
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Iemhoff R, Passmann R.
2023 Logics and admissible rules of
constructive set theories. Phil. Trans. R. Soc. A
381: 20220018.
https://doi.org/10.1098/rsta.2022.0018

Received: 25 July 2022
Accepted: 2 December 2022

One contribution of 11 to a theme issue
‘Modern perspectives in Proof Theory’.

Subject Areas:
mathematical logic, set theory, computational
mathematics

Keywords:
logic, constructive set theory, substitution,
extensible theories, admissible rules

Author for correspondence:
Rosalie Iemhoff
e-mail: R.Iemhoff@uu.nl

Logics and admissible rules
of constructive set theories
Rosalie Iemhoff1 and Robert Passmann2

1Department of Philosophy and Religious Studies, Utrecht
University, Janskerkhof 13, 3512 BL Utrecht, The Netherlands
2Institute for Logic, Language and Computation, University of
Amsterdam, PO Box 94242, 1090 GE Amsterdam, The Netherlands

RI, 0000-0001-9975-9604

We survey the logical structure of constructive set
theories and point towards directions for future
research. Moreover, we analyse the consequences of
being extensible for the logical structure of a given
constructive set theory. We finally provide examples
of a number of set theories that are extensible.

This article is part of the theme issue ‘Modern
perspectives in Proof Theory’.

1. Introduction
Constructive set theories are formal systems in which we
can conduct intuitionistic or constructive mathematics.
Many systems of constructive set theory have strong
connections to type theory and are interesting because
they allow us to analyse the computational content of
mathematical statements.

When a constructive mathematical theory T is
defined, we usually pay special attention to ensure that
not all instances of the law of excluded middle,

p ∨ ¬p,

are derivable in T. Even if an axiom looks constructive,
it may happen that it entails this logical law, and if all
instances of the law of excluded middle are derivable,
then the axiom is constructively unacceptable.

Consider, for a well-known example, the famous
theorem by Diaconescu [1] and Goodman & Myhill [2]
that adding the axiom of choice to intuitionistic set
theory IZF (Intuitionistic Zermelo–Fraenkel set theory)
results in the classical ZFC set theory. This result is often
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taken as evidence for rejecting the axiom of choice as constructively valid. However, showing that
a certain instance of excluded middle is not constructively valid is not sufficient for ensuring that
only principles of intuitionistic logic are satisfied. After all, there could be intermediate principles
that are derivable in T. Dick de Jongh was the first to investigate this phenomenon: in his doctoral
dissertation [3], he showed that the propositional principles valid in Heyting arithmetic (HA)
under all substitutions are exactly those of propositional intuitionistic logic (IPC). This fact is now
known as de Jongh’s theorem and has sparked fruitful investigations into the logical structure of
intuitionistic arithmetic. A generalization of de Jongh’s theorem would be to consider not only
the propositional principles of HA but also its propositional admissible rules (see definition 2.3).
Visser [4] showed that the propositional admissible rules of HA are exactly those of IPC. A further
generalization would be to consider the two notions in the setting of predicate logic.

In this article, we survey results about the logical structure of constructive set theories and also
provide a few new results in the area as well as questions for future research.

The study of the logical properties of classical and non-classical theories goes back at least
several decades. Early results on the logics of theories date from the 1970s, and Rybakov’s seminal
work on admissibility [5] marked the beginning of a period during which the admissible rules
were investigated for many theories, see [6] for an overview. What is characteristic of that period
is that the theories involved were mainly arithmetical theories, such as HA, or extensions of
propositional logics, such as modal, intermediate and substructural logics. This naturally leads to
the more general questions studied today, questions that ask whether the phenomena observed
for arithmetic apply to other well-known constructive theories, and whether the phenomena
observed for propositional logics also hold for predicate logics. Behind all this lie conceptual
issues as well: What does it mean for a theory to have the same logic or rules as a given
theory? Should it be required of a genuine constructive theory that it has the same admissible
rules as intuitionistic propositional or predicate logics? These questions characterize the modern
perspective on the area. We do not know the answers to all of them yet, but the results in this
article provide some answers for constructive set theories.

(a) Overview
We will introduce what we understand as the logical structure of a theory in §2 and then survey
the techniques and results obtained so far in §3. Section 4 will be dedicated to obtaining a few new
results. We mention suggestions for future research throughout the article and also list some more
in §5. Finally, we discuss the logics and admissible rules of the extreme case of classical theories
in §6.

2. Preliminaries: the logical structure of a theory
We denote intuitionistic propositional logic by IPC and intuitionistic first-order logic by IQC.
Classical propositional logic is denoted by CPC and classical first-order logic by CQC. If a logic
J satisfies IPC ⊆ J ⊆ CPC or IQC ⊆ J ⊆ CQC, then it is a (propositional or first-order) intermediate
logic.

In this article, we work with first-order logics formulated in the language consisting of
countably many predicate symbols Pi for i ∈ N in every arity. The formulas of first-order logic
are recursively defined in the usual way with the connectives and quantifiers ¬, ∧, ∨, →, ∀ and
∃. We also consider ⊥ and 
 to be part of the logical vocabulary. Note that we take constants
and functions to be expressed as predicates in the usual way. The language of propositional logic
is obtained by restricting to nullary predicates (i.e. the propositional letters) and forgetting the
quantifiers. Finally, we assume that all first-order languages share the same set of variables {xi}i∈N.

Definition 2.1. Let T be a theory. A map σ is a T-assignment if and only if it maps each predicate
symbol R to a T-formula σ (R) such that the number of free variables of σ (R) is not bigger than the
arity of R.
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For example, given a binary relation symbol R, we could obtain a T-assignment by setting
σ (R) = ‘x0 ∈ x1’. We denote the formulas of first-order logic by Lform

FOL and those of a theory T by
Lform

T . We can then obtain substitutions from assignments as follows.

Definition 2.2. Let T be a theory. A map σ : Lform
FOL →Lform

T is a T-substitution if it obtained from
a T-assignment τ such that σ (R(xi1 , . . . , xin )) = τ (R)(xi1 , . . . , xin ), and, moreover, commutes with ⊥,

 and the logical connectives. If the range of σ is {
, ⊥}, then it is a ground substitution.

The theory T is often clear from the context, and we will then speak of substitutions instead of
T-substitutions. As usual, a rule Γ/� is a pair of finite sets of logical formulas.

Definition 2.3. Let T be a theory. A rule Γ/� is admissible in T, Γ �∼T �, if and only if for every
substitution σ , if T � σ (A) for all A ∈ Γ , then there is B ∈� such that T � σ (B).

By �∼, we will denote the admissibility relation in which we consider only propositional
formulas. We will consider more closely now the propositional and first-order tautologies of a
theory.

Definition 2.4. A formula A of first-order logic is a tautology of T if and only if 
 �∼T A.

Proposition 2.5. A formula A is a tautology of T if and only if T � σ (A) for all substitutions σ .

Proof. Note that 
 �∼T A is by definition equivalent to T � σ (
) implying T � σ (A) for all σ . As
the premise is true for any T, the implication is equivalent to T � σ (A) for every σ . �

Given this definition, we can define the propositional and first-order logics of a theory.

Definition 2.6. Let T be a theory. The propositional logic of T, L(T), consists of all propositional
tautologies of T. The first-order logic of T, QL(T), consists of all first-order tautologies of T.

We can now ask four natural questions about the logical structure of a given theory T:

(i) What are the first-order admissible rules of T? �∼T = ?
(ii) What are the propositional admissible rules of T? �∼T = ?

(iii) What is the first-order logic of T? QL(T) = ?
(iv) What is the propositional logic of T? L(T) = ?

Given the aforementioned definitions, it is clear that answers to some of these questions imply
answers to others: If we know an answer to (i), then we know answers to (ii)–(iv). If we know an
answer to (ii), then to (iv) as well. Finally, if we know an answer to (iii), then also to (iv). Still, there
are several reasons to consider these questions separately. First, the following theorem shows that
an informative answer—in the sense of a recursive description—to (i) is in general not possible.

Theorem 2.7 (Visser [4]). Let T be a theory such that I�0 + Exp can be relatively interpreted in T. If
T has the disjunction property, then �∼T is Π0

2 -complete.

Proof. This is Visser’s result; however, as we are not working with relative interpretations here,
one needs to add this explicitly on the logical side by replacing the quantifiers ∃xA(x) and ∀xA(x)
with ∃x(R(X) ∧ A(x)) and ∀x(R(x) → A(x)), respectively, where R is a new relation symbol. �

However, one may of course still wonder whether the first-order admissible rules of any two
theories are the same (question 5.1) or study the admissibility of specific interesting rules (see,
e.g. van den Berg & Moerdijk [7]). Another reason to consider these questions separately is that,
of course, the more complex objects require more complicated proofs than the simpler ones. In a
sense, question (iv) can often be seen as a litmus test for the more difficult questions (ii) and (iii):
if we conjecture that QL(T) = IQC, then showing that L(T) = IPC is a step in the right direction
(though there are counter examples, e.g. L(IZF) = IPC but QL(IZF) = IQC, see §3). It may even be
necessary to know an answer to (iv) before applying certain techniques for obtaining an answer
to (ii), viz. the propositional admissible rules of T. We will see much more detail in the remainder
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of this article. For now, we will dive a bit deeper into the logics and propositional admissible rules
of a given theory.

We say that a theory T is based on a logic J if T is axiomatized over J. As the results discussed
in this article show, if a theory T is based on IQC, we do not necessarily have that QL(T) = IQC.
Crucially, we cannot only study the logics of a theory T based on intuitionistic logic but, given
an intermediate logic J, we can consider the theory T(J) obtained as the closure of T under J. de
Jongh et al. [8] studied these theories and defined the de Jongh property as follows.

Definition 2.8. Let J be a propositional or first-order intermediate logic. A theory T has the de
Jongh property for J just in case L(T(J)) = J if J is propositional or QL(T(J)) = J if J is first order.

We also say that a theory T satisfies de Jongh’s theorem if L(T) = IPC, and that T satisfies de
Jongh’s theorem for first-order logic if QL(T) = IQC. To illustrate research in this area, we now give
an incomplete history of de Jongh’s theorem for arithmetical theories (see de Jonghet al. [8] for
a more complete history). De Jongh [3] proved that L(HA) = IPC—; in other words, he proved
that HA satisfies the de Jongh property for IPC. Leivant [9] showed using proof theoretic means
that QL(HA) = IQC; van Oosten later gave a model theoretic proof of the same fact. De Jongh
et al. [8] proved that HA has the de Jongh property for several classes of intermediate logics. The
following propositions are immediate from proposition 2.5.

Proposition 2.9. Let T ⊆ S be theories in the same language. If A is a tautology of T, then it is a
tautology of S. In particular, L(T) ⊆ L(S) and QL(T) ⊆ QL(S).

Proposition 2.10. Let J be a propositional or first-order intermediate logic. If T ⊆ S are theories in the
same language and S satisfies the de Jongh property for J, then so does T. In particular, if S satisfies de
Jongh’s theorem, then so does T.

A first crucial observation on the admissible rules of a theory is that these are bounded by its
logic.

Theorem 2.11 (Visser [4]). Let T be a theory. If A �∼T B, then A �∼QL(T) B; i.e. �∼T ⊆ �∼QL(T). Similarly,

if A �∼T B, then A �∼L(T) B; i.e. �∼T ⊆ �∼L(T).

Not much is known about the converse direction. A counterexample could be obtained with
theorem 2.7 if it turns out that the predicate admissible rules of IQC are of complexity lower than
Π0

2 -completeness. We close these preliminaries with two particularly helpful results for studying
the propositional admissible rules of a given theory. A theory T is called extensible if any Kripke
model of T can be extended by adding a new root and corresponding domain to obtain a new
model of T (see also definition 4.1).

Theorem 2.12 (Visser [4], Lemma 4.1). Let T be a theory with L(T) = IPC. If T is extensible, then the
propositional admissible rules of T are exactly those of IPC, �∼T = �∼IPC.

The Visser rule Vn is the following rule for propositional formulas Ai, Bi and C:

(
∧n

i=1(Ai → Bi) → (An+1 ∨ An+2)) ∨ C∨n+2
j=1 (

∧n
i=1(Ai → Bi) → Aj) ∨ C

. (Vn)

The collection of Visser rules consists of the rules Vn for every n.

Theorem 2.13. Let T be a theory with L(T) = IPC. If the Visser rules are admissible in T, then the
admissible rules of T are exactly those of IPC.

Proof. Let A and B be propositional formulas. By theorem 2.11, it suffices to show that if A �∼IPC
B, then A �∼T B. So assume that A �∼IPC B. By a theorem of Iemhoff ([10], Theorem 3.9), this means
that A �V

IPC B, where �V
IPC denotes the derivability relation of IPC extended with all of Visser’s

rules. In other words, there is a proof tree, potentially using A as a premise, all steps in which
are instances of the rules of IPC and V, and whose conclusion is B. Given that Visser’s rules are
admissible in T, and using the fact that T is based on intuitionistic logic, it is straightforward
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Figure 1. Axioms of set theory.

to see that every rule application in the proof tree is admissible in T. Hence, B is an admissible
consequence of A, A �∼T B. �

The two theorems give two routes to proving that the propositional admissible rules of a theory
T are exactly those of IPC. We will see that theorem 2.12 can be seen as an instance of theorem
2.13 because Visser’s rules are admissible in any extensible theory (lemma 4.7). In this section, we
covered the preliminaries for theories based on intuitionistic logic. There is more to say for the
extreme case of theories based on classical logic, see §6.

3. Survey on techniques and results

(a) Constructive set theories
In this section, we can only give a very brief introduction to constructive set theory. As usual,
the language L∈ of set theory is a first-order language with equality and a single binary relation
symbol ‘∈’ to denote set membership. We consider the bounded quantifiers ∀x ∈ a ϕ(x) and ∃x ∈
a ϕ(x) to be abbreviations for ∀x(x ∈ a → ϕ(x)) and ∃x(x ∈ a ∧ ϕ(x)), respectively. The crucial aim of
intuitionistic and constructive set theories is to provide a set-theoretic foundation for mathematics
on the basis of intuitionistic instead of classical logic. We will now introduce the relevant systems.

In figure 1, we have spelt out all the axioms of set theory, giving rise to the following theories.
Note that ‘z is full in x and y’ means that every element of z is a total relation between x and y and
for every total relation w between x and y, and there is some u ∈ z such that u ⊆ w. We can now
define the relevant theories. The bounded separation consists of all instances of (separation), where
ϕ is a bounded formula (i.e. ϕ is �0). In a similar way, we obtain the axiom scheme of bounded
collection.

Definition 3.1. We define the following set theories on the basis of intuitionistic first-order
logic.

(i) Intuitionistic Zermelo–Fraenkel set theory (IZF) consists of the axioms and schemes of
extensionality, empty set, union, pairing, infinity, separation, ∈-induction, collection and
power set.
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(ii) Constructive Zermelo–Fraenkel set theory (CZF) consists of the axioms and schemes
of extensionality, empty set, union, pairing, strong infinity, bounded separation, ∈-
induction, strong collection and subset collection.

(iii) Intuitionistic Kripke–Platek set theory (IKP) consists of the axioms and schemes of
extensionality, empty set, union, pairing, infinity, bounded separation, ∈-induction and
bounded collection.

(iv) Basic constructive set theory (BCST) consists of the axioms and schemes of extensionality,
empty set, union, pairing, replacement and bounded separation.

(v) Elementary constructive set theory (ECST) consists of the axioms and schemes of
extensionality, empty set, pairing, union, strong infinity, bounded separation and
replacement.

The theory IZFR is IZF with replacement instead of collection, and CZFER is CZF with exponentiation
and replacement instead of strong collection and subset collection.

Note that CZF is usually formulated with the axiom of infinity instead of strong infinity.
Obviously, the axiom of strong infinity implies infinity. The converse is also true on the basis of
CZF without any infinity axioms [11, section 2.1]; so we can consider CZF to be formulated with
the axiom of strong infinity instead of infinity, as this will be important later. For a detailed
development of the mathematics of and in constructive set theories, we refer the reader to the
notes of Aczel & Rathjen [12]. Whenever we discuss the results for an arbitrary set theory T in this
article, we assume that T contains at least intuitionistic logic.

(b) Techniques and results
We will now survey what is known about the logical structure of constructive set theories. For
many years, only the following two negative results were known.

Theorem 3.2 (Diaconescu [1]; Goodman & Myhill [2]). Let T be a set theory that proves 0 = 1 as
well as the axioms of extensionality, pairing, and the separation scheme. If T proves the axiom of choice,
then T proves all instances of the law of excluded middle.

Theorem 3.3 (Friedman & Ščedrov [13]). Let T be a set theory containing the axioms and schemes of
extensionality, separation, pairing and (finite) union. Then IQC � QL(T). In particular, IQC � QL(IZF) �

CQC.

While we do not wish to spell out the proofs of these theorems in detail, we will point out here
that both of them make crucial use of the separation scheme to define sets that allow to derive a
logical scheme for all formulas. This observation is crucial as we will see in a while that Passmann
[14] showed that both theorems fail on the basis of CZF, i.e. when the set theory does not contain
the full separation scheme. Note that theorem 3.3 leads to the following open question.

Question 3.4. Let T be a set theory, based on intuitionistic logic, satisfying the conditions of
theorem 3.3. What is QL(T)? In particular, what is QL(IZF)?

Before considering more recent results, we will briefly recall some notation and results on
Kripke models. A Kripke frame (K, ≤) consists of a partial order ≤ on a set K. A valuation V on
(K, ≤) is a function V assigning sets of propositional letters to nodes such that v ≤ w and p ∈ V(v)
entail p ∈ V(w). A Kripke model (K, ≤, V) consists of a Kripke frame (K, ≤) and a valuation V on
(K, ≤). The valuation V can be extended to the forcing relation � between Kripke models and
valuation Kripke models and propositional formulas in the usual way. The defining property of
valuations is called persistence and transfers to all propositional formulas in Kripke models, i.e.
v � ϕ and v ≤ w entail w � ϕ (this property also holds for all first-order formulas in the case of
first-order models, see below). We refer to the literature for the standard results about Kripke
models for intuitionistic logic.

We are now ready to move to more recent results. All the results we are going to mention are
obtained by model theoretic methods, i.e. a result of the form QL(T) = J is usually obtained by,
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first, showing that T proves all instances of J (this is usually easy), and second, for every logical
principle A such that J � A, one constructs a countermodel M of T, which also fails that principle.
In other words, there is then a T-substitution σ such that M � T but M � σ (A). We say that an
intermediate logic J is characterized by a class K of Kripke models if and only if J � A if and only if
M � A for every M ∈ K. The class of finite trees consists of the finite partial orders (P, ≤) such that
for any p ∈ P, the set {q ∈ P | q ≤ p} is linearly ordered.

Theorem 3.5 (Passmann [15]). Let T ⊆ IZF be a set theory. If J be an intermediate propositional logic
that is characterized by a class of finite trees, then L(T(J)) = J. In particular, L(T) = IPC.

This result was proved by using so-called blended Kripke models, and we will see an adaptation
of this technique in §4. For now, we just note that Passmann’s blended models are inspired by the
models that Lubarksy [16] used to show various independence results around CZF.

The next two results were proved by Iemhoff & Passmann [17]. Note that IKP+ is obtained by
adding weak versions of strong collection and subset collection to IKP (for details see their paper).
An intermediate logic J is called Kripke-complete if there is a class K of Kripke models such that J is
characterized by K.

Theorem 3.6 (Iemhoff & Passmann [17]). Let T ⊆ IKP+ + MP + AC be a set theory. If J is a Kripke-
complete intermediate propositional logic, then L(T(J)) = J.

Theorem 3.7 (Iemhoff & Passmann [17]). Let T ⊆ IKP+ + MP + AC be a set theory. If J is a Kripke-
complete intermediate first-order logic contained in the least transitive model of ZFC + V = L, then
QL(T(J)) = J. In particular, QL(T) = IQC.

For these results, Iemhoff & Passmann use (what they call) Kripke models with classical domains.
These models are obtained by equipping each node of a Kripke frame with a classical model of set
theory in a coherent way. An earlier result by Iemhoff [18] entails that these models will always
satisfy IKP. Passmann showed in his master’s thesis [19] that this result is in a certain sense optimal:
there are Kripke models with classical domains that do not satisfy the exponentiation axiom
(which is a consequence of CZF). The aforementioned results could be proved for large classes
of logics because the simple structure of the Kripke models with classical domains allows much
control about their logical structure.

Finally, Iemhoff & Passmann also obtained the following negative result for first-order logic
with equality. Note that QL=(T) is obtained just like QL(T) with the additional requirement that
substitutions commute with ‘=’.

Theorem 3.8 (Iemhoff & Passmann [17], theorem 61). Let T be a set theory containing the axioms
of extensionality, empty set and pairing. Then the first-order logic with equality of T, QL=(T) , is strictly
stronger than IQC=, i.e. IQC= � QL=(T).

Question 3.9. Given any set theory T, what is its first-order logic with equality QL=(T)?

The following results were obtained by combining realizability techniques with transfinite
computability. The latter is a generalization of classical computability by allowing machines
to run for an infinite amount of time and/or use an infinite amount of space. For a thorough
introduction, we refer the reader to Carl’s book [20].

Theorem 3.10 (Carl et al. [21]). The propositional admissible rules of IKP are exactly those of IPC, i.e.
�∼IKP = �∼IPC.

Theorem 3.11 (Passmann [14]). The propositional admissible rules of CZF are exactly those of IPC, i.e.
�∼CZF = �∼IPC.

Theorem 3.12 (Passmann [14]). Let T ⊆ CZF + PowerSet + AC be a set theory. The first-order logic of T
is intuitionistic first-order logic IQC, QL(T) = IQC.

It is crucial to note here that the proof method of theorem 3.12 does not allow to prove the
result for any intermediate logic J.
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Table 1. An overview of the most important intuitionistic and constructive set theories and whether they satisfy de Jongh’s
propositional and first-order theorems, and whether their admissible rules are exactly those of IPC, as discussed in the survey.
The question marks (‘?’) indicate open problems. The results marked with a reference within this article are new.

T L(T)= IPC QL(T)= IQC �∼T = �∼IPC

IKP � � �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BCST � � � (corollary 4.13)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ECST � � � (corollary 4.13)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CZFER � � � (corollary 4.13)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CZF � � �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CZF + AC � � �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IZFR � ✗; IQC� QL(IZFR)= ?� CQC � (corollary 4.13)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IZF � ✗; IQC� QL(IZF)= ?� CQC ✗; �∼IPC � �∼IZF = ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IZF + AC ✗; L(IZF + AC)= CPC ✗; CQC⊆ QL(IZF + AC) ✗; �∼IZF+AC = �∼CPC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Question 3.13. Can theorem 3.12 be generalized to a class of intermediate first-order logics?

In general, all results surveyed in this section introduce assumptions on the logic J under
consideration. We may therefore ask the following question (table 1).

Question 3.14. Is it possible to extend the results of this section to larger classes of logics? If
not, find counterexamples for which these theorems fail if the assumptions on the logics J are
weakened.

4. Logics and rules of set theories

(a) Logic, rules and the extension property
In this section, we will prove a set-theoretic analogue of Visser’s [4, lemma 4.1] Main Lemma.
Given a Kripke frame K, we write K+ for the frame extended with a new root. The construction of
adding a new root to a Kripke model was first used by Smorynski [22] for models of HA to give
an alternative proof of de Jongh’s theorem for HA. In the arithmetical case, it suffices to equip
the new root with the standard model of arithmetic. The case of the set theory requires a more
elaborate construction, as we will now see.

Definition 4.1. Let Γ be a set of sentences in the language of set theory. A set of sentences � is
Γ -extensible if for every Kripke model M � Γ ∪� of set theory with underlying frame K, there is
a model M+ based on K+ such that M+ � K = M and M+ ��; � is extensible if it is ∅-extensible.

To avoid cumbersome notation, we will say that a sentence ϕ is (Γ -)extensible just in case {ϕ}
is (Γ -)extensible. We will later need the following two brief observations.

Lemma 4.2. Let Γ ⊆� be sets of formulas. If � is Γ -extensible, then � is extensible.

Proof. Let M ��. As Γ ⊆�, we have M �� ∪ Γ . By Γ -extensibility, it follows that M+ ��. �

Lemma 4.3. Let Γ ⊆� be sets of formulas. If a sentence ϕ is Γ -extensible, then it is �-extensible.

Proof. Let M � {ϕ} ∪�. As Γ ⊆�, we have M � {ϕ} ∪ Γ . By Γ -extensibility, M+ � ϕ. �

A Kripke frame (K, ≤) is a finite splitting tree if K is finite, connected and every v ∈ K has either
no successors or at least two immediate successors. A node v ∈ K with no successors is also called
a leaf. An easy induction on the height of finite splitting trees allows to show that every node in
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such a tree is uniquely determined by the set of leaves above it. A set theory T is called subclassical
if there is a classical model of T.

The following theorem follows the same idea as Smorynski’s proof of de Jongh’s theorem for
HA [22]. For this reason, this proof method is also sometimes referred to as Smorynski’s trick.

Theorem 4.4. Let J be a propositional intermediate logic characterized by a class of finite splitting trees.
If T is a subclassical recursively enumerable extensible set theory, then J is the propositional logic of T(J),
i.e. L(T(J)) = J.

Proof. Let 2<ω be the set of binary sequences of finite length, and 2n be the set of binary
sequences of length n. If T is a recursively enumerable theory, let ΓT be its Gödel sentence.
Let ϕ〈0〉 := ΓT, and ϕ〈1〉 := ¬ΓT. Clearly both T + ϕ〈0〉 and T + ϕ〈1〉 are consistent by Gödel’s
incompleteness theorem. By recursion on the length of s ∈ 2<ω, we define

ϕs�〈0〉 := ϕs ∧ ΓT+ϕs and

ϕs�〈1〉 := ϕs ∧ ¬ΓT+ϕs .

By inductively applying Gödel’s incompleteness theorem, it follows that T + ϕs is consistent for
every s ∈ 2<ω; so, for every s ∈ 2<ω, let Ms be a classical model such that Ms � T + ϕs.

We now observe that, given s, t ∈ 2<ω of the same length with s = t, it must be that ϕs and
ϕt are jointly inconsistent: Let i be minimal such that s(i) = t(i). Then s � i = t � i, and we can
assume, without loss of generality, that s(i) = 0 and t(i) = 1. The sentences ϕs and ϕt are defined
as conjunctions in such a way that ϕs contains the conjunct ΓT+ϕs�i , and ϕt contains the conjunct
¬ΓT+ϕt�i . Since s � i = t � i, it follows that ϕs → ¬ϕt. We can conclude for n<ω and s ∈ 2n that

Ms � ϕs ∧
∧

t∈2n\{s}
¬ϕt.

Let T be a set theory and J be a logic, as given in the statement of the theorem. To prove that
L(T(J)) = J, we will proceed as follows: Let C be a class of finite splitting trees that characterizes the
logic J. It is clear that J ⊆ L(T(J)). To show that L(T(J)) ⊆ J, we proceed by contraposition. So assume
that J � A for some propositional formula A, then there is a finite splitting tree (K, ≤) ∈ C and a
valuation V on K such that (K, ≤, V) � J but (K, ≤, V) � A. On the basis of this propositional Kripke
model, we will construct a Kripke model M � T of set theory and a propositional translation τ
such that M � Aτ . As M is based on the frame (K, ≤) � J, it follows that M � T(J). Hence, it follows
that A /∈ L(T(J)).

As every finite splitting tree can be constructed from its set of leaves by iterating the operation
of adding a new root, we can obtain a model of T on the frame (K, ≤) as follows. Find n<ω such
that there are at least as many s ∈ 2n as there are leaves in K; let l �→ sl be an injective map assigning
sequences to leaves. Assign the models Msl to the leaves of (K, ≤) and use the extensibility of T to
construct a Kripke model M of T with underlying frame (K, ≤). Given v ∈ K, let Ev be the set of
leaves l ≥ v. Then consider the formula

γv := ¬¬
∨
l∈Ev

ϕsl .

Now recall that every node v in the finite splitting tree (K, ≤) is characterized by the set Ev and
that Msl � ϕsk if and only if l = k. It follows that M, w � γv if and only if w ≥ v.

We are now ready to construct the translation τ . Given a propositional letter p, let

τ (p) :=
∨

v∈V(p)

γv =
∨

v∈V(p)

¬¬
∨
l∈Ev

ϕsl .

Moreover, τ commutes with the propositional connectives ¬, →, ∨ and ∧.
To finish the proof of the theorem, it now suffices to show that M, w � τ (p) if and only if w ∈

V(p); it then follows by induction that M, w � Aτ if and only if (K, ≤, V), w � A. So assume that
M, w � τ (p). Equivalently, M, w � γv for some v ∈ V(p). We have seen that this is equivalent to
w ≥ v for some v ∈ V(p), which, by persistence, holds if and only if w ∈ V(p). �
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Note that IPC is characterized by the class of finite trees [23, theorem 6.12]. To show that IPC
is characterized by the class of finite splitting tress, note that duplicating branches of a tree does
not change the formulas satisfied at the root.

Corollary 4.5. Let T be a subclassical recursively enumerable set theory. If T is extensible, then the
propositional logic of T is intuitionistic propositional logic IPC, i.e. L(T) = IPC.

Let us first observe the following helpful fact. Recall that a theory T has the disjunction
property whenever T � ϕ ∨ ψ implies T � ϕ or T �ψ .

Lemma 4.6. If T is an extensible set theory, then T has the disjunction property.

Proof. By contraposition. Assume that T � ϕ and T �ψ , then there are models M0 and M1 of T
such that M0 � ϕ and M1 � ψ . Let M be the disjoint union of these models, then M+ � T as T is
extensible. Moreover, persistence implies that M+ � ϕ ∨ ψ ; hence, T � ϕ ∨ ψ . �

Lemma 4.7. If T is an extensible set theory, then Visser’s rules are admissible in T.

Proof. By lemma 4.6, it is sufficient to show that the following rules V′
n are admissible:∧n

i=1(Ai → Bi) → (An+1 ∨ An+2)∨n+2
j=1 (

∧n
i=1(Ai → Bi) → Aj)

. (V′
n)

The admissibility of these rules is a standard argument and proceeds as follows by contraposition.
For greater readability, we write σA for σ (A) in this proof.

Let σ : Prop→Lsent∈ be any substitution and assume that T � ∨n+2
j=1 (

∧n
i=1(σAi → σBi) → σAj), i.e.

T � ∧n
i=1(σAi → σBi) → σAj for j = 1, . . . , n + 2. By Kripke completeness, let Mj be a Kripke model

of T with root rj such that Mj � ∧n
i=1(σAi → σBi) → σAj. In this situation, we can assume without

loss of generality that Mj, rj �
∧n

i=1(σAi → σBi), but Mj, rj � σAj.
Now, let M be the disjoint union 〈Mj | j = 1, . . . , n + 2〉 of the models. As T is extensible,

consider a model M+ extending M with a new root r such that M+ � T. By persistence, r � σAj
for all j = 1, . . . , n + 2. Hence, r � σAi → σBi for all i = 1, . . . , n, but r � σAn+1 ∨ σAn+2. Hence,
T � ∧n

i=1(σAi → σBi) → (An+1 ∨ σAn+2).
We may conclude that the rule V′

n is admissible in T. �

The following theorem is a direct consequence of corollary 4.5, lemma 4.7 and theorem 2.13.

Theorem 4.8. Let T be a subclassical recursively enumerable set theory. If T is extensible, then the
admissible rules of T are exactly those of IPC, i.e. �∼T = �∼IPC.

Finally, the following corollary is immediate from theorem 4.4.

Corollary 4.9. Let T be a subclassical recursively enumerable extensible set theory, and ϕ be a sentence
in the language of set theory. If ϕ is T-extensible, then L(T + ϕ) = IPC.

In conclusion, the axiom of choice (AC) is not IZFR extensible.

Question 4.10. Is the axiom of choice CZF extensible?

(b) Extensible set theories
In this section, we assume the existence of a proper class of inaccessible cardinals (see remark
4.17). We will prove the extension property for a variety of constructive set theories by providing
one particular construction for extending a given model. This construction is an adaptation
of Passmann’s [15] blended models. A Kripke model for set theory is a first-order Kripke model
of the form (K, ≤, {Dv}v∈K, {fvw}v≤w∈K and {Ev}v∈K), where {Dv}v∈K is a collections of domains,
{fvw}v≤w∈K is a collection of transition functions between domains, and {Ev}v∈K is a collection
of interpretations of the ‘∈’-predicate. Note that the Dv are assumed to be sets. Of course, the
transition functions and interpretations satisfy the usual coherence conditions (for more details
see, e.g. [17]).
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Definition 4.11. Let M = (K, ≤, {Dv}v∈K, {fvw}v≤w∈K, {Ev}v∈K) be a Kripke model of set theory.
The extended model M+ = (K+, ≤, {Dv}v∈K+ , {fvw}v≤w∈K+ , {Ev}v∈K+ ) is defined as follows:

(i) Let r /∈ K, the so-called new root. Then extend K and ≤ as follows:

K+=K ∪ {r} and r ≤ v for all v ∈ K+.

(ii) The domains Dv for v ∈ K are already given. The domain Dr at the new root is defined
inductively as follows:

(i) D0
r = ∅,

(ii) Dα
r consists of functions x with dom(x) = K+ such that:

(i) x(r) ⊆ ⋃
β<α Dβ

r ,

(ii) x(v) ∈ Dv for all v ∈ K,

(iii) if y ∈ x(r), then y(v)Evx(v) for all v ∈ K,

(iv) if v, w ∈ K with v ≤ w, then x(w) = fvw(x(v)).

(iii) Dr = ⋃
α∈κ Dα

r , where κ is the least inaccessible cardinal κ > |K| + ∑
v∈K |Dv |.

(iii) The membership relation Ev at v ∈ K are already defined; at the new root r, define by yErx
if and only if y ∈ x(r)

(iv) The transition functions fvw : Dv → Dw are already defined for v, w ∈ K with v ≤ w. Given
v ∈ K, define frv : Dr → Dv by frv(x) = x(v).

To help the reader digest this construction, we will give a simple example and provide some
general intuition for the construction. Let M be any classical model for set theory. In other words,
M is a one-point Kripke model; call its single point v. The extended model M+ has then a new
root r. An element of the root Dr—a set at the root—is a function x with domain {r, v} such that
x(r) ∈ Dr and x(v) ∈ Dv . Moreover, if y ∈ x(r), then y(v) ∈ x(v). Intuitively, a set x at node r may thus
already contain some elements at the root r but may also collect new elements when transitioning
to v. Another way to think of this construction idea is as adding a new root whose elements are
approximations of the sets already existing in the model we are starting from.

The next step is to observe that many set-theoretical axioms are extensible. For convenience,
we abbreviate the axioms of extensionality, empty set, pairing and union with Ext, Emp, Pair and Un,
respectively.

Theorem 4.12. The following axioms and axiom schemes are Ext-extensible: extensionality, empty set,
pairing, union, ∈-induction, separation and �0-separation, power set, replacement and exponentiation.
Moreover, the axiom of strong infinity is {Ext, Emp, Pair, Un}-extensible.

Proof. We will prove all statements of the theorem by assuming that a model M satisfies the
relevant axiom or scheme and then show that the extended model M+ satisfies them as well.

For extensionality, let x, y ∈ Dr. For the non-trivial direction, assume that r � ∀z(z ∈ x ↔ z ∈ y).
By persistence and extensionality in M, we have v � x = y for every v ∈ M; hence, x(v) = y(v) for
all v ∈ M. To see that also x(r) = y(r), observe that z ∈ x(r) if and only if zErx(r). By assumption, the
latter is equivalent to zEry(r), which holds if and only if z ∈ y(r). In conclusion, y(r) = x(r).

For the empty set axiom, let ev be the unique (by extensionality) witness for the empty set
axiom at v ∈ K. Define a function e with domain K+ such that e(v) = ev for e ∈ K and e(r) = ∅; by
uniqueness, e is defined, and it follows that e ∈ Dr. To see that e witnesses the empty set axiom, let
x ∈ Dr. We have to show that r � ¬x ∈ e. For this, it suffices to show that for all v ≥ r, v � x ∈ e, but
this is trivially true as e(r) is empty and ev is the empty set for all v ∈ K.

For the pairing axiom, let x, y ∈ Dr. By pairing and extensionality in M, there is a unique pv ∈ Dv

such that v � ∀z(z ∈ pv ↔ z = x(v) ∨ z = y(v)) for all v ∈ K. Define p to be the function with domain
K+ such that p(r) = {x, y} and p(v) = pv for all v ∈ K. Clearly, p ∈ Dr is defined by uniqueness of the
pv . To see that p indeed witnesses the pairing axiom, observe that, clearly, r � x ∈ p and r � y ∈ p.
Moreover, if r � z ∈ p, then it follows by definition of p that r � z = x ∨ z = y.
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For the union axiom, let x ∈ Dr. As mentioned earlier, by extensionality and the union axiom
in M, we can find a unique witness uv such that v � uv = ⋃

x(v) for every v ∈ K. Then define
a function u with domain K+ such that u(v) = uv for all v ∈ K and u(r) = ⋃{y(r) | y ∈ x(r)}. To
verify that indeed u ∈ Dr, note that y ∈ u(r) implies that there is some z ∈ x(r) such that y ∈ z(r).
Now by y, z ∈ Dr, we know that v � y(v) ∈ z(v) ∧ z(v) ∈ x(v), so, clearly, v � y(v) ∈ u(v). It is now a
straightforward computation to see that u witnesses the union axiom at r.

Regarding ∈-induction, suppose for contradiction that r � ∀x(∀y ∈ x ϕ(y) → ϕ(x)) → ∀xϕ(x).
Then there is some v ≥ r such that v � ∀x(∀y ∈ x ϕ(y) → ϕ(x)) but v � ∀xϕ(x). As M satisfies
∈-induction, it must be that v= r, and so by persistence M+ � ∀x(∀y ∈ xϕ(y) → ϕ(x)). By ∈-
induction in M, M � ∀xϕ(x), so all failures of this instance of ∈-induction must happen at the
new root r. Thus, as r � ∀xϕ(x), it follows that there is some x0 ∈ Dr such that r � ϕ(x0). Using
the antecedent of ∈-induction, this means that there must be some x1 ∈ Dr such that r � x1 ∈ x0
and r � ϕ(x1). Iterating this construction, we obtain a sequence {xn}n∈ω such that xn+1 ∈ xn(r). This
straightforwardly gives rise to an infinitely decreasing ∈-chain. A contradiction.

Next, we consider the separation axiom. Let x ∈ Dr and ϕ(y) be a formula, possibly with
parameters. Now, for every v ∈ K, let sv be the unique result of separating from x(v) with ϕ and
parameters p̄(v) at node v. With persistence and extensionality, it follows that the function s with
domain K+ such that s(v) = sv and s(r) = {y ∈ x(r) | r � ϕ(y, p̄)} is a well-defined element of Dr; if α
is the least such that x ∈ Dα

r , then it is easy to see that x ∈ Dα+1
r . It follows straightforwardly from

the definition of s that it witnesses separation from x with ϕ at r: r � z ∈ s is equivalent to z ∈ s(r),
and the latter holds by definition if and only if r � ϕ(z, p̄). Note that the proof of �0-separation
schema is a special case of the proof for the separation schema.

For the power set axiom, consider x ∈ Dr and let β < κ such that x ∈ Dβ
r . If y ∈ Dr such that

r � y ⊆ x, then y(r) ⊆ x(r), and hence, y ∈ Dβ
r as well. Let p(r) consist of those y ∈ Dr such that r �

∀z(z ∈ y → z ∈ x), then p(r) ⊆ Dβ
r . Moreover, let p(v) be the unique element of Dv such that v �

p(v) =P(x(v)) (using extensionality). By persistence, p is a well-defined element of Dr. It is then
straightforward to check that p is the power set of x at r.

For replacement, let x ∈ Dr and ϕ be a formula (potentially with parameters) such that r �
∀y ∈ x∃!zϕ(y, z). Given this, let a(r) consist of those z ∈ Dr for which there exists some y ∈ Dr with
r � ϕ(y, z). Moreover, let a(v) be the witness for applying replacement with ϕ on x(v) at v. By
inaccessibility of κ and persistence in M+, it follows that a ∈ Dr. As in the previous cases, it is now
straightforward to check that a witnesses replacement.

For exponentiation, let a, b ∈ Dr. Let z(r) be the set of functions from a to b at r, and let z(v) be
the set of functions from a(v) to b(v) at the node v. It follows that z ∈ Dr, and it is easy to check that
z witnesses the exponentiation axiom.

Recall that the axiom of strong infinity asserts the existence of a least inductive set. So, for
every v ∈ K, let ωv ∈ Dv be this least inductive set. At the new root r, we recursively construct
sets nr as follows: Let 0r be the empty set as defined from the empty set axiom. Then, given nr,
use pairing and union, to obtain (n + 1)r such that r � (n + 1)r = nr ∪ {nr}. As each ωv is the least
inductive set at v, it must be the case that v � nr(v) ∈ωv for all v ∈ K. Therefore, the set x, defined
by x(r) = {nr | n ∈ω} and x(v) =ωv for v ∈ K, is a well-defined set at r, i.e. x ∈ Dr. By construction,
we must have that if r � ‘yis inductive′, then r � x ⊆ y. Hence, x witnesses strong infinity. �

A combination of theorem 4.12 and lemmas 4.2 and 4.3 yields the next corollary. An application
of theorem 4.8 then yields corollary 4.14.

Corollary 4.13. The theories IZFR, CZFER, ECST and BCST are extensible.

Corollary 4.14. The propositional admissible rules of IZFR, CZFER, ECST and BCST are exactly those of IPC.
In other words, if T is one of these theories, then �∼T = �∼IPC.

Remark 4.15. It seems difficult to use the aforementioned method to prove that the axiom
schemes of collection, strong collection and subset collection are extensible. The reason for this
is that these axiom schemes do not require that their witnesses are unique—this is in contrast to
their weakened versions, replacement and exponentiation.
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Question 4.16. Are the axiom schemes of collection, strong collection and subset collection
extensible?

Remark 4.17. It is not strictly necessary to assume the existence of a proper class of inaccessible
cardinals as (at least) the following two alternatives are available: Firstly, we could work with
Kripke models that have (definable) class domains. Secondly, we could apply the downwards
Löwenheim–Skolem theorem (which does hold in our classical metatheory) to work, without
loss of generality, only with models with countable domains. In our view, the solution with
inaccessible cardinals is the most elegant as it allows us to ignore any worries about size
restrictions.

5. Questions
We close with a few suggestions for future research.

Question 5.1. Is it the case that �∼HA = �∼IZF?

In general, one can ask the same question for any two constructive theories T, T′ of interest.

Question 5.2. Are CZF and IZF extensible?

Question 5.3. Of course, both IZF and CZF can be extended with further axioms. Natural examples
of such further axioms include the so-called large set axioms—the constructive counterparts to
large cardinal axioms. What are the propositional and first-order logics of extensions of IZF and CZF
with further axioms? Also, what are their admissible rules?

Question 5.4. In this article, we gave a first structural analysis of the logical structure by
observing the consequences of the extension property. Are there other structural properties of
set theories that determine (parts of) the logical structure of a given set theory?

Question 5.5. Let T be a theory. Given a class Γ of set-theoretic formulas, we can obtain the
notions of Γ -propositional logic L(T) and Γ -first-order logic QL(T), as well as Γ -admissible rules
by restricting to those T-substitutions that arise from T-assignments with domain in Γ . Natural
classes to consider are, of course, the classes of the Lévy hierarchy but other cases are thinkable
(such as prenex formulas). What are the logics that arise in this way?

Note, regarding the previous question, that the substitutions used to prove the results in §3 are
usually of rather low complexity, e.g.Σ3 orΣ4. Therefore, the question is often only interesting for
classes of lower complexity. For instance, Visser [4, sections 3.7–3.9] considers Σ1-substitutions.

In this article, we have only considered set theories on the basis of intuitionistic logic. Of
course, one can also analyse the logical structure of set theories based on other logics. Löwe et al.
[24] take some first steps towards an analysis of the logical structure of certain paraconsistent
set theories. Another related problem is to determine the provability logics of constructive and
intuitionistic set theories.

6. The classical case
In this final section, we briefly discuss the logical structure of classical theories. Recall that a logic
is post-complete if it has no consistent extension.

Theorem 6.1. Let T be a classical theory. If T is consistent, then T satisfies the de Jongh property for
CPC.

Proof. Since T is classical, it must be that CPC ⊆ L(T). As T is consistent, ⊥ /∈ L(T). Hence, L(T) =
CPC as CPC is post-complete. �

The case for first-order logics of a given theory is more complicated as they are not post-
complete; Yavorsky [25] proved that expressively strong arithmetical theories T, such as PA, satisfy
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QL(T) = CQC (see Yavorsky’s paper for definitions and details). Yavorsky also shows that there
are classical theories T such that CQC � QL(T).

Theorem 6.2. Let T be a classical theory. Then A �∼T B if and only if A �∼L(T) B. Thus, �∼T =�∼L(T)=
�CPC.

Proof. Theorem 6.1 implies that L(T) = CPC. As is well known, �∼CPC=�CPC (a proof can be
found in [26]). Thus, the second part of the theorem follows from the first.

For the first part, the direction from left to right has been proven in theorem 2.11. We treat
the other direction. Arguing by contraposition, assume for some propositional formulas A and
B that �T ρ(A) and �T ρ(B) for some substitution ρ from the language of propositional logic to
the language of T. We have to show that A �∼L(T) B. Assumption � ρ(B) implies that there exists
a propositional model M of T and a valuation v such that M, v |� ρ(B). Define a substitution σ in
propositional logic as follows:

σ (p) =
{


 if M, v |� ρ(p),

⊥ if M, v |� ρ(p).

It is easy to see that for any propositional formula C, the formula σC contains no propositional
variables, which implies that σC is equivalent to 
 or to ⊥. Therefore,

�L(T) σ (C) or �L(T) ¬σ (C). (6.1)

By using (6.1), it is easy to prove by induction on the propositional formula C that

�L(T) σ (C) ⇐⇒ M, v |� ρ(C). (6.2)

Now, since M |� ρ(B), it follows that �L(T) σ (B) from (6.2). On the other hand, since �T ρ(A), we
must have that M |� ρ(A), thus (6.2) implies that �L(T) σ (A). Therefore, A �∼L(T) B, which is what
we had to show. �

In the remainder of this section, we show that the first part of theorem 6.2 can be lifted to
the predicate case, at least for theories for which QL(T) = CQC, and the second part cannot. The
predicate version of the first part of the previous theorem states that �∼T=�∼CQC and the second
part states that �∼CQC=�CQC. To show that the first statement is true for theories T such that
QL(T) = CQC, we first have to prove that the second statement, while not true, is almost true; we
have to show that CQC is almost structurally complete.

As remarked earlier, CPC is structurally complete, which means that any admissible rule is
derivable: for all propositional formulas A and B

A �∼CPC B ⇒ A �CPC B. (6.3)

In other words, �∼CPC= �CPC (see also Iemhoff [26]).
It is easy to see that, unlike CPC, CQC is not structurally complete. Consider the formula

∃xP(x) ∧ ∃x¬P(x) and observe that for no substitution σ , the formula σ (∃xP(x) ∧ ∃x¬P(x)) is
derivable in CQC. For if it were, it would hold in models consisting of one element, quod
non. This implies that ∃xP(x) ∧ ∃x¬P(x) �∼CQC ⊥. And since ∃xP(x) ∧ ∃x¬P(x) �CQC ⊥, this shows
that CQC is not structurally complete, i.e. that �∼CQC = �CQC. However, the admissible rule
∃xP(x) ∧ ∃x¬P(x) �∼CQC ⊥ has a particular property, it is passive.

Definition 6.3. Admissible rules A �∼T B are called passive if the premise A is not unifiable, i.e.
�T σ (A) for no substitution σ .

We will show that the only non-derivable admissible rules in CQC are passive. In the
terminology of admissibility: CQC is almost structural complete. This result was first obtained by
Pogorzelski and Prucnal [27]. Here, we prove a modest generalization that applies to a class of
consequence relations instead of a single one. Recall that a rule A/B is derivable in CQC if A � B,
where � is a consequence relation of CQC, by which we mean a consequence relation that has the
same theorems as CQC: � A iff A holds in CQC. Thus, strictly speaking, the notion of derivable
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rule depends on the given consequence relation of CQC, which is why we make it explicit in the
discussion below. Since the derivability of a formula does not depend on the consequence relation
(because all have the same derivable formulas), we can leave it implicit in such a setting, as in the
next lemma, where �CQC denotes any consequence relation for CQC.

Lemma 6.4. A formula A is unifiable if and only if there exists a ground substitution τ such that
�CQC τ (A) and τ (P(s̄)) = τ (P(t̄)) for all predicates P and sequences of terms s̄, t̄.

Proof. It suffices to show the direction from left to right. Since A(x̄) is unifiable, there exists
a substitution σ such that �CQC σ (A), from which it follows that �CQC ρσ (A) for any ground
substitution ρ, as CQC is closed under uniform substitution. Clearly, ρσ is a ground substitution
too. That ρσ satisfies the second part of the lemma follows immediately from the definition of
substitutions. �

Theorem 6.5. Let �CQC be a consequence relation for CQC such that C(x̄) �CQC ∀x̄C(x̄) for all
formulas C. Then A �∼CQC B implies A �CQC B for all unifiable formulas A and all formulas B.

Proof. Since A is unifiable, there exists, by lemma 6.4, a ground substitution τ such that � τ (A)
and τ (P(s̄)) = τ (P(t̄)) for all predicates P and sequences of terms s̄, t̄. Firstly, note that this implies
that τ (B(s̄)) = τ (B(t̄)) for any formula B. Let x̄ be the free variables in A and define a substitution σ
as follows:

σ (Pz̄) =
{

∀x̄A → P(z̄) if � τP(z̄) ↔ 
,

∀x̄A ∧ P(z̄) if � τP(z̄) ↔ ⊥.

�

Claim 6.6. For any formula B, we have that

�σ (B) ↔
{

∀x̄A → B if � τB ↔ 
,

∀x̄A ∧ B if � τB ↔ ⊥.

Proof of the Claim. By induction on B.
Case B = Pz̄. Trivial. Case B = C ∧ D. If � τ (C ∧ D) ↔ 
, then as τ commutes with connectives,

we must have that � τC ↔ 
 and � τD ↔ 
, which by the induction hypothesis imply that

�σC ↔ (∀x̄A → C) and � σD ↔ (∀x̄A → D).

Thus, σ (C ∧ D) �� (∀x̄A → C) ∧ (∀x̄A → D) �� ∀x̄A → (C ∧ D).
If � τ (C ∧ D) ↔ ⊥, then there are three cases.

Case 1. � τC ↔ ⊥ and � τD ↔ ⊥. By induction hypothesis, � σC ↔ (∀x̄A ∧ C) and � σD ↔ (∀x̄A ∧
D). Thus, � σ (C ∧ D) ↔ (∀x̄A ∧ (C ∧ D)).

Case 2. � τC ↔ ⊥ and � τD ↔ 
. By induction hypothesis, � σC ↔ (∀x̄A ∧ C) and � σD ↔
(∀x̄A → D). Thus, we have that

σC ∧ σD � �(∀x̄A ∧ C) ∧ (∀x̄A → D) � �∀x̄A ∧ (C ∧ D).

Case 3. � τC ↔ 
 and � τD ↔ ⊥, analogous to case 2.

�

Case B = ¬C. If � τ (¬C) ↔ 
, then since τ commutes with the connectives, we must have that
� τC ↔ ⊥, which by induction hypothesis implies that σC �� ∀x̄A ∧ C. Thus,

σ (¬C) � �¬(∀x̄A ∧ C) � �∀x̄A → ¬C.

If � τ (¬C) ↔ ⊥, then � τC ↔ 
 since τ commutes with the connectives, which by induction
hypothesis implies that σC �� ∀x̄A → C. Thus,

σ (¬C) � �¬(∀x̄A → C) � �∀x̄A ∧ ¬C.
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Case B = ∀w̄C(w̄). If � τ (∀w̄C(w̄)) ↔ 
, then � ∀w̄τ (C(w̄)) ↔ 
 follows. Hence, � τC(w̄) ↔ 
, which
by induction hypothesis implies that σC(w̄) �� ∀x̄A → C(w̄). Thus,

σ (∀w̄C(w̄)) � �∀w̄σC(w̄) � � ∀w̄(∀x̄A(x̄) → C(w̄)) � � ∀x̄A(x̄) → ∀w̄C(w̄).

If � τ (∀w̄C(w̄)) ↔ ⊥, then the fact that τ is a substitution implies that � τ (∀w̄C(w̄)) ↔ ∀w̄τ (C(w̄)),
and that it is a ground substitution that � τC(w̄) ↔ ⊥ for some w̄. By the observation made in
the first paragraph of the proof, τC(w̄) is equivalent to τC(s̄) for any sequence of terms s̄. Thus,
σC(w̄) �� ∀x̄A ∧ C(w̄) by the induction hypothesis, which implies

σ (∀w̄C(w̄)) � � ∀w̄(∀x̄A(x̄) ∧ C(w̄)) � � ∀x̄A(x̄) ∧ ∀w̄C(w̄).

This proves the claim.
Now, since � τA ↔ 
, we know by the claim that � σA(x̄) ↔ (∀x̄A(x̄) → A). But � ∀x̄A(x̄) → A,

thus � σA. Since A �∼CQC B, we have that � σB.
By the claim, it is easy to see that ∀x̄A(x̄) � σB ↔ B. By assumption A �CQC ∀x̄A(x̄), we obtain

that A � B.

Corollary 6.7. CQC is almost structurally complete with respect to any consequence relation that
satisfies the constraint in theorem 6.5.

Corollary 6.8. For any classical theory T such that QL(T) = CQC: A �∼T B if and only if A �∼CQC B,

i.e. �∼T=�∼CQC.

Proof. The assumption QL(T) = CQC gives A �∼T B implies A �∼CQC B by theorem 2.11. For the
other direction, assume that A �∼CQC B. If A is unifiable in CQC, then A �CQC B by theorem 6.5.
Hence, A �T B and thus A �∼T B. If A is not unifiable in CQC, then it suffices to show that A is not
unifiable in T. For this implies that A �∼T C for any C, and thus, A �∼T B would follow. Arguing
by contradiction, suppose A is unifiable in T, say �T σA for some substitution σ . Then for any
ground substitution τ , �T τσA, and as QL(T) = CQC, this implies �CQC τσA, contradicting the
assumption that A is not unifiable in CQC. �
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