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Frequent emergence of communicable diseases is a major concern world-
wide. Lack of sufficient resources to mitigate the disease burden makes
the situation even more challenging for lower-income countries. Hence,
strategy development for disease eradication and optimal management of
the social and economic burden has garnered a lot of attention in recent
years. In this context, we quantify the optimal fraction of resources that
can be allocated to two major intervention measures, namely reduction of
disease transmission and improvement of healthcare infrastructure. Our
results demonstrate that the effectiveness of each of the interventions has a
significant impact on the optimal resource allocation in both long-term dis-
ease dynamics and outbreak scenarios. The optimal allocation strategy for
long-term dynamics exhibits non-monotonic behaviour with respect to the
effectiveness of interventions, which differs from the more intuitive strategy
recommended in the case of outbreaks. Further, our results indicate that the
relationship between investment in interventions and the corresponding
increase in patient recovery rate or decrease in disease transmission rate
plays a decisive role in determining optimal strategies. Intervention pro-
grammes with decreasing returns promote the necessity for resource
sharing. Our study provides fundamental insights into determining the
best response strategy when controlling epidemics in resource-constrained
situations.
1. Introduction
Infectious diseases like influenza, severe acute respiratory syndrome (SARS),
Ebola and, most recently, COVID-19 spread throughout a population within a
short time, making it a cause of utmost concern for human society [1–7]. The
lack of appropriate health policies, protective medical equipment such as dispo-
sable gloves and surgical masks, poorly developed infrastructure and shortage
of medical personnel make it even more challenging for low-income countries
to mitigate the health crisis during an ongoing outbreak [8–10]. This can be well
understood, for instance, by considering the severe impact of Ebola on West
African countries such as Nigeria, Liberia and Sierra Leone, where there was
an estimated shortage of 7.2 million doctors and health workers [11,12]. Fur-
thermore, estimates also indicate that nearly 79% of the total available
hospital beds would be required for patients with influenza in lower-income
countries, with an incidence rate of 35%. In countries such as Bangladesh
and Nepal, even with an incidence rate of 15%, the demand for hospital beds
exceeds the capacity [9]. Due to resource limitations, governments are often
required to make difficult decisions when allocating a fixed budget among
different healthcare and disease reduction programmes [13]. Therefore, the opti-
mal allocation of resources is a necessary component of public health responses
to control the spread of infectious diseases.
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A simplistic way to look at control of infectious disease
outbreaks is either by prevention of transmission through
non-pharmaceutical interventions (NPIs), such as social dis-
tancing, personal hygiene, contact tracing and early
detection, or by improvement of recovery rate through
better medical treatment. The World Health Organization
[14,15] and governmental health agencies in many countries
publish disease prevention protocols to fight disease out-
breaks [16–18]. These are often promoted using social
media advertisements and educational programmes to
increase awareness about the prevention of a particular dis-
ease. Implementation of various preventive measures helps
to diminish the contact rate between infected and susceptible
individuals, thereby reducing the transmission rate.
Although NPIs are likely to be effective at an early stage of
a disease outbreak, often it is not possible to keep the disease
transmission under control, for instance, when there is a
sharp rise in the number of new infections. Additionally,
there are difficulties in implementing control measures such
as lockdowns or travel restrictions due to huge economic
and societal costs, mainly in developing countries [19,20].
In such cases, it is important to ramp up hospital infrastruc-
ture and consequently prioritize the quality of treatment
which would influence the recovery of infected individuals,
thus reducing the potential impact of an epidemic [21–23].
Such measures would include increasing the number of hos-
pital beds [24], setting up temporary medical units, training
programmes for healthcare personnel [9] and procuring
more medical equipment and medicines.

Designing efficient and feasible control strategies that
maintain a balance between the implementation of
pharmaceutical interventions and NPIs in resource-con-
strained situations is essential to reduce the potential
impact of disease burden. However, in both cases, the effec-
tiveness of the interventions plays a key role in determining
the success of the implemented strategies. One intervention
measure is said to be more effective than another if a better
recovery rate or a reduced transmission rate is achieved at
the expense of the same resources. For instance, to mitigate
Ebola and SARS, symptom monitoring programmes
become a more effective measure than quarantine, whereas
the benefit of quarantine over symptom monitoring has
been observed for diseases like influenza and smallpox [25].
Also, face covering appears to be a more effective way to pre-
vent COVID-19 than quarantine and social distancing
measures [26]. On the other hand, treatment protocols
using drugs like remdesivir were shown to be more effective
than hydroxychloroquine during the early stages of the
COVID-19 pandemic [27,28]. Furthermore, the relationship
between invested resources and the corresponding outcome
of an intervention programme, also known as the production
function, plays a decisive role in determining optimal strat-
egies [29]. Since the outcome of an intervention depends on
its effectiveness, the latter influences the steepness of a par-
ticular type of production function. Hence, it is important
to design resource allocation policies that take into account
the effectiveness of available intervention programmes and
their corresponding production functions.

To analyse a range of possible scenarios under specific
epidemic situations, mathematical modelling has been used
as an important and reliable tool to guide policy-making
and implementation of different intervention programmes.
In this regard, several attempts have been made that
investigated different aspects of optimal resource allocation
strategies [30–39]. Many of these studies have focused on
resource allocation to only prevention programmes related
to vaccination [30] or transmission reductions, such as face
mask distribution [34] and testing [37,38]. Few studies have
also considered resource allocation between two different
strategies, such as vaccination and isolation, but did not
take into account any explicit trade-off between them
[33,39]. Thus these studies lack in providing a theoretical
framework to study optimal resource allocation between
two broad classes of intervention strategies—transmission
reduction and improving healthcare infrastructure, where
there can be trade-offs between the two. While a recent
study examined the allocation of resources between preven-
tion and treatment, the role of the effectiveness of the
former was not explored [31]. Moreover, the study was
based on HIV transmission, and hence did not consider a
recovered class, which might be relevant for other diseases.
For the same reason, the optimal strategy was determined
by considering only specific types of production functions.

In this study, we fill this gap and attempt to provide a
general understanding of how limited resources may be opti-
mally allocated between transmission-reducing and recovery-
improvement programmes, taking into account the effective-
ness of both types of interventions. Using a simple
susceptible–infected–recovered (SIR) model, we quantify the
optimal fraction of resources required to minimize the
impact of disease burden under both long-term disease
dynamics and outbreaks. We study the roles of different
types of production functions and explore how the optimal
strategy varies with the effectiveness of the intervention
measures. Furthermore, since there are often delays in report-
ing new infections, and proper knowledge about a disease is
not typically available at early stages, we also quantify the
optimal fraction of resources in the presence of delays in
implementing interventions.
2. Methods
2.1. Model
We consider the well-known compartmental SIR model [40,41] to
represent the disease dynamics. At time t, the fractions of suscep-
tible, infected and recovered population are denoted by S(t), I(t)
and R(t), respectively, which satisfies the constraint S(t) + I(t) +
R(t) = 1. The rate of change of the fraction of people in each
compartment can be described as follows:

dS
dt

¼ m� b0SI � mS,

dI
dt

¼ b0SI � g0I � mI

and
dR
dt

¼ g0I � mR:

9>>>>>>>=>>>>>>>;
ð2:1Þ

Here, β0 is the disease transmission rate, μ is the birth and
death rate, and γ0 is the recovery rate. The basic reproduction
number, R0, defined as the average number of secondary cases
appearing from an average primary case in an entirely suscep-
tible population, can be obtained as R0 ¼ b0=ðg0 þ mÞ.

We introduce control strategies using available resources
among competing prevention and treatment programmes. Here,
one can think of the available resources as the total financial
budget for government investment in healthcare. A natural conse-
quence of the allocation of resources is an alteration in disease
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Figure 1. Optimal resource allocation. The total resources available for dis-
ease control are allocated to two broad classes of interventions, namely,
transmission-reducing interventions such as awareness programmes, personal
hygiene, social distancing etc. and intervention programmes that would
improve healthcare facilities, which in turn shorten the infectious period
and speed up the process of recovery. Here, u is the fraction of the total avail-
able resources allocated to transmission-reducing interventions, and the
remaining (1− u) fraction is allocated to improve healthcare facilities. This
process of resource allocation is incorporated into the classical SIR model
by introducing the production functions Fb0

and Fg0 , which reflect the
effect of resource allocation on the transmission rate (β0) and recovery
rate (γ0), respectively.

0.4

0
0 0.5 1.0 0.5 1.0

0.8

0.4

0
0

0.8

F
β 0

F
γ 0

u (1 – u)

(a) (b)

Figure 2. Different types of production functions: (a) Fb0
ðuÞ and (b)

Fg0ð1� uÞ corresponding to transmission-reducing and recovery-improve-
ment interventions, respectively. Here, the solid, dashed and dotted lines
represent the increasing, constant and decreasing returns to scale, respect-
ively. In (a), (b), the production functions with lower and higher
effectiveness parameters are presented in grey and black colour, respectively.
For the specific forms of Fb0

and Fg0 , see electronic supplementary
material, §S3.
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transmission rates and recovery rates that affect epidemic out-
comes. Here, a fraction u of total available resources is allocated
for implementing transmission-reducing strategies, and the
remaining fraction, i.e. (1− u) is devoted to improving healthcare
infrastructure (see the schematic in figure 1). The fact that the total
available resources to reduce disease burden are fixed signifies a
trade-off between allocations to the two types of competing
intervention programmes.

The relationship between the invested resources and outcomes
of intervention programmes, described by the production func-
tion, determines the true impact of public health interventions.
We denote Fb0

ðuÞ and Fg0 ð1� uÞ as the production functions
associated with transmission-reducing and recovery-improvement
programmes, respectively. To reflect the effect of resource
implementation, we replace β0 and γ0 in model (2.1) with Fb0

ðuÞ
and Fg0 ð1� uÞ, respectively (see the schematic in figure 1). Thus,
the model with interventions can be written as

dS
dt

¼ m� Fb0
ðuÞSI � mS,

dI
dt

¼ Fb0
ðuÞSI � Fg0 ð1� uÞI � mI

and
dR
dt

¼ Fg0 ð1� uÞI � mR:

9>>>>>>>=>>>>>>>;
ð2:2Þ

Now, production functions, Fb0
and Fg0 can be broadly

categorized into three types, as described below. For each incre-
mental investment in the intervention programmes, the
associated production function, Fb0

ðFg0 Þ, yields decreasing, con-
stant or increasing returns to scale if the corresponding
reduction (improvement) in the transmission (recovery) rate is
increasingly smaller, remains constant or increasingly larger,
respectively (figure 2) [32,35]. For the sake of comparison, we
assume that three types of returns considered for Fb0

ðFg0 Þ are
equivalent to each other at the two extreme cases, i.e. when
u = 0 or u = 1 (figure 2). Furthermore, it is important to note
that there is always a limited realizable benefit from an interven-
tion programme, regardless of investment [29,35]. This implies
that there always will be a lower limit to the reducible
transmission rate and an upper limit to the achievable recovery
rate. However, these limits depend on the effectiveness of the
intervention strategies. For the same resources, a more effective
intervention measure implies a greater reduction (increase) in
the transmission (recovery) rate (figure 2).

We consider the production functions Fb0
ðuÞ ¼ b0=ð1þ beuÞ

and Fg0 ð1� uÞ ¼ g0ð1þ geð1� uÞÞ, where the parameter βe indi-
cates the effectiveness of transmission-reducing interventions
and the parameter γe denotes the effectiveness of recovery-
improving interventions. Here, Fb0

and Fg0 have decreasing
and constant returns to scale, respectively. The motivation for
such consideration comes from several theoretical as well as
empirical studies on resource allocation for HIV prevention pro-
grammes, such as needle exchange [42] and condom distribution
[31,43], and treatment programmes such as antiretroviral therapy
[31,44] and methadone maintenance [45,46]. However, our
consideration of the effectiveness of recovery-improving inter-
ventions is different from that of the treatment effectiveness in
[31] as the latter does not increase the recovery rate but reduces
the infectivity of susceptibles after treatment. Note that if both βe
and γe are set to zero, model (2.2) will be reduced to the original
model (2.1). Now in the presence of control strategy, we define
control reproduction number Rc

0 as

Rc
0 ¼

Fb0
ðuÞ

Fg0 ð1� uÞ þ m

¼ b0

ð1þ beuÞðg0ð1þ geð1� uÞÞ þ mÞ :

While the Fb0
and Fg0 defined above receive the majority of

our attention, other types of production functions are also
considered to address potential alternative socio-economic scen-
arios. We use the phrases improving healthcare facilities and
improving recovery, and also transmission-reducing and prevention
programmes interchangeably throughout the paper.

2.2. Model parametrization and simulations
We take the numerical value of the model parameters like birth/
death rate, disease transmission rate and recovery rate, from pre-
vious studies. The parameters related to effectiveness are varied
in our study. The initial conditions S0 and I0 are chosen based on
the assumption that almost everyone in the population is initially
susceptible. All simulations in this study are performed using
parameters in table 1 unless specified otherwise.

Here, two different measures of disease burden, one corre-
sponding to the long-term endemic dynamics and another
corresponding to the short-term outbreak dynamics, are used
as objective functions. To obtain the optimal fraction of resources
numerically, first, the values of u are spaced linearly between 0



Table 1. Description of parameters for the model (2.1).

parameters description value references

μ natural birth and death rate of human 1
70 yr

�1 [47,48]

β0 transmission rate 0.8 d−1 [47]

γ0 recovery rate 0.1 d−1 [47,49]

βe effectiveness of transmission-reducing interventions varied —

γe effectiveness of recovery-improving interventions varied —

S0, I0 initial proportion of susceptible, infected individuals 0.999, 0.001 assumed
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and 1 with a suitable step length. Next, we integrate the model
(2.2) numerically using ode45 in Matlab (Mathworks, R2018a)
and calculate the objective functions for each value of u. Finally,
we select the optimal value of u for which the objective functions
return the minimum value.
0:20230036
3. Results
We investigate the problem of optimal resource allocation in
two scenarios: (i) long-term or endemic disease dynamics
and (ii) dynamics of disease during an outbreak. In the first
scenario, demographic factors are considered, i.e. the birth
and death rates are non-zero, while in the second scenario,
we ignore birth and natural death rates to capture the
short-term disease dynamics.

In the following subsections, we first describe the results
for both the long-term and outbreak scenarios obtained from
our model using the specific forms of Fb0

and Fg0 described in
§2. Subsequently, we describe the results by considering three
types of returns to scale for each Fb0

and Fg0 and all their
possible combinations.
3.1. Resource allocation for long-term dynamics
of the disease

To control long-term disease persistence, we take the
proportion of infected individuals at equilibrium (I*) as the
objective function, which is to be minimized in the presence
of allocated resources. From the resource-implemented
model (2.2), we can find the proportion of susceptible (S*)
and infected (I*) individuals at equilibrium analytically
using nullclines as

S� ¼ 1=Rc
0 if Rc

0 . 1
1 if Rc

0 � 1

�
and

I� ¼
m
Fb0

ðRc
0 � 1Þ if Rc

0 . 1

0 if Rc
0 � 1:

(
ð3:1Þ

When Rc
0 . 1, the endemic equilibrium is locally asymptoti-

cally stable while the disease-free equilibrium exists but is
unstable. The equilibria merge when Rc

0 ¼ 1 and only a
stable disease-free equilibrium exists when Rc

0 , 1. This
implies that the number of infected individuals asymptotically
approaches a non-zero endemic level when Rc

0 . 1 and zero
when Rc

0 � 1.
To find the optimal fraction of resources in the former
case, i.e. when Rc

0 . 1, I* is differentiated with respect to u
and set equal to zero. Then, simple algebraic manipulation
allows us to solve for u, which we denote as ul

ul ¼ beðg0 þ g0ge þ mÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0beg0ge

p
beg0ge

: ð3:2Þ

It is important to note that the fraction of resources allocated
must be constrained between 0 and 1. Taking this into account,
it can be shown that when Rc

0 � 1, the optimal fraction of
resources can lie anywhere in a certain interval
½ul1 ;ul2 � # ½0, 1� (electronic supplementary material, §S1).
Hence, we can define the optimal fraction of resources to prevent
transmission in the case of long-term disease dynamics, u�long, as
follows:

u�long ¼
0 if ul � 0
ul if 0 , ul , 1
1 if ul � 1

9=;Rc
0 . 1

�
ul1 , ul2

�
# ½0, 1��Rc

0 � 1:

8>><>>: ð3:3Þ

Now, we explore the behaviour of u�long with respect to the
effectiveness of intervention programmes βe and γe when
Rc

0 . 1. Here, limbe!0 u�long ¼ 0 (because limbe!0 ul�!�1)
indicates that when βe is too low, the optimal strategy is to
allocate the entire resources to recovery-improvement
programmes. This holds true until a threshold,
bl
e ¼ b0g0ge=ðg0 þ g0ge þ mÞ2 above which u�long increases

with βe implying the need to allocate increasing fractions of
resources to prevention programmes (figure 3a). It is interest-
ing to note that bl

e is non-monotonic in γe. As a result, we can
see that the threshold for γe = 1 shifts towards the right from
the threshold for γe = 0.5, but for higher values of γe (γe = 2, 5),
the threshold shifts toward the left (figure 3a).

Similarly, limge!0 u�long ¼ 1 (because limge!0 ul�!þ1)
implies that when γe is too low, the optimal strategy is
to devote entire resources to transmission-reducing
programmes. Again, this holds true only until a threshold
gle ¼ beðg0 þ mÞ2=ðb0g0Þ above which u�long starts to decrease
with γe. This trend persists until a second threshold,ege ¼ 4beðg0 þ mÞ2=ðb0g0Þ after which the optimal strategy is
to allocate decreasing fractions of resources toward treatment
programmes (see figure 3b). Furthermore, the sensitivity of
our findings to the baseline model parameters (β0, γ0 and μ)
is discussed in electronic supplementary material, §S1, and
shown in figure S1.

To better understand the role of the effectiveness par-
ameters in optimal resource allocation, the two-parameter
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Figure 3. Role of effectiveness parameters in determining the optimal fraction of allocated resources to control disease dynamics in a long-term scenario. The
optimal fraction of resources (a) with respect to βe, (b) with respect to γe, and (c) when both effectiveness parameters, βe and γe, are varied simultaneously.
The red line in (c) indicates Rc

0 ¼ 1. Here, unique u�long is associated with Rc
0 . 1 (displayed as 1 , 2 and 3 ), whereas non-unique u�long is associated with

Rc
0 � 1 (displayed as 4 ). 1 represents the region where u�long ¼ 0; i.e. allocating entire resources towards the recovery-improvement programmes is the

optimal strategy. 3 represents the region where the allocation of entire resources toward the transmission-reducing programmes is the optimal strategy (i.e.
u�long ¼ 1). 2 and 4 represent the regions for resource-sharing between the two types of intervention programmes. Here, u�long has unique values between
0 and 1 in 2 . Also, u�long lies within certain intervals in 4 . (d ) Relative reduction (RRI*) of I* with respect to βe for different values of γe.
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space (βe− γe) can be divided into four regions (figure 3c). We
vary βe and γe till the values such that only one type of inter-
vention itself cannot achieve an asymptotically stable disease-
free state. Here 1 , 2 and 3 are associated with the locally
asymptotically stable endemic state of the prevalence (where
Rc

0 . 1). In 1 and 3 , the optimal strategy is to allocate
entire resources for recovery-improvement (i.e. u�long ¼ 0)
and transmission-reducing programmes (i.e. u�long ¼ 1),
respectively. In 2 , there are unique optimal strategies
between 0 and 1 determined by the effectiveness parameters,
which signifies the need for allocating resources to both pre-
vention and treatment. The resulting control reproduction
number can then be expressed as

Rlong
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0beg0ge

p
beðg0 þ mÞ þ g0geð1þ beÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0beg0ge

p : ð3:4Þ

Here, the lines separating 2 from 1 and 3 are formed
by the threshold values bl

e and gle mentioned above. 4 corre-
sponds to Rc

0 � 1 where u�long is not unique but can vary
between certain ranges (see §S1 and figure S2 in electronic
supplementary material). With increasing βe and γe, the
range of values of u�long in 4 increases, signifying greater
flexibility in choosing optimal strategy (electronic sup-
plementary material, figure S2). The line Rc

0 ¼ 1 denotes the
borderline between 4 and 2 (red line in figure 3c). It can
also be interpreted as the line of critical thresholds bcrit

e ðgeÞ
or gcrite ðbeÞ, i.e. the least values of βe and γe which will lead
to stable disease-free state asymptotically under optimal
resource allocation. Overall, we see that the optimal strategy
changes from allocating resources in a single intervention in
1 and 3 to dividing resources between both interventions
in 2 and 4 under different values of effectiveness
parameters.
We now quantify the relative impact of resource
allocation on disease dynamics. For this, we consider an
uncontrolled epidemic (i.e. when both βe and γe are zero) as
the baseline scenario. We then calculate the percentage of
relative reduction (RRI*) of the objective function I* by vary-
ing the effectiveness parameters in the presence of resource
allocation (figure 3d ). For small values of γe, such as γe =
0.5, 1, 2, if we vary βe in the interval 0 � be ⪅ 2, the relative
reduction in I* stays almost the same at approximately 38%,
57% and 76%, respectively (figure 3d ). Since, for these γe
values within 0 � be ⪅ 2, u*long = 0 is found to be optimal
(figure 3a), therefore we do not observe any role of βe in the
reduction of I*. However, if we further increase βe (2≤ βe≤
6), we observe a gradual increase in RRI* (figure 3d ). This is
because u*long is non-zero in this case, and both βe and γe
have non-zero contributions. If γe is fixed at a relatively
higher value, such as γe = 5 , RRI* can reach about 95%
(figure 3d ).

3.2. Resource allocation for an outbreak scenario
For an outbreak scenario, we ignore natural birth and death
in our model; i.e. we fix μ = 0 in our model (2.2). In this
case, the control reproduction number can be expressed as
Rout

0 ¼ b0=ðg0ð1þ beuÞð1þ geð1� uÞÞÞ. The basic character-
istics of an outbreak can be inferred from the sign of dI/
dt|t=0 or equivalently 1� S0Rout

0 . When S0Rout
0 . 1, the

number of infected individuals initially increases until it
reaches its maximum, and subsequently decays. When
S0Rout

0 ¼ 1, the outbreak is initially in a stationary state and
subsequently decays. For S0Rout

0 , 1, the outbreak is initially
in a decaying state and remains to decay for all subsequent
time. The epidemic peak is defined as the maximum
number of infected individuals attained during an disease
outbreak. Since the peak is a primary indicator of the severity
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resources (a) with respect to βe, (b) with respect to γe, and (c) when both effectiveness parameters, βe and γe, are varied simultaneously. The red line indicates
S0Rout

0 ¼ 1. Unique u�peak corresponds to the initial growth of the outbreak size (i.e. S0Rout
0 . 1, displayed as 1 , 2 and 3 ), whereas non-unique u�peak is associated

with the initial decay of the outbreak size (i.e. S0Rout
0 , 1, displayed as 4 ). 1 represents the region where u�peak ¼ 0, i.e. allocating entire resources towards the recovery-

improvement programmes is the optimal strategy. 3 represents the region where the allocation of entire resources to transmission-reducing programmes is the optimal
strategy (i.e. u�peak ¼ 1). 2 and 4 represent the regions for resource-sharing between the two types of intervention programmes. Here, u�peak has unique values between
0 and 1 in 2 . Also, u�peak lies within certain intervals in 4 . (d ) Relative reduction (RRImax ) of Imax with respect to βe for different values of γe.
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of an outbreak, lowering it is one of the primary goals for
reducing the burden of outbreaks.

For this purpose, we analytically derive the epidemic
peak (Imax) (electronic supplementary material, §S2), which
can be expressed as follows:

Imax ¼ S0 þ I0 �

�
ln

�
S0Rout

0

	
þ1



Rout

0
if S0Rout

0 . 1

I0 if S0Rout
0 � 1:

8>><>>: ð3:5Þ

In the case of initially growing outbreaks (i.e. S0Rout
0 . 1),

the optimal fraction of resources can be obtained by differen-
tiating Imax with respect to u, setting it equal to zero, and
solving algebraically (electronic supplementary material, §S2)

up ¼ 1
2

�
1� 1

be
þ 1
ge

	
: ð3:6Þ

Furthermore, when the outbreak is initially in a stationary or
decaying state, one can solve the inequality S0Rout

0 � 1 for u to
obtain the optimal fraction of resources in the form of an interval
½up1

;up2
� (electronic supplementarymaterial, §S2).As the fraction

ofallocatedresourcesmustbeconstrainedbetween0and1, anew
quantity, u�peak is defined as the optimal fraction of resources
invested in transmission-reducing programmes such that

u�peak ¼
0 if up � 0
up if 0, up , 1
1 if up � 1

9=;S0Rout
0 . 1

�
up1 , up2

�
# ½0, 1��S0Rout

0 � 1:

8>><>>: ð3:7Þ

It can be observed from equation (3.6) for up that u�peak
depends only on the effectiveness of intervention programmes
βe, γe when S0Rout

0 . 1 and is independent of the transmission
rate and recovery rate β0, γ0. Similar to the long-term scenario,
we explore the behaviour of u�peak with respect to βe and γe.
Here, limbe!0 u�peak ¼ 0 (because limbe!0 up�!�1) indicates
that when βe is too low, the optimal strategy is to allocate the
entirety of resources to recovery-improvement programmes.
This holds true until a certain threshold b

p
e ¼ ge=ð1þ geÞ

after which u�peak increases with βe (figure 4a). Similarly,
limge!0 u�peak ¼ 1 (because limge!0 up�!þ1) implies that
when γe is too low, the optimal strategy is to devote the entirety
of resources to transmission-reducing programmes. Again, this
holds true only until a threshold g

p
e ¼ be=ð1þ beÞ above

which u�peak starts to decrease with γe (figure 4b). Notably, in
this case, the monotonic behaviour of u�peak with respect to βe
and γe indicates that the optimal control strategy is to allocate
more resources to intervention programmes with better effec-
tiveness (figure 4a,b).

Parameter space (βe− γe) can be divided into four regions
based on the optimal strategy (figure 4c). As in figure 3c, βe
and γe are varied till the values such that resource allocation
to only one type of intervention cannot satisfy the condition
for the initial decay state of an outbreak. Here 1 , 2 and
3 correspond to S0Rout

0 . 1, where the optimal fraction of
resources towards transmission prevention, u�peak, is given
by 0, up and 1, respectively. In 2 , where up is the unique
optimal strategy, the control reproduction number for the
outbreak scenario is given by

Rpeak
0 ¼ 4b0bege

g0ðbege þ be þ geÞ2
: ð3:8Þ

The curves that separate 1 and 3 from 2 correspond to
threshold values b

p
e and g

p
e respectively. In contrast to figure

3c, 1 and 3 are symmetric about the line βe = γe. This can be
explained by the fact that both b

p
e ðgeÞ and g

p
e ðbeÞ satisfy the

same underlying function. Further, it is interesting to note that
up(βe, γe) = 1− up(γe, βe). This implies that if the effectiveness of
prevention and treatment programmes is reversed in the case
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of certain diseases, then the optimal strategy corresponds to the
reversal of resource allocation. For optimally used resources
with increased effectiveness, the outbreak is unable to initially
grow (i.e. S0Rout

0 � 1), which is represented by 4 . Within 4 ,
u�peak is non-unique and varies between certain ranges (elec-
tronic supplementary material, §S2). The line S0Rout

0 ¼ 1 (red
line) separates 4 from 2 in figure 4c. It can also be interpreted
as the line of critical values bcrit

e ðgeÞ or gcrite ðbeÞ, i.e. the lowest
values of βe and γe which are sufficient to prevent the outbreak
from growing initially under optimal resource allocation.

With respect to the baseline scenario of uncontrolled epi-
demics (i.e. βe = γe = 0), we calculate the percentage of the
relative reduction (RRImax ) of Imax by varying the effectiveness
parameters in the presence of optimal resources (see figure
4d ). For lower values of βe, when u*peak = 0 is optimal
(figure 4a), we see from figure 4d that approximately 18%,
34%, 57% and 93% reductions can be achieved for γe = 0.5,
1, 2 and 5, respectively. A further increase in βe leads to a
gradual increase in RRImax:
3.2.1. Impact of delays in resource implementation
In reality, it is reasonable to expect a delay between the
implementation of intervention measures and the onset of
an outbreak due to inappropriate information about it at an
early stage. To explore the impact of such delays during out-
breaks, we calculate the peak of infection (Imax) when the
control measures are implemented τ days after the onset of
the outbreak (figure 5a). We also calculate the percentage of
relative increase (RIτ) in the peak of infection for each delay
time, τ, in comparison with the immediate implementation
(τ = 0) (figure 5b). Finally, we calculate the corresponding
optimal fraction of resources (u*peak) as a function of the
delay time, τ, for different values of the effectiveness par-
ameters in figure 5c. In our model, for an uncontrolled
epidemic (i.e. βe = γe = 0), the infection curve reaches its peak
at approximately t = 19. Since we are interested in peak mini-
mization (lowering the curve of infection), we vary the
implementation delay parameter (τ) from days t = 0 to t = 19.

For lower values of both effectiveness parameters βe and
γe (for instance, βe = 0.5 and γe = 0.4), the peak of infection
(Imax) remains almost the same until day τ = 12 (figure 5a,
red curve). This means that both interventions with lower
effectiveness allow a delay of up to 12 days in allocating
resources without any significant consequences in terms of
the peak of infection. However, if the allocation of resources
is further delayed, a gradual increase in the peak of infection
can be observed. We find that after a delay of 12 days, RIτ
increases gradually and reaches approximately 17% at τ = 19
(figure 5b, red curve) for the lower effectiveness parameters.
On the other hand, for higher values of both effectiveness
parameters (for instance, βe = 2 and γe = 2), if the implemen-
tation is delayed by more than 7 days, a larger increase in
RIτ (approx. 74% at τ = 19; figure 5a,b, yellow curve) is
observed compared with the lower effectiveness case. This
is because interventions with higher effectiveness are capable
of greater reductions in the peak of infection, and delays in
implementing these interventions lead to a significant relative
increase. It should also be noted that for lower values of the
effectiveness parameters (βe = 0.5 and γe = 0.4), the optimal
fraction of resources (u�peak) remains unchanged with respect
to delay (figure 5c, red curve). This is because u�peak depends
only on βe and γe (see equation (3.7)). Additionally, for lower
values of these effectiveness parameters, the condition
StRout

0 . 1 is satisfied for all τ resulting in a unique optimal
value (where Sτ denotes the proportion of susceptible indi-
viduals for the uncontrolled epidemic at t = τ day after the
onset of the outbreak). For higher values of βe and γe, u�peak
behaves in a slightly different manner. Similar to the above-
mentioned case, u�peak remains the same and takes a unique
value until a threshold of τ is reached, where the quantity,
StRout

0 becomes less than or equal to 1 (as the susceptible
population depletes over time). Consequently, u�peak becomes
non-unique and can take a range of possible values from an
interval (see figure 5c, the blue and yellow curves).

3.3. Dependence of resource allocation on production
functions

To study the robustness of our results, we choose a different
Fb0

with decreasing returns, given as Fb0
¼ b0 e�u ln ð1þbeÞ

(solid line in figure 6a). A similar exponential function has
been used to estimate production functions for HIV preven-
tion programmes [31,43]. For extreme values of u, the new
Fb0

is equivalent to that assumed in the previous sections
(figure 6a). As we want to keep the returns-to-scale type
the same for a better comparison, and because Fg0 exhibits
constant returns to scale, it is kept unchanged. This implies
that Rc

0, evaluated at the extreme values of u, is the same
as in §3.1. Consequently, in the long-term scenario, the line
Rc

0 ¼ 1 intersects βe and γe axes at the same values as in
figure 3c, thereby facilitating comparison. For the outbreak
scenario, similar arguments hold for the line, S0Rout

0 ¼ 1.
We calculate optimal strategies for both long-term and

outbreak scenarios for different effectiveness parameters in
figure 6b,c and compare 1 – 4 with those in figures 3c and
4c. For the long-term case, the non-monotonic behaviour of
bl
e is retained, suggesting that this property might be
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independent of the functional forms of Fb0
with decreasing

returns to scale. By contrast, for the outbreak scenario, the
symmetric nature of 1 and 3 about the line βe = γe is lost,
which implies that it can only be true in the case of certain
production functions. Further, in this case, there is an increase
in the area occupied by 1 and 3 . This signifies a greater
possibility that allocating resources to either prevention or
treatment programmes is an optimal strategy.
Till now, we have only considered decreasing and constant
returns to scale for transmission-reducing and recovery-
improvement programmes, respectively. However, it is impor-
tant to understand the results obtained above in the context of
other return types for production functions. Hence, in this sec-
tion, we consider each of Fb0

ðuÞ and Fg0ð1� uÞ with
increasing, constant and decreasing returns to scale and com-
pare the results among all their combinations (figures 7 and 8).
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Foramoremeaningful comparison between the results,we con-
sider that the three types of returns to scale for Fb0

(the same for
Fg0 ) are equivalent to each other when u = 0 or u = 1 (figure 2).
The exact functional forms of Fb0

ðuÞ and Fg0ð1� uÞ are pre-
sented in electronic supplementary material, §S3.

We observe that when Fb0
gives either increasing or con-

stant returns to scale, and the same holds for Fg0, the optimal
fraction of resources, u*long takes only extreme values (either 0
in 1 or 1 in 3 ) (figure 7a,b,d,e). Interestingly, in these cases,
u�long is independent of the functional forms of Fb0

and Fg0
and has the same value for a particular βe and γe (see elec-
tronic supplementary material, Prop. 1). On the other hand,
when either or both Fb0

and Fg0 have decreasing returns to
scale, u*long also takes intermediate values between 0 and 1
(figure 7c,f–i). Furthermore, if Fb0

(Fg0 ) gives decreasing
returns to scale, and Fg0 (Fb0

) changes from increasing to
decreasing returns to scale, we observe that regions 1 and
3 decrease (figure 7c,f,i and g,h,i). Moreover, decreasing
returns to scale for both prevention and treatment pro-
grammes expand the parameter space in which resource
sharing is optimal (figure 7i). These results indicate that
decreasing returns from investments in intervention
programmes promote the necessity for resource sharing.
Additionally, moving from increasing to decreasing returns
to scale, the relatively lower effectiveness of interventions
can be sufficient to obtain an asymptotically stable disease-
free state; i.e. Rc

0 , 1. For instance, when βe = γe = 4 in figure
7g, we have Rc

0 . 1 but the same conditions in figure 7i
yield Rc

0 , 1. The intuition behind such an observation can
be easily understood from the shapes of the curves Fb0

and
Fg0. When compared with increasing or constant returns,
decreasing returns to scale for Fb0

and Fg0 implies that rela-
tively lower transmission and higher recovery rates can be
achieved for the same investment (except at u = 0, 1). All of
the results described above also hold true for the outbreak
scenario (figure 8). It is important to mention that, for the
long-term scenario, the non-monotonic behaviour of bl

e
with respect to γe is observed when at least one of Fb0

and
Fg0 has decreasing returns to scale (figure 7c,f–i).

4. Discussion
Designing effective intervention strategies is of the utmost
importance in order to cope with disease outbreaks.
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Particularly, in low-income countries, resource-constrained
situations make it challenging for authorities to optimally
allocate resources to mitigate epidemics. In this context, the
resource allocation trade-off between the prevention of trans-
mission and better medical treatment is significant, yet not
well understood. To address this gap, we developed a
simple model based on the SIR framework that considers pro-
duction functions for intervention programmes and the
associated effectiveness. The interplay between the effective-
ness of the two major types of interventions and their
implications for optimal resource allocation has been explored
under two common epidemic scenarios: long-term and out-
break. While the former case concerns the minimization of
the proportion of infected individuals at equilibrium, the pri-
mary objective of the latter is to minimize the peak of
infection during a disease outbreak. For both scenarios, we
observed the transitions from allocation of the entirety of
resources to only one intervention type to optimal sharing of
resources between both types of interventions under different
effectiveness parameter settings (figures 3c and 4c). This be-
haviour is similar to the threshold-switching of the optimal
isolation strategy observed in [33], and the transition of opti-
mal testing from clinical to mixed strategies observed in [37].

In the long-term scenario, our results demonstrate that the
prioritization of transmission-reducing interventions should
increase monotonically with their effectiveness (figure 3a).
This is suggestive of the fact that it is always advantageous
to allocate maximum resources to disease prevention when
highly effective preventive measures are available. Interest-
ingly, the allocation of recovery-improving interventions
does not always behave in a similar way. Owing to the con-
stant influx of susceptible populations, there is an increased
risk of new infections when prevention programmes are
less effective. Thus, when treatment programmes are suffi-
ciently effective (i.e. beyond a threshold), the optimal
solution is to divert some resources to prioritize prevention
programmes. However, this non-monotonic behaviour disap-
pears if the prevention programmes are sufficiently effective
(figure 3b).

In the case of an outbreak, our results demonstrate
a much simpler optimal resource allocation strategy. In
both transmission-reducing and recovery-improving cases,
increasing the effectiveness of an intervention implies the
need to allocate more resources to that intervention measure
(figure 4). This indicates that allocating more resources
towards intervention strategies such as symptom monitoring
programmes, which were reported to be very effective in pre-
venting diseases like Ebola and SARS [25], might prove to be
a more fruitful strategy than investing in new healthcare
facilities during future outbreaks. However, when treatment
programmes are highly effective, since the proportion of sus-
ceptible individuals can only decrease over subsequent times,
it is unlikely that the risk of new infections will increase.
Hence, resources need not be diverted to prioritize
prevention programmes in such scenarios.

The appropriate allocation of limited resources during the
early days of an outbreak can reduce the disease burden. The
large change in the relative increase in peak size in the case of
more effective control strategies highlights the opportunity to
reduce disease burden with the help of timely intervention
(figure 5a,b). When intervention measures are less effective,
any delay in implementation does not influence the optimal
strategy. However, when the interventions are highly
effective, although there is a large increase in the peak size
for too much delay, there can be a wider range of optimal
strategies (figure 5c).

Determining the optimal strategy also requires taking into
account the nature of the returns from investments in inter-
vention measures. When both prevention and recovery
programmes give increasing or constant returns to scale, it
is always optimal to invest entire resources into either one
of them. On the other hand, decreasing returns from one or
both intervention programmes increases the possibility of
an optimal resource-sharing strategy (figures 7 and 8). This
indicates that when prevention programmes concern
measures such as contact tracing, which gives decreasing
returns [50], a fraction of the resources must also be invested
in treatment programmes. These findings are comparable to
earlier studies on HIV where the allocation strategy ‘all-or-
nothing’ in cases of increasing and constant returns, and
resource sharing in the case of decreasing returns to scale
were found to be optimal [31,32,35]. Additionally, for certain
effectiveness of interventions, decreasing returns may help
achieve a stable disease-free state or initial decay of outbreak
size, which may not be possible otherwise (figures 7 and 8).
This is because decreasing returns to scale imply relatively
lower transmission and higher recovery rates for the same
investment compared with the other return types. On increas-
ing effectiveness further, there is an increased freedom to
choose an optimal strategy to drive the system beyond the
Rc

0 ¼ 1 or S0Rout
0 ¼ 1 line.

In summary, this study provides a comprehensive under-
standing of how the effectiveness of different control
measures determines an optimal strategy for resource allo-
cation. Despite our minimalistic approach, our findings
provide fundamental insights into the resource allocation
problem in cases of infectious disease spread. A key limitation
of our study is the assumption that increasing the investment
of resources in intervention programmes can alter the trans-
mission and recovery rates instantaneously. However, in
reality, this is probably not the case. Additionally, factors
such as the number of doctors or the success of prevention pro-
grammes largely depend on societal conditions, which were
ignored in this study. Further, while we took into account
the different types of production functions to determine the
optimal strategies, we did not consider functions that may
have a decreasing returns to scale, followed by an increasing
returns to scale, or vice versa [32,35]. Albeit we acknowledge
that it is not possible to make recommendations on policy
design using such a simple framework, our model provides
a foundational basis upon which more specific disease
models may be studied in the future. The results highlight
the importance of more systematic and involved analyses
of the trade-offs among different available strategies by
policymakers, especially in developing countries.
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