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Abstract

The steep rise in protein sequences and structures has paved the way for bioinfor-

matics approaches to predict residue–residue interactions in protein complexes.

Multiple sequence alignments are commonly used in contact predictions to identify

co-evolving residues. These contacts, however, often include false positives (FPs),

which may impair their use to predict three dimensional structures of biomolecular

complexes and affect the accuracy of the generated models. Previously, we have

developed DisVis to identify FP in mass spectrometry cross-linking data. DisVis allows

to assess the accessible interaction space between two proteins consistent with a set

of distance restraints. Here, we investigate if a similar approach could be applied to

co-evolution predicted contacts in order to improve their precision prior to using

them for modeling. We analyze co-evolution contact predictions with DisVis for a set

of 26 protein–protein complexes. The DisVis-reranked and the original co-evolution

contacts are then used to model the complexes with our integrative docking software

HADDOCK using different filtering scenarios. Our results show that HADDOCK is

robust with respect to the precision of the predicted contacts due to the 50% random

contact removal during docking and can enhance the quality of docking predictions

when combined with DisVis filtering for low precision contact data. DisVis can thus

have a beneficial effect on low quality data, but overall HADDOCK can accommodate

FP restraints without negatively impacting the quality of the resulting models. Other

more precision-sensitive docking protocols might, however, benefit from the

increased precision of the predicted contacts after DisVis filtering.

K E YWORD S

docking, false positive filtering, HADDOCK, intermolecular residue–residue contacts, protein–
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1 | INTRODUCTION

What is the prediction quality of protein complexes for which isolated

structures are available but protein–protein interface (PPI) information

is not? Unfortunately, there is still a low probability of predicting

(or identifying) the correct PPI in those cases and this has been one of

the main challenges for the structural bioinformatics field for the past

decades. The steady increase of protein sequences in data banks such

as Uniprot1 and major technical advances in the structural biology

field2 have been important factors for the enhanced prediction accu-

racy of protein complexes over the past year.3 With the rise in experi-

mental data, software is now being developed to leverage the large
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quantity of sequences and structures by mining them, via co-evolution

or machine learning (ML) algorithms,4–6 for example. The release of

Alphafold26 has demonstrated that ML approaches can compete or

even outperform the state-of-the-art software packages in the protein

structure-prediction field.7 Besides protein structures, recent studies

are also exploring Alphafold2's predictive power for protein–protein8,9

and protein–peptide10,11 complexes.

Co-evolution has been proven to be an important tool to identify

residues at potential PPIs.12 Identifying co-evolving residue pairs

requires the availability of multiple sequence alignments (MSA) of

orthologous sequences. When applied to the prediction of intermolecu-

lar contacts, an additional complexity comes from predicting the correct

pairing of the sequences of the two proteins when considering multiple

paralogues. The predicted intermolecular contacts derived from co-

evolving residues can then be used in de-novo modeling of protein

complexes.5,13 Although this technique has mainly been used for pro-

karyotic systems, recent findings suggest eukaryotic complexes could

also benefit from applying co-evolution prediction approaches.12,14,15

Independent of the protein system, one major challenge in co-

evolution predictions remains the presence of false positive

(FP) contacts. Although FP contacts are deduced from MSAs in the

same way as correct contacts, they do not describe the physiological

protein–protein interface. When such contact data are used to model

protein complexes, these false positives can negatively affect the

modeling results as they potentially steer the model away from the cor-

rect solution, reducing the prediction accuracy. This is a more general

problem, which, for example, also occurs in cross-linking mass-

spectrometry (XL-MS) data which also suffer from FPs. To deal with this

problem we have previously developed DisVis, available both as a web

server16 and python package,17 which, given the 3D structures of the

component of a complex, can assess the accessible interaction space

defined by a set of distance restraints and identify possible false posi-

tives. Similarly, the identification and removal of FPs in co-evolution

predicted contacts through DisVis could potentially improve the model-

ing of protein complexes based on residue–residue contact information.

Here, we use 26 protein–protein complexes and co-evolution

contact predictions selected from the work of Green et al.18 to evalu-

ate whether DisVis analysis can help in FP removal. We then assess

the impact of using this information (original co-evolution or DisVis-

filtered contacts) on the quality of the docking results using our inte-

grative modeling software HADDOCK which allows defining distance

restraints to guide the docking. We show that DisVis-filtering

increases the precision of the predicted contacts and that HADDOCK

is not very sensitive to this precision increase in the predicted con-

tacts as it is able to generate correct models even in the presence of a

significant number of FP contacts.

2 | METHODS

2.1 | Dataset preparation

The study by Green et al.18 was used to extract 26 protein dimers

together with their respective top 20 co-evolution predicted interface

contacts obtained through EVcomplex5 (Figure 1). The protein com-

plexes were selected according to the total number of true residue-

residue contacts predicted within the top 10 intermolecular co-

evolution contacts of each system, information extracted from the

supporting material of Green et al.18 We selected cases having a top

10 contact precision ranging from 20% to 100%, ensuring an equal

distribution over contact precision ranges (Table 1, Figures S1 and

S2): Five complexes per total number of true contacts (2, 4, 6, 8, or

10) were included. An additional complex with 9 true contacts was

added, resulting in a total number of 26 complexes. Besides the preci-

sion range in the top 10 contact quality, the quality of the experimen-

tal structures was considered for dimer selection as well. Structures

were selected to have the best resolution achievable within the data-

set (lower bound 1.45 Å, upper bound 3.5 Å). Third, the combination

of uniprotIDs within each dimer was selected to be unique within the

dataset in order to generate a diverse range of protein complexes.

Finally, if possible, protein complexes (25 out of 26) were selected to

not contain DNA in the experimentally resolved system. The struc-

tures of the monomers were prepared for use in DisVis and HAD-

DOCK using a python script to rename the protein chains (chain A

and B) with pdb-tools19,20 (pdb_chain and pdb_tidy). While those

structures have exactly the same backbone conformation as in the

experimental reference complex, their side chains were perturbed and

optimized using SCWRL4 by Green et al.,18 which thus represent a

semi-unbound conformation for docking purposes.

2.2 | DisVis scoring of co-evolution predicted
intermolecular contacts

For each dimer within our dataset, the top-20 co-evolution predicted

contacts (see Data availability statement section) were used as input for

DisVis through its web server implementation (https://wenmr.science.

uu.nl/disvis). The two monomer structures together with a list of pre-

dicted intermolecular contacts were submitted with the complete scan-

ning option settings (1 Å voxel size and 9.72� scanning angle). Predicted

residue-residue contacts that involved residues absent in the available

3D protein structures were removed from the co-evolution contact lists

prior to DisVis calculations (see Section 2.4.1 and Table 1: Present con-

tacts). The upper distance limit for the co-evolution contacts was set to

10 Å between Cα atoms (in their work, Green et al. used 8 Å between

Cβ-Cβ atoms) as during the rotational scan only Cα atoms are consid-

ered, which was implemented to reduce computational costs.17 The Dis-

Vis calculated z-scores were used to rank the residue–residue contacts.

The z-score is calculated for each distance restraint by taking into

account each DisVis modeled complex which meets at least one of the

distance criteria included by the user. For each complex that meets this

requirement, all violated restraints are calculated and stored. This

results in a violation matrix in which the violation data of all approved

complexes are combined. Each row of the matrix represents the num-

ber of consistent restraints, from 1 to N, and each column describes the

frequency of restraint violation per distance restraint in which at least

N restraints are consistent. This violation matrix is used to calculate the

z-score per restraint:
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z¼ vi�v
σ

, ð1Þ

where vi is the average per column i of the violation matrix, and v and

σ describe the violation matrix average and standard deviation,

respectively.17 The resulting z-scores were ordered for this study from

low (negative z-score) to high (positive z-score), least to most likely to

be a false positive.

From the DisVis-reranked co-evolution contacts, the top 10 and

5 were extracted for use as distance restraints in HADDOCK. The

entire set of 20 contacts (i.e., without DisVis filtering) was also consid-

ered as well as DisVis filtered data, using a z-score threshold of 0.5

or 1.0.

2.3 | Docking protocols

The docking calculations were performed using a local installation of

HADDOCK 2.4. The docking protocol in HADDOCK consists of three

stages.21 In the first stage (it0), rigid body docking is performed with

the distance restraints defined between the two chains guiding the

docking. From the 1000 (default) generated models, the top 200 based

on the it0 HADDOCK score progress to the next step. The second

stage (it1) consists of a semi-flexible simulated annealing in torsion–

angle space during which flexibility at the interface is introduced step

wise, first along the side chains and later for both side chains and

backbone. By default, the flexible interface is defined automatically

for each model from an analysis of residues that are in close contact

between the chains. All structures from it1 are transferred to the final

step of the docking protocol (itw) which consists in HADDOCK 2.4 of

a final energy minimization (previous versions of HADDOCK were

performing a very short optimization by molecular dynamics simula-

tion in explicit solvent—this option is still available but turned off by

default in version 2.4). Finally, the models are scored based on the

HADDOCK itw scoring function which is a linear combination of ener-

getic terms:

HADDOCK itw score¼0:2Eelecþ1:0Evdwþ1:0Edesolvþ0:1EAIR, ð2Þ

where Eelec and Evdw correspond to the electrostatics and Van-der-

Waals intermolecular energies, respectively, calculated with the OPLS

forcefield.22 The desolvation energy, Edesolv, is a solvent accessible

surface area-dependent empirical term,23 which estimates the ener-

getic gain or penalty of burying specific side chains upon complex for-

mation. EAIR represents the energy term assigned to the ambiguous

interaction restraints (AIRs) (in this case the predicted contacts).21

Default settings were used for all HADDOCK runs,21 except for

the random removal of restraints (see Table 2). The DisVis-reranked

distance restraints or the original 20 co-evolution contacts were

included as input in the ambiguous restraints class. Ten different

docking protocols (Table 2) were performed with HADDOCK, which

F IGURE 1 Dataset of 26 dimers used in this study. In each dimer the two chains are highlighted in yellow and blue. The PDB ID as well as
the resolution of the experimental structure in Ångstrom are depicted. The representation of the shown protein complexes was obtained by using
PyMOL.25
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differ in the number and type of restraints considered and the per-

centage of restraints randomly discarded for each model. The latter

option makes HADDOCK potentially less sensitive to wrong

(e.g., false positive) restraints. Intermolecular co-evolution distance

restraints were defined as distances of 3 Å (lower bound) to 7 Å

(upper bound) between Cβ atoms of the two chains, except for glycine

residues for which the Cα atom was selected. This definition of the

distance restraints is the same as in the docking calculations per-

formed by Green et al.18 Besides co-evolution restraints, additional

intramolecular Cα-Cα distance restraints were included during docking

for protein chains in which parts of the protein structure were missing

to keep the domains together during the refinement stage (note that

this is done automatically in the web server). These restraints were

calculated with the restrain_bodies.py script from haddock_-

tools (https://github.com/haddocking/haddock-tools).

2.4 | Analysis

2.4.1 | Contact precision

The contact precision was calculated for each complex as a function

of the number of contacts considered (based on the original or DisVis

rankings). The precision p was defined as the number of true contacts

divided by the total number of contacts considered:

p¼ TC
TCþFC

, ð3Þ

where TC stands for true contact, a contact of which both residues

are present at the interface of the reference complex within an 8 Å

distance cutoff of each other, considering all heavy atoms. False

TABLE 1 Structure information of the 26 hetorodimeric protein–protein complex dataset used in this study.

PDB ID Chain 1 Chain 2 Resolution (Å) Green IDa Green top 10b Green top 20b Present Green contacts 10/20

3CR3 B D 2.1 allpdb0993 2 (20%) 2 (10%) 9/18

3AYH A B 2.19 allpdb0972 2 (20%) 3 (15%) 10/19

1PG5 A B 2.6 allpdb0696 2 (20%) 2 (10%) 10/20

5X3T C D 2.65 allpdb1682 2 (20%) 2 (10%) 8/18

2B3T B A 3.1 allpdb1938 2 (20%) 4 (20%) 9/18

2BS2 C B 1.78 allpdb0461 4 (40%) 5 (25%) 10/20

3LPE A B 1.9 allpdb1080 4 (40%) 4 (20%) 8/16

3RLF F E 2.2 allpdb0211 4 (40%) 4 (20%) 8/18

1KF6 M N 2.7 allpdb0234 4 (40%) 4 (20%) 10/20

3P5J C B 2.9 allpdb0336 4 (40%) 4 (20%) 8/16

1FM0 E D 1.45 allpdb0609 6 (60%) 8 (40%) 10/20

2CZV A C 2 allpdb0803 6 (60%) 8 (40%) 10/20

2WDQ C B 2.4 allpdb0144 6 (60%) 9 (45%) 10/20

1JB0 J F 2.5 allpdb0058 6 (60%) 8 (40%) 10/19

4DL0 E G 2.91 allpdb0367 6 (60%) 10 (50%) 9/19

1UB4 A C 1.7 allpdb0732 8 (80%) 9 (45%) 10/20

2NV2 L K 2.12 allpdb0854 8 (80%) 12 (60%) 10/20

2D1P D F 2.15 allpdb0190 8 (80%) 11 (55%) 10/20

3PNL A B 2.2 allpdb1128 8 (80%) 9 (45%) 10/20

5IFG B A 2.7 allpdb1601 8 (80%) 11 (55%) 10/19

5AWW Y G 2.72 allpdb0550 9 (90%) 18 (90%) 10/20

2Y69 N P 1.95 allpdb0089 10 (100%) 13 (65%) 10/20

3RKO F E 3 allpdb0153 10 (100%) 15 (65%) 10/19

5DOQ A B 3.05 allpdb2088 10 (100%) 18 (90%) 10/20

4HEA Q O 3.3 allpdb1728 10 (100%) 15 (65%) 10/20

3GLI F J 3.5 allpdb1822 10 (100%) 11 (55%) 10/20

Note: Each entry describes one dimer with its corresponding PBD ID, the chains that have been used in DisVis and HADDOCK, the resolution of the

experimental structure, the Green ID18 equivalent, the number of true residue-residue contacts and corresponding top-10 and top-20 precision (%)

according to calculations performed by Green et al.,18 and the number of predicted contacts (Present Green 10/20) in the Green top-10 and top-20 for

which the corresponding residues are present in the experimental protein structures (Figure S2).
aThe unique ID number of each complex used by Green et al.18 in their supplementary information.
bNumber of true contacts in the top 10 and top 20 co-evolution contacts according to the definition used by Green et al.,18 using the experimental

structures and a heavy-atom interface cutoff of 8 Å calculated with haddock-tools (https://github.com/haddocking/haddock-tools) to identify the true

contacts. The contact precision is shown in brackets.
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contacts (FC) are those for which the shortest distance between any

heavy atoms exceeds this 8 Å cutoff. Subsequently, the average con-

tact precision p was calculated over all complexes.

2.4.2 | Interface root-mean square deviation and
success rate calculation

The quality of each complex was determined by calculating the inter-

face root-mean-square deviation (i-RMSD), which is obtained by align-

ing the backbone atoms at the protein–protein interface of both

protein chains on the reference complex, using all residues making

contacts within a 10 Å cutoff with the partner molecule. The quality

of each model is rated according to the critical assessment of pre-

dicted interactions (CAPRI) with an i-RMSD of ≤1 Å denoted as high,

≤ 2 Å as medium and ≤4 Å as acceptable quality.24 We did not con-

sider the fraction of native contacts in this study since in our experi-

ence with HADDOCK the limiting factor for defining the quality of a

model is the i-RMSD (i.e., a model will never be “downgraded” in qual-

ity because of a lower fraction of native contact value).

These model quality ratings are used to calculate the success

rates per tested condition. The success rate is defined as the percent-

age of targets for which a model of acceptable (or better) quality has

been generated within the top N (N = 1, 5, 10, 20, 50, 100, and 200)

ranked models based on the HADDOCK itw score.

3 | RESULTS

The 26 protein complexes (Figure 1) used in this study are taken from

the dataset published by Green et al.18 with 2, 4, 6, 8, and 10 true

contacts in the top-10 co-evolution predicted contacts according to

the true contact definition used by Green. Five complexes for each

number of true contacts were included in our dataset as well as one

additional complex with 9 true contacts (Table 1). The number of true

contacts in the top-20 for these 26 complexes ranges from 2 to

18 (precision of 10%–90%) (Table 1 and Figure S3). The co-evolution

intermolecular contacts from Green et al.18 were reranked by DisVis

via their z-score to identify potential false positives from the predicted

contacts. Different selections of co-evolution restraints were tested

(Table 2) to assess the impact of contact precision on the docking per-

formance and model quality.

3.1 | Reranking predicted co-evolution contacts
with DisVis enhances the precision of the top 10

Co-evolution intermolecular contacts produced by EVcomplex form

the starting point for the DisVis analysis of this study. Twenty co-

evolution contacts per complex were assessed by DisVis and reranked

according to their obtained z-score (see Section 2). Subsequently, the

DisVis-reranked contacts were compared to the original co-evolution

results. The average contact precision (Figure 2) shows that a differ-

ence in precision is already present between the co-evolution and

DisVis-reranked contacts in the top 1 (precision of DisVis-reranked

88 ± 32% vs. 81 ± 40% for the original contacts). For the top 10 con-

tacts, the difference in precision is 6% (DisVis-reranked 67 ± 29%

vs. 61 ± 27% for the original contacts). Including more contacts, up to

the maximum of 20 considered, lowers the precision further to 47%.

3.2 | The number of contacts considered rather
than their precision enhances HADDOCK's
performance

In order to test the impact of DisVis reranking on the quality of the

models generated by HADDOCK, two contact list cutoffs were used

as input for docking calculations: top 5 and top 10 (indicated by

TABLE 2 HADDOCK protocols tested with the original or DisVis-reranked co-evolution restraints.

Protocol Number of restraints Prediction method Random removala (%) Selection based on DisVis z-score ID

1 20 Co-evolutionb 0 - EV20-0

2 20 Co-evolutionb 50 - EV20-50

3 10 Co-evolutionb 0 - EV10-0

4 10 DisVis rerankedc 0 - DisVis10-0

5 10 Co-evolutionb 50 - EV10-50

6 10 DisVis rerankedc 50 - DisVis10-50

7 5 Co-evolutionb 0 - EV5-0

8 5 DisVis rerankedc 0 - DisVis5-0

9 ≤20d DisVis filtered 50 <0.5d DisVis20-50 < 0.5

10 ≤20d DisVis filtered 50 <1.0d DisVis20-50 < 1

aPercentage of random removal of restraints. This random removal is done for each model calculated.
bCo-evolution intermolecular contacts directly taken from Green et al.18

cCo-evolution intermolecular contacts taken from the DisVis reranking.
dCo-evolution intermolecular contacts taken from the DisVis reranking by applying a z-score cutoff: z-score lower than 0.5 or 1.0, for protocol 8 and 9,

respectively. The number of contacts selected varies for the protein complexes between 8 and 17 for the 0.5 cutoff, and 12 and 20 for the 1.0 cutoff.
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orange vertical lines in Figure 2), both using the original EVcomplex

ranking and the DisVis reranking of contacts. In addition, as a refer-

ence, docking was performed using the original top-20 EVcomplex

predictions. The success rates for these different sets of restraints

(Table 2) are shown in Figure 3, calculated over the 200 HADDOCK-

ranked models after final refinement (itw). The ranking of models is

based on the HADDOCK scoring function, which consists of a linear

combination of energy terms (see Section 2). Five docking conditions

were tested: using the top 5 contacts (EVcomplex or DisVis-reranked)

as distance restraints without random contact removal (i), the top

10 contacts (EVcomplex or DisVis-reranked) without random removal

of contacts (ii), the top 10 contacts (EVcomplex or DisVis-reranked)

with a 50% random removal of provided contacts (iii), and as a refer-

ence the top 20 contacts (EVcomplex) with 50% random contact

removal (iv) and without (v) (see Section 2 and Figure 3). The random

removal of restraints is done per model (1000 models are generated

per docking run), meaning that models will be generated based on dif-

ferent combinations of restraints within a docking run.

The first condition with five restraints and no random restraint

removal (EV5-0 and DisVis5-0) includes a set of contacts with the

highest contact precision compared to the top-10 and top-20 con-

tacts. EV5-0 and DisVis5-0 perform similarly well in the top-10 suc-

cess rate for high- and medium-quality models. However, EV5-0's

predictions surpass the DisVis setup when it comes to the percentage

of acceptable quality predictions. Even though the accuracy of the

top-5 restraints used in these protocols is significantly higher than the

top-10 contacts for both EVcomplex and DisVis-reranked setups

(Figure 2), EV5-0 and DisVis5-0 are outperformed by the other

protocols.

Next, the top-10 contacts were included in four protocols

(DisVis10-0, DisVis10-50, EV10-0, and EV10-50) to investigate the

impact of random removal of restraints on the docking performance.

The DisVis10-50 and EV10-50 protocols (10 restraints and 50% ran-

dom removal) achieve the best performance with respect to the

setups without random removal, reaching an acceptable or higher

quality success rate of 85% for the top-10 HADDOCK-scored models.

A similar trend can be observed when a cluster-based analysis is per-

formed (Figure S4). Hence, turning on random restraint removal (the

default setting) improves the docking performance (Figure 3), making

HADDOCK robust to the presence of false positives.

The DisVis-reranked performance was also compared to the

EVcomplex results, both with random removal of restraints turned on

(DisVis10-50 vs. EV10-50). When considering the top-5 predicted

models, the success rate of the high- and medium-quality models

between the two setups is comparable. However, DisVis outperforms

the EVcomplex restraints with a success rate of 85% versus 73% for

the number of acceptable models in the top 5, suggesting DisVis-

reranking can have a quality enhancing effect on co-evolution pre-

dicted data when used for docking.

However, none of the top-5 and top-10 DisVis-reranked or

EVcomplex setups outperform the EVcomplex condition using

20 restraints and 50% random removal (Figure 3). The inclusion of

20 restraints during docking results in 35% high-quality structures,

65% medium and 85% acceptable models according to the CAPRI cri-

teria. This finding suggests that although an accuracy improvement

within the top-5 and top-10 residue–residue contacts due to contact

reranking with DisVis improves the input data for HADDOCK, using a

lower precision contact list with more contacts actually outperforms

shorter contact lists with higher precision (Figure 4 and Figure S4). A

comparison of the success-rate results obtained with 20 EVcomplex

contacts and 50% or 0% random contact removal confirms the benefi-

cial impact of random removal on the prediction quality (Figure 3).

Therefore, HADDOCK appears to be robust with respect to contact

precision and benefits from a combination of contact quantity and

50% random contact removal.

3.3 | Better precision does lead to both better
quality and better ranking of models

When analyzing the impact of the precision of residue-residue con-

tacts on the quality of the resulting models in terms of i-RMSD values,

it becomes apparent that they are correlated. In Figure 4, the docking

results of the best performing protocol, EV20-50 (EVcomplex top

20 contact restraints with 50% removal), is shown in dark blue. The

performance of the two runners-up protocols, EV10-50 and

DisVis10-50, are depicted in light blue and yellow. We observe a

moderate anti-correlation between contact precision and the i-RMSD

of the top-1 docked model or the model with the best i-RMSD (corre-

lation coefficients between �0.51 and �0.56 depending on the data

set). More interesting is the fact that irrespective of the dataset, we

observe that HADDOCK is able to reliably predict acceptable models

in the top ranked models, starting around a contact precision of 0.4

(although acceptable models are already obtained in some cases for

F IGURE 2 Residue–residue contact precision. Average precision
of co-evolution and DisVis-reranked residue–residue contacts
calculated over a dataset of 26 dimers. The average precision of the
co-evolution predicted contacts are represented by a black line while
the DisVis result is shown in blue. Orange lines highlight the two top
cutoffs used as input for docking calculations.
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precisions as low as 0.2) (Figure 4B). A comparison of Figure 4A,B also

shows that the ranking of models improves with the precision, with

the top models being of acceptable or better quality when the preci-

sion reaches 0.5–0.6.

A comparison of the results obtained by using 10 (both DisVis

and EV contacts) or 20 contacts (Figure 4) shows that for a similar pre-

cision, having more contacts does lead to better quality models in

general (the dark blue points are in most cases lower than the others).

This effect is more apparent at lower precisions and can also be

observed in the clustered HADDOCK results (Figure S5). These find-

ings indicate that HADDOCK is robust with respect to the precision

of contacts and benefits from longer (up to 20 here) contact lists,

being able to generate and reliably identify acceptable models down

to about 30% precision.

4 | DISCUSSION

In this study, we have investigated the effect of residue–residue con-

tact filtering on protein–protein docking by comparing the docking

results of DisVis-reranked contact restraints to the original co-

evolution contacts. Although the DisVis analysis was limited in this

work to 20 contacts (those provided by Green et al.18), it can be

extended to larger numbers of contacts. Because of the available true

contact distribution of the studied dataset, we could analyze how

contact quality impacts the docking results. These subsets were

defined by using the true contact precision in the Green top 10 (see

Section 2). Of the 26 complexes, 10 fall into the low-quality category

with 20%–40% true contacts in the top 10, and 11 into the high qual-

ity category with a true contact precision of 80%–100%. Unsurpris-

ingly, success rate analysis for these two groups (20%–40% vs. 80%–

100%), show that the original co-evolution contacts with 50% random

removal performs best for the 80%–100% precision category

(Figure S6). Overall, the random contact removal (enabled by default

in HADDOCK) appears to be crucial to counterbalance the presence

of false positives as each of the 1000 docking attempts generates a

different set of 50% of the contacts, leading to a robust performance

of HADDOCK in regard to contact precision (Figure 3).

The performance enhancing combination of a large set of dis-

tance restraints with medium precision and 50% random removal is

also shown in Figure 4B. In this graph, the results clearly demonstrate

that while overall interface precision is reduced in the dataset for the

20 contacts setup, HADDOCK generates higher quality models with

20 contacts than 10 contacts at the same interface precision. The dif-

ference in ranking performance (Figure 4A) also shows that while

10 contacts appear to require a contact precision of �60% to predict

an acceptable model at the top 1, 20 contacts achieve a similar quality

starting from �40% precision.

We have also investigated if selecting contacts based on a z-score

criterion rather than a predefined number of contacts would improve

1 5 10 20 501002001 5 10 20 50100200 1 5 10 20 50100200 1 5 10 20 50100200 1 5 10 2050100200 1 5 10 20 50100200 1 5 10 20 50100200 1 5 10 20 50100200

F IGURE 3 Comparison of co-evolution and DisVis-reranked docking success rates for the 26 dimers dataset. Success rate of co-evolution
and reranked DisVis contact lists used as input for protein–protein docking. Three sets of contact lists, 5, 10, and 20, were used to assign distance
restraints in HADDOCK. When using the top 5 contacts, all five contacts were included in the docking protocol. Hence no random removal was
applied. For the top 10, 50% of the included contacts were randomly removed upon docking in #10—50% and none were removed in #10—0%.
The fourth condition represents the docking results using 20 distance restraints with 50% random removal while the fifth condition considers
20 distance restraints without contact removal. Seven bars have been plotted per condition, denoting the top 1, 5, 10, 20, 50, 100, and
200 structures according to the HADDOCK itw score. The assignment of a high, medium or acceptable label to a protein complex represents its
accuracy in iRMSD with high being ≤1 Å (dark green), medium ≤2 Å (light green) and acceptable ≤4 Å (light blue) (Table S1).
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their quality. Removing contacts with a z-score higher than 0.5 results

in an average of 10.6 ± 2.7 contacts per complex with an average pre-

cision of 68% ± 29%. Compared to the original top-20 co-evolution

set (Table S2), including an average of 19.2 ± 1.2 contacts with an

average precision of 48% ± 25%, this is an improvement in precision

of 20% (68%–48%). The same analysis performed on the low- and

high-quality subsets separately leads to 8.8 ± 1.0 contacts per com-

plex for the low-quality set with a precision of 51% and 12.6 ± 2.9 for

the high-quality set with an average precision of 83% (Figure S6 and

Table S2). Compared to the original top-20 co-evolution contacts sub-

sets (Table S1) this is an improvement in precision of 24% (51%–27%)

and 18% (83%–65%) for the low- and high-quality datasets, respec-

tively. Hence, z-score filtering can positively impact the precision of

the contact dataset, especially when the contact set has a low preci-

sion initially (Figure S3). This is confirmed by the docking results for

the low-quality contacts set (20%–40%) (Table 1) when only the con-

tacts with a DisVis z-score lower than 0.5 out of the 20 contacts are

included (Figure S7). While a z-score cutoff of 0.5 improves the aver-

age precision of the remaining contacts in the low-quality contacts

set, a removal of z-score values higher than 1.0 does not seem to be

able to filter the contact data sufficiently (Table S2), resulting in a simi-

lar docking performance as the original co-evolution contact set

(Figure S7). In case of the high-quality dataset (80%–100% precision),

DisVis reranking and z-score filtering seems to have a mild or no

impact on contact precision improvement in the top 10 contacts as

the number of true contacts is high and therefore reranking of true

contacts will not enhance contact precision (Figure S6). The docking

success rate compared to the EV20-50 protocol seems, however, to

be negatively affected by DisVis z-score filtering (Figure S7). This

trend could be due to the removal of true contacts (Figure S6) via z-

score filtering as the average contact precision at 20 contacts with a

z-score filter of 1 or 0.5 lies below the contact precision reached by

the original co-evolution contacts (Figure S6).

In a real-world scenario of experimental data or co-evolution data

for which a complex structure is not available, the quality of the con-

tacts cannot be assessed before docking. Therefore, comparing and/or

combining the top-10 HADDOCK itw-scored structures for both

identified approaches, using the original contact data (with 50% ran-

dom removal) and the DisVis-filtered contacts with z-score < 0.5 (and

50% random removal) (EV20-50 and DisVis20-50 < 0.5), could pro-

vide a way to check the consistency of the solutions between the runs

and possibly refine all solutions together for the best docking perfor-

mance, discarding the restraints (in this way the score would only

reflect the quality of the interface). The highest contact precision for a

set of 20 contacts should be obtained by reranking the contacts with

DisVis and applying a cutoff, for example, the top 5 or top 10.

(A) (B)

F IGURE 4 Contact precision versus interface root-mean square deviation (i-RMSD). (A) Residue-residue contact precision versus the i-RMSD
of the top 1 predicted model per complex, using the HADDOCK itw scoring function. The dark blue circles represent the docking results obtained
by using the top 20 EVcomplex contact restraints (Pearson correlation of �0.51). Its linear regression fit is plotted in the same color. The light
blue and yellow data points show the HADDOCK results from the docking runs performed with the top-10 EVcomplex contacts and the top-10
DisVis-reranked contacts with 50% random removal which have a Pearson correlation of �0.51 and �0.56, respectively. The linear regression fit
for the top-10 EVcomplex and DisVis results combined (light blue and yellow data) is highlighted in green. The dashed black line depicts the 4 Å
CAPRI cutoff for docked models with acceptable quality. (B) Residue–residue contact precision versus the model with the best i-RMSD per
complex, using the HADDOCK itw scoring function. The dark blue circles represent the docking results obtained by using the top-20 EVcomplex
contact restraints (Pearson correlation of �0.51). Its linear regression fit is plotted in the same color. The light blue and green data points show
the HADDOCK results from the docking runs performed with the top-10 EVcomplex contacts and the top-10 DisVis-reranked contacts with 50%
random removal which have a Pearson correlation of �0.53 and �0.56, respectively. The linear regression fit for the top-10 EVcomplex and

DisVis results combined (light blue and yellow data) is highlighted in green. The dashed black line depicts the 4 Å CAPRI cutoff for docked models
with acceptable quality.
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5 | CONCLUSION

Intermolecular contacts derived from co-evolution analysis provide a

valuable source of information to guide the modeling of protein–

protein complexes by docking. These can be used to guide the dock-

ing process (as done, e.g., in HADDOCK) or as filters to score the

generated models. The presence of false positives within the pre-

dicted contact data can, however, hamper the docking performance,

both in terms of quality and number of acceptable models generated.

Here, we have shown that DisVis can reduce the number of FPs in

co-evolution contact data by taking into consideration the spatial

restrictions imposed by protein structures and the defined contacts.

This precision enhancement can have a positive effect on the dock-

ing results depending on the software and approach used. Although

HADDOCK is robust to the presence of false positive contacts and

overall benefits most from a large set of interface contacts and 50%

random removal of restraints (the default setup) rather than high

interface precision for a small set of contacts, other software or

approaches might well benefit from improved precision contact

data resulting from DisVis filtering, especially if those contacts are

used for scoring purposes rather than to guide the docking. While

this work concentrated on co-evolution data, the acquired

insights should also be relevant for other types of distance-based

information.
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