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Abstract
In the last three decades, the scope of solid-state NMR has expanded to exploring complex biomolecules, from large protein 
assemblies to intact cells at atomic-level resolution. This diversity in macromolecules frequently features highly flexible 
components whose insoluble environment precludes the use of solution NMR to study their structure and interactions. While 
High-resolution Magic-Angle Spinning (HR-MAS) probes offer the capacity for gradient-based 1H-detected spectroscopy in 
solids, such probes are not commonly used for routine MAS NMR experiments. As a result, most exploration of the flexible 
regime entails either 13C-detected experiments, the use of partially perdeuterated systems, or ultra-fast MAS. Here we explore 
proton-detected pulse schemes probing through-bond 13C–13C networks to study mobile protein sidechains as well as poly-
saccharides in a broadband manner. We demonstrate the use of such schemes to study a mixture of microtubule-associated 
protein (MAP) tau and human microtubules (MTs), and the cell wall of the fungus Schizophyllum commune using 2D and 
3D spectroscopy, to show its viability for obtaining unambiguous correlations using standard fast-spinning MAS probes at 
high and ultra-high magnetic fields.
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Introduction

Magic Angle Spinning (MAS) NMR is a powerful technique to 
study the structure, dynamics, and intermolecular interactions 
of insoluble biomolecules and materials. Over the last three 
decades, the nature of biomolecules that can be studied with 
MAS NMR have become more complex, from short peptides 
(Fu and Cross 1999; Griffin 1998; Jaroniec et al. 2002; Luca 
et al. 2003; Rienstra et al. 2000; Tycko 2001) to whole cells 
(Ghassemi et al. 2021; Narasimhan et al. 2019; Renault et al. 
2012). Concomitant technological advances have brought fast- 
to ultra-fast spinning probes (Barbet-Massin et al. 2014; Penzel 
et al. 2019; Samoson 2021) for 1H-detection using progres-
sively smaller rotors, which reduce linewidths in the case of 
homogeneous broadening (Maricq and Waugh 1979; Schledorn 

et al. 2020) while maintaining practical sensitivity due to the 
relatively large 1H gyromagnetic ratio (Agarwal et al. 2014). 
Such advances have led to the development of MAS 1H-detec-
tion techniques of fully protonated samples, circumventing the 
expense and loss of information of sample deuteration (Guo 
et al. 2014; Paulson et al. 2003; Zhou et al. 2007, 2012). As a 
result, a suite of 1H-detected experiments for de novo chemical 
shift assignments (Barbet-Massin et al. 2014; Fricke et al. 2017; 
Stanek et al. 2016) are increasingly commonplace and include 
frequent use of dipolar or scalar 13C–13C mixing schemes such 
as RFDR (Asami and Reif 2013; Bennett et al. 1992; Paluch 
et al. 2022; Sarkar et al. 2022), TOBSY (Baldus et al. 1997; 
Baldus and Meier 1996), WALTZ (Stanek et al. 2016), and 
DIPSI (Paluch et al. 2022; Shaka et al. 1988). Typical uses for 
these mixing techniques have occurred within the rigid part 
of biomolecular assemblies, as selected by cross-polarization 
at the start of the pulse sequence (Barbet-Massin et al. 2013).

However, for insoluble systems comprising flexible com-
ponents, INEPT transfers select for nuclei in the fast-motion 
regime where dipolar self-averaging occurs. The INEPT-
TOBSY experiment is frequently used to map 13C–13C connec-
tivities in conjunction with dipolar-based counterparts, typi-
cally in a 13C-detected fashion (Andronesi et al. 2005; Baldus 
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and Meier 1996; Damman et al. 2019; Heise et al. 2005). 
Heteronuclear 1H–13C-detected correlations can provide addi-
tional assignments for the flexible regime (Alam and Holland 
2006; Damman et al. 2019; Elena et al. 2005; Siemer 2020). 
In the case of limited sample quantities, it is instead desirable 
to amplify the signal using 1H-detection, which requires an 
INEPT transfer back to the 1H channel following 13C evolu-
tion, mixing, and water suppression (Zhou and Rienstra 2008). 
Variants of a scalar 2D hCH J-HSQC experiment have been 
used to characterize complex systems including fungal cell 
walls (Safeer et al. 2023), human microtubules (Luo et al. 
2020; Savastano et al. 2020), viral capsids (Callon et al. 2022), 
protein condensates (Damman et al. 2019) and membrane-
bound proteins (Howarth and McDermott 2022). In addition, 
INEPT based homonuclear 1-bond transfers have been used 
to obtain sequential backbone correlations in highly mobile 
amyloid-fibrils (Falk and Siemer 2016; Zhang et al. 2023).

In the following, we explore the use of 1H detected experi-
ments that involve an additional broadband through-bond CC 
transfer step to increase spectral dispersion in applications on 
complex biomolecular systems containing dynamic molecular 
(sub)species that are difficult to prepare in deuterated form. 
Such an INEPT-based 3D hCCH through-bond sequence with 
longitudinal mixing has previously been used at moderate spin-
ning (20 kHz) on deuterated samples recrystallized in 90% D2O, 
to obtain residual protonated methyl group assignments while 
avoiding 1H2O suppression (Agarwal and Reif 2008). In addi-
tion, a 2D hC(c)H TOCSY experiment with DIPSI-2 mixing 
was used to obtain highly resolved spectra on a fully protonated 
peptidoglycan with an ultra-fast spinning probe (Bougault et al. 
2019). However, in our hands, such usage of longitudinal homo-
nuclear mixing is prone to producing antiphase artifacts gener-
ated by resonances with especially long coherence lifetimes. We 
found that these artifacts are resolved either by using long phase 
cycles that render extension to a 3D experiment impractical, 
or by instead using transverse mixing with a prior trim pulse 
(Bax et al. 1990) to purge unwanted coherences, similarly imple-
mented as in solution-state NMR. We apply these schemes to 
study the flexible region of two complex insoluble systems using 
hCCH TOCSY, with DIPSI-3 (Shaka et al. 1988) and WALTZ 
(Shaka et al. 1983) homonuclear carbon mixing in gradient-
free MAS probes. We demonstrate that such schemes provide 
broadband 13C–13C correlations at both high and ultra-high field 
NMR conditions.

Material and methods

Expression of tau K32

The gene encoding tau K32 inserted in a pNG2 plasmid 
was kindly gifted to us by the Mandelkow group of the 

German Center for Neurodegenerative Diseases, Bonn, 
Germany. The vector was transfected in E. coli BL21 
(DE3) competent cells and expression was induced in M9 
minimal media with 0.3 mM isopropyl–D-thiogalactopyra-
noside (IPTG) when the OD600 reached 0.6 for 16 h at 
20 °C.

Purification of tau K32

[13C,15N] labeled tau K32 was purified according to the 
protocol described by Barghorn et al. (2005). Small adap-
tations to the protocol are described below. Firstly, 1 mM 
NaN3 was added to the buffers, to minimize the risk of 
growth in them. Moreover, cells were lysed either with a 
French pressure cell as described previously or by sonica-
tion. The cation exchange chromatography that was uti-
lized was a HiTrap SP column of 5 mL and for gel filtra-
tion chromatography a HiLoad 26/60 Superdex 75 prep 
grade column. The protein concentration was measured 
by a BCA assay with a Thermo Scientific Pierce BCA 
Protein Assay Kit.

MT polymerization and preparation of solid‑state 
NMR samples

Lyophilized tubulin (Cytoskeleton, Inc.) was solubi-
lised in Brb80 buffer (80 mM PIPES, 2 mM MgCl2, 
1 mM EGTA, pH 6.8, 1 mM NaN3, 1 mM DTT, pH 
6.8), to a final concentration of 2 mg/mL. The polym-
erization was induced by adding 1 mM Guanosine-5′-
triphosphate (GTP) and incubation for 15 min at 30 °C. 
Then, 20 μM paclitaxel (taxol, SIGMA) was used to 
stabilize the MT and incubation took place for another 
15 min at 30 °C. The MT were spun down at 180.000 
× g (Beckman TLA-55 rotor) for 30 min at 30 °C and 
the pellet was resuspended in warm Brb80 buffer with 
20 μM paclitaxel. Subsequently, a 1:1 ratio of 13C15N 
tau K32 was added. The interaction partners were incu-
bated for 30 min at 37 °C. In the following isotopically 
labelled tau K32 in complex with MT was separated 
from the unbound, non-polymerised fraction by cen-
trifugation at 180.000 xg (Beckman TLA-55 rotor) for 
30 min at 30 °C. Afterwards, the pellet was washed with 
40 mM phosphate buffer, pH 7, with protease inhibitor 
(as described earlier) and 1 mM NaN3, without dis-
turbing the pellet. A 1.3 mm rotor was packed with the 
pellet.

Basic experimental details for each sample used in this 
manuscript. Further details are provided in the materials and 
methods section, and Table S1.
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MAS NMR experiments

MAS NMR experiments for the tau-microtubule mixture 
used a 3-channel HXY 1.3 mm probe at ω0H/2π = 700 MHz 
with a Bruker Avance 3 console. The MAS rate was set to 
44 kHz, with a set temperature of 280 K, which results in 
a sample temperature of ~303 K based on calibration using 
KBr (Thurber and Tycko 2009). The pulse program corre-
sponding to this sample is provided schematically in Fig. S1, 
with the full sequence in the supporting information. Pulse 
amplitudes for INEPT transfers and 15N J-refocusing were 
the following: ω1H/2π = 127 kHz, ω13C/2π = 83 kHz, and 
ω15N/2π = 75 kHz. MISSISSIPPI was used for water suppres-
sion (Zhou and Rienstra 2008). 2D experiments were col-
lected by not evolving the t2 dimension of the pulse scheme 
shown in Fig. 1. For 0 ms mixing, neither the SLx nor the 
DIPSIy,-y blocks were executed, while in the case of mixing 
we used 2 ms of SLx at the same amplitude as the DIPSI 
strength (Bax et al. 1990; Clore et al. 1990). The 2D experi-
ments were processed in Topspin: the data was zero-filled, 
and a QSine window function was applied with a sinebell 
shift of 2.5. For the 3D, non-uniform sampling was used 
with a Poisson Gap distribution schedule with 25% sampling 
density (Maciejewski et al. 2012), out to ~9 ms of acqui-
sition time in both indirect 13C dimensions. The data was 
then reconstructed using the SMILE NUS reconstruction 
algorithm (Ying et al. 2017) in NMRBox (Maciejewski et al. 
2017) using NMRPipe (Delaglio et al. 1995) for prepara-
tory and post-processing. Each dimension was zero-filled, 
and sine bell-squared window processing was used for both 
indirect dimensions, with an offset of 0.5, endpoint of 0.95, 
and exponent 1.0. For SMILE processing, the noise factor 

for signal cutoff was set to 5, with an 80% threshold for 
signal detection. In both the 2D and 3D experiments, the 1H 
dimension was referenced using water at 4.7 ppm, while the 
13C dimension was referenced indirectly with a correction 
factor determined from the gyromagnetic ratio. Chemical 
shift and linewidth analysis was performed in NMRFAM 
Sparky software (Lee et al. 2015).

The 13C/15N S. commune sample was prepared as dis-
cussed in previous publications (Ehren et al. 2020; Safeer 
et  al. 2023). MAS NMR experiments used a 3-channel 
HXY 1.3 mm probe at ω0H/2π = 1.2 GHz with a Bruker 
NEO console. The MAS spin rate was set to 60 kHz, and 
the sample was cooled to 260 K leading to a sample tem-
perature of ~20 °C. The pulse sequence outlined in Fig. S1b 
was used. The strength of the hard pulses on each channel 
were set as follows: ω1H/2π = 100 kHz, ω13C/2π = 67 kHz, 
and ω15N/2π = 50 kHz. The 1H dimension was referenced 
using water referenced to 4.7 ppm, while the 13C dimension 
was referenced to previously published work (Ehren et al. 
2020). B0 field drift artifacts in the S. commune spectra were 
corrected using previously published scripts (Najbauer et al. 
2019). Further information regarding data acquisition for 
both samples can be found in Table 1 and Table S1.

Results and discussion

In the following, we explore the flexible regions of two 
complex insoluble systems using hCCH TOCSY, with 
broadband DIPSI-3 (Shaka et al. 1988) and WALTZ-16 
(Shaka et al. 1983) homonuclear carbon mixing in gradient-
free probes using the pulse schemes given in Fig. 1. We 

Fig. 1   hCCH 3D used in this work. First, an INEPT block transfers 
magnetization through-bond from 1H to 13C prior to an evolution 
period to encode the 13C chemical shift. After the t1 period, mixing is 
applied according to Scheme 1 or Scheme 2. Afterwards, the chemi-
cal shift is again encoded during the t2 period. The carbon magnetiza-
tion is then stored longitudinally during the water suppression period, 

prior to INEPT transfer back to protons for detection. Narrow and 
wide rectangles indicate 90°/180° pulses, respectively. The 3 hC(c)H 
experiments were collected by not evolving the t2 period. Scheme 1 
was used for the tau-microtubule complex, while Scheme 2 was used 
for S. commune. More details regarding the experiments are available 
in the Supplementary information
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tested pulse Scheme 1 in Fig. 1 on a sample of [13C,15N] 
labeled tau in complex with unlabeled microtubules (MTs). 
Tau is an intrinsically disordered protein that maintains 
microtubule stability (Brotzakis et  al. 2021; Kadavath 
et al. 2015), and whose function is modulated by a series 
of posttranslational modifications including phosphoryla-
tion, nitration, and glycosylation (Martin et al. 2011). In 
the current context we used the K32 variant (~20.5 kDa 
of the full length), corresponding to the microtubule bind-
ing domain Q244-K369 (R1, R2, R3, R4), the N-terminal 
proline-rich region S198-Q244 (P2), and the C-terminal R’ 
region K369–Y394 (Brotzakis et al. 2021). For labeled tau 
bound to MTs, application of the 2D hC(c)H experiment 
shown in Fig. 1 Scheme 1 with 2 ms of preparatory Cx spin 
lock in addition to 25 ms of DIPSI-3 mixing, revealed mul-
tiple-bond CH correlations, to assign the protein backbone 
and non-aromatic sidechains (Fig. 2, blue). For reference, a 
2D spectrum with 0 ms of mixing is shown in red.

In line with previous work (El Mammeri et al. 2022) we 
expect that the observed correlations result from flexible 
tau residues not involved in strong binding to MTs. While 
typical chemical shift assignments allow for immediate rec-
ognition of some of these resonances (e.g. Ile), chemical 
shift degeneracy results in a heavy degree of spectral over-
lap, which was alleviated by adding a second dimension to 
the experiment after the DIPSI-3 mixing period. Figure 3 
shows the resulting strips corresponding to Ile, Leu, Lys, 
Pro, and Val sidechains. We also identified additional Ile 
and Lys residues in the 3D spectrum (not shown), indi-
cating its usefulness in distinguishing like residues whose 
chemical shift dispersion results in significant overlap in 
lower dimensional experiments. Finally, we observe sev-
eral distinct Ala, Thr and Gly residues (not shown). Cur-
rently, our survey of identifiable residues is in agreement 
with those observed previously (El Mammeri et al. 2022), 
though we find that our 3D hCCH correlations lead to more 
complete chemical shift assignments from backbone and 
sidechain resonances. Amino-acid selective assignments 

and proton linewidths for the residues highlighted in Fig. 3 
are provided in Table S2. While the average linewidth is 
less than 0.1 ppm, the observed variations did not corre-
late with backbone versus sidechain topology or degree of 
protonation.

Next, we tested the suitability of INEPT-based 13C–13C 
scalar transfers to explore the dynamic region of the cell 
wall of S. commune. Previous studies of 13C/15N-labeled S. 
commune reveal that it is composed of a complex mixture 
of proteins and various kinds of polysaccharides(Ehren 
et al. 2020; Safeer et al. 2023). Consequentially, the carbon 
spectrum features a larger protonated 13C chemical shift dis-
persion (~100 ppm) while the non-aromatic 1H shift range 
remains small (0–6 ppm). As a result, low-power irradiation 

Table 1   Summary of MAS NMR experimental parameters used in 
this work

Sample Tau + MT S. commune

�
0H
∕2� 700 MHz 1200 MHz

�
r
∕2� 44 kHz 60 kHz

Sequence scheme Scheme 1 Scheme 2
�
1

1.72 ms (1∕4J
HC

) 1.72 ms (1∕4J
HC

)

�
2

1.15 ms (1/6JHC) 1.72 ms (1∕4J
HC

)
13C–13C Mixing, 

ω13c/2π
SLx + DIPSI, 17 kHz WALTZ-16, 15 kHz

Fig. 2   2D hC(c)H spectral overlay of 0ms (red/green) and 25ms 
(blue/orange) of DIPSI mixing for the tau-microtubule complex 
at 700 MHz (1H Larmor frequency). In the dashed boxes we show 
examples of cross-peaks corresponding to complete intraresidual 
(along the side chain) scalar transfers within various residues, with 
unambiguous correlations as determined in the 3D shown in Fig. 3. In 
each vertical strip, the peaks in red are the resonance from which the 
first 1H→13C transfer originates before transferring to the blue cros-
speaks
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for homonuclear CC transfer leads to shorter-range transfer, 
especially at ultra-high field.

For this system, we used a variant of the sequence as 
shown in Fig. 1 Scheme 2, in which τ1 = τ2 = 1/(4JHC), 
favoring the CH groups from polysaccharides and amino 
acids to alleviate spectral congestion. Figure  4 shows 
overlays of 3 spectra with 0 ms (red), 4.8 ms (cyan), and 
11.2 ms (blue) of isotropic WALTZ-16 mixing, which has 
a larger bandwidth than DIPSI-3 and may thus be advan-
tageous at ultra-high field (Shaka et al. 1988). In spite of 
these relatively short mixing times, low-power irradiation 
(15 kHz) resulted in efficient transfers among nuclei within 
the polysaccharide region (~ 65–105 ppm). We highlight 
unambiguous assignments corresponding to the reduc-
ing ends of α- (Ra, left) and β-glucan (Rb, right), which 
are both formed from a pyranose ring in chair conforma-
tion, in which C3 links the ring to C1 of the successive 
sugar subunit via a glycosidic bond. We observe nearly 
all correlations from the pyranose ring with 11.2 ms of 
mixing, with the exception of C3 and C6; the former is 
observed only weakly in INEPT-based experiments due to 
its reduced mobility, while the latter has been filtered out 
by our choice in τ2 INEPT delays. Notably, we also observe 
weak correlations between the amino acid backbone and 

sidechain resonances at 11.2 ms of mixing (Fig. 4, right). 
As shown for K32-tau, stronger correlations in this region 
may require longer mixing for complete transfer. Higher 
transfer efficiency might also be attained with the use of 
DIPSI instead of WALTZ mixing, which has higher trans-
fer efficiency though at the cost of a narrower bandwidth 
(Shaka et al. 1988).

Notably, we found little overlap between peaks that 
appear in the INEPT-based spectrum in Fig. 4 and a CP-
based hCH correlation experiment of the same sample of 
S. commune (Safeer et al. 2023). We thus expect that all 
observable correlations arise from the flexible domain of the 
fungal cell wall where chemical shift anisotropies and dipo-
lar couplings are averaged out. Interestingly, when compar-
ing the 1H linewidths between the tau 3D spectra (Table S1) 
and fungal 2Ds (Safeer et al. 2023), we observe slightly 
broader average 1H linewidths for the tau data (~0.093 ppm), 
which was collected at 44 kHz MAS vs. 60 kHz MAS for S. 
commune (~0.067 ppm). This improvement may be attrib-
uted to the nature of the sample or differences in effective 
temperature, and the larger magnetic field in the case of S. 
commune.

Fig. 3   Strips from a 3D hCCH TOCSY lengths spectrum of the tau-
microtubule mixture at 700MHz using 25ms of DIPSI mixing, in 
which we show correlations from the backbone and sidechain of four 
example residues: Isoleucine, Leucine, Lysine, Proline and Valine. 

Asterisks indicate peaks along the diagonal of the CC plane. For Pro-
line, we observe doubled peaks for protons originating from Cb/Cd 
diagonal peaks
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Conclusions

In this work we have introduced two and three-dimensional 
13C–13C–1H correlation experiments that allowed us to char-
acterize dynamic carbon networks of complex biomolecular 
systems without the need of deuteration, HR-MAS probes 
(Blicharski and Sobol 1982; Howarth and McDermott 2022; 
Li et al. 2005; Zupancic and Pirs 1976) or ultra-fast MAS 
in 1H-detected TOCSY experiments(Ikura et al. 1990; Kay 
et al. 1990). Our data show that we can indirectly deter-
mine through-bond 13C–13C connectivities with refocused 
INEPT-based pulse sequences in a selective manner as deter-
mined by the choice of J-coupling and delays. We obtained 
2D hC(c)H spectra of exceptionally high resolution on a 
fully protonated mixture of 13C/15N-labeled K32-tau and 
unlabeled human microtubules as well as fungal cell wall 
preparations of Schizophyllum commune(Ehren et al. 2020). 
We extended the sequence to a 3D hCCH experiment to 
alleviate chemical shift degeneracy for obtaining unambigu-
ous correlations. This experiment could be further tuned to 
additional selectivity, by adjusting the length of the τ2 delay. 

Combination with 1H-detected hNCOCA and hNCA exper-
iments (Falk and Siemer 2016; Linser et al. 2008, 2010; 
Zhang et al. 2023) would lead to full sequential assignments 
of dynamic protein stretches. The hCCH experiment could 
also be expanded to a 4-dimensional hNCACH sequence, 
in which the N-edited transfer to CA’s selects for backbone 
resonances, expanding the information available in a single 
experiment.

This method can also be used in conjunction with 
CP-based 1H-detected schemes—which require fast-to-
ultrafast MAS techniques for fully protonated samples—
and also enable one to study biopolymers within native 
conditions. Adapting solution NMR methodology in this 
way will allow Magic Angle Spinning NMR to explore a 
wider scope of biomolecules with a large flexible domain, 
such as membrane proteins whose main functions lie in 
the extra membrane space e.g. integrins (Bergonzini et al. 
2022), growth hormone receptors (Kaplan et al. 2016), 
and membrane-anchored lipoproteins (Xiang et al. 2022). 
In addition, such analysis is not restricted to biomolecules, 
but could also be used to identify soluble organic interme-
diates and byproducts in industrial catalysts (Chowdhury 

Fig. 4   Comparing hC(c)H spec-
tra of S. commune with varying 
TOCSY lengths, using WALTZ-
16 at 1200 MHz (1H Larmor 
frequency). We specifically 
show peaks belonging to the 
reducing ends of -glucan (Ra, 
left) and -glucan (Rb, right) as 
they are relatively well-isolated 
and show prominent transfer. In 
red we show the spectrum with 
no mixing, so that all peaks cor-
respond to directly bonded C–H 
pairs. The cyan (4.8 ms) and 
blue (11.2 ms) spectra instead 
show multiple bond correla-
tions corresponding to various 
combinations of C–H pairs 
within the pyranose ring (struc-
ture shown). We also observe 
correlations among the amino 
acid region (dashed boxes). For 
fungal cell wall biological com-
ponent analysis of 0 vs. 11.2 ms 
data, see Safeer et al. 2023
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et al. 2018a, b). We thus predict widespread usage of such 
sequences using standard MAS probes to thoroughly char-
acterize organic components across various applications.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10858-​023-​00415-6.
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