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SAMENVATTING

De meeste staphylococcen zijn commensalen die weinig klinische problemen

veroorzaken. Staphylococcus aureus is daarentegen een van de voornaamste pathogenen,

verantwoordelijk voor het grootste deel van de  infecties van ziekenhuispatiënten. Naar

schatting een derde van alle mensen draagt deze grampositieve bacterie, die ernstige long-,

bloed- of wondinfecties kan veroorzaken bij personen met gecompromitteerde huid of

immuunfunctie, met zich mee. In Nederlandse ziekenhuizen worden deze in den regel

behandeld met meticilline of gelijksoortige ß-lactam antibiotica. In ons land is minder dan

1% van de  stammen ongevoelig, maar in buitenlandse ziekenhuizen nemen methiciline-

resistente S. aureus (MRSA) reeds meer dan 30% van alle S. aureus infecties voor hun

rekening. De meeste MRSA vertonen multiresistentie en in de nabije toekomst zijn infecties

die nauwelijks reageren op de beschikbare therapieën niet ondenkbaar. In deze studie werd

onderzocht hoe dergelijke resistente S. aureus stammen kunnen ontstaan.

In een steekproef onder 3012 Europese isolaten bleek meer dan een kwart van de S.

aureus isolaten in voornamelijk Zuid-Europese ziekenhuizen ongevoelig voor meticillineof

analogen. Methiciline-resistentie wordt veroorzaakt door een aangepast Peneciline Binding

Protein, PBP2a, dat wordt gecodeerd door het mecA gen en een lage affiniteit vertoond voor

de familie van ß-lactam antibiotica. Hierdoor is de bacterie in staat de peptydoglycanen in de

celwand intact te houden ondanks aanwezigheid van deze antibiotica. Praktisch alle (99%)

MRSA isolaten bleken tegelijkertijd ook ongevoelig voor verschillende klassen van

antibiotica en omgekeerd werd met behulp van PCR aangetoond dat alle isolaten die

multiresistentie vertonen het  mecA gen bezitten. Het mecA gen maakt deel uit van een

grotere DNA regio, genaamd Staphylococcal Chromosome Cassette mec (SCCmec), dat

allerhande combinaties van insertie sequenties, transposons en plasmides heeft opgenomen.

Hierdoor zijn veel genen die resistentie tegen verschillende soorten antibiotica veroorzaken,

waaronder naast ß-lactam antibiotica ook aminoglycosides, tetracyclines, macrolides en

streptogramines, zijn in SCCmec terechtgekomen. Daarnaast zijn MRSA, die immers

middels verschillende alternatieve therapieën worden behandeld, ook eerder geneigd

resistentie kenmerken tegen verschillende middelen te verzamelen in de rest van hun

genoom. Twee typeringstechnieken werden gebruikt om de populatie structuur van S. aureus



te onderzoeken en vast te kunnen stellen in hoeverre SCCmec verspreid is onder de S.

aureus stammen. Analyse van restrictie fragmenten van zowel het gehele genoom als van de

evolutionair gezien stabielere ribosomale genen toonde aan dat de populatie bestond uit 10

omvangrijke clonale lijnen, S. aureus Types I-IX, waarvan het merendeel was verspreid over

verschillende continenten. Acht hiervan hadden een of meerdere keren SCC mec

opgenomen, met daarin de genen voor resistentie tegen verschillende combinaties van

antibiotica.  Dit bevestigt dat SCC mec een mobiel genetisch element is, in staat is zich

vanuit het genoom van de ene stam naar het andere te verplaatsen, om zo de

resistentiekenmerken door te geven. Door herhaalde overdracht van SCCmec zijn talrijke

MRSA klonen gevormd, waaronder een klein aantal wijdverbreide multiresistente stammen

die de ziekenhuispopulatie in het buitenland domineren, maar ook minder resistente klonen

die slechts sporadisch werden geïsoleerd. Hoewel na typering van de S. aureus stammen die

gedurende twee jaar infecties veroorzaakten in een perifeer ziekenhuis bleek dat van

kruisbesmetting door meticilline-gevoelige S. aureus stammen nauwelijks sprake is, kunnen

multiresistente MRSA stammen zich juist makkelijk door het ziekenhuis verspreiden dankzij

het selectieve voordeel dat ze ondervinden van het alleen door hen te overleven

antibioticagebruik.

Na analyse van restrictie fragmenten van het SCC mec DNA, na electroforese

zichtbaar gemaakt middels een gelabelde specifieke probe die meer dan 20kb van SCCmec

beslaat, werden vier veelvoorkomende types mec onderscheiden. Deze werden allen

waargenomen in meerdere staphylococcen soorten, wat aantoont dat deze chromosomale

DNA sequentie tussen hen kan worden uitgewisseld. Nadat SCCmec vermoedelijk is

ontstaan in één van de coagulase negatieve staphylococcen, heeft het zich snel verspreid

onder de andere soorten. De overdracht van SCCmec tussen twee verschillende soorten

staphylococcen werd waargenomen in een patiënt. Na toediening van antibiotica ter

behandeling van een oorspronkelijk gevoelige S. aureus infectie verscheen SCC mec in een

veelvoorkomende S. aureus stam, aanwezig in geheel Europa en Noord-Amerika, waardoor

deze resistent werd voor methiciline.  Deze specifieke variant van SCC mec vonden we

buiten het zeldzame MRSA isolaat van deze patiënt  verder in geen enkele andere S. aureus

stam, maar wel in een S. epidermidis stam die op dezelfde patiënt aanwezig was. Dit toont

aan dat het mobiele SCC mec tijdens de behandeling werd doorgegeven tussen deze twee

soorten staphylococcen. We vermoeden dat uitwisseling van dergelijke chromosoom



cassettes een belangrijke rol heeft gespeeld tijdens de evolutie  van de genomen van

staphylococcen. In dit licht vormt  het grote aandeel meticillineresistente CNS stammen op

patiënten een potentieel probleem. Een recent type SCCmec, veelvuldig aangetoond in S.

epidermidis, wordt gemakkelijk doorgegeven aan S. aureus en veroorzaakt momenteel een

golf van nieuwe MRSA stammen. Herhaalde overdracht van SCCmec naar S. aureus

verklaart een groot deel van de patiënten die tijdens behandeling met ß-lactam antibiotica in

Nederlandse ziekenhuizen onverwacht MRSA infecties ontwikkelen en waarom in veel

andere landen MRSA stammen reeds zijn doorgedrongen tot de in de gemeenschap

aanwezige S. aureus populatie. Meestal betreft dit stammen die wel nog gevoelig zijn voor

andere soorten antibiotica.

De Nederlandse aanpak omtrent MRSA infecties blijkt vooralsnog succesvol in het

voorkomen van de verspreiding van resistente bacteriën in ziekenhuizen. Hierbij wordt aan

de poort bij risicopatiënten uit het buitenland gescreend en na constatering van MRSA

middels drastische hygiënische maatregels, waaronder strikte isolatie en zonodig sluiting

van hele afdelingen, verdere verspreiding zoveel mogelijk voorkomen. Wanneer deze

maatregelen ook worden toegepast wanneer zich onverwachte infecties voordoen kan ook de

verspreiding van nieuwe stammen worden voorkomen, die vaak minder selectie voordeel

ondervinden dan hun multiresistente tegenhangers.



GENERAL INTRODUCTION

Staphylococci are gram-positive bacteria present on the skin of most healthy humans.

Although majority of coagulase-negative staphylococci (CNS) are commensals that

generally do not cause severe clinical problems, some, including Staphylococcus epidermidis

and Staphylococcus haemolyticus, may cause clinically relevant infections and bactereamia

related to indwelling devices (1). In addition, one third of healthy humans carry

Staphylococcus aureus, which may cause severe invasive disease (2). S. aureus accounts for

the majority of nosocomial infections around the world (3), causing high mortality when

untreated (4). Several types of antibiotics, directed to different targets in bacterial

metabolism, were employed to fight infections caused by S. aureus. However, S. aureus has

acquired resistance to most extant antibiotics, including vancomycin (5), and evolved to be

one of the most difficult-to-treat pathogens in hospitals. This thesis describes the essential

role of horizontal gene transfer between the chromosomes of different staphylococci in the

dissemination of resistance genes.

History of S. aureus treatment.

During world-war II, ß-lactam antibiotics were introduced, which block synthesis of

the cell wall by targeting Penicillin-Binding-Proteins (PBP). Within a few years, the S.

aureus population had been taken over by resistant strains, which possessed plasmid

encoded ß-lactamases to destroy the ß-lactam ring in penicillin and later derivatives (6). In

1960, the semi-synthetic ß-lactam methicillin, that is less sensitive to ß-lactamase, became

the drug of choice to fight staphylococcal infections. Soon afterwards, however, methicillin-

resistant S. aureus (MRSA) isolates were reported (7), which carried the mecA gene

encoding an alternative PBP insensitive to all ß-lactams, including the carbapenems and

cephalosporines. In addition, resistance to other drugs, including the aminoglycosides,

macrolides, lincosamides, streptogramins, tetracyclines, chloramphenicol, which target

ribosomes to inhibit protein synthesis, and fluoroquinolones, which target topoisomerase and

gyrase to inhibit bacterial DNA metabolism, developed quickly. During the 1950s, many of



the genes causing resistance were located on small plasmids. In the 1980s, however, they

had formed clusters on large molecular weight conjugative plasmids or on the chromosomal

DNA  (8) and multiresistant S. aureus infections were reported around the world by that time

(9). These were treated with the glycopeptide antibiotic vancomycin, which was long

considered the last remaining reliable therapeutic option (10). The glycopeptides bind to the

D-alanyl-D-alanine side chains of peptidoglycan or its precursors, thereby preventing cross-

linking of the peptidoglycan.

By now, multiresistant S. aureus represents a major cause of nosocomial infections

worldwide (3). After the use of vancomycin has increased, resistance among S. aureus

emerged, causing infections that are hardly responsive to treatment and that may

compromise medical practice in the near future (11). New treatment options, including

quinupristin/dalfopristin (Synercid) and oxazolidinones (Linezolid) have recently become

available, but resistance has already emerged (3, 12-14).

Fig. 1. PBPs are involved in peptidoglycan synthesis. The polysaccharide backbone of peptidoglycan is a

polymer of N-acetylmuramic acid (M) and N-acetylglucosamine (G) residues. Oligopeptides are attached to

each N-acetylmuramic acid residue, which are cross-linked by a chain of glycine residues by the

transpeptidation reaction catalyzed by PBPs. The sites in the peptidoglycan synthesis that are affected by

different fem factors are indicated.
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Antimicrobial action of methicillin and other ββββ-lactam antibiotics

ß-lactam antibiotics, such as penicillin, ampicillin, methicillin and cephalosporines,

are very effective against staphylococci, and were always considered the drug of choice to

fight infections. Gram-positive bacteria produce a thick peptidoglycan outer cell wall, which

protects the cell against the actions of the complement system and osmotic damage. The

characteristic ring structure of ß-lactam antibiotics binds to and acetylates the PBP’s

involved in peptydoglycan synthesis, preventing synthesis of the cell wall (15). PBPs are

membrane-bound D,D-transpeptidases that cross-link the peptidoglycan in the bacterial cell

wall by forming a pentaglycin bridge (16, 17). Other factors, including fem A-F, cooperate in

the peptidoglycan pentaglycine interpeptide bridge formation (Fig.1). Several PBPs occur in

staphylococci, with varying affinities for the different ß-lactams (18).

The genetic basis for resistance to methicillin and other ββββ-lactam antibiotics

ββββ-lactam degradation by ββββ-lactamases. Resistance to ß-lactams may result from

enzymatic degradation of the ß-lactam ring by ß-lactamases or expression of a low-affinity

PBP. After the introduction of penicillin, transmittable plasmids carrying the blaZ gene, that

encodes a ß-lactamase, appeared in S. aureus isolates around the world. Expression of the

blaZ gene is upregulated in response to penicillin by the products of the blaI and blaR1

genes. Later, ß-lactamases evolved to inactivate later generations of ß-lactam antibiotics,

including eventually methicillin. This resulted in “borderline” MRSA, which express high

amounts of β-lactamase and display low-level resistance (19).

A novel penicillin binding protein, PBP2a. Starting from a ß-lactamase operon, an

alternative PBP evolved, PBP2a, which is added to the set of normal PBPs present in cells,

and shows low affinity to the family of ß-lactams. While other PBPs are inactivated by low

concentrations of β-lactams, PBP2a retains its transpeptidation activity even at high

concentrations, ensuring continued cell wall synthesis and causing resistance (17, 20).

PBP2a is encoded by the mecA gene, that was formed by recombination of an unknown PBP

and a ß-lactamase gene in another species (21). The PBP having the greatest similarity to

PBP2a so far was identified in S. sciuri (87.8% amino acid identity) (22). The mecA gene,



that is found in many staphylococcal species, but not in most methicillin susceptible isolates,

was acquired by S. aureus by horizontal transfer (23) (24).
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unrestricted PBP2a production alone does not confer full resistance to ß-lactams, such strains

comprise cells with various (or heterogeneous) levels of methicillin resistance (5, 30). Upon

selection, subpopulations that homogeneously express high-level methicillin-resistance can

be isolated. In Japan, heterogeneous resistant MRSA have been dominant during the 1980s,

but were later replaced by the clonal dissemination of homogeneous resistant MRSA strains

(5). To become homogeneously resistant to methicillin, adaptations of other genes, such as

the femA-F genes involved in peptidoglycan metabolism (Fig. 1), are required (31). In

addition, two genes of unknown function were recently cloned which, when over-expressed,

resulted in homogenous methicillin resistance (32). However, the exact mechanisms

underlying the transition from hetero- to homogeneous resistant MRSA are poorly

understood (5, 30).

The staphylococcal chromosome cassette mec (SCCmec)

Structure of SCCmec. The mecA gene is found within a chromosomal DNA region

called Staphylococcal Chromosome Cassette mec (SCCmec) (33). The size of SCCmec

ranges from approximately 21 to 67 kb, or 1%-2% of the entire S. aureus genome (34). In

addition to the mec locus, SCCmec may contain several additional resistance genes, adhesion

factors and numerous open reading frames (33, 35, 36). Due to the presence of insertion

sequences like IS431 or IS257 (37), various combinations of genetic elements are found

integrated in the cassette (Fig. 3). These include transposon Tn554, which encodes resistance

macrolides, streptogranin B and clindamycin, plasmid pUB110, which encodes resistance to

aminoglycosides, plasmid pT181, encoding resistance to tetracyclines (27, 38), or plasmid

p1258 (39). In addition, a gene segment encoding mercury resistance, possibly derived from

p1258 (40) and pseudo Tn554, a partial copy of Tn554 encoding cadmium resistance, were

detected in SCCmec (41).

SCCmec is a mobile genetic element. Evidence was provided that the SCCmec,

which contains no phage related genes, no transposases and no tra genes, constitutes a new

class of mobile genetic element encoding recombinases of the invertase/resolvase family

(33). These enzymes, called cassette chromosome recombinase A and B (ccrA and ccrB),

catalyze precise excision of the SCCmec from the S. aureus chromosome and site-specific as



Fig 3.  MRSA are formed by insertion of SCCmec in to the MSSA chromosome. Untill now, 4 types of

SCCmec have been recognized based on polymorphisms of the ccr genes and the mecA locus. Various

plasmids and transposons may be integrated in SCCmec. Redrawn from Ito and Hiramatsu (27).

well as orientation-specific integration of the SCCmec into the chromosome when

introduced into the cells as a recombinant multicopy plasmid (42). Early on, it was shown

that the mecA gene can be transferred between a ß-lactamase plasmid and a specific

chromosomal location in vitro (43).

SCCmec is integrated at a unique site (attBscc), located between spa and pur on the

S. aureus genome near the origin of replication (44). The attB site is well conserved in

different S. aureus strains (36). When SCCmec is integrated in the chromosome, attBSCC

sequences are reconstituted at both chromosome-SCCmec junctions, forming 15 bp direct
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repeats (36). Such repeats were repeatedly found in one sextant of the S. aureus genome,

which was proposed to have been formed by repetitive integration of Staphylococcal

chromosome cassettes during evolution (44).

Types of SCCmec. Structural analysis revealed different types of SCCmec, which are

considered to comprise the SCCmec family of staphylococcal mobile genetic elements

(Fig.3). Although there were substantial differences in the size and nucleotide sequences

between different SCCmec types, they share the chromosomal integration site, conserved

terminal inverted repeats and direct repeats at the integration junction points, conserved

genetic organization around the mecA gene, and the recombinase genes responsible for the

movements (5, 36). Three homologous for each of the ccr genes have been described (36).

Two polymorphisms around the mec locus exist in S. aureus: the complete structure

(IS431mecI-mecR1-mecA-IS431) or with a deletion of mecI and the 3’ region of mecR1 and

integrated insertion sequence (IS1272∆-mecR1-mecA-IS431). Based on this, at least four

types of SCCmec can be distinguished in S. aureus, which may differ in their repertoire of

antibiotic determinants (5).

Dissemination of MRSA

The first MRSA were reported during the 1960s in Africa and Europe, soon after the

introduction of methicillin (45, 46). Over the next ten years, an increasing number of

outbreaks occurred in mainly European countries, including the United Kingdom, Denmark,

France an Switzerland (7, 47, 48). In addition, there were occasional reports from other

countries, including Australia, Poland, India and Turkey (49-52). The first important MRSA

outbreak in the USA was reported in 1968 (53), but major inter-hospital spread did

apparently not occur for another 5-10 years (9, 54). While some of the initial MRSA isolates

were only resistant to β-lactams, others were resistant to multiple drugs, including

tetracycline, and sometimes streptomycin, erythromycin, lincomycin, neomycin, tobramycin,

and novobiocin (5, 9). During the 1970s, a decline in the prevalence of MRSA occurred in

European countries, possibly due to hygienic measures or reduced use of antibiotics,

particularly tetracycline (9, 55, 56). Although sporadic strains were still isolated, outbreaks

were rarely reported until the 1980s.



A second wave of MRSA emerged in the late 1970s, causing large outbreaks in North

America and Australia (57, 58). During the 1980s, the prevalence of MRSA increased

dramatically around the world. In the US, the frequency of MRSA rose from 2.4% in 1975 to

29% in 1991(59), and similar reports came from Italy (60), France (61), Japan (62). In the

UK, at least 16 epidemic strains appeared during the 1980s (63-66). In a recent survey

among isolates from worldwide locations, MRSA was found to be a major cause of

nosocomial- bloodstream infection, -skin and –soft tissue infection in most areas. The share

of methicillin-resistant isolates varied greatly by region, site of infection, and whether the

infection was nosocomial or community-acquired (3). In Europe, prevalence ranges from

over 50% in Portugal and Italy to below 2% in Switzerland and the Netherlands, where

infection control measures apply (67). Overall, several studies found that about 30% of the S.

aureus isolates in the U.S., Latin America, Australia and Europe are resistant to methicillin

(3, 68) (69). In Asia, the prevalence lies around 50%, with extremely high rates among S.

aureus isolates from centers in Hong Kong (75%) and Japan (72%) (3). Most MRSA strains

are also resistant to other antibiotics than the ß-lactams. High levels of erythromycin,

clindamycin and ciprofloxacin resistance were found among all MRSA, while resistance to

chloramphenicol, tetracyclines, rifampicin, and gentamicin depended on the region (3).

Uniformly high levels of methicillin resistance were observed among CNS isolates, the

prevalence lying over 70 % around the world (3).

Traditionally, MRSA infections have been acquired almost exclusively in hospitals or

long-term care facilities (70). However, a notable increase of MRSA in the community was

recently observed, particularily in the US where 28% of community-acquired S. aureus

strains may be resistant to methicillin (3, 71). In 1999, 4 children lacking risk factors for

MRSA infection, died of community-acquired MRSA infection in the US (72), indicating

that we might face a new wave of MRSA originating in the community (73). Like β-

lactamase mediated resistance to penicillin decades ago, MRSA has got foothold in the

community. Such community-acquired MRSA are generally susceptible to multiple

antibiotics (71, 74), in contrast to the typical multidrug-resistant hospital isolate.

The rise of high level resistant MRSA is thought to coincide with expansion of few

multiresistant clonal types that are found around the world and account for most of the

clinical problems (75, 76). When the hybridisation patterns obtained from world-wide

collected isolates using mecA- and Tn554- specific probes were shown to form a temporally



ordered tree, it was concluded that MRSA represent a single clone (46). However,

multilocus enzyme electrophoresis studies later showed that the mecA gene was harbored by

different genotypes (77), suggesting transfer of SCCmec occurred more frequently. Based on

PFGE typing of MRSA from Germany, revealing 14 epidemic strains among 39 different

genotypes, it was proposed that sporadic genotypes had arisen by horizontal transfer of

SSCmec from epidemic strains frequently found in close proximity (78). In two other

studies, analysis of the mecI and mecR1 region, which lies 5' of the mecA gene showed that

older isolates lacked part of this region, whereas the organization of this region in more

recent MRSA isolates is similar to CNS isolates (23, 34), suggesting that SSC mec transfer

from CNS into S. aureus might have taken place more often.

Purpose of this study

This study clarifies the role of repeated transfer of SCCmec between different species of

staphylococci in the rapid world-wide dissemination of MRSA and gives insight in the

dynamics of resistance genes in the S. aureus population.

To study the dissemination of SCCmec among S. aureus, antibiograms were first taken

from European isolates, and the occurrence of multi-drug resistance among MSSA and

MRSA was examined (chapter 2). The structure of the S. aureus population was established

using pulsed-field gel electrophoresis (PFGE) of chromosomal SmaI fragments and

automated ribotyping, and the presence of the SCCmec in the different S. aureus lineages

was determined (chapter 3). In addition, the transmission of MSSA strains between patients

in a teaching hospital was studied (chapter 4). To track its evolution, the SCCmec residing in

different S. aureus lineages and other staphylococcal species was compared by generating

restriction fingerprints (Chapter 5). In a case study, the molecular epidemiology of a MSSA,

a MRSA and a mecA+ CNS isolate taken from one patient are examined, because transfer of

SCCmec was suspected (Chapter 6).

To win the continuing war against S. aureus, global strategies are needed to control the

emergence and prevent the spread of multiresistant infections. A better knowledge of the

dissemination of resistance genes in the S. aureus population is required to win the next

battle.
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A total of 3,051 methicillin-susceptible Staphylococcus aureus (MSSA) isolates and methicillin-resistant S.
aureus (MRSA) isolates in Europe were compared. MRSA isolates constituted 25% of all isolates and were more
prevalent in southern Europe. MRSA isolates appeared to be more prevalent in intensive care units than in
outpatient departments. Only a small minority of MSSA isolates were multidrug resistant, whereas the
majority of MRSA isolates were multidrug resistant.

Methicillin resistance in Staphylococcus aureus is now com-
mon in many areas of the world. The frequencies of infections
and outbreaks due to methicillin-resistant S. aureus (MRSA)
have continued to increase (7, 11, 12). It is noteworthy that the
prevalence of MRSA varies from one geographic region to
another and between different institutions in a given area. The
prevalence of MRSA differs markedly among European coun-
tries (18). MRSA is an increasingly important clinical problem
since MRSA is often multidrug resistant and therapeutic op-
tions are limited.

The aim of the present study was to analyze recent data on
the epidemiologies and susceptibilities of 3,051 S. aureus iso-
lates from 25 university hospitals participating in the European
SENTRY Antimicrobial Surveillance Program from April
1997 through February 1999 (6). The epidemiologies of me-
thicillin-susceptible S. aureus (MSSA) and MRSA isolates
were studied by determining their prevalences in different
specimens, on various wards, and in different age groups. The
in vitro activities of 21 various antibiotic compounds were
tested, and additionally, the percentage of multidrug-resistant
isolates was determined for MSSA and MRSA isolates.

The species of the isolates (only one isolate per patient was
allowed) were determined at the source and when deemed
clinically significant by local criteria and were sent to the
Eijkman-Winkler Institute (the European reference center for
the SENTRY Antimicrobial Surveillance Program), together

with relevant information for the isolate. The MICs of a range
of antibiotics were determined by a broth microdilution (Sen-
sititre, Westlake, Ohio) method by standard methods defined
by the National Committee for Clinical Laboratory Standards
(10). The origins of the S. aureus isolates tested are shown in
Table 1. The presence of the mecA gene was determined by PCR
with primers whose sequences were 5�-GTTGTAGTTGTCG
GGTTTGG and 5�-CTTCCACATACCATCTTCTTTAAC.

Twenty-five percent of the isolates were methicillin resistant.
The prevalence of MRSA is comparable to that found in re-
cent U.S. studies (7, 12), but the percentage of MRSA isolates
is less than half of the percentage reported from Japan (4). The
prevalence of MRSA was confirmed to vary considerably be-
tween different European countries and also between hospitals

* Corresponding author. Mailing address: Eijkman-Winkler Insti-
tute, University Medical Center, Room G04.614, Heidelberglaan 100,
3584 CX Utrecht, The Netherlands. Phone: 31 30 2507630. Fax: 31 30
2541770. E-mail: A.C.Fluit@azu.lab.nl.

† This author is a member of the European SENTRY Participants
Group, which includes H. Mittermayer, Linz, Austria; M. Struelens,
Brussels, Belgium; F. Goldstein and V. Jarlier, Paris, and J. Etienne
and P. R. Courcol, Lille, France; F. Daschner, Freiburg, and U. Had-
ding, Düsseldorf, Germany; N. Legakis, Athens, Greece; G.-C. Schito,
Genoa, and G. Raponi, Rome, Italy; P. Heczko, Cracow, and W.
Hyrniewicz, Warsaw, Poland; D. Costa, Coimbra, Portugal; E. Perea,
Seville, F. Baquero, Madrid, and R. Martin Alvarez, Barcelona, Spain;
J. Bille, Lausanne, Switzerland; G. French, London, United Kingdom;
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TABLE 1. Origins of S. aureus isolates

City Country No. of isolates % MRSA

London England 131 28
Utrecht The Netherlands 147 2
Brussels Belgium 82 25
Düsseldorf Germany 215 5
Freiburg Germany 132 4
Lausanne Switzerland 114 2
Linz Autstria 117 9
Paris I France 219 25
Paris II France 119 20
Lille France 188 12
Lyon France 192 18
Warsaw Poland 58 33
Cracow Poland 101 23
Coimbra Portugal 318 54
Madrid Spain 113 12
Seville Spain 132 34
Barcelona Spain 107 9
Rome Italy 145 58
Genoa Italy 152 43
Tirana Albania 23 17
Athens Greece 128 34
Ankara I Turkey 24 21
Ankara II Turkey 77 44
Istanbul Turkey 4 0
Hash Homer Israel 13 31
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within a country (Table 1) (18). In general, the highest preva-
lence of MRSA isolates was seen in hospitals in Portugal
(54%) and Italy (43 to 58%). In contrast, the prevalence of
MRSA was lowest in participating hospitals in Switzerland and
The Netherlands (2%). However, only a few hospitals per
country participated in the European SENTRY Antimicrobial
Surveillance Program study. In addition, large differences in a
country may occur; e.g., the proportion of MRSA isolates was
34% for the hospital in Seville, Spain, whereas it was 9% for
the hospital in Barcelona, Spain. Similar observations were

reported in recent U.S. studies of the prevalence of MRSA (2).
The reason for the low prevalence in some university hospitals
may be related to the rapid identification and strict policies of
isolation of patients with MRSA colonization or infection,
combined with the restricted use of antibiotics.

The prevalence of methicillin resistance was highest among
S. aureus isolates deemed responsible for nosocomial pneumo-
nia (34.4%); the prevalence of methicillin resistance was 28.3%
among urinary tract infection isolates and 23.8% among blood
isolates and was lowest among isolates associated with skin and

FIG. 1. Distributions of MSSA and MRSA isolates for different wards within the hospital.

TABLE 2. MIC distributions, antimicrobial susceptibilities, and spectra of activity of the different antimicrobial agents
tested for the MRSA isolates testeda

Antimicrobial agent
No. of isolates for which MIC (mg/liter) is: MIC50/

MIC90
b

%
Susceptible�0.03 0.06 �0.12 0.12 0.25 �0.5 0.5 1 2 �2 �4 4 �4 8 �8

Erythromycin 7 28 40 13 17 7 8 644 �8/�8 4.8
Clindamycin 103 60 5 4 1 2 7 572 �8/�8 23.3
Gentamicin 21 58 75 6 5 9 16 574 �16/�16 22.8

Tetracycline 309 11 444 �8/�8 42.9

Doxycycline 300 5 22 150 287 4/8 85.2
Minocycline 132 16 103 74 27 2/4 92.3

Ciprofloxacin 1 9 16 23 9 12 9 605 �2/�2 9.2
Gatifloxacinc 18 23 19 5 11 79 376 233 2/4
Trovafloxacinc 43 14 7 9 97 255 195 144 1/�4

Rifampin 33 240 9 20 78 334 2/�2 46.1

Chloramphenicol 1 1 2 2 10 180 438 130 8/16 83.0
Quinupristin-

dalfopristin
24 167 427 111 14 3 12 6 0.5/1 99.5

Linezolidc,d 0 6 7 166 220 13 0 0 2/2
Teicoplanin 5 35 158 260 236 63 5 2 1/2 99.7
Vancomycin 1 1 65 493 200 4 0 0 1/2 100

a A total of 764 MRSA isolates were tested.
b MIC50/MIC90, MICs at which 50%/90% of isolates are inhibited.
c Investigational drug. No susceptibility breakpoints are available (10).
d Only 412 MRSA isolates were tested, unless indicated otherwise.
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soft tissue infections (22.4%). These differences might be due
to prolonged antibiotic treatment of severely sick patients,
which generally have longer hospital stays, resulting in en-
hanced selection pressure. However, U.S. SENTRY Antimi-
crobial Surveillance Program staphylococcal isolates from dif-
ferent sources displayed rates of resistance comparable to
those described above (12).

Considerable differences were observed when the distribu-
tions of MRSA isolates in different wards were compared (Fig.
1). Almost 38% of the S. aureus isolates from intensive care
units (ICUs) and 22.6% of the isolates from internal medicine
wards were MRSA, whereas 0% of the isolates from emer-
gency rooms and 1% of the isolates from outpatient depart-
ments were MRSA. This partly reflects the relative sizes of
some specialties, but it also reflects the fact that some patients,
e.g., critically ill patients in ICUs, have a greater chance of
becoming colonized or infected. Our results concerning the
prevalence of MRSA in different wards are largely in accor-
dance with recent data from the United States. However, we
were not able to confirm the extremely high prevalence of
MRSA in ICUs described in the European Prevalence of In-
fection in Intensive Care study (17). The low prevalence of

MRSA in emergency rooms and outpatient departments sug-
gests that the level of MRSA in the community is still lower
than that in hospitals (5, 9).

The distributions of both MSSA and MRSA among different
age groups were similar. However, with the exception of new-
borns, S. aureus infections were more often found with increas-
ing age, but their prevalence declined after 75 years of age.
Compared to the age distribution for all infections with other
organisms, no significant differences in the age distributions of
individuals with MRSA infections were observed.

The distributions of the MICs for the isolates were as fol-
lows: �0.06 �g/ml, 18.5% (n � 565); 0.12 �g/ml, 21.1% (n �
645); 0.25 �g/ml, 12.7% (n � 388); 0.5 �g/ml, 16.4% (n � 501);
1 �g/ml, 4.5% (n � 137); 2 �g/ml, 1.7% (n � 51); 4 �g/ml,
1.1% (n � 35); 8 �g/ml, 1.7% (n � 51); and �8 �g/ml, 22.2%
(n � 678). In  5%  of  the  MRSA  isolates, for all of which the
oxacillin MIC was 4 �g/ml, the mecA gene could not be de-
tected by PCR (data not shown). Oxacillin resistance in these
isolates may be explained by undetected penicillin-binding pro-
tein alterations or the production of large amounts of �-lacta-
mase (1, 8, 16).

The comparative in vitro activities of 21 antimicrobial agents

TABLE 3. MIC distributions, antimicrobial susceptibilities, and spectra of activity of the different antimicrobial agents
tested for the MSSA isolates testeda

Antimicrobial
agent

No. of isolates for which (mg/liter) is: MIC50/
MIC90

%
Suscep-

tible�0.03 0.06 �0.12 0.12 0.25 �0.5 0.5 1 2 �2 �4 4 �4 8 �8 16 �16

Penicillin 351 28 33 61 93 130 182 297 1,463 16/�32 15.4
Ampicillin 323 44 47 87 137 150 177 289 1,033 16/�16 16.1
Amoxicillin-

clavulanate
315 181 462 805 326 80 30 31 57 1/2 94.8

Ceftriaxone 0 4 13 146 1,604 372 47 22 79c 2/4 95.6
Cefepime 3 5 20 431 1,268 886 34 12 68 2/4 96.5
Imipenem 1,974 196 27 9 6 11 14 50d 0.12/0.25 97.2

Erythromycin 21 716 1,011 149 6 13 10 361 0.5/�8 77.5
Clindamycin 1,661 460 20 6 2 0 0 138 0.12/0.25 93.7

Gentamicin 222 56 1,034 293 47 7 7 117 0.5/1 94.6

Tetracycline 2,023 20 244 �4/8 89.7

Doxycycline 2,019 41 94 62 71 �0.5/1 97.7
Minocycline 1,145 9 11 23 21 �0.25/

�0.25
92.3

Ciprofloxacin 19 169 868 793 185 37 13 203 0.25/1 90.6
Gatifloxacine 471 1,110 468 34 25 33 83 63 0.06/0.25
Trovafloxacine 1,470 504 90 28 37 82 46 30 �0.03/

0.12

Rifampin 1,840 366 13 6 10 52 0.03/0.25 97.4

Chloramphenicol 0 3 5 12 41 637 1,474 115 8/8 96.3
Quinupristin-

dalfopristin
185 1,372 656 61 0 6 0 0 0.25/0.5 95.3

Linezolide,f 2 1 11 139 838 86 0 0 2/2
Teicoplanin 10 327 1,574 313 55 7 1 0 0.5/1 100
Vancomycin 0 3 260 1,954 67 3 0 0 0.5/1 100

a A total of 2,287 MSSA isolates were tested, unless indicated otherwise.
b See footnote b of Table 2.
c For 9 isolates the MIC was 32 mg/liter, and for 70 isolates the MIC was �32 mg/liter.
d MIC, �8 mg/liter.
e Investigational drug. No susceptibility breakpoints are available for this drug (10).
f Only 1,075 MSSA isolates were tested.
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against MSSA and MRSA isolates are listed in Tables 2 and 3,
respectively. Of the MSSA isolates tested, 84.7% were resistant
to penicillin, while MRSA isolates are, by definition, resistant
to all �-lactam antibiotics. There is an obvious relationship
between oxacillin resistance and resistance to other antibiotics
(Table 2). The percentage of MSSA isolates which were sus-
ceptible to erythromycin (77.5%) was more than eightfold
higher than the percentage of MRSA isolates which were sus-
ceptible to erythromycin. While 94% of the MSSA isolates
were susceptible to clindamycin, only 23% of the MRSA iso-
lates exhibited susceptibility. Eighty-eight percent of the eryth-
romycin-resistant MRSA isolates and 37% of the erythromy-
cin-resistant MSSA isolates displayed a constitutive macrolide-
lincosamide-streptogramin B (MLS) resistance phenotype on
the basis of the MICs. The other erythromycin-resistant S.
aureus isolates had an inducible MLS resistance phenotype.
The percentage of MRSA isolates showing susceptibility to
gentamicin (22.8%) was more than fourfold lower than that of
MSSA isolates. While susceptibility to tetracyclines fell from
88.5% among MSSA isolates to 40.5% among MRSA isolates,
this decrease was far less pronounced for the structurally re-
lated compounds minocycline and doxycycline, to which some
90% of the MRSA showed in vitro susceptibility. More then

90% of all MSSA isolates were susceptible to ciprofloxacin,
whereas less than 10% of all MRSA isolates tested were sus-
ceptible to ciprofloxacin (Table 2).

While 99.5% of the MSSA isolates were susceptible to
quinupristin-dalfopristin, this rate was slightly decreased to
95.3% for the MRSA isolates. Vancomycin and linezolid were
the only compounds tested to which reduced susceptibility was
not recognized for any of the S. aureus isolates tested. One
MRSA isolate was resistant to teicoplanin, whereas a second
one was intermediate resistant.

The percentage of isolates resistant to all of the antibiotics
listed in Fig. 2 with the exception of chloramphenicol was quite
stable among the population of S. aureus isolates for which
oxacillin MICs were �0.06 to 1 �g/ml, but the percentage
increased significantly with an increase in the oxacillin MIC to
�2 �g/ml.

Isolates were considered to be multidrug resistant when they
displayed resistance to five (or more) of the following antibi-
otics, which represented different antibiotic classes: oxacillin,
penicillin, erythromycin, clindamycin, gentamicin, ciprofloxa-
cin, tetracycline, rifampin, and chloramphenicol. MRSA is, by
definition, also resistant to penicillin (10). Thus, all MRSA
isolates were resistant to at least two classes of antibiotics. The

FIG. 2. Percent resistance to selected antibiotics for S. aureus isolates for which oxacillin MICs varied.
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results are shown in Fig. 3. Only 2% of the MSSA isolates were
multidrug resistant. However, 87% of the MRSA isolates were
multidrug resistant and only 3% of the MRSA isolates were
resistant to �-lactam antibiotics only.

The rates of susceptibility of the European S. aureus popu-
lation were comparable to those determined from the data of
Voss et al. (18). The results from the SENTRY Antimicrobial
Surveillance Program for blood isolates from the United
States, Canada, and Latin America generally showed higher
percentages of susceptibility for MSSA isolates to most anti-
microbial agents with the exception of erythromycin, chloram-
phenicol, and rifampin (13). This pattern was also observed for
MRSA isolates from the United States and Latin America. A
similar result was obtained when the European data were com-
pared to the data from the SCOPE program (7), which inves-
tigated the susceptibilities of S. aureus isolates implicated in
nosocomial bloodstream infections in the United States.

The glycopeptide agent vancomycin is still the drug of choice
for the treatment of life-threatening infections caused by mul-
tidrug-resistant MRSA strains. Recent studies have suggested
that treatment of infections with staphylococci currently con-
sidered susceptible according to the standards of the National
Committee for Clinical Laboratory Standards but for which
vancomycin MICs are 4 �g/ml might lead to therapeutic fail-
ures and that such isolates might be precursors of vancomycin-
resistant S. aureus strains (14). Although we did not find
MRSA isolates with reduced susceptibility to vancomycin in
the European S. aureus population, emerging vancomycin re-
sistance is a constant threat since the first glycopeptide-inter-
mediate-resistant S. aureus (GISA) isolates and hetero-GISA
isolates have also been detected in Europe (3). For seven
strains (0.23%) in the present European collection, vancomy-
cin MICs were 4 �g/ml. Recently, we investigated the seven
strains for which the vancomycin MIC was 4 �g/ml for their
hetero-glycopeptide-intermediate resistance status. However,
neither GISA nor hetero-GISA was detected (15). Neverthe-
less, it is important to carefully monitor the prevalence of

(hetero-)GISA, especially in MRSA populations because of
the almost invariable multidrug-resistant nature of MRSA.
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THE STAPYLOCOCCAL CHROMOSOME CASSETTE mec (SCCmec)

ASSOCIATED WITH MULTIRESISTANCE IS WIDELY

DISSEMINATED IN THE STAPHYLOCOCCUS AUREUS

POPULATION

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important

causes of hospital infections worldwide. The mecA gene causing resistance was acquired by

S. aureus from another species. To determine the clonal relationships between methicillin-

susceptible S. aureus (MSSA) and MRSA, 1067 Staphylococcus aureus isolates (521 MSSA

and 546 MRSA), collected mainly in North American and European hospitals between the

1960s and the year 2000, were typed using pulsed-field gel electrophoresis and ribotyping.

Of ten widespread S. aureus lineages recognized, eight had corresponding mecA+ strains.

This supports the hypothesis that, in the S. aureus population, horizontal transfer of the

mecA gene plays an important role.

Introduction

Staphylococcus aureus strains resistant to methicillin (MRSA) and many other

antibiotics are a major cause of nosocomial infections worldwide [1] . Resistance to

methicillin is caused by the mecA gene, which encodes the low-affinity penicillin-binding

protein 2A [2] . The mecA gene is part of a 40- to 60-kb staphylococcal chromosome

cassette mec (SCC mec), a mobile genetic element that may also contain genetic structures

such as Tn554, pUB110, and pT181, which encode resistance to non-ß-lactam antibiotics [3]

. Two hypotheses have been raised to explain the evolutionary origin of MRSA strains. The

„single clone hypothesis“, based on early analyses of the restriction fragment length

polymorphisms obtained from MRSA isolates collected worldwide using probes for mecA

and Tn554, suggests that the mecA gene entered the S. aureus population on one occasion

and formed a single MRSA clone that has since spread around the world [3, 4] . The second



hypothesis, based on the detection of the mecA gene in diverse S. aureus multilocus enzyme

electrophoresis types, proposes that MRSA strains evolved a number of times by means of

the horizontal transfer of the mecA gene into phylogenetically distinct methicillin-

susceptible S. aureus (MSSA) precursor strains [5] . Using DNA microarray technology in

11 MRSA strains, the mecA gene has been detected in at least five divergent lineages,

implying that horizontal mecA transfer has played a fundamental role in the evolution of

MRSA [6] . The transfer of mecA from S. epidermidis to S. aureus was recently witnessed in

vivo, suggesting that mecA may transfer frequently to MSSA [7] .

We presents molecular typing data that support the theory of mecA gene transfer into

resident lineages of S. aureus. Pulse-field gel electrophoresis (PFGE) and subsequent

ribotyping of MSSA and MRSA isolates collected between the 1960s and 2000 in Europe

and North America revealed ten major lineages of varying size. Both mecA- MSSA and

mecA+ MRSA were detected in eight of these lineages, while the remaining two lineages

consisted of only MSSA.

Materials and Methods

 Bacterial isolates.  The clonal relationships and susceptibility of 546 MRSA and 521

MSSA isolates were determined. These isolates were selected from different sources in order

to study isolates from different geographic backgrounds and time periods. The origins of the

isolates were as follows: 367 MRSA and 290 MSSA isolates had been collected between

April 1997 and December 1998 in 20 university hospitals in 12 European countries as part of

the SENTRY Antimicrobial Surveillance Program [1] . They included isolates from Athens

(8 MSSA/19 MRSA), Düsseldorf (10/9), Freiburg (14/2), Lausanne (56/1), Linz (7/5), Paris

1 (17/21), Paris 2 (10/33), Lille (13/22), Lyon (12/14), Coimbra (16/70), Warsaw (7/17),

Krakow (5/3), Madrid (14/2), Seville (27/29), Barcelona (7/6), Rome (10/32), Genoa (9/34),

Brussels (10/5), London (26/36), and Istanbul (12/7). An additional 181 MSSA and 54

MRSA isolates had been collected between 1996 and 1999 in the University Medical Center

(UMCU), Utrecht, the Netherlands. These MRSA isolates, detected during 12 MRSA

episodes, had evaded the hospital’s ‘Search and Destroy’ procedure and could not be linked

epidemiologically to any foreign hospitals. One hundred and three more MRSA isolates



were selected to represent the genetic diversity of the MRSA collections of Drs. Kreiswirth

et al. [4] , Roberts et al. [8] , Lencastre et al. [9, 10] , and Witte et al. [11] . They included the

earliest isolates from Europe and Africa collected during the 1960s, North American isolates

collected from the 1970s to the 1990s, and European reference strains like the Iberian clone

[9] , the Brazilian clone [9] , the North [11]  and South German clone [11] , the Berlin clone

[11] , the Hannover clone [11] , the Portuguese clone [9] , the pediatric clone [10] , EMRSA

15 [12] , and EMRSA 16 [12] . Another 12 MRSA isolates were studied that had been

collected in South Africa during 1998. Finally, 10 MRSA and 50 MSSA isolates were

included that had been taken from colonized patients who had no clinical signs of S. aureus

infection within 2 hours after admission to the Cook County Hospital (Chicago, IL, USA).

The isolates were identified as S. aureus by routine microbiological methods. Only one

isolate per patient was included.

Susceptibility testing.  Susceptibility to oxacillin, erythromycin, clindamycin,

rifampicin, chloramphenicol, ciprofloxacin, gentamicin, and tetracycline was determined

using the broth microdilution method defined by the National Committee for Clinical

Laboratory Standards. Isolates were considered multiresistant when they displayed a

decreased susceptibility to at least four of the eight antimcrobial agents tested.

Detection of the mecA gene by PCR. The mecA gene was detected by PCR using the

primers 5’GTT GTA GTT GTC GGG TTT GG 3’ and 5’CTT CCA CAT ACC ATC TTC

TTT AAC 3’.

PFGE analysis. Genomic DNA was digested with Sma1 and resolved using the

CHEF-DRII system (Bio-Rad laboratories, Hercules, Ca, USA), as described by the

manufacturer.

Ribotyping.  Ribotypes were determined using an automated riboprinter system

(Qualicon, Wilmington, DE, USA), using EcoRI as described by the manufacturer.

Analysis of the restriction patterns. The restriction patterns were compared by

calculating a similarity index using the UPGMA cluster algorithm and Dice coefficient

provided by the Bionumerics software (Applied Mathematics, Kortrijk, Belgium).



Results

Clonal relationships among the S. aureus isolates. When the PFGE patterns of 546

MRSA and 521 MSSA were compared in a dendrogram, ten major clusters of varying size

were discerned. To confirm the clonal relatedness of isolates within these clusters, 330

isolates were selected for ribotyping, which covered the chromosomal diversity of the

isolates (Fig. 1). Compared to the diversity of PFGE patterns, the riboprints were much more

conserved during evolution. Ten clusters were distinguished at the 80% similarity level,

which define clonal lineages called S. aureus Types I-X (Fig. 2). A very good correlation

between PFGE typing and ribotyping was observed: except for Type IV isolates, 99% of the

double-typed isolates clustered in corresponding branches of both the riboprint and PFGE

dendrograms. The PFGE patterns obtained from the Type IV isolates were often found not

only in a cluster of their own, but in other clusters as well (Fig. 1). Further, both Type II and

Type III isolates could be divided into two subtypes (a and b) that formed subclusters in the

ribotyping dendrogram and had different susceptibility patterns.

Pandemic strains, yielding identical PFGE patterns, were collected in many hospitals

on both continents (Fig. 3). Isolates of the Type I (40% of all samples), Type II (20%), and

Type III lineages (12%) were present in nearly all hospitals studied. The Type IV (8%),

Type VI (8%), Type IX (7%), and Type VIII (2%) lineages were also detected in Europe and

North America, although less often. Isolates of the remaining lineages (Type V (2%), Type

VII (0.5%), and Type X (0.5%)) were only referred from European countries.

Dissemination of the mecA gene in the different S. aureus lineages. Using PCR, the

mecA gene was detected in all but the Type IX and X lineages. Some pandemic mecA-

MSSA isolates come with mecA+ MRSA counterparts that share the identical ribotype, while

their PFGE patterns differ by a single bandshift, due to insertion of a fragment containing

mecA (Fig 4). However, we found no mecA- counterparts among Type IIb and IIIb isolates

which, with no exception, all contained mecA.

More than 60% of the mecA+ isolates belonged to the Type I lineage. These isolates

predominated in North America, Africa, and Europe. The Type I MRSA included all MRSA

isolates from the 1960s, the Brazilian clone [9] , the North German clone [11] , the Hannover

clone [11] , the Iberian clone [9] , and the Portuguese clone [9] . One quarter of the mecA+



Fig. 1. The PFGE patterns obtained from European and North American MSSA (n=521) and MRSA (n=546)

isolates form ten clusters. Isolates containing mecA are indicated by hyphens. In order to confirm the clonal

relatedness of isolates within the ten clusters, a total of 330 isolates (hyphens) representing the variability of

PFGE types were selected for ribotyping (Fig. 2).
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Fig. 2. Ten clusters were again found by ribotyping of 330 isolates. These S. aureus lineages were called Types

I-X. There was an excellent correlation between the PFGE patterns and ribotyping. Except for the Type IV

isolates, 99% of the double-typed isolates were found in corresponding PFGE and ribotype clusters.  The

position of the Type IV isolates in the PFGE dendrogram is indicated by a black line (panel A). The isolates

containing mecA are indicated by hyphens.
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samples were of the Type II lineage, which dominated the North American samples from the

1980s were later isolated Europe and Africa. Type IIa MRSA isolates (14% of mecA+

samples) included the pediatric clone [10] . Type IIb MRSA isolates (11% of mecA+

isolates) included the South German clone [11] .

Type III MRSA were found among samples isolated since the 1980s in Africa,

Europe, and North America. Type IIIb MRSA isolates (6% of mecA+ isolates) included

EMRSA 16 [12] . In contrast, Type IIIa, Type IV (the Berlin clone [11] ), Type V (EMRSA

15 [12] ), Type VI, Type VII, and Type VIII MRSA strains, which appeared during the

1990s, were only isolated sporadically (<1% of mecA+ isolates). Interestingly, these sporadic

MRSA types were relatively abundant among the mecA+ isolates from Chicago (20% Type

IV) and the UMC (33% Type IIa, Type IV, and Type VI), hospitals where patients and staff

coming from foreign hospitals are screened for MRSA carriership.

Multiresistance and dissemination of MRSA in Europe. The mecA gene was

present in all isolates resistant to four or more antibiotics. Moreover, this multiresistance was

displayed by the most prevalent and geographically widespread MRSA types (I, IIa, IIb, and

IIIa), which together represent 99% of the tested mecA+ population in Europe.

Most of the Type I MRSA isolates, representing 68% of the recent European MRSA

population and being present in 17 of 20 SENTRY hospitals, were resistant to erythromycin

(97%), gentamicin (98%), and clindamycin (89%) and showed decreased susceptibility to

ciprofloxacin (98%), tetracycline (98%), and rifampicin (98%). Although resistant to

erythromicin (98%), clindamicin (88%), ciprofloxacin (98%), and gentamicin (100%), most

of the Type IIb MRSA isolates, representing 16% of the recent European samples found in 5

of 20 SENTRY hospitals, remained susceptible to tetracycline (98%) and rifampicin (100%).

Type IIIb MRSA isolates, representing 8% of the recent European population and found in 2

of 21 SENTRY hospitals, were resistant to erythromicin (100%), ciprofloxacin (100%) and

clindamicin (84%), but remained susceptible to rifampicin (100%) tetracycline (100%) and

gentamicin (84%). Also the Type IIa MRSA isolates, representing 7% of population found in

6 of 20 SENTRY hospitals, were mostly resistant to erythromicin (75%), clindamicin (69%),

ciprofloxacin (90%), but remained susceptible to rifampicin (100%), tetracycline (100%),

and gentamicin (100%). In contrast, Type IIIa, Type IV, Type V, Type VI, Type VII, and

Type VIII MRSA, which were only isolated sporadically (<1% of recent European mecA+

isolates),



Fig. 3. Examples of Type III MSSA (left) and Type I MRSA (right) isolates referred from different locations,

but yielding identical PFGE patterns.

Fig. 4. Most mecA+ MRSA isolates have mecA- MSSA counterparts that differ by a single bandshift (arrow)

due to the insertion of a fragment that hybridizes with a mecA probe (data not shown).
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mostly remained susceptible to all but the ß-lactam antibiotics (clindamycin, 100%;

tetracycline, 100%; gentamicin, 100%; rifampicin, 100%; erythromycin, 60%; ciprofloxacin,

60%).

Discussion

This study aimed to examine the dissemination of the mecA gene in the S. aureus

population. Two methods were applied to determine the clonal relationships between mecA+

MRSA (n=546) and mecA- MSSA (n=521) isolates collected between 1960 and 2000 from

over 50 locations in the western world. The overall chromosomal organization of the isolates

was first compared using SmaI-generated PFGE patterns, which provide a relatively quickly

evolving genotypic marker. Because there is little evolutionary pressure to conserve the

SmaI restriction sites per se, this technique has high discriminatory power and highlights the

differences between the strains. Ribotyping was then used to combine evolutionary closely

related PFGE types into clonal lineages. The genes that encode ribosomal DNA are more

conserved during evolution and provide a relatively slowly evolving marker. Therefore,

automated ribotyping results in fewer ribotypes compared to the diversity of PFGE types.

S. aureus isolates of ten different lineages, called Types I-X, were present in the

hospitals studied, and eight of these have acquired the mecA DNA. From the major lineages,

pandemic MSSA and MRSA clones yielding identical PFGE patterns were collected in

many European and North American hospitals and the community. Several pandemic mecA-

MSSA have mecA+ counterparts that share the identical ribotype, while their PFGE patterns

differ by a single bandshift due to acquisition of the element containing mecA. The

worldwide appearance of specific MRSA clones has been shown before [9] , but the

existence of widespread MSSA counterparts was not described before in detail. In line with

this observation, a comparison between MRSA and MSSA samples isolated in the UK and

Denmark in the early 1960s suggests that contemporary MSSA isolates served as an early

recipient of the mecA gene in Europe [13] .

The dissemination of particular MRSA lineages is correlated with their resistance

profile. The majority of the multiresistant Type I MRSA isolates, predominant on both

continents, lacked susceptibility to tetracycline, erythromycin, clindamycin, gentamicin,



ciprofloxacin, and rifampicin. A second multiresistant lineage (Type IIb), found in North

America and several European countries, was susceptible only to tetracycline and rifampicin.

Smaller pandemics were caused by isolates susceptible to gentamicin, tetracycline, and

rifampicin (Type IIa and Type IIIb). Although antibiotic selection pressure by itself provides

a reasonable explanation for the widespread dissemination of such multiresistant strains,

additional factors, e.g. modifications in expression of virulence factors and binding

capacities, may add to their high prevalence. In contrast, the sporadically isolated mecA+

MRSA Types IIIa, IV-VIII (1% of recent European isolates) generally remained susceptible

to all except the ß-lactam antibiotics. Such sporadic MRSA types were over-represented in

the samples from the Chicago community (20%) and the UMC (30%), where the ‘Search

and Destroy’ procedure prevents epidemic MRSA strains from entering the hospital and

results in a MRSA prevalence below 1%. Many of the rare MRSA infections that do occur at

the UMCU may be formed de novo by the horizontal transfer of the mecA gene to all

resident MSSA lineages, as was witnessed recently in vivo when the mecA gene was

transferred from Staphylococcus epidermidis to S. aureus during antibiotic treatment [7] .

The role of such sporadic isolates in the evolutionary epidemiology of MRSA, however, is

not clear.

Although the number of times that the mecA gene has been transferred to S. aureus

remains unknown, the hypothesis that the mecA gene entered S. aureus on only one occasion

has been questioned by several authors [5-7, 14] . The data presented here indicate the

repeated horizontal transfer of mecA DNA to at least eight resident S. aureus lineages and

the spread of more resistant clones favored most by antibiotic selection pressure. When

DNA microarray technology was used to characterize the genetic diversity of 11 MRSA

isolates, the mecA gene was detected in at least five highly divergent chromosomal genetic

groups [6] . In addition, MLEE data showed that MRSA constitute 15 electrophoretic types

forming six clusters or lineages, implicating multiple MRSA lineages arose by horizontal

transfer between S. aureus strains [5] . Analysis of the mecI and mecR1 region, which lies 5'

of the mecA gene, revealed that older isolates lacked part of this region, whereas more recent

isolates showed a organization at this position similar to coagulase-negative staphylococci

[14] . Because these data cannot easily be explained by the hierarchy of rearrangements

within a single clone, it was concluded that MRSA strains have independently arisen twice

by the horizontal transfer of the mecA gene to MSSA.



It has been proposed that coagulase negative staphylococci (CNS) serve as donors for

the transfer of the mecA gene to S. aureus [14] . The in-vitro transfer of the mecA gene from

CNS to S. aureus supports this theory [15] . In this context, it is important to note that 70-

75% of all CNS worldwide are resistant to methicillin [1] , thus representing a huge potential

reservoir of resistance. The mechanism of transfer, however, remains unclear. There is

evidence that the mecA DNA resides within a mobile genetic element, SSC mec, that

encodes recombinases for its excision from and integration into the staphylococcal

chromosome [3] . This element may also contain other genetic elements, like Tn554,

pUB110, and pT181, which encode resistance to non-ß-lactam antibiotics, causing

multiresistance [3] . Thus, while new MRSA strains continue to emerge by the horizontal

transfer of mecA, those strains possessing additional resistance traits are favored most by

antibiotic selection pressure and may disseminate widely.
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Methicillin-susceptible Staphylococcus aureus isolates, recovered from 204 patients in our hospital in a
22-month period, were characterized by pulsed-field gel electrophoresis. Among the multiple S. aureus types six
clonal lineages dominated, comprising isolates from 158 patients. Despite the limited genetic variation,
cross-transmission was made plausible only sporadically.

Staphylococcus aureus is an important causative agent of
nosocomial infections, including surgical site infections and
catheter-related bacteremia (5, 12). Consequently, microbiol-
ogists are frequently asked to determine the relatedness of
staphylococcal isolates collected during the investigation of an
outbreak or as part of an ongoing surveillance system.

From earlier studies it has been concluded that pulsed-field
gel electrophoresis (PFGE) is well suited for genetic analysis
and monitoring of nosocomial spread of S. aureus (1, 10). Most
attention has been focused on the characterization of methi-
cillin-resistant S. aureus (MRSA), but not much is known
about the structure of methicillin-susceptible S. aureus
(MSSA). Due to the search-and-destroy policy, MRSA is not
endemic in The Netherlands (11). In order to increase the
understanding of the molecular epidemiology of MSSA strains
in our hospital, we collected all S. aureus isolates recovered
from clinical specimens between November 1997 and Septem-
ber 1999 and subjected them to PFGE.

The Diakonessenhuis is a 378-bed teaching hospital in Utre-
cht, The Netherlands, with approximately 11,500 admissions
and 7,000 clinical surgical procedures each year. Between No-
vember 1997 and September 1999, the ward, date, and site of
isolation were recorded for each hospitalized patient with a
positive S. aureus culture. S. aureus isolates were defined as
catalase-producing gram-positive cocci which were positive for
coagulase. Antibiograms were determined by disk diffusion on
Mueller-Hinton agar according to the National Committee for
Clinical Laboratory Standards (NCCLS) (6). The antimicro-
bial agents tested included penicillin, oxacillin, gentamicin,
clindamycin, erythromycin, and vancomycin. PFGE typing by
SmaI macrorestriction was performed as described previously
(10). Patterns were not subjected to the guidelines for inter-
pretation of PFGE based on differences in banding patterns
posed by Tenover et al., because these are intended to be used
to examine relatively small sets of isolates (�30). For larger

collections of isolates, equipment to perform computer-based
image acquisition and analysis is recommended (9). The PFGE
patterns were analyzed by Gel-Compar (Applied Maths, Kor-
trijk, Belgium). A cutoff value of 70% of genetic similarity was
chosen for discrimination between distinct clusters of strains,
while confirmation of genetic similarity or difference was per-
formed by visual interpretation of the gels.

Two hundred and twenty-six S. aureus isolates recovered
from 204 hospitalized patients were available for antimicrobial
susceptibility tests and PFGE typing. Most staphylococci were
recovered from wounds, pus, drains, and indwelling catheters;
16 isolates were derived from blood and 36 were derived from
respiratory specimens. Isolates from 35 patients were suscep-
tible to all antibiotics tested, while all isolates showed in vitro
susceptibility to oxacillin and vancomycin. High-level resis-
tance against gentamicin was not observed. The percentages of
isolates resistant to penicillin, erythromycin, and clindamycin
amounted to 72, 11, and 7%, respectively.

After analysis of PFGE patterns we were able to discrimi-
nate 19 main types dominated by 6 clusters comprising 177
isolates from 158 patients, which were designated A through F
(Fig. 1). From 22 patients of whom more than one isolate was
available for typing, successive isolates were identical in all
cases. The genetic diversity observed is in agreement with the
limited data available in the literature (2–3). Blumberg et al.
identified 15 different ribotypes among a selected collection of
13 MSSA and 37 MRSA isolates (2), while Couto et al. found
23 distinct main types among 54 MRSA and 93 MSSA isolates
from a Portuguese hospital by using PFGE (3). Within the six
clusters, small variations in genetic profile could be distin-
guished. We are reluctant to ascribe small variations in profile for
isolates to different genetic background or to variations within
one strain, since it is not possible to make certain whether isolates
with two to six fragment differences are related or not (9).

In agreement with other studies, no consistent correlation
between antibiograms and genotype patterns was seen (2–3).
Antibiograms would have erroneously identified a large num-
ber of MSSA isolates with distinct PFGE types as homoge-
neous strains. Similar findings have been reported previously
for MRSA isolates (3).
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tute for Microbiology, Infectious Diseases, and Inflammation, Univer-
sity Medical Center G04.614, P.O. Box 85500, NL-3508 GA Utrecht,
The Netherlands. Phone: 31-302-508784. Fax: 31-302-541770. E-mail:
e.m.mascini@lab.azu.nl.
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FIG. 1. Dendrogram containing PFGE patterns from clinical MSSA isolates of 204 patients collected between November 1997 and September 1999. Six
clusters designated A through F are distinguished, for which numbers of infected patients and affected wards are given. To indicate possible dissemination,
episodes in which two or more patients on the same ward were infected with MSSA with identical PFGE types within 1 month of each other are presented.
resp., respectively.

The clusters comprised the most frequently encountered
types in the hospital, accounting for 158 out of 204 patients
(77%). These six clusters were all identified during a
prolonged period of at least 15 months. The number of
wards where isolates belonging to one of these clusters
were recovered varied from 11 to 15. The fact that six
clusters were identified next to unique genotypes suggests
that staphylococcal strains may vary considerably in
epidemiological potential. It seems likely that, among the
different PFGE types, certain clusters of S. aureus spread
easily and remain genotypically relatively con-stant. The
minor differences in PFGE patterns among the isolates
belonging to the same strain might thus be clarified.

Obviously, the occurrence of cross-infection in our
hospital was of minor importance, since outbreaks with an
epidemic S. aureus strain were not elicited. In addition,
clear epidemiolog-ical linkages between patients with an
isolate belonging to one of the clustered pulsotypes could
generally not be demonstrated. There were seven episodes

of repetitive isolation of staphylococci belonging to the
same cluster in patients on the same ward within a 1-month
period at five wards, involving a total of only 21 patients
(Fig. 1). In these cases, cross-trans-mission between
hospitalized patients could not be excluded and had
possibly occurred via the hands of health care workers (8).
Moreover, medical equipment, such as surgical instru-
ments, catheters, ventilators, stethoscopes, and ultrasound
in-struments, can be reservoirs for S. aureus (7).

Otherwise, it might be speculated that the genetic
variation between S. aureus isolates among non-
hospitalized individuals in the population is limited. Thus,
the six clustering genotypes could be highly endemic in the
Utrecht area and subsequently be represented in our
hospital. Accordingly, the PFGE results suggest that most
staphylococcal infections arise endogenously.
Correspondingly, several epidemiological studies indicated
that nasal carriers of S. aureus have an increased risk for the

1 episode: 3 patients in the cardiology
ward.
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development of surgical site infection (5, 11). Whereas the
majority of MSSA cases in this study could not be explained by
cross-infection or a common source, MRSA infections are
acquired predominantly by hospital cross-infection (2, 4).

In conclusion, this study was designed to gain insight into the
population characteristics of the resident MSSA strains and
nosocomial transmission in our hospital. A considerable vari-
ation in the genetic background was detected, but six clusters
were found to be dominant. PFGE patterns suggest that nos-
ocomial MSSA infections differ from MRSA infections in that
most arise endogenously. Cross-transmission which may occur
now and then had not resulted in the dissemination of an
epidemic MSSA strain in our hospital.
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FREQUENT TRANSFER OF DIFFERENT STAPHYLOCOCCAL

CHROMOSOME CASSETTE mec TYPES BETWEEN COAGULASE-

NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

Abstract

The Staphylococcal Chromosome Cassette mec (SCCmec) found in Staphylococcus

aureus was acquired from coagulase-negative staphylococci (CNS). The purpose of this

investigation was to determine whether S. aureus acquired SCCmec just once or on multiple

occasions. Therefore, the relationships were studied between SCCmec from different clonal

lineages of MRSA collected in North America and Europe from the 1960s until 2000 and

that from various species of CNS. A total of 146 MRSA and 36 CNS isolates belonging to 7

species were analyzed. Ribotyping showed eight clonal lineages, called MRSA Types I-VIII.

Restriction Fragment Length Polymorphism (RFLP) analysis of the SCCmec element, using

a probe covering approximately 20 kb of this DNA region, revealed four clusters of closely

related RFLP patterns, SCCmec Types A-D, which were found in 93% of the isolates.

Eleven isolates yielded miscellaneous patterns.  SSC mec TypeA was present in MRSA

Type I-II, and in 2 CNS species since the 1960s. SCCmec Type B was first observed among

MRSA Type II isolates from the 1970s. It was also found in MRSA Types I, III, VI and VIII

collected later and in isolates of S. epidermidis. SCCmec Type C first appeared during the

1980s and was detected in isolates of MRSA Types I and III and 4 CNS species. SCCmec

Type D was detected in isolates from the 1990s, including MRSA Types I-VII and 3 CNS



species. These results indicate that SCCmec transfer from CNS to S. aureus took place at

least four times and most likely occurred much more often.

Inleiding

The introduction of methicillin for treatment of staphylococcal infections in the early

1960s has resulted in the rapid development of resistance (1). In fact, methicillin-resistant

Staphylococcus aureus (MRSA) strains currently represent a major cause of nosocomial

infections around the world and most coagulase-negative staphylococci (CNS) have become

resistant to the drug (2). In some countries, MRSA constitutes up to 80% of all S. aureus

isolates found in intensive care units (3). It is thought that staphylococci have become

resistant to methicillin and other β-lactam antibiotics by acquiring the Staphylococcal

Chromosome Cassette mec (SCCmec) (4). This genetic element contains the mecA gene,

which encodes the low affinity pencillin-binding protein PBP2a. SCC mec, which is of

extraspecies origin (5), ranges in size from 30 to more than 60 kb (6). The size difference of

the SCC mec element can be partly explained by integration of various additional genetic

elements, including Tn554 (encodes resistance to macrolides, lincosamides, and

streptogramin B), plasmid pUB110 (encodes resistance to aminoglycosides), and/or plasmid

pT181 (encodes resistance to tetracycline) (7). The number of times S. aureus has acquired

SCCmec is as yet unknown.

The purpose of the present study was to determine whether S. aureus acquired

SCCmec on one or multiple occasions. SCC mec in different staphylococci was characterised

by comparing the SCC mec fingerprints obtained from different lineages of North American



and European MRSA isolates collected since the 1960s and from various species of

coagulase-negative staphylococci (CNS).

Methods

Bacterial isolates. A total of 146 MRSA isolates were selected from the collections

of Kreiswirth et al. (8), Roberts et al. (9), de Sousa et al. (10), Witte et al. (11), Hookey et al.

(12), and the SENTRY antimicrobial surveillance program (13). This selection was based on

the isolates’ PFGE type and the place and year of isolation (Table 1). In addition to recent

European MRSA isolates, this selection included the earliest isolates from Europe and Africa

collected during the 1960s, North American isolates collected from the 1970s until the present,

and earlier described reference strains like the Iberian clone, the Brazilian clone, the North and

the South German clones, the Berlin clone, the Hannover clone, EMRSA 15 and 16, the

Portuguese clone, and the pediatric clone (8-12, 14, 15).

Further, 36 methicillin-resistant CNS isolates from 15 different hospitals in 11

European countries were randomly selected to represent different genotypes. These isolates

included 23 Staphylococcus epidermidis, 6 Staphylococcus haemolyticus, 3 Staphylococcus

xylosus, 1 Staphylococcus lentus, 1 Staphylococcus warneri, 1 Staphylococcus simulans, and

1 Staphylococcus auricularis. The origin of the MRSA and CNS isolates is shown in Table

1. The isolates were identified using standard microbiological methods.

For comparison of ribotypes, we selected 10 MSSA isolates, which represent 10

widespread MSSA lineages identified among 521 MSSA isolates during a previous

epidemiological study (submitted).



Tabel 1. Place and time of isolation of the MRSA and CNS isolates.

collection time location MRSA CNS

SENTRY 90s France 10 5

Italy 10 7

UK 10 2

Portugal 6 1

Turkey 5 1

Spain 5 1

Austria 3

Greece 2 7

S. Africa 6

Germany 1 1

Belgium 1 1

Poland 3

UMC 90s Netherlands 14 7

Dr Hookey 90s Europe 16

Dr Roberts 90s New York 7

Dr Lencastre 90s Portugal 4

Dr Witte 90s Germany 3

Dr Kreiswirth 60s Europe 6

60s Africa 2

70s N. America 1

80s N. America 27

80s Europe 7

Ribotyping of isolates. Ribotyping was performed with an automated riboprinter

system (Qualicon, Wilmington, DE, USA), using EcoRI as described previously (16).

Construction of the SCC mec-specific probe. The isolation of a mecA+ MRSA and

its mecA- MSSA counterpart has already been described (17). Both of these isolates were

shown to be suceptible to macrolides, lincosamides, gentamicin, and tetracycline. They

differed by a single bandshift in their SmaI-generated PFGE patterns. This bandshift was

caused by the presence of approximately 40 kb additional DNA in the MRSA isolate.

Moreover, the DNA fragment from the MRSA isolate hybridized with a mecA-specific DNA

probe. In this study, the SmaI-generated DNA fragments with and without the additional



DNA were isolated from agarose gel and used for subtractive hybridization in order to

generate a DNA probe specific for SCCmec. Subtractive hybridization was carried out using

the PCR Select Subtraction kit as recommended by the manufacturer (Clontech Laboratories,

Palo Alto, Ca, USA). The differential DNA fragments were labeled by subsequent

amplification in the presence of digoxigenin-labeled nucleotides using the PCR DIG probe

kit as described by the manufacturer (Roche, Basel, Switzerland).

SCCmec fingerprinting. One µg genomic DNA isolated from the staphylococcal

isolates was simultaneously digested with 1 U each of EcoRI, ClaI, and HinDIII. The

restriction fragments were then separated in a 1.5% agarose gel, transferred to a nylon

membrane, and hybridized with the SCCmec-specific DNA probe. Hybridization was

visualized using the DIG Luminescent Detection kit (Roche).

Analysis of riboprints and SCCmec fingerprints. The riboprints and SSC mec

fingerprints were compared by calculating a similarity index using the UPGMA cluster

algorithm and Dice coefficient using Bionumerics software (Applied Mathematics, Kortrijk,

Belgium) scoring individual bands for comparison.

Detection of Tn554. Using the primers CTTGGTTCCTGAATTTGTCC and

TAGGCAAAGAATCGAATC (26) Tn554 was amplified in the presence of digoxigenin-

labeled nucleotides using the PCR DIG probe kit as described by the manufacturer (Roche).

Spot-blots of the MRSA isolates were hybridized with this probe and hybridization was

visualized using the DIG Luminescent Detection kit (Roche).



Results

Ribotyping of MRSA. Analysis of the riboprints of 146 MRSA isolates from

different cities and collections in Europe, North America, and Africa revealed eight different

clonal lineages, called MRSA Types I-VIII (Fig. 1). Both MRSA Type II and Type III could

be divided into two closely related subtypes (a and b), based on slight differences in their

riboprint (Fig. 1) and resistance patterns (data not shown). All European and African isolates

obtained during the 1960s belonged to MRSA Type I, a type that now predominates around

the world. MRSA Types II and III first appeared during the 1970s and 1980s, respectively,

among the North American isolates of the Kreiswirth collection. Later, they were also

isolated in Europe and Africa. The other five MRSA types (IV-VIII) have been isolated

sporadically in Europe and North America since the end of the 1980s. When the MRSA

riboprints were compared to 10 different MSSA ribotypes identified previously, we found

MSSA counterparts with identical riboprints for each of the 8 MRSA types (Fig. 2).

Characterization of the SCCmec-specific probe. In order to fingerprint SCCmec

from different staphylococci, a specific probe was constructed from a mecA+ MRSA isolate

and its mecA- MSSA counterpart using subtractive hybridization. Hybridization of the probe

with EcoRI-, ClaI-, and HinDIII-digested DNA from the isolates showed that the probe

recognized approximately 20 kb of MRSA DNA. It did not hybridize with the DNA obtained

from the MSSA isolate (Fig. 3).

SCCmec fingerprints from different staphylococci. Analysis of the fingerprints

obtained from the hybridization of EcoRI-, ClaI-, and HinDIII-digested DNA from 146

MRSA and 36 CNS isolates showed that 93% of the patterns formed four large clusters,

called SCCmec Types A-D (Fig. 4).



Fig. 1. Dendrogram containing the riboprints of 146 mecA+ MRSA isolates. Eight branches were recognized,

called MRSA Types I-VIII. Types II and III could be divided into subtypes (a & b; dotted line).
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Fig. 2. Comparison of the riboprints of the 8 MRSA types to those of 10 widespread MSSA types showed they

were part of the same lineages.

Different staphylococcal species and MRSA types were represented within each of

the four clusters. Sometimes, the fingerprints obtained from different MRSA types and

staphylococcal species were identical. Eleven isolates yielded patterns that shared less

homology with the four clusters (Fig. 4).

SCCmec Type A was present in MRSA Type I isolates collected since the 1960s, in

Type II isolates collected since the 1980s (including all Subtype IIb MRSA), and in S.

haemolyticus, and S. warneri isolates. SCC mec Type B was first found in Type IIa MRSA

isolates collected at the end of the 1970s. These isolates predominated the North American

isolates from the 1980s in the Kreiswirth collection, and are now found worldwide. Type B

SCC mec was also detected in isolates of MRSA Types I, III, VI, and VIII from that

collection and in S. epidermidis isolates. MRSA isolates carrying the Type C SCC mec were

first collected during the 1980s and included MRSA Type I and all Type IIIb isolates.
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Fig. 3. MSSA and MRSA counterparts yielding identical PFGE patterns, except for a single bandshift (bottom

lanes) caused by the insertion of a fragment that hybridized to a mecA probe (middle lanes), were used to

isolate SCC mec by subtractive hybridization. The different fragments obtained after labeling recognized

approximately 20 kb of additional DNA in the MRSA isolate. No hybridization was observed in the MSSA

isolate (upper lanes).

Nine isolates of S. epidermidis, 2 S. haemolyticus, 1 S. lentus, and 1 S. simulans also carried

SCCmec Type C. SCCmec Type D was present in seven different MRSA types and three

CNS species. Most of the MRSA isolates with SCCmec Type D belonged to smaller MRSA

lineages, i.e. Types IV, V, VI, and VII and Subtype IIIa, but few were Type I or Type IIa

MRSA. All but one of these isolates had been isolated during the 1990s. Nine isolates of S.

epidermidis, 2 S. haemolyticus, and 1 S. xylosus also contained SCCmec Type D. The

SCCmec fingerprints of 5 isolates of Type I and Type II MRSA, 9 S. epidermidis, 2 S.

xylosus, 1 S. haemolyticus, and 1 S. auricularis showed little homology with the patterns

seen in the four major clusters.
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Fig. 4. Dendrogram containing the restriction fingerprints of SCCmec obtained from 182 isolates belonging to

8 staphylococcal species and including different MRSA types. Based on the presence of short hybridizing

sequences, four clusters could be discerned. Each cluster contained several different species. A few isolates

showed little homology with the patterns seen in the four major clusters.
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Detection of Tn554. Tn554 was detected in all MRSA types and CNS species using

a probe (data not shown). Nearly all of the isolates harboring SCC mec Types B and C

carried Tn554, while only half the isolates with SCC mec Type A and a quarter of those with

SCC mec Type D carried this transposon.

Discussion

Although the SCCmec in S. aureus is believed to be acquired by horizontal transfer

from a CNS species (5), the frequency of this transfer, the evolution of SCCmec, and the

mechanism of transfer are still a matter of debate. An early study concluded that MRSA has

a clonal origin (8). This was based on Southern blots of isolates collected worldwide using

mecA- and Tn554-specific probes, but our data show that only part of the MRSA and CNS

isolates carry Tn554. Furthermore, the “clonal orgin” theory of MRSA was challenged by a

MLEE study, which used many of the same isolates (18). It showed that MRSA constitutes

15 electrophoretic types that form six clusters or lineages and suggested that the multiple

MRSA lineages arose by the horizontal transfer of  SCCmec between S. aureus strains.

Recently, based on the PFGE typing of 378 MRSA isolates from Germany, revealing 14

epidemic strains among 39 different genotypes, it was proposed that the sporadic genotypes

had arisen by the horizontal transfer of SCCmec from epidemic strains that were frequently

found nearby (19). The hypothesis that MRSA forms a clonal lineage was further challenged

by the recent analysis of 11 MRSA isolates using micro array technology: these isolates

belonged to at least five different lineages and there was an extensive diversity in SCC mec

between the lineages (20). Two studies analyzing the mecI / mecR1 regions, which lies 5' of



the mecA gene, showed that older isolates lacked part of this region, while in more recent

MRSA isolates that region was similar to that of CNS isolates (6, 21). Because this cannot

be easily explained by a hierarchy of rearrangements within a single clone, it was suggested

that SCCmec transfer from CNS into S. aureus might have taken place at least two times.

The purpose of the present study was to determine whether SCCmec was acquired by

S. aureus on one or multiple occasions. To do this, we studied the relationships between

SCCmec from different clonal lineages of MRSA obtained from North America and Europe

from the 1960s until 2000 and from various species of CNS. Ribotyping 146 MRSA isolates

revealed eight lineages, called MRSA Types I-VIII. These eight MRSA lineages all had

widespread MSSA counterparts having the identical ribotype, some sharing identical PFGE

patterns except for the fragment carrying the mecA gene (17). These data extend the

identification of several historically early MSSA strains, whose genetic backgrounds match

those of contemporary epidemic clones of MRSA (22).

The majority of the isolates collected between 1960 and 2000 from various

geographic locations contained one of four common SCCmec fingerprints, Types A-D. Most

importantly, the isolates carrying a particular SCCmec type belonged not only to different

ribotypes, but even to different staphylococcal species. SCCmec Type A, observed first in

isolates collected during the 1960s, was detected in MRSA Types I and II, S. haemolyticus

and S. warneri. This type is characterized by the absence of regulatory genes (6, 21), which

allows the constitutive expression of PBP2a (6, 23). SCCmec Type B was observed in

epidemic North American MRSA Type II isolates collected in the 1970s, in isolates of

MRSA Types I, III, IV, and VIII collected later, and in S. epidermidis isolates. They carried

the regulatory genes that were missing from earlier isolates (6, 21). SCCmec Type C first

appeared in isolates from the 1980s. It was observed in isolates of MRSA Types I and III



and S. epidermidis, S. haemolyticus, S. lentus, and S. simulans. SCCmec Type D was

detected in isolates from the 1990s, including MRSA Types I-VII, and in isolates of S.

epidermidis, S. haemolyticus, and S. xylosus.  In addition, a few miscellaneous fingerprints,

showing little homology with the others were also observed among different MRSA types

and CNS species. It is not clear whether the miscellaneous SCCmec fingerprints in these

MRSA isolates were obtained from CNS by horizontal transfer or whether they evolved by

rearrangement. At any rate, SCCmec seems to be maintained stably in all Type IIb and Type

IIIb isolates. The presence of at least four SCCmec types in different CNS species and in

eight different S. aureus ribotypes is difficult to explain by the separate evolution of

SCCmec in S. aureus and CNS.

Our data implicate that SCCmec transfer from CNS to S. aureus took place at least

four times, but most likely occurred even more often. This latter hypothesis is compatible

with and extends the results obtained by other investigators. Frequent horizontal transfer of

SCC mec between staphylococcal species is further supported by the fact that a novel mecA+

MRSA and its mecA- MSSA counterpart were isolated from a single patient together with an

S. epidermidis isolate that yielded an SCCmec fingerprint identical to that of the MRSA

strain (17).

Other occasions of horizontal transfer of other genetic material between different

species of staphylococci has already been described, e.g. the transfer of plasmids encoding

resistance to several antibiotics (24) (25). Our data provide evidence that the horizontal

transfer of SCCs, including integrated elements like the mec region and possibly TN554, has

occurred frequently between different species of staphylococci.
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Evidence for in-vivo transfer of
mecA DNA between
staphylococci

C L C Wielders, M R Vriens, S Brisse, L A M de Graaf-
Miltenburg, A Troelstra, A Fleer, F J Schmitz, J Verhoef,
A C Fluit

Staphylococcus aureus is thought to have acquired mecA
DNA by horizontal transfer. DNA fingerprints made by
restriction nucleases that cut certain sequences of DNA
can be used to compare complete genomes or particular
genes between bacteria. We isolated an epidemic mecA-

methicillin-susceptible S. aureus genotype and,
subsequently, a rare isogeneic mecA+ meticillin-resistant S
aureus (MRSA) genotype from a neonate who had never
been in contact with MRSA. This MRSA contained mecA
DNA that was identical to that in a coagulase-negative
staphylococcal strain isolated from this patient, but
different from other MRSA genotypes. We believe that this
MRSA was formed in vivo by horizontal transfer of the
mecA DNA between two staphylococcal species.
Meticillin-resistant Staphylococcus aureus causes nosocomial
infections worldwide. Its strong resistance is a result of its
penicillin-binding protein 2a, which has a low affinity for ß–
lactam antibiotics1. Penicillin-binding protein 2a is encoded by
the mecA gene, which is in the chromosome of meticillin-
resistant strains of many staphylococcal species. Horizontal
mecA transfer could contribute to the worldwide dissemination
of MRSA2. The mecA DNA has been identified in a 40 kb
mobile genetic element that encodes recombinases that can
catalyse its excision from, and integration into, the S aureus
chromosome3. We isolated a successive pair of isogeneic
mecA- and mecA+ S aureus strains from a patient whose initial
meticillin-susceptible infection had just been treated with ß-
lactam antibiotics. We analysed the molecular epidemiology of
the isolates to attempt to answer whether mecA DNA was
acquired by a pre-existing mecA- variant during treatment or
lost by a pre-existing mecA+ counterpart. A male infant with
Pierre Robin syndrome was delivered by forceps after a 40-
week pregnancy. He was intubated and mechanically
ventilated from 4 days after birth because of respiratory
problems. Amoxicillin and clavulanic acid was used to treat a
suspected respiratory tract infection. When he became
bacteraemic 3 days later, the treatment was changed
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to amoxicillin and cefotaxime. Eventually, when his blood
cultures grew a mecA� meticillin-susceptible S aureus
(MSSA), treatment was changed to flucloxacillin. He then
seemed to recover, but amoxicillin and clavulanic acid were
restarted on day 32 for 10 more days because his respiratory
tract infection recurred. On day 56, routine cultures of nasal
swabs unexpectedly showed a mecA+ MRSA that was resistant
to �-lactam antibiotics, but susceptible to other antibiotics.
Several strains of mecA+ coagulase-negative staphylococci
were also identified. The patient was put in strict isolation to
prevent the spread of this MRSA strain. However, because he
had improved, no further antibiotic treatment was required
for the remainder of his stay in hospital.

We digested DNA from the isolates with SmaI and
separated the fragments by pulse-field gel electrophoresis.
The mecA� MSSA and mecA+ MRSA isolates differed by
only one bandshift, which was caused by about 40 kb of
DNA that hybridised with a mecA probe in the MRSA isolate
(figure 1). Moreover, the MSSA and MRSA isolates had
identical ribotypes and a rare phage type that had not
previously been recorded by the Dutch reference centre
(data not shown). 

The mecA+ MRSA genotype from our patient was unique
among a collection of 312 European MRSA isolates (data
not shown). Its phagetype, antibiogram, pulsed-field gel
electrophoresis pattern, and ribotype did not seem to be
related to any MRSA strains in western and central Europe.
However, the isogeneic mecA� MSSA genotype from our
patient is frequently isolated in Europe (figure 1), and from
patients and staff in our hospital. 

MecA+ coagulase-negative staphylococci might be a source
of mecA DNA in horizontal transfer.2 The week after we
isolated the MRSA, three mecA+ coagulase-negative staphy-
lococci strains were isolated from the patient. MecA DNA
from an S epidermidis strain had a hypervariable region,4

Tn554, and mecI profile that was identical to the mecA DNA
in the MRSA isolate (data not shown). We compared the
restriction patterns (simultaneous ClaI, EcoRI, and HindIII
digestion) of the mecA DNA in both these strains more
closely, with a specific probe that recognises 20 kb of the 40
kb mecA DNA region. The mecA restriction patterns were
identical in the two strains, whereas those from all the other
MRSA genotypes that we assessed were substantially
different (figure 2). Therefore, a potential donor strain for
mecA transfer was present in the patient.

Our results show that, except for the mecA DNA, the
MSSA and MRSA isolates were isogeneic—ie, they evolved
either by the loss or acquisition of mecA DNA. The order in
which we isolated the strains (mecA� before mecA+) supports
the horizontal gene transfer of mecA DNA; if the mecA+

MRSA had been present early on, it seems unlikely that it
would be seen only after, and not during, antibiotic
treatment. Furthermore, if the mecA+ MRSA existed before
the mecA� MRSA, mecA+ would probably have been more,
rather than less, prevalent than the isogeneic mecA� variant
because of its apparent selective advantage. 

Because of the search and destroy policy in the
Netherlands,5 the MRSA prevalence in our hospital remains
less than 1%. The new mecA+ MRSA genotype is difficult to
explain since we isolated it from an infant younger than 2
months, who was neither transferred from a foreign hospital
nor in contact with an MRSA carrier. We conclude that this
MRSA isolate was formed in vivo, during treatment, by the
horizontal transfer of mecADNA from an S epidermidis strain.
Many mecA+ MRSA might be formed in this way, followed by
the spread of multiresistant clones that are favoured most by
antibiotic selection pressure.
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Figure 1: Pulsed-field gel electrophoresis patterns of S aureus
isolates from our patient and from isolates in European hospitals
*Bandshift of about 40 kb from addition of mecADNA (bottom two lanes).
†hybrised with mecA probe only.

Figure 2: Restriction patterns of mecA DNA from our patient’s
MRSA and coagulase-negative S epidermidis, and from other
MRSA isolates
Hybridised to probe specific for mecA region. MRSA=meticillin-resistant
S aureus. MSSA=meticillin-susceptible S aureus. CNS=coagulase-
negative staphylococci.



GENERAL DISCUSSION

The introduction of methicillin into medical practice in the early 1960s has resulted in the

continuous selection of resistant staphylococci in hospitals. By now, most commensal coagulase-

negative staphylococci (CNS) have become resistant to methicillin, while methicillin-resistant

Staphylococcus aureus (MRSA) strains represent a major cause of nosocomial infections around the

world (1). While low-level methicillin-resistance usually results from ß-lactamases or alterations of

intrinsic PBPs, high level resistance is due to expression of the mecA gene, that is present in 90% of

all MRSA. MecA+ MRSA has become endemic throughout most of Europe: about 25% of the S.

aureus isolates are resistant to methicillin (Chapter 2). However, the prevalence of MRSA varies

considerably between different European countries, but also between hospitals within a country. In

some Swiss and Dutch hospitals where strict infection control measures are applied, including

screening and isolation of  patients, the MRSA prevalence remains below 1% (2).

Multiresistance and SCCmec

Due to resistance genes present both inside and outside of the Staphylococcal Chromosome

Cassette mec, most MRSA strains are also resistant to at least three additional generically different

antibiotics. It was shown that, while only 5% of the European MSSA displayed multi-drug resistance,

99% of the European mecA+ MRSA were multiresistant (Chapter 2). In fact, the mecA gene was

detected in all multiresistant isolates, including the latter 5% of multiresistant isolates remaining

susceptible to methicillin in the phenotypic test (Chapter 3). This may be explained by the inadequate

expression of the PBP2a protein in these isolates. Although separate resistance traits may evolve in

any strain independent of SCCmec, multirestance appears to be exclusively associated with SCCmec

in S. aureus (Chapter 3). Until now, mecA, encoding resistance to β-lactams, ermA, encoding

resistance to erythromycin, aadD, encoding resistance to tobramycin, ble, encoding resistance to

bleomycin, spc, encoding resistance to spectomycin, tetK, encoding resistance to tetracycline,

cadA/C, encoding resistance to cadmium, and merA/B/T, encoding resistance to mercurium, have

been detected in SCCmec (3).



Clonal relationships of MRSA isolates

Different genotyping techniques were applied to study the clonal relationships among S.

aureus isolates. MLEE studies showed that the mecA gene was transferred to at least five different S.

aureus chromosomal backgrounds (4, 5). When automated ribotyping and PFGE were combined to

determine the clonal relationships of European and N. American S. aureus isolates, ten different

lineages, called Types I-X, were distinguished, and eight of these had acquired the SCCmec. Several

pandemic mecA- MSSA were identified, that have mecA+ counterparts that share the identical

ribotype, while their PFGE patterns differ by a single bandshift due to acquisition of SCCmec

(Chapter 3). SCCmec is transferred to the resident S. aureus lineages repeatedly, forming numerous

different mecA+ MRSA clones. Several widespread multiresistant MRSA clones have been reported

(6, 7), and the dissemination of particular clones correlated strongly with their resistance profiles

(Chapter 3).

The earliest MRSA encountered in Europe and Africa during the 1960s were Type I clones,

which are now present in nearly all hospitals on all continents studied (1). We estimate that a single

multiresistant Type I MRSA clone, which acquired resistance to tetracycline, erythromycin,

clindamycin, gentamicin, ciprofloxacin and rifampicin, causes over 10% of all nosocomial S. aureus

infections around the world. During the 1970s, Type II MRSA appeared, while Type III MRSA arose

during the 1980s, and both became widespread. A multiresistant Type II clone, which remains

susceptible to tetracycline and rifampicin, is present in several European countries and North

America. Smaller pandemics are caused by multiresistant Type II and III MRSA clones susceptible

to gentamicin, tetracycline and rifampicin. In addition to such widely disseminated multiresistant

MRSA, there were sporadic MRSA clones (Types I-VIII), the majority of which arose during the

1990s. These generally remained susceptible to all but ß-lactam antibiotics, and were cultured from

only few patients.

In general, MSSA strains causing infections in hospitals are derived from the community,

and the occurrence of cross-infection between hospitalized patients is of minor importance (Chapter

4).  It was shown that virulence correlates with colonization of the host (8) and that nasal carriers of

S. aureus have increased risk to develop surgical site infections (9, 10). Whereas most MSSA

infections arise endogenously, most MRSA strains are acquired in the hospital (11). The S. aureus

population in many hospitals is taken over by epidemic multiresistant SCCmec harboring clones,

which were transmitted to hospitals around the world (Chapter 3). Due to antibiotic selection

pressure in hospitals, multiresistant MRSA strains may replace the community-derived MSSA

strains, and subsequently cause disease. Although antibiotic selection pressure by itself provides a



reasonable explanation for the wide spread dissemination of such multiresistant strains, other factors,

including adhesion factors (3, 12), may add to their prevalence. In addition, some strains may have

optimized the expression of the mecA gene or have undergone secondary alterations supporting the

action of PBP2a. The global dissemination of few multiresistant clones implies that, since identical

strains pose identical threats to all hospitals, the differences in MRSA prevalence among hospitals

result from differences in infection control policies and use of antibiotics.

Dissemination of SCCmec among staphylococci

The evolution of SCCmec in staphylococci was studied by comparing the restriction

fragment length polymorphisms of this DNA element from different MRSA types and different CNS

species. A common origin for the SCCmec in staphylococci is suggested by the homogenous

restriction fingerpints obtained from majority of isolates from all species, that share many restriction

fragments and form a temporary ordered tree (13)(Chapter 5). After SCCmec presumably evolved in

CNS to protect against the older ß-lactams, it was passed on to several staphylococcal species by

horizontal transfer. It has gained access to an increasing number of resident S. aureus lineages during

four major waves, that are characterized by Type A-D restriction patterns also obtained from CNS

(Chapter 5). These types, that problably correspond to the SCCmec Types I-IV described by Ito and

Hiramatsu (3, 14), have all entered several S. aureus lineages and each formed multresistant MRSA.

Indeed, MRSA isolates yielding identical riboprints, showing they are part of one and the same

lineage, may contain different types of SCCmec: they had been formed on separate occasions by the

repeated horizontal transfer events.

SCCmec Type A (SCCmec Type I) sequences found first in European and African Type I

MRSA isolated soon after the introduction of methicillin are characterized by deleted regulatory

genes (15), allowing constitutive expression of PBP2a (16). It was also found in S. haemolyticus,

and S. warneri and, since the 1980s, in Type II MRSA. Although some of the earliest isolates

carrying SCCmec Type A were only resistant to methicillin, other strains displayed multi-drug

resistance.

After a decline in the prevalence of MRSA at the end of the 1960s (17), a new SCCmec type

appeared in Type II MRSA during the 1970’s, which caused major outbreaks in North America.

Because the SCCmec Type B (SCCmec Type II or III) did contain the regulatory genes that were

missing from earlier MRSA, it must have originated in CNS, like S. epidermidis, which carried these

regulatory sequences as well (15). SCCmec Type B rapidly proved capable of entering additional S.



aureus lineages, forming mostly multiresistant clones.

The Type C SCCmec (SCCmec Type II or III) was detected in five staphylococcal species,

including mostly multiresistant Type I and III MRSA since the 1980’s.

During the 1990’s, SCCmec Type D (SCCmec Type IV) is found in four staphylococcal

species and a wide variety of North American and European S. aureus lineages, including Type I-

VII. These include many of the sporadic MRSA types, which are often only resistant to methicillin,

but also some muliresistant strains.

MRSA in the community

MRSA is emerging in the community in some areas. (1, 18). The PFGE patterns riboprints

and susceptibility patterns of community-acquired strains often differ from typical nosocomial

isolates (19). Many are sporadic MRSA types that hardly found in hospitals, and these isolates are

often only resistant to β-lactams (Chapter 3). Community-acquired MRSA are not descendants of

hospital strains, but arise by the dissemination of a successful SCCmec type by horizontal transfer to

resident MSSA (14). The rise of MRSA infections without predisposing risk factors such as previous

hospitalization coincides with the dissemination of SCCmec Type D in the S. aureus population seen

during the 1990s. In this context, it is important to note that 70-75% of all CNS worldwide are

resistant to methicillin (1), thus representing a huge potential reservoir of resistance. More than other

types, SCCmec Type D, which is found in one third of CNS including S. simulans, S. haemolyticus,

S. lentus, and mainly S. epidermidis, proved capable of entering most MSSA linages. Recently,

transfer of SCCmec Type D from S. epidermidis to S. aureus was witnessed in vivo when a patient

was treated with ß-lactam antibiotics (Chapter 5). It remains unclear, however, whether selection

pressure is required for efficient transfer to occur.

Prospects

While new MRSA strains will continue to emerge, some may acquire additional resistance

traits during dissemination, and become more favored by antibiotic selection pressure. Given the

increasing multidrug resistance among staphylococci, including the emergence of vancomycin-

resistant strains, the terror of unresponsive S. aureus infections may be closer than we think. Without

measures, single multiresistant clones may spread to every corner the world within a decade. This is



very fast, considering the time needed to design and test new antimicrobial compounds. Therefore,

global strategies are needed to control the spread of multiply resistant staphylococci. It should be

clear that, due to the genetic linkage of different combinations of antibiotic resistance traits in mobile

cassettes, the use of old antibiotics may also select for resistance to newer antibiotic compounds.

Unnecessary use of all antibiotics, particularly in household items and agriculture, should therefore

be avoided.

It may prove more successful to think of new strategies to fight MRSA infections. The

adaptation of the cell-wall caused by PBP2a confers methicillin resistance, but may also expose a

weak spot to attack the bacterium. It has been shown that PBP2a is immunogenic when the gene is

expressed in Escherichia coli (20). Using antibodies that recognize the altered cell wall, we may be

able to fight MRSA infections. Alternatively, insight in the mechanisms causing the transition of

heterogeneously-resistant MRSA to homogeneously-resistant MRSA may provide a strategy to fight

MRSA.

Enclaves of low MRSA prevalence are maintained by several countries or even by single

hospitals surrounded by endemic MRSA. This suggests that, by taking the appropriate infection

control measures, particular S. aureus clones can be banned from hospitals. If we wish to enjoy the

benefits of effective antibiotics, we must not allow multiply resistant clones to spread.

Conclusion

The structure of the MRSA population shows frequent formation of SCCmec+ MRSA

genotypes by horizontal transfer from other staphylococcal species. While new MRSA strains will

continue to emerge by the horizontal transfer of mecA, those strains possessing additional resistance

traits are favored most by antibiotic selection pressure and may disseminate widely. SCCmec is

packed with genes reflecting the most relevant change in the bacterial environment during the last 50

years: the introduction of antibiotics. Due to insertion sequences, the structures which carry these

genes, including Tn554, pUB110, and pT181 were captured (21-23). Within years after their

formation, many resistance genes ended up concentrated in mobile chromosome cassettes, which are

transferred between many staphylococcal species. Multiple copies of the insertion sequences

characteristic for Staphylococcal Chromosome Cassettes are present in one sextant of the S. aureus

chromosome, suggesting that, during evolution, related cassettes have been frequently shuttled

between the genomes of staphylococci, allowing rapid exchange of essential genes and forming a

large part of the S. aureus genome (24).
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