS has also been found to have a slower speaking
rate than ADS in many languages, including Dutch [5,6]. Many studies have reported
positive links between the acoustic properties of IDS and children’s linguistic outcomes (for
a meta-analysis, see [7]). The mechanisms driving this relationship are still widely debated.

Previous studies have shown that slow speech improves children’s word recognition
performance [8,9]. Han et al. showed that Dutch mothers slowed down speech when intro-
ducing unfamiliar words compared to familiar words [6]. The results are less conclusive
for pitch. In Singh et al., 7- and 8-month-old infants were able to recognise words that were
previously presented in IDS but not when they were presented in ADS [10]. Similarly, Estes
and Hurley showed that 17.5-month-old children only learned novel words in IDS but not
in ADS [11]. The effects of pitch have not been studied in isolation; thus, it remains unclear
whether the facilitative effects of pitch on word recognition can be attributed to pitch alone.
In addition, Han et al. found that Dutch mothers increase pitch for familiar words, while
Chinese mothers increase pitch for unfamiliar words [12]. Pitch may function differently
in these languages, and it remains unclear how pitch facilitates learning. It has also been
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suggested that infants prefer listening to IDS over ADS [13–15], indirectly facilitating the
learning process.

The exaggerated prosody of IDS may also facilitate the learning of vowel categories.
Kuhl et al. suggested that vowels in IDS are acoustically more extreme, containing larger
vowel spaces than vowels produced in ADS, leading to this hypothesis [3]. Recent studies
have reported that IDS vowels are produced with higher variability compared to vowels
in ADS [16,17], resulting in more overlap between vowel categories in IDS. Adriaans and
Swingley proposed that among this high variability, however, mothers produce exaggerated
high-quality instances of vowels that can facilitate vowel categorisation [18]. The trade-off
between larger vowel spaces, higher variability, smaller contrasts, and the presence of
high-quality tokens in the input remains to be seen.

There seems to be a general trend of IDS becoming prosodically more like ADS as
children grow older [12,19,20]. Specifically, Han et al. found that utterance mean pitch was
significantly lower when Dutch mothers addressed their 24-month-old infants compared to
addressing their 18-month-old infants, even though utterance mean pitch was still higher
in IDS than ADS at both ages [12]. Sjons et al. found an increase in articulation rate of
Swedish IDS from 7 to 33 months, suggesting that the articulation rate of IDS becomes
more similar to the articulation rate of ADS as children grow older. Nevertheless, IDS was
still slower than ADS [20]. Han et al., on the other hand, did not find any evidence of
age-related changes in articulation rate in Dutch IDS from 18 to 24 months, and speaking
rate remained slower compared to ADS [6]. Age-related effects vary cross-linguistically,
but there is a trend of IDS becoming acoustically more like ADS over time.

To identify and analyse the distinctive properties of IDS and subsequently advance
our understanding of the role of IDS in language development, it is essential to collect and
transcribe IDS in many languages and across many speakers for infants at different ages.
Preparing speech data for analysis takes a notoriously long time. Segmenting, annotating,
and transcribing an hour of speech, including verifying the quality of the transcription, can
take up to fifty hours in total depending on the contents [21]. Depending on the research
aims and the accuracy needed to accomplish these, automatic transcriptions may be used
as a starting point and then manually corrected by a human annotator to save time [22].
Tools are being developed to generate automatic annotations that would benefit research on
IDS by speeding up the annotation process [23]. Currently, it is still common practice in the
field to transcribe speech manually. To date, studies have not yet addressed to what extent
we can use off-the-shelf ASR tools to facilitate the annotation process of IDS. The current
study assessed the performance of ASR tools in the annotation of Dutch speech directed
at 18-month-old and 24-month-old infants. In Experiment 1, we examined how the ASR
tool Kaldi-NL performs at annotating target words in IDS vs. ADS. In Experiment 2, we
examined the performance more broadly by testing two different ASR systems (Kaldi-NL
and WhisperX) on the complete set of IDS utterances. We compared their performance in
terms of word error rates (WERs). The experiments inform us to what extent off-the-shelf
ASR tools trained on ADS are successful at annotating Dutch IDS.

2. Previous Work

Automatic speech recognition (ASR) is the process of generating text representations
for acoustic speech input. ASR systems have components that require extensive training,
such as an acoustic model and a language model. The acoustic model learns from audio
recordings combined with phonetic transcriptions, creating statistical representations of
speech sounds. Many ASR systems use deep neural networks to create these representa-
tions, drastically improving their automatic transcription performance [24]. The acoustic
model translates the audio signal into a sequence of the most probable phonemes. The
language model learns from a large corpus of transcribed speech, creating statistical proba-
bilities of word sequences in the language. The ASR system combines the two models to
produce the most likely written transcription of the signal as output.
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Previous studies have examined whether certain acoustic features are more likely to
result in ASR errors. Fast speech and extremely long word durations are both related to
higher error rates [25–27]. Goldwater et al. found that extreme values of pitch and intensity
also increase error rates [25]. In addition, an analysis of two human–computer dialogue
systems shows that misrecognised utterances are associated with pitch excursions, loudness,
and longer duration [28]. The authors marked these as instances of hyperarticulated speech.
Importantly, some of these features (i.e., above-average mean pitch and pitch range and
below-average speaking rate) are similar to the typical features of IDS.

Precisely because IDS is a highly variable and exaggerated speech register, it has
been hypothesised that it may also serve as particularly good training data, resulting in
more robust models when the goal is to transcribe a less variable speech register such
as ADS [29,30]. The acoustic characteristics of IDS—potentially resulting in phonetic
categories that are well separated in the input space—could aid phonetic classification
using Gaussian mixture models. Kirchhoff and Schimmel trained an ASR system on IDS
using recordings of 22 American English mothers addressing their 2- to 5- month-old
infants, and they trained another system on ADS using the same mothers addressing the
adult experimenter. The system trained on ADS was highly accurate at recognising target
words in ADS (95.5%) but less in IDS (81.6%). The system trained on IDS was notably better
at recognising target words in IDS (93.5%), but it did not perform as well on recognising
the same target words in ADS (90.2%) [29]. These results indicate that a matched system
(i.e., trained and tested on the same speech register) produces the best recognition results.
The largest degradation in performance is found when an ASR system trained on ADS is
used for the recognition of IDS which is the more variable speech register. Nevertheless, the
authors used a relatively small set of training data (utterances by 22 speakers). Currently,
we do not know whether an ASR system trained on a much larger ADS data set contains
more robust models that are more suitable for the recognition of IDS.

3. Experiment 1

In the first experiment, we aimed to assess to what extent an open-source ASR tool,
Kaldi-NL, was successful at annotating target words in continuous, semi-naturalistic IDS.
This is the first study to (1) address this question for Dutch, (2) use a readily available open-
source ASR tool, (3) compare the recognition performance of IDS addressed to different
age groups, and (4) examine the effects of different acoustic features (i.e., mean pitch, pitch
range, and articulation rate) on recognition accuracy. While acoustic deviations in pitch and
speaking rate support children’s word recognition abilities [8–11], previous studies have
shown that these may have negative effects on ASR performance [25–27]. Given that ASR
performance is negatively affected by acoustic deviations, and that Dutch IDS is marked
by a higher mean pitch, a larger pitch range, and a slower articulation rate compared to
Dutch ADS, we would expect that an ASR system trained on Dutch ADS exhibits lower
performance when transcribing Dutch IDS. Very few studies have assessed the accuracy
of ASR systems at transcribing IDS, and there are none so far for Dutch. It is important
to verify whether research findings generalise to other languages. First, we compared the
accuracy of Kaldi-NL at transcribing target words produced by Dutch mothers embedded
in continuous IDS directed at 18-month-old children and 24-month-old children and the
same target words embedded in continuous ADS directed at the experimenter. Then, we
examined which acoustic features affected speech recognition accuracy using a logistic
mixed-effects model. The results informed us to what extent an off-the-shelf ASR tool can
successfully transcribe IDS and whether the transcription accuracy is negatively affected
by IDS.

3.1. Materials and Methods
3.1.1. Participants

This study is part of a larger cross-linguistic corpus of Dutch and Mandarin Chinese
infant-directed speech [31]. The speech data collection methods are identical to those
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reported in [6,12]. From this corpus, we included 21 Dutch-speaking mother–child dyads
who were recruited from the Utrecht Baby Lab database and were all Dutch native speakers
living in the Utrecht area in the Netherlands. We used a longitudinal design and collected
mothers’ ADS and IDS speech data when their children were 18 months old (M = 18.4,
range = 18.0–18.9) and 24 months old (M = 24.7, range = 24.0–27.0). All mothers were
native speakers of Dutch with higher education (undergraduate degree and above). All
children were typically developing with no reports of language or hearing problems. All
participating mothers signed informed consent forms.

3.1.2. Materials and Procedure

Mothers read the same picture book to their infant to elicit IDS and to the female
adult experimenter to elicit ADS during the recording sessions. Different picture books for
each time point (children’s ages of 18 months and 24 months) were designed to elicit two
different sets of seven disyllabic target words. On each page, the target word was on the
left side and an illustration including a depiction of the word was on the right side (for the
picture book, see [31], p. 187). The mothers were instructed to tell the story including the
target words, eliciting semi-naturalistic speech. The target words at both time points can
be found in Table 1. These target words were selected because they were likely unfamiliar
to the child (apart from “apple” and “grandpa”, which were used for comparison), which
was relevant to the previous study. The unfamiliar target words at 24 months are of much
lower frequency than the unfamiliar target words at 18 months.

In total, the participants produced 1051 target words embedded in semi-naturalistic
speech across both speech registers and time points. All mothers produced each target
word embedded in utterances at least once in each condition at each age. The productions
are equally distributed: 563 target word productions when the infants were 18 months old
(243 in ADS; 320 in IDS) and 488 target word productions when the infants were 24 months
old (215 in ADS; 273 in IDS). The total duration of the speech sample was 97.95 min (ADS:
36.48 min; IDS: 61.47 min) at 18 months and 102.35 minutes (ADS: 35.65 min; IDS: 66.70 min)
at 24 months. All participants were tested in a quiet room in the Utrecht Baby Lab. The
audio recordings were made using a ZOOM H1 recorder with 16-bit resolution and a
sampling rate of 44.1 kHz.

Table 1. Target words and their word frequencies according to the SUBTLEX corpus of Dutch [32].

18 Months 24 Months
Dutch Translation Frequency Dutch Translation Frequency

opa “grandpa” 2507 opa “grandpa” 2507
appel “apple” 446 appel “apple” 446
eland “moose” 115 emoe “emu” 6
bever “beaver” 128 wezel “weasel” 90
walnoot “walnut” 31 bamboe “bamboo” 30
kasteel “castle” 1207 kapel “chapel” 194
pompoen “pumpkin” 109 jasmijn “jasmine” 37

3.1.3. Transcriptions

We compared the automatic annotations to the manual annotations of target words to
assess the accuracy of the ASR system at annotating target words in IDS. All target words
were manually annotated in previous work (for details, see [31]). A trained Dutch native
speaker extracted the target words from the audio recordings using Praat [33]. For the
current study, the full recordings were automatically transcribed using the online Kaldi-NL
ASR tool developed by the Dutch Foundation of Open Speech Technology and hosted by
the Radboud University (Version 0.5.0; [34]). The Dutch models were developed at the
University of Twente using the Spoken Dutch Corpus (“Corpus Gesproken Nederlands”)
containing about 900 h of Dutch speech recordings from, for example, conversations and
television shows [35]. Kaldi-NL has a lexicon of ca. 250 thousand words and employs
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time-delay neural network layers, which have been shown to outperform low-frame-rate
bidirectional long short-term memory acoustic models [36]. A recent study used Kaldi-NL
to transcribe Dutch doctor–patient consultation recordings and initially found a WER
of 25.8% without fine-tuning the language model or lexicon to include domain-specific
healthcare words [37]. To generate the automatic transcriptions, the online system takes
audio files (e.g., WAV) as input. After a short period of processing, the output of the
ASR system consists of a plain text file containing a written transcription and a CTM file
containing all transcribed words and their corresponding timestamps (i.e., indicating when
they occurred in the audio file). Using this output, we lastly examined the accuracy of the
automatic annotations of target words using the evaluation procedure described below.

3.1.4. Evaluation Procedure

We compared the automatic annotations of the target words from the time-stamped
CTM files to the manual annotations (i.e., the ground truth) using an interactive Python
script. For each target word in the manual annotations, the script shows the timestamp of
the word from the Praat TextGrid and the timestamp of the target word from the automatic
transcription in addition to playing both extractions from the audio file. The evaluator
checks whether the manual and automatic words match. If yes, this counts as one “hit”
(correctly identified target word). If not, then the word is a “miss” (not identified target
word). Lastly, the script collects all target words that were automatically transcribed but
not matched to a manual annotation and marks these as “false positives” (words incorrectly
identified as target words). These cases were double-checked since the target words could
potentially have been overlooked during the manual annotation process. The output of
the script is a data file containing all assessed target words, the speech register (IDS or
ADS), the time point (18 m or 24 m), the assessment (hit, miss, or false positive), and the
timestamps from the TextGrid and from Kaldi-NL. All morphological varieties of the target
words, such as diminutives (e.g., appeltje or walnootje) were also included in the data. We
only analysed target words and not full sentences because it is easier to compare the data
across speech registers and to eliminate the chance that any observed differences between
IDS and ADS can be attributed to the language model (e.g., IDS tends to have shorter
sentences and more repetitions) or the vocabulary size (e.g., IDS tends to have shorter,
simplified words).

The frequencies of hits, misses, and false positives allow us to calculate three common
accuracy scores: recall, precision, and F-scores. Recall informs us how many of the total
target words annotated manually were also found by the ASR system. Precision informs
us how many of the recalls were target words and not false positives. F-score is the
harmonic mean between recall and precision [38]. This is an important additional measure
because high recall does not equal high accuracy when precision is low, and vice versa. The
measures are calculated as follows:

recall =
hits

hits + misses

precision =
hits

hits + f alse positives

F = 2 · precision · recall
precision + recall

3.1.5. Acoustic Features of Target Words

We examined each target word’s mean pitch, pitch range, and articulation rate. First,
we automatically extracted the minimum pitch, maximum pitch, and mean pitch from each
target word in IDS and ADS using a pitch range of 100–600 Hz in Praat version 6.1.09 [33].
The top and bottom 5% of pitch measurements were all manually checked for pitch jumps
(i.e., halving or doubling). In the case of a pitch jump, the pitch range was slightly adjusted
to better fit the data. The pitch range was calculated by subtracting the minimum pitch
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from the maximum pitch of a target word. The articulation rate was calculated by dividing
the number of syllables by the total duration of the target word in seconds (i.e., number of
syllables per second). Target words were excluded when pitch could not be measured due
to interference of the child’s voice (n = 17) or due to whispering (n = 2), resulting in a final
set of 1032 target words for the acoustic analysis.

3.1.6. Statistical Analysis

To assess what affects ASR performance, we examined the effects of speech register,
infant age, and the different acoustic properties of IDS—mean pitch, pitch range, and
articulation rate—on recognition accuracy. The results of 1032 target words were analysed
by fitting logistic mixed-effects models using the lme4 package version 1.1-30 [39] in R
version 4.2.0 [40] to predict recognition accuracy for each target word (hit or miss). The
continuous variables F0 mean, F0 range, and articulation rate were centred and scaled. We
used dummy coding for the dichotomous variables speech register (IDS or ADS) and age
(18 m or 24 m) with ADS and 18 m as reference levels. We added random intercepts for
participants to account for potential individual variations in speech perceptibility and items
because the target words were not the same across both time points and differed in word
frequency. This can negatively impact recognition performance in a way that is not related
to the measures that are of interest in the present study. Lastly, we calculated odds ratios
from the regression coefficients to examine the impact of the predictors.

3.2. Results

We first calculated recall, precision, and F-scores to assess the accuracy of the ASR
system for each speech register at each time point. This allowed us to compare the recogni-
tion accuracy for IDS to ADS. Then, we examined the distributions of the various acoustic
measures across all conditions to examine whether the acoustic features that are typical of
IDS—mean pitch, pitch range, and articulation rate—affected recognition accuracy. Lastly,
we fitted a logistic mixed-effects model to examine which of the predictors has a significant
effect on recognition accuracy.

3.2.1. Accuracy Scores

For speech addressed to 18-month-old infants, the ASR system correctly annotated 180
of 320 (56.3%) target words. For ADS, the ASR system found 174 of 243 (71.6%) target words.
For the 24-month-old infants, the system correctly annotated 151 of 273 (55.3%) target words
in IDS and 132 of 215 (61.4%) target words in ADS. The difference in recognition accuracy
between ADS and IDS diminished between the two time points. The recall scores are
visualised in Figure 1. All target words were correctly annotated at least once, indicating
that none of the target words were out-of-vocabulary words (i.e., all target words are
present in Kaldi-NL’s vocabulary).

In both registers, precision is 100%. Precision is calculated using false positives,
and there were none in the data. For false positives to occur, other produced words
must be phonologically similar to target words, which is unlikely given the limited con-
tents of the picture books used in the present study. Table 2 contains the results of the
evaluation procedure.

Table 2. Results of the evaluation procedure in proportions.

18 Months 24 Months
Register ADS IDS ADS IDS

Recall 0.72 0.56 0.61 0.55
Precision 1.00 1.00 1.00 1.00
F-score 0.84 0.72 0.76 0.71
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Figure 1. The proportions of hits and misses for each speech register within each age group.

Recall scores are generally lower for target words at 24 months and also for ADS. This
is likely caused by the lower word frequencies of the target words that were produced at
this age, as shown in Table 1. Low-frequency words have low probabilities in the language
model of the ASR tool, making them less likely candidates to be selected. Therefore, the
general word frequencies of the target words affect recognition accuracy. The important
finding is that the decrease in recognition accuracy found for IDS compared to ADS became
much smaller.

3.2.2. Acoustic Measures

Figure 2 shows boxplots of the mean pitch of hits and misses in both speech registers.
First, the boxplots show that on average, target words in IDS have a higher mean pitch
than target words in ADS at both time points. Target words have the highest mean pitch
in IDS at 18 months. Secondly, missed target words have on average a higher mean pitch
than hits at 18 months. This difference seems to have disappeared at 24 months, although
missed target words seem to have more extreme mean pitch values in both directions.

Figure 2. Boxplots of the mean pitch of target words.
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Figure 3 shows boxplots depicting the average pitch ranges of target words. First, the
boxplots show that target words in IDS have a larger pitch range on average compared to
target words in ADS. The figure does not provide evidence that missed target words have
larger pitch ranges than hits on average.

Figure 3. Boxplots of the pitch range of target words.

Figure 4 shows boxplots depicting articulation rates. First, target words at 24 months
are on average produced faster than target words at 18 months. At 24 months, target words
in IDS were produced slower than target words in ADS. The difference between IDS and
ADS is surprisingly smaller at 18 months, whereas we would expect IDS to become more
similar to ADS over time. One explanation could be that the target words are of much
lower frequency at 24 months, and mothers may lower their articulation rates more for
didactic purposes when presenting unfamiliar words to their children [6]. Articulation
rate does not seem to have a large effect on recognition accuracy, although we find more
extreme values of low articulation rates across missed target words.

Figure 4. Boxplots of the articulation rate (syllables/s) of target words.
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The results of 1032 target words were analysed by fitting logistic mixed-effects models
using a bottom-up approach. First, we found that adding random intercepts for participants
and items significantly improved model fit. This indicates there is random variability across
participants and items that affects recognition accuracy. Then, we examined which of the
fixed effects (speech register, age, mean pitch, pitch range, and articulation rate) significantly
improved model fit. We found that speech register (p < 0.001) and mean pitch (p = 0.02)
significantly improved the fit of the model. There is a significant effect of age if we do not
add a random intercept for items to the model. The effect of age likely disappears when
adding a random intercept for items since the items differed across the two measurement
waves, partially accounting for this effect. The model that includes a random intercept
for items better fits the data. There was no improvement to model fit when adding an
interaction between the fixed effects. The final model, including fixed effects for speech
register and mean pitch and random intercepts for participants and items, is presented
in Table 3.

Table 3. Results of the logistic mixed-effects model transformed to exponentiated coefficients (accu-
racy ∼ speech register + F0 mean + (1|subject) + (1|item)).

Predictor Exp. Coefficient SE Z-Value p-Value

(Intercept) 0.40 0.37 −2.51 0.01
Register (IDS) 1.86 0.15 4.08 <0.001
F0 mean 1.20 0.08 2.24 0.02

The speech register IDS is a strong predictor of a recognition error (i.e., a missed target
word). When the target word is produced in IDS, there is an increase of 1.86 (95% CI [1.38, 2.51])
in the odds of the ASR system missing the target word compared to a target word produced
in ADS. On top of this, there is a significant negative effect of mean pitch on recognition ac-
curacy. A one-unit increase in mean pitch results in an increase of 1.20 (95% CI [1.02, 1.40])
in the odds of the ASR system missing a target word. Words produced with a higher mean
pitch are problematic for the recognition of target words in continuous speech.

3.3. Discussion

The results show that there is a large gap between the recognition accuracy of ADS and
IDS, especially for speech directed at younger infants. Previous studies on IDS have shown
that the acoustic features of IDS become less salient over time [12,19]. This could explain
why the difference between IDS and ADS automatic recognition accuracy became smaller
for speech addressed to 24-month-olds compared to 18-month-olds. As we expected based
on a previous study on American English, the ASR tool trained on ADS is less successful at
transcribing IDS than ADS [29]. The difficulties with transcribing IDS generalise to Dutch.
While Kaldi-NL is trained on a significantly larger data set compared to the ASR system
used in the previous study on American English IDS (i.e., 900 h of speech compared to a
set of utterances by 22 speakers), this did not help much to overcome the difficulties with
automatically recognising this speech register.

We also examined which factors are predictors of a recognition error made by Kaldi-NL.
The results show that IDS as a speech register is an important predictor of a missed target
word. We also found a significant negative effect of mean pitch on recognition accuracy.
Previous studies found that slow speech facilitates word recognition in children [8,9],
although it could hinder ASR performance [25–27]. We did not find a significant effect
of articulation rate on ASR accuracy. It could be possible that the ASR system trained
on ADS does not have difficulties with the larger pitch range or slower articulation rate
of IDS, but the ASR system does show a decrease in accuracy when transcribing target
words with a higher mean pitch. The results of the mixed-effects model suggest that IDS is
also likely to be more difficult to be recognised by the ASR system for reasons beyond the
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examined acoustic measures, for example, due to the high amount of acoustic variability or
any syntactic differences.

3.4. Follow-Up Experiment

We found that Kaldi-NL transcribed approximately half of the target words correctly
in IDS and approximately two-thirds in ADS. Based on this performance, we asked two
follow-up questions. First, the target words, while important to the previous experiment,
constitute only a relatively small portion of the total set of words in the data. Many studies
investigating the acoustics of speech measure prosody at the utterance level. As such, a
tool that recognises utterances can be very useful for research. One important question is,
thus: To what extent do the results of target words generalise to the automatic transcription
of utterances? Second, since we tested only one particular system in Experiment 1, the
question is: To what extent is the performance reflective of ASR systems in general. That
is, to what extent are the recognition results similar across different ASR systems? In
Experiment 2, we tackle these two questions in parallel by manually transcribing all IDS
utterances in the data set and comparing the two different systems (Kaldi-NL and the
newly available open-source WhisperX) on their ability to transcribe these utterances as
measured by WERs. By analysing full sentences instead of target words, we have over
twenty times more IDS data, while the data are less affected by the large differences in
target word frequencies across the two time points.

4. Experiment 2

In this second experiment, we first aimed to evaluate how open-source ASR systems
perform at transcribing utterances in Dutch IDS. We compared WERs of utterances in IDS
directed at 18-month-old and 24-month-old infants. We expected that WERs are lower
in speech directed at older infants since IDS becomes prosodically more similar to ADS
as children grow older [12,19]. The results for speech addressed to 18-month-old chil-
dren and 24-month-old children in the previous experiment were difficult to compare
because the target words examined at the two time points were of vastly different word
frequencies—negatively influencing overall ASR performance. By calculating WERs of full
utterances, we reduce the influence of target word frequencies on the results. In addition,
previous studies examining correlations between the acoustics of IDS and children’s lan-
guage outcomes usually measure prosody at the utterance level instead of—or in addition
to—the word level (e.g., [8,9,41]). As such, a tool that recognises utterances correctly can be
very useful for research.

Based on the performance of Kaldi-NL in the previous experiment, the second aim
was to assess whether an ASR system trained on a much larger, semi-supervised data set
performs better at transcribing Dutch IDS. It might be possible that a larger training set
results in more robust models that are more successful at transcribing a more variable speech
register such as IDS. We compared the WERs of two different open-source ASR systems
(Kaldi-NL and WhisperX) for the transcription of Dutch IDS. The second experiment
informed us whether the results of target words in the first experiment generalise to full
utterances and across different ASR systems.

4.1. Materials and Methods
4.1.1. Participants

In Experiment 2, we included the same 21 Dutch-speaking mother–infant dyads
from the larger cross-linguistic corpus of Dutch and Mandarin Chinese infant-directed
speech [31] that were used in the previous experiment.

4.1.2. Transcriptions

We used the same automatic transcriptions of the picture-book reading recordings that
were described in the previous experiment generated by the open-source tool Kaldi-NL.
Instead of only examining target words, however, we used the automatic transcriptions of
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all utterances in the recordings of the picture-book reading sessions (M = 348 words per
recording). To calculate WERs, we manually annotated all words in the IDS recordings. A
research assistant was trained to manually correct and supplement the Kaldi-NL transcrip-
tions. All words except for the occasional mentions of children’s names were included in the
annotation process. Children’s names were also removed from the automatic transcriptions.
The manual annotation procedure resulted in a gold standard IDS data set containing a
total of 15,309 words. All unique words and their total frequencies in the IDS corpus can be
found on OSF (see the Data Availability Statement). Out of this total data set, only 4.4%
of the words were target words. The influence of target words in this experiment is thus
minimal, as are their potential frequency effects on the outcomes.

For the comparison between two open-source ASR systems, we also automatically
transcribed the same IDS recordings using WhisperX [42], which provides improved
accuracy and word-level timestamps using voice activity detection and forced phoneme
alignment while using OpenAI’s Whisper models [43]. Whisper contains weakly supervised
(or semi-supervised) cross-linguistic training models (i.e., audio paired with unvalidated
transcripts from the Internet), which allows for a larger quantity of training data compared
to supervised models. A larger quantity of training data can result in more-robust models.
The full data set comprises over 680,000 h of training data, of which 117,000 h cover
96 other languages. When testing the largest Whisper model on the Fleurs data set, a mean
WER of 4.4% was found for English and a mean WER of 6.7% was found for Dutch [43].
WhisperX also takes audio files as input (e.g., WAV) and generates text files containing all
transcribed words and their corresponding timestamps as output, which can be used in the
evaluation procedure.

4.1.3. Evaluation Procedure

To calculate WERs, we used the toolkit sclite version 2.10 from SCTK version 2.4.12 [44],
which is an open-source tool for scoring and evaluating the output of ASR systems. All
reference and hypothesis transcription files were transformed to CTM format before being
submitted to sclite. The tool calculates the WER in percentages for individual speakers by
dividing the sum of word deletions, insertions, and substitutions by the total number of
words in the human-labelled transcription. The higher the WERs, the lower the accuracy of
the transcriptions. We standardised the texts by making all words lowercase and removing
all punctuation in the ASR output and the reference transcriptions. In addition, common
abbreviations were spelled out in full (e.g., ‘m => hem, z’n => zijn).

4.1.4. Statistical Analysis

In addition to reporting the overall WERs, a statistical analysis was carried out
in R version 4.2.0 [40]. We fitted a linear mixed-effects model using the lme4 package
version 1.1-30 [39] with WERs for each speaker as continuous outcome variables. Each
speaker has four WER scores: two generated by Kaldi-NL and two generated by WhisperX,
one for each measurement point. We included the ASR system (Kaldi-NL or WhisperX)
and age (18 months and 24 months) as two dichotomous predictors to the model. We used
dummy coding where Kaldi-NL and 18m were used as reference levels. We also added
random intercepts for participants to the model. This allowed us to examine (1) whether
WERs are affected by children’s ages and (2) whether WERs are affected by the open-source
ASR tool used to generate the transcriptions.

4.2. Results

Across both time points, Kaldi-NL had a mean WER of 40.12% (SD = 10.39). WhisperX
had a mean WER of 22.49% (SD = 10.28). Table 4 presents descriptive results of WERs of
Kaldi-NL and WhisperX for speech directed at 18-month-old and 24-month-old infants.
There is a large difference in performance between Kaldi-NL and WhisperX but only small
differences in performance between the two measurement waves.
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Table 4. Descriptive statistics of WERs of transcriptions by Kaldi-NL and WhisperX for speech
directed at 18-month-olds and 24-month-olds.

18 Months 24 Months
ASR System M SD M SD

Kaldi-NL 41.97 11.64 38.27 8.86
WhisperX 21.84 11.52 23.14 9.11

First, we compared the model including the predictor ASR system to a null model
without any predictors. The model including the predictor ASR system provided a signifi-
cantly better fit to the data compared to the null model (p < 0.001). Then, we added age to
this model. The model including age did not provide a significantly better fit to the data
(p = 0.627). The ASR systems did not perform differently on IDS directed at 18-month-olds
or 24-month-olds. The results of the final model are shown in Table 5. The results show that
the ASR system WhisperX significantly reduced WERs by 17.63% (95% CI [−21.52, −13.74])
on average compared to Kaldi-NL. The residuals in the model were normally distributed.

Table 5. Results of the linear mixed-effects model (WER∼ASR system + (1|subject)).

Predictor Estimate SE t-Value

(Intercept) 40.12 1.78 22.52
System (WhisperX) −17.63 1.97 −8.95

4.3. Discussion

Previous studies examining relations between the prosody of maternal speech and
children’s linguistic outcomes typically measured the acoustics at the utterance level [8,9,41].
As such, it is important that an ASR tool recognises utterances correctly. The results show
that Kaldi-NL is not very successful at transcribing utterances in IDS. The mean WER of
40.12% is much higher than previously reported by Tejedor-García et al. for the healthcare
domain [37]. They used Kaldi-NL to transcribe Dutch doctor–patient consultations and
found a WER of 25.8%. We found that WhisperX performs significantly better. Although
the mean WER of 22.49% is higher than the WER of 6.7% reported for the Fleurs data set
using Whisper [43], WhisperX could be used as a starting point to facilitate the annotation
process of IDS. The decrease in WER for both ASR systems compared to other Dutch ADS
data sets corroborates the finding of Experiment 1 that IDS is more difficult to automatically
transcribe compared to ADS, at least for systems trained on ADS.

The two ASR systems differ vastly in the amount of training data. Where the models
of Kaldi-NL are trained on approximately 900 h of Dutch speech from television shows and
lectures, Whisper is trained on 680,000 h of cross-linguistic training data (of which 117,000 h
covers 96 other languages). We found that WhisperX performed significantly better than
Kaldi-NL at transcribing full utterances in Dutch IDS. The large number of open-source
ASR systems available can make it difficult for researchers to know which system best
suits their needs. If multiple open-source ASR tools are available in a language, we would
advise researchers to assess which system performs better on their specific data set. The
results of this experiment show that the type of ASR system can have a large influence on
the accuracy of the transcriptions.

5. General Discussion

In the current study, we aimed to assess to what extent open-source ASR tools can
be used for the transcription of maternal speech directed at 18-month-old and 24-month-
old infants. This is the first study to examine the transcription accuracy of IDS using
off-the-shelf ASR tools trained on large, (semi-)supervised ADS data sets. Currently, most
researchers of IDS transcribe audio recordings manually from scratch, while a growing
number of open-source ASR tools trained on large data sets are available cross-linguistically.
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Although the manual procedure results in highly accurate transcriptions, it is labour-
intensive, which makes the data annotation process time-consuming and expensive. To
date, no studies have examined whether researchers can successfully use off-the-shelf ASR
tools trained on ADS for the annotation of IDS. Using automated tools can drastically
decrease the time that is currently needed for manual transcriptions.

The results show that the open-source ASR system Kaldi-NL is less accurate when
transcribing IDS compared to ADS. We found that the recognition accuracy of target words
is decreased when they are produced in IDS compared to ADS, and we also found a
negative effect of mean pitch. The difference in accuracy between the two speech registers
was largest for speech directed at younger children. These results suggest that we first have
to identify whether ASR tools can provide benefits before we start implementing them
in the annotation process. A previous study found that WERs should be below 30% for
automatic transcriptions to be beneficial to the annotation process [22]. Otherwise, it would
be faster to annotate manually from scratch. Although we believe this limit can be different
depending on the types of recognition errors or the specific research goals, the results of the
current study constitute evidence that the open-source ASR system WhisperX can transcribe
Dutch IDS at a more than sufficient accuracy. We would recommend researchers of IDS
compare the performance of multiple off-the-shelf ASR systems in case those are readily
available in their language. The accuracy may differ depending on the characteristics of
the training data or the data set being transcribed.

In Experiment 1, we found that the difference in recognition performance of Kaldi-NL
at transcribing target words in IDS and ADS decreased over time. In Experiment 2, we
did not find that Kaldi-NL nor WhisperX performed differently across the two time points
when comparing WERs of full sentences. There are two possible explanations for this result.
First, utterances could be less affected by the typical acoustic features of IDS compared to
target words. Target words (i.e., content words) are typically stressed, while function words
are not. In Dutch, stressed syllables are marked by a longer duration and high frequency
emphasis [45]. Secondly, previous work has found that when mothers are reading a picture
book containing target words to their infants, mothers consistently position these words on
exaggerated pitch peaks in utterance-final position [46]. When addressing infants, mothers
lengthen the vowels of content words regardless of their position in the utterance [47],
while they lengthen the vowels of function words only in utterance-final position [48]. By
examining target words (i.e., content words only) rather than utterances (i.e., containing
content words and function words) in Experiment 1, the prosodic modifications of IDS
may have been more prominent. Since the prosody of IDS becomes more similar to ADS
when children grow older, this may have caused a difference in ASR accuracy for target
words across the two time points (Experiment 1), which disappeared when analysing full
utterances, which are less affected by the prosodic modifications of IDS overall (Experiment
2). An alternative explanation is that Kaldi-NL relies more on the acoustic model compared
to WhisperX. That would suggest that Kaldi-NL is more heavily affected by the acoustic
differences of IDS, which are more prominent when children are younger. For Kaldi-NL,
we found a decrease in WER of 3.7% for speech directed at older children, which is what
we would expect if the system relies more heavily on the acoustic model. In contrast, we
found an increase of 1.3% in WER for speech directed at older children for WhisperX. If
WhisperX relies more on the language model, this could suggest that the performance of
WhisperX is more impacted by the low frequency target words that were spoken to older
children rather than on the acoustic differences across the two time points.

Future studies should examine whether we can improve the automatic annotation of
IDS by applying front-end lowering of mean pitch of the speech recordings (see [49] for the
application of this method to children’s speech). This could be an efficient, cost-effective
solution that can be easily applied by researchers studying different languages—provided
a well-trained ASR system in their language exists. This solution, if successful, could be
a simple method to create a small but significant improvement in recognition accuracy.
Another approach that could be taken in future studies would be to train new language
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and/or acoustic models on IDS data. For this to work, the IDS data set must be large and
general enough to be useful for application on new data sets.

6. Conclusions

In these experiments, we showed that open-source ASR systems can be used for the
annotation of Dutch IDS. Although the performance decreased when transcribing IDS
compared to ADS, the results are a promising start. Depending on the research goals,
automatic transcriptions still need to be corrected by a human annotator. However, this
correction process will take less time compared to transcribing the data from scratch. We
additionally showed that the choice of ASR system has a large influence on the results. For
our Dutch IDS data set, WhisperX performed significantly better than Kaldi-NL. This is the
first study that assessed the accuracy of automatic transcriptions of (Dutch) IDS directed
at children of different ages generated by different off-the-shelf ASR systems. While there
is much room for improvement, the results show that automatic transcriptions provide a
promising starting point for researchers who have to transcribe a large amount of speech
directed at infants.
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