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Abstract
Many regions worldwide face soil loss rates that endanger future food supply. Constructing soil and water conservation
measures reduces soil loss but comes with high labor costs. Multi-objective optimization allows considering both soil loss
rates and labor costs, however, required spatial data contain uncertainties. Spatial data uncertainty has not been considered
for allocating soil and water conservation measures. We propose a multi-objective genetic algorithm with stochastic
objective functions considering uncertain soil and precipitation variables to overcome this gap. We conducted the study in
three rural areas in Ethiopia. Uncertain precipitation and soil properties propagate to uncertain soil loss rates with values that
range up to 14%. Uncertain soil properties complicate the classification into stable or unstable soil, which affects estimating
labor requirements. The obtained labor requirement estimates range up to 15 labor days per hectare. Upon further analysis of
common patterns in optimal solutions, we conclude that the results can help determine optimal final and intermediate
construction stages and that the modeling and the consideration of spatial data uncertainty play a crucial role in identifying
optimal solutions.
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Multi-objective optimization

Introduction

Securing food supply is one of the major global challenges
of the present and future, and FAO (2017) considers soil
erosion a main threat to meeting future food demand. Most
soil erosion occurs on cultivated land being used to provide
crops for subsistence use or trade. Sheet and rill erosion
cause the highest soil loss on cultivated land (Hurni et al.,
2016) and must be stopped or reduced to stabilize (Arora
et al., 2022) or increase crop production (Gachene et al.,
2020). Soil and water conservation (SWC) measures protect
vulnerable areas from sheet and rill erosion (Lakew et al.,
2019; Kassawmar et al., 2018; Alemu and Melesse, 2020).
The question arises why SWC measures do not protect

every area affected by soil loss. Several hindering factors
are reported for low adoption rates of installing SWC
measures (Betela and Wolka, 2021, Sileshi et al., 2019).
One common reason is the high labor requirement to install
and maintain the physical structures of SWC measures
(Hassen et al., 2021).

Due to high labor requirements and insufficient labor,
constructing conservation practices in an area is generally
infeasible. By dividing an area into sub-units, in the context
of soil and water conservation into sub-watersheds (Hurni
et al., 2016), the required labor can be reduced by selecting
a fraction of the area for treatment. The trade-off between
labor or soil loss rates can be identified for every sub-
watershed individually. Therefore, deciding which sub-
watersheds of an area are selected for conservation ideally is
a combinatorial problem that, with every additional sub-
watershed, increases exponentially in complexity with 2
(selected for conservation/ not selected for conservation) to
the power of the number of watersheds.

With increasing complexity, the evaluation of all possi-
ble combinations can become infeasible. (Meta-)Heuristic
optimization is a method to find optimal or close to optimal
solutions without evaluating all possible solutions (Yusoff
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et al., 2011). In comparison to single-objective optimization
algorithms, multi-objective optimization algorithms find a
set of optimal compromise solutions between the objectives
using the principle of Pareto optimality: solutions that
cannot improve in one objective without becoming worse
for other objectives are Pareto optimal and referred to as
non-dominated solutions (Deb et al., 2002). All Pareto
optimal solutions combined form the Pareto front.

The real world can not be described by data, at least not
without uncertainty (Zhang and Goodchild, 2002). Liu et al.
(2007) point out that uncertainty directly influences
decision-making in watershed management. One source of
uncertainty that affects the planning of soil and water
conservation measures is the uncertainty in spatial data
required to estimate the soil loss rate or the labor cost
contain uncertainties. When required input data for com-
puting the estimates of precipitation or soil properties con-
tain uncertainties, then the estimates become uncertain, too.
Therefore, such data uncertainty should be incorporated into
the optimization. Eskandari and Geiger (2009) describe a
method that allows a multi-objective optimization to handle
stochastic objective functions.

To the best of our knowledge, no research about opti-
mizing the allocation of bench terraces or similar SWC
measures has been conducted under uncertainty. Further-
more, no study has been conducted about multi-objective
spatial optimizations applying the methods of Eskandari

and Geiger (2009) to handle stochastic objective functions.
The aim is to optimize the allocation of SWC measures, i.e.,
bench terraces, on the sub-watershed level to minimize soil
and labor requirements. By considering data uncertainty,
our study provides methods and information that can be
used to secure future food supply in areas with high soil
loss rates.

In this work, we aim to answer the following research
questions: (1) How does the uncertainty of spatial input data
propagate to the uncertainty in the objective values in the
final Pareto fronts? (2) What common characteristics do
sub-watersheds share in Pareto-optimal solutions? (3) What
information can be derived from the Pareto fronts for
optimal SWC measure allocation planning despite
uncertainties?

Methods

Overview

The designed workflow (Fig. 1) illustrates all necessary
steps to optimize SWC measure allocation under uncer-
tainty. We use sub-watersheds as decision units. In the units
where the SWC measures shall be applied, bench terraces
are planned (Fig. 2) with slope-dependent spacing between
terraces. Each combination of units with SWC measures
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represents one solution of the population of the multi-
objective genetic algorithm. We use the Non-dominated
sorting Genetic Algorithm II, which is a common choice to
optimize spatial allocation problems (Naseri et al., 2021,
Shaygan et al., 2014, Strauch et al., 2019, Verstegen et al.,
2017).

Realizations of spatial input data are produced with
simulation methods to model spatial input data uncertainty,
and each realization represents one possible outcome of the
simulated variable. The realizations serve as input to the
stochastic objective evaluations within the optimization
after Eskandari and Geiger (2009). The stochastic objective
values define the ranking of solutions for the selection and
recombination procedures. After running the optimization,
we analyze the Pareto fronts. We also identify solutions
with soil loss rates exceeding tolerable soil losses, and we
identify solutions that exceed the available labor. The
results show, whether and where uncertainties in the
objective values affect farmers and decision-makers.

We select three rural areas in Ethiopia from different
agro-ecological zones as case studies. High soil loss rates
and minimal access to labor-reducing tools or machines
make them suitable examples. Hurni et al. (2016) even
stated that “soil erosion is the most dangerous ecological
process observed in Ethiopia, degrading the precious soil
resources which are the basis of agricultural production and
food for the country’s people”.

In the following sections, we explain the optimization
with the representation of solutions and how solutions are
evaluated (Section SWC measure allocation optimization).
Then, the concept of multi-objective evolutionary algo-
rithms under uncertainty is explained (Section Multi-
objective evolutionary algorithm underuncertainty). After
that, the three different case study areas are presented
(Section Case studies). Finally, the computation of reali-
zations from uncertain spatial input data for the stochastic
objective functions is explained (Section Simulating the
spatial variables for optimization).

SWC Measure Allocation Optimization

Allocation of SWC measures as decision variable

The decision variable of the optimization is a list containing
the sub-watershed identifier and the decision, and whether
or not SWC measures are applied (Fig. 2). The length of the
list depends on the number of sub-watersheds that varies per
study area depending on the digital elevation model and the
size of the area.

The study areas are separated into sub-watersheds with a
watershed delineation algorithm. The selected watershed
delineation is performed with a multiple flow direction
model (Holmgren, 1994) using the AT least-cost path search
algorithm (Ehlschlager, 1989). In addition, a basin threshold
parameter serves to control the minimum inflow area for
sub-watersheds.

The placements of the bench terraces within each
selected sub-watershed for conservation depend on the
slope and the depth of workable soil. The distance between
the planned bench terraces should be 2.5 times the depth of
workable soil (Hurni et al., 2016). The distance between
bench terraces becomes smaller with higher steepness levels
and shallower soil profile depths.

Objective functions

Soil loss estimation
We use the empirical-based Revised Universal Soil Loss

Equation (RUSLE) (Renard, 1997) to estimate the soil loss
of protected and unprotected sub-watersheds. Even though
the RUSLE only accounts for soil loss through sheet and rill
erosion and not erosion types like gully erosion or dis-
persive soils (Rowlands, 2019), it belongs to the most
widely applied methods to estimate soil loss rates (Ganasri
and Ramesh, 2016). It is computed with

A ¼ R � K � L � S � C � P ð1Þ

Fig. 2 The decision variable of
conserving or not conserving a
land unit with soil conservation
measures (left) and the solution
representation in the algorithm
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where
A: the estimated average annual soil loss and temporal

average soil loss per unit of area in t ha−1 yr−1,
R: Rainfall-runoff erosivity factor in MJ mm ha−1 h−1 yr−1,
K: Soil erodibility factor in (t ha h) (ha MJ mm)−1,
L: Slope length factor in m,
S: Slope steepness factor in radians,
C: Cover management factor (unitless),
P: Support practice factor (unitless).
The computations for the single factors of the RUSLE

with study area specific parameter settings are explained in
Appendix A.

Labor requirement estimation
We use empirical values of the labor requirements

(Table 1) measured in person days from Tenge et al.
(2005) for different slopes and soil types. The soil types
are categorized into stable and unstable soil, where clay
soil is considered stable, and loam and sand are con-
sidered unstable (Tenge et al., 2005). Soil is classified as
clayey soil if the clay content is above 40%, or if the
clay content is above 35% as long as the sand content is
below 45% (García-Gaines and Frankenstein, 2015).
The labor requirement map depends on the slope, clay,
and sand content rasters (Table 1). The total labor
requirement is computed for all cells with planned SWC
measures:

LDtotal ¼ A
XN
n¼1

ldn ð2Þ

where
LDtotal: total labor days
n: current cell of labor requirement raster
N: number of cells where SWC measures are applied
A: Cell size in ha
ldn: labor days per ha
Translation of labor requirements and soil losses to

monetary units
Labor and soil losses are associated with estimated costs

measurable in monetary units. We use estimated labor costs
in US Dollars based on daily wages of 4.32 US Dollars after
Bachewe et al. (2016). The monetary loss associated with
soil loss is based on yield loss estimates, assuming an
estimated yield loss of 0.74% per mm of eroded soil
(Rickson, 2020). The yield loss in percent is one component

of the monetary loss estimate. The second component is
market shares of agricultural products, crop yields and
prices derived from official statistics Central Statistical
Agency Ethiopia (2020). We consider the total area used for
a crop for the market share and use the cereals teff, sorghum
and maize. These make up 88.52% of the total market share.
For example, in the Ethiopian region Meher, 16.5% of the
area is used to grow teff with a retail price of 750 US
Dollars per ton in 2018 (United States Department of
Agriculture Foreign Agricultural Services, 2019). In com-
bination with crop productivity of 16.38 quintals (1
quintal= 100 kg), we obtain the expected monetary unit per
ha. Both components and the total area size in hectares lead
to the total estimated monetary loss in US Dollars per year.
The estimate considers expected yield and soil losses for the
coming 10 years.

Multi-objective Evolutionary Algorithm under
Uncertainty

Non-dominated sorting genetic algorithm II

We use the widely applied multi-objective evolutionary
algorithm NSGA II (Deb et al., 2002) for land conservation
optimization under uncertainty. The first step of the NSGA
II by Deb et al. (2002) is initializing the first generation of
solutions. Here, solutions to the problem are created at
random. All solutions are evaluated with the two objective
functions described in Sec. Objective functions. In the
NSGA II, the solutions get assigned a non-domination rank
following the following domination principle: A solution A
is dominated by a solution B if all objective values of
solution A are better than the corresponding objective values
of solution B. The ranks indicate which solutions are non-
dominated and which are dominated by other solutions.
Non-dominated solutions constitute the first rank and the
Pareto front. First-rank solutions dominate all other solu-
tions, and all solutions that are only dominated by the first-
rank solutions belong to the second rank. This procedure
continues until all solutions have a rank. Then, a density
estimation called crowding distance quantifies how similar
the objective values of one solution are to the objective
values of neighboring solutions in the objective space.

In the tournament selection procedure, solutions are
drawn randomly from the population into a tournament
pool, where the tournament pool size is a parameter. The
solutions of the tournament pool are compared by their
ranks. Solutions of a better rank are selected over solutions
of a lower rank. If solutions are of the same rank, the
solutions with higher crowing distances are selected. The
selected solutions proceed to the crossover. In every
crossover operation, the genes of two selected solutions
(parents) are combined to produce new solutions

Table 1 Labor requirement estimation in labor days per hectare for
building bench terraces per slope and soil classes

Slope (%) 5–12 13–25 26–35 36–55 >55

Stable soil 66 148 237 354 427

Unstable soil 92 205 328 491 592
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(offspring). Random genes of produced offspring are
manipulated in the mutation to encourage population
diversity until the number of offspring equals the number of
parents. Hereafter, the offspring population and parent
generation population are merged, and the solutions with
the best ranks survive. When multiple solutions have the
same rank and are more numerous than the population size,
the solutions with the highest crowding distances survive.

Stochastic nondomination-based ranking procedure

Since we propose an optimization under uncertainty, we
now introduce the required adaptions to the NSGA II.
Eskandari and Geiger (2009) proposed a nondomination-
based ranking procedure of (Deb et al., 2002) that takes into
account uncertainty in the objective values. Compared to
the NSGA II, every solution has an ensemble of objective
values. The selection and the recombination of the offspring
and parent generation, also called survival, use the ensemble
objective values. For the nondomination-based ranking
procedure under uncertainty (Eskandari and Geiger, 2009),
the solutions are assigned one of two ranks, the first rank
with stochastically nondominated solutions and the second
rank is formed by all dominated solutions. The following
definition defines stochastic dominance between two solu-
tions A and B: “Solution A stochastically dominates (is
better than) solution B if f iðAÞ is less than f iðBÞ for each
objective function i” (Eskandari and Geiger, 2009), where f
is the sample mean of the objective values per solution.

First rank
All solutions of the current generation are compared to

each other. If a solution is not stochastically dominated by
any other solution, it is added to the first rank. The
crowding distances are computed as the fitness value for all
identified solutions belonging to the first rank.

Second rank
The second rank combines all solutions dominated by the

first-rank solutions. For the second-rank solutions, the
summation of the probabilities that a solution dominates
other solutions is computed, referred to as expected strength
values ES. To compute ES, we define amongst all second-
rank solutions whether or not a solution A dominates or is
dominated under uncertainty by another solution B, where
the following statement defines dominance under uncer-
tainty: “Solution A significantly dominates (is better than)
solution B with a confidence level of […](1− α) if
f iðAÞ þ hwi(A) <f iðBÞ � hwi(B) for each objective function
i” (Eskandari and Geiger, 2009), where f i(x)− hwi(x) and
f i(x)+ hwi(x) are the lower and upper bounds of the
objective value interval at significance level α. Then, the
probabilistic dominance P is computed with three possible
cases of P (this definition holds only for minimization
problems):

1. The probabilistic dominance P of a solution A over
solution B is 0 when all lower bounds of A are higher
than the upper bounds of B.

2. The probabilistic dominance P of a solution A over
solution B is 1 when all upper bounds of A are lower
than the lower bounds of B.

3. If case 1 and 2 both do not apply, the probabilistic
dominance P of a solution A over solution B is a
certain probability PA when all lower bounds of A are
less than the corresponding upper bounds of B.

The probability PA that objective values of solution A are
lower than the objective values of B is computed with the
following equation, which approximates the integral Q(x)
using the suggestion of Borjesson and Sundberg (1979):

PðA<BÞ ¼ 1� Q
μB � μAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2A þ σ2B

p
 !

ð3Þ

QðxÞ ¼ 1
2
erf

xffiffiffi
2

p
� �

: ð4Þ

where
μ : mean of objective values,
σ : standard deviation of objective values,
erf(x) : Gaussian error function
The summed-up probabilities P values of every solution

in the second rank of dominating the other solutions in the
second rank (number of solutions are the same per gen-
eration) result in the expected strength value ES. Lastly, we
calculate the fitness value EF for each solution in the second
rank. For a solution A, the EF is the sum of all ES values
solutions by which solution A is stochastically dominated
minus the sum of all ES values solution A stochastically
dominates.

Selection and survival under uncertainty

For the selection and survival under uncertainty, we use the
ranks and computed fitness values EF for the tournament
selection (Sec. Non-dominated sorting genetic algorithm
II). We use the tournament selection with a tournament pool
size of two (binary tournament selection). Compared to the
selection without uncertainty, the EF are considered when
two second-rank solutions are compared: If only one solu-
tion is of the first rank, it wins. If both solutions are of the
first rank, the solution with the higher crowding distance
wins. If both solutions are of the second rank, the solution
with the higher EF wins. The crossover and mutations
produce offspring with the operators of the NSGA II. After
that, the survival of solutions from the combined population
of parents and offspring takes place. The ranks and fitness
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values are recomputed for the combined population. The
crowding distance defines the order of the first-rank solu-
tions, and the EF values define the second-rank order. The
best solutions are retrieved from the ordered population
until meeting the population size limit.

Seeding

We extend the described multi-objective optimization under
uncertainty by seeding. Seeding is the injection of elite
solutions into the initial population. We follow the method
of Guariso and Sangiorgio (2020), who found that seeding
the single objective optimal solutions benefits the spread
and convergence of the Pareto fronts. Hildemann and
Verstegen (2021) found that the findings hold for a multi-
objective land use allocation optimization under uncertainty
using the NSGA II. Therefore, the single objective extreme
solutions are computed and injected into the initial popu-
lation: The single objective extreme solution for minimizing
the soil loss rates is to have every sub-watershed selected.
The single objective extreme solution for minimizing the
labor requirement is to omit SWC installations completely.

Case Studies

The case study areas are three Kebeles, the smallest admin-
istrative districts in Ethiopia, named Gumobila, Enerata, and
Mender 51. In all three study areas, the depth to bedrock

exceeds 104 cm (Hengl et al., 2015), which allows the equi-
distance between bench terraces to be set as 5 m (Hurni et al.,
2016). The basin threshold parameter for the watershed
delineation, i.e., the minimum area of a watershed, is set to an
equivalent of 0.2 acres. Using this parameter, the watershed
delineation results in 147 sub-watersheds in Gumobila, 137 in
Enerata, and 47 in Mender 51.

The case study areas were selected because each Kebele
is in a different agro-ecological zone with high soil loss
rates (Hurni et al., 2016), and because the Kebeles are all
rural areas, with most farmers being subsistence farmers.
Furthermore, land use information was made available for
these Kebeles by Deutsche Gesellschaft für internationale
Zusammenarbeit (GIZ) GmbH (2021). More than 80% of
the land of the selected areas is used for cereal production
with sorghum, teff and maize as main crops (Central Sta-
tistical Agency Ethiopia, 2020). The Kebeles are located in
the north-western part of Ethiopia (Fig. 3). The Kebeles
Gumobila and Enerata belong to the West Gojjam zone in
the Amhara region, Kebele Mender 51 belongs to the Asosa
zone in the Benishangul-Gumuz region.

The altitude of Gumobila (Fig. 3) ranges from 2048 to
3106 m above sea level with a mean annual rainfall of
1970 mm. Gumobila belongs to the agro-ecological zone
Wet Dega. The second study area Enerata (Fig. 3) has an
altitude between 2283 m and 2638 m above zero with mean
annual rainfall of 1305 mm, situated in the agro-ecological
zone called Moist Dega. The most western study area

Fig. 3 Locations and land use of
selected study areas
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Kebele Mender 51 (Fig. 3), is classified as Wet Kolla with
an altitude between 1335 m and 1478 m above zero and a
mean annual rainfall of 1780 mm.

We computed the estimated total available labor per
hectare with the number of households, the area size and
national statistics (Central Statistical Agency Ethiopia,
2016) to set the required labor from optimal solutions in
relation to the available labor from the local population
(Table 2). The estimated available labor for SWC measures
varies from 54 to 69.2 labor days per hectare (LD/ha).

Simulating the Spatial Variables for Optimization

In optimizations ignoring data uncertainty, all variables are
presumed to be accurate. In comparison, optimizations
under uncertainty incorporate variables with their associated
uncertainty. In this work, we simulate possible outcomes
following distribution functions of uncertain variables. The
following explains how we simulate uncertainty for mod-
eled and observed spatial data. The realizations serve as
inputs to both objective functions. The uncertain precipita-
tion data affects the rainfall-runoff erosivity factor (R) of the
RUSLE (Sec. SWC measure allocation optimization). The
uncertain soil properties affect the soil erodibility factor (K)
of the RUSLE. Both factors and associated uncertainties
affect the soil loss estimation. Furthermore, the uncertain
soil properties affect the classification into stable clayey and
unstable loamy and sandy soil, which affects the labor
requirement estimation.

Simulating soil variables under uncertainty

The required soil variables are bulk density, sand, silt and
clay fractions, and organic matter fractions. Those variables
are provided in the global soil dataset called SoilGrids
(Poggio et al., 2021). We select this dataset because few soil
data samples are available in the global soil sample database
WoSIS (Batjes et al., 2020) for Ethiopia with the required
variables. The modelled soil variables by Poggio et al.
(2021) use soil samples in combination with auxiliary

variables to predict the soil variables with machine learning
models at a resolution of 250 meters. The median and lower
and upper limits of a 90% prediction interval from a tenfold
cross-validation are available for multiple soil depths.

We apply the moving average model (Haining, 1978) to
generate the soil variables. The method allows generating
realizations with a spatial auto-correlation resembling the
auto-correlation of the SoilGrid variables. We want to point
out that this auto-correlation could be an artifact from the
machine learning predictions rather than the auto-
correlation in the soil variables. To apply the moving
average model, we use the reported median and prediction
intervals of soil variables provided by SoilGrids. Before the
moving window average is applied in Eq. (7), random
values X are drawn based on:

X � Nðμ; σ2Þ ð5Þ

σ ¼
ffiffiffiffi
N

p ðP95 � P5Þ
2t

ð6Þ

where
μ : Median of modeled soil variables,
N : Sample size, in this case 10 due to tenfold cross-

validation,
t : t value of for p= 0.05 and N− 1 degrees of freedom

(1.833)
X : Independently drawn value from the normal

distribution,
P5,95 : Lower and upper limits of a 90% prediction

interval.
The moving average model smoothes X and does not act

as an exact interpolator (Cressie, 2015). The neighborhood
needs to be defined for the smoothing, either by a fixed
euclidian distance or by the k nearest neighbors. We define
the neighborhood as all cells within the neighborhood range
M of 4 pixels.

SðXÞ ¼ 1

ð2M þ 1Þ2
XM

j;k¼�M

X½j;k� ð7Þ

Table 2 Estimated maximum
available labor per hectare based
on number of households from
Deutsche Gesellschaft für
internationale Zusammenarbeit
(GIZ) GmbH (2021) and
statistics about the average
number of persons per
household from Central
Statistical Agency Ethiopia
(2016) and the assumption of
220 working days per year and a
maximum dedication of work
time of 40% to the installation of
SWC measures

Study area Nr. of households Estimated agricultural area in ha
per person

Estimated available labor for SWC
measures in LD/ha

Gumobila 890 1.62 54

Enerata 4961 1.33 66

Mender 51 1556 1.27 69.2

Environmental Management (2023) 72:959–977 965



where
M : Neighborhood range (here: 4).
Afterwards, a min-max scaling operation is performed

for the silt, clay and sand fractions to ensure that all frac-
tions lie between 0% and 100% and sum up to 100%.

Simulating precipitation under uncertainty

We use the CHIRPS global rainfall data from 1981 to 2021
from Funk et al. (2015) as precipitation data. The data has a
spatial resolution of ~5.5 km. Three to six grid cells of the
precipitation data cover each study area (Fig. 3). Without
adaptation, the large grid cell size results in assumed pre-
cipitation input without spatial variability or discrete bor-
ders of the natural continuous precipitation variable
between grid cells.

In order to simulate precipitation on a finer resolution,
we apply a top-kriging approach (Skøien et al., 2006). The
top-kriging approach allows predicting a variable with
quantified uncertainty in which observations are areas
instead of points. This approach enables interpolation from
large areas to smaller areas. We use CHIRPS data with an
area 100 times larger than the target study areas and apply
top-kriging for a target resolution of 100 m at the study
areas. The output from the top-kriging approach is the
predicted precipitation at the finer target resolution.

After that, we perform a conditional simulation to create
realizations with the same spatial dependence as the sample
precipitation data. We use conditioning by kriging simulation
(Chiles and Delfiner, 1999). The idea behind the conditional
simulation is to condition a random field with the kriging
estimator. The first step of the conditioning by kriging simu-
lation is to perform a non-conditional simulation to produce a
random field. Here we use the turning bands method (Chiles
and Delfiner, 1999). In a second step, the random field from
the non-conditional simulation S(x), which must have the same
co-variance as the sample data, is then conditioned by the
Kriging estimator Z*(x) following equation (8).

TðxÞ ¼ Z�ðxÞ þ ½SðxÞ � S�ðxÞ� ð8Þ
where

x : Data points,
T(x) : Conditional simulation,
Z*(x) : Kriging estimator,
S(x) : Non-conditional simulation,
S*(x) : Kriging estimator of S(x) with the variogram

function and observed data of Z*(x).
Due to the conditioning by kriging, every realization T(x)

has the same degree of spatial dependence as the estimated
spatial dependence of the sample precipitation data and
obeys the spatial pattern in the sample data. The same
spatial dependency can not be achieved with just the non-
conditional simulations.

Design of simulation experiment

We execute three simulation experiments that build on one
another.

The first experiment is about choosing the required
number of realizations for the stochastic objective functions.
For this purpose, we analyze the objective value distribu-
tions of a reference solution with an increasing number of
realizations. When the objective values stabilize, we assume
that the number is sufficient to evaluate solutions despite
uncertainty. The reference solution is a solution in which
SWC measures are applied in every second sub-watershed.
We select the reference solution since it is a trade-off
solution between both objectives.

We evaluate the proposed optimization algorithm per-
formance in the second simulation experiment to see
whether it can converge to the true optimum. Since
computing all possible combinations is infeasible for the
whole study area, we define a subset area with a small
number of sub-watersheds. Ten sub-watersheds of the
study area Gumobila with 1024 possible solutions for this
benchmarking serve this purpose. This low number of
possible combinations allows enumeration (Galluccio
et al., 2001) to identify all optimal solutions determinis-
tically, forming the true Pareto front. This true Pareto
front is the benchmark to evaluate the proposed algo-
rithm’s performance. Due to the highly decreased problem
complexity, a small population size of 40 and 30 gen-
erations suffices for the algorithm evaluation. The com-
parison allows estimating how many solution evaluations
are required until the optimization converges to the true
Pareto front.

In the third simulation experiment, we execute the opti-
mizations for the three study areas from different agro-
ecological zones with a population size of 100 and 200 gen-
erations. The resulting Pareto fronts contain the optimal
solutions for minimizing soil loss rates and labor requirements.

Implementation

The conditional simulation of the precipitation was per-
formed in R (R Core Team, 2017) with the packages rtop
(Skøien et al., 2014) for the kriging, RandomFields
(Schlather et al., 2015) for the unconditional simulations,
and the spatial data packages sp (Bivand et al., 2013), sf
(Pebesma, 2018), raster (Hijmans, 2021) and rgdal (Bivand
et al., 2021) for GIS operations. For the soil data simula-
tions, Python 3 (van Rossum and Drake, 2009) was used
with the packages numpy (Harris et al., 2020) and scipy
(Virtanen et al., 2020). As optimization algorithm, the
Python package pymoo (Blank and Deb, 2020) was used
and adapted. The loss estimations (RUSLE) were performed
with QGIS (QGIS Development Team, 2009) and GRASS
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(GRASS Development Team, 2017) with multiprocessing.
The Python packages matplotlib (Hunter, 2007) and inter-
active visualization package plotly (Plotly Technologies
Inc., 2015) were used for the visualizations. All used soft-
ware is open source software, and the implementation is
fully reproducible (Dataset with DOI will be linked here).
The study is designed to be executable on a Windows
computer with 16 GB RAM, i7-9850H Intel Processor with
6 cores and 12 logical processors.

Results and Discussion

Simulated Data

The two objective value distributions from the estimated
soil loss rates and labor requirements obtained with the
reference solution remain stable after 19 and 22 realizations
for the study area Gumobila (Fig. 4). The distributions also
remained stable with less than 22 realizations in the other
two study areas. Therefore, we chose the highest number of
22 realizations for all study areas.

The differences between the 5% and 95% percentiles are
relatively evenly distributed over space for the R-factor
realizations. In contrast, the differences in labor require-
ments from the K-factor realizations (factors of RUSLE,
Sec. SWC measure allocation optimization) are more
localized in the northern parts of the study area (Fig. 5).
Only 2.5% of the study area shows differences in the esti-
mated labor requirements. This is caused by the low
occurrence of loamy or sandy soil fractions and pre-
dominantly high clayey soil fractions in the study areas.
Since clayey soil is considered stable, only a small part of
the 2.5% of the area is further classified as unstable (Table
1). Due to the even more clayey soil in the study area
Mender 51, no uncertainty was observed in the labor
requirements Fig. 6.

Benchmark

For the benchmark, we evaluated all possible 1024 solu-
tions. The benchmark Pareto front from all possible solu-
tions resulted in 43 Pareto-optimal solutions. The
optimization resulted in 40 solutions, and the comparison

Fig. 4 Simulated spatial input data under uncertainty and the histograms for 5–35 realizations for the study area Gumobila

Fig. 5 Spatial distribution of the
simulated spatial input data
under uncertainty illustrated
with the percentile range
(5%,95%) for the soil erodibility
factors K, the labor requirement
and rainfall-runoff erosivity
factors R
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with the benchmark Pareto shows that all 40 solutions are
true Pareto optimal solutions. Moreover, only 8 generations
with just 320 solution evaluations were required. Therefore,
the proposed optimization can find all the true optimal
solutions with 68.75% fewer solution evaluations for the
Gumobila study area. However, this does not guarantee that
the optimization can find the true optimal solutions for the
whole study area with more sub-watersheds. Still, the
simulation experiment proves the proposed optimization
can find the true optimal Pareto front.

Pareto Fronts

The different Pareto fronts of the three study areas (Fig. 7)
reveal substantial differences: The maximum labor
requirements are 105 LD/ha in Enerata, 119 LD/ha in
Mender 51 and 230 LD/ha in Gumobila. Correspondingly,
the maximum yearly soil loss rates are almost 240% higher
in Gumobila, with 100 t/ha/yr, compared to Enerata with 42
t/ha/yr. As a consequence, it is possible to obtain tolerable
soil loss rates for Ethiopian soils of 22 t/ha/yr (Hurni, 1983)
in Mender 51 with less effort compared to Enerata and
Gumobila and the costs per hectare (in LD) are 210% and
350% lower, respectively. The differences in rainfall regime
and slopes mainly cause the differences: On average,
Mender 51 and Enerata have a slope of 5.3° and 7.2°. In
contrast, Gumobila has the highest average slopes of the
study areas being 16.4°, resulting in higher erosion esti-
mates based on the RUSLE. Furthermore, Gumobila also
has the highest yearly precipitation of the three study areas.
Consequently, the estimated total yield losses per study area
vary a lot. When estimating the monetary loss associated

with the obtained yield losses, the results show that in
Mender 51 the monetary loss is 1.5 million USD, whereas
the estimated monetary loss can exceed 14 million USD in
Gumobila. The high difference in yield loss in monetary
terms is not only caused by different maximum soil loss
rates but also by the different study area sizes. The relations
to reduce soil loss rates per added labor are most similar.
Over the whole Pareto front, on average, 1 ton of yearly soil
loss per hectare can be prevented by providing the required
labor of 2.5 LD/ha in Gumobila, 2.55 LD/ha in Enerata and
2.1 LD/ha in Mender 51.

In Gumobila, the estimated soil loss rate is 6 t/ha/yr
(5.8%), in Enerata it is 2.3 t/ha/yr (5.3%), and in Mender 51,
it is 3 t/ha/yr (5.2%). The uncertainties for the estimated
required labor objective values are relatively small, with 2.5
LD/ha (1%) in Gumobila, 0.8 LD/ha (0.07%) in Enerata,
and 0 in Mender 51. Furthermore, a clear trend of uncer-
tainty can be observed in the objective values over the
Pareto fronts: the relationships between the mean objective
values and the uncertainty of the objective values remain
stable. The uncertainties make up, on average, 11.6%
(Gumobila), 4.9% (Enerata), and 5.4% (Mender) of the
mean of the soil loss rates. Correspondingly, the ranges
make up 0.3%, 0.2%, and 0% of the mean labor require-
ments. Therefore, solutions with low mean objective values
of one objective show low uncertainty for that objective and
high uncertainty for the second objective, and vice versa.

For the two study areas Enerata and Mender 51, the
tolerable soil loss rates for Ethiopia with 22 tonnes per
hectare can be achieved with the estimated available labor
of the local population (Table 2). For the study area
Gumobila, the soil loss rates are only reducible to a yearly

Fig. 6 Convergence of Pareto
front of optimization with
population size 40 to Pareto
front from the deterministic
evaluation on a subset of 10 sub-
watersheds for study area
Gumobila. The crosses illustrate
the maximum range of the
uncertain objective values per
solution, the uncertainty in the
labor requirement is illustrated
by the vertical lines, the
uncertainty in the soil loss rates
is illustrated by the horizontal
lines. The expected monetary
loss estimation is described in
Sec. SWC measure allocation
optimization)
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Fig. 7 Pareto fronts with the
labor requirements in LD/ha (y-
axis, left) and in US Dollars (y-
axis, right), and the estimated
yearly soil loss in t/ha/yr (x-axis,
bottom) and estimated yield loss
in US Dollars (x-axis, top). The
light yellow region illustrates the
tolerable soil loss rates after
Hurni (1983), and the light blue
region illustrates the estimated
available labor days by farmers
of the study areas (Table 2).
Vertical red lines and horizontal
blue lines illustrate maximum
objective value ranges due to
uncertainty
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soil loss of only 62 tonnes per hectare with the available
labor from the local population. Therefore, the highest
dedication of labor in Gumobila still leads to severe soil loss
after Tsegaye and Bharti (2021). In Gumobila, the estimated
total amount of money to reach the tolerable soil loss rates
of 22 t/ha/yr with additional (potentially external) labor is
1.1 million US Dollars.

Locations of Conservation Measures

In addition to deriving the Pareto fronts, we identify
common characteristics of the non-dominated solutions.
We identify sub-watersheds that are part of multiple solu-
tions that are next to each other in the Pareto front. For this
purpose, we define a neighborhood of one solution as the
seven nearest solutions on either side in the Pareto front,
resulting in a total neighborhood size of 15. In this context,
we use the terms ‘commonly selected sub-watersheds for
conservation’ for sub-watersheds that are selected by the
majority of optimal solutions for conservation. Corre-
spondingly, ‘occasionally selected sub-watersheds’ refer to
sub-watersheds that are not being selected for conservation
by the majority of optimal solutions for conservation within
neighboring solutions of the Pareto front. Three different
parts of the Pareto front of the study area Gumobila are
selected (Fig. 8, bottom row), one including the 15 solu-
tions with the lowest soil loss rates, one including the
15 solutions with the lowest required labor, and one

neighborhood that agglomerates the 15 solutions related to
the median soil loss rate solution of the Pareto front. For
example, the two sub-watersheds with the highest mean
soil loss rates in Gumobila are commonly protected by
SWC measures even in the 15 solutions with the least
labor. On the other hand, sub-watersheds with high labor
requirements, e.g., in North East, are only occasionally
selected for conservation. This holds for the 15 solutions
with the least required labor and also for the 15 solutions
surrounding the median soil loss rate solution. Further-
more, two patterns stand out in the 15 solutions sur-
rounding the median soil loss solution (Fig. 8, bottom row,
middle): Firstly, almost every sub-watershed in the north-
ern part with mean soil loss rates above 21 t/ha/yr is
selected for conservation across optimal solutions, even
though the labor requirements are high with 27–31 LD/ha.
This observation indicates that the conservation of sub-
watersheds with the highest soil loss rates is important to
for a solution to be identified optimal regardless of high
labor costs. Secondly, the sub-watersheds in the middle-
eastern part of the study area with moderate soil loss rates
of 5–11 t/ha/yr and moderate labor requirements of
15–23 LD/ha are commonly selected for conservation. All
sub-watersheds with low mean soil loss rates are only
occasionally selected for conservation; only 11% of the
sub-watersheds with soil loss rates below 5 t/ha/yr are
selected for conservation more than 7 times out of 15. This
indicates that sub-watersheds with low mean soil loss are

Fig. 8 Top: Mean slope per sub-
watershed, mean soil loss rate
per sub-watershed without SWC
measures, mean labor
requirements per sub-watershed
for installing SWC measures.
Bottom: Number of common
sub-watersheds being selected
for conservation for 15 solutions
with the lowest soil loss and
highest labor requirement,
15 solutions closest to the
median solution, and
15 solutions with the highest soil
loss and lowest labor
requirement
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selected for conservation in the optimal solutions if the
labour requirements are close to the minimum.

Furthermore, we observe robust patterns in the selected
sub-watersheds for conservation in optimal solutions, illu-
strated by six representative solutions (Fig. 9). Here, we use
the term solution robustness (Ales and Elloumi, 2021),
which refers to structural similarities of solutions instead of
similarities between objective values. In this context, robust
solutions are optimal solutions that can be modified easily
according to a change in the environment (Tjornfelt-Jensen
and Hansen, 1999) where modified solutions are still of
high quality. Therefore, a solution is robust if other solu-
tions with mostly the same sub-watersheds are selected for
conservation. When analyzing the proportion of common

sub-watersheds in the example solutions along the Pareto
front (Fig. 9), we can see that, on average, 76% of the
selected sub-watersheds for conservation in solution 6 (Fig.
9) are also selected for conservation in the solutions 1–5.
There are just a few sub-watersheds selected for conserva-
tion in solution 6 with the highest soil losses that are not
selected for conservation in solutions 1–5. This behavior is
observable in most solutions for all three study areas.
Identifying the commonly selected sub-watersheds for
conservation along the Pareto front can lead to a temporal
order for ongoing SWC measure implementations. If the
following scenario was considered: a specific solution
within the tolerable soil loss region of the Pareto front is
aimed for in the long term, in this example solution 6, with

Fig. 9 Selected solutions with
their position in the Pareto front
and the selected sub-watersheds
for conservation with bench
terraces
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insufficient labor to develop all the structures. In such a
case, the robust sub-watersheds being also selected for
conservation in other optimal solutions with lower labor
requirements can be identified and developed first. The
missing sub-watersheds ordered in priority by the mean soil
loss rates can be developed in consecutive years. This
approach ensures that the final implementation state is
optimal and that the intermediate implementation states are
optimal, or at least close to optimal. The same benefits
apply in a second scenario in which conservation goals
become more ambitious over time. Selecting an optimal
solution with lower soil loss rates with the same robust sub-
watersheds to be selected for conservation allows further
developing one optimal solution into another optimal
solution.

We provide an interactive visualization tool1 for an in-
depth inspection of the solution space. The tool intends to
simplify the investigation of the Pareto front and display
selected solutions without requiring a full understanding of
the underlying optimization procedure.

Uncertain Consequences for Local Population from
Spatial Data Uncertainty

The estimated consequences for the local population, in
terms of what soil loss rates they face and how much labor
they would need to invest, are more uncertain in specific
parts of the study area. This propagates to the Pareto fronts,
both in the soil loss and labor requirement objective values.

Fewer sub-watersheds being selected for conservation
through SWC measures result in higher estimated soil losses
and uncertainties of the soil loss (Fig. 7). The reason for the
higher soil loss uncertainty is the much higher uncertainty
in sub-watersheds without conservation: protected water-
sheds have low or no estimated soil loss. Therefore, solu-
tions with higher proportions of sub-watersheds not-
selected for conservation have higher uncertainty. Over the
whole study area, the uncertainty within the soil loss
objective values varies is 5.8%. This means the estimated
yield loss over 10 years can differ by ~700,000 USD for the
whole study area simply due to uncertain soil loss rates. In
sub-watersheds in the north of Gumobila, the soil loss rates
vary up to 14%, caused by unevenly distributed input data
uncertainties. This range is similar to identified yield loss
risks by droughts from Leng and Hall (2019). Therefore, the
worst-case scenario from the considered spatial data
uncertainty can considerably threaten subsistence farmers.

The uncertain labor requirements are strongly clustered
in space. The reason for this spatial cluster is the uncertainty
in the classification into stable and unstable soil: Stable

clayey soil leads to lower labor requirement estimates than
unstable loamy or sandy soil. Due to the predominantly
high clayey soil fractions in the study areas, only a small
fraction of the total area is classifiable into stable and
unstable soil with the given uncertain spatial data. For this
reason, all uncertainty within the labor requirement objec-
tive values originates from only 2.5% of the total study
areas. While most sub-watersheds of the study area are not
affected by the spatial data uncertainty, the range is up to
15 LD/ha in the small fraction of the total study area (Fig.
5), and only half of the optimal solutions have uncertain
labor requirement objective values.

Furthermore, Fig. 9 illustrates how much additional labor
is required to reduce the soil loss rates of a specific solution.
For example, to avoid the estimated soil erosion rates of
solution 6, solution 4 can be implemented. Implementing
the SWC measures of solution 6 requires additional labor
input of 15 LD/ha compared to implementing the SWC
measures for solution 4. With the agricultural area per
farmer of 1.62 ha, the average single farmer would need to
invest 24 additional labor days.

Identified Challenges to Implement Optimal
Solutions

So far, we have discussed theoretical solutions to the given
problem. The required actions from the local population for
installing SWC measures are diverse and labor intensive.
Therefore, the challenges for the actual implementation of
optimal solutions need to be discussed, too.

The total labor made available by the local population
(Table 2, light blue areas in Fig. 7) can not be presupposed to
be met unquestioned since the presumed dedication of 40% of
the work time from all the male population between 15 and 59
years old to install SWC measures (Table1) is ambitious to
achieve. The practical hindrances for plowing due to terrace
construction, the transport of construction material and tools,
and the sacrifice of even minor parts of the scarce production
areas in Ethiopia to areas covered by bench terrace con-
structions hinder planned implementations. The hindrances
increase with steeper slopes with shorter distances between
bench terraces (Schiechti, 1985). Another complication is to
convince farmers to assist in protecting land with conserva-
tion measures they do not own. Ethiopian farmers do not own
land under the current land tenure policy, and the land
property rights are expected to remain public (Crewett et al.,
2008). Teshome et al. (2016) and Kagoya et al. (2018) state
that insecure land tenure is one of the main factors decreasing
the SWC measure adoptions by farmers. Also, the benefits
and costs of installing the SWC measures must be distributed
among the farmers of the study area. If the soil of a sub-
watershed with installed SWC measures is selected for con-
servation with labor from other farmers, there needs to be an

1 https://github.com/mohildemann/visualization-landconservation-
optimization
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exchange for the labor. Since subsistence production accounts
for 58% of the agriculture in Ethiopia (Sibhatu and Qaim,
2017), the ability of farmers to pay workers is unlikely.

Governmental subsidies are an option to encourage
farmers. Mekuriaw et al. (2018) showed that regions with
governmental support for land conservation have twice as
high SWC measure adoption rates compared to regions
without that support. Driving factors are knowledge provi-
sion about the consequences and technical and financial
support. Providing tools and/or additional labor and finan-
cing may be required to implement optimal solutions. Such
support may even be cheaper than the tax losses from the
long-term consequences of the estimated total yield losses.
Moreover, conservation measures help to protect the soil as
the fundamental basis for agricultural production. Con-
servation becomes especially important regarding the
reported severe hunger threats (IPC, 2021) in parts of the
Ethiopian rural population and increasing population rates
without viable non-agricultural income opportunities.

Limitations and Future Work

In this work, we considered data uncertainty related to
precipitation and soil data. The considered uncertainty may
be modeled differently and be extended in future work. We
used discrete classes of stable or unstable soil depending on
the clay and sand content. Combined with the slope, these
classes result in a discrete labor requirement assessment.
The results showed that these classes lead to highly loca-
lized differences in labor days within just 2.5% of the study
area (Fig. 5). The real relationship between labor require-
ments and workable soil is most likely more complex and
potentially continuous. A more detailed labor requirement
estimate under various soil and slope conditions could
reduce the highly localized labor requirement uncertainty.

Furthermore, the uncertainty of the temporal variables
can be taken into consideration. Spatio-temporal modeling
requires all input data to be available for multiple time-
stamps, which is currently not available: Even though future
climate projections can help to consider the temporal
uncertainty of the precipitation, the temporal development
of the labor requirement can currently not be modeled.
Modeling the temporal uncertainty of the labor costs
requires two currently unavailable datasets: The spatial
distribution of access to tools and machines in Ethiopia and
a socio-economic temporal trend of the access. Currently,
the only information available is that <1% of the Ethiopian
population has access to mechanized tools in agriculture
(Ayele, 2022). For this reason, we excluded the temporal
uncertainty in this work.

We only consider the detachment of material but not the
transport and deposition, which may have additional effects,
such as contaminant transport (He et al., 2009). Sediment

yields from soil erosion (Endalew and Biru, 2022) can be
even beneficial under specific circumstances (Stern et al.,
2020). If certain areas are too steep to be cultivated or used
for other purposes, the lost soil is less critical. If the soil or
the sediments of the soil is transported by the downstream
flows to agricultural land and deposited sediments may be
used to re-stock damaged soils in productive areas. If, on
the other hand, contaminants associated with agricultural
production (Endalew and Biru, 2022) are transported, scarce
fresh or even drinking water reservoirs can be contaminated
(Singh et al., 2022). Due to the low level of fertilization in
rural areas of Ethiopia, such contamination might not be
severe yet, but it might be in the future. In addition, the
effects of sediment transport can be modeled under uncer-
tainty: The used clay, silt, and loam fractions can be used to
estimate sediment transport, even under different climate
change scenarios (Maruffi et al., 2022). A modified objec-
tive function that considers the positive and negative effects
of sediment transport in allocating conservation measures
yields interesting future work, with and without uncertainty
modeling.

Furthermore, we use the total soil loss as the sole metric
and don’t consider the depth or quality of the lost soil. In
future applications, it would be interesting to include further
metrics that consider the depth of the topsoil layer or
organic carbon contents, which is a key aspect of soil
quality (van Beek et al., 2019). These metrics can also
define the temporal order of implementing the conservation
measures: depending on the relative gain in productivity,
protecting fragile topsoils before areas with more robust
topsoils, or the reverse, may help to maintain maximum
agricultural productivity. Such temporal prioritization can
help to prevent scenarios in which soil degradation is so
severe that any potential to regenerate soils (Schreefel et al.,
2020) is lost, and it can be coupled with the temporal
prioritization under uncertainty. The incorporation of such
metrics in the allocation of conservation measures comes
with difficulties for prioritizing: Is it more important to
prioritize fragile and thin topsoil layers to protect near-
future agriculture in those regions, or is it more important to
prioritize topsoil layers that potentially yield more stable
crop yields in the long-term?

Another limitation is that the spatial uncertainty of the
digital elevation model (DEM) was not considered. This
uncertainty could lead to uncertain borders of the sub-
watersheds, as the results of Aerts et al. (2003) indicate. In
their case, the DEM uncertainty propagated to different ski
courses, indicating that DEM uncertainty could propagate to
different borders of the sub-watersheds. In the proposed
optimization algorithm, the uncertain distinction between
sub-watersheds leads to solutions with uncertain decision
variable definitions: The number of decision variables can
change (Hildemann and Verstegen, 2021), and the reference
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of a sub-watershed identifier to the area becomes ambig-
uous. Since the imposed difficulties and problem com-
plexity would increase greatly, we did not consider that
uncertainty in this study. However, it is interesting future
work in a more theoretical context for spatial optimizations
with uncertain extents of the decision variables.

Another possible future research is to extend the decision
variable of the optimization. One option is to consider more
SWC measures, e.g., to combine allocating bench terraces
with the planning of dams (Xu et al., 2012), rehabilitation
areas or waterways as suggested by Hurni et al. (2016).
Another approach would be an extended approach in which
SWC measure allocation is coupled with land use allocation
optimization. In that case, the land use would not serve as
input as in the current optimization set-up. Instead, the land
use allocation is optimized in a first step for a set of
objectives. Then, optimal land use can be used as input for
the SWC measure allocation. This approach yields the
benefit of further reducing soil loss rates.

Conclusion

In this work, we optimized the allocation of SWC measures
for the objectives of soil loss rate minimization and labor
requirements minimization under spatial data uncertainty in
three Ethiopian rural areas. We modeled uncertain soil and
precipitation variables and used them for stochastic objec-
tive value evaluations.

Our first research question was how the uncertainty of
spatial input data propagates to the uncertainty in the objective
values in the final Pareto fronts. In the study area Gumobila,
the highest range in the estimated soil loss rate objective
function from uncertain spatial data is 6.0 t/ha/yr (5.8% of
corresponding mean soil loss), in study area Enerata it is 2.3 t/
ha/yr (5.3%) and in study area Mender 51 it is 3 t/ha/yr (5.2%).

Our second research question addressed what shared
characteristics of sub-watersheds can be observed in optimal
solutions across the Pareto front. Optimal solutions share the
characteristic that sub-watersheds with the highest average
soil loss rates are most often selected for conservation,
regardless of high labor costs. Furthermore, optimal solutions
share the characteristic that sub-watersheds with low mean
soil loss are rarely selected for conservation unless the labour
requirements are close to the minimum.

Our third research question was what information could
be derived from the Pareto fronts for optimal SWC measure
allocation planning despite data uncertainties. We observed
the following pattern in six representative optimal solutions:
Most of the selected watersheds for conservation in the
solutions with the highest soil loss rates were also selected
for conservation in the other five solutions with lower soil
loss rates. This observation allows the identification of

optimal final implementation states while the intermediate
implementation states are also optimal or close to optimal.

We conclude that SWC measure allocation optimization
supports the identification of optimal final and intermediate
SWC construction states and that the consideration and
modeling of spatial data uncertainty plays a crucial role in
the identification of Pareto optimal solutions.
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Appendix

Revised universal soil loss equation

The rainfall erosivity factor R was computed using Hurni’s
equation which is adapted to an empirical analysis in
Ethiopia (Hurni, 1985):

R ¼ �8:12þ ð0:562 � pÞ ðA1Þ
where

p : Precipitation in mm yr−1.
The soil erodibility factor K expresses the susceptibility

of a soil to erode which can be calculated with soil prop-
erties such as organic matter content, soil texture, soil
structure and permeability (Panagos et al., 2014).

K ¼ 2:1 � 104 �M1:14ð12� OMÞ þ 3:25 � ðs� 2Þ þ 2:5 � ðp� 3Þ
100

� 0:1317

ðA2Þ
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where
M : textural factor computed as (silt fraction+ very fine

sand fraction) ⋅ (100 - clay fraction),
OM : Organic matter fraction,
s : soil structure class (1: very fine granular, 2: fine

granular, 3: medium or coarse granular, 4: blocky, platy or
massive) derived with silt, clay and sand fraction s and the
corresponding USDA soil textural classes (García-Gaines
and Frankenstein, 2015).

The water path flow length and the water speed define
the kinetic energy of the water on the soil surface, and are
expressed by the slope length (L-factor) and slope steepness
(S-factor). Wischmeier and Smith (1978) defined the
L-factor as the ratio of soil lost from a horizontal slope
length to the corresponding loss from the slope length.

L ¼ λ

22:13

m

ðA3Þ

m ¼ β

β þ 1
ðA4Þ

β ¼
sinðθÞ
0:0896

0:56þ 3 sin ðθÞ0:8
ðA5Þ

where
θ : slope angle in degrees,
m : ratio of rill and interrill erosion calculated with β.
The S-factor is computed with empirical equations for

different slope levels to express the relation between soil
loss and slope steepness (Renard, 1997).

S ¼ 10:8 � sþ 0:03; s < 0:15708

16:8 � sþ 0:5; s> ¼ 0:15708

�
ðA6Þ

where
θ : slope angle in degrees,

s : slope angle in radians.
The cover management factor C and supporting practices

factor P express the relationship of land cover and erosion
measure application to the soil erodibility. The C- and
P-factors (Table 3) differ per land and base on empirics for
Ethiopia from Zerihun et al. (2018) and Kebede et al.
(2021). Kebede et al. (2021) define different P-factor values
for cropland with and without the physical SWC measure
Fanya Juu. Fanya Juu is a conservation measure applied in
Ethiopia which shall progress into a bench terrace in the
long term.
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