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Abstract
During the COVID pandemic, periods of exponential growth of the disease
have been mitigated by containment measures that in different occasions have
resulted in a power-law growth of the number of cases. The first observation
of such behaviour has been obtained from 2020 late spring data coming from
China by Ziff and Ziff in reference Ziff and Ziff (2020 Fractal kinetics of
COVID-19 pandemic MedRxiv). After this important observation the power-
law scaling (albeit with different exponents) has also been observed in other
countries during periods of containment of the spread. Early interpretations
of these results suggest that this phenomenon might be due to spatial effects
of the spread. Here we show that temporal modulations of infectivity of indi-
viduals due to containment measures can also cause power-law growth of the
number of cases over time. To this end we propose a stochastic well-mixed
susceptible-infected-removed model of epidemic spreading in presence of con-
tainment measures resulting in a time dependent infectivity and we explore the
statistical properties of the resulting branching process at criticality. We show
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that at criticality it is possible to observe power-law growth of the number of
cases with exponents ranging between one and two. Our asymptotic analytical
results are confirmed by extensive Monte Carlo simulations. Although these
results do not exclude that spatial effects might be important in modulating the
power-law growth of the number of cases at criticality, this work shows that even
well-mixed populations may already feature non trivial power-law exponents at
criticality.

Keywords: epidemic spreading, branching process, criticality, scaling laws

(Some figures may appear in colour only in the online journal)

1. Introduction

Exponential growth of the number of cases is typically observed at the onset of an epidemic
when the dynamics is in the supercritical regime. The COVID data has also supported this claim
and at the beginning of the current pandemic the scientific community has extensively con-
firmed exponential growth of the number of cases in different countries. However Ziff and Ziff
in reference [1] were the first to detect a power-law growth in the number of cases starting from
data coming from the late spring of 2020 in China when the epidemic was suppressed by con-
tainment measures. Later on the power-law growth of the number of cases has been recorded
in data coming from other countries [2, 3]. Interestingly these results have been obtained in
cases of successful containment of the epidemic spreading after the implementation of effi-
cient containment measures [4], such as contact tracing (automatic and not), social distancing,
testing and or other policies aimed at isolating timely infectious individuals and at reducing
their reproductive number.

An important question that arises is: what is the mechanism responsible for the power-law
scaling of the number of cases? Is this a phenomenon caused by the spatial distribution of the
cases? Is it the sign that the system is reaching a critical behaviour consistent with a R0 = 1?
Or can it be a combination of the latter two effects? If not, is this the effect of the containment
measures?

During the current pandemic there has been a surge in research on epidemic spreading.
Many works have discussed the challenges of epidemic spreading modelling [5, 6], a number
of works have addressed outstanding theoretical problems that the current pandemic has high-
lighted [7–13] and a vast attention has been devoted to extract information from epidemic data
[4, 14–16]. Additionally scientific research has informed policy makers [17, 18] establishing
the role that containment measures such as social distancing, or contact tracing [19–24] have
in mitigating the epidemic spread. Among the theoretical results we mention possible expla-
nation of the power-law scaling have been proposed including interpretation of the power-law
scaling as a signature of criticality [7, 8], as an effect of the inhomogeneous network of contact
[13] or as due to the fractal spatial distribution of the spread [1].

Here we consider a very stylized theoretical model in a well-mixed population that is simple
enough to be analytically solvable neglecting many detailed aspects of the realistic epidemic
spreading model, yet capturing important statistical aspects that go beyond the simplest branch-
ing process. We show that a power-law growth of the number of cases can be observed when
the epidemic process reaches criticality due to containment measures that allow for a temporal
modulation of the infectivity of infectious individuals. In particular, while the susceptible-
infected-removed (SIR) model at criticality predicts a power-law growth of the number of
infected individuals with a power-law exponent equal to two, here we show that containment
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measures can be responsible for modulating the power-law exponent between one and two.
In order to demonstrate this modulation of the dynamical critical exponent we propose a dis-
crete time epidemic model based on a branching process in which an infected seed individual
can infect a different number of individuals at each time during seed’s infectious period. This
branching process is characterized by the distribution D(t) of the duration of the infectious
period of each infected individual and the function m(t′) indicating the expected number of
individuals infected by an infectious individual after time t′ from contracting an infection.
This model is chosen to capture a temporal modulation of the infectivity of the infectious
individual and clearly differs from the age-dependent branching process [25–27] where each
infected individual gives rise to new infected individuals at a single time, even if this time
is chosen randomly. We characterise the critical properties of the proposed branching pro-
cess as a function of D(t) and m(t), derive the critical indices of the dynamics and compare the
results with extensive Monte Carlo simulations. As expected, this analysis reveals that stochas-
tic effects play a key role in determining these exponents, which may strongly deviate from the
exponents in deterministic approaches [7]. Moreover, these results show that time-dependent
modulation of the infectivity can be responsible for a modulation of the power-law exponent
determining the power-law growth of the number of cases in time. We note that these results
do not exclude a priori that spatial effects might also be important elements determining the
power-law increase in the number of cases. In particular, hierarchical and hyperbolic networks
describing nested communities of people during lockdown can be responsible for a broadening
of the critical region in which one can observe the power-law critical behaviour [28] similarly
to what happens for percolation on the same type of networks [29–33].

2. Epidemic spreading with containment measures

2.1. The major properties of the SIR model

The SIR model is a well-known model of epidemic spreading in which individuals can be in
one of three possible states: (1) susceptible individuals can get infected when in contact with an
infectious individual, (2) infected individuals can spread the infection to susceptible individual
upon contact with infectivity rate λ, and (3) removed or recovered individuals cannot spread
the infection anymore. This model is known to display three dynamical regimes depending
on the value of infectivity: for λ > λc the epidemics is in the supercritical regime, when the
epidemic affects a positive fraction of the population; (b) for λ < λc the subcritical regime is
observed, when the epidemic dies out before spreading in the population, and (c) for λ = λc

the epidemics is in the critical regime, when the epidemics affects a sublinear fraction of all
individuals. Here, λc indicates the so-called epidemic threshold. However, it has to be noted
that in hyperbolic and hierarchical structures the critical region may stretch out for a finite range
of values of the infectivity [28], which corresponds to the fact that in these networks one can
observe two percolation thresholds [29–33]. When the onset of the epidemic is started from
a single infected individual, the latter three dynamical regions are characterised by different
dynamical properties: the supercritical region is characterised by an exponential increase of the
number of infected individuals, the critical regime—by a power-law increase with exponent 2,
while the subcritical regime — by finite size stochastic fluctuations.

2.2. Introducing a time dependent infectivity

In a typical SIR epidemic model it is assumed that infectivity λ does not change with time
as long as an infected individual is contagious. In other words, the total number of secondary
infections is proportional to the time an individual was infectious. Moreover, it is assumed
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that each infected individual is removed from the population with a probability that does not
depend on time.

Here we consider a model in which each infected individual has a reproductive number
that depends on the time elapsed since his/her infection. Hence we consider time-dependent
infectivity by substituting

λ→ λF(t), (1)

where F(t) is a decreasing function of t, indicating the time elapsed since the infection of the
infectious individual. We additionally assume that the probability that an infectious individ-
ual recovers is also time-dependent. This model can be considered as the stochastic model
underlying the deterministic dynamics proposed in reference [7]. The decay of the effective
infectivity can be due to different causes, including asymptomatic onset, early testing policies,
and containment measures enforced once the infection becomes symptomatic, i.e. the transmis-
sion time. In the supercritical regime this model can be treated using a deterministic approach,
which predicts an exponential increase in the number of infected individuals at the onset of the
epidemics. In order to perform the asymptotic analysis of this process we consider the scenario
of an infinite population.

Our model has discrete time. By taking the moment when an individual becomes infec-
tions as a reference, we denote the time that has elapsed since this event as t = 1, 2, . . . . We
then assume that at every time step t > 0, this individual recovers/is removed with probability
q(t) = 1 − p(t) or remains to be infectious with probability p(t). Therefore the probability that
the infected individual is still infectious at t is given by

P(t) =
t∏

t′=1

p(t′). (2)

Additionally, we assume that at time t, an individual transmits infection to zt susceptible indi-
viduals. Here, zt is a random number drawn from the Poisson distribution with mean λm(t),
where m(t) is either a constant or a decreasing function of time. In expectation, an individual
that recovers at time t has a cumulative number of transmissions given by

λM(t) = λ

t−1∑
t′=1

m(t), (3)

where we have assumed m(0) = 0.
In this stochastic model it is immediate to show that an infectious individual infects, in

average,

λF(t) = λP(t)m(t) (4)

other individuals after time t. It follows that F(t) acts as an overall dressing of the infectivity,
capturing timely detection, tracking and isolation of the cases. Let us indicate with n(t) the
average number of newly infected individuals at timestep t. Starting with a single individual
infected at time t = 0, i.e. i(0) = 1, in average, the number of new infected individuals at time
t reads

i(t) = λ

t−1∑
t′=1

F(t − t′)i(t′). (5)
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Figure 1. A schematic figure of the branching processes. The seed starts a new sub-
avalanche at each time step during its infectious period. The avalanche size n is given
by summing up the size of all sub-avalanches and the seed itself. Note that each infected
individual of any subavalanches will also produce a series of different subavalanches
during each time step of its infectious period (not shown for simplifying the figure).

The expected number of newly removed individuals r(t) at time t is then

r(t) =
t−1∑
t′=1

t−1∏
t′′=t′+1

p(t)[1 − p(t′′ − t′)]i(t′). (6)

The average number I(t) and R(t) of infected and removed individuals at time t is

I(t) =
t∑

t′=1

P(t − t′)i(t′), (7)

R(t) =
t∑

t′=1

[1 − P(t − t′)]i(t′). (8)

3. Time dependent branching process with containment measures

The model described in a previous section can be studied by considering a branching process.
In this branching process the avalanche generated by a single node is due to the sum of sub-
avalanches generated by each of the individuals infected by the seed node at any given time
(see figure 1 for a schematic representation of this time-dependent branching process). Note
that this branching process differs from the widely studied time-dependent branching process
[25–27] because the infectious individual can infect new individuals at any time during his
infectious period and not just at the end of its infectious period.

Let the durations of the infectious periods be distributed according to

D(t) =

[
t−1∏
t′=1

p(t′)

]
[1 − p(t)]. (9)
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Moreover let π(n) be the distribution of the avalanche sizes started by a single infected indi-
vidual. The branching process is described by the distribution π(n), or equivalently, by its
generating function H1(x) defined as

H1(x) =
∞∑

n=1

π(n)xn. (10)

Assuming that t is the duration of the infectivity of the seed individual, and that at each
time 1 � t′ < t the individual infects zt′ other individuals drawn from a Poisson distribution,
i.e. zt′ ∼ Poisson(λm(t′)) the size of the avalanche n generated by the seed individual is given
by one plus the sum of the avalanches nt′

j generated by each of the individuals j infected by the
seed individual at time t′. Therefore the distribution π(n) can be expressed as

π(n) =
∞∑

t=1

D(t)
∑
{zt′ }

∑
{nt′

j }

⎧⎨
⎩

t−1∏
t′=1

⎡
⎣Pt′(zt′ )

zt′∏
j=1

π(nt′
j )

⎤
⎦δ

⎛
⎝n,

t−1∑
t′=1

zt′∑
j=1

nt′
j + 1

⎞
⎠
⎫⎬
⎭ , (11)

where Pt(z) is given by

Pt(z) =
(λm(t))z

z!
e−λm(t). (12)

The latter recursive equation can be rewritten by using generating function H1(x) as

H1(x) = x(F(H1(x))), with F(x) =
∞∑

t=1

D(t)
t−1∏
t′=1

G0,t′(x), (13)

where G0,t(x) is the generating function of Pt(z)

G0,t′(x) =
∞∑

z=0

Pt′(z)xz = eλm(t′)(x−1), (14)

where in the last expression we have used the explicit form of Pt(z) given by equation (12).
Therefore it follows that F(x) is given by

F(x) =
∞∑

t=1

D(t)eλM(t)(x−1), (15)

where λM(t), indicating the expected total number of primary infected individuals, is given by
equation (3). Summarizing, we conclude that the self-consistent equation for the generating
function H1(x) can be written as

H1(x) = x(F(H1(x))) = x
∞∑

t=1

D(t)eλM(t)(H1(x)−1). (16)

3.1. Relevant kernels

Let us consider different kernels for both D(t) and M(t). The D(t) kernel that we will take under
consideration are
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(1) The exponential kernel
The exponential kernel is characterized by a p(t) equal to a constant

p(t) = a, (17)

with 0 < a < 1. Therefore we obtain

D(t) = at−1(1 − a). (18)

(2) The power-law kernel
The power-law kernel is characterized by a p(t) given by

p(t) = 1 − α− 1
t + α− 1

, (19)

with α > 1 leading to the asymptotic scaling

D(t) = (α− 1)Γ(α)
Γ(t)

Γ(t + α)
� (α− 1)Γ(α)t−α, (20)

where the last expression indicates the asymptotic scaling valid for t � 1.
The M(t) kernels that we will consider are:
(A) The linear kernel

The linear M(t) kernel is characterized by a constant m(t),

m(t) = m̄. (21)

Therefore we obtain

M(t) =
t−1∑
t′=1

m(t′) = m̄(t − 1) � m̄t, (22)

where the last expression refers to the asymptotic scaling valid for t � 1.
(B) The power-law decaying kernel

The power-law kernel is characterized by decaying m(t) given by

m(t) = m̃η
1

t1−η
. (23)

Therefore for large time limit, M(t) admits the power-law decay

M(t) = m̃η

t−1∑
t′=1

1
t′1−η

� m̄tη , (24)

where the last expression indicates the asymptotic scaling of M(t) valid for t � 1.
In the following section we will characterize the critical behaviour of this branching process

and its dependence on the different kernels that can be adopted for the functions D(t) and the
function M(t).
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4. Epidemic threshold of the considered epidemic spreading model

The time-dependent branching process with containment measures displays finite avalanches
whose distribution is fully described by the self-consistent equation for its generating function
H1(x), i.e. equation (16).

Depending on the value of the infectivity λ and the expected number 〈M〉 =
∑∞

t=1 D(t)M(t)
of primary infections of the seed individual during the entire duration of its infective period
we distinguish the three phases of the considered epidemic model.

• Whenλ〈M〉 < 1, we are in the subcritical phase. In this phase all avalanches of the branch-
ing process are finite, i.e. H1(1) = 1 and the expected size of the outbreak started from a
single infected individual is given by:

〈n〉 = H′(1) =
1

1 − λ〈M〉 . (25)

• When λ〈M〉 > 1, we are in the supercritical phase. In this phase there is a positive prob-
ability S that the branching process does not stop, leading to finite avalanches only with
probability H1(1) = 1 − S where S ∈ (0, 1] is the unique solution of

S = 1 − F(1 − S). (26)

• When λ 〈M〉 = 1 we are in the critical phase characterized by having F′(x) = 1, which
corresponds to the epidemic threshold λc given by

λc =
1

〈M〉 (27)

which is greater than zero as long as 〈M〉, is finite. As λ→ λ±
c the average size of the finite

component diverges as

〈n〉 ∝ 1
|λ− λc|γ,γ′ , (28)

with γ = 1 and γ ′ = 1 indicating the critical exponents for λ→ λ−
c and for λ→ λ+

c
respectively.

Let us now establish the epidemic threshold λc for the different kernels taken in consid-
eration. In particular we are interested in determining when the epidemic threshold is finite
and greater than zero, and when it is zero. In fact a zero epidemic threshold implies that the
epidemic will be always in the supercritical phase, i.e. for any arbitrarily small value of the
infectivity λ the epidemic spreads over the population affecting an infinite number of individ-
uals. Depending on the adopted kernels for D(t) and M(t) the epidemic threshold can be finite
or zero:
(1A) Exponential D(t) kernel and M(t) = m̄(t − 1)

Let us consider the exponential kernel with D(t) given by equation (18) and assume
M(t) = m̄(t − 1). The expected number of contacts 〈M〉 of a random individual is
given by

〈M〉 = m̄
∑
t�1

D(t)(t − 1) = m̄(1 − a)
∑
t�1

at−1(t − 1) = m̄
a

1 − a
(29)
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The critical threshold λc is finite for every value of a ∈ (0, 1) with

λc =
1

〈M〉 =
1 − a

am̄
. (30)

(2A) Power-law D(t) kernel, and M(t) = m̄(t − 1)

Let us consider the exponential kernel with D(t) given by equation (20) with α > 1
and the kernel M(t) = m̄(t − 1). For α > 2 the expected number of contacts of a random
individual is finite and given by

〈M〉 = m̄
∑
t�1

(α− 1)Γ(α)
Γ(t)

Γ(t + α)
(t − 1) = m̄

1
α− 2

. (31)

Therefore as long as α > 2 the epidemic threshold is finite and given by

λc = (α− 2)
1
m̄
. (32)

However for α→ 2, 〈M〉 diverges and the epidemic threshold λc vanishes, i.e.

λc = 0. (33)

The epidemic threshold remains zero for all values of α ∈ (1, 2].
(1B) Exponential D(t) kernel and power-law decaying M(t) kernel.

Let us consider for D(t) the exponential kernel and for M(t) the power-law kernel with
η ∈ (0, 1) (as η = 1 reduces to the constant kernel). In this case the expected number of
primary infections 〈M〉 is finite and given by

〈M〉 =
∑
t�1

D(t)M(t) =
m̄
η

Li1−η(a). (34)

Therefore, the critical threshold λc is finite and given by

λc =
1

〈M〉 =
η

m̄Li1−η(a)
. (35)

(2B) Power-law D(t) kernel and power-law decaying M kernel.
Let us consider for D(t) the power-law kernel and for M(t) the power-law kernel with

η ∈ (0, 1) (as η = 1 reduces to the constant kernel). In this case the expected number of primary
infections 〈M〉 can be expressed as

〈M〉 =
∑
t�1

D(t)M(t) =
m̄
η
Γ(a)

∑
t′�1

1
t′1−η

Γ(t′ + 1).
Γ(t′ + a)

(36)

Since asymptotically we have

1
t′1−η

Γ(t′ + 1)
Γ(t′ + a)

�
(

1
t′

)a−η

, (37)

we conclude that for α � 1 + η, 〈M〉 diverges and therefore the epidemic threshold vanishes,
i.e. λc = 0; and that for α > 1 + η, 〈M〉 converges and therefore the epidemic threshold is
finite and non-zero λc > 0.
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Figure 2. The probability S that the branching process does not stop is displayed ver-
sus the deviation Δλ of λ from the criticality λc. The numerical solutions (blue circles)
for exponential the D(t) kernel with a = 0.01 (a), power-law D(t) kernel with exponent
α = 3.5 (b), α = 2.5 (c) and α = 1.2 (d) are obtained by solving equation (26) numer-
ically and considering always the M(t) = m̄(t − 1) kernel. The predicted asymptotic
scaling given by equation (38) using the analytically derived β exponents are shown
as reference (green lines).

5. Critical indices associated to the size of the critical outbreak

5.1. Critical exponent β

The branching process undergoes a second order phase transition characterized by the order
parameter S = 1 − H(1) indicating the probability of non-extinction of the branching pro-
cess, with S satisfying equation (26). The critical exponent β characterizes the scaling of
the probability S of observing an infinite avalanche, as a function of λ in the critical window
0 < λ− λc  1, in which S  1 can be approximated by

S � A(λ− λc)β , (38)

with A being a positive constant, i.e. A > 0. This scaling can be predicted to hold in mean-
field situations in which M(t) has finite moments, however when some moment diverges the
scaling can acquire some logarithmic corrections as we will investigate in the following. Let
us predict analytically the scaling of the exponent β of the studied epidemic model for the
different kernels under consideration (see figure 2 for comparison of the analytical predictions
and simulation results).

10
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Figure 3. Monte Carlo simulations of the critical branching processes with exponential
and power-law D(t) kernels. Panels (a)–(c) show the critical distribution of avalanche
size π(n) corresponding to different D(t) kernels and panel (d)–(f) show the data collapse
for distributions obtained away from criticality for the same D(t) kernels. Panels (a) and
(d): exponential kernel with a = 0.01, panels (b) and (e) power-law kernel withα = 3.5,
panels (c) and (f) power-law kernel with α = 2.5. The distributions are obtained from
simulations of 105 realizations of the branching process with a linear M(t) = t kernel.

(1A & B) Exponential D(t) kernel. When the D(t) kernel is exponential, i.e., it is given by
equation (18), independently on the choice of the kernel for M(t) we are in the mean-field
regime where all the moments

〈Mk〉 =
∑
t�1

D(t)Mk(t), (39)

are finite. In this regime, in order to find the critical exponent β we expand equation (26) up to
the second order in S, obtaining

S � 1 −
[

F(1) − F′(1)S +
1
2

F′′(1)S2

]
, (40)

where F(1) = 1, F′(1) = λ 〈M〉 and F′′(1) = λ2
〈
M2

〉
. For 0 < λ− λc  1 we obtain that S

scales according to equation (38) with the mean-field critical exponent β given by

β = 1, (41)

and with A given by

A = 2
〈M〉3

〈M2〉 . (42)

(2A) Power-law D(t) kernel and linear M(t) kernel
For the power-law D(t) kernel, the critical exponentβ can deviate from the mean-field value

β = 1 and in general depends on the power-law exponentα. Furthermore, for certain values of
α the scaling of S in equation (38) develops logarithmic corrections. Let us consider the linear

11
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kernel M(t) = m̄t and the power-law kernel D(t) with power-law exponent α > 1. The critical
index β will depend on the value of the power-law exponent α.

(a) Forα > 3, both 〈M〉 and 〈M2〉 are convergent, resulting in the mean-field critical exponent
β given by

β = 1. (43)

(b) Forα = 3 we observe logarithmic corrections to the critical scaling given by equation (38).
Indeed by performing the asymptotic expansion of the self-consistent equation for S given
by equation (26) for 0 < S  1 we obtain

S � λ〈M〉S − S2 ln(1/S)λ2I0, (44)

where I0 is a constant. Since, according to equation (27) the epidemic threshold is given
by λc = 1/ 〈M〉 we obtain that for 0 < λ− λc  1, S follows the scaling

S � A
(λ− λc)β

ln[1/(λ− λc)]
(45)

with A indicating a constant, and β = 1.
(c) For α ∈ (2, 3), the first moment 〈M〉 is convergent, however the second moment

〈
M2

〉
is divergent. We perform the asymptotic expansion of the self consistent equation for S
(equation (26)) for 0 < S  1 leading to

S � λ〈M〉S − Sα−1λα−1I1 (46)

where I1 is a finite constant. According to equation (27) we have λc〈M〉 = 1. Therefore
we deduce that S scales follows the critical scaling given by equation (38) with the critical
exponent β is given by

β =
1

α− 2
. (47)

(d) Forα = 2 we observe logarithmic corrections to the critical scaling given by equation (38).
Indeed the asymptotic expansion of equation (26) for S  1 reads,

S � cSλln(1/S)I2, (48)

where I2 is a constant. By noticing that for α = 2 the epidemic threshold vanishes, i.e.
λc = 0 we deduce that close to criticality, for 0 < λ  1 the order parameter S follows
the scaling

S � e−A/λ, (49)

where A is a constant.
(e) For α ∈ (1, 2), both 〈M〉 and

〈
M2

〉
are divergent. In this case the asymptotic expansion of

equation (26) determining the value of S reads

S � cSα−1λα−1I3, (50)

where I3 is a finite constant. Due to the diverging 〈M〉 the epidemic threshold vanishes,
i.e. λc = 0. Therefore, S scales as equation (38) with critical exponent β given by

β =
α− 1
2 − α

. (51)
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(2B) Power-law D(t) kernel and power-law M(t) kernel
Here we derive the critical exponent β for the branching process with the power-law
M(t) kernel with η ∈ (0, 1) and the power-law D(t) kernel with power-law exponent
α > 1. Depending on the values of η and α we can observe different critical exponents
β. Note that in the limit in which η → 1 we recover the critical exponent β obtained in
case (1B).

(a) For (α− 1)/η > 2 both 〈M〉 and
〈
M2

〉
are convergent, therefore we can expand F(x) up

to the second order. Inserting this expression into the equation (26) it is immediate to show
that S follows the critical scaling given by equation (38) and that we recover the mean-field
critical exponent β = 1.

(b) For (α− 1)/η = 2 the first moment 〈M〉 is convergent but the second moment
〈
M2

〉
is

diverging logarithmically. In this case we found logarithmic deviations from the scaling
given by equation (38). Indeed the asymptotic expansion of equation (26) for 0 < S  1
is given by

S � λ〈M〉S − λ2S2 ln(1/S)I′0, (52)

where I′0 is a constant. This asymptotic expansion, together with the expression of the
epidemic threshold λc = 1/ 〈M〉, leads to the critical scaling of S, valid for 0 < λ−
λc  1 given by

S � A
(λ− λc)

ln[1/(λ− λc)]
, (53)

where A is a constant.
(c) For (α− 1)/η ∈ (1, 2), the first moment 〈M〉 is convergent while the second moment〈

M2
〉

diverges. The epidemic threshold λc is given by λc = 1/ 〈M〉 and the asymptotic
expansion of equation (26) for 0 < S  1 is given by

S � λ〈M〉S − λ
α−1
η S

α−1
η I′1, (54)

where I′1 is a constant. Therefore this asymptotic expansion leads to the critical scaling
given by equation (38) with critical exponent

β =
η

α− 1 − η
. (55)

(d) For (α− 1)/η = 1 both 〈M〉 and
〈
M2

〉
are diverging. The asymptotic expansion of

equation (26) for 0 < S  1 is given by

S � λS ln(1/S)I′2, (56)

where I′2 is a constant. Given that the epidemic threshold in this case is vanishing λc = 0
we get that close to criticality, for 0 < λ  1 S scales like

S � e−A/λ, (57)

where A is a constant.
(e) For (α− 1)/η ∈ (0, 1), both first moment 〈M〉 and second moment

〈
M2

〉
are diverging.

In this case the epidemic threshold vanishes, i.e. λc = 0. The asymptotic expansion of
equation (26) for 0 < S  1 is given by

S � λ
α−1
η S

α−1
η I′3, (58)
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where I′3 is a constant. It follows that in this case, as long as 0 < λ− λc  1 the order
parameter S follows the critical scaling given by equation (38) with critical exponent β
given by

β =
α− 1

η + 1 − α
. (59)

5.2. Critical exponents τ and σ

At criticality the avalanche size distribution π(n) follows a power-law scaling with exponent
τ whose value depends on the statistical properties of the D(t) and the M(t) kernels. Close
to criticality the avalanche size distribution π(n) acquires a cutoff determined by a scaling
function Φ(x). Specifically for λ = λc +Δλ, the avalanche size distribution π(n) scales as

π(n) � n−τΦ (n(Δλ)σ) , (60)

where the function Φ(x) approaches a constant value for x → 0 and decays do zero faster than
any power for x →∞. In this section, we will derive the critical exponents τ and σ for the
different kernels under investigation starting from the self-consistent equation (16) for the gen-
erating function H1(x). We will show that the critical exponents will depend on the choice of
the D(t) and the M(t) kernels. However, we notice here that the scaling relation [34]

σ(τ − 1) = β, (61)

relating the critical exponents σ, τ to the critical exponent β will continue to be satisfied for
every choice of the D(t) and M(t) kernels as long as the asymptotic expansion of F(x) for
0 < 1 − x  1 does not have logarithmic corrections. In order to derive the value of the crit-
ical exponent τ and σ, determining the scaling of π(n) according to equation (60), we first
observe this scaling implies that the generating function H1(x) defined as equation (10) for
0 < 1 − x  1 scales as

H1(x) � 1 − (1 − x)τ−1h

(
1 − x
(Δλ)σ

)
. (62)

where h(x) is a scaling function [35, 36]. By inserting this scaling relation into the self
consistent equation for H1(x) (equation (16)) which we rewrite here for convenience,

H1(x) = xF(H1(x)), (63)

we will derive analytically the critical exponents τ and σ for all the kernels under consideration
(see figure 3 for comparison of the analytical predictions and the simulations results).
(1A & B) Exponential D(t) kernel

With an exponential D(t) kernel, all the moments of M(t) are finite. Therefore we are in
the mean-field regime, which is independent on the choice of M(t) kernel. We consider the
self-consistent equation for H1(x) given by equation (63) where we substitute the scaling of
H1(x) for 0 < 1 − x  1 given by equation (62). In the case in which 0 < 1 − x  1 we
have 0 < 1 − H1(x)  1, therefore in equation (63) we can substitute F(w) with this Taylor
expansion around w = 1 truncated at the second order. By putting 1 − x = z(Δλ)σ we get

F(H1(x)) � 1 − λ〈M〉zτ−1(Δλ)σ(τ−1)h(z) +
1
2
λ2

〈
M2

〉
z2(τ−1)(Δλ)2σ(τ−1)h2(z). (64)
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Inserting this expression into equation (63) and using the explicit expression of the epidemic
threshold λc = 1/ 〈M〉, we get for 0 < λ− λc  1

〈M〉zτ−1(Δλ)σ(τ−1)+1h(z) + z(Δλ)σ − cz2(τ−1)(Δλ)2σ(τ−1)h2(z) = 0, (65)

where c is a constant given by c = λ2
c

〈
M2

〉
/2. Imposing that all the terms in the above

expansion are of the same order, i.e. putting

σ(τ − 1) + 1 = σ = 2σ(τ − 1), (66)

we get the mean-field critical exponents

τ = 3/2, σ = 2. (67)

(2A) Power-law D(t) kernel and linear M(t) kernel
When the D(t) kernel is power-law with power-law exponent α > 1, the exponents τ and
σ depend on the value of α and can deviate from the mean-field values. In the following we
evaluate the exponents τ and σ for values of the exponent α that lead to an expansion of
F(x) for 0 < 1 − x  1 that does not have logarithmic corrections.

(a) For α > 3, both 〈M〉 and 〈M2〉 are finite. By expanding F(x) for 0 < 1 − x  1 up to the
second order we can reproduce the calculation performed for the exponential D(t) kernel.
Therefore we recover the mean-field critical exponents

τ = 3/2, σ = 2. (68)

(b) For α ∈ (2, 3), 〈M〉 is convergent and 〈M2〉 is divergent, while the epidemic threshold
is finite and given by λc = 1/ 〈M〉. We consider the asymptotic expansion of F(w) for
w = H1(x) and 0 < 1 − x  1 given by

F(H1(x)) � 1 − z(Δλ)σ(τ−1)h(z)λ〈M〉+ λα−1
[
(z(Δλ)σ)τ−1h(z)

]α−1
I1, (69)

where I1 is a constant. By inserting this expression in the self consistent formula for H1(x)
given by equation (63) we get the leading terms

〈M〉zτ−1(Δλ)σ(τ−1)+1h(z) + z(Δλ)σ − λα−1
c I1

[
(z(Δλ)σ)(τ−1)h(z)

]α−1
= 0.

Imposing that all the terms in the above equation are of the same order,

σ(τ − 1) + 1 = σ = σ(τ − 1)(α− 1), (70)

we obtain the critical exponents

τ =
α

α− 1
, σ =

α− 1
α− 2

. (71)

(c) Forα ∈ (1, 2), both 〈M〉 and
〈
M2

〉
are divergent, while the epidemic threshold is vanishing

λc = 0. We proceed by considering the asymptotic expansion of F(w) forw = H1(x) with
0 < 1 − x  1, with H1(x) scaling according to equation (62), getting

F(H1(x)) � 1 − (Δλ)α−1[(z(Δλ)σ)τ−1h(z)]α−1I3, (72)

where I3 is a constant. By inserting this expression in the self consistent formula for H1(x)
given by equation (63) we get the leading terms

〈M〉zτ−1(Δλ)σ(τ−1)h(z) + z(Δλ)σ − (Δλ)α−1
[
(z(Δλ)σ)τ−1h(z)

]α−1
I3 = 0.
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By imposing that all the terms in the above equation are of the same order,

σ = σ(τ − 1) = σ(τ − 1)(α− 1) + α− 1, (73)

we obtain the critical exponents

τ = 2, σ =
α− 1
2 − α

. (74)

(2B) Power-law D(t) kernel and power-law M(t) kernel

(a) For (α− 1)/η > 2, both 〈M〉 and 〈M2〉 are convergent. Thus we recover the mean-field
exponents

τ = 3/2, σ = 2. (75)

(b) For (α− 1)/η ∈ (1, 2), 〈M〉 is convergent,
〈
M2

〉
is divergent and the epidemic threshold

is finite and given by λc = 1/ 〈M〉. We consider the asymptotic expansion of F(w) for
w = H1(x) and 0 < 1 − x  1:

F(H1(x)) � 1 − zτ−1(Δλ)σ(τ−1)h(z)λ 〈M〉+ λ
α−1
η
[
(x(Δλ)σ)τ−1h(z)

]α−1
η I′1, (76)

where I′1 is a constant. By inserting this expansion in the self-consistent equation (63) we
find that the leading terms are given by

〈M〉zτ−1(Δλ)σ(τ−1)+1h(z) + z(Δλ)σ − λ
α−1
η

c
[
(x(Δλ)σ)τ−1h(z)

] α−1
η I′1 = 0. (77)

By imposing that all these terms are of the same order, i.e. by imposing

σ(τ − 1) + 1 = σ =
σ(τ − 1)(α− 1)

η
, (78)

we obtain the critical exponents

τ =
η + α− 1
α− 1

, σ =
α− 1

α− 1 − η
. (79)

(c) For (α− 1)/η ∈ (0, 1), both 〈M〉 and
〈
M2

〉
are divergent, and the epidemic threshold

vanishes, i.e. λc = 0. By proceeding like the in three previous cases we consider the
asymptotic expansion of F(w) for w = H1(x) and 0 < 1 − x  1, given by

F(H1(x)) � 1 − (Δλ)
α−1
η
[
(z(Δλ)σ)τ−1h(z)

]α−1
η I′3, (80)

where I′3 is a constant. By substituting this asymptotic expansion in the self consistent
equation for H1(x) we get to leading order,

〈M〉zτ−1(Δλ)σ(τ−1)h(z) + z(Δλ)σ − (Δλ)
α−1
η
[
(z(Δλ)σ)τ−1h(z)

] α−1
η I′3 = 0.

Imposing that all the terms of the above equation are of the same order, by putting

σ = σ(τ − 1) =
σ(τ − 1)(α− 1) + α− 1

η
, (81)

we obtain the critical exponents

τ = 2, σ =
α− 1

η − α+ 1
. (82)

16



J. Phys. A: Math. Theor. 55 (2022) 224006 H Sun et al

6. Distribution of the temporal duration of avalanches

In the previous section we have shown how the distribution of critical avalanche size depends
on the kernel of the considered branching process modelling epidemics spreading with time-
dependent containment measures. Here we show that instead the distribution of the avalanche
duration is determined by critical exponents that are independent of the choice of the kernels
under consideration. Let us define y as the critical exponent characterizing asymptotic scaling
of the distribution P(T ) of the duration T of critical avalanches

P(T) � C′T−y, (83)

for T � 1 where C′ is a constant. The cumulative distribution of P(T ) denoted by P̂(T) indi-
cates the probability that the avalanche has not stopped at time T , and scales for T � 1 as

P̂(T) � CT−y+1, (84)

where C is a constant. We note that a critical avalanche started from a single initial seed is
extinct at time T if each subavalanche generated by any of the offspring of the seed node is
also extinct. Therefore, it is immediate to show that P̂(T) satisfies

1 − P̂(T) =
∑
t�1

D(t)
t−1∏
t′=1

〈[
1 − P̂(T − t′)

]zt′
〉

zt′

=
∑
t�1

D(t) exp

[
−λ

t−1∑
t′=1

m(t′)P̂(T − t′)

]
, (85)

where in the last expression we consider average over the Poisson distribution for zt′ . In order
to determine the exponent y, we insert the critical scaling for P̂(T) given by equation (84) into
(85) and check that this equation is satisfied only for y = 2 (which is the mean-field exponent)
independently of the choice of the D(t) and M(t) kernels. To this end, let us take m(t) = m̄
corresponding to the linear M(t) kernel, and let us consider a generic D(t) kernel. By inserting
the scaling function for P̂(T) given by equation (84) with y = 2 into the left-hand side of the
self-consistent equation (85) we get, at the critical point λ = λc,

∑
t�1

D(t) exp

[
−λc

t∑
t′=1

m(t′)P̂c(T − t′)

]

�
∑
t�1

D(t) exp
[
−λcC

(
φ(0)(1 − T) − ψ(0)(1 − T + t)

)]
, (86)

where ψ(0)(x) is the 0th PolyGamma function. We consider the expansion for T � t, getting

φ(0)(1 − T) − ψ(0)(1 − T + t) =
t
T
+ O(1/T2). (87)

Inserting this expansion in equation (86) we obtain to leading terms

∑
t�1

D(t) exp

[
−λc

t∑
t′=1

m(t′)P̂c(T − t′)

]
=

∑
t�1

D(t) exp
[
−λcCm̄

t
T

]

� 1 − C
T

, (88)
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where in the last expression we have first expanded for T � 1 and then we have used
λc 〈M〉 = 1. Therefore with this derivation we get that equation (85) is identically satisfied at
criticality with the choice of P̂(T) given by equation (84) as long as y = 2. By considering the
power-law M(t) kernel it can be shown that the critical exponent y = 2 is not modified. In fact,
taking m(t) = (m̄η)tη−1 with η ∈ (0, 1) we can evaluate the left-hand side of the self-consistent
equation (85) for T � 1 using continuous approximation to obtain:

∑
t�1

D(t) exp

[
−λc

t∑
t′=1

m(t′)P̂c(T − t′)

]

�
∑
t�1

D(t) exp

[
−λc

∫ t

0

Cm̄η(t′)η−1

T − τ ′
dt′

]

=
∑
t�1

D(t) exp
[
−λcCm̄ηTη−1Bt/T(η, 0)

]
, (89)

where Bt/T(η, 0) is the incomplete Beta function.
By further considering the expansion of the Beta function for T � 1, given byBx(η, 0) � xη

we get

∑
t�

D(t) exp
[
−λcm̄ηCTη−1Bt/T(η, 0)

]
�

∑
t�

D(t) exp

[
−λcm̄ηC

tη

T

]

�
∑
t�

D(t)

(
1 − λcCm̄η

tη

T

)

= 1 − C
T

, (90)

where we have used λc 〈M〉 = 1 with 〈M〉 given, in the continuous approximation, by

〈M〉 = m̄η 〈tη〉 . (91)

Therefore this derivation shows that also for the power-law M(t) kernel we get that
equation (85) is identically satisfied at criticality provided y = 2.

In the sublinear regime, for 0 < Δλ = λc − λ  1, we can proceed in a similar manner
as for the standard branching process [37, 38] and show that the power-law scaling of P(T ) is
modulated by a function of T(Δλ)ε with ε = 1 leading to the scaling

P(T) � 1
T2

Ψ(T(Δλ)), (92)

where Ψ(x) converges to a constant for c → 0 and decays exponentially for x →∞. These
predictions agree perfectly with the Monte Carlo simulations (see figure 4).

7. Dynamics of the critical branching process

At criticality, the avalanche size n is related to the duration of the avalanche by a power-law
scaling determined by the critical dynamic exponents by z, i.e.,

n ∝ Tz. (93)
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Figure 4. Monte Carlo simulations of time-duration distribution of critical branching
processes with power-law D(t) kernel with α = 3.5 and α = 2.5. The distributions of
time-duration of avalanches (panel (a)) and the data collapse (panel (b)) withα = 3.5 are
shown. The distributions are obtained from 105 samples of critical branching processes
and M(t) = t is considered in the simulations. The distributions with different D(t) kernel
give the same critical exponents.

Figure 5. The size of the avalanches n is shown versus the time-duration of the
avalanches T for the critical branching process with D(t) power-law kernel with different
power-law exponents α. The M(t) kernel is linear. Symbols indicate numerical simula-
tions, solid lines indicate power-law fit to the data. Inner panel: the fitted power-law
exponent z (blue dots) is shown versus α and compared with the theoretical expectation
z = α− 1 (green line).

This power-law dependence of n with T is only observed exactly at criticality, for λ = λc while
in the supercritical phase we have an exponential growth of the individual of an avalanche in
time. The dynamical exponent z can be easily found once the exponents τ and y, determining
the critical scaling of π(n) and P(T ), are known. In fact z can be found by imposing that at
criticality, i.e. for λ = λc,

P(T)dT = π(n)dn, (94)
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Figure 6. The size of the avalanches n is shown versus the time-duration of the
avalanches T for five single instance realizations of the the critical branching process
with D(t) power-law kernel and power-law exponents α = 2.2 (panel (a)), α = 2.5
(panel (b)) and α = 2.8 (panel (c)). In panels (a)–(c) the theoretical expectation is
shown as a yellow line. In panel (d)–(f) we show the size of the avalanches n versus the
time-duration of the avalanches T averaged over 106 realizations of the critical branch-
ing process with D(t) power-law kernel and power-law exponents α = 2.2 (panel (c)),
α = 2.5 (panel (d)) and α = 2.8 (panel (e)) explicitly indicating the errorbars.

where n scales with T according to equation (93), π(n) ∝ n−τ and P(T ) ∝ T−y. In this way,
using the fact that y = 2, it is straightforward to show that the critical exponent z is given by

z =
1

τ − 1
. (95)

It follows that z depends of the choices of the D(t) and M(t) kernels.
1A & 1B Exponential D(t) kernel. In the case of the exponential D(t) kernel, we recover the

mean-field exponents

τ = 3/2, z = 2, (96)

both for the linear and the power-law M(t) kernel.
2A & 2B power-law D(t) kernel. In the case of power-law D(t) kernel the dynamical exponent
z ranges between one and two, i.e. z ∈ [1, 2]. Let us treat the case of the linear M(t) ∝ t kernel
and the power-law M(t) ∝ tη together by taking η ∈ (0, 1] where for η = 1 we recover the
linear kernel. When neglecting the values of α in which the expansion of F(x) around x = 1
has logarithmic corrections, and considering the values of τ derived in section 5.2, we see that
the dynamical exponent z changes as a function of α and η in the following way.

(a) For (α− 1)/η > 2 we recover the mean-field exponents

τ = 3/2, z = 2. (97)
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(b) For (α− 1)/η ∈ (1, 2) we obtain

τ = 1 +
η

α− 1
, z =

α− 1
η

. (98)

It follows then that in particular, for the linear kernel, i.e. for η = 1 we obtain z = α− 1
which agrees with the numerical simulations (see figure 5 for comparison of the theoretical
results with the average over simulations of the critical branching process and figure 6 for
comparison of the theoretical results with simulations of single instances of the branching
process).

(c) For (α− 1)/η ∈ (0, 1) we obtain

τ = 2, z = 1. (99)

As mentioned before these dynamical critical exponents agree with extensive Monte Carlo
simulations, and display values that can be only obtained by taking into consideration the
stochastic effects of the dynamics that play a crucial role of criticality. As a consequence it
is possible to observe that the critical exponent z derived here deviates from the corresponding
dynamical exponent that can be derived from the deterministic dynamics [7].

8. Conclusions

In this work we have studied a stochastic epidemic model with containment measures in which
each infected individual is infectious for a time t with a given distribution D(t). Additionally,
during the infectious period an individual can infect a constant, or time-varying number of
individuals resulting in a total number of secondary infections M(t) that either increases linearly
or sublinearly with time. We have shown that depending of the choice of the D(t) and M(t)
kernels, the critical behaviour of the branching process that captures this epidemic spreading
model changes. In particular the critical index τ that characterise the distribution of avalanche
sizes depends on the choice of the kernels D(t) and M(t) and ranges in the interval between
3/2 and 2, i.e. z ∈ [3/2, 2]. However, the critical exponent determining the avalanche duration
appears to be universal and independent on the choice of the D(t) and M(t) kernels. Most
relevantly, the study of this model allows us to derive the expression for the dynamical critical
exponent z that determines the power-law growth of the number of infected individuals n and
the avalanche duration of critical avalanches T , i.e. n ∝ Tz. Interestingly, this critical exponent
can be related to empirical observations on COVID data that starting from the work of Ziff and
Ziff [1] have detected power-law increases of the number of cases in time [2–4].

We recover the classic results for the dynamical exponent z = 2 in the standard branching
process, and we predict that containment measures that have the effect of modulating the D(t)
and the M(t) kernels can have the effect to modify the value of z allowing z ∈ [1, 2]. These
theoretical results show that stochastic effects are important when determining the dynamical
exponent z. Indeed, the exponent found in this paper improves on the deterministic treatment
proposed in [7]. More importantly, the result presented in this work shows that the dynamical
critical exponent z can be modulated by time-dependent containment measures in the range
z ∈ [1, 2] which is consistent with some empirical observations made during few periods of
strong mitigation of the COVID-19 pandemic observed in the last two years. We note however
that this range does not include the value originally found by Ziff and Ziff in the first work [1]
in which a power-law growth with exponent larger than two of the number of cases in time
was reported. This implies that although containment measures that have the effect of modu-
lating the D(t) and M(t) kernels can tune the value of the critical exponent z, other mechanisms
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including for instance the role of a (hyperbolic) hierarchical, and nested spatial distribution
of the spreading process might be also play a role in determining the actual value of z in real
epidemics.
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