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Abstract

Finding patterns is a common act in human intellectual endeavours, and it is a com-
plex challenge tackled by both humans and algorithms. For several decades, musical
pattern discovery algorithms have been researched, and researchers have been com-
paring human-annotated patterns to algorithmic outputs, as well as algorithms to
algorithms. However, traditional metrics have not fully captured the rich insights
that these comparisons could offer. To contribute to the comparisons between mu-
sical pattern discovery mechanisms, this dissertation spans seven chapters.

Chapter 1 provides the background of the dissertation, including an overview,
research approaches, contexts, scope, thesis statement, and an enumeration of
contributions. Chapter 2 delves into the concept of musical patterns and explores
the diverse landscape of musical pattern discovery algorithms. Our exploration
reveals the complexities surrounding the definition of patterns and themultifaceted
nature of these algorithms. Chapter 3 is dedicated to the collection tools for human-
annotated musical patterns and the analysis of factors that influence annotations.
We observe that musical background impacts annotated patterns; tool interfaces
and automatic matching affect the length and frequency of annotations. Chapter
4 introduces four methods tailored for comparing musical pattern discovery
algorithms. These methods provide novel insights into the discrepancies between
human-annotated patterns and their algorithmically extracted counterparts. These
methods provide a more comprehensive approach to comparing algorithms, aiding
in the interpretation and evaluation of algorithmic outputs. Chapter 5 implements
Pattrans, a Domain-Specific Language (DSL) in the functional language Haskell
for comparing musical pattern occurrences through musical transformations. We
delve into its design for uncovering the relations between pattern occurrences in a
modular way. Chapter 6 employs Pattrans to scrutinise transformations between
occurrences of musical patterns. Amongst other findings, we find that human-
annotated patterns tend to have a higher proportion of exact repetitions and that
different algorithms exhibit varying proportions of transformation compared to
human annotations, contributing to amore nuanced view of pattern comparisons.
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In summary, this dissertation not only contributes fresh perspectives to the com-
parison of musical patterns, but also introduces methods and tools that enrich the
field of musical pattern discovery. We examine the concept of musical pattern, con-
duct pattern annotation experiments, and visualise and analyse human-annotated
and algorithmically extracted patterns. In addition, we recognise the potential of the
musical transformations that lie behind repeating and varying pattern occurrences.
Using Haskell, we model the relationship between patterns and transformations.
Following this, we investigate how to employ transformations to relate and clas-
sify musical pattern occurrences. Throughout our journey, we advocate for a more
comprehensive approach to pattern comparison, extending beyond traditional met-
rics.
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Chapter 1 Introduction

De patronen in muziek en alle andere kunstvormen zijn de sleutels tot het verwer-
ven van kennis.

– Plato (translated to Dutch by Scherder (2017))

Music is imbued with recurring patterns and structures. Musicologists study
these patterns to unlock insights into how they are arranged to form pieces of
music and collections of pieces, and to gain insights into the fundamental and
varied roles played by patterns in music. This investigation not only broadens our
understanding of music but may also help refine techniques for music creation,
analysis, and education. The employment of computational methods in this
domain extends our analytical capacity: specifically, these methods can potentially
identify patterns and structures across a greater number of musical pieces and
more complex compositions—beyond what is manageable by human cognition
alone. However, the success of these computational capabilities is contingent upon
their alignment with human understanding of music, necessitating a comparison
between patterns identified by humans and those extracted by computational
methods. Our research is poised to delve into the issue of comparing human-
annotated and computationally extracted patterns, a focus that is also related to
the comparison of human annotations amongst themselves and the evaluation of
different algorithms against each other.
Our motivation to undertake this research is further fuelled by the developments

in multiple fields, including the current state of pattern recognition and pattern dis-
covery algorithms1. from Music Information Retrieval (MIR), corpus studies in
music, and the growing significance of Functional Programming (FP). Specifically,
corpus studies in music enable systematic analysis of large sets of musical pieces,
while FP offers computational modularity. For example, in (Collins, 2011), it is evi-
dent that while algorithms can process pattern discovery tasks faster than humans,
they "are typically not better than humans, as measured by appropriate methods".
1In this dissertation, we use the phrases "pattern discovery", "pattern recognition", and "pattern-
finding algorithms" interchangeably. However, "pattern recognition" is often used to refer to a
broad research area, "pattern discovery" is frequently applied in amusical context, while "pattern-
finding" is a more general term.
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1 Introduction

Despite this discrepancy between humans and algorithms, (Forth, 2012) and others
seek computational methods to assist musicological analysis by identifying patterns
that may be salient in perception. Understanding the similarities and differences
between human-annotated and algorithmically extracted musical patterns, an area
that still holds ample room for further research, holds potential to enrich our existing
methodologies in music pattern discovery.

We begin our contributions by expanding upon existing methodologies for com-
paring musical patterns. We venture into human-to-human comparisons of anno-
tated patterns, a direction that is rare but provides additional insights into auto-
mated pattern discovery. Additionally, we consider and devise four methods for
visualising, combining, classifying, and employing synthetic data, thereby enrich-
ing the traditional metrics used in the field.

Building on these contributions, we turn our attention to musical transformations,
an area that holds largely untappedpotential for both comparing andunderstanding
musical patterns. Traditionally, in the context of evaluating pattern discovery algo-
rithms in MIR, comparisons have relied on direct checking of correspondences be-
tween notes in the human-annotated and algorithmically extracted patterns. How-
ever, musical transformations offer a new lens for delving into the relations within
and betweenmusical patterns, enhancing the analytical powerwhen comparing dif-
ferent musical pattern discovery algorithms. Therefore, the novelty of our approach
in employing transformations lies in shifting the focus from pattern occurrences
themselves to the transformations that interlink them, offering fresh perspectives
on the comparison of musical patterns. In the later chapters of this dissertation,
we aim to develop a computational system that employs these transformations to
understand and exploit the transformational relations amongst musical patterns,
therebyproviding a deeper level of comparison. Our research also intends to explore
the programming language that can effectively handle and combine these musical
transformations compositionally2.

The overarching aim of this dissertation is to enhance the methodology for com-
paring pattern discovery inmusic, both between humans and algorithms andwithin
these groups, by offering empirical evidence and developing tools focused on sym-
bolic, monophonic data. More specifically, we ask and address the following ques-
tions:

2The concept of compositionality is widely used in various fields such as language, mathematics,
and programming. Here, we use the term (as well as "compositionally" and "compositional") to
refer to the idea that complex structures can be built by combining simpler ones. Composition in
music refers to the process of creating a piece of music.

2



• What is the current state of research in the area of musical pattern discovery?
How broad and diverse are the concepts of musical patterns and musical pat-
tern discovery algorithms? (Chapter 2)

• How can we efficiently collect human-annotated musical patterns? Which fac-
tors have an impact on the annotations? (Chapter 3)

• How do we compare human-annotated and algorithmically extracted musical
patterns, as well as amongst different algorithms, beyond existing metrics like
the F1 measures? In what ways do the patterns differ the most and in what
ways are they similar? (Chapter 4)

• Can we identify the transformations that explain the variation between differ-
ent pattern occurrences? More concretely, how do we implement a library to
automate this identification process? (Chapter 5)

• What distinctions or similarities can we see when using a system that employs
musical transformations to analyse patterns? Whatmusical transformations do
we find in patterns extracted by musical pattern discovery algorithms versus
those annotated by humans? (Chapter 6)

The roadmap for the remainder of this chapter is depicted in Figure 1.1. The figure
lays out the chapter’s structure, starting with an overview and background, moving
on to approaches formusical pattern discovery, providing disciplinary context, clari-
fying the research scope, stating the thesis, and finally enumerating contributions.

Overview

Approaches

Disciplinary 
Contexts

Scope

Thesis
Statement

Outline & 
chapter-wise main 

contributions
…

Chapter 1

Chapter 2

Chapter 7

Patterns in music: some examples

Figure 1.1: Roadmap for Chapter 1. Arrows depict the directional flow that shows associ-
ations between sections. We begin with an overview, sketching out the back-
ground and key elements of this dissertation. We then introduce the approaches
we employed for studyingmusical pattern discovery. We also offer a summary of
the disciplinary contexts we will encounter in subsequent chapters. With these
diverse contexts, we distil and detail the scope of our research. Following this, we
crystallise our thesis statement. Lastly, we enumerate our contributions chapter
by chapter.
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1 Introduction

1.1 Overview

Patterns in music: some examples

Pattern Pattern 
Transposed

up down up down

skip steps skip steps

Figure 1.2: Different patterns in a piano étude by Charles-Louis Hanon (The Virtuoso Pi-
anist in 60 Exercises, Part 1, No. 1). We can identify patterns by grouping notes
based on transposition, repeated ascending and descendingmotions, or different
intervallic combinations, as shown in the horizontal brackets.

For centuries, music scholars have been analysing musical scores, using concepts
such as motif, theme, and unit to refer to annotated note collections, some of which
have been referred to as "patterns" in MIR literature. Music scholars annotate as
one way to better understand, interpret, and teach the intricate structures and the-
matic elements of musical pieces and corpora, thereby enriching our appreciation
and knowledge of music. We provide three examples, to give a more intuitive and
concrete idea of patterns that can be seen in music. Figure 1.2 shows the first few
notes of a piano étude. There are a few ways that these notes can be grouped into
patterns: for example, by grouping the first eight notes and noting that the remain-
ing notes are transpositions of these; by grouping together the ascending and de-
scending notes; or by grouping together the skips and the steps. Even in a simple
sequence of notes, describing all the patterns that can be discerned is hardly a simple
matter.

A more musically interesting example is presented in the two bars shown in Fig-
ure 1.3. This example shows how listeners can have two different interpretations of
what the musical patterns are. In fact, this example has been studied: Gabrielsson
(1987) identified that this piece had been published in different editions with differ-

4



1.1 Overview

Figure 1.3: Different patterns inMozart’s AdagioK.331. Twohorizontal brackets indicate the
twoways inwhich themusic can be interpreted in terms of patterns (Gabrielsson,
1987).

ent phrasings3. Furthermore, it was also examined through the lens of the Genera-
tive Theory of Tonal Music by Lerdahl and Jackendoff (1985). As part of this research,
piano performances of the piece with differing interpretations that correspond to
these different phrasings were analysed. This is a prime example of ambiguity in
music interpretation. One may either accept both interpretations or favour one over
the other.

In Figure 1.4, including again the piano étude, we describe a fewmore examples in
plain language and in musical terms. Without relying on specific musical terms, we
can describe how these pattern occurrences relate to each other as follows: in (a),
the second occurrence is based on the first but higher in pitch; in (b1), the second
line of melody is nearly identical to the first, with a minor change in the middle; in
(b2), the entire melody is almost an exact repetition of (b1), with minor changes at
the beginning and the end; in (c), the two bracketed areas are largely identical, with
subtle differences in pitch.

With more precise vocabulary in music, we can describe the pattern occurrences
as follows: in (a), the second occurrence is a tonal transposition of the first, shifted
upward by a whole tone; in (b1), a crotchet in the first line is split into two quavers
in the second; in (b2), the same rhythmic changes as in (b1) apply; in addition, the
second line starts off-beat, and pitches of three notes are changed in comparison to
(b1); in (c), the melodic motif of the first occurrence is transposed by a semitone in
the second occurrence, and the underlying harmony changes from B flat major to F
dominant seventh, and then reverts to B flat major.

3Phrasing refers to the way musical elements are grouped and articulated.
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1 Introduction

(a)

(b1)

(b2)

(c)

Occurrence 1 Occurrence 2

Occurrence 1 Occurrence 2

Occurrence 1 Occurrence 2

(c)

Occurrence 1 Occurrence 2

Occurrence 1

Occurrence 2

Occurrence 3

Occurrence 4

Figure 1.4: Example musical patterns in (a) Piano étude by Charles-Louis Hanon (The Vir-
tuoso Pianist in 60 Exercises, Part 1, No. 1) (b) Dutch folk song: Daar waren drie
loze gezellen (There were three idle journeymen) (3) Classical music: Mozart’s
Minuet, K. 282. Pattern occurrences are indicated by brackets and bolded lines.
Circles are used to highlight the differences between the occurrences.

Patterns discovered by humans and by algorithms

The descriptions above illustrate just one possible set of relationships between pat-
tern occurrences amongst many that may be identified by humans. In other words,
given the same musical excerpts, there might be alternative or multiple interpreta-
tions of the patterns contained within them from different people. Given the diver-
sity of musical patterns, we can therefore begin to appreciate the substantial com-
plexity that can come with automating musical pattern discovery. This complexity
includes, but is not limited to, reconciling different time scales as well as different

6



1.1 Overview

degrees of subjectivity and ambiguity. While we can only provide a limited number
of examples here, the potential of how these examples generalise is even more in-
teresting if one considers all the pieces of music that have been written throughout
human history and all the patterns that could be extracted from them. All of these
ambiguities and varying interpretations pose difficulties for algorithms to work in a
satisfactory way in all contexts.
Over the past few decades, many pattern-finding algorithms have been developed.

Music, rich in its diversity, structure, and cultural and artistic values, is witnessing
increasing automation in its creation and analysis. This dissertation looks into algo-
rithms that can discover patterns in music.
One persistent issue with pattern-finding algorithms is that humans and algo-

rithms tend to find different patterns in differentways. For humans to recognise pat-
terns, a number of cognitive capabilities are typically necessary, such as the ability to
conceptualise and keep the patterns in their minds, as well as the ability to recognise
novel developments and maintain the goal of pattern identification throughout the
process. With a whole host of other differences (VonNeumann et al., 1958), such as
energy efficiency, data efficiency, and complexity, the patterns found bymechanic al-
gorithms can be perplexing and divergent from the patterns perceived by humans.
For example, we often see the complexity of algorithmic output exhibited in the
sheer number of the patterns discovered by machines.
Pattern recognition research aims to bridge the gaps. The gradually increasing

resemblance, as well as some persistent dissimilarities of machine intelligence to
that of humans, prompts comparisons between the two. This comparison, given the
diversity of methods in pattern discovery, is not an easy task. A precise division
between what is recognised as a pattern and what is not is rare, even amongst hu-
mans, who often disagree based on differing schools of thought and perspectives
on pattern recognition. When there are multiple algorithmic results and multiple
human judgements, a careful comparison would be needed.

Implementation and functional programming

The common practice of separating the development of high-level utilities from
the intricacies of low-level coding often results in the occasional oversight of the
relevance of software design and programming languages. While the need for
alignment between the design of implementations and their higher level goals—
especially in terms of capturing appropriate abstractions—is broadly recognised
amongst algorithm designers, our work seeks to underscore this point. In this
dissertation, we illustrate this point by detailing the considerations behind our

7



1 Introduction

decision to implement our tool in the functional programming language, Haskell
(Peyton Jones, 2003).

Functional programming languages, as the name implies, are focused on using
functions (in the mathematical sense) and their compositions. For our purpose of
working with musical patterns and investigating how pattern occurrences relate to
each other, a functional programming language is an advantageous option–we can
then use functions to encode the musical transformations between pattern occur-
rences and make use of functional programming features to devise a more natural
and expressive way to work with patterns and transformations.

The big picture of musical pattern discovery

To summarise and provide an overarching view of the musical pattern discovery
process explored in this dissertation, we present a schematic diagram in Figure 1.5.
From the agent level (where agents are the algorithms or human annotators), to
the corpus level (the collection of musical content), to the intermediate levels (such
as a symphony, a tune, a tune family, and a movement of a piece), to the patterns
in the piece, to the occurrences within these patterns, and eventually, to how these
occurrences relate to each other, wewill look into these relations between the pattern
occurrences and infer back to the piece, the corpus, and the agent levels.

1.2 Approaches to studying musical pattern discovery

With many crucial references to musical pattern discovery, Music Information Re-
trieval (MIR) is the basis for this research. We harness various computational meth-
ods from MIR and draw on knowledge and insights from the fields of musicology,
music theory, and music perception. Specifically, we incorporate musical examples
and theoretical concepts from the literature in these areas. Modelling, category the-
ory, and software engineering perspectives from the research area of functional pro-
gramming are also considered. More concretely, we employ the following relevant
approaches:

• Statistical analysis: used to compare between sets of patterns.

• Machine learning: classification in analysing differences between sets of pat-
terns, synthetic data, with the emphasis on interpretability and explainability.

• Functional programming: using Haskell programs to model the relations be-
tween musical pattern occurrences.

8



1.2 Approaches to studying musical pattern discovery

Figure 1.5: Schematic diagram illustrating musical pattern discovery on different levels.
Starting from the top, we have different pattern discovery agents that operate on
different corpora, which have different intermediate levels. Within these inter-
mediate levels, we have musical patterns and their occurrences. The red arrows
denote the relations between occurrences, which will be one of the foci of this
dissertation, particularly in Chapters 5 and 6.

• Category theory: gives a mathematical framework behind the implementation
of our library/Domain Specific Language (DSL) in Haskell.

We draw from recent advances and traditional methods in these areas to develop
multiple kinds of analysis for musical patterns. We try to recognise the relevant
discourse within various disciplines in the process.

Towards the end of the dissertation, we propose an approach involving the use of
musical transformations. To study the differences and commonalities between dif-
ferent annotators and algorithms, we employ a set of transformations to compare
different pattern occurrences by grouping these occurrences according to the trans-
formations between them. The transformations we consider are musically meaning-
ful and have been employed as techniques in composing music (Schoenberg, 1967),
such as transposition in pitch and time. Using transformations, we compare pat-
terns from different annotators and algorithms based on their underlying relations,
as described through musical transformations, which sheds light on the potential
and effective criteria these annotators and algorithms may have used to discover the
patterns.

9



1 Introduction

1.3 Disciplinary contexts: a summary

In this section, we provide a brief summary of the disciplinary contexts underpin-
ning this research. We only offer a high-level summary of the topics here, and each
chapter provides a more comprehensive overview of relevant work. Furthermore,
Chapter 2 is devoted to establishing the academic backgrounds and contexts of our
work.

1.3.1 Pattern discovery in music information retrieval

Established in 2005, the The Music Information Retrieval Evaluation eXchange
(MIREX) initiative gathers tasks such as chord estimation and key detection to fa-
cilitate comparison of algorithms within MIR. The pattern discovery task in MIREX
started in 2014. The full name of theMIREX pattern discovery task is the "Discovery
of repeated themes & sections" task. Other typical MIREX tasks include segmenta-
tion, beat tracking, and chord labelling. Evaluation metrics that have been widely
used are cross-entropy, accuracy, precision, recall, and F1-scores. Wemake use of the
dataset and algorithms submitted for this "Discovery of repeated themes& sections"
MIREX task. As the patterns and algorithms we compare are closely related to this
task, we will provide more information about this task in subsequent chapters.

1.3.2 Musicology, music theory, psychology, and cognition

In this dissertation, we delve into the organised aspect of music, as defined by Edgar
Varèse who described music as "organized sound" in the 1940s (Varèse, 1940). Our
exploration, specifically revolving around musical patterns, draws inspiration from
several areas of research such as musicology, music theory, psychology, and cogni-
tive science.
Varèse’s description separates out two aspects of music: the abstract structure (or-

ganisation) and the physical vibration (sound). While concise and potent, this def-
inition is not neutral or without controversy, and it reflects Varèse’s particular aes-
thetic vision formusic. Speech, for example, can be seen as organised sound, but not
as music in the traditional sense. Furthermore, some of the organisations employed
by composers do not have to be audible by listeners. More generally, it is difficult to
be exact with the meaning of the words "organised" and "sound", because they are
concerned with human cognition and perception. In the broadest sense, cognitive
science is the analytical study of the human mind (Lent, 2017). Perception is mostly
concerned with sensory input, but it may also be considered as a form of a cognitive
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1.3 Disciplinary contexts: a summary

process. Both perceptual and cognitive aspects are studied under the psychology
of music (Deutsch, 2019). Music is fundamentally psychological, as it can hardly be
considered music if it does not involve human listening experience.

Music cognition and perception are interwoven with music theory and musicol-
ogy. Ockelford (2017) provides a summary of the diversity of music theory and anal-
ysis:

". . .music theory and analysis take many different forms, and various at-
tempts at classification have been made. Nicholas Cook, for example, di-
vides analysis into ’traditional methods’, such as those of Donald Tovey
and Charles Rosen; ’Schenkerian analysis’; so-called ’psychological ap-
proaches’ (principally those of Leonard Meyer and Rudolph Réti); ’for-
mal approaches’ (including thework ofAllen Forte and Jean-JacquesNat-
tiez); and ’comparative analysis’ (through Charles Adams’s classification
of melodic contours, for example, and Alan Lomax’s ’cantometrics’)."

While it is possible to use specialised music-theoretic terminology for each genre
and individual composer, our aim is to explore computational modelling that can
model symbolic music more generally. From this general aspect, we are motivated
by the importance of repetition and variation in music theory and psychology. In
fact, repetition and variation are vitally important in music research (Huron, 2006;
Margulis, 2014; Ockelford, 2017; Temperley, 2014; Volk et al., 2012; Zbikowski, 2002), and
they are one of the key themes of this dissertation, as reflected in its title.

1.3.3 Functional programming, pattern, and transformation

To realise any computational idea from the ground up, we can either write pro-
grams in a specific programming language or rely on pre-existing software that we
are familiar with and trust. Although writing code or using software is not always
considered a scientific contribution in and of itself, they are often the very things
upon which we base our analysis.

For our analysis, facing the choice between different software or programming
languages, we opted for a functional programming language. Several advantages of
using the functional programming language Haskell include the support for com-
positionality and modularity, ease of using higher-order functions4, and a powerful
type system5. More concretely, while we do not use Haskell’s advanced type-level

4Higher-order functions are essentially functions that take other functions as input and return func-
tions as output.

5Type systems aid in managing types in programs. Broadly speaking, types are properties that are
assigned to terms, such as variables and functions.
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features such as type families and data kinds, and any other strongly-typed func-
tional programming language could suffice, we nevertheless employ typeclasses6,
contravariant bifunctors7, and define higher-order functions in our Haskell imple-
mentation, thereby enhancing the compositionality andmodularitywhenusingmu-
sical transformations to examine musical patterns.
Combining the thinking of functional programming and pattern discovery, we ar-

rive at the conclusion that patterns can be examined through transformations, which
can be encoded as functions and used compositionally in Haskell. Musical transfor-
mations are common in composition, analysis, and psychology, and can be manip-
ulated in Haskell with ease.

1.4 Scope

In this section, we explain the concrete scope of the dissertation. Our analyses are
scoped by using monophonic, (semi)symbolic MIDI data, MIREX algorithms and
format of musical patterns, with a focus on intra-pattern and inter-occurrence anal-
ysis. We believe that within this well-defined scope, albeit small in contrast to the
complexities of such large topics as patterns and music, we can make direct and
deep contributions to the field. We expand the discussion on our choice of scope
below.

1.4.1 Restriction to monophonic data

We concentrate on and use monophonic data in this dissertation because mono-
phonic data removes the complexity of polyphony, paraphony8, or heterophony9.
Pattern discovery in monophonic music is not a trivial problem either, as there are
many intriguing melodic designs in folk music, jazz, pop, classical, and plenty of
research focuses solely on monophonic music. We use monophonic data as the first
step toward greater complexity.
However, we do bear in mind that we will miss the cross-voice patterns, harmonic

patterns, and abstractions to chords. This underlying harmony is often a more ef-
ficient representation, and using monophonic data might be extra challenging in
6In Haskell, a type class allows functions to operate on multiple types that share certain behaviour
(for more details, see Chapter 5).

7A contravariant bifunctor in functional programming is a type constructor that is contravariant in
one argument and covariant in another (for more details, see Chapter 5).

8Paraphony is when multiple voices or instruments play the same melody while sharing some ele-
ments, such as playing in intervals of fifths.

9Heterophony is a musical texture where multiple voices or instruments perform variations of the
same melody simultaneously.
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some cases if we do not consider the underlying harmony. Some of the monophonic
data we use are in fact derived from polyphonic music using the clipped-skyline
approach (detailed in Appendix A.1) to select notes from the polyphonic pieces.

1.4.2 Restriction to symbolic data

We focus on (semi)symbolic data because it provides us with more directly inter-
pretable information which, when compared to acoustic signals, is less obscured by
extraneous elements such as the recording environment and devices. Converting
from acoustic information to symbolic representation is known as automatic tran-
scription, which is a research topic of its own.

More specifically, we opted for Musical Instrument Digital Interface (MIDI) as
the main input format, primarily due to its ease of playback and its status as a
standard format for many software applications. MIDI is sometimes also known as
(semi)symbolic rather than symbolic because it lacks the power to express certain
constructs in sheet music, such as pitch spelling. With certain algorithms, we use
other types of input, the MIREX Lisp and CSV formats, which added in morphetic
pitch10 (Meredith, 2006).

1.4.3 Datasets and generalisability

The size of datasets matters as it is related to the problem of overfitting, which we
will explore more in Chapters 3 and 4. With the recent investigation into the biases
inmusic theory (Ewell, 2020), there has been an outcry that wemust confront contin-
ued reliance on small, unrepresentative corpora. In music theory and musicology
books, some typical numbers of pieces and examples analysed are approximately
40 pieces for Schenker, 288 examples for Caplin, and 552 examples for Hepokoski
Darcy (London, 2021). Amongst these, 25/40, 288/288, and 383/552 are from the
composers Bach, Haydn, Mozart, and Beethoven (London, 2021). It also was argued
that a lack of diversity could have significant effects on howwe think about musical
structure (howwe "domusic theory") and on howwe think about howwe hear and
understand music (how we "do music cognition"). We, therefore, strive to include
a diverse range of music data, but some of the available datasets we use do have a
bias towards these classical Western composers as well.

10Morphetic pitch refers to the musical pitch of a note in relation to its function within a specific
tonal context. Please refer to (Meredith, 2006) for more detail.
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An appendix at the end of this dissertation provides detailed information about
the datasets used in the various chapters. We also provide a summary of the dataset
characteristics when used in each chapter.

1.4.4 Format of patterns

The main format we use to encode patterns and their occurrences is the MIREX for-
mat. Algorithms submitted to theMIREXplatform all produce this type of encoding
as shown in the example after this paragraph of text. The format always starts with
pattern1 on the first line, occurrence1 on the second line, followed by the times-
tamp andMIDI pitch value of the notes consist of the patterns on the following lines.
Each note takes a line, until the end of the pattern occurrences, where the next head-
ing of pattern i or occurrence i occupies the next line. The encodingswe use are
widely and currently used in the research of pattern discovery in music (de Reuse &
Fujinaga, 2019; Meredith, 2019).

pattern1
occurrence1
17.00000, 74.00000
17.50000, 74.00000
18.00000, 74.00000
21.50000, 74.00000
22.00000, 72.00000
occurrence2
26.00000, 69.00000
26.50000, 69.00000
27.00000, 69.00000
30.50000, 69.00000
31.00000, 67.00000
occurrence3
46.00000, 71.00000
46.50000, 71.00000
47.00000, 71.00000
50.50000, 71.00000
51.00000, 69.00000
occurrence4
. . .
occurrence19
pattern2
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1.5 Thesis statement

occurrence1
. . .
pattern45
. . .

1.4.5 Inter- Intra- opus and patterns

Conklin (2010) presents two forms of pattern discovery: inter-opus (discovering pat-
terns recurring across a number of pieces in a corpus) and intra-opus (discovering
patterns repeating within a single piece). To simulate intra-opus from inter-opus,
one can concatenate multiple pieces into a single file. However, this approach does
not render them exactly equivalent, as patternsmay be discovered at the boundaries
of the concatenated pieces. In addition, the order of the concatenation becomes im-
portant, and the memory requirements for the two tasks differ substantially.
The human-annotated patterns in The Meertens Tune Collections: The Annotated

Corpus (MTC-ANN) are inter-opus, while other annotations are intra-opus; thus,
we do have a focus on intra-opus pattern discovery. We also use the simulation
method described in the previous paragraph.
This distinction between inter- and intra- can be applied to the analysis and pat-

terns, too. Inter-pattern analysis would focus on analysing patterns in the broader
context of multiple patterns, whereas intra-pattern analysis would focus on the re-
lations between occurrences within a single pattern. Our transformation-based ap-
proach is very much suited to the intra-pattern analysis.

1.5 Thesis statement

Now that we have defined the scope, inspected disciplinary contexts, considered the
approaches and the background overview, we can encapsulate a thesis statement for
this dissertation. In this dissertation, we strive to make the following argument:

Human-perceived musical patterns, a type of highly subjective and ubiq-
uitous abstraction, have important connections to musical transforma-
tions, which, when explored compositionally through a functional pro-
gramming language, informs both human-to-algorithm and algorithm-
to-algorithm comparisons of discovered musical patterns.

We unpack this sentence into three main aspects: understanding patterns, estab-
lishing connections to transformations, and employing a functional programming
language. Chapter 2 focuses on the understanding of patterns and existing musi-
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cal pattern discovery algorithms. Chapter 3 examines human-annotated patterns
and potential tools to facilitate the annotation process. Chapter 4 compares musical
pattern discovery algorithms, introducing four methods for comparison and reveal-
ing the critical role of rhythmic features. Chapter 5 presents our implementation
of the musical transformations in Haskell, the functional programming language of
our choice. Chapter 6 delves into the analysis of musical patterns using our Haskell
implementation, along with an array of other computational methods. A more ex-
tensive description of the outline of this dissertation is provided in the ensuing sec-
tion.

1.6 Dissertation outline and chapter-wise main
contributions

The overall structure of this dissertation takes the form of seven chapters. We will
go through the chapters, stating their connections to our publications (also see Ap-
pendix B) and highlighting their contents and aims, while noting the challenges
encountered.

Chapter 1 Introduction

This chapter provides the reader with a bird’s eye view of the dissertation. We de-
scribe the approaches used in this dissertation. We also go over the research land-
scape and the scope we take. We put forward our thesis statement and the outline
of the dissertation to substantiate the thesis.

Chapter 2 Patterns and Pattern Discovery

In this chapter, we introduce relevant work centred around the concept of musical
patterns. By examining the literature in the field of musicology, music theory, and
pattern discovery algorithms, we demonstrate the breadth and diversity of the field
of musical pattern discovery. We create a list of related concepts to establish their
relevance (or lack thereof) to this dissertation. We also introduce algorithms that
discover musical patterns.
Through this process, we grapple with the following challenges: the concept is

studied in various fields such as MIR, cognition, and musicology, each with their
own terminologies and concepts—in other words, no agreed-upon definition exists
for what constitutes a "pattern". Patterns are also central to music and are inter-
twined with other crucial concepts like similarity, boundaries, and segments, which
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leads to them being studied within these different contexts for various purposes.
Amidst this, a plethora of pattern discovery algorithms exist, involving different
methods, and which would work best in what context remains unclear. This chap-
ter aims to provide an overview of this complex landscape and to highlight the need
for comprehensive methods of algorithm comparisons to advance the field of pat-
tern discovery in music.

Chapter 3 Gathering Human-Annotated Musical Patterns

This chapter is based on the following published papers (Ren, Koops, et al., 2018;
Tomašević et al., 2021)11. In this chapter, we discuss issues regarding human-
annotated musical patterns, including how annotation tools and the annotators’
musical backgrounds affect the annotated patterns. Our contribution includes the
development, comparison, and discussion of two annotation tools and experiments.
We consider their functionality, the datasets they generate, and the consequential
impact that using such reference data has on the evaluation process of pattern
discovery algorithms.
Through this process, we encounter the following challenges: there is a lack of

annotated musical patterns datasets to serve as reference data for evaluating the al-
gorithms in the field. As a result, human-algorithm comparisons are often based on
a small pool of annotators, leaving us little understanding of how much annotators
agree or disagree, which is not a good base for evaluating the algorithms. Therefore,
this chapter aims to develop digital tools for data gathering and to analyse their im-
pact on both the annotation process and the annotated patterns.

Chapter 4 Comparisons of Musical Pattern Discovery Algorithms

This chapter is based on the following published papers (Ren et al., 2017; Ren, Volk,
et al., 2018). We examine up to thirteen musical pattern discovery algorithms. To
compare them, we propose fourmethods as ourmain contribution of this chapter:

• Location and Feature Visualisation, a method we devised (LFV): We devise
new visualisation methods as well as using existing ones to examine a large
number of patterns.

• Pattern Polling, a method we devised (PP): We devise PP to extract musical
patterns based on consensus from various algorithms. We demonstrate that
while there are encouraging correspondences between our results and human

11Tomašević was the primary contributor to the implementation of the annotation tool, PAF, while
Ren contributed to the development of the methodologies and provided input for the analysis, as
well as participated in subsequent revisions of the paper.
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annotations, discrepancies between the outputs fromdifferent algorithms pose
a major barrier to achieving significant improvements in accuracy.

• Comparative Classification, a method we devised (CC): We leverage the dis-
criminative power of classification algorithms to compare features extracted
from algorithmically discovered, hand-annotated, and randomly selected ex-
cerpts. In this process of distinguishing between musical patterns of different
origins, we discover that rhythmic features play the most important role.

• Synthetic Pattern Insertion, a method we devised (SPI): We examine various
algorithms using synthetic data (random data with musical patterns planted
within it) to better understand the behaviour of algorithms. We discover that
some algorithms perform as expected and retrieve the planted patterns while
others do not.

Through this process, the complexity and diversity of musical pattern discovery
algorithms pose challenges, particularly when algorithms employ black-box opti-
misations or other types of complex mechanisms that produce a potentially large
amount of difficult-to-interpret results—we encounter difficulties in selecting, ex-
plaining, and understanding the algorithms. Existing evaluation methods, such
as numerical comparisons in MIREX that focus on pitch-and-onset-content, offer
limited insight into the specific strengths and weaknesses of individual algorithms.
Moreover, human-annotated and algorithmically extracted musical patterns tend to
differ, which warrants systematic investigation for improving the algorithms. This
chapter aims to extend existing approaches by developing LFV, PP, CC, and SPI.

Chapter 5 Modelling Patterns with Transformations using Haskell

This chapter is based on previously published work of (Melkonian et al., 2019)12. Us-
ing transformations, we create a framework for comparing musical patterns by de-
scribing the relations between pattern occurrences, drawing upon well-known ab-
stractions from category theory. We also provide a Haskell implementation of the
model, Pattrans, in the form of an embedded DSL, which is the main contribution
of this chapter.
Through this process, we face the continuing challenge that existing comparison

methods are largely centred on the individual elements of pitch-and-onset content
within patterns. However, we believe that assessing the usefulness of the extracted
patterns for specific contexts hinges upon capturing the relations between the oc-
currences that make up these patterns. To realise this perspective, this chapter aims
12Melkonian was the main contributor to the code base, while Ren focused on developing the con-

ceptual framework and providing the necessary data.
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to develop an efficient tool to articulate these relations in terms of musical transfor-
mations.

Chapter 6 Using Transformations to Understand the Relations between Pattern
Occurrences

By applying Pattrans to both human-annotated and algorithmically extracted pat-
terns, we classify pattern occurrences according to the transformations that relate
them to the prototype pattern. Subsequently, we compute the relative percentages
of specific transformations and compare these across different annotators and algo-
rithms. Using this data, we explore how to use musical transformations to relate
and classify musical pattern occurrences, thereby demonstrating the efficacy of this
approach in examining musical patterns. This chapter contributes to uncovering
how a large proportion of the pattern occurrence relations in human annotations
can be explained by a limited number of transformations we have implemented in
Pattrans, such as exact repetition and chromatic transposition. We also demonstrate
that human-annotated patterns and several algorithmically extracted patterns con-
tain radically different proportions of musical transformations in certain datasets.
Through this process, we further confront the challenges of comparing pattern

discovery algorithms, particularly in terms of the algorithms’ large output size and
the difficulty of relating these output patterns back to meaningful musical concepts.
Therefore, we aim to use Pattrans to describe the relations between occurrences of
patterns through transformations as musically meaningful concepts, as well as to
group the pattern occurrences using musical transformations, thereby managing
the large output size.

Chapter 7 Conclusions and Future Work

This chapter summarises the dissertation, encapsulating the main arguments,
methodologies, and findings. In addition, this chapter discusses potential appli-
cations of this research, outlines its limitations, and suggests avenues for future
work.
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Chapter 2 Patterns and Pattern
Discovery

Humans are pattern-seeking story-telling animals, andwe are quite adept at telling
stories about patterns, whether they exist or not.

– Michael Shermer

2.1 Introduction

Contribution of this chapter

In this literature review chapter, we examine an array of definitions of the term "mu-
sical pattern" and its related concepts inMIR andmusic theory, as well as a selection
of musical pattern discovery algorithms to address the following questions:

• What is the relevant work in this area of research?
• How broad and diverse are musical patterns and musical pattern discovery

algorithms?
By examining the literature, we demonstrate the breadth and diversity of the field

of musical pattern discovery. We will also discuss the potential challenges posed by
the field’s breadth and diversity.

Musical patterns

When speaking of musical patterns, a diverse range of examples might come to
mind, such as the purposeful patterns in études, the slick patterns in jazz, the elegant
patterns inminimalist music, the textbook examples of fugues, a few notes from folk
music, and themes and motifs from classical music. If one has a stronger affinity for
music theory, constructs such as schemata, leitmotif, subject, and counter-subject
might come to mind.
Musical patterns have been described in different ways, too. Assuming motifs are

a type of pattern, the following are several different descriptions of a motif. Ac-
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cording to Webern, they are "the smallest independent particle in a musical idea"
(Webern, 1963). For Whitehead, they are a "structural unit possessing thematic iden-
tity" (Whitehead&Price, 2001). Schoenberg commented from adifferent point of view
that it is "a unit which contains one ormore features of interval and rhythm [whose]
presence is maintained in constant use throughout a piece" (Cambell, 2010). Webern,
Whitehead, and Shoenberg used an array of words such as structure, theme, seg-
ment, unit, and manymore to describe this one type of pattern. What would we use
to connect the terms?
We make the connection that all kinds of patterns share a certain degree of repeti-

tion and variation. Given the importance and relevance of repetition and variation
in music, in this dissertation, we take the studies behindmusical repetitions (Huron,
2006; Margulis, 2014; Ockelford, 2017; Temperley, 2014; Volk et al., 2012; Zbikowski, 2002)
as one of the inspirations for this research.

Patterns and their repetition in music

There are two approaches to reaching a deeper understanding of the patterns in
existing music: one can ask listeners to point them out (a data-driven, bottom-up
approach), or one can theorise and define a priori the interesting patterns to find
(a top-down, rule-based approach). For the first approach, one needs to conduct
general listener annotation experiments, which will be the topic of the next chapter.
For the second approach, one needs to examine different theories of music in further
detail, which is what this chapter will do.
Musicians have been found to agree to a degree on the importance of patterns in

music, although this agreement is not always perfect (Collins, 2011; Giraud et al., 2016;
Ren, Koops, et al., 2018). Several contentious questions include the following:

• When does a pattern begin and end?
• How important must a passage be in order for it to be called a pattern?
• What is the minimum length of a pattern?
• Have all of the occurrences of a pattern been discovered?

We will discuss later in the chapter how patterns connect to other concepts and
features such as boundaries and length of a pattern.

Musical pattern discovery algorithms

The diversity of musical patterns we address in this chapter is something to keep
in mind when automating the pattern discovery process. If we would like to create
a generalisable algorithm to discover and reuse the patterns in our data, we will
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also run into the question of how to compare patterns discovered by humans and
machines, which we will address in Chapter 4. In this chapter, we will make some
connections between the concept of musical pattern and musical pattern discovery
algorithms, as well as introduce a selection of algorithms, including those that will
be used in our experiments in subsequent chapters (Chapter 4 and 6).

2.2 Pattern as a concept

This section is dedicated to providingmultiple viewpoints on the concept of pattern.
In our context, having these concepts of what a pattern is can be important in terms
of what it might entail for the design of the annotation experiments, algorithms, and
their evaluation.

Definition from previous works

We can see different definitions of pattern in the field of MIR:

• "A melodic pattern is defined by a set of either identical or ‘equipollent’ (i.e.
significantly similar) sequence segments." (Rolland, 1999)

• "The term ’pattern’ here basically refers to N-grams, i.e. subsequences, of
melodic abstractions." (Pfleiderer et al., 2019)

• "A pattern is defined as a set of ontime-pitch pairs that occurs at least twice
(i.e. is repeated at least once) in a piece of music" (Collins, 2011) and (Collins,
2014), which is also the definition used in the MIREX task.

These definitions seem to agree that a pattern is made up of a few notes that repeat
exactly or inexactly. This commonality leads to two issues, at least. The first is to
determine when an inexact repetition ceases to be a repetition. The second is to
distinguish patterns that are trivial or created by chance from patterns that are more
worthwhile and created by design.

Both issues have also been discussed in previous works of musical pattern dis-
covery algorithms. Regarding the distinction between exact and inexact repetition,
we see in (Forth & Wiggins, 2009) that ". . . repetition may exist in many forms be-
yond the exact repetition of musical events in sequence. . . In the context of compu-
tational analysis, therefore, careful consideration must be given to the notion of pat-
tern equality". Regarding the difficulty to find more meaningful repetition, it was
mentioned in (Meredith et al., 2002) that ". . . the identification of perceptually signifi-
cant repetitions is an essential step in the process by which an expert listener inter-
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prets a musical work. . . However, the vast majority of exact repetitions in music are
not perceptually significant".
We agree with the above views. We also note that, more specifically, a short se-

quence is likely to occur often in all kinds of music by chance; for example, two
successive notes differing by a whole step. Therefore, we would naturally doubt
whether such two-note combinations are meaningful patterns where a composer
thought through it as a distinctive figure worthy of repetition and development.
Longer note sequences that occur repeatedly are more likely to be a product of de-
sign than of chance, but they are more likely to have complex changes between oc-
currences that render the inexact repetition cease to be a repetition. Throughout the
chapters, we have these two issues as a central theme of our discussion.

Intensional and extensional definitions; necessary and sufficient conditions

Having reviewed a series of definitions, let us distinguish two common approaches
to giving definitions. Intensional definitions are given by necessary and sufficient
conditions. Extensional definitions are given by a compilation of things that may
come under the definition. So far, the majority of what we have seen is intensional.
An extensional definition stems from a dataset, something like the figure examples
given in Chapter 1, in affinity to the data-driven approach.
These two types of definitions are also referred to as intensional specifications and

extensional realisations. We introduce them here, not to have a full ontological and
epistemological debate, but to acknowledge that pattern can be defined in at least
these two different ways.
For intensional definitions, the next question to ask iswhat are the typical variables

in the necessary and sufficient conditions for a passage in the music to be identified
as a pattern. Sufficient conditions provide the predicates of the purposes of patterns,
showing possibly some rules and algorithms to extract the patterns. Necessary con-
ditions are characteristics, more likely to be inferred from statistical data analysis.
Necessary conditions provide clues as to what is more likely to be musical patterns,
and they are also filters as to what is preferred not to be regarded as patterns in a
certain type of corpus or for a specific purpose. For example, there have been filters
based on length, frequency, spacing, and similarity (Janssen, 2018). When a condi-
tion is both sufficient and necessary, we arrive at an "if and only if" condition, which
we have not come across in the literature we examined.
To give some idea, a sufficient condition for a part in music to be a pattern could

be as follows: if passageA = passage B, thenA and B are the two passages that form
the musical pattern. In other words, only when two passages are an exact repetition
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of each other do they belong to a pattern. Another example might be that, if A =

Transposition(B), A and B are the two passages that form the musical pattern.
In other words, up to transposition, two passages are considered as belonging to a
pattern.

A very loose necessary condition could be the following: passage A and passage
B have to have at least n intervals in common to be considered as belonging to a
pattern. We may call this type of pattern intervallic patterns. A stricter necessary
condition could be that passageA and passageBmust at least have the same rhythm
to be considered as belonging to the same pattern. We may call this type of pattern
metric patterns. Some datasets and algorithms impose the necessary condition that
passages have to be of length l to be considered (belonging to) a pattern. We believe
these type of conditions can be useful in certain scenarios, but when used without
attention to context and with unsuitable parameters, results can be limited in their
fruitfulness.

Patterns that fall in the scope of interest

As mentioned at the beginning of this chapter, we are interested in repetition and
variations and their relations to patterns. In later chapters, wewill see that this leads
us to the concept of transformation anduse it to describe howone pattern occurrence
connects to another.

We are also going to take excerpts of music as musical patterns from human an-
notations and algorithmic output. These excerpts can be viewed as a kind of exten-
sional definition for some humans and algorithms, and we would like to approxi-
mate them by using our intensional definitions.

The categorisation of patterns is not considered

One can categorisemusical patterns according to differentmusical dimensions (Volk
et al., 2012). For example, one can differentiate between temporal patterns, pitch
patterns, melodic patterns, and harmonic patterns. In this dissertation, we do not
make hard distinctions between these categories. The reason for this is twofold.
First, as our focus is onmonophonic data, we do not have a strong tie with harmonic
patterns, although we acknowledge that they are of extreme importance in many
applications, as discussed in Section 1.4.1. Second, there is no guarantee that no
patterns lie in the overlap or the gaps between these categories. We do, however,
concede that a taxonomyor ontology ofmusical patterns could give useful insight.
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2 Patterns and Pattern Discovery

2.3 Musical patterns and related concepts

In previous sections, we have visited a variety of definitions of pattern. This section
examines a range of terms associated with the concept of patterns, including seg-
ment, structure, motif, and so on. We will see their (dis)similarity to the word pat-
tern, as well as create connections to some algorithmswhere these terms are used.

2.3.1 Related concepts in MIR

In this section, we introduce seven concept groups that are frequently encountered
in MIR and other generic fields of related research.

Boundary

There aremany symbols formarking boundaries inmusical notation, such as the bar
lines and the repeat sign. There are also boundaries created by rests in the music,
analogous to the punctuation in natural language. However, there also exist bound-
aries in music that are not written out; for example, within a bar of dense notes
without rest, it is still possible for humans to demarcate one part from another, as
we have shown in previous chapters, especially in Figure 1.2.

In relation to pattern and repetition, we largely concurwith the statement that "pat-
terns are defined primarily by virtue of repetition; cues such as surrounding silence,
phrase boundaries, andmeasure lines are secondary factors that composers and per-
formers can exploit to highlight or hide pattern occurrences." (Collins et al., n.d.). No-
tated boundaries and boundaries that are not written out are indeed sometimes the
boundaries of musical patterns. Conversely, given musical pattern instances, the
beginnings and endings of these instances may serve as boundaries in the music.
There are also patterns that cross boundaries, such as in jazz music, where patterns
on sheet music can go over the bar lines.

In terms of applications, finding boundaries can be an important step in au-
tomating the editing, analysis, and creation of music, if not more. When one
attempts to automate boundary detection in music, one could start by examining
the boundaries directly or indirectly by examining musical patterns when they are
available. The above-mentioned method has been explored in (Müller & Grosche,
2012; RodríguezLópez & Volk, 2015) with promising results.
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Segment and section

Both the terms "segment" and "section" in the music domain refer to a passage of
music, with the conventions sometimes that sections are longer than segments. It
is very common to spot segments and sections in music, just as in the visual do-
main: segments and sections of varying sizes can often be seen in virtually every
composition of image and sound.

The segmentation task in MIR is the act of performing segmentation to break a
whole into parts. As there has been no ongoing study on the "sectionalisation" task,
we will focus on segmentation.

Performing segmentation inmusic is inextricably linked to the boundary detection
and pattern discovery we discussed previously. While the boundaries of patterns
may delimit their beginnings and endings, performing segmentation often does not
distinguish between the beginnings and endings—the ending of a previous segment
is the beginning of the next segment. There are two more differences between pat-
tern finding and segmentation:

• Unlike segmentation, the output of a pattern discovery algorithm or process
does not always cover the entire piece of music, while segmentation normally
does.

• Patterns can overlap with and nest within each other, while the segments do
not usually overlap.

There are commonalities between the pattern discovery and the segmentation task
in terms of the challenges faced by both. The boundaries of segments are very likely
to correspond to the boundaries of patterns. Like the concept of pattern, the concept
of segmentation also connects to music-theoretic concepts such as figure, phrase,
and section (RodríguezLópez, 2016). As put in (Monelle, 2014), a pessimistic view
about segmentation is that "Segmentation in music will always be ultimately based
on intuition, because the relation of phonology and semantics, of expression and
content, functions different in music." There have, however, been strides made on
this front by the MIR community (RodríguezLópez et al., 2014; Wiering et al., 2009).
In addition, more discussion between the concept of pattern and segment can be
found in previous work of musical pattern discovery algorithms such as (Lartillot,
2004; Velarde et al., 2016).
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Feature and viewpoint

A feature is a measurable property or characteristic of a phenomenon being ob-
served (Bishop, 2006). This term is widely used in the context of machine learning
and pattern recognition.

A related term in computational music analysis is the viewpoint, which is intro-
duced by Darrel Conklin (Conklin & Anagnostopoulou, 2001) and can be viewed as a
type of musical feature. Examples include interval and duration (Conklin & Anag-
nostopoulou, 2001). A viewpoint may be represented as a series of symbols. We tend
to use the two terms interchangeably.

The important connection to patterns is that features may be used to determine
patterns. It is often the case that patterns are viewed as such due to certain features
they possess. For instance, Beethoven’s 5th symphony is famous for its [unison,
unison, unison, -3] intervallic pattern (Zbikowski, 2002).

A feature can be computationally learned from data or engineered based on do-
main knowledge. One of the benefits of leveraging deep learningmodels is that they
circumvent the need to manually engineer features. In this dissertation, we will not
use learned features, but rather predetermined ones. We will use feature analysis
in subsequent chapters to demonstrate further connections between patterns and
features.

Similarity, distance, and energy

Hahn et al. (2003) describes similarity as "a broad concept that can be seen as an ex-
planatory construct in the research area of memory retrieval, categoristaion, prob-
lem solving, learning, linguistic knowledge, and processing, reasoning, as well as
social judgement". Music similarity is a research topic on its own in MIR (Cam-
bouropoulos, 2001; Park et al., 2019; Volk et al., 2012; Volk & VanKranenburg, 2012). Vari-
ous distance measures are employed together to investigate similarity (Janssen et al.,
2017), such as edit distance and earthmover’s distance (Typke et al., 2007). In addition,
taking inspiration from physics, one may think about the similarity and distance to-
getherwith howmuch energy is needed to transport from one set ofweighted points
to another set of weighted points. These concepts relate closely to musical patterns,
as we will detail below.

Reti (1951) used four degrees of similarity to describe relations between musical
patterns: imitation ("literal repetition of shapes, either directly or by inversion,
reversion. . . "), variation ("changing of shapes in a slight, well traceable manner"),
transformation ("creating essentially new shapes, though preserving the original
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substance"), and indirect affinity ("producing an affinity between independent
shapes through contributory features"). Other variations on these relations include
relative repetition, ornamentation, substantive transformation (Serafine, 1988);
and recurrence, development, response, contrast (LaRue, 1992). These degrees of
similarity are, however, difficult to convert into a computational language.

Let us consider the connections with repetition and variation that might help with
this situation. Similarity measures may determine whether there is a repetition to a
certain extent. Examples include having maximal similarity may be treated equiv-
alently as having exact repetition, and having minimal similarity then corresponds
to having heavily mutated variation. We will look at repetition and variation more
closely in Section 2.3.2 in the context of music. More discussion about different as-
pects of similarity will come up in later chapters, as well.

Through better understanding music similarity, we may peek into the wider im-
portance of similarity in our understanding of other concepts in the world. Here,
we move on to look at similarity in a broader sense, focusing on the divide between
the intuitively understood notion of similarity by humans and the difficulty in con-
verting it to computational systems.

Similarity can help explain object recognition, category forming, conceptual
knowledge structuring, behavioural prediction based on experience (Hebart et al.,
2020). Goldstone and Son (2012) listed four major classes of models that have been
proposed for how humans assess similarities:

"In geometric models, entities are represented by their positions in a mul-
tidimensional space, and similarity is based on the proximity of entities
in this space. In featural models, entities are described by their features,
and the similarity of entities is an increasing function of their shared fea-
tures and/or a decreasing function of their unique features. In alignment-
based models, the similarity between two structured entities is calculated
by placing the elements of their structures into correspondence. In trans-
formational models, the similarity between two entities is conceptualized
as the number of transformations required to transform one entity into
the other. "

Indeed, the geometric models are linked to distances, allowing for the differences
to be encoded in terms of distance. For the featural model, the features we dis-
cussed in the previous section may indeed be used to calculate similarity. For the
alignment-based models, they have been computationally explored in MIR as well
(Bountouridis, 2018). Transformation is something we are going to consider later in
this dissertation (Chapter 5 and onwards).

29



2 Patterns and Pattern Discovery

Object, Gestalt, and grouping

Drawing a connection between finding musical patterns and physical objects is not
difficult. The process of identifying a new pattern can be similar to the process of
identifying a certain form of grouping and subsequently recognising it as an object.
Later in this chapter, we will discuss the leitmotif, which is a musical pattern that
may have a one-to-one correspondence with a certain object.

There are, however, edge cases where objects and groupings can be alien, ambigu-
ous, and fuzzy. Theorising these processes has seenmany research efforts, including
Gestalt psychology. There are sevenmainGestalt principles and factors (Wertheimer,
1938) of grouping: proximity, similarity, continuation, closure, common fate, sym-
metry, and Prägnanz (simplicity/good figure). There are also three key concepts
in Gestalt psychology: reification, multistability, and invariance. Given that the re-
search was disrupted by World War II, coupled with challenges in translation and
the evolution of the research, publications concerning these principles often exhibit
minor differences in terminology. Consequently, although these principles are com-
monly taught in psychology courses and referenced in various psychology and de-
sign textbooks, theremay be variations in the principles themselves, with some texts
including additional or fewer principles, depending on the source.

Some of the principles have been applied in music research (Tenney & Polansky,
1980) as well as musical pattern discovery algorithms (Cambouropoulos, 2006; Lar-
tillot, 2005; Velarde et al., 2016). We will not dive into the details of each of these prin-
ciples, but point out the fact that we specifically considered similarity and multista-
bility (ambiguity); we will consider symmetry and invariance together with trans-
formation in Chapters 5 and 6.

Structure, hierarchy, and heterarchy

Music is well-known for having rich hierarchical structures, ranging from global
forms to local phrases, from harmonic progressions to melodic patterns. Repetition
and variation have important roles to play: "musical structure often derives from
repetition and is one of many crucial musical elements for defining and capturing
structure" (Hunt, 2020). In (Ockelford, 2017; Wiggins, 1998), it has been noted that the
meaning of music is in its structure, rather than being carried by its structure.

The dictionary definition of structure points us to other concepts such as arrange-
ment, organisation, and mutual relation of the constituent parts. Once we have the
grouping, objects, and patterns, another important ingredient is the way the struc-
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tures are constructed on top of them. Additionally, structuresmay informwhat kind
of patterns exist inside, too.
In music, as well as several other cases, hierarchical structures are a common type

of structure to see. Some examples include, in the visual domain, the pixel, edge, tex-
ton, motif, part, and object hierarchy; in the language domain, the character, word,
word group, clause, sentence, and story hierarchy. Figure 2.1 shows an example of
a hierarchical analysis in Beethoven’s composition.

Figure 2.1: An example of hierarchical analysis of Beethoven’s 5th Symphony in (Lidov,
2005).

Although the physical progression of time when listening to music is linear, the
important notes in music can form hierarchies subjectively. This tendency happens
to experts as well as various other kinds of listeners. The hierarchical structures
allow us to examine music at different levels of detail and time scales.
There exist musical theories on this topic of the hierarchical structure of music,

such as the Generative Theory of Tonal Music (GTTM) (Lerdahl & Jackendoff, 1985)
and the Schenkerian theory of melodic reduction (Forte, 1959). The Schenkerian the-
ory was described in an approachable way in (Cook, 2000), from which we can see
the importance of reducing music complexity through hierarchy and its connection
to musical patterns:

"Schenker did a reverse engineering job: he reduced it to a series of basic
melodic and harmonic patterns, showing how these basic patterns were
elaborated in the music Beethoven actually wrote . . . it enabled you to
understand the music in a way you otherwise couldn’t. More specifically,
it explained the moments of apparent incoherence as purely superficial
phenomena resulting from the elaboration of the underlying structure; it
allowed you to hear ‘through’ the surface to what lay underneath."

Structures do not have to be hierarchical. Heterarchy, first coined by McCulloch
(1945), has been used to describe cognitive structures and to understand social or-
ganisation. It expands on hierarchy and emphasises the relation of elements. In a
heterarchy, the relation between elements possesses the potential for being ranked in
a number of different ways or being completely unranked (Crumley, 1995). In other
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words, instead of tree-like relations in the case of a hierarchy, we may also have a
model from graph theory or complex network theory, where there are simply nodes
and links with no hierarchy.
In MIR, structural analyses (Allegraud et al., 2019; Nieto, 2015) have been made and

tools have been developed for visualising structures (Müller & Jiang, 2012). Some
structures are also known as musical forms, which have been subjected to algorith-
mic analyses (Giraud et al., 2016).

More specifically, in connectionists’ MIR algorithms, learning structures and
meaning has been a struggle. For example, musical structures created by generative
models also tend to be local (not more than a few bars long) (Kortylewski et al., 2021;
Wu & Yang, 2020).

Grammar

Grammar is very closely related to structure, especially hierarchical structures, be-
cause grammar may be used to create and summarise such structures. Grammar
can be thought of as a system of rules and principles. In language, Blacking (1984)
argues that "Grammars are attempts to codify the regularities of structure that com-
munities generate in order to give coherence to their communication and to enable
individuals to share meanings."
In music, one seminal theory about grammar is GTTM. According to GTTM, a

listener unconsciously infers four types of hierarchical structure in amusical surface,
as summarised in (Pearce, 2005) and we quote:

• "first, grouping structure which corresponds to the segmentation of
the musical surface into units (e.g., motifs, phrases, periods, and sec-
tions);"

• "second, metrical structure which corresponds to the pattern of peri-
odically recurring strong and weak beats;"

• "third, time-span reduction which represents the relative structural
importance of pitch events within contextually established rhythmic
units;"

• "fourth and finally, prolongational reduction reflecting patterns of
tension and relaxation amongst pitch events at various levels of struc-
ture."

The patternswe consider go up to at least the third level, aswe previously stated that
we do not consider the tension and relaxation pattern per se. We will discuss motifs
and phrases inmore detail later in this chapter. Metrical aspects are consideredwith
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feature analysis in the chapters to come. However, we do not consider many other
aspects of hierarchy and grammar in this dissertation. We treat musical patterns
the same way regardless of where they lie in different levels of hierarchy, in order to
keep ourselves within a reasonable level of complexity.

The importance of grammar and GTTM is evident in a variety of areas of research,
including MIR. A series of computational methods have been developed for creat-
ing and modifying musical pieces according to GTTM (Hamanaka et al., 2014, 2015).
Additional forms of grammar have also been seen in the research scene at the inter-
section of music and computation (Melkonian, 2019; Young, 2017). In (Wiggins, 1998),
another type of grammar was applied in the context of music: "pattern grammars
are a specialised grammatical formalism which extend standard Chomskian gram-
mars". A pattern in the pattern grammar is a non-empty finite string of symbols.
Angluin (1988) demonstrates how its functions as follows:

"The language of a pattern p, denoted L(p), is the set of all strings over
the alphabet A obtained by substituting non-empty strings of constant
symbols for the variable symbols of p. If p= 122x5yyx3, then the language
of p includes the strings 12205111103 and 122001512120013, but not the
strings 12253 or 1221560601113."

2.3.2 Related concepts in music theory and musicology

In the previous section, we have seen connections between pattern and other con-
cepts inMIR. This section covers twelve more concepts that are more music-specific,
which implies that they are primarily from the music analysis tradition, and we will
see more literature from this area.

Theme, phrase, repetition, and variation are common terms not only seen inmusic
but also in other domains. In this section, we consider them largely in the context
of music. Where necessary, we also consider their connections to the algorithmic
aspects.

The concepts introduced in this section are typically associatedwith a certain com-
poser, style, or genre. The term pattern has been used as an umbrella term for many
of them. For example, in the originalMIREX pattern discovery task, the full name of
the task expands the word pattern into three other terms: motif, theme, and section.
The definitions of these three terms are given below by the MIREX task:

According to Drabkin (2001a), a "motif may be of any size, and is most
commonly regarded as the shortest subdivision of a theme or phrase that
still maintains its identity as an idea."
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A theme is the "musical material on which part or all of a work is based,
usually having a recognizable melody and sometimes perceivable as a
complete musical expression in itself" Drabkin (2001b).

A repeated section is the "restatement of a portion of a musical composi-
tion of any length from a single bar to a whole section, or occasionally the
whole piece. Since the Classical period, repeated passages have not usu-
ally been written out; instead they are enclosed within the signs ||: and :||"
(Tilmouth, 2001).

There are more works from others who used different words for analysing music.
For example, Schoenberg wrote in (Schoenberg, 2006) that components of a piece in-
clude "statement, phrase, gestalt, motive, feature, grundgestalten, and figure". How-
ever, it is unclear as to how these divisions connect with one another (seven concepts
generate 7× 6 = 42 relations to consider, if not considering one-to-many and many-
to-many relations), and how they may aid in understanding music and devising
computational methods.
We believe that a generalised concept–musical pattern–can help with unifying the

separate concepts. For example, in (Sears & Widmer, 2020), the authors try to dis-
cover voice leading patterns and shed new light on specific polyphonic patterns in
music. In the same work, it has been noted that "the computational music analysis
community. . .more importantly, develop a more sophisticated theory about the or-
ganizational principles that characterize recurrent patterns in music. . . " We concur
with this viewpoint. Although we do not attempt to develop a theory of organis-
ing principles for musical concepts, we believe that many of these specific concepts
can be unified into the topic of pattern discovery. In fact, the concept of pattern has
already been used to subsume other concepts in music, which is the case with the
MIREX task. In addition, according to Simon and Sumner (1993), "one of the purposes
of analyzingmusical structure and form is to discover the patterns that are explicit or
implicit in musical works", demonstrating the unification capacity of patterns once
more. In the rest of this section, we start with the broad concepts of repetition and
variation and progress into more specific concepts.

Repetition and Variation

Musical patterns are closely related to repetition and variation. It is often the case
that repetitions anchor patterns in musical compositions, followed by the develop-
ment of patterns under variations, with the aim of creating appealing musical struc-
tures. In fact, we have mentioned repetition and variation a few times so far. Let us
dive into this topic again and see how others have written about them and consider
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their connections with musical patterns. We will examine ideas from a variety of
scholars on this subject to reinforce these connections.

The importance of repetition and variation is widely agreed upon. Lerdahl and
Jackendoff (1983) observed that "the importance of parallelism (repetition) in musi-
cal structure cannot be overestimated". Rahn (1993) even goes as far as to say that
"all musical structure derives from repetition". For Schenker (Schenker, 1980), "only
by repetition can a series of tones be characterized as something definite. Only
repetition can demarcate a series of tones and its purpose". In her seminal book,
Margulis (2014) conducted a thorough examination of the function, importance, per-
ception, and many other aspects of repetition are presented. The book provides
analysis of and insight into repetition in a variety of contexts, including evolution,
language, music, and dance. In other contexts, Fitch (2006) and Margulis (2014) both
suggested that the prediction of pattern repetition distinguishes music from lan-
guage more than any other feature. More on the point of variation, in (Zbikowski,
2002), it was noted that "the motive undergoes continual change, as the different
versions". Schoenberg (1967) commented on how repetition is not enough with vari-
ations: "Repetition alone often gives rise to monotony. Monotony can only be over-
come by variation".

Repetition and variation as concepts are, however, not without their own compli-
cations of vagueness, as once put by Meyer: "I fully agree with Tovey that ’Nothing
is easier than to derive any musical idea whatever from any other musical idea’"
(Meyer, 1973). Another point in (Mazzola, 2018) concerns the relation between rep-
etition and variation: "if we include variation as a kind of repetition, we must ac-
knowledge immediately that variation clouds this distinction between abstract and
concrete domains of form". Variation always include an element of repetition, but
if the variation is sophisticated, its repeated aspects may be perceptible only to the
listener who already knows its style.

We have also touched on these topics in previous sections. Summarising them
all, in this dissertation, we treat inexact and exact repetition as different types of
repetition. Inexact repetitions are also called variations. We also separate out the
issue between endogenous (concerning data) and exogenous (concerning percep-
tion) variations; if two bars of music appear subtly different on sheet music but
sound the same to some people, we regard these two bars of music as a variation,
not as exact repetition.
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Idea

The concept of musical idea has been discussed extensively in books and articles
(Ferguson, 1941; Hanninen, 2003; Schoenberg, 2006). Ferguson (1941) explores what a
musical idea is starting from the definition that "An idea is that once an image and
a valuation of experience". Brand, Hailey, et al. (1997) reiterate Schoenberg’s view
on musical idea and composition "Composing is: thinking in tones and rhythms.
Every piece of music is the presentation of a musical idea (Idee, Gedanke, Einfall)".
For Schoenberg, "A musical idea is sheerly musical. It is a relation between tones."
(Schoenberg, 2006). We can immediately observe some misalignment in the use of
the word "idea".
Hanninen (2003) introduces the concept of recontextualisation using musical ideas

and their instances. An idea was defined as "a set of one or more contextual (not
sonic or structural) criteria. Ideas have (and manifest in) instances." Contextual
criteria here means a set of criteria that

"identifies a characteristic of a grouping with a propensity for association
among groupings within a musical context under consideration. Con-
textual criteria are activated by repetition; they indicate equivalence or
similarity in non-linear musical spaces including pitch contour, duration
series,. . . "

This definition is more in line with what we have seen so far about repetition and
musical patterns. Schoenberg has also commented on the important role played by
repetition for musical ideas: "Repetition is one of the means (in presenting an idea)
to promote the comprehensibility of the idea presented." (Schoenberg, 2006)
We can see from this body of literature that a musical idea is analogous to a mu-

sical pattern: both are derived from music and our subjective experiences, both are
closely related to repetition, and both are associated with a set of criteria and oc-
currences. Next, we will examine the musical unit, figure, and other concepts that
build on top of them.

Unit, figure, phrase, and more

In (Goetschius, 1904), a range of concepts have been discussed, including unit, idea,
figure, motif, phrase, sentence, and more:

"The smallest unit in musical composition is the single tone. The smallest
cluster of successive tones (from two to four or five in number) that will
convey a definite musical impression, as miniature musical idea, is called
a figure. Assuming the single tone to represent the same unit of expres-
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sion as a letter of the alphabet, the melodic figure would be defined as
the equivalent of a complete (small) word, pursuing the comparison fur-
ther, a series of figures constitutes the melodic motive, equivalent to the
smallest group of words (a subject with its article and adjective, for exam-
ple); and two or three motives make a Phrase, equivalent to the complete,
though comparatively brief, sentence (subject, predicate, and object)."

We agree that the smallest unit is a single musical event. We also argue that other
concepts are potentially different types of units, andwe have a range of concepts that
are composites of different units. This succession of concepts seems to get gradually
longer, but without predefined numerical intervals of length. The source of inspira-
tion seems to be natural languages, which adheres to conventions such as punctua-
tion and capitalisation. These conventions are, however, not standardised in music.
A long sequence in a short musical composition might be a short sequence in a long
musical composition. One can imagine the difficulties in arguing that a certain series
of notes does not constitute a figure but a motif.

Moreover, some of those definitions can be in conflict with each other from differ-
ent literature. For example, a phrase is defined in (“Phrase. Oxford University Press”,
2001) as

"A termadopted from linguistic syntax andused for shortmusical units of
various lengths. A phrase is generally regarded as longer than aMotif but
shorter than a Period. As a formal unit, however, it must be considered in
its polyphonic entirety, like ’period’, ’sentence’ and even ’theme’."

Period was not mentioned in the previous quote at all when we gave the first defi-
nition from a different source in this section. Additionally, "short musical units of
various lengths" (“Phrase. Oxford University Press”, 2001) can hardly be equated with
"two or three motives" (Goetschius, 1904). The intrinsic difficulty is that one musical
unit, figure, or phrase can cease to be a musical unit, figure, or phrase in a different
musical context. We will, therefore, not further distinguish between the terms in
this series of concepts for this dissertation.

The same issues of context and length exist with musical patterns. The context
and the relative length of the pattern is difficult to describe formally and compre-
hensively. We will circumvent these issues by using transformation in Chapter 5,
but they remain difficult issues in and of themselves. Next, we will discuss themes
and different types of motif on their own.
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Theme

We have already seen the keyword "theme" appearing in previous sections. Here,
we give a few more viewpoints and relevant research on musical themes.
For Schoenberg (Schoenberg, 1967),

"The formulation of a theme assumes that there will follow ’adventures,’
’predicaments,’ which ask for solution, for elaboration, for development,
for contrast."

In jazz music, a theme is
"The musical material on which part or all of a work is based, usually
having a recognizable melody and sometimes perceivable as a complete
musical expression in itself, independent of thework towhich it belongs."
(Drabkin, 2001b; “Theme (jazz). Oxford University Press”, 2003)

These descriptions are very difficult to serve as specifications for computational
methods. There are, however, efforts to gather and digitise data of musical themes
(Zalkow et al., 2020) so that perhaps a machine learning method could help with
reifying what recognisability means in music.
Not unexpectedly, musical themes also have a close relation with repetition and

variation: "On the one hand, the musical theme asserts itself, but on the other, the
theme extends outside itself." (Kaduri, 2006). We can also take the words such as
"development" and "contrast" in Schoenberg’s quote and treat them as alluding to
variations. From this connection with repetition and variation, in combination with
how themes were included in the MIREX task, we treat themes as a type of pattern
in this dissertation.
Themes are sometimes considered longer than patterns, but a hard cutoff point is

difficult to establish, as we discussed in previous sections. We do acknowledge that
a pattern that constitutes a theme differs from a pattern that merely provides texture
(Utgoff, 2006). This finer categorisation of patterns is not included in the scope of this
dissertation.

Motif

In Figure 2.2 (Ockelford, 2018), we show an example of motifs. In (Drabkin, 2001a), a
motif is defined to be

"A short musical idea, melodic, harmonic, rhythmic, or any combination
of these three. Amotifmay be of any size, and ismost commonly regarded
as the shortest subdivision of a theme or phrase that still maintains its
identity as an idea."
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Figure 2.2: Example of a repeated motif in Bach’s Brandenburg. Reproduced from (Ock-
elford, 2018).

Schoenberg’s (Schoenberg, 1967) definition seems to agree with this and adds on to
the definition by emphasising the time offset at which a motif appears:

"The motive generally appears in a characteristic and impressive manner
at the beginning of a piece. The features of a motive are intervals and
rhythms, combined to produce amemorable shape or contourwhich usu-
ally implies an inherent harmony. A motive appears constantly through-
out a piece: it is repeated."

For Réti (Buteau & Mazzola, 2008), a general motif is:

". . . any musical element, be it a melodic phrase or fragment or even only
a rhythmical or dynamical feature which, by being constantly repeated
and varied throughout a work or a section, . . . "

There have been concerns about these definitions and views. For example, in (Maz-
zola, 2018), it has been pointed out that

"Réti asserts that he handles the words ’motif’ and ’theme’ without cat-
egorical distinction, but a difference between the two concepts is that a
theme as a fuller group or ’period’ which acquires a ’motivic’ function in
a composition’s course."

Concerning transitivity, Buteau and Mazzola (2000) commented that "Réti’s concept
of identity of motif shapes includes relations—such as variation, which is a kind of
similarity—which are not necessarily transitive."

Let us now take a look at these definitions and concerns as a whole. Through the
appearance of repetition and variation in the definitions, we see a connection with
the concept of pattern. Like patterns, we also observe some disagreements and con-
cerns about how motifs are defined. Some of the arguments are closely related to
what we have discussed previously in terms of context and lengths. For transitivity,
we bear in mind that if one passage is varied multiple times, relating the last oc-
currence back to the initial occurrence could become difficult. For a definition, we
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2 Patterns and Pattern Discovery

do not see a risk in treating motifs as another type of pattern. In fact, with Réti’s
definition, we can use pattern and motif interchangeably.

Algorithms have been devised (Ganguli et al., 2017; Jiménez et al., 2011) to discover
motifs automatically. However, they have not been submitted to the MIREX pattern
discovery task; hence, they are not our focus in this dissertation.

Leitmotif

As a special type of motif, leitmotifs can be seen in the compositions by Wagner, in
films, and in other background music. In (Whittall, 2001), it is defined as

"In its primary sense, a theme, or other coherent musical idea, clearly de-
fined so as to retain its identity if modified on subsequent appearances,
whose purpose is to represent or symbolize a person, object, place, idea,
state of mind, supernatural force or any other ingredient in a dramatic
work."

It seems this definition largely agrees with the definition in (Ockelford, 2018), which
defines a leitmotif to be "A characteristic melodic, harmonic, or rhythmic idea that
is associated with a particular person, place, emotion or idea." Leitmotif is a spe-
cial kind of pattern since it has a semantic meaning, which most patterns do not
possess.

In a computational context, datasets and algorithms on leitmotifs exist (Krause et
al., 2021). We do not focus on leitmotif in the dissertation, though it is a potential
application direction of our research.

Reminiscence and head motif

To further enrich the "motif" family, we see two more types of motif in this section.
In (“Reminiscence motif. Oxford University Press”, 2002), a reminiscence motif was also
defined using theme, musical idea, and it has a historical connection with leitmo-
tif:

"A theme, or other coherent musical idea, which returns more or less un-
altered, as identification for the audience or to signify recollection of the
past by a dramatic character. It is an important ancestor of the Leitmotif."

In (Fallows, 2001), a head motif was defined with musical idea once again. It is a
more constrained version of the motif:

"A musical idea which by virtue of appearing at the beginning of each of
a series of pieces or movements establishes a relationship between them."
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2.3 Musical patterns and related concepts

The definitions of these particular types of motifs demonstrate once again how
definitions interact and rely on one another, posing difficulties for computational
methods. Admittedly, when the historical provenance and more specific descrip-
tions are given, such as those definitions above, it is arguably more straightforward
to devise an algorithm to automatically find them. For example, finding a head mo-
tif should be easier than findingmotifs because the search space will be significantly
reduced. Although algorithms can be adjusted and used to discover these types of
motif, we do not yet know of any algorithms that discover them exclusively.

Ostinato

Schnapper (2001) defines ostinato as below:
"A term used to refer to the repetition of a musical pattern many times in
succession while other musical elements are generally changing."

In the same article, the importance of rhythm is also stressed: "The regular repe-
tition of a pattern requires, as a minimum, the existence of a rhythmic structure, to
which other elements may be added." (Schnapper, 2001). It is also mentioned that os-
tinatos can be found in oral traditions, jazz, Baroque, minimalist, and popularmusic,
whereas a decline occurred in classical and romantic eras. Additionally, the ostinato
also plays an important role in musical structure and expression.
In connection to the concept of pattern, we see that musical pattern is used to de-

fine this term and that repetition and variation also play a significant role. Ostinato
and pattern share many similarities, and we deem that it is synonymous with pat-
tern. We cannot find any algorithms targeting the discovery of ostinatos in music.
Although algorithms can be adjusted and used to discover ostinato, we do not yet
know of any algorithms that discover ostinato exclusively.

Lick

In (Witmer, 2001), a lick is defined as
"A termused in jazz, blues and popmusic to describe a short recognizable
melodic motif, formula or phrase. Improvising jazz and blues musicians
have at their disposal a repertory of licks, some of their own invention by
which they can be identified, some borrowed from other players, and a
solo may be little more than the stringing together of a number of such
fragments."

This term seems to be the jazz equivalent of a motif or a pattern. We can expect,
however, many specificities of patterns in jazz music may come from this different
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2 Patterns and Pattern Discovery

improvisational context. There has been research concerning jazz-specific patterns
and algorithms (Frieler et al., 2018; Quick & Thomas, 2019). This dissertation does not
have an emphasis on jazz music.

Schemata

In a separate vein of Gallant music, we see some seminal work on schemata (Gjerdin-
gen, 2007, 2014),which are described to be "stockmusical phrases” (Gjerdingen, 2007).
Figure 2.3 depicts an abstract form of a schema—Romanesca, while Figure 2.4 shows
an example of this schema in actual music. Figure 2.5 shows a complete analysis of
schemata in Haydn’s variations (Sonata Hob. XVI, no. 27, mvt 3, Presto, 1774-76).
Although schemata are primarily concerned with polyphonic music, we provide

several examples here for three reasons. First, in later chapters, we will use mu-
sic from this era and will not discuss the schemata theory there. We do think that
schemata are a type of musical pattern, but we do not discuss them further in this
dissertation due to their polyphonic emphasis.
Second, these examples demonstrate the extra complexity of polyphonic musical

patterns, which necessitates the assistance of computational methods. In fact, we
will use some non-schema based polyphonic musical pattern discovery algorithms
in Chapter 4. Additionally, there are efforts towards computationally modelling the
schemata theory, such as in (Finkensiep et al., 2020; Katsiavalos et al., 2019).

Third, in Figure 2.6, we see a formulation of seeing music as a string of concatenat-
ing and overlapping beads made of schemata. The music can branch off (M, N, O,
P in the figure) or choose from different possibilities (A, B, C). This is how we see
music can be structured with patterns as well.

Figure 2.3: A schemata: Romanesca. Reproduced from (Gjerdingen, 2007).

Gregorian Neume

The last related keyword of musical pattern we are going to examine is Gregorian
neume. In Gregorian chants, the notation unit goes beyond a single note. For exam-
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2.3 Musical patterns and related concepts

Figure 2.4: Romanesca in music with rhythmic elaboration. Reproduced from (Gjerdingen,
2007).

Figure 2.5: Analysis onHaydn’s Variations (SonataHob. XVI, no. 27, mvt 3, Presto, 1774-76)
based on schemata theory, showing the complexity and possibility for automa-
tion. Taken from (Gjerdingen, 2007).

Figure 2.6: Composition of schemata. Letters A, B, and C represent schemata that are ei-
ther simulaneous alternatives or superpositions. Paths M, N, O, and P represent
choices not made. Reproduced from (Gjerdingen, 2007). Music can be seen as a
series of "beads". They are sometimes branching and overlapping possibilities.
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2 Patterns and Pattern Discovery

ple, the scandicus flexus is a neume that consists of four notes, going up and then
dropping down, as in F, G, A, F (Kephart, 2017). Climacus is another neume that
consists of three or more downward-moving notes.

Although we are not listing all neumes here, we can already see that these two can
be referred to as musical patterns. Neumes are actually occasionally called "neume
patterns". Once translated into the modern staff notation, discovering the patterns
would be a reverse engineering problem, that is, converting the notes back to the
neumes. Computational pattern discovery methods have been used to generate
melodies for lost chants (Conklin & Maessen, 2019).

2.4 Musical pattern discovery algorithms

Algorithms have been devised to discover patterns using mathematical principles
and heuristics from the music domain. They take musical pieces as input, and out-
put a set of patterns occurring within the piece.

Leaving behind various concepts from previous sections, we focus on introduc-
ing musical pattern discovery algorithms in this section. In particular, some of the
musical pattern discovery algorithms introduced here are used for our experiments
later in Chapter 4.

Based on the online availability and format compatibility of the algorithms, we ex-
amine and introduce 11 musical pattern discovery algorithms, including two fami-
lies of algorithms that include 7 more algorithms in total. Out of these algorithms,
a few have been submitted to the MIREX task in 2013-2017. Each algorithm will be
accompanied by a short description.

Readers do not have to remember all details of the algorithms’ complex mecha-
nism to interpret the results we deliver in subsequent chapters. Our focus is to
look at the output of the algorithms–the discovered patterns and pattern occur-
rences–more than the mechanism of algorithms. As such, we treat algorithms as
black boxes, which is not an uncommon approach (the philosophy behind MIREX
is similar) and has the potential to be more generalisable. More specifically, we
treat these algorithms as black boxes for two reasons. First, there are more and
more black-box algorithms developed frommachine learning, especially deep learn-
ing. Second, even with the white-box and grey-box algorithms, even when there
are mathematical models behind these algorithms, the actual implemented opera-
tions on data may surpass our mental ability to track the application of them in real
data, which also generates the need to treat the algorithms as modular, information-
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2.4 Musical pattern discovery algorithms

hiding black boxes. For a more all-round overview of musical pattern discovery
algorithms, please refer to (Janssen, 2018; Meredith, 2015).

Wavelet-based algorithms

A wavelet is a waveform of limited duration, begins with zero, increases or de-
creases, and returns to zero one or more times. Wavelet transforms, more useful
than Fourier transforms when it comes to non-stationary signals1, have many appli-
cations in physics and have a strong theoretical foundation in mathematics.

By convolving wavelets with symbolic melodies, we obtain correlations between
the unknown symbolic melodies and the known patterns encoded in the wavelets.
In (Velarde et al., 2016), the resulting correlations are used for melodic segmenta-
tion and concatenation data, which is then compared, clustered, and ranked. These
ranked clusters then become the melodic patterns retrieved from the piece. The two
algorithms, VM1 and VM2, have two Matlab implementations using several differ-
ent parameters. From the original paper, we know that according to Friedman’s
test, VM1 and VM2 show no significant difference in the results of the three-layer F1
score, a metric in MIREX (will be discussed in Section 4.1); in addition, for discov-
ering exact occurrences, VM1 outperforms VM2.

Compositional hierarchical model

The Symbolic Compositional Hierarchical Model (SYMCHM)model was inspired
by object categorisation in computer vision. As an alternative to deep learningmod-
els, in (Pesek et al., 2017), themodel imposes a hierarchical structure in different com-
positional layers and tries to provide a transparent deep architecture to discover rep-
etitions in music. The method is based on the assumption that repetitive patterns
can be characterised by the number of occurrences of their sub-patterns. As a con-
sequence, the model learns pitch patterns from symbolic data in an unsupervised
manner.

According to the original paper, the process of inference in SYMCHM is designed
to be either exact or approximate. To approximate, two processes, hallucination and
inhibition, are involved in finding the parts that have been changed, inserted, or
deleted.

1Non-stationary signals are characterised by statistical properties that vary over time.
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Geometric algorithm family

The name geometric comes from the fact that the patterns in music are found by
identifying their shapes in sheetmusic. This family of geometrically inspired pattern
discovery algorithms that can identify note groupswith similar shapes and therefore
extract these shapes as musical patterns. In the design of these algorithms, factors
contributing to the perceived importance of a pattern were discussed. The factors
identified include the compactness (the notes in the pattern are contiguous) and
the amount of compression that can be achieved, which has a link to repetition and
variations.

For the algorithms in this geometric family, an important concept is that of Maxi-
mal Translatable Pattern (MTP),

MTP(v,D) = {p|p+ v ∈ D∧ p ∈ D}

where p denotes pattern, D denotes a dataset, and v a vector. MTP for a vector v
contains all points mapped by v onto other points in the dataset

Another important and related concept is that of Translational Equivalence Class
(TEC),

TEC(P,D) = {Q|Q = P + v∧Q ∈ D}

where P and Q denote patterns, the rest similar to those in MTP. TEC is the set of
all translationally invariant occurrences of a pattern.

This family of algorithms typically use pitch and onset of notes and is de-
signed with polyphonic pieces in mind. Six algorithms, Structure Induction
Algorithm (SIA), Structure Induction Algorithm for TECs (SIATEC), Data
COmpression using SIATEC (COSIATEC), SIA with a sliding window of
size r (SIAR), SIATECCompress-Precision (SIACP), SIATECCompress-Recall
(SIACR), SIATECCompress-F1 (SIACF1), SIA for r superdiagonals and Com-
pactness Trawler-Categorisation and Fingerprinting (SIACFP), and Forth, all
belong to this family of geometric musical pattern discovery algorithms. A tool
written in Java is available online, supporting this array of point-set compression
algorithms. We provide a rough overview of this family of algorithms below; please
see (Meredith, 2015) for a comprehensive review.

SIA and SIATEC
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2.4 Musical pattern discovery algorithms

In (Meredith et al., 2002), the SIA algorithm calculates all vectors between all notes.
Along with using a couple of sorting procedures, the algorithm discovers all MTP.
As a result, SIA admits unlimited gaps in its pattern.

Proposed in the same paper as in the SIA algorithm, SIATEC computes the Trans-
lational Equivalence Class (TEC) based on SIA. The algorithm computes all the
occurrences of each of the maximally repeated patterns discovered by SIA.

SIA only finds one occurrence of each MTP and one vector by which that MTP is
translatable within the dataset. SIATEC, on the other hand, finds all the non-empty
MTPs and then all the patterns within the dataset that are translationally equivalent
to each MTP.

COSIATEC and SIATECCompress

In (Meredith, 2013), both COSIATEC and SIATECCompress iteratively apply the
SIATEC algorithm to compress a piece into the corresponding union of TECs of
MTPs. The difference is that COSIATEC finds the best TEC and then removes its
cover set from the input, while SIATECCompress extracts a list of MTP TECs and
then selects a subset of the best TECs to cover the input. The selection criteria are
based on compression ratio and compactness measures.

The SIATECCompress algorithm comes with three variants with different param-
eters. These different parameters were obtained by optimising for precision, recall,
and F1 score.

Forth algorithm
Based on the geometric method SIATEC, the Forth algorithm (Forth, 2012) incorpo-
ratesmore considerations based onmusic theory and cognition. It employs heuristic
measures in conjunction with compression ratio and compactness value thresholds.
The algorithm also requires music to have been first parsed into voices. To list the
differences between the three algorithms mentioned above:

• COSIATEC finds patterns that are exclusive (no overlapping patterns) and ex-
haustive (every note belongs to a pattern).

• SIATECCompress and Forth’s algorithm generate patterns that can intersect,
which makes them faster but less effective at compression than COSIATEC.

SIAR
Based on the SIA algorithm, SIAR (Collins, 2011) limits the creation of vectors from
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2 Patterns and Pattern Discovery

all possible note combinations by constraining them to a maximum of R ∈ N suc-
cessive notes. In this way, we might think of R as the "memory size" parameter
specifying the number of notes to consider in SIA.

SIARCT-CFP
The SIARCT-CFP algorithm (Collins et al., 2013) combines SIAR with a compactness
trawler, fingerprinting, and categorisation steps. A compactness trawler removes all
patterns that do not satisfy a parameterised compactness ratio $c ∈ R$—the ratio
between the number of notes in a pattern and the width of the bounding box of
the pattern. The fingerprinting step computes the rhythmic ratios in order to allow
rhythmic variations. The categorisation step ranks the discovered patterns in order
of importance. SIACFP algorithm has an implementation in Matlab.

Pattern clustering

Leaving the geometric algorithms behind, a recent pattern discovery algorithm (de
Reuse & Fujinaga, 2019) uses a clustering approach. This algorithm maps passages
of music onto a low-dimensional subspace using an embedding learned from hu-
man annotations of repeated patterns. The neural network used for learning the
embedding is a fully connected, feedforward network with two hidden layers, each
containing 100 nodes. Techniques such as dropout and batch normalisation were
used, with an output layer size 5.

MGDP

The Maximally General Distinctive Pattern (MGDP) algorithm (Conklin, 2010)
computes the maximally general distinctive patterns in a corpus. Distinct patterns
are patterns that rare or absent from a set of pieces but are frequent in another.
"Maximally general distinctive" means that no subsuming pattern is also distinctive.
The term has been applied to folk song melodies from three geographic regions
and chord sequences from three music genres.

Prior and related to this algorithm, Conklin and Anagnostopoulou (2006) uses a se-
quential pattern mining method and works by constructing a suffix tree, which is
then pruned based on the patterns’ occurrences. MGDP and other related algorithm
has been applied to a range of music styles, such as folk music and Gregorian chants
(Conklin, 2013b; Conklin & Anagnostopoulou, 2011; Conklin & Maessen, 2019; Conklin &
Weisser, 2016; Nuttall et al., 2021).
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2.4 Musical pattern discovery algorithms

Closed pattern mining

Closed patterns are the longest patterns that are repeated the same number of times.
Finding closed patterns is a standard technique in data mining. A closed pattern
mining algorithm can be used to find patterns with pitch intervals and rhythmic ra-
tio and have been used in (Lartillot, 2005; Ren, 2016). The algorithms can only operate
on monophonic voices.

PatMinr

The Pattern Miner (PatMinr) algorithm (Lartillot, 2014) considers both the concept
of closed pattern, maximal pattern, and cyclic pattern. It uses an incremental one-
pass approach to identify pattern occurrences, considering various music attributes
such as chromatic, diatonic pitch, metrical position, and articulation. A pattern pre-
fix tree is employed in the implementation. The algorithm works with monophonic
voices and is available in Matlab as part of the MIR toolbox (Lartillot, 2011). This
algorithm has been submitted to the MIREX task with two different sets of parame-
ters.

FlExPat

This algorithm (Rolland, 1999) uses Levenshtein edit distance to compare two pas-
sages, construct a similarity graph, and then identify the passages as instances of
the same pattern. It considers local and global music aspects such as absolute pitch,
backward interval, crescendo, contour, time signature, tempo, and so on. The algo-
rithm is built into the Imprology software system (Rolland, 1998).

MotivesExtractor

MotivesExtractor (Nieto, 2015) employs perceptual grouping principles. It computes
a distance matrix between pairs of potential motives and then uses a clustering al-
gorithm to identify the instances of the same pattern. The implementation of this
algorithm is in Python.
In more detail, the algorithm obtains a harmonic representation of the audio or

symbolic input and extracts patterns based on a produced self-similarity matrix
(Nieto & Farbood, 2012). Each number in the matrix denotes a similarity value of
a pair of elements in the sequence, with the diagonal being identical. With some
post-processing steps, pairs of high similarity are extracted and are considered to be
the occurrences of the same pattern. Based on Gestalt principles, the algorithm also

49



2 Patterns and Pattern Discovery

filters out the patterns that contain relatively long notes or rests, or relatively large
intervals.

PAT

PAT algorithm (Cambouropoulos, 2006) employs Crochemore’s set partitioning
method to recursively split the melody into sets of repeating tokens. As a re-
sult, maximal patterns are found and filtered according to pattern lengths. The
algorithm was used for segmentation based on maximal repeated patterns.

Suffix arrays

In (Knopke & Jürgensen, 2009), suffix arrays were used to represent phrases of Palest-
rina masses. To extract patterns, the algorithm first uses rests as an indicator to find
phrases, then inserts each phrase four times (normal order, inversion, retrograde,
and retrograde inversion) into the new representation and matches the repetition.
It is a fast algorithm that operates on pitch and duration of monophonic melodies.
To finish this section, we summarise the musical pattern discovery algorithms in

Table 2.1, based on previous work (Janssen, 2018; Janssen, DeHaas, et al., 2014). We
can again see the diversity of the algorithms in terms of their goals, the methods
they employ, their filtering mechanisms, how music was represented in them, and
how they were evaluated. From this table, in combination with Section 2.3, we can
observe that the diversity and complexity of the algorithms are multidimensional,
potentially complicating the process of comparison and selection amongst them.

2.5 Discussion

In this chapter, we examined 18 sets of pattern-related concepts and 11 musical pat-
tern discovery algorithms. By and large, the works reviewed here provide evidence
for the diversity of the concept of pattern as well as pattern discovery algorithms.
We have also exhibited that it is almost impossible to define the concept of pattern
precisely, comprehensively, and meaningfully, owing to the complexity of many un-
solved issues in human perception, coupled with the constantly evolving field of
musical analysis. This definition problem contributes to the diversity and complex-
ity of pattern discovery algorithms, relating to the challenges we mentioned in Sec-
tion 1.2. Moreover, the diversity and complexity of algorithms lead to difficulties in
making useful comparisons between the algorithms. We will address this problem
in Chapter 4, where we propose new methods to compare algorithms and explain
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2 Patterns and Pattern Discovery

why it is important to compare them using those methods. In connection to other
later chapters, we hope that this analysis lays the groundwork for unveiling the com-
plexity behind the concept of pattern.

2.6 Concluding remarks

In this chapter, we have offered, albeit partially, a compilation of diverse views from
various angles on pattern and pattern discovery. In this section, we open the dis-
cussion to several other topics that, though maybe not critical, are nevertheless in-
triguing. We use them to expose our limitations as well as extend and consolidate
our arguments.

What did we not consider?

There are three points that we omitted from this chapter. Here, we either give a
pointer to further discussion on them in the next chapters or explain why we did
not include them.

We did not answer the following question: what makes a pattern salient in a piece
of music? We pointed to a few broad concepts such as features, repetition, and
structure, but we do not have the answer to this question objectively and generally.
Salience is fundamentally subjective to the listener. Nevertheless, to take a statisti-
cal approach to this issue, there is converging evidence that some excerpts of music
are more salient than others. For example, Burgoyne et al. (2013) demonstrated that
different fragments of music differ in their salience in triggering musical memory.
We will touch on the topic of salience again in Chapter 4, where we devise a limited
kind of approximation of salience based on the number of patterns discovered at a
certain spot in music.

We did not cover the relations between all concepts in Section 2.3, and it would
be a Herculean task to cover them all. We introduced 18 sets of concepts in total.
If one were to extend the discussion to the dyadic relations between each one of
them, one would have 18 × 17 = 306 relations between the concepts to go through,
which would not be an easy endeavour. Moreover, this number does not take into
account the fact that some of the concepts could be defined in different ways by a
few different people.

We did not point out explicitly what a pattern is not. Except for the ones that are
in contradiction with other definitions, we were unable to locate an entirely "false"
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2.6 Concluding remarks

definition of pattern. Even the word anti-pattern2 is used in other fields to refer to
a pattern that should be avoided, yet this is a pattern nonetheless. This difficulty is
not unexpected, however, because identifying what is not a pattern would render
finding patterns much easier: one can simply define patterns to be whatever that
remains from the search space that is not patterns (not considering the subtleties of
the negation operation).

Compression

Patterns, repetitions, and ambiguity, as well as a variety of other constructs we had
in this chapter, seem to all point to another concept—compression. Compression
is a very important concept for the existing musical pattern discovery algorithms
and other adjacent fields. In natural languages, it has been shown that ambiguity
is needed for the purpose of compressing information (Juba et al., 2011). Once there
is a pattern or repetition, it is also often the case that compression comes into the
picture (Meredith, 2015).

Although we realise the importance of compression, it has been extensively stud-
ied in the context of musical patterns (Meredith, 2013), and it is not the focus of this
dissertation. We will see "compression" again as a metric in Chapter 4.

Where is the hard limit?

As humans, we possess a set of cognitive and perceptual tools to uncover and render
explicit the hidden patterns underlying diverse, chaotic, random phenomena. Is
there a strict limit to how far the algorithms can emulate this? At this moment in
science, we do not have a precise answer for the question: "How is an incoming
stream of musical information organised by the ears and brain into percepts, and
how do cognitive structures develop with the experience of music?" (Collins, 2011).
A direct emulation is therefore not feasible. However, another approach may be to
strive for a common language for the alignment between human expectations and
algorithmic output, and this is precisely what we are attempting to achieve in this
dissertation.

2Another definition of antipattern in musical pattern discovery is the patterns that are infrequent,
rare, and under-represented (Conklin, 2013a),which is also applicable here.
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Chapter 3 Gathering
Human-Annotated
Musical Patterns

Data do not exist de novo.

– Dark Data, Hand, 2020

Humans are heterogeneous.

– Human Compatible, Russell, 2019

3.1 Introduction

This chapter investigates the musical patterns annotated by different humans and
the influences of different annotation tools. We mentioned in the previous chapter
that musical patterns annotated by humans are an important source for automatic
pattern discovery. Indeed, the study of the pattern annotation data has gained in-
creased attention over the past few years. While human annotations are often taken
as the reference or training data for developing pattern discovery algorithms, rely-
ing solely on annotations from a limited number of individuals is often insufficient
to capture the complex concept of musical patterns. In addition, there exist varying
levels of musical expertise, whichmay lead to divergent pattern discovery processes
and annotator disagreement.
Asking human annotators to point out what they think of as patterns might sound

simple. They just need to mark a few boundaries and tell us "those are the patterns",
after all. However, the process of annotating patterns is more complex than one
might assume. In continuation with some of our discussions in Chapter 2, there are
many decisions that a human annotator must make when attempting to annotate
patterns in music, such as when a pattern starts and ends, how to find all occur-
rences of a given pattern in this piece, and how similar must a variation of a pattern
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3 Gathering Human-Annotated Musical Patterns

be for it to be counted it as a repetition or variation of the original. During the ex-
periments, annotators may have implicit or explicit strategies or employ conscious
or subconscious filters, such as a bias toward the beginning of the music or impos-
ing a minimum or maximum length on their annotations. As a result, when setting
up a pattern annotation experiment, many factors are difficult to have perfect con-
trol over. Even with the same music material, there are factors such as different
annotators’ musical backgrounds, different functionality between annotation tools,
and the exact procedures the annotators followed, to name a few. All of these factors
may contribute to different degrees of inter-annotator agreement. In this chapter, we
acquire data frommultiple annotators and perform analyses to investigate the influ-
ences of different musical pattern annotators and annotation tools given the same
pieces of music. In this chapter, we collect data from multiple annotators and per-
form analyses on the data collected to investigate the influences on the annotations
made by different musical pattern annotators and annotation tools when applied to
the same musical piece.

MIREX

MIREX (the Music Information Retrieval Evaluation eXchange, see Chapter 1 for
a detailed introduction) contains a collection of tasks, aiming to compare State-of-
the-Art (SotA) algorithms and systems relevant forMIR. InMIREX, not only for the
task of musical pattern discovery, a significant number of other topics currently re-
searched inMIR also rely heavily on using reference or "ground truth", often derived
from human annotations. The comparison of SotA algorithms on the different tasks
in the yearly rounds of the MIREX framework has also uncovered the issue of ambi-
guity ofmusical structures for evaluating algorithms. For instance, Typke et al. (2006)
created a new measure for tackling disagreeing perception of similarity. Flexer and
Grill (2016) discovered a rather low inter-annotator agreement for the MIREX music
similarity task, unveiling the problemof using a single-reference annotation for eval-
uating similarity algorithms. Koops et al. (2019) reached similar conclusions for the
MIREX chord estimation task, showing low inter-annotator agreement for chord an-
notations between musical experts in the Chordify Annotator Subjectivity Dataset.
Furthermore, Balke et al. (2016) concluded that the evaluation of automatic melody
finding algorithms is heavily reliant on the human annotator’s choice for providing
ground truth.
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3.1 Introduction

Relevance to pattern discovery algorithms

As discussed in the previous two chapters, the automatic discovery of musical pat-
terns has been a longstanding research topic in computational music analysis, and
the pursuit of a methodology to compare and evaluate those algorithms has gar-
nered significant community effort, evolving into the MIREX task titled "Discovery
of Repeated Themes& Sections", based heavily onwork carried out in (Collins, 2011).
In this task, the evaluation of newly proposed algorithms is carried out with refer-
ence annotations based on music-theoretic analyses by three experts. However, the
ambiguity of musical structures and the diverse conceptualisations of the notion
of patterns make the use of reference data relying on only a very small number of
experts rather problematic: for the general audience, there is no clear single com-
prehensive definition of what constitutes a pattern, or even a repetition (see Chap-
ter 1 and 2). Furthermore, not all recurring sequences are perceived as patterns by
the listener, as this depends on the structural position of the pattern, the listener’s
moment-to-moment perception, and other influencing factors such as the listener’s
musical background or music-theoretic education. One can argue that automati-
cally discovered patterns do not have to be perceivable, if they are useful in other
contexts, such as for supporting automatic composition (Herremans & Chew, 2017) or
classification (Boot et al., 2016). However, in other contexts, it is unquestionably vital
that automatically detected patterns are perceivable for listeners, such as in music
education (Bamberger, 2000).

More extensive annotation experiments need to be carried out in order to gather
reference data for the evaluation of pattern discovery algorithms that rely not only
on a very restricted number of musical experts. Gathering annotations from differ-
ent listeners on the same pieces, for example, could be an initial step in this direction
that allows the study of differences and commonalities between listeners regarding
their conceptualisation of patterns.

In (Meredith, 2015), it was noted that subjectivity could be reduced by enlisting a
larger number of domain experts to reach a more universally agreed-upon ground
truth. We will not have a solution for fabricating an inter-subjective ground truth
by the end of the chapter. Rather than attempting to reduce the differences to some
form of inter-subjectivity, our analysis focuses on dissecting the contributory factors
of the individual variances. Such a study can pave the way for a more valid eval-
uation of algorithms, based on the consideration of commonalities and differences
between listeners or groups of listeners.
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3 Gathering Human-Annotated Musical Patterns

HEMAN

The issue of inter-annotator agreement in pattern discovery was previously ad-
dressed through gathering multiple annotations for a single dataset from twelve
annotators on six music excerpts using pen and paper (Nieto & Farbood, 2012).
The data acquired from (Nieto & Farbood, 2012) initially faced the problem of
reproducibility because they were not digitised. Figure 3.1 shows an example of the
annotations before digitisation. In (Ren, Koops, et al., 2018), the data was digitised
as the Human Estimations of Musically Agreeing Notes (HEMAN) dataset and
open-sourced1. While pen-and-paper annotation has been most commonly used
for music-theoretical analysis in the past, the digitisation process afterwards is
labour-intensive and error-prone. For example, in Figure 3.1, it is not immediately
apparent whether to include the quaver(an eighth note) of A in bar 3 into the
musical pattern. The same situation applies to the crochet in bar 14 in the annotated
pattern.

For carrying out more extensive annotation experiments on musical patterns, dig-
ital tools supporting these annotations need to be developed. A digital tool can also
provide functionality such as playback, enabling annotators to easily listen to the
music.

Contribution

In this chapter, we contribute to the development of two musical pattern annota-
tion tools and the annotation experiments conducted using these tools. ANnOate
MusIC, an annotation tool we devised (ANOMIC) (Wells, 2019) is an annotation
tool developed by a master’s student at Utrecht University, and Pattern Annotation
Framework, an annotation tool we devised (PAF) (Pesek et al., 2019) by a master’s
student at the University of Ljubljana. The tools and experiments were developed
asynchronously, but used the same musical excerpts as in HEMAN. As the daily
supervisor, the master students received supervision from Iris Yuping Ren with the
scope of this dissertation in mind.

While these digital annotation tools overcome the problems of handwritten an-
notation digitisation, they may influence the annotation process in a different way,
such as through different music visualisations. We contribute to confirming and
understanding the influence of different annotation interfaces and instructions on
the discovered patterns, and study differences and commonalities between patterns
discovered by annotators of different musical expertise and from different schools

1https://github.com/irisyupingren/HEMANanalysis
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3.1 Introduction

Figure 3.1: An example of raw paper-and-pen annotation.
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3 Gathering Human-Annotated Musical Patterns

of music theory. We do so by first exploring the gathered annotation datasets by
performing inter-annotator agreement analysis. We then proceed to a second step,
conducting a feature analysis of the patterns by looking into differences between fea-
ture distributions of musical patterns in both datasets. This feature analysis allows
more detailed insight into the differences between the pattern datasets. Finally, we
discuss more in detail and contribute to understanding the implications of the tools
and annotators’ backgrounds on the annotation process, alongwith the implications
regarding future evaluation methods of pattern discovery algorithms based on rich
annotation datasets.
In the original paper, the first author, Darian Tomašević was the primary contrib-

utor to the implementation of the annotation tool, PAF. The second author, Stephan
Wells was the main contributor to the implementation of ANOMIC. The contribu-
tions of the third author, Iris Yuping Ren, include the development of the method-
ologies in Section 3.3, providing feedback on the experimental design, providing
input for the analysis, as well as participating in the writing and subsequent revi-
sions of the paper.

3.2 Setup for ANOMIC and PAF

In this section, we report the music material, the digitisation process, tools, and
instructions we use for ANOMIC and PAF. ANOMIC and PAF are two musical
pattern annotation tools with which two separate experiments were conducted.
ANOMIC and PAF were both inspired by HEMAN and use the same music
pieces to annotate. We start first by introducing the common music materials for
HEMAN, ANOMIC, and PAF. Then, we introduce the tools, experiments, and the
differences between them. As a side note, we use these acronyms for three purposes
throughout this chapter: naming the experiments, the tools, and the generated
annotations.

3.2.1 Music material

Throughout this chapter, we used the samemusicmaterial. The collection comprises
6 music excerpts as listed below:

• Bach – Cantata BWV 1, Movement 6, Horn (20 bars)
• Bach – Cantata BWV 2, Movement 6, Soprano (15 bars)
• Beethoven – String Quartet, Op. 18, No. 1, Violin I (60 bars)
• Haydn – String Quartet, Op. 74, No. 1, Violin I (30 bars)
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3.2 Setup for ANOMIC and PAF

• Mozart – String Quartet, K. 155, Violin I (28 bars)

• Mozart – String Quartet, K. 458, Violin I (54 bars)

These pieces have been selected by Nieto and Farbood (2012) for pattern annotation
experiments due to their different musical characteristics. For example, the Bach
chorale is short and has very little rhythmic variation, while the Beethoven string
quartet is long, and has clear repetitions varied in pitch. In the original paper (Nieto
& Farbood, 2012), more detail was given. For long pieces, we use roughly the first
page of sheet music (precise bar numbers are included in the listing).

3.2.2 ANOMIC

Figure 3.2: A screenshot of the interface of ANOMIC. Different colours are used to represent
different patterns and their occurrences, which are also numbered on the left of
the interface.

The ANOMIC pattern annotation tool was created as a stand alone application
for the Microsoft Windows operating system (Wells, 2019). The main view of the
tool visualises the MIDI representation of a music piece as a piano roll by plotting
the musical notes as rectangles on a two-dimensional onset-time-pitch canvas. This
approach is also commonly used in music editing software, as it allows for easy
interaction with MIDI elements (most commonly musical notes). Figure 3.2 shows
ANOMIC’s interface, where the piano roll representation is visible.

For the experiment of ANOMIC, a demo video was provided for making instruc-
tions on the pattern annotation accessible to users even with little musical training.
An instruction documentwas also given inwritten form. Below, we include themost
relevant instructions.
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3 Gathering Human-Annotated Musical Patterns

Instruction

WithANOMIC, a group of users installed the tool on their computers andwere then
asked to submit their annotations via email, along with a completed survey about
their background. If we take away the instructions for installing the software, the
more relevant instructions for the annotation experiment are as follows:

. . . Annotate repeated patterns in the music. Patterns are distinct, short
musical segments or phrases that are considered to be characteristic to a
given piece of music and appear multiple times throughout the piece. Be
sure to listen to the music and annotate these patterns and their occur-
rences using the tool. The occurrences do not need to be exact matches,
but they should be closely related (compare this to finding occurrences of
a leitmotif in a film soundtrack, for example). For any occurrences where
you are not sure whether or not they belong to a pattern, right-click on
them to set their confidence level to "2" (unsure) or "1" (highly uncertain).
Automatic Occurrence Matching At any point during the session, the
user can right-click on an occurrence that they had already found and
initiate the automatic occurrencematcher for that occurrence. Itwill comb
through the entire track and find occurrences that are exact repetitions of
the occurrence in question, even if these repetitionsmaynot be in the same
time or pitch position. This implies that it is transposition-invariant and
also works through polyphony.

The description of a musical pattern is similar to the instructions given in the ex-
periment conducted by Nieto and Farbood (2012). Following Nieto and Farbood (2012),
several possible interpretations as to what defines a "musical motif" were given, en-
abling the subjects to analyse the pieces and employ their musical intuition on what
constitutes a musical pattern in the process. A new functionality was added for
finding exact and chromatically transposed occurrences of annotations. We will be
looking at a cross-comparison between the tools and the experiments in the follow-
ing sections (Section 3.2.4 and Section 3.2.5).

Subjects

The ANOMIC tool was used in an annotation experiment with 26 participants of
varying musical backgrounds and demographics2. In total, 788 patterns and 2,763
occurrences were gathered, annotated by 26 participants with diverse backgrounds.
The participants’ levels of musical expertise were assessed through a survey in-
2Available at https://github.com/StephanWells/ANOMIC-dataset
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3.2 Setup for ANOMIC and PAF

cluding 10 questions (e.g. ability to read sheet music, proficiency in playing an
instrument, academic degree in music), leading to a score between 1 and 10. As
a rough approximation of their musical expertise, the annotators were divided into
two groups with a cutoff of 5, dubbed the musicians (14 participants) and the non-
musicians (12 participants). Interested readers can refer to (Wells, 2019) for all de-
tails.

3.2.3 PAF

Figure 3.3: A screenshot of the interface of PAF. Different colours are used to represent vari-
ous patterns and their occurrences, each of which is indexed by "Pat-n", with ’n’
representing the number of a pattern. The user can also assign a relevance score
to each pattern, which is displayed below the index.

The PAF tool3 was developed as an online application (Pesek et al., 2019), with the
Django framework serving as the back-end, and with the MIDI Player and Verovio
JavaScript libraries serving as the front-end visual representation of themusic sheet.
The tool shows the music score of a selected piece of music, as seen in Figure 3.3.
Thus, the PAF tool is designed to be used mainly by individuals with a certain de-
gree of musical expertise, namely, those who can at least read staff notation. The
user can annotate music patterns by clicking on the beginning and the ending note
3Tool available at http://framework.musiclab.si
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of the desired range in the score. The user can also set the name and the relevance
(1–3) of an individual annotated pattern. To aid the annotator, the displayed score
can be listened towith our synthesisedMIDI files. While playing the score, the notes
nearest to the current time in the music playback are highlighted. The tool also con-
tains a feature for automatic annotation, which annotates other occurrences of the
selected pattern. While developing the framework, amajor focus was on the respon-
siveness of the layout to accommodate different screen sizes and devices (mobile,
desktop). In the case of smaller display size, the score is split into multiple sheets.
By open-sourcing the tool4, we hope to aid other researchers in the MIR field who
are dealing with pattern-related data gathering and invite them to contribute addi-
tional features.

Instruction

The following instructions5 were given to the PAF annotators:
The goal of the site is to allow users to find and submit patterns found in
music.
A musical pattern or motive is defined as a short musical idea, a salient
recurring figure, musical fragment, or succession of notes that has some
special importance in or is characteristic of a composition6. It shouldn’t
be longer than a musical phrase. If you find a motive that is similar to
another (or multiple versions of a motive), choose the one that you think
is the most representative.
To begin, click on a note to mark it as the start of a pattern. The start-
ing note will be coloured blue. Next, click on another note to mark the
end of that pattern. All of the notes between the start and the end will
be coloured red, thus representing a marked pattern7. To mark multiple
patterns, simply repeat the process.
Each pattern also includes an ID field (top left corner), which can be used
to change the ID of a pattern. To denote multiple pattern occurrences, the
ID of a repeated pattern can be changed to match the ID of the original
pattern. Alternatively, exact repetitions of a pattern can also be annotated

4Source code available at https://bitbucket.org/ul-fri-lgm/patternannotationframework
5Footnotes were not given to the annotators. They are for clarifications in the context of this disser-
tation.

6This description of a musical pattern is the same as the description given in the experiment con-
ducted in (Nieto & Farbood, 2012).

7Since the description of a pattern is different between (Nieto & Farbood, 2012) and this disserta-
tion, in the context of this dissertation, the user will be marking a pattern occurrence by clicking
on the starting and ending point of an excerpt, not all the repetitions of a musical pattern.
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3.2 Setup for ANOMIC and PAF

automatically. By pressing the A button on a pattern (bottom right cor-
ner) all repetitions of the selected pattern will be automatically marked.
Once a pattern is finalised you can also rate it from 1 (not as relevant) to
3 (highly relevant).
To delete an UNFINISHED pattern click on its starting note, which is
coloured blue.
To delete an already FINISHED pattern press on the X button, which can
be found in the right corner of each pattern.
To navigate the sheetmusic use the buttons located below the sheetmusic.
You can also use the arrow keys on your keyboard to achieve the same
result. Once you are finished click on the SUBMIT PATTERNS button
and click OK. The patterns will then be submitted and the site will take
you to your next task.
To zoom out or in press - or +.
To use the music player simply click on the play button. You can also
navigate the song by clicking on the song progress bar in the top left.

The description of a musical pattern is the same as in (Nieto & Farbood, 2012). A
range of descriptions of functionality was added to enable the user interaction with
music and patterns.

Subjects

The PAF tool was used by 13 students attending three university-level music study
programmes: 4 students from the musicology masters programme at the Faculty of
Arts, the University of Ljubljana (hereafter termed as MU), 3 students of the Music
Academy, including music theory and composition at the University of Ljubljana
(termed as TC), and 6 students from the music pedagogy programme at the Faculty
of Education, the University of Maribor (termed as PE). The PAF website included
a description of the tool and a summary of the tool’s features. The majority of par-
ticipants were students between 20–25 years old, having between 5–10 years of in-
strument experience, and between 8–15 years of music theory experience. In total,
373 annotations were gathered from 13 annotators over the course of a month.

3.2.4 Differences between the tools

Wereviewed twodigital pattern annotation tools thatwere developed concurrently—
ANOMIC and PAF—and two annotation experiments conducted separately using
these tools. While both tools allow for more accessible digital annotation of
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3 Gathering Human-Annotated Musical Patterns

patterns, they differ in their implementation, functionality, interface, and music
representation. The most glaring concerns the different visualisation of music they
employ: piano roll or sheet music. While these visualisations of music may seem
equivalent at first glance, they represent the same information in different ways
that can in turn influence the users.

For example, themusic sheet of the PAF tool can show a larger part of amusic piece
than the ANOMIC tool, in which the notes can appear too small when zoomed out.
The visual presentation of note durations is also different. While notes are of similar
sizes on the music sheet, independent of their duration, the notes on the piano roll
differ tremendously in their size. Therefore, longer notes might thus attract more
attention and be harder to scroll past. On the other hand, the sheet music repre-
sentation can also present a better user experience on smaller screens. The music
sheet can also contain additional information, apart from the actual notes, such as
auxiliary signs for timbre and volume, which can influence user understanding of
the music piece.

The tools also differ in how they enable the selection of patterns and the annota-
tion of their occurrences. The controls are smoother in the ANOMIC tool, which
provides the ability to use click-and-drag actions to select patterns. Conversely, an-
notating in the PAF tool is carried out by clicking on the starting and then ending
note of a pattern. The click-and-drag approach could be perceived as more intuitive,
especially considering the left-to-right piano roll visualisation, whereas demarcat-
ing the beginning and ending of a pattern makes the annotation of longer patterns
faster. When the annotation starts, for both tools, a default pattern number (ID) is
given at first, and if the users proceed to a different group of pattern occurrences,
they can use a new number to signify this new group.

ANOMIC also has a helper function to enable users to automatically annotate ex-
act repetitions and chromatic transpositions of already annotated patterns, as imple-
mented by an automatic occurrence matching function (Wells, 2019). This function
can ease the labour-intensive search necessary in order to annotate all occurrences of
a pattern, which is not trivial for annotators (see (Volk & VanKranenburg, 2012)). Al-
though it was not mandatory to use this function during annotation, in a follow-up
survey, we saw that the helper function was used at least 9 times by all participants,
and that the function was liked by some annotators, but one participant said that
it "felt like cheating". A detailed user study of ANOMIC and the helper function in
particular can be found in (Wells, 2019). While PAFwas later updated to include such
an automatic annotation feature, it was not available in the version used for gath-
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ering the data for the current analysis. Regarding other basic annotation controls,
such as pattern deletion and tagging, the tools have similar functionalities.

The tools take different data gathering approaches. ANOMIC is a standalone tool
and can be used offline. The gathered patterns must then be submitted via external
means, which can affect the number of gathered submissions. Meanwhile, PAF is
implemented as an online tool, which automatically saves the annotated patterns
in a database. In addition, users must first register and provide their background
information to access the tool. In comparison, the ANOMIC tool does not come
with built-in registration or user information gathering functionality, so researchers
must resort to online surveys. The tools also differ in the overall annotation process:
PAF does not allow re-annotation of music pieces and only allows annotation of the
provided music pieces, while ANOMIC allows annotation of any music piece the
user provides.

Both tools allow for the playback of the presented music piece. When music
is played in PAF, the currently played notes are highlighted, and the sheet pages
change when the last note on the page has been played. The tool also has a separate
music player with which the user can navigate through the song. The ANOMIC
tool takes a different approach by providing a tracker, in the form of a vertical line
that denotes the current position of the music.

These differences and similarities are still subject to change. Like many technolo-
gies nowadays, annotation tools are evolving. Future updates will most likely focus
on the addition of user-friendly features, and in particular, how to enable the users
to more easily modify the tools (e.g. adding helper functions) while annotating. We
summarise the main differences between these two tools in Table 3.1.

3.2.5 Differences between the experiments

The description of a musical pattern is similar across all experiments. For the PAF
tool, the instructions for the participants were actually designed to closely follow
those used in (Nieto & Farbood, 2012). For ANOMIC, the intentions were to improve
upon the instructions of (Nieto & Farbood, 2012) in conjunction with the helper func-
tions.

In summary, there are two marked differences between the instructions, those be-
ing: whether participants were asked to listen to the music and how to annotate oc-
currences of a pattern. While the instructions for using ANOMIC explicitly mention
the importance of occurrences, PAF users were instructed to choose a representative
pattern when they saw multiple similar ones. In the experiment using ANOMIC,
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the participants were asked to listen to the music, whereas with PAF, it was not ex-
plicitly asked.

In terms of the differences in instructions regarding whether the annotators lis-
tened to the music, we could not check whether the participants actually listened to
the music for either experiment. This can be accomplished in future work by log-
ging annotators’ behaviours and interaction with the annotation tool, so that we see
when and for how long the annotators have been listening to the music.

In terms of the differences in instructions regarding whether annotators annotated
all occurrences, it is a more complex problem. We believe that annotating all occur-
rences can be more helpful for developing musical pattern discovery algorithms.
However, without some helper functions, such as the ones in ANOMIC, humans
might not be able to or lose patience inmeticulously annotating occurrences of a pat-
tern without errors. For PAF, although we could not conduct the experiment with
the helper function, we used the newly added helper functions post-experiment to
augment the collected data by identifying their repetitions. Wewill see that this does
not entirely equalise the ANOMIC and PAF annotation experiments, but at least we
add the notion of pattern occurrences in the way we can. As a result, for subsequent
comparisons, we make comparisons only between ANOMIC and PAF data where
the notion of pattern occurrences is present to an extent.

These discrepancies are not ideal for perfectly controlled comparisons. However,
since these tools and experiments were developed separately with the same goal—
gathering data for musical pattern discovery, there are values and lessons we can
learn from looking at the results in parallel. We leave a more controlled experiment
for futurework and examinewhat comeswhen diversity is allowed during the setup
of a musical pattern data collection experiment.

3.3 Methodology and metrics

Our analysis has three exploratory aspects: differences between annotators with dif-
ferent backgrounds, differences between annotating themost representative pattern
and all occurrences of a pattern, and differences between annotations gathered with
two different tools. All aspects will be explored by analysing inter-annotator agree-
ment and by analysing the distributions of various pattern features, to gain deeper
insights as to why annotators might have disagreed. In the following, we describe
these methods in greater detail.
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3 Gathering Human-Annotated Musical Patterns

3.3.1 Agreement analysis

To measure inter-annotator agreement, an important concept is that of "matched"
annotations. Given two pattern occurrences P1 and P2, with beginnings and endings
denoted as b1, b2 and e1, e2, were considered to bematchedwhen |b1−b2|+|e1−e2| 6

T , where T denotes a threshold value. The vertical bar notation indicates "taking
absolute value" to disambiguate from taking cardinality of sets.

Given two sets of pattern occurrences R andC from two annotators, we call one set
the reference (R), and the other set the comparing set (C). It does not matter which
set is taken as the reference, because we will eventually consider the other set as the
reference as well. Using # as "the number of" sign, we then calculate the commonly
usedmeasures, namely, precision, recall, and F1 score for all possible pairings of an-
notators, as specified in the equations below. Each individual annotator is compared
to every other annotator.

Precision =
#matched annotations

#C

Recall =
#matched annotations

#R

F1 = 2× Precision× Recall
Precision+ Recall

With a number of annotations in a piece, we can expect the precision, recall, and
F1 score to give us a summary of the agreed patterns between any pairs of annota-
tors. Thesemeasures will fit the intuition: the more far apart the different annotated
pattern boundaries are, the more they disagree; the greater the number of patterns
the annotators disagreed upon, the more two annotators disagree. For example, if
annotator A noted that the second bar of a musical piece is a pattern, while anno-
tator B included the last quaver(an eighth note) of the first bar and the second bar
as a pattern, we have the same pattern ending, but a slightly different beginning.
The threshold value gives us the flexibility to configure whether the two annotators
should be considered to be in agreement (matched) or not. In the example above,
if the two patterns are the only annotations in the piece, we have an F1 score of 0 if
T < 1 quaver(an eighth note), 1 otherwise. In this way, we can see how much dis-
agreement there is on different scales of time resolution. The reason that we focus
on the beginnings and endings of patterns is that, within the same piece of music,
once the beginnings and endings are determined, the excerpt’s content is the same
for monophonic melodies.
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In the following analysis, the starts and ends were measured in crotchets(quarter
notes), and the threshold was set to 5 crotchets as the default for this chapter, fol-
lowing (Ren, Koops, et al., 2018). In future work, other threshold values or dynamic
thresholds should be investigated.

In relation to MIREX’s metrics

This measure does not have direct correspondence with the occurrence or establish-
ment scores in MIREX. MIREX measures are based on the cardinality score, which
considers the actual musical events themselves (pitch and duration), and not their
position in the piece (see next chapter Section 4.1 for more detail on MIREX mea-
sures). There is an indirect connection when considering that the musical events
are the same given the same position in the same piece. However, the "matched
annotation" for a single occurrence is a binary notion in our case, while in MIREX
measures, each occurrence has a fractional value in relation to another occurrence,
and then amaximum is taken. In summary, the computational process and the focus
of the evaluation are both quite different between our measure and MIREX’s.

In relation to other inter-rater reliability measures

Other inter-rater reliability and agreement measures exist in literature. However, it
is not straightforward to convert the annotations of musical patterns to be compat-
ible with other inter-rater reliability measures, such as Krippendorff’s alpha coeffi-
cient. To calculate these measures, one usually starts with a matrix of n×m, where
n is the number of annotators, andm is the number of attribute values that will get
annotated. In our case, we do not have this matrix, because each annotator might
annotate a different number of patterns that need to be "matched" first, as we de-
vised in our measure. What follows from this matching step is then counting the
number of "matched" annotations and calculating corresponding percentages. As a
consequence, our measures are intuitive and easy-to-understand. We do agree that
our measures are simplistic and can be improved with more sophisticated statistical
methods in the future.

3.3.2 Feature analysis

In order to further explore the differences between annotations of the two digital
tools, we compared both annotation datasets on 33 different pattern features, of
which we report 7 here, for simplicity, while all 33 musical features are described
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3 Gathering Human-Annotated Musical Patterns

in detail in supplemental online material8. The majority of the features were in-
spired by the work of Collins (2011), in which musical patterns were rated based on
a plethora of musical features from previous research, including (Cambouropoulos,
2006; Conklin & Bergeron, 2008; Forth &Wiggins, 2009; Meredith et al., 2002; Pearce &Wig-
gins, 2007). Several features were also inspired by the research of VanKranenburg et
al. (2013), which compared global and local features of folk song melodies.

To compare features of the patterns, we take the first occurrence of each pattern
annotated in ANOMIC, as PAF annotators only annotated the most representative
occurrence of each pattern. We take the first occurrence because the first occurrence
of a pattern in a musical piece tends to have a more significant role according to
Schoenberg (1967). This taking-the-first-occurrence approach has an exception for
the Occurrence feature that counts the number of occurrences of a pattern. With
this Occurrences feature, namely the number of times that a pattern repeats, we use
all occurrences from ANOMIC to see whether the annotators actually followed the
instructions closely regarding annotating single or multiple occurrences.

We then compare features of the patterns, we computed musical features of each
pattern, thus forming feature distributions for both datasets. Next, the distribu-
tions of each feature were normalised by taking the minimum and maximum val-
ues across both distributions and performing min-max feature scaling. Thus, we
obtained feature distributions with a range of 0 to 1, which are visualised in Figure
3.5. The computation process of each analysed feature is described in detail in the
supplemental online material8, which also includes the Python source code used for
the analysis.

In Table 3.2, we list the 7 features included in this paper, namely those which we
consider to be most intuitively related to pattern characteristics perceivable by users
(such as the duration of the last note or the note range). Notice that the Occurrence
feature is what we mentioned as an exception to the taking-the-first-occurrence ap-
proach above. Furthermore, following the comparison of local and global features in
(VanKranenburg et al., 2013),we focused on local features, which aremore likely to be
assessed by humans when annotating patterns. We further reduced the number of
important features by analysing the Spearman’s and Pearson correlation coefficients
between pairs of features. The highest Pearson correlation value appeared between
the feature pattern duration and note range, which has a correlation of 0.64 and 0.65
for ANOMIC and PAF. Tables of the most correlated features for each dataset can be
found in the supplemental online material8.

8Results available at https://bitbucket.org/anonymous_submitter/agreement-in-musical-patterns
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3 Gathering Human-Annotated Musical Patterns

Our last step to analyse pattern features is based on independent two-sample stu-
dent tests (t-tests), two-sample Kolmogorov-Smirnov tests (KS-tests) and boxplot
visualisations of distributions. Given our null hypothesis that the samples are drawn
from the same distribution, and given that we are unsure whether our data is nor-
mally distributed, we use both parametric and non-parametric tests to verify how
likely it is that the distributions actually differ. The differences are represented by
high t andD statistic values in combinationwith low p values of the performed tests.
We also considered boxplot visualisations of the distributions to better understand
the shapes of the distributions and the differences between them.

3.4 Results

In this section, we report the results of comparisons between ANOMIC and PAF.
We do not compare them together with the HEMAN data as explained in Section
3.2.5: the annotated patterns were not grouped into a pattern-occurrence relation,
and therefore were difficult to compare with those that were grouped. We use the
two kinds ofmethod introduced in Section 3.3: agreement analysis and feature anal-
ysis.

3.4.1 Agreement analysis

In order to analyse inter-annotator agreement, we computed the F1 scores of all an-
notator pairs across all music pieces. We gathered these values into F1 score ma-
trices, which allow us to visually inspect the results in a compact manner. Figure
3.4 shows these matrices, in which annotators are grouped based on the annotation
tool used and their backgrounds. The analysed groups include the TC, MU and PE
groups of PAF as well as the musician and the non-musician groups of ANOMIC
(see Section 3.2.3 and 3.2.2 for the setup of the experiments). Based on the obtained
inter-annotator agreement values, we refer to the values above 0.95 (yellow matrix
values) as indicators for a strong agreement in this paper. It should be noted that
the number of annotations was not split equally among music excerpts, as some an-
notators of the PAF tool did not annotate the last three excerpts. This was likely due
to the fixed order of music excerpts and the significant time investment in the anno-
tation process. Once this issue of the PAF tool was identified, it was reported and
addressed by the developers, who randomised the ordering to improve the tool for
future use.
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Figure 3.4: F1 scorematrices, representing the pairwise agreement between annotators, with
the time threshold set to 5 crotchets. Eachmatrix showcases results for a different
music excerpt. Matrix columns and rows denote different annotators, grouped
based on the annotation tool used (ANOMIC or PAF) and their musical back-
ground. Matrix cell colours correspond to the obtained pairwise agreement val-
ues, where yellow denotes high agreement and blue indicates low. Some anno-
tators did not provide annotations for all excerpts, which can be seen along the
diagonals as low agreement.

We will not make a comprehensive cross-comparison between ANOMIC and PAF
using ourmeasure introduced in 3.3.1, because of the single- or multiple-occurrence
difference in the instructions of the tools. The concept of "matching annotations" is
a complicated one if we compare the most representative occurrence annotation of
a pattern with all the occurrences annotated for a pattern. In addition, "the most
representative" and "all occurrences" are not guaranteed as the annotators can only
do the best they can. We will, therefore, leave this to be explored in future work.

PAF

The TC andMU groups show strong agreement (>0.95) on the first three music ex-
cerpts. The results of the PE group show many weaker agreements, despite a more
significant number of annotators. Contrary to the TC and MU groups, the annota-
tors of the PE group did somewhat agree with the annotations for excerpt 4. There
is only one strong agreement between annotators belonging to different groups (ex-
cerpt 6, annotators 1 and 4). Since there are several strong agreements between
the annotators within individual groups, the lack of agreement between different
groups could indicate the potential influence of different study programmes on the
annotators’ perception of the most representative musical patterns.
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3 Gathering Human-Annotated Musical Patterns

ANOMIC

For ANOMIC, the agreement values for the two subgroups are similar: the av-
erage inter-annotator agreement for the musician group is 0.61 and 0.63 for non-
musicians. While some agreement does exist between the ANOMIC and PAF anno-
tators, we only observe one strong agreement between two PAF annotators and one
non-musician annotator of ANOMIC in excerpt 1. We do not make further compar-
isons between ANOMIC and PAF disagreements, as a range of factors could have
contributed to their differences, such as differences in instructions.

A remark on taking averages

We have an additional note for these comparisons. In taking averages, we can com-
pare between groups while marginalising the effects of individual differences be-
tween musical pieces. We are aware that this is not always valid because there is a
varying degree of difficulty in finding patterns across different musical pieces. It is
possible that a group of annotators disagree strongly on one single piece and agree
perfectly with each other on the rest, which would be obscured in the average, with
the music being a confounding factor. However, in Figure 3.4, we see a range of
disagreement and agreement. Admittedly, excerpt 1 is more disagreed upon than
others, so we also calculated the values by only using the other five excerpts, and the
results and conclusions did not change. Furthermore, the computation of the aver-
age was based on the whole matrices, thus including values where users did not
provide any annotations. These values were simply set to 0 and were included in
the computation. We also analysed the average values if these values were ignored.
Despite affecting the average values of the comparison, the changes in values were
not significant since the values, based on PAF users, simply increased by around
0.01. Thus, we decided to only report the original values, which included missing
annotations.

3.4.2 Feature analysis

As introduced in Section 3.3.2, we analysed, for each pattern feature, the annotations
of ANOMIC annotators with musical and non-musical backgrounds and compared
them to the PAF dataset, whose annotators all had a musical background. We in-
vestigated whether the difference between datasets was also present in these back-
ground subgroups to identify if the observed difference between the ANOMIC and
the PAF dataset was influenced primarily by the tools or the musical backgrounds
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3 Gathering Human-Annotated Musical Patterns

of the annotators. Additionally, based on how intuitive they are and their correla-
tions, we narrowed the list down to 7 features: pattern duration, number of occur-
rences, last note duration, note range, pitch direction changes, intervallic leaps and
root notes. These features are also listed in Table 3.2, along with their descriptions.
Plotted distributions of these features can be seen in Figure 3.5. A list of all anal-
ysed features, all t-test and KS-test results as well as all boxplot visualisations are
available online8.

Figure 3.5: Boxplots showcasing the distributions of the analysed pattern features of the
ANOMIC and the PAF datasets. For each feature, the two distributions were
normalised.

Pattern Duration and Occurrence features

The first of the features we analysed was the Pattern Duration feature, which mea-
sures the length of a pattern in quarter notes (crotchets). We observed that the
ANOMIC distribution had much smaller overall and interquartile ranges than the
PAF distribution. The mean and median values of the distribution were also much
smaller.
Next was theOccurrences feature, which refers to the number of times that a pat-

tern occurs in a music excerpt, as defined by Collins (2011). From the boxplots in Fig-
ure 3.5, it is evident that the PAF distribution differs drastically from the ANOMIC
distribution, which is expected due to the difference in instructions given about
whether to annotate all occurrences or not. This result confirms that the annotators
followed the instructions closely in this respect.
Differences between the two datasets were also seen for the Last Note Duration

feature, which describes the duration of the last note of a pattern. Here, the
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ANOMIC distribution had larger interquartile and overall ranges than the PAF
distribution, while its mean and median values were lower.
The t-tests in Table 3.3 and the KS-tests (available online8) confirmed that the

above-mentioned differences between distribution pairs were statistically signifi-
cant. Furthermore, they revealed that the differences between the PAF dataset and
the two subgroups of the ANOMIC dataset, based on musical backgrounds, were
also statistically significant. Thus, we may conclude that the differences between
feature distributions of pattern datasets were influenced by varying musical back-
grounds but also possibly by the interfaces or the instructions of the annotation
tools.

Pitch-based features

The two annotation datasets also differed on the Note Range feature, which de-
scribes the number of semitones between the lowest and highest note of a pattern.
Figure 3.5 shows that the PAFdistribution has amuch larger overall and interquartile
range than theANOMICdistribution. Itsmedian andmean values are also higher.
Similar differences were also seen for the Pitch Direction Changes feature, which

is defined as the number of melodic arcs in a pattern, drawing inspiration from vari-
ousmelodic arc features in (VanKranenburg et al., 2013). Our analysis showed that the
ANOMIC distribution had a much larger overall and interquartile range. Further-
more, the distribution lacks the bottomwhisker, thus beingmore positively skewed.
The ANOMIC distribution also had significantly lower mean and median values.
We observed comparable differences among the Intervallic Leaps feature distribu-

tions. The feature describes the fraction of all melodic intervals of a pattern whose
note range is larger than two semitones, as defined by Collins (2011). Considering
the analysis results, we see that the PAF distribution has much larger overall and
interquartile ranges. Its median and mean values are also significantly higher.
Finally, differences were seen for the Root Notes feature, which describes the frac-

tion of notes in a pattern that are root notes or octaves of roots of the music piece.
From the distributions present in Figure 3.5, we can discern that the distributions
mainly differ in the overall and interquartile ranges, with the PAF distribution hav-
ing much larger ranges than the ANOMIC distribution. We also note that the mean
value, as well as the standard deviation of the PAF distribution, are slightly higher
than those of ANOMIC.
By analysing the t-test results from Table 3.3 and the KS-test results (available

online8), we confirm that the distribution differences of the first three pitch-based
features between the two datasets are statistically significant. We notice that
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these three features pertain to the relationships between notes in the patterns
and are therefore melodically relevant. We can also discern that the differences
are not statistically significant between the PAF group and the musician group of
ANOMIC. However, the difference between musicians, both ANOMIC and PAF,
and non-musicians of ANOMIC, is statistically significant.

3.5 Discussion

Based on our comparison results between ANOMIC and PAF in the last section, we
draw a few conclusions in this section:

• Given the same music, familiarity with music, including the type of musical
study programmes attended by the annotator, influences the annotated musi-
cal patterns.

• The interface and the automatic occurrence matching functionality of the mu-
sical pattern annotation tools influence how long and how often the musical
patterns are annotated.

• Features such as note range, intervallic leaps, and pitch direction are statisti-
cally similar between ANOMIC and PAF musicians and significant different
between these musicians and non-musicians in ANOMIC. Therefore, exclud-
ing the potential influence of the annotation tools, the varying musical back-
ground of the ANOMIC annotators influences the annotated musical patterns.

Please see a more in-depth discussion on each point below, as well as an outlook on
human musical pattern annotations at the end of this section.
Comparing the annotations collected with the PAF tool enabled us to study three

groups of annotators from different musical study programmes. We observed
higher agreement between annotators of the same group when compared to an-
notators of different groups, indicating a potential influence of study programmes
on the understanding and perception of patterns in music. Comparing the anno-
tations of the ANOMIC annotation set, which included two groups of annotators
(musicians and non-musicians), gave a similar result.
Several differences observed in the feature-based comparison of the annotation

datasets point towards discrepancies in annotations caused by design differences in
the tools and experiments. The PAF interface displays sheet music allowing a com-
pact representation, with large sections of the music piece being presented to the
user within a single view. By contrast, ANOMIC’s piano roll representation gener-
ally displays fewer elements at once to the user in order to preserve element clarity.
The difference in music visualisationmight have caused users to perceive and anno-
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tate patterns with durations relative to the viewwindow size. The notes in the sheet
music representation of PAF remained roughly the same size, while the piano roll
elements of ANOMIC varied in their size based on the durations. Since the last note
durations of the PAF dataset are on average significantly longer, differently sized ele-
ments of the ANOMIC tool could have discouraged users from picking longer notes
as pattern endings. The large disparity in the occurrences feature distributions was
most likely caused by the lack of automatic occurrence matching functionality in
the PAF tool, as well as differences in the instructions given to the users, despite the
augmentation step as described in Section 3.2.5.

Moreover, we observed differences in note range, intervallic leaps, and pitch di-
rection changes between ANOMIC non-musicians versus ANOMIC musicians and
PAF annotators. The t-test analysis showed that the differences were not statistically
significant between the PAF group and the musician group of ANOMIC. However,
the difference between musicians, both ANOMIC and PAF, and non-musicians of
ANOMIC, was statistically significant. We, therefore, conclude the varying musical
background of the ANOMIC annotators as the influential factor, and exclude the po-
tential influence of the annotation tools. We also speculate that annotators with dif-
ferent musical backgrounds tend to annotate patterns with different melodic prop-
erties. Finally, for the root notes feature, we are unsure what might have caused the
difference in distributions, though we believe it is not caused by the musical back-
groundbased on the lack of difference between feature distributions of theANOMIC
musicians and non-musicians.

Our findings point to a major influence of the annotation tools, instructions, and
the musical backgrounds of participants on the annotated patterns. As a next step,
the influence of the tools should be studied in more detail using stricter controlled
comparisons, including a clarification on how users should include their listening
experience into the annotation process, and a controlled use of the automatic pat-
ternmatching functionality. Moreover, the analysis of the pattern datasets can be en-
riched by further investigations as towhere annotators tend to agree, for instance, by
exploring dynamic thresholds for calculating inter-annotator agreement depending
on the size of the patterns. Determining inmore detail different levels of granularity
as to when two pattern annotations can be considered as agreeing, even if the exact
beginning and ending points are not identical, can further help to identify different
layers of commonality between annotators.

We believe that thewidespreaduse of digital tools in gathering pattern annotations
is inevitable in the near future. Our findings point to several directions for improve-
ments in large-scale data collection and analysis of musical patterns. The observed
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differences in annotations gathered with different tools call for further experiments
and analyses for deriving technical design choices that fit the purpose of pattern
annotations in an optimal way for a given context and annotator group. Establish-
ing reference data for evaluating automatic pattern discovery algorithms from such
rich annotation datasets can follow different directions. For instance, identifying
subgroups of annotators that highly agree with each other can assist in establishing
single-reference data based on a larger group of annotators. Establishing evaluation
methods that take into account multiple reference annotations expressing different
subjective interpretations of the same musical piece, can pave the way for a more
adequate consideration of ambiguity and subjectivity in the evaluation of pattern
discovery algorithms.

3.6 Concluding remarks

We have discussed several factors to consider when collecting human-annotated
musical patterns for algorithms. In this section, we discuss more points of our limi-
tations and future work. We will also touch on topics that are tangentially related to
annotation experiments. We have quite a few points in this chapter in comparison
to other chapters, as experiments involving humans can be more convoluted.

The control of variables: instruction, visualisation, and helper functions

In this first explorative study of comparing annotation tools, we did not provide a
single set of instructions for musical experts (PAF) or non-musicians (ANOMIC).
Giving instructions to the annotators is one of the most difficult aspect of pattern
discovery experiments to design, because we have a flexible concept of pattern and
are trying to find something that we do not know ahead of time. We have not used
the working definition given in Chapter 2 because we followed the instruction from
previous work in this series of experiments. Additionally, we cannot verify if the an-
notators strictly adhered to the instructions. In the future, including more specific
instructions, incorporating our definition that emphasises the importance of why a
pattern is annotated, and adding user behaviour logging may allow for more con-
trolled conditions when comparing different tools.

For instance, an instruction to first listen to music without consulting the visuali-
sation before starting with the annotation process, might decrease an otherwise per-
haps strong tendency of users to annotate patterns they can visually identify. Nev-
ertheless, each music visualisation will influence the annotation process to a certain
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extent. Musical experts may be most familiar with sheet music, but piano roll visu-
alisations may be more accessible for annotators with less musical expertise. As our
results indicate that the size of the musical excerpt that can be displayed in a single
view to the user seems to influence the length of patterns annotated, this should
be specifically considered when longer patterns are expected to be important for a
specific corpus.
This instruction issue is related to the helper functions as well. The influence of the

automatic occurrencematching functionality needs to be investigated inmore depth
in the future. If the goal of the annotation is to find all occurrences of a given pat-
tern, as was the case in the ANOMIC experiment, the automatic occurrence match-
ing functionality can alleviate the finding of the pattern occurrences for users, but
it might have the side effect of pointing users to occurrences they would not have
deemed important otherwise. If only the most representative pattern should be an-
notated, as in the PAF experiment, such a tool can assist in highlighting all other
occurrences from which the user can then choose the most representative one for
the annotation. Either way, this calls for a systematic investigation of using tools
with and without such functionality.
The helper function embodies this cycle of improving pattern-finding algorithms

and collecting annotations: the algorithm can help with the data collection process,
which helps to improve the algorithm itself. In fact, algorithms are increasingly
commonly used as pseudo-annotators for data collection and self-supervised learn-
ing in Machine Learning (ML) (Carmon et al., 2019). Another possibility to explore
is to create a tool that enables annotators to write their own helper functions based
on their domain knowledge using a simple DSL, which is also an active strand of
research (Ratner et al., 2017). DSLs will be discussed more in detail from Chapter 5
onwards.

Measures of musical background

Fairly assessing and comparing different music backgrounds can be a challenge. For
most of us, musical ability exists primarily on a spectrum, and drawing a clear line
between musicians and non-musicians is difficult.
In this chapter, we used either the faculty programme of the participants or a basic

questionnaire to approximate level of musical expertise for our experiments. We did
not collect other detailed music background of the participants, such as what mu-
sic they usually listen to, whether they have perfect pitch, or whether they studied
the pieces in experiments before. In future experiments, more of this information
and sophisticated musical expertise indexes could be used (Müllensiefen et al., 2014).
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Asking about the participants’ familiarity with themusic material can be potentially
useful in our analysis, as well.

Computational modelling of experts’ views

Our participants are mostly bachelor’s and master’s students, and none of them are
academic experts, such as professors of musicology or music theory. For devel-
oping algorithms, two specific types of humans-in-the-loop—crowd-in-the-loop or
experts-in-the-loop—have different costs. The higher the expertise, the harder it is to
perform annotation experiments with them due to limited availability. Experts’ an-
notations, too, can disagree and be associated with another set of challenges. Never-
theless, a single expert’s idea is important, and onemay employ a different approach
to computationally model an expert.

It is likely that the annotations and characterisation of musical patterns from a sin-
gle expert would be small and potentially similar to what we have seen in Chapter 2,
to the extent that, despite the eloquent characterisations of pattern-related concepts
in previous research, they are too imprecise and unsystematic for computational
approaches. Big data and machine learning approaches, except zero-, one-, n-/few-
shot learning, are likely to fail when the dataset is small, too.

If there exists a well-defined, mathematically, or computationally inclined musical
theory of patterns where a set of axioms and rules are explicitly given and fixed,
then a different approach than the data-driven ones could be computationally im-
plemented. In this type of top-down modelling, the evaluation would consist of
testing and verification of the system in order to guarantee the correctness of the im-
plementation, instead of comparing with annotations. However, what may deliver
extra insight is to try to align these top-down theorieswith listening experiences that
involve the bottom-up process of pattern annotation by humans.

Negotiation and consultation

In our experiments, the participants could not talk to each other and modify each
other’s annotations according to the discussions. It is possible that, after being in
consultation with each other, the annotators may change their mind or even agree
to disagree. Future experiments can consider the inclusion of consultation between
annotators and the integration of chat or vote functionality within the annotation
tools. We believe, however, that there are merits in looking at the first reactions
from annotators without modifications.
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Intra-annotator (dis)agreement

In this chapter, we did not touch on the topic of intra-annotator (dis)agreement.
However, this type of disagreement probably happens often in the case of musi-
cal patterns: the same annotator might disagree with their past selves. In fact, we
reached out to the annotators for the HEMAN experiment five years after it took
place, but we did not receive a reply. It would be interesting to consider a longitu-
dinal study in the future.

In comparison with the study of disagreement in chord estimation

Koops et al. (2019) investigated the inter-annotator agreements in chord estimations
and was inspirational for this chapter. Here, we make a comparison between the
pattern discovery task and chord estimation task in terms of the presence ofmultiple
annotations.

In chord estimation, there is a chord or a group of chords to be assigned to specific
points or periods in music. In pattern discovery, the assignments are not local but
global. For every point of the music, the annotator can point out whether there is or
there is no pattern. When pointing out there is a pattern, this point automatically
relates to another or many other points corresponding to the pattern’s occurrences
in the music. Therefore, although both chord estimation and pattern discovery face
inter-annotator agreement issues, the nature of the problems is different.

Disagreement and uncertainty

It has been said in economics that when there is disagreement, there is uncertainty
(Bomberger, 1996). Let us take a look back into the deeper implications of agreement
and disagreement in terms of certainty and uncertainty.

Why do we need multiple annotators in the first place? Because there is no reason
to expect that they will be in perfect agreement, and evidence shows that this is
indeed not the case. We have already seen that there can be a variety of reasons as
to why annotated patterns differ. Disagreement reflects inter-personal and, in some
cases, intra-personal differences that give rise to uncertainties. Uncertainty makes
it challenging to define patterns extensionally (see Section 2.2 where we discussed
intension and extension definitions).

There are unambiguous situations where well-defined notions guarantee agree-
ment, such as the task of simple counting or calculations, which often do not require
more than a very small number of people to perform the task. The regions in be-
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tween the certain/uncertain extremes consist of a spectrum of possibilities, where it
is hard to tell whether a definitive answer always exists or uncertainties dominate.
In either case, facing uncertainty, we can take the intersection of the annotations,

or the aggregate, or sieve through them according to different levels of importance.
In the area of musical pattern discovery, since there is a lack of annotated data, the
default has been to take the aggregate of data. As suggested in Section 3.5, other
strategies should be investigated, too.

Data-centric and model-centric views

In the machine learning community, there has been a discussion about data-centric
andmodel-centric views. Although the data-model interplay does not naturally bias
one or the other, a majority of research puts focus on the models and algorithms, in-
stead of the data they operate on. However, as suggested in (Northcutt, Jiang, et al.,
2021), a data-centric model may result in a more efficient and meaningful solution.
An example would be an iterative data gathering process where the data get im-
proved and the models are kept fixed.
While we believe that both data and models are essential, we agree that training

data has become a key differentiator for the performance of algorithms (Ratner et
al., 2017), and that this data should not be kept fixed. In fact, as gathering data is a
messy process, major errors are found in widely used datasets (Northcutt, Athalye,
et al., 2021). Data should not become the new "Bible" for truth, but it serves as a
reference that could be investigated thoroughly and progressively.
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Chapter 4 Comparisons of Musical
Pattern Discovery
Algorithms

The best programs are written so that computing machines can perform them
quickly and so that human beings can understand them clearly. A programmer is
ideally an essayist who works with traditional aesthetic and literary forms as well
as mathematical concepts, to communicate the way that an algorithm works and
to convince a reader that the results will be correct.

– Donald E. Knuth

4.1 Introduction

We have seen in previous chapters that patterns are ubiquitous and diverse. These
patterns, and especially patterns in music, provide unique opportunities and chal-
lenges in understanding and using algorithms. Algorithmic musical pattern discov-
ery research aspires to uncover and extract such elements automatically.
Different algorithms can extract patterns in a myriad of ways and yield a plethora

of different patterns. It is crucial to compare and understand the differences between
these algorithms before we select or improve them for advancing the field of auto-
matic pattern discovery. Comparisons have been carried out using metrics such as
F1 score, but how canwe obtainmore insight by using comparisonmethods other
than utilising a few numbers from the metrics? More specifically:

• How can we improve the comparison between the patterns extracted by differ-
ent algorithms?

• How can we improve the comparison between the algorithmically extracted
patterns and the human annotations?

In this chapter, we add to existing comparison techniques by proposing four meth-
ods (location and feature visualisation, pattern polling, comparative classification,

87



4 Comparisons of Musical Pattern Discovery Algorithms

and synthetic data) to improve the comparison between musical pattern discovery
algorithms and between human annotations and these algorithms. With thesemeth-
ods, we hope to advance the field of automatic pattern discovery more generally.

Research landscape

Research into musical patterns and pattern discovery algorithms is of current rele-
vance (Collins, 2011; Collins et al., 2013; Conklin, 2002; Conklin & Anagnostopoulou, 2011;
Forth, 2012; Hsu et al., 1998; Janssen, 2018; Janssen, de Haas, et al., 2014; Lartillot, 2004;
Meredith, 2013, 2015; Meredith et al., 2002; Nieto & Farbood, 2014; Pesek et al., 2017; Ren,
2016; Ren et al., 2017; Ren, Volk, et al., 2018; Rolland, 1999; Velarde et al., 2016; Velarde
et al., 2013). With recent and rapid development in research areas such as pattern
recognition and machine learning, ML algorithms that are potentially suitable for
automatically extracting musical patterns have become available. One motivation
driving the development of musical pattern discovery is the potential for applica-
tions in areas such as genre classification (using repetitions to distinguish between
genres), error correction (using the pattern occurrence happened earlier in the piece
to correct subsequent corrupted occurrences) (Dixon et al., 2004; Lin et al., 2004) and
segmentation (cutting out the repetitive patterns) (Cambouropoulos, 2006; Conklin
& Anagnostopoulou, 2006) in MIR; as well as automatic composition and learning
systems in Human-Computer Interaction (HCI) (Collins, 2011; Fowler, 1966; Kaplan,
2015). For example, given that composers employ patterns to introduce structure
into their music (Hsu et al., 1998), the discovered patterns can be used to provide
auto-completion and inspirational suggestions; we can also highlight discovered
patterns in music as a guide for attentive listening, memory anchoring, and efficient
practising (Jones, 1987; Kubik, 1979); for musicologists and music theorists, facing the
complexity of large corpora, the algorithmically discovered pattern candidates can
provide support and evidence for categorisation and theorisation efforts (Agawu,
2014; Gjerdingen, 2007; Huron, 2006; Lerdahl & Jackendoff, 1985; Zbikowski, 2002).

Challenges

In spite of the existence of many generic pattern discovery algorithms (Bertens et al.,
2016; Brand, 1999; Cooley et al., 1997; Papadimitriou et al., 2005; Parida, 2007; Vreeken et
al., 2011; Wang et al., 1994) and musical pattern discovery algorithms (see (Janssen, de
Haas, et al., 2014) for a detailed overview), there nevertheless remain some persistent
challenges. In addition to the difficulties we addressed previously about musical
patterns themselves, such as the definition problem and the ambiguity and subjec-
tivity, there are two main inter-related and algorithm-specific ones. First, there can
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be a large number of output patterns, which are costly to examine manually. Sec-
ond, implementation logic can be hard to comprehend, which could be caused by
any of the numerous procedures that comprise the algorithm, or by a binary-only
release for which we only have access to the output.

Related to these two main challenges, we identify the following subsequent chal-
lenges:

• Patterns discovered by different algorithms for the same piece differ greatly
(Collins, 2017)

• The output patterns are often difficult to relate back to meaningful musical
concepts (Forth, 2012)

• The output patterns do not agreewellwith human annotations (Boot et al., 2016)

• Different application contexts for musical patterns might require different
types of patterns (Janssen, 2018)

All of the challenges above contribute to the substantial difficulty of comparing
between the algorithms. Musical pattern discovery algorithms are diverse, using
methods inspired by geometric shapes, machine learning, and more. These al-
gorithms were previously tested on unassociated datasets with disparate metrics
(Janssen, de Haas, et al., 2014). Given a domain-specific dataset with well-defined
research questions, it makes sense to do so: valuable insight can be gained using
one specific pattern discovery method without comparing to all other methods
available (Conklin & Maessen, 2019; Neubarth et al., 2018). However, a large-scale
standardised comparison may deliver more insight for selecting and improving the
pattern discovery algorithms available.

State of the art: MIREX and comparing the algorithms

One attempt to standardise the evaluation of algorithms is the MIREX task we de-
scribed in Chapter 1. Established in 2014, the MIREX pattern discovery task pro-
vides the The Johannes Kepler University Patterns Development Database (JKU-
PDD) dataset and a set of metrics for comparing between pattern discovery algo-
rithms. In the task, a pattern is defined as a set of time-pitch pairs that occurs at
least twice in a piece of music and the human-annotated JKU-PDD dataset was in-
troduced (Collins, 2014).

We mentioned in Section 3.3.1 that the MIREX metrics take into account musical
events, and metrics such as three-layer precision, recall, and F1 score were devised
to evaluate the algorithmic output. Here is a list of all the metrics used in the task:

• Establishment precision, establishment recall, and establishment F1 score
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• Occurrence precision, occurrence recall, and occurrence F1 score

• Three-layer precision, three-layer recall, and three-layer F1 score

• Coverage and compression ratio

• Runtime, fifth return time, etc.

• Standard precision, recall, and F1 score

• Friedman tests

The establishment and occurrencemetrics focus on two different points for pattern
discovery. Establishment metrics measure whether an algorithm is capable of estab-
lishing that a pattern is repeated at least once during a piece, and are less interested
in whether the algorithm can retrieve all in/exact occurrences. Occurrence metrics
focus on an algorithm’s ability to retrieve all occurrences. These two aspects are not
completely orthogonal to each other, because occurrences help in establishing the
patterns.

Three-layer metrics cross-compare all discovered occurrences with ground truth
occurrences on three structural levels (Meredith, 2015). Friedman tests are chosen to
investigatewhether any algorithms rank consistently higher or lower than the others
regarding metrics for individual pieces. Coverage and compression ratio concern
with the relationship between the number of notes in the pattern discovery out-
put compared to the set of notes in a musical work. Coverage is the percentage of
notes in the musical piece that is covered by discovered patterns. Compression ratio
computes how far a musical work can be more efficiently expressed in discovered
patterns and their occurrences. Formal definitions are available in (Collins, 2017).

With theseMIREXmetrics, algorithms rarely performed consistently on all the test
pieces. Patterns extracted by different algorithms also vary to a great extent given
the same input. There is also significant controversy when it comes to using human
annotations as ground truth and when designing an all-encompassing evaluation
strategy (Janssen, de Haas, et al., 2014; Meredith, 2015; Ren et al., 2017; Ren et al., 2020), as
we explored in Chapter 3: human annotations are diverse and it is difficult to collect
them.

Another pattern annotation dataset which has been used for evaluating the algo-
rithms is the MTC-ANN dataset (Boot et al., 2016; VanKranenburg et al., 2016). Al-
gorithms’ output have been compared in a classification and compression task in
(Boot et al., 2016) together with human annotations. Results show that the human-
annotated patterns perform better than the patterns extracted by algorithms. It is
difficult to derive from these metrics how the observed differences between the al-
gorithms and human annotations can lead to improvements of the algorithms.
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Most evaluation metrics rank the algorithms according to a score as the proxy for
how meaningful the discovered patterns are, and this is no exception for MIREX.
However, these metrics are not entirely without controversy: the performance of
algorithms varies on different metrics and different musical pieces, for example,
making it difficult to analyse the overall and specific strengths and limitations of
algorithms. They summarise algorithms’ performances by grouping together the
in/correct occurrences, losing the abilities to inspect closely the different types of
mistakes the algorithms are making. Problems such as these motivate us to exam-
ine the output patterns from the algorithms in more detail to advance this area of
research.

Our methods

To dive deeper into these challenges, we introduce visualisation approaches and
computational methods for examining algorithmically discovered musical patterns.
More specifically, we devise Location and Feature Visualisation methods (LFV) to
visualise the locations and features of patterns. We also create Pattern Polling (PP),
to combine patterns, and Comparative Classification (CC), to differentiate patterns.
In addition, we propose to plant predetermined patterns into random data to gen-
erate controllable synthetic data, thereby leaving us better able to inspect, compare,
validate, and select the algorithms. We provide a concrete example of using syn-
thetic data for understanding the algorithms and expand our discussion to the po-
tential and limitations of such an approach. Finally, we will finish the main con-
tent of the chapter with a discussion over the ground truth problem, summarise the
chapter, and discuss topics related to pattern discovery algorithms in general.
Building on this prior research, our intention of comparing the algorithmswith hu-

man annotations is not to claim any superiority between annotations and computed
patterns, and between the algorithms, but to help users to findmeaningful patterns.
In other words, our intention is not to create metrics to rank the algorithms, but to
introducemethods to examine their output, which could potentially inform usmore
about the algorithms as well as the music data being used. The ultimate purpose for
comparing algorithms in reference to human data is to evaluate which algorithms
are more suitable and more similar to humans in certain situations or tasks. In this
dissertation, we do not produce an answer for this ultimate question, but propose
methods for examining this suitability.

Contributions

The take-home messages, namely our contributions, of this chapter are that:
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• Visualising the locations and the features of patterns can be used to provide an
overview of the discrepancies between human-annotated and algorithmically
extracted patterns.

• Taking the output of different pattern discovery algorithms and "polling" to-
gether their output do not significantly improve the results of the pattern dis-
covery task.

• Human-annotated patterns and algorithmically extracted patterns differ to
such an extent that automatic classifiers can distinguish them. The important
features that are responsible for the good classification results are rhythmic
features.

• Synthetic data can be used to reduce the complexity of human-composed mu-
sic so that we can compare more explicitly what humans expect to be extracted
as patterns and what algorithms extract as patterns: we show that some al-
gorithms extract patterns that are well-aligned with human expectation, but
some algorithms produce unexpected results.

4.2 Our methods

4.2.1 Summarising the use of the algorithms in our methods

Table 4.1 summarises how we use some of the algorithms we introduced in Chap-
ter 2 in our subsequent experiments, and whether they have been submitted to the
MIREX task. The LFV, PP, CC, and Synthmethods will be seen in Section 4.2.2, 4.2.3,
4.2.4, and 4.2.5, respectively.
Some algorithms are not present for all experiments because of format compati-

bility. Not including all algorithms does not undermine the validity of our results
because we use the algorithms individually and provide our analysis mainly on a
case-by-case basis, that is, we will look at algorithms in a modular fashion. We ex-
pect that our analysis and methods could still be applied in the presence or absence
of any number of other algorithms.

4.2.2 Location and Feature Visualisation (LFV)

To understand the output of musical pattern discovery algorithms, a visual inspec-
tion and comparison is a helpful first step. In this section, we address the issue of in-
spectingmusical patterns by comparingdiscoveredpatterns visually in twodifferent
ways. We first give a short introduction to visualisations in research in general. Fol-
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Algorithm MIREX Vis. PP CC Synth
VM1 x x x x x
VM2 x x x x x
SIAF1 (SIATECCompress - F1) x x x x x
SIACR (SIATECCompress - Recall) x x x x x
SIACP (SIATECCompress - Precision) x x x x x
SC x x x x
OL1 (PatMinr) x x x
OL2 (PatMinr) x x x
ME (Motive Extractor) x x x
SIACFP x x x x
MGDP x
COSIATEC x
Forth x

Table 4.1: Table summarising the musical pattern discovery algorithms we examine. The
"MIREX" column indicates whether they have been submitted to the MIREX task.
"Vis." denotes visualisation. The rest of the three columns indicate whether we
consider them in our three other experiments. A cross mark indicates that the
algorithm is present.

lowing that, we visualise algorithmically extracted patterns and human-annotated
patterns using pattern locations and then pattern features. The challenge here is to
visualise a large number of discovered patterns in relation to each other. In answer
to this, we abstract away different aspects in different visualisations. In later chap-
ters, we also consider interactive visualisations where the inspector can zoom in and
out of different aspects.

Visualisation in general

"Provare per credere"—seeing is believing—is a concept perhaps not foreign to
many. "Visualisations help offload cognition to perception," says Jessica Hullman
(Hullman & Diakopoulos, 2011). It has been demonstrated that visualisation can
assist humans in debugging complex reasoning steps (Shams et al., 2018). Tukey
and Wilk (1966) also stated that the effective laying open of the data to display the
unanticipated is a major portion of data analysis. Visualisation is an effective tool
for data storytelling, a way of making complex information relatable and different
perspectives shareable. Visualisation from data enables us to straightforwardly
compare our expectations and the data, which can be used as powerful as a type of
pseudo-statistic model fitting and checking. By targeting the human visual cortex,
we can encourage discovery with a variety of visual cues.
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There are many possibilities to visualise musical patterns, including static figures,
score highlighting, interactive applications, animated films, to list a few. Consider-
ing the simplicity and the static nature of most academic publications, we start with
static visualisations in this chapter.

Visualising pattern locations

As described in Chapter 2, the beginning and endings of patterns are perhaps the
most important to show, because they determine themusical content when the piece
of music is fixed and monophonic. Therefore, using these two values, we can con-
cisely encode and represent a musical pattern occurrence within a musical piece.
In Figure 4.1, we visualise the (non)existence of patterns by plotting a bar in be-
tween the beginning and ending points of the pattern occurrences. In this way, we
can concisely show a large number of patterns and their relations to each other in
location.
Themusic data used in this figure is themonophonic version of Chopin’sMazurka

Op.24 No.4 (the piece is made monophonic by using the clipped skyline approach1,
as created in the JKU-PDD dataset). The algorithms used are summarised in Table
4.1, with a slight change in the naming convention: SIAF1, SIAP, and SIAR, in the
figure are SIACF1, SIACP, and SIACR, respectively.
We can make several observations from Figure 4.1:
• Different algorithms find very different patterns—some tend to find shorter

patterns, some longer, and some find many patterns, while others are more
discerning.

• We have three algorithm families (SIA, VM, and OL), each of which consists
of more than one algorithm. Algorithms from the same algorithm family tend
to find similar patterns. Similarities observed include the number of patterns
discovered, coverage of the song, and occurrence overlaps.

• The ground truth (which we take to be human annotations) is sparse in com-
parison to the patterns discovered by the algorithms.

• Taking an overview of the entire visualisation, we can see some correspon-
dence and similarities between the algorithms and the ground truth patterns.

This type of visualisation might remind the reader of the orchestral graphs from
(Dolan, 2013), as shown in Figure 4.2. Although the appearance is similar—with
horizontal bars at different locations on the y-axis and time on the x-axis, what the
1Pieces in the JKU-PDD datatset are originally polyphonic. They are made to be monophonic by
either the clipped skyline approach (taking prominent notes from the polyphonic stream) or the
unfolding approach (concatenating different voices). See (Collins, 2017) for more details.
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Figure 4.1: Patterns extracted by all algorithms submitted to the MIREX task 2014-2016 plus
SIACFP on the monophonic Chopin’s Mazurka Op.24 No.4. A horizontal bar
shows the presence of a pattern. The x-axis represents the time offset in crotchet
units. The names of the algorithms in the legend correspond to the order inwhich
the bars were plotted. We can see the algorithms find different numbers of pat-
terns and patterns of different lengths.
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bars represent is quite different. In our case, each bar represents the existence of a
pattern, and there can be a large number of bars; in the case of orchestral graphs, the
bars represent the existence of instruments sounding in the music, and the number
of bars does not exceed the number of how many types of musical instruments are
present. Our visualisation is developed independently from this work.

Figure 4.2: An example of orchestral graphs. Taken from Dolan, 2013.

We can also visualise patterns across different pieces. In Figure 4.3, we show the lo-
cations of human-annotated patterns in theMTC-ANN dataset2 with which we plot
24 out of 26 tune families3 and numerous human annotations as can be seen in the
figure. Each vertical height contains the patterns from a different piece. Although
this cross-piece comparison may not work on vastly different pieces of music, the
comparison is fitting for the MTC-ANN dataset. We can observe that, in the same
tune family, it is very likely to have patterns in similar locations.
Taking Figure 4.3 further, we attempt to show the basic pitch and rhythm infor-

mation of the patterns in Figure 4.4. Each dot represents a musical event, in which
the rhythm is shown by the spacings of the dots and the pitch differences are re-
flected in very slight vertical offsets. Related work such as (Meredith, 2016; Nikrang
et al., 2014) visualises musical patterns with pitch and rhythm information, too, but
they do not visualise multiple tunes at the same time as we do in Figure 4.4. Al-
though we can glean some useful information visually, such as the fact that some
inserted notes can be seen in several pattern occurrences, there is a limit to this type
of visualisation: the pitch differences are difficult to discern and confusing given
the restricted spacing of each piece. Without an interactive zoom-in functionality,
this is difficult to improve. In future work, interactive visualisation methods could
2More details about the dataset can be found in Appendix A
3A tune family is a group of tunes sharing the same ancestor in the process of oral transmission.
Pieces in the same tune family share special similarity that can be characterised by musical pat-
terns. See Appendix A or (Boot et al., 2016) for more details.
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be desirable where both the macro- and micro- scale of the musical content can be
shown and explored. For example, (Nikrang et al., 2014) is a visualisation application
for musical patterns that has interactive functionality. We also show an interactive
visualisation in a different context in Section 6.6.

Visualising using Multidimensional Scaling (MDS)

Principal Component Analysis (PCA) is a well-known feature extraction andMDS
method for visualisation. It outputs combinations of features that form orthogonal
principal components. These principal components are in the same directions as
the directions of the largest variances (spread) of the dataset. By examining the re-
sulting principal components, we may gain insight into which features are of more
significance in explaining the spread of the data points. By applying the principal
components to perform a change of basis on the data points, we obtain a visual-
isation of the data points where the variances are clear. PCA has been employed
and shown to be effective in a variety of MIR tasks, including hook discovery in
(VanBalen, 2016).

To systematically investigate the differences between algorithmically extracted and
human-annotated patterns, we visualise patterns using their features and PCA. We
first compute the featureswith a common feature extraction tool: the jSymbolic tool-
box in the jMIR toolset (McKay, 2010)4. The jSymbolic toolbox takes MIDI files as
input and computes 155 musically meaningful features in six categories: texture,
rhythm, dynamics, pitch, melody and chords5. Using the MTC-ANN dataset, we
perform a feature selection step and retain 64 features as follows: (1) Eliminating the
features which are constant across all patterns; (2) Eliminating the features which
are irrelevant to the music content of time and pitch, such as the dynamics features.
After this feature selection step, we perform PCA.
In Table 4.2.2, we report the prominent features and the weights in the first three

PCA components: we see that there is a mixture of rhythmic and pitch related fea-
tures ranked high in the two principal components; rhythmic features rank high in
the third principal component. As the interpretation of the PCA visualisation does
not require an understanding of the individual features and wewill perform amore
detailed feature analysis later in Section 4.2.4, we will not give a list of explanations
of the features here, but some important features and their descriptions can be found
in Table 4.6.
4We will also use these pattern features in Section 4.2.4 for classification. PCA will also be applied
as pre-processing step.

5There are multiple versions of jSymbolic. The newest version provides more features. The version
we used to perform the experiments in this chapter is jSymbolic2.0.
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Figure 4.3: Visualisation of human-annotated patterns in MTC-ANN. Different colours and
segments in the figure represent different tune families. Different vertical heights
represent different pieces.
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Figure 4.4: An augmented visualisation of Figure 4.3. In addition to location, pitch and
rhythm can also be plotted to an extent by plotting musical events using dots.
The differences between pitches are reflected in the very slight differences in the
vertical positions. Without an interactive zoom-in functionality, we cannot repre-
sent every detail precisely. This limitation of static visualisation points to a more
interactive visualisation method in future work.
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In Figure 4.5, we plot different groups of patterns extracted from MTC-ANN in a
two-dimensional PCA embedding of the feature space. We make four cross-group
comparisons to show typical cases of how musical patterns are distributed in the
feature space spanned by the first two components of the PCA decomposition. The
visualisation is generated by first computing the PCA embedding using the anno-
tated patterns. Then, pattern features from different algorithms6 are projected onto
this embedding. Finally, for baseline comparison, we extract random excerpts from
the music, compute their features and add them to the PCA space. The comparison
to the random baseline is of interest here because, otherwise, it would be more diffi-
cult to navigate the highly abstract PCA feature space. More specifically, the random
excerpts are sampled using the following procedure:

• For each annotated pattern in MTC-ANN, we find the corresponding song
where the annotation appears.

• We then pick a random starting point and take an excerpt of the same length
as the pattern to construct a candidate excerpt.

• Finally, we repeat the sampling procedure five times to control for anomalous
results.

From the four snapshots we take from the musical pattern PCA feature space as
shown in Figure 4.5, we make several observations:

• Annotated patterns and random excerpts have extensive areas of overlap,
which makes it impossible to find a linear classifier that uses the first two
principal components of the annotated pattern features, which in turn makes
differentiating the two groups of patterns nontrivial, as shown in the upper
left subfigure.

• SIAR patterns exhibit a very different distribution from the annotated patterns
and random excerpts as shown in the top right and left subfigures. Notice the
annotated patterns concentrate at the top left corner in the top right subfigure.
In this case, it is relatively easy to separate the long-tail area of the extracted
patterns from the annotation area. By applying this observation and designing
a filtering process, we could substantially improve the performance of the SIAR
algorithm on MTC-ANN.

• The overlap between the annotated patterns and extracted patterns is small in
the bottom left subfigure. A linear classifier can be devised to roughly separate
the twogroups of data using the first twoprincipal dimensions of the annotated

6See Table 4.1 for a list of the algorithms with the changes of naming in the SIA family as before and
VM1 to VM.
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patterns. The extracted patterns of the SC algorithm have different features to
the annotated patterns.

• In the bottom right subfigure, we showall the heterogeneous patterns extracted
by algorithms, annotated by humans, and randomly sampled in the same PCA
embedding. We can see that patterns extracted by algorithms of the same fam-
ily, namely SIACP, SIACR, SIACF, and SIACFP tend to share the same long-tail
property, and therefore their performance on MTC-ANN can be improved by
an extra filtering step as described above.

Results and insights into LFV

We introduce twomethods of visualisation in this section. The first method, namely
visualising pattern locations, gives us an overview of the large number of discovered
patterns and their relations in time. The secondmethod, namely visualising pattern
features using PCA, helps us analyse different aspects of musical patterns. In com-
bination, we refer them as LFV. More concretely, we see that the algorithmic output
has discrepancies with human annotations in terms of their musical features and
locations of occurrence.
After examining these two types of visualisations, we can takemore concrete steps

to further explore the pattern data. First, the observations made in visualising pat-
terns (Figure 4.1) hint at the possibility of combining similar patterns from differ-
ent algorithms to devise a method to combine their wisdom of these algorithms and
thereby extract musical patterns based on consensus. Second, from the PCA visual-
isation, we must answer the question of whether patterns from different groups can
be discriminated based on their features. Correspondingly, in Section 4.2.3 we will
try to fuse the patterns from different algorithms, and in Section 4.2.4, we will try to
classify between them.

4.2.3 Pattern Polling (PP)

Ensemble methods, in which several algorithms are combined to achieve better per-
formance, are becoming more common in various applications (Zhou, 2019). Data
fusion has also gained popularity recently, where data preprocessing is performed
on different modalities, then concatenated to a new representation.
In addition to the trends and success stories, why should algorithms and data be-

come combined in the first place? In (Mitchell, 2012), it was argued that data fusion
could improve systemperformance in fourways: representation, certainty, accuracy,
and completeness. The no-free-lunch theorem (Stork et al., 2001), which states that
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Figure 4.5: Visualisation of different groups of patterns using the space spanned by the first
two principal components of the annotated pattern features in MTC-ANN. The
legend above each subfigure denotes the correspondence between colours and al-
gorithmic patterns/annotated patterns/random excerpts. Notice that the figures
in the left column show zoomed subregions of figures in the right column. (1)
Upper left: random excerpts and annotated patterns. The overlap between the
two groups is large, and it is nontrivial to separate them in this two-dimensional
PCA embedding. (2) Upper right: SIACR patterns and the annotated patterns.
SIACR patterns exhibit a long tail which is not shared by the annotated patterns.
(3) Bottom left: SYMCHM patterns and the annotated patterns. The overlap of
the data points is small, which makes it easier to separate the two groups in this
embedding. (4) Bottom right: random excerpts, annotated patterns, and pat-
terns from all algorithms. We can see that some of the algorithmically extracted
patterns are very different from the annotated patterns, and the algorithms be-
longing to the same family exhibit similar long tails.

any two optimisation algorithms are equivalent when their performance is averaged
across all possible problems, also provides a valid reason to do so.

Integrating different algorithms using data fusion has also been shown to be a
successful approach to improving overall performance in dealing with ambiguous
musical data, such as automatic chord estimation (Koops et al., 2016). For musical
pattern discovery, according to some similar pattern locations we saw in Section
4.2.2, there is hope of finding a consensus between various algorithms to achieve an
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overall better pattern discovery result. To this end, we devise Pattern Polling (PP),
which takes the locations of discovered patterns from different algorithms as input,
then outputs new locations of patterns based on this. We name the algorithm with
"polling" because it involves measuring the level of consensus from an ensemble of
algorithms.
We developed the PP algorithm based on the assumption that all pattern discov-

ery algorithms aim to find passages containing a shared overall interest—the "pat-
terns" in musical compositions. We view the output of each algorithm to be votes
on whether a given time point participates in this pattern-salient part of the com-
position, i.e. is part of a musical pattern. We consider whether or not an algorithm
recognises a pattern at any given time point to count as a "vote" on whether or not
there is indeed a pattern present at that time offset. For the sake of convenience, we
define the salience degree of a time point as the number of discovered patterns at
this time offset. In essence, PP is a process in which each algorithm contributes to
the salience degree of a time point based on their discovered patterns. The result-
ing polling curve is then taken as a base to detect new patterns with input from all
algorithms.

Polling Curve

From the voting process described above, an example polling curve using several
algorithms from the MIREX task is shown in Figure 4.6 (a). To elaborate on howwe
calculate the polling curve, we start with discretised time points T = [0, 1, ...,n] in
the musical piece, with a resolution of one crotchet. If an algorithm finds a pattern
occurrence at a given time point, we count that as one vote contributing to the pat-
tern salience score at that time offset. We perform the same procedure for all pattern
occurrences and sum the votes from all algorithms. In the end, we obtain the polling
curve P(t), which is a time series of voting counts at each time offset t ∈ T .
Mathematically, we have:

P(t) =
∑
A

∑
P

∑
O

IA,P
O (t) (4.1)

where A is the set of algorithms, P is the set of patterns, O is the set of occurrences,
and Ia,pO (t) is the weighted indicator function of an occurrence of a pattern p ∈ P in
the output of an algorithm a ∈ A:

Ia,pO (t) =

ωa t ∈ o ⊆ p ⊆ a

0 t 6∈ o ⊆ p ⊆ a
(4.2)
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(b) Boundaries extracted using the PP algorithm

Figure 4.6: a. The polling curve of Chopin’s Mazurka Op. 24 No. 4 using algorithms from
the MIREX task. The horizontal bars showwhere the human-annotated patterns
are present. The x-axis represents the time offset in crotchet units and the y-axis
represents the salience value. We see promising correspondences between the
polling curve and human annotations. b. Extracted pattern boundaries using
PP indicated with dashed vertical lines. Many dashed lines are aligned with the
boundaries of human annotations. We also plotted the polling curve, the ground
truth human annotations, as well as both the first and second derivatives of the
polling curve for reference.

where ωa is the weight assigned to an algorithm a. Different values of ωa may
allow for the algorithms to be taken into account with different weights. In this
dissertation, we do not explore the possibility to weight the algorithms differently,
andωa is always assigned to 1.

What polling curves represent and how to extract patterns from the curve

The polling curve uses the output from all individual pattern discovery algorithms.
Given a music piece and a set of algorithms, the curve provides an estimate of how
likely a region in music is to contain a pattern by taking into account all algorithmic
output. The curve can be used for estimating where a pattern is more likely to be
present in the musical piece. In Figure 4.6, we see a promising level of agreement
between this estimated likelihood and human-annotated patterns.

To extract concrete patterns, we need to identify the beginnings and endings of
patterns from the curve. The critical points of the curve can be helpful in this respect.
Mathematically defined as the points at which the derivatives of the curve is equal to
zero, critical points indicate the prominent changes in the shape of curves. Although
the polling curve is a discretised curve, we can compute the discrete derivatives and
corresponding critical points. These prominent shape changes then can be regarded
as pattern boundaries. To distinguish between the prominent changes and those too
small to be relevant, we first perform a smoothing step on the polling curve.
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Smoothing

In our algorithm, we use the Savitzky-Golay filter (Schafer, 2011) for smoothing,
which is a linear least-squares polynomial fitting filter. When we apply smooth-
ing, we reduce the impact of small irrelevant changes in the curve at the cost of
potentially losing valuable details. With different degrees of smoothing, we capture
different levels of detail in the polling curve. With this in mind, we make our PP
algorithm parametric on the degree of smoothness s.

Derivative

After smoothing, to find the prominent changes in the curve, we calculate the first
and second discrete derivatives and take the critical points. More formally: let
P ′(t) = P(t + 1) − P(t) and let P ′′(t) = P ′(t + 1) − P ′(t), t > 0, t ∈ T . We are
interested in zero-crossing points t̄ in P ′(t) and P ′′(t) because each zero-crossing
point t̄ represents a change of direction in the polling curve. For example, when
P ′(t) < 0 and P ′(t + 1) > 0, we have a dipping point P ′(t̄) = 0 on the curve. More
patterns are discovered by the algorithms starting from this point, so it is likely to
be the start of a pattern.

One question remains as to how strong the dipping, tipping, concave, and convex
points in the curve should be if we are to pick them as boundaries. Here, we intro-
duce a second parameter of the PP algorithm: a threshold on the steepness of the
zero-crossing points λ. With different values of λ, we create a set of boundaries that
consists of time offsets at which zero-crossings occur.

In Figure 4.6, we show an example of the extracted boundaries. We notice that
some boundaries line up well with human-annotated pattern boundaries.

Evaluation metrics

To evaluate the accuracy of the extracted pattern boundaries, we choose to use the
ground truth of human-annotated patterns. We compare the computed boundaries
with the beginnings and endings of patternsmarked by humanswith standard eval-
uationmetrics of precision, recall, and F1 score. Following these standard evaluation
metrics, themetrics we also used in Chapter 3, we calculate the precision, recall, and
F1 score with a degree of fuzziness, i.e. we attempt to match the boundaries with a
tolerance of one crotchet note length as this is the degree of discretisation we used
for creating the polling curve.
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Algorithm Precision Recall F1
ME (0.125, 0.086) (0.184, 0.077) (0.149, 0.083)
SC (0.396, 0.022) (0.419, 0.068) (0.402, 0.046)
OL1 (0.420, 0.038) (0.565, 0.044) (0.462, 0.023)
OL2 (0.422, 0.061) (0.565, 0.044) (0.483, 0.054)
SIAF1 (0.139, 0.049) (0.670, 0.005) (0.228, 0.041)
SIAR (0.213, 0.039) (0.427, 0.000) (0.279, 0.021)
SIAP (0.117, 0.043) (0.596, 0.008) (0.195, 0.037)
VM1 (0.137, 0.035) (1.0, 0.0) (0.240, 0.029)
VM2 (0.206, 0.073) (0.543, 0.024) (0.296, 0.060)

SIACFP (0.819, 0.030) (0.82, 0.064) (0.815, 0.046)
PP-P 0.478 0.206 0.249
PP-R 0.228 0.867 0.35
PP-F1 0.248 0.738 0.360

Table 4.3: A table of the (mean, variance) of the precision, recall, and F1 scores of the pattern
boundaries of different algorithms. The PP-P, PP-R and PP-F1 are obtained using a
3-fold cross-validation training process optimising precision, recall, and F1 score.
Because we only have one piece in the test set, there is no variance value. The best
results from individual algorithms and PP are shown in bold.

Results and insights into PP

Using the setup above, we extract patterns using the PP algorithm in a subset of JKU-
PDD2. The original JKU-PDD dataset contains five pieces, and we take three pieces
in the monophonic format7: Chopin’s Mazurka Op.24 No.4; Mozart’s Piano Sonata
K.282, 2ndmovement; and Beethoven’s Piano SonataOp.2No.1, 3rdmovement. The
other two pieces in the JKU-PDD dataset contain a concatenation of voices from
the polyphonic version, which violates the assumptions of geometric algorithms—
these algorithms cannot treat polyphonic music as a concatenation of voices—and
are therefore excluded.

The results are shown inTable 4.3. By calculating themeanvalues of all algorithms,
we can see that the best F1 score of PP 0.360 is slightly better than the mean of the F1

scores of individual algorithms 0.3549. When we look at the individual algorithms,
the best F1 score of PP ranks fifth out of ten. The SIACFP algorithm performs the
best overall. Although we also observe that PP performs slightly better than the
average of the individual algorithms, we cannot yet conclude that this fusionmethod
improves the accuracy of pattern discovery significantly.

7Howpolyphonic pieces aremademonophonic is described in 1. Here, we take the three pieces that
are created using the clipped skyline approach and discard the pieces created using the unfolding
approach.
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Why is there no significant improvement?

From the results, we identify some potential reasons as to why PP does not outper-
form individual algorithms. Firstly, the available dataset is small, and the human-
annotated patterns are sparse, which is problematic for training the parameters in
PP. Secondly, the algorithms disagree with each other on pattern length, pattern
overlap, and the number of patterns, which may be caused by a variety of different
factors, including the inherent ambiguity of music and pattern perception, the lack
of a unified goal, the different target applications of themusical pattern discovery al-
gorithms, or a combination of all of these factors. Ultimately, although we observed
a promising level of consensus between algorithms in Figure 4.1 and Figure 4.6, Ta-
ble 4.3 reveals that this is not yet sufficient to extract patterns that substantially agree
with the human-annotated patterns.

From location to content, from combination to discrimination

So far, in this PP experiment, we have looked at the locations of patterns yielded by
different pattern extraction algorithms and explored some of the possible ways in
which they might be combined. To further investigate the musical events in these
patterns, we move on to the pattern features and use them to distinguish between
computed patterns and human annotations.

4.2.4 Comparative Classification (CC)

In the previous section, we compared algorithms using the locations of patterns. In
Section 4.2.2, with PCA, we have extracted features frommusical patterns and visu-
alised them in the feature space using MTC-ANN2. In this section, using the same
feature data, we perform Comparative Classification (CC) between the features of
algorithmically extracted patterns, human annotations, and random excerpts, to see
whether SotA classifiers can separate the patterns identified by different agents (al-
gorithms, humans, and randomness) consistently.
We perform CC on two subtasks for two different levels of comparisons. The first

classification task is to classify patterns into three groups based on how they were
extracted: algorithmically, manually, or randomly. In the second task, we perform a
finer level of classification on the algorithmic group from the first task by classify-
ing patterns based on the algorithms that extracted them. In both tasks, we expect
classifiers to help us discriminate between groups of patterns based on their mu-
sical features. We then explain the classification results using feature importance
analysis.
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Figure 4.7: Pipeline of CC (the chain on top) and the two classification tasks using two types
of labels. The meta-label classification experiment tries to use classifiers to dis-
tinguish between three groups of patterns from different origins. The algorithm-
label classification experiment is performed at a finer level: we look into the al-
gorithmically extracted patterns specifically and distinguish between seven sub-
groups of patterns. The seven algorithms we consider are summarised in Table
4.1. The geometric methods are in the dashed line square with cut corners. Other
algorithms are also listed to be considered in the next section.

Supervised classificationmethods have been used extensively inMIR tasks such as
genre classification and the classification of corpora from different geographic ori-
gins. Leveraging the discriminative power from classification algorithms for distin-
guishing the output from other algorithms is related to adversarial machine learn-
ing, which is gaining popularity (DaFontouraCosta & Cesar Jr, 2009; Patel & Barkovich,
2002). To the best of our knowledge, the pipeline we propose in Figure 4.7 has not
yet been used to compare symbolic musical pattern discovery algorithms.

Note that extracting features from patterns themselves is equivalent to analysing
the patterns out-of-context. Analysing musical passages in isolation from their con-
textmight be limited in generalisability because a pattern in onemusical piecemight
be insignificant in another piece depending onwhat surrounds it. Nevertheless, cer-
tain arrangements of musical events and their features could be important in signi-
fying the differences between algorithmically extracted patterns and human anno-
tations.

Classifiers

To prevent the results from being classifier-specific, we use a mixture of simple and
more sophisticated, linear and non-linear classifiers to perform the classification
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tasks. We also use standard machine learning techniques to train and test classi-
fiers: scaling and centring preprocessing steps are first performed on all the features.
Furthermore, we create another set of features by applying PCA to the jSymbolic fea-
tures to seewhether the PCA featureswill performbetter than the original ones. Ad-
ditionally, to avoid overfitting, for all experiments, we use a 10-fold cross-validation
3-times repetition scheme. The parameter search for each classifier are performed
separately on each fold. The six statistical classifiers we use are as follows:

• Gradient Boosting Machine (GBM) (Friedman, 2001) produces a prediction
model consisting of an ensemble of decision trees. The parameters we search
through are the learning rate, complexity of trees, minimum number of sam-
ples to commence splitting, and the number of iterations.

• Linear Vector Quantisation (LVQ) (Kohonen, 1990) applies a winner-takes-all
Hebbian learning-based approach. We search through two parameters in this
classifier: codebook size and number of prototypes.

• Linear Discriminant Analysis (LDA) (Ripley, 2007) produces a linear classifier
which finds a linear combination of features that best separates different classes
in datasets. This classifier is not parametric.

• Naive Bayes (NB) (Ng & Jordan, 2002) computes the conditional a-posterior
probabilities of a categorical class variable given independent predictor
variables using the Bayes rule. Three parameters are tuned for this classifier:
Laplace smoothing, kernel bandwidth, and distribution type.

• Random Forest (RF) (Breiman, 2001) operates by constructing a multitude of
decision trees. The parameter we consider is the number of variables per level.

• Support Vector Machine (SVM) (Suykens & Vandewalle, 1999) calculates a map
from data to a new representation so that the data points of the different cat-
egories are separated by as large a gap as possible. We use the radial basis
function kernel and consider two parameters: smoothing factor and weight of
training examples.

Results and Insights into CC

Wemainly use accuracy and the variance of accuracy as our measures of the perfor-
mance of the classifiers. To further interpret the results of the classification task, we
compute confusion matrices and feature importance measures.

Model metrics
Figure 4.8 shows the accuracy and variance of different classifiers in the two clas-
sification tasks. We use two groups of features, the raw features and features after
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the PCA step. The baseline accuracy is 1
#group

= 1
3
=∼ 33% for the first task and

1
#group

= 1
7
=∼ 14% for the second. We balanced the number of patterns in each

group to make them the same, for the first task = 1657, and for the second task
= 355.
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PCA/RAW: PCA Raw

(a) Accuracy of the three groups classifcation
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(b) Accuracy of the seven algorithsm classifica-
tion

Figure 4.8: Accuracy values for classifiers in thirty experiments (10-fold cross-validation re-
peated three times) using six classifiers with jSymbolic features and after pca
preprocessing.

We see that all classifiers give a result higher than the baseline accuracy in both
tasks. PCA improves the performance of the classifier NB in the first task. For LVQ,
SVM, and LDA, using PCA or raw input does not make a significant difference. The
performance of other classifiers is worse when using the PCA input. The finding
that PCA has different influences on the performance of classifiersmay be due to the
fact that each classifier uses different internal feature transformation mechanisms.
Overall, the random forest classifier gives the best results for both tasks with the raw
feature input and the parameter #variables = 32.
The fact that classifiers can differentiate between groups of patterns with above-

baseline accuracy values has a few implications. In the first task, it implies that al-
gorithmically extracted patterns possess different properties than human-annotated
patterns, which suggests that extra consideration of pattern features would be ben-
eficial when trying to discover patterns automatically. It also shows that the al-
gorithmically extracted patterns have different traits than random excerpts, which
means that these patterns are not equivalent to randomly sampled excerpts, and are
therefore potentially more useful for some applications. Lastly, it shows a difference
between human-annotated patterns and randomness despite subjectivity being in-
volved in the annotation process, which is consistent with the carefully designed
annotation collection process (VanKranenburg et al., 2016) and previous findings that
the annotations are useful for classifying tune families (Boot et al., 2016).

111



4 Comparisons of Musical Pattern Discovery Algorithms

In the second task, the above-baseline accuracy shows distinguishability in the pat-
terns extracted by the algorithms, which suggests disagreement between different
algorithms, reinforcing our conclusions from the first experiment. To further inves-
tigate differences between groups, we now analyse the confusion matrices.

Confusion matrices

Table 4.4 and Table 4.5 give the confusion matrix results calculated from the clas-
sifier with the best classification results: Random Forest. We perform the repeated
cross-validation experiment ten times and take the mean and variance of the result-
ing ten confusionmatrices. The results show us that different groups of patterns are
separable and dissimilar to one another according to the random forest classifier.

To read the table, we first notice that the sum of each column is roughly 500, which
is the size of our test data. The row sums do not have this constraint because there
are no restrictions on the group sizes as determined by the classifier. For interpreting
the entries in the table, we take as an example the number 29.5 in the top right corner
of the table. This number is the mean count of patterns classified as algorithmically
extracted patterns but are actually human annotations. Table 4.5 is formatted sim-
ilarly, with a different column sum because of the different test data size, and with
algorithm names instead of group names.

In the first task, we see that the classifier can differentiate between the three groups
with few instances of incorrect classification. This classification result is not themost
desirable for the pattern discovery algorithms. If we had seen that the classifiers
could not differentiate between the algorithmically extracted pattern group and the
human-annotated pattern group, this result would suggest a level of consensus be-
tween algorithms and humans. In other words, a larger count at the last line of the
first column in the confusion matrix would indicate that the patterns discovered by
algorithms are harder to distinguish from the human annotations, which is more
desirable if the algorithms would like to imitate the pattern discovery behaviours
of human annotators. With the current results, however, we come to the conclusion
that the algorithmically extractedpatterns, annotatedpatterns, and randomexcerpts
possess their own traits and are not similar enough for the classifiers to fail. This is
in accordance with the first experiment and previous research, which shows that
the algorithmically extracted patterns are not yet indistinguishable from the human
annotations (Boot et al., 2016; Ren et al., 2017). Despite this, we at least establish that
neither annotated patterns nor extracted patterns are equivalent to random data.
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Original→
Classified ↓ Alg Ran Anno

Alg 406 (±13.5) 32.3 (±7.2) 29.5 (±8.3)
Ran 54.1 (±8.9) 402 (±15.9) 65 (±14.1)
Anno 37 (±8.4) 62.8 (±11.3) 402.6 (±14.2)

Table 4.4: Confusionmatrix results from the ternary classification experiment using the Ran-
dom Forest classifier: mean and variance (in parenthesis) of ten classification ex-
periments. The row names indicate that the patterns are classified into the group
with this name by the classifier; the column names indicate the patterns are origi-
nally from the groupwith this name. Three groups of data are classifiedwith high
accuracy and significant p-values� 0.05.

In the second task, the classifier can also differentiate patterns from different algo-
rithms to a certain extent. The goal of this task is to examine the individual pattern
discovery algorithms. Similarly to the analysis in the first subtask, distinguishing be-
tween different algorithms perfectly would indicate that the discovered patterns are
very different, despite the algorithms having the same objective of "pattern discov-
ery"; in addition, if the algorithms are in agreement with each other, we would ex-
pect the classifier to fail and the values in the confusionmatrix to bemore uniformly
distributed. We see in Table 4.5, however, this is often not the case. The exceptions
here are the patterns extracted by algorithms from the same family (SIACF, SIACP,
and SIACR, for example): the classifier performs worse in distinguishing within the
same family. This is an indication that we are not overfitting the classifier. More
importantly, this classification result agrees with the first data fusion experiment in
that the output from algorithms has a high degree of disagreement, especially when
the algorithms come from different families.

Feature importance

Figure 4.9 and 4.10 show the individual importance value of each feature used in
the random forest algorithm (the best classifier in the two classification tasks), com-
puted by using the Boruta algorithm (Kursa, Rudnicki, et al., 2010). The Boruta al-
gorithm randomly duplicates and shuffles the values in the original features as ex-
tracted by jSymbolic. The algorithm then combines some of these randomised fea-
tureswith the originals in order to calculate and compare the significance of different
combinations of features. At the end of this process, we obtain an importance value
for each feature—the Gini impurity importance value (Louppe et al., 2013).

Here, in Table 4.6, we summarise the top 10 important features in the classification
for Figure 4.10 (the top part of the table) and Figure 4.9 (the bottom part of the
table). The descriptions are taken from the most relevant part of the developers’
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Figure 4.9: Feature importance for differentiating between annotation, algorithmic output,
and random excerpts. The boxplot depicts the mean and variance (interquartile
ranges) of the feature importance values (Kursa, Rudnicki, et al., 2010). The
features are ranked by their importance. We omit the y-axis label because the
absolute importance values are not relevant for our analysis. The colour green
indicates features that are more important than the randomised features and are
therefore confirmed to be significant; blue entries show the performance of the
random features; red and yellow indicate unimportant and tentative features,
respectively.

documentation of jSymbolic. Several features in Table 4.6 use another feature: Beat
Histogram. For reference, this feature was defined as follows:

"A feature vector consisting of the bin magnitudes of the beat histogram
described above. The first 40 bins are not included in this feature vec-
tor. . . Each bin corresponds to a different beats per minute periodicity,
with tempo increasing with the bin index. The magnitude of each bin is
proportional to the cumulative loudness (MIDI velocity) of the notes that
occur at that bin’s rhythmic periodicity. The histogram is normalized."

Another convention adopted when calculating rests in the feature is that "Non-
pitched (MIDI channel 10) notes are not considered in this calculation. Rests
shorter than 0.1 of a quarter note are ignored".
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Figure 4.10: Feature importance for differentiating between output from different algo-
rithms in the same format as Figure 4.9.

Another well-known feature extraction package, the FANTASTIC toolbox (Müllen-
siefen, 2009) is not used because its minimum supported input length excludes valu-
able annotated patterns. The jSymbolic toolbox was also not specifically designed
for short excerpts, and many human-annotated and algorithmically extracted pat-
terns are indeed short in length. Nevertheless, jSymbolic computes features in the
same way for all excerpts; it does not, therefore, undermine the validity of the clas-
sification experiments.

Implications

Although there are only 23 rhythmic features out of 63 in total in the jSymbolic fea-
tures we used, the features ranked highest are rhythmic in nature. This high ranking
of rhythmic features suggests that these features were more important than other
features in constructing the random forest classifiers, which hints at potential im-
provements that could be implemented for current existing pattern discovery algo-
rithms. String-based and data mining algorithms translate pitch and duration pairs
into a list of symbols and therefore do not take into account metric structures im-
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4 Comparisons of Musical Pattern Discovery Algorithms

posed by musical punctuation such as bar lines. This omission is not uncommon
as other algorithms also seldom explicitly consider metric features in patterns. In
particular, the SYMCHM algorithm considers pitch aspects only, which explains its
limited overlap with human-annotated patterns in the PCA visualisation. Gener-
ally speaking, the feature importance values we obtained suggest that in designing
and evaluating pattern discovery algorithms, at least for the MTC-ANN dataset, we
should take metric structures into consideration as well as repetition and pitch re-
lated features in patterns.
Our findings suggest that other jSymbolic features are almost all important for the

classifiers, with the exception of three, which performed worse or at the same level
as randomised features. The Boruta algorithm categorises Melodic Octaves feature
as unimportant and theMelodic Sevenths andMelodic Tritones as tentative features.
They are indeed nonessential features because these musical intervals rarely appear
in the MTC-ANN dataset.

4.2.5 Synthetic Pattern Insertion (SPI)

In previous sections, to understand where and how the algorithms disagree with
each other, we computationally examined the musical patterns by visualising, com-
bining, and classifying them. Through this algorithm-algorithm and algorithm-
human comparison, we see that a diverse range of patterns can be extracted by al-
gorithms and annotated by humans. While LFV, PP, and CC help us understand
how the patterns resemble and differ from one another, predicting how algorithms
would perform in the presence of new musical corpora remains a challenge.
Given the complexity of musical corpora, we propose the use of synthetic data in

comparing the performance of musical pattern discovery algorithms. For example,
one of the simplest and yet most fundamental questions to ask is whether pattern
discovery algorithms are capable of identifying patterns in sequences such as "Pat-
tern1" + "Pattern2" + "Random Excerpts" + "Pattern1". By artificially constructing
a concatenation of musical patterns and random sequences of notes and rests, we
can compare the performance of different algorithms at extracting patterns from se-
quences such as this—random sequenceswith patterns artificially inserted through-
out, giving a controlled amount of regularity. This method has been widely used in
other areas such as generic pattern mining and time series analysis (Bertens et al.,
2016; Chiu et al., 2003). To the best of our knowledge, the method has not yet been
used extensively to compare musical pattern discovery algorithms.
In this section, we examine seven musical pattern discovery algorithms using syn-

thetic data. Because not all algorithms are open-sourced, we are only able to obtain
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4.2 Our methods

the patterns extracted by algorithms on certain datasets. Refer to Table 4.1 for the
algorithms we added and removed from previous experiments in this section. We
will now first describe howwe created the synthetic data and then show an example
piece from which different algorithms extract different patterns.

Creating the synthetic data

To create the synthetic data, we randomly concatenated two predefined patterns
with random excerpts. Given that we have planted the patterns artificially, we are
able to compare the output of the algorithms to what is ostensibly a "ground truth".
The details of the predefined patterns are given next.
One of the predefined patterns is a consecutive repetition of the notes C and G#

in the fourth octave. We refer to this pattern as P1, the repeated interval pattern.
The other pattern we use is a C major scale, also known as the C Ionian scale in a
modal context. We refer to this pattern as P2, the scale pattern. Both patterns are
twenty notes long. We chose these two patterns because they are of different kinds:
P1 contains many local repetitions, while P2 is an example of a global pattern with a
longer span. The excerpts of the patterns can be seen in Figure 4.11.
We sample the random excerpts, R, with the same note range as the scale pattern.

We sample rests as well as notes. The lengths of the random excerpt are not fixed,
but we constrain the total length of the random excerpts to be less than 50% of the
total length of the synthetic piece.

Why we created the synthetic data this way

Although this set-up is simple, it follows two rationales that we have in mind. First,
we would like to reduce the challenge posed by rhythms and put more focus on in-
vestigating how pattern discovery algorithms detect pitch related patterns. There-
fore, every note and rest in R, P1, and P2 has the note length of a crotchet. Second,
the repeated interval patterns such as P1 can be used to test whether the algorithms
can retrieve local repetitions of intervals, scale patterns such as P2 can be used to test
whether the algorithms can identify global repetitions of an organised sequence of
notes, and random excerpts such as R can be used test whether the algorithms will
recognise patterns from randomness.

Results and insights into SPI

We present one piece from our set of synthetic pieces to illustrate the differences
in the output produced by the algorithms. The point-set visualisation of the piece
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4 Comparisons of Musical Pattern Discovery Algorithms

can be seen in Figure 4.12, 4.13, and 4.2.5. Figure 4.11 visualises the presence of dis-
covered patterns along the time axis of the synthetic piece, as introduced in Section
4.2.2. We further discuss our observations with respect to individual algorithms
below.

① Pattern1 ③ Random② Pattern2

① ① ①② ② ② ②③ ③ ③ ③

Figure 4.11: Visualisation of the presence of patterns using synthetic data.

VM
We observe that VM1 consistently finds P2, and VM2 likewise for P1. However,
the algorithms discover multiple sub-patterns in the regions where P1 and P2 are
present. Regarding the PP method introduced in Section 4.2.3, if we summarise al-
gorithmic output by summing the counts of the discovered patterns, the resulting
polling curve will give a correct indication of their presence. This tells us that the
algorithms could benefit from a combined approach, though only in specific circum-
stances.

MGDP
Patterns discovered by the MGDP algorithm are short patterns. The parameters
used were α = 0.1,Min(support) = 20, Viewpoint = Interval. The discovered in-
terval patterns are {8,−8, 8}, {−8, 8,−8}, {2, 2, 1}, {1, 2, 2}, {2, 1, 2}, which correspond to
parts of P1 and P2. We can see from Figure 4.11 that the trigram (three-component)
interval patterns cover P1 and P2 completely, though with multiple overlapping oc-
currences.
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4.2 Our methods

Forth

Figure 4.12: Patterns retrieved by the Forth algorithm

The Forth algorithm successfully retrieved all the planted patterns in the example
piece. Aswe can see in Figure 4.11, by comparisonwith the ground truth (numbered
1 - 3 ), the two planted patterns and their occurrences are all retrieved. In Figure
4.12, we can see in more detail that the algorithms find both the repeated intervals
and the scales.

SIARCT

Figure 4.13: Patterns retrieved by the SIACFP algorithm.

As shown in Figure 4.13, while patterns retrieved by SIARCT are indeed repeated
patterns in the piece, they tend to deviate from P1 and P2: the scale patterns are cor-
rupted by adjacent notes in the random sequences, and the algorithm finds a small
number of patterns in the random pitch sequences. Nevertheless, the approximate
structure of the piece is retrieved.

SIACPRF
Without parameter optimisation and applying out-of-the-box SIACR, SIACP, and
SIACF algorithms, we find many patterns in addition to the ones that are injected
into the piece in Figure 4.11. The output does not contain occurrences that are con-
fined to within the boundaries of the planted patterns. Moreover, most of the ex-
tracted patterns cover a span of time in the piece that ismuch longer than the planted
patterns.
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4 Comparisons of Musical Pattern Discovery Algorithms

Further observations

Patterns with long spans

[Patterns retrieved by the COSIATEC algorithm]Patterns retrieved by the COSI-
ATEC algorithm.
Figure 4.2.5 shows long-span patterns which, with a concrete view of the example

piece, can be seen to be unintuitive but not unreasonable: the injected scale P2 re-
peats across the piece, but the elements within the scales also repeat individually.
This repetition is less intuitive because of limited human memory and the Gestalt
principle of proximity in grouping notes (Lerdahl & Jackendoff, 1985; Snyder & Snyder,
2000). An audience can more plausibly identify the scale as a musical pattern than
identify each individual note over a long time span. There is a duality between the
locally bounded repetition (where the scale repeats as a whole) and globally iden-
tifiable repetition (notes in scale repeat separately). Depending on the subsequent
applications of the extracted patterns, the algorithm should give more considera-
tion to balancing or filtering out patterns of the desired kind. For example, if the
patterns are to be used to assist with musical motif analysis, the local patterns are
more valuable; if our goal is to uncover hidden structures in music, global patterns
could open up more possibilities and insights.

Comparison with ground truth
As we have discussed regarding long-span patterns, automatically evaluating the
patterns can be difficult because multiple patterns can be extracted from the same
constructed piece, and it is not fair to determine the correctness of the discovered
patterns without application scenarios in mind. In addition, we must consider the
issue of intentionality in the use and recognition of planted patterns. On the one
hand, unintended patterns can emerge from the concatenation of patterns and ran-
domness. In other words, one can inadvertently introduce inexact and exact repeti-
tive patterns in addition to thosewe planted deliberately. On the other hand, the two
patterns we employed are distinctive enough that a human annotator would likely
be able to find the exact boundaries of both. Nevertheless, there are known cogni-
tive phenomena such as apophenia (Steyerl, 2016), patternicity (Shermer, 2008), and
hyperactive agency detection (Valdesolo & Graham, 2014). If there is a tendency to
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find meaningful patterns in meaningless noise (Fyfe et al., 2008; Shermer, 2008) in hu-
man subjective experience, the question of how one should evaluate the algorithmic
output in relation to the ground truth human annotations remains a complex one.
Therefore, despite the differences we observe in all three experiments, we cannot
repudiate the value of the discovered patterns from algorithms.

Rhythmic features eliminated
Notice that, in the example above, we reduced the variance in rhythmic features
by using the same duration for each musical event. Rhythmic features, being the
most divergence-inducing factor in CC, should give the algorithms more tendency
to conform, once we control their variance by artificially increasing their regularity.
Adding in more rhythmic variation could lead to greater insight into how the algo-
rithms handle the interplay between pitch and rhythm. We defer more systematic
investigations on this topic to future work. The minimal example we provided, de-
spite being restricted to pitch, informs us of crucial aspects of the algorithms with
respect to the pitch dimension. This is another advantage of using synthetic data—it
gives us a higher level of control in investigating musical features.

Implications for the human-algorithm gap in musical pattern discovery
By examining the patterns extracted from the synthetic data in this section, we gain
new insight into how we can expect the algorithms to perform given controlled in-
put data. For example, if we apply pattern discovery algorithms to a musical piece
with sections of ostinatos (P1 being a special case) and an ornamental bridge (P2
being a special case), the algorithms might not be able to return the two sections
as patterns. This might come as a surprise to human annotators who are looking
for obvious repetitions in the piece. By reducing the complexity of current patterns
discovery corpora to simple concatenations of preselected patterns, synthetic data
may be useful for better inspecting, comparing, validating, and evaluating the algo-
rithms by modelling the most likely behaviours of human annotators. For example,
one can identify which algorithm is better suited than others for retrieving "con-
ventional" (exact repetition) or "surprising" (regularities in randomness) kinds of
patterns.

4.3 Discussion

We propose to compare musical pattern discovery algorithms computationally in
fourways: LFV, PP, CC, and synthetic datawith planted patterns. These newmeth-
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ods address the twomain challenges and four subsequent challenges wementioned
at the beginning of this chapter. To address the challenge posed by the large number
of output patterns from the algorithms, we propose LFV to visualise the locations
and features of musical patterns. To address the challenge of hard-to-understand
implementations of the algorithms, we devise and experiment with PP and CC to
gain insights about these algorithms from their output. We also propose synthetic
data and visualisationmethods to address this challenge: with planted patterns and
visualisations, we can compare the pattern discovery algorithms in a simpler and
more controlled manner.

For the four subsequent challenges, our methods relate to them in the following
ways:

• For the differing output from algorithms, we leverage data fusion. However,
we find no significant improvement of the results, because patterns from dif-
ferent algorithms differ too much.

• For the difficulty of relating algorithmic output back to meaningful musical
concepts, we show that patterns extracted by algorithms are distinct from ran-
dom patterns and are therefore not meaningless in the sense of being random.
Whether being distinct from randomness implies some kind of musical mean-
ingfulness is another question to be answered, and in Chapter 6 we further
explore whether other musically meaningful concepts can be extracted by al-
gorithms. Furthermore, by using synthetic data, we can plant musically mean-
ingful patterns and see whether algorithms extract them as patterns.

• For the discrepancy between human annotations and algorithmically discov-
ered patterns, we further confirm this discrepancy, andwe discover that rhyth-
mic aspects have the most influence when distinguishing between them.

• For the different application contexts of musical patterns, the visualisation and
synthetic data methods we propose can be used to compare the algorithmic
output with certain expectations or assumptions of the potential application
contexts, and therefore determinewhether an algorithm is suitable for a certain
application context.

Our comparisons vary on the limited datasets available, but each of them provides
a new means for investigating musical pattern discovery algorithms, namely, by vi-
sualising them, combining them, differentiating between their output, and synthe-
sising artificial input.
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4.4 Concluding remarks

In future work, this research could be extended in several directions. Firstly, the cov-
erage of the algorithms could be extended. We did not perform a comprehensive
comparison of all musical pattern discovery algorithms given limited availability
and format compatibility. Secondly, for synthetic data, we can add more structures,
possibly nested, during the data synthesis process. Adding rhythmic variations and
polyphonic patterns would make the process suitable to investigate the algorithms
that consider these aspects. Lastly, a natural next step is to integrate our findings
into pattern discovery algorithm design. This integration could be difficult, how-
ever, because the concrete steps needed to improve an algorithm are contingent on
its inner workings, which may differ from one algorithm to another. In addition,
there is often not a single way to improve a given algorithm, but rather multiple
strategies that can be used to address the issues we have identified. For example, an
algorithm designer might add extra filters based on our classification results, con-
sider rhythmic aspects to a greater extent, or provide pre-configured parameter sets
optimised for different application scenarios.
On a more general note, a mapping between different algorithms and the applica-

tion scenarios they are best suited to would be desirable, considering the diversity
of pattern discovery tasks. The disagreement we found between algorithms gives
support to this claim, with the differences serving as a guide for selecting algorithms
based on different applications. For example, the algorithms that discover long and
overlapping patterns might be more suitable for compression, and the algorithms
that discover shorter patterns might be more suitable for music-theoretic and edu-
cational purposes.
One crucial link for diversifying the comparison between algorithms is to bridge

the gap between the application scenario and how we formulate the strategies used
in our data synthesis approach. With careful design, the data synthesis approach
can potentially be tuned to simulate different application contexts. Application-
driven thinking combined with the data synthesis approach also has the potential
to save time when it comes to annotating the data and address issues pertaining
to ambiguity in the annotated patterns. To generate these high quality synthetic
data, future work may take fidelity, diversity, and generalisation performance into
account, as proposed in (Alaa et al., 2022).

Musical pattern discovery is an interdisciplinary area of research. Over the years,
we have seen exuberant interest and considerable advancement of the SotA from
contributors with diverse backgrounds. This has brought unique challenges as well
as opportunities with a diverse range of tools, formulations, and evaluation meth-
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4 Comparisons of Musical Pattern Discovery Algorithms

ods, including but not limited to the ones proposed in this chapter. We expect that
greater coherence will be created by the feedback loop between such multifaceted
evaluation results and the algorithms performing on diverse types of data. More
concretely, users with access to a greater range of algorithm evaluation methodolo-
gies will be better equipped to provide feedback to algorithm designers that will
ultimately be used for the design of those algorithms.
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Chapter 5 Modelling Patterns With
Transformations Using
Haskell

A language that doesn’t affect the way you think about programming is not worth
knowing.

– Alan J. Perlis

5.1 Introduction

Summary so far about patterns and transformations

In previous chapters, we examined musical patterns annotated by humans and ex-
tracted by algorithms. We saw thatmany algorithms andhumans disagreed onwhat
constitutes a pattern; for example, in pattern polling andwhen using synthetic data,
there was no clear consensus.
In this chapter, wewill attempt to attain a better understanding of why certainmu-

sical fragments are considered patterns at all. An important step towards achieving
this understanding is to devise a way to relate different pattern occurrences with
each other. To this end, we will identify the musical transformations relating the
different occurrences of a pattern. We will see that, using this methodology, we can
begin to explain why these occurrences (or musical fragments) are grouped into
musical patterns.
To show patterns and transformations in music, in Figure 5.1, we come back

to a simple pattern and its occurrences in an étude. The same bar of notes is
repeated successively, shifted upwards or downwards in the next occurrence: a
pattern emerges—the occurrences are related to each other via the transposition in
pitch. The second occurrence can be viewed as a variation of the first occurrence,
realised by the transformation of transposition. More transformations are known to
exist in music theory and can be used to characterise different types of repetitions
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5 Modelling Patterns With Transformations Using Haskell

with variations. Similarly, Figure 5.2 shows pattern occurrences annotated by
musicologists with a diverse range of transformations.

Pattern1: Occurrence 1 Occurrence 2
(with transposition +1)

Pattern2: Occurrence 1 Occurrence 2
(with transposition -1)

Figure 5.1: Musical pattern and transformation examples in simple études. The patterns and
occurrences are marked with over-/under-braces. We only consider a two-level
hierarchy of pattern-occurrence; sub-patterns as in the dotted braces are not con-
sidered.

Research question

Given this backdrop of pattern and transformation, the research questions for this
chapter are the following:

Can we identify the transformations that explain the variation between
different pattern occurrences? More concretely, how do we implement a
library (or a Domain Specific Language (DSL)) to automate this identifi-
cation process?

In relation to the concrete example that was sketched above in Figure 5.1 and 5.2,
given these pattern occurrences, we should be able to identify that the occurrences
are related by transposition, but in general pattern occurrences can be related by
many other possible transformations. Can we extend our ideas to handle transfor-
mations other than simple transpositions? We will address these questions in this
chapter and the next.

Contribution

Our contribution:
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Pattern1: Pattern2: Pattern3:four annotated 
occurrences 

two annotated 
occurrences 

two annotated 
occurrences 

Figure 5.2: Musical pattern and transformation examples in MTC-ANN. There are some
exact repetitions. The local type of transformations—approximation—is also
needed to describe the relations between the pattern occurrences.

• Implementing a library in the Functional Programming (FP) language Haskell
(Peyton Jones, 2003), Pattrans (Melkonian et al., 2019), to model musically impor-
tant transformations. Using Haskell, we can model these transformations as
functions. For example, one simple transformation is the chromatic transposi-
tion,

transpose :: Note -> Note
transpose x = x + n

This function transposes each note by some pitch shift n. In Figure 5.3, we
schematically show the input and output of our implementation in Figure 5.2.
One key insight is that functional languages are a natural fit for working with
musical transformations. Throughout the library, we will use category theory
1 to structure the transformations in a modular and compositional fashion.

In the original paper, the first author, Orestis Melkonian was the main library im-
plementer. The contributions of the second author, Iris Yuping Ren, include gener-
ating the idea of using musical transformations between pattern occurrences rather
than the content of the occurrences, proposing the specific transformations, mod-
ifying and using the library, and significantly taking part in the writing and the
re-writing of the paper and the chapter.

1A branch of mathematics with numerous applications in the research of programming languages.
The connections with category theory will be explained at the end of the chapter.
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Figure 5.3: We take one set of pattern occurrences in Figure 5.1 to show the input and output
of our implementation. The input is musical pattern occurrences. The output is
T1, T2, . . . Tn, the transformations.

5.2 Pattrans

The Pattrans library2 has the following decoupled components: types (Section
5.2.1), transformations (Section 5.2.2), and other technical components such as
import, rendering, and MIDI that we will not cover in this dissertation. In the
following, we will give an overview of the main techniques we used to implement
our meta-analytic framework. Although we chose Haskell for our implementation,
we do not rely on any of Haskell’s advanced type-level features (e.g. type families
and data kinds); thus any other strongly-typed functional programming language
would suffice.

5.2.1 Basic types

Starting from the fundamental elements in music, we define the types of time and
pitch as in Code Snippet 5.1. In our encoding, we used the simplest possible rep-
resentation of musical events. Time is represented as the number of crochet beats
from the start of the song, while MIDI numbers represent pitch, in the form of plain
integers.3 We have simplified the types of primitives for the sake of presentation.
The actual implementation contains additional information about scale degree, in-
tervals, and octaves.
We then assemble these basic types to create a basic musical event, i.e. a note,

which consists of a time and pitch value, and implemented using a record type. A
pattern occurrence is a list of notes. Both types are shown in Code Snippet 5.2.
2The implementation is available at https://github.com/omelkonian/hs-pattrans
3Here, we only consider the part of a MIDI value that represents pitch number, ignoring other
features such as velocity.
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type Time = Double
type Pitch = Integer
type Interval = Integer

Code Snippet 5.1: Basic types for defining musical concepts.

type PatternOccurence = [Note]

data Note = Note { ontime :: Time
, pitch :: Pitch
}

Code Snippet 5.2: Define pattern occurrence and note.

In accordance with the output of many pattern discovery algorithms, we define a
pattern to be a sequence of pattern occurrences. In a group of pattern occurrences,
we assume that there is some original material from which other occurrences stem.
We refer to the original material as the prototype pattern. For now, we take the first
occurrence of a pattern as the prototype of a pattern. We also keep some metadata
(such as to which piece of music a pattern belongs), which can be used later in the
analysis. The definition of the pattern in Haskell can be seen in Code Snippet 5.3.
We can see that the information attached to each pattern is:

• the name of the music piece to which the pattern belongs

• whether a music expert or an algorithm discovered the pattern occurrence

• a name for the current pattern

• the pattern prototype (always taken from the first occurrence)

• all other occurrences of the prototype

data Pattern = Pattern
{ piece_name :: String
, expert_name :: String
, pattern_name :: String
, basePattern :: PatternOccurrence
, patterns :: [PatternOccurence]
}

Code Snippet 5.3: A group of pattern occurrences becomes a pattern.

Notice that the difference between a pattern and an occurrence of this pattern is
crucial. For example, in Figure 5.1 and Figure 5.3, the eight semi-quivers note groups
constitute pattern occurrences, out of which the note group starting with the note
E is the prototype pattern, and the all pattern occurrences together constitute a pat-
tern.
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5.2.2 Transformation checking

We now want to identify a transformation between the prototype pattern and other
occurrences that are discovered either by algorithms or human annotators. To carry
out this identification, we develop a library of transformations. The type signature
of each such transformation takes the form of:
PatternOccurrence -> PatternOccurrence -> Bool

that checks if two pattern occurrences are related by a transformation.
Now let us consider how we can implement the transformations we want. The

first thing to realise is that the definitions of our transformations will essentially be
a predicate on two elements, returning Truewhen they can be related by a transfor-
mation and False otherwise. An example of such a function is the canonical equal-
ity: just checking that the constituent notes are identical as shown in Code Snippet
5.4.
exactRepetition :: PatternOccurrence -> PatternOccurrence -> Bool
exactRepetition p1 p2 = p1 == p2
Code Snippet 5.4: Define a function to check that two pattern occurrences are exact repeti-

tion of each other.

Although this identity "transformation", i.e. the exact repetition, looks trivial in its
simplest form, the general problem that we aim to address is to write such functions
compositionally. By compositionally, wemean that the user canwrite checks that only
involve partial information of pattern occurrences (e.g. the pitch or the duration
of a note), or try to group and combine conditions (e.g. the pitch and duration
information of some notes combined) for checking the transformations. We need a
library to describe such checks.
Even though we can write the checks as functions, they cannot be composed. The

type of the function exactRepetition is very specific, demanding every note from
one pattern occurrence to be comparedwith a corresponding note in another pattern
occurrence. However, if we want to write checks compositionally, as we described
above, we need to define a type that describes the checks more generally:

newtype Check a = Check { getCheck :: a -> a -> Bool }
Code Snippet 5.5: Define checker type for predicating on two elements of the same type.

The Check newtype in Code Snippet 5.5 is simply a wrapper to store functions
with the type a -> a -> Bool. This can be generalised further to type a -> b ->
Bool, as shown in Code Snippet 5.6. We also provide a convenient infix notation
to check for this, as well as a type alias for homogeneous checkers of elements of the
same type, the same as the Check defined in Code Snippet 5.5. The infix operator
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(<=>) has the type signature a -> b -> Check a b -> Bool, which means that it
takes in inputs of type a and type b, along with a checker of type a b; it produces a
Boolean value as output. The implementation of this infix operator can be realised
by the function stored in type Check.

newtype Check a b = Check { getCheck :: a -> b -> Bool }

(<=>) :: a -> b -> Check a b -> Bool
(x <=> y) p = getCheck p x y

type HomCheck a = Check a a
Code Snippet 5.6: Define generalised checker for predicating on two elements of two differ-

ent types.

Once we have the Checker type, the simplest possible comparison is that of ex-
act equality between elements of the same type, which can be defined using the Eq
typeclass, as shown in Code Snippet 5.7.

equal :: Eq a => HomCheck a
equal = Check (==)

Code Snippet 5.7: The simplest possible HomCheck.

Moving on from the canonical equality example, we now show an example for
checking pitch, and introduce the concept of contravariance. To check only for pitch,
we first write a pitch function that extract pitches from notes, as shown in Code
Snippet 5.8. A verbose way to create a function that compares pitches of pattern
occurrences is also shown in Code Snippet 5.8.

pitches :: PatternOccurrence -> [Pitch]
pitches notes = map pitch notes

equalPitch :: PatternOccurrence -> PatternOccurrence -> Bool
equalPitch p1 p2 = (pitches p1) == (pitches p2)
Code Snippet 5.8: Extract pitch using map, and define a function to compare pitches of pat-

tern occurrences .

To create more general checks based on viewpoints/features4 such as pitch, we
need the concept of contravariance. As an example of contravariance, assume
you have a checker for pitches (i.e. HomCheck [Pitch]) and you want to use that
to check the equivalence of two patterns (i.e. HomCheck PatternOccurrence).
Hence, you need to have a function HomCheck [Pitch] -> HomCheck Patter-
nOccurrence, but you cannot define it even if you have a function [Pitch] ->
PatternOccurrence. What you, in fact, must have in your hands is a function
4Please see Section 2.3.1 for an explanation of these terms.
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PatternOccurrence -> [Pitch] (notice the reversal in the argument order,
namely, contravariance). The concept of contravariance, for our purpose, can be
understood as reversing the positions of the arguments of a function. As shown in
Code Snippet 5.9, we can combine pitch and HomCheck contravariantly by using a
predefined operator in Haskell.

equalpitch' :: HomCheck [Pitch] -> HomCheck PatternOccurrence
equalpitch' = pitch >$< equal

(>$<) :: (a -> b) -> Check b -> Check a
(>$<) = contramap

Code Snippet 5.9: Example of contravariance using pitch.

In more general terms, to define more compositional operations, we first make the
observation that the type parameters (e.g. Pitch or Time) occur in a contravariant
position, since these parameters are arguments to a function. Second, in the most
general case, there are two different arguments for the comparison (we need two
inputs to make a comparison). With these observations, we arrive at the concept of
a contravariant bifunctor5 and define the instance for our checker type, as shown in
Code Snippet 5.10.

class ContravariantBifunctor p where

contraBimap :: (t -> a) -> (s -> b) -> Check a b-> Check t s
contraBimap f g = contra1 f . contra2 g

contra1 f = contraBimap f id

contra2 g = contraBimap id g

instance ContravariantBifunctor Check where
contraBimap f g p = Check $ \ x y -> (f x <=> g y) p

Code Snippet 5.10: Definition of contravariant bifunctor.

5.2.3 Compositions of checking transformation

In order to combine multiple checks in conjunction, we would like to combine mul-
tiple simple checks. These checks, for example, can be built from the map function
such as in Code Snippet 5.8. We can extract multiple Boolean values from multiple
checks and then take their conjunction. This combination of checkers can be identi-
fied with a kind of monoidal6 algebraic structure.
5Contravariant bifunctors are functors with two arguments, where the map operation is contravari-
ant.

6Amonoid is a set that is closed under an associative binary operation and has an identity element.
Here, we consider the set of checkers.
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As an example, we show the monoidal structure with pitch and duration in Code
Snippet 5.117 The first function is a verbose implementation of the check. To create
more general combinations, we implement amonoidal structure andmake the check
more succinct: the simplified function is the second function of the same snippet.

The implementation of the monoidal structure can be seen in Code Snippet 5.12.
Note that Check can be seen as a monoid in more than one way, i.e. using either
conjunction or disjunction. Here, we stick to the conjunctive version (note the use of
&& in Code Snippet 5.12), sincewe do not have any use-cases for disjunctive checkers
yet. If such a construct is needed in the future, we will provide newtype wrappers
and the programmerwould then need tomanually annotate whichmonoid instance
to use (when one uses <>).

exactPitchDuration :: PatternOccurrence -> PatternOccurrence ->
Bool↪→

exactPitchDuratian p1 p2 = (pitches p1 == pitches p2) && (duration
p1 == duration p2)↪→

exactPitchDuration' :: Check PatternOccurrence
exactPitchDuration' = durations >$< equal

<> pitch >$< equal
Code Snippet 5.11: Monoidal structure to combine pitch and duration.

instance Monoid (Check a b) where
mempty = MkCheck (\ _ _ -> True)
p <> q = MkCheck (\ x y -> (x <=> y) p

&& (x <=> y) q)
Code Snippet 5.12: Implementation of the monidal structure of checkers.

5.2.4 Approximation

Now we can recognise exact repetitions, and in this section, we aim to model the
local type of transformations in music with approximation, as we discussed with
Figure 5.2 in Section 5.1. Recall in Figure 5.1 and 5.2, we showed patterns in a simple
étude and folk songs. For a simple étude, we have a perfect transformation (i.e.
transposition) to relate pattern occurrences. In the folk songs and more generally,
however, this is rarely the case, so there is a need for "approximate matching". The
problem now then is to addmore flexibility by allowing inexact matches, essentially
allowing the insertion and deletion of musical events.

7We assume here that there is a function "durations" that extract the durations of from musical
notes. The actual implementation is given later in Code Snippet 5.16. The concept of composition
is more important than the implement at this point.
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This is not an easy problem to solve. In our implementation, to allow different de-
grees of approximation, we specify percentages for how many insertions and dele-
tions we allow when comparing a pair of musical patterns. For example, we can
match a list of pitches, [A,C,F,A,B], and [A,C,G,A,B] with an approximation of
80%. Giving a more complex example such as [A,A,B,C], and [A,B,C,D], we can-
not immediately line up the notes pairwise, but need to delete the first A and lastD
to have a match.

Formally, we extend the criteria for a "match" with the approximation of percent-
age p: when at least p of the prototype is in the occurrence, i.e.

ignored 6 (1 − p) ∗N (5.1)

and when at least p of the occurrence is in the prototype, i.e.

added 6 (1 − p) ∗M (5.2)

where N,M, are the lengths of the prototype and occurrence, respectively;
added is the number of elements in the occurrence that do not appear in the
pattern, ignored is the number of prototype elements that were not deleted i.e.
M − (N − added). Notice that there can be multiple ways to add and ignore ele-
ments to obtain a match. For example, one can ignore all elements of the prototype
occurrence and add back all elements of the other occurrence, which would not be
a desirable match for approximation. We therefore aim to find the minimal number
of insertions/deletions necessary.

In the first example, [A,C,F,A,B], and [A,C,G,A,B], we haveN =M = 5 and we
ignored the prototype note F and added the occurrence note G (i.e. ignored = 1 and
added = 1). Thus we can conclude that these two patterns are 80% equal, since the
two required conditions are satisfied:

ignored = 1 6 1 = (1 − 0.8) ∗ 5

and
added = 1 6 1 = (1 − 0.8) ∗ 5

In implementation, wefirst define this approximate checker type bypassing a float-
ing point number p ∈ [0, 1], representing the approximation degree as a percentage,
as shown inCode Snippet 5.13. We also set amaximum look-ahead value for compu-
tational efficiency. We then approach this approximate checking in two steps. First,
we define a function that computes themaximum number of allowed insertions and
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deletions. Then, we consider the possible ways in which the two lists can be aligned.
To compute the possible alignments, we take into account three parameters/vari-
ables (the maximum number of insertions and deletions, and the maximum-look-
ahead value), try to traverse the occurrence until the prototype element is found,
and consider the following cases:

• When an element of the prototype is found in the occurrence:
– If the prototype element we are looking for is at the head of the occurrence
with which we are comparing, we process onto the next prototype and
occurrence element.

– If we need to remove elements from the occurrence order to find the pro-
totype element, we delete the elements at the head of the occurrence, and
decrease the maximum insertion allowed.

• Otherwise, two cases are possible:
– If we do not find a matching element, we delete the prototype element if
possible, and we decrease the maximum deletion value allowed.

– If we do not find the element and cannot delete it, we abort.
To find the prototype elements and update themaximumallowed insertion values,

we use an auxiliary function find as shown in Code Snippet 5.14.
In our original paper (Melkonian et al., 2019), we described the program using a

count-up approach rather than the countdown approach described above. There
was a problem with this count-up description. In the paper, we described the ap-
proachusing a "min" function, which picks out theminimum(add, ignore) pair. The
lexicographic ordering of the "min" function does not work best because it would
favour (1,100) instead of (2,2) "added" and "ignored" pairs, which is not desirable
in most cases. This bug was only in the presentation of the implementation, but not
in the implementation itself, since we have always circumvented this problem by
using an upper limit of the insertions/deletions permitted, as described here.

type ApproxCheck a = Float -> HomCheck a

(~~) :: ApproxCheck a -> Float -> HomCheck a
approxChecker ~~ p = approxChecker p

Code Snippet 5.13: Definition of approximation type and function.

The worst-case time complexity of the algorithm above isO(NM)whereN,M are
the lengths of the prototype and occurrence respectively, since we would need to
traverse the whole occurrence for each element of the prototype. When the lengths
of pattern occurrences are small, this is not a bottleneck. Nevertheless, we set amax-
imum look-ahead on the deletion process to facilitate faster analyses in case pattern
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maxLookahead = 5

approx :: Eq a => ApproxCheck [a]
approx xs ys =

let maxIgnored = (1 - p) * length xs in
let maxAdded = (1 - p) * length ys in
align (maxIgnored, maxAdded) xs ys

align :: [a] -> [a] -> (Int, Int) -> Bool
align ys [] (maxI, maxA) = 0 <= maxI && length ys <= maxA
align [] xs (maxI, maxA) = length xs <= maxI && 0 <= maxA
align ys (x:xs) (maxI, maxA)

...
| Just (maxA', ys') <- find x ys maxA
, maxA' >= 0
, maxA - maxA' <= maxLookahead
= align ys' xs (maxI, maxA')
|| (maxI > 0 && align ys xs (maxI - 1, maxA))

find :: a -> [a] -> Int -> Maybe (Int, [a])
find _ [] _ = Nothing
find x (y:ys) maxA

| maxA < 0 = Nothing
| x == y = Just (maxA, ys)
| otherwise = find x ys (maxA - 1)

Code Snippet 5.14: Function that search for approximations. The recursion and trivial cases
are omitted.

occurrences are long (e.g. a repeating section of music), resulting in overall runtime
complexity of O(N), since we would perform O(1) computation for each of the N
elements of the prototype8.
The above approximation process works fine when we compare musical notes di-

rectly. However, when we consider intervals, derived from pitches by taking the
pitch difference of the consecutive notes, they score rather badly, since a simple in-
sertion on the prototype pattern would create a lot of differences in the paired out-
put. As a motivating example, assume our prototype consists of the notes A and B
and the occurrence adds a passing note Bb in between them. While first-order ap-
proximate equality works well when comparing their pitch, we get in trouble when
comparing their intervals; we have lost all similarity between them, since the proto-
type has intervals [2] and the occurrence [1, 1].
We, therefore, consider two types of approximation, and call the one we covered

above as first-order and move on to cover the second-order approximation. We call
what is in Code Snippet 5.14 first-order because we only compare the sameness of
the token. What we call second-order approximation also considers the intervalic
equivalence between two tokens. We define it in such a way that we additionally
8Note that the faster implementation is actually an under-approximation of the proposed algorithm,
i.e. there might be false negatives in the results.
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allow the merging of consecutive elements in the occurrence and match them to a
single entity of the prototype. Key steps of the implementation are shown in Code
Snippet 5.15, where we find index of the elements in the list of notes that can make
up to the sum of other elements in another list.

approxEq2 :: (Eq a) => ApproxCheck [a]
approxEq2 = Check $ \xs ys -> ...

where
...
align x (y:ys)
| Just i <- findIndex 0 x (y:ys) maxLookahead, maxA >= i
= Just (added - i, snd $ splitAt i ys)
| otherwise = align x ys $! (added - 1)

...

findIndex i 0 _ _ = Just i
findIndex i x (y:ys) maxLookahead

| x >= y = findIndex (i + 1) (x - y) ys (maxLookahead - 1)
| otherwise = Nothing

Code Snippet 5.15: Key implementation steps of the second-order approximation.

To give an example, if we insert some intervals of "1" and "3" into a series of "1" and
"2", and check whether they are 75% approximate to each other:

([2,1,2,2] <=> [1,1,3,2,1,1]) (approxEq2 ~~ 0.75)

This is true because the second-order approximate equality allows us to merge
the first two and the last two intervals of the occurrence, replacing them with their
sum:

([2,1,2,2] <=> [2,3,2,2]) (approxEq2 ~~ 0.75)

We now have only a single ignored interval in the prototype and a single "added"
interval in the occurrence, thus it is safe to conclude that these (interval) patterns
are 75% equal:

ignored = 1 6 1.0 = (1 − 0.75) ∗ 4

added = 1 6 1.5 = (1 − 0.75) ∗ 6

To use this package in our experiments in the next chapter, we perform multiple
passes of comparisons by varying the approximation degree of 100% (exact rep-
etition), 80%, 60%. We notate the approximated transformations by appending a
single-digit number at the end of the names of the transformations and their combi-
nations. For example, exact8 denotes a match of exact repetition but with at most
80% approximation, i.e. setting p = 0.8 in the previous equations.
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5.2.5 Compositional transformations

With all the constructions we presented above, we can write checkers for exact rep-
etition as shown in Code Snippet 5.16. We devised compositional operations to glue
together the different features (e.g. pitch and rhythm)with the checker. In addition,
we extended the notion of equality in the checker to check the approximation of a
pattern.
As an example of all these combinations, in Code Snippet 5.17, we can write a

checker that checks inversions with different degrees of approximation. In Code
Snippet 5.18, similarly, we show the implementations of the two other checkers for
transformations: checkers for chromatic transposition and rhythm-only repetition
with different degrees of approximation. Chromatic transposition preserves rhythm
and pitch intervals, while rhythm-only repetition only preserves rhythm. We will
describe these two transformations in the context of music in the next section.

exactRepetitionOf :: HomCheck PatternOccurrence
exactRepetitionOf = rhythm >$< equal

<> pitches >$< equal

toRelative :: Num a => [a] -> [a]
toRelative = map (-) . pairs

pitches, intervals :: PatternOccurrence -> [Pitch]
pitches = map pitch
intervals = toRelative . pitch

onsets :: PatternOccurrence -> [Time]
onsets = sort . map ontime

durations :: PatternOccurrence -> [Time]
durations = fmap (uncurry (-)) . pairs . onsets

rhythm :: PatternOccurrence -> [Time]
rhythm = map (truncate' 2) . durations

truncate' :: Int -> Double -> Double
truncate' n x = fromIntegral (floor (x * t)) / t

where t = 10^n
Code Snippet 5.16: Checker for exact repetition and the types of its components.

inversionOf :: ApproxCheck PatternOccurrence
inversionOf = basePitch >$< equal

<> rhythm >$< approxEq2
<> intervals >$< (inverse $< approxEq2)
Code Snippet 5.17: Checker for inversion up to approximation.

In Pattrans, we have constructed theDSL so that one pick their own sets of transfor-
mations with ease. For example, in Code Snippet 5.19, we define a default analysis

140



5.3 Musical transformations in Pattrans

transpositionOf :: ApproxCheck PatternOccurrence
transpositionOf = rhythm >$< approxEq2

<> intervals >$< approxEq2

rhythmicOnly :: ApproxCheck PatternOccurrence
rhythmicOnly = rhythm >$< approxEq2
Code Snippet 5.18: Checker for chromatic transposition and rhythmic-only repetitions.

with four transformations (exact repetition, transposed, inverted, and retrograded)
and an analysis called "exact" that only considers exact repetitions. Both of them
are defined along with different degrees of approximation (1, 0.8, 0.6, 0,4,
0.2).

analyses :: [(String, Analysis)]
analyses =

[ ( "default"
, ( [ ("exact", (exactOf ~~))

, ("transposed", (transpositionOf ~~))
, ("inverted", (inversionOf ~~))
, ("retrograded", (retrogradeOf ~~))
], [1,0.8..0.2] ))

, ( "exact"
, ( [ ("exact", (exactOf ~~))

], [1,0.8..0.2] ))
Code Snippet 5.19: One can define different sets of transformations for analysis. The trans-

formations are then checked one by one in order.

5.3 Musical transformations in Pattrans

After seeing the implementation, we describe and explain the transformations we
use in Pattrans. In the list below, we show our categorisation of several important
musical transformations and indicate which ones are implemented in Pattrans:

• Shifting
– in time: exact repetition implemented
– in pitch: transposition, comes in different flavours (chromatic transposi-
tion implemented, tonal transposition not implemented)

• Reflecting:
– in time: retrograde implemented
– in pitch: inversion, comes in different flavours (chromatic inversion im-
plemented, tonal inversion not implemented, similar to transposition)

– composition: retrograde-inversion implemented
• Scaling:
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– in time (augmentation, diminuation implemented)

– (theoretically, there could also be scaling in pitch, but it has not been used
in music to the best of our knowledge, not implemented)

In addition to the above, we also consider approximations—the local transforma-
tions that do not apply to all notes in a pattern, but only a few and on a local level,
such as the insertion or deletion of certain notes. In the remainder of this section,
we will introduce more detail of these transformations and how we group them in
Pattrans.

Primary and miscellaneous transformations

We take three prominent transformations as our primary transformations:

• Exact repetition: repeat an occurrence with exactly the same musical events,
that is, horizontal translation preserving rhythm and pitch

• Chromatic transposition: move pitches by a fixed number, that is, vertical
translation preserving rhythm

• Rhythmic-only repetition: repeat the rhythm of an occurrence while permit-
ting any pitch transformations other than the two considered above

We devise the rhythmic-only repetition due to the influence of the feature analysis
in Chapter 4, where rhythmic featureswere important for distinguishing between al-
gorithmic and human-annotated patterns. We also consider amiscellaneous (misc.)
transformation group, which contains the following transformations and their com-
positions: retrograde, augmentation, diminution, and approximation. Other poten-
tial non-primary, non-misc. transformations and relations are referred to as "un-
classified" (so named because we cannot find them yet with the transformations
above).

Formally speaking, we have a list of musical events in the prototype pattern
occurrence, P = {(ti,pi)}, i ∈ N (hereon, we assume i, the indices of musical
events, are natural numbers), and P ′ = {(t ′i,p

′
i)} the list of musical events in the

pattern occurrence to compare it with, where ti and t ′i are the onset sequences of
the pattern occurrences, and pi and p ′

i the corresponding pitch sequences. Let the
Inter-Onset Intervals (IOIs) sequences be ∆ti := ti+1 − ti and ∆t ′i := t ′i+1 − t

′
i.

Note that, in this formulation, we do not consider the cases where P and P ′ are of
different lengths, because the length difference breaks the criteria of being under
one of the three primary transformations we consider. The checking criteria for the
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three primary transformations correspond to the following:

(1) Exact repetition ∀i(pi = p ′
i)∧ (∆ti = ∆t

′
i)

(2) Chromatic transposition ∃!c ∈ N,∀is.t.(pi = p ′
i + c)∧ (∆ti = ∆t

′
i)

(3) Rhythmic-only repetition: ∀i(∆ti = ∆t ′i)

Intuitively, there is a gradually loosening process between the three transforma-
tions on how strictly the pitches need to match. Exact repetition requires pitch to
be preserved exactly; chromatic transposition requires a constant pitch offset value;
and rhythmic-only repetition does not impose any constraints on pitches. Further-
more, the last transformation covers the cases of other common music transforma-
tions: tonal transposition and inversion. We do not emphasise tonal transposition in
our list of transformations because computing the one-and-only correct key (“Sym-
bolic Key Finding Results - MIREX Wiki”, 2005) and then finding the appropriate tonal
transposition given a short pattern occurrence is not always possible. These trans-
formations have also been shown to be perceptually relevant for listeners under cer-
tain circumstances according to the discussions in (Krumhansl et al., 1987; Meredith et
al., 2002; Temperley, 1995; Thorpe et al., 2012), despite ongoing research and disagree-
ment on the generalisability of such perceivability. For the above reasons, we group
transformations into the three primary transformations and misc. transformations.
Although it is possible to change this grouping in Pattrans aswewill show in Section
5.2.2, this grouping will remain important in the next chapter, where we present the
analytical results from Pattrans.

Though this list is not comprehensive, by using well-established and not overly
complicated transformations, we equip ourselves with the power to examine musi-
cal patterns rigorously and quantitatively. For example, we can compute howmany
occurrences of a pattern are related to a prototype occurrence via the transforma-
tions, aswell aswhat kind of transformations can be observed in a set of occurrences.
Such data can be used to investigate different forms of musical patterns. This com-
putation is what we will carry out in the next chapter.

Other groups of transformations

In (Melkonian et al., 2019), the paper onwhich this chapter is based, we chose a group
of transformations as atomic transformations primarily due to their simplicity: exact
repetition, chromatic transposition, inversion, retrograde, augmentation, diminua-
tion, retrograde inversion, rotation. In this dissertation, we have re-formulated this
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into primary transformations and misc. transformations, as we will be using this
re-formulated grouping in the next chapter.

Orders of transformations

When considering computationally implementing multiple transformations, the
issue of order arises: given two transformations t1 and t2, which one should be
checked first? One can propose checking all transformations and their combinations
against every pair of musical patterns we will be comparing with. This brute-force
approach can be very computationally expensive. However, as we mentioned
earlier in this section, some transformations are stricter than others, so we can check
the strictest transformation first, and then the next strict one for the patterns that
have not been paired.

5.4 Discussion and concluding remarks

In this chapter, we presented an expressive DSL to describe (monophonic) music-
theoretic transformations, based on simple notions of category theory, namely
monoids and contravariant functors. The transformations we used were explained
and motivated.
One of the significant benefits of the transformation approach is its composition-

ality, meaning we can express meaningful transformations in terms of simpler ones.
The FP language Haskell also gives us advantageous controls and architecture of
the program. We summarise the groups of transformations and their combinations
in Figure 5.4.
We do not claim that our model is comprehensive. We certainly do not touch upon

the intentionality behind the musical transformations, i.e. determining whether a
musical transformation was applied as a technique or accidental, which has a sep-
arate level of intricacy in itself. Instead, we use transformations to describe com-
putations that can be used to systematically and quantitatively probe the musical
patterns given by human annotators and algorithms. Using this DSL, we will see
what kind of insights can be gained in the next chapter. In the remainder of this sec-
tion, we will discuss remaining issues and notable points of our implementation.

Multiple transformations

When t1 and t2 can both be used to match two pattern occurrences, we can take a
pluralist view (taking both t1 and t2 as valid matches) or consider extra factors that
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Figure 5.4: The primary and miscellaneous groups of transformations we implement in Pat-
trans. Chrom. is short for chromatic transposition. We do not list all the combi-
nations such as 80% augmentation.

could be used to rank transformations, thereby enabling us to choose between t1 and
t2. In Pattrans, we take the transformation in a certain order (See Section 5.3) .

If we allow ourselves to multiple matching and match pattern occurrences with
the compositions of transformations, e.g. t1 (t2 (t3)), we also need to additionally
consider properties of these compositions such as associativity, commutativity, and
potential equivalences between them. These are the situations we are not consider-
ing for this dissertation.

Prototype patterns

In Pattrans, we choose the first pattern that occurred in time to be the prototype
occurrence. This is not an unfounded choice: as we discussed in Chapter 2, inmusic,
the patterns that appear earlier in time in a piece have more chance to be repeated
and varied in the rest of the piece. A temporal discount factor seems to be applicable
when considering how likely a musical excerpt can be a prototype pattern.

This is not always the case, however, and selecting a prototype pattern is a diffi-
cult problem: one must know which occurrence in a set is the prototype in order
to test the membership of other candidate occurrences, but one must also consider
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all occurrences in order to determine which is the prototype. In addition to treating
the first occurrence as the prototype and all other occurrences have a flat structure,
there might be a subset of prototypes, as well as different branches of how the proto-
types repeat and evolve throughout the piece. Pattrans does not currently take this
possibility into account.

Complexity in approximation and other transformations

In addition to the computational complexity thatwe discussed, the codes that imple-
ment the approximation transformations are rather complex conceptually. There are
hardly easy ways to communicate to the machine what we see as approximations—
the local variation such as the insertions and deletions of notes, which are actually
fraught with possibilities and complexities, despite their simple appearance at first
sight. We do not claim that our implementation of approximation is optimal, and
future research is needed to untangle this issue.

Other transformations, however, are selected with intuitiveness in mind, in the
hope of reducing complexity. As we discussed in Chapter 4 and 5, there is a
need for framing information coming out of computational methods in a more
self-explanatory and understandable way to users. Meaningful interactions with
the computations hinge on exchanging communicable results and making users
less prone to misinterpretation. Our DSL, by employing modular transformations
and operators to compose these transformations, is created by placing users at the
centre of the design, which can be improved with multiple future iterations.

Transformations that were not considered

A variety of other transformations exist, in addition to the Pattrans ones As we have
explained in this chapter and established in the previous chapter, our criteria for
implementing the primary and misc. transformations include how intuitive and
how common these transformations are. As an initial step that starts to look into
the connections between patterns and transformations, we do not aim to be com-
prehensive. Instead, one of the advantages of Pattrans is that it is easy to add new
transformations and combine them with existing ones. When used in combination
with a variety of corpora, the list of the transformations will undoubtedly expand
and even be learned from data, which is beyond the reach of this dissertation but
still relevant for future study.
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An excursion into category theory

In Pattrans, with the concept of contravariant bifunctor and monoids, we enter the
territory of category theory. Category theory has been used to model phenomena
in many areas we have discussed in previous chapters, such as cognitive science,
machine learning, and FP (Arjonilla & Ogata, 2017; Fong et al., 2019). The central ideas
are objects and morphisms, which can be intuitively understood as states and the
processes or connections between states. This generalised formulation gives rise to
an extensive network of analogies and relationships between fundamental subjects
such as physics, topology, logic, and computation (Baez & Stay, 2010).

Category theory has also been used to model music structure. For example, in
extending Lewin’s transformational networks, Rahn (2004) provides the insight
that transformational networks are essentially graphs which have arrows labelled
in some semigroup, as well as nodes in some set acted on by the semigroup. In
this way, the network can be extended in category theory. More work, such as
(Andreatta, 2018; Giesa et al., 2011; Mannone, 2018), has used category theory to model
a variety of musical activities and made interdisciplinary connections. To stay
inside the scope, we do not make more connections to category theory in this
dissertation other than the concept of contravariant bifunctor and monoids used in
Pattrans.
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Chapter 6 Using Transformations to
Understand the Relations
Between Pattern
Occurrences

Music is the pleasure the human mind experiences from counting without being
aware that it is counting.

– Gottfried Wilhelm Leibniz

6.1 Introduction

Summary so far

In the earlier chapters, we have explored the significance of musical patterns and
how computational algorithms are used to uncover them. Such musical patterns
are widely discussed in different contexts, such as the concrete MIR tasks of com-
pression (Meredith, 2013), classification (Lin et al., 2004), and segmentation (Nieto &
Farbood, 2014), or the broader contexts of psychology (Foubert et al., 2017), musicol-
ogy (Janssen, 2018), and education (Harkleroad, 2006). However, due to the diverse
contexts in which they are used, there are various definitions, examples, and crite-
ria related to musical patterns, as we have seen in Chapter 2. Moreover, there are
discrepancies between what humans annotate as a musical pattern across different
contexts, as we have seen in Chapter 3. Consequently, designing automated compu-
tational systems that can extract the desirable musical patterns is a challenging task,
and comparing the output of these systems with both the output of other systems
and human annotations poses significant challenges, aswe have seen in Chapter 4.

More concretely, comparing the output from algorithms that automatically dis-
cover musical patterns presents the following challenges:
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• For the same musical piece, patterns and their occurrences discovered by dif-
ferent annotators may differ, which leads to difficulties both in comparing al-
gorithms with human annotations and in comparing the human annotations
with each other.

• The size of algorithmic outputs often tends to be large, and relating these out-
puts back to meaningful musical concepts can be challenging, which leads to
difficulties in the comparison process and the selection process of pattern dis-
covery algorithms.

In Chapter 5, we established a connection between musical patterns and transfor-
mations. In a nutshell, we used musical transformations to account for the variation
between pattern occurrences. We implemented a variety of transformation checkers
in Haskell to facilitate the comparison of musical patterns. In this chapter, our aim
is to address the two aforementioned challenges by using musical transformations
to compare human annotations and pattern discovery algorithms.
Before we proceed, it is important to revisit and clarify the terms pattern and pat-

tern occurrences. In Section 1.5.4, we showed the sample output of algorithms. The
output is structured in two levels: patterns constitute the first level, and their occur-
rences form the second. Essentially, the pattern occurrences are grouped into sets
that are linked to a pattern on the first level. In Chapter 4, we discussed the large
number of output patterns. In this chapter, attention is directed towards pattern
occurrences. A large number of pattern occurrences can be attributed to several
scenarios: it may be that there are many different patterns, each with few occur-
rences; it may be that there are a smaller number of patterns, but each with many
occurrences; or it may be a combination thereof. Depending on the different algo-
rithms and datasets being examined, the scenario could be different. For both hu-
man annotators and algorithms, the number of patterns is always smaller than the
number of pattern occurrences. In fact, the number of pattern occurrences would be
at least twice the number of patterns if the definition "each pattern repeats at least
twice" is adopted. In the scenario of human annotators, a lot of time and concen-
tration is needed for human annotators to annotate all occurrences of one pattern,
so annotators sometimes do not annotate all occurrences (Ren, Koops, et al., 2018).
If an algorithm tends to identify more relations between occurrences than another
algorithm, essentially exhibiting a more liberal interpretation of repetition, it would
generally lead to a greater quantity of both patterns and pattern occurrences.

Research questions and main contributions

The thesis statement of this dissertation is as follows:
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human-perceived musical patterns, a type of highly subjective and ubiq-
uitous abstraction, have important connections to musical transforma-
tions, which, when explored compositionally through a functional pro-
gramming language, informs both human-to-algorithm and algorithm-
to-algorithm comparisons of discovered musical patterns.

In accordance with this thesis statement, we will use the transformations in the Pat-
trans package introduced in Chapter 5 to relate musical pattern occurrences. More
specifically, we use a set of computationally well-defined and commonly used mu-
sical transformations to analyse pattern occurrences. As a result, we can retrieve
anddiscriminate between patternswith occurrences related by different transforma-
tions. To summarise the presence of those different transformations found in a set of
musical pattern occurrences, we use the proportion of each transformation found in
this set of occurrences. By calculating the proportion of the transformations, we can
distil the relations between pattern occurrences into a normalised vector of numbers,
which can help us further inspect, classify, and thus understand pattern occurrences
more numerically, from the perspective of musical transformations.

In connection to the two challenges posed at the beginning of this chapter, we aim
to answer the following research questions:

• Given sets of human-annotated patterns, can we compare and group the pat-
tern occurrences of these patterns using Pattrans? Which transformations are
more commonly seen in human annotations than others? The answers to these
questionswill give us a better understanding of how human-annotated pattern
occurrences are related to one another, thereby addressing the first challenge
for this chapter.

• Given the potentially large output size of algorithms, are the musical trans-
formations able to capture the occurrence relations in musical patterns? Are
these relations similar or different to human-annotated patterns? The answers
to these questions will aid us in better understandingwhat kind of transforma-
tions the algorithms discover, whether the large output from algorithms only
correspond to a much smaller number of transformations, and, finally, how
they compare to human annotations, thereby addressing the second challenge
for this chapter.

Correspondingly, by using the Pattrans library described in Chapter 5, we address
the two challenges posed at the beginning of this chapter, and our main contribu-
tions demonstrate the following:
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• A large proportion of the pattern occurrence relations in human annotations
can be explained by the transformations we consider, thereby establishing the
importance of such transformations in human-annotated patterns.

• In the JKU-PDD and MTC-ANN datasets, the human annotations exhibit
higher percentages of exact repetition, whereas the algorithmic ones tend to
have lower percentages. Nonetheless, depending on the specific algorithm in
consideration, the proportions of exact repetition may not significantly differ
from those of human annotations.

Analysing transformation data in subsequent sections of this chapter

In the body of this chapter, we will first introduce the music data and the pattern
discovery algorithms we use. Following that, we will compare different sets of hu-
man annotations pattern occurrences using transformations. Next, we will use six
pattern discovery algorithms and examine the output pattern occurrences of these
algorithms, employing transformations in a similar fashion. With these steps, we
will highlight the primary and misc. transformations introduced in Section 5.3. Pri-
mary transformations are exact repetition, chromatic transposition, and rhythmic-
only repetition. Miscellaneous (misc.) transformations contain the following trans-
formations and their compositions: retrograde, augmentation, diminution, and ap-
proximation. Other potential non-primary, non-misc. transformations and relations
are referred to as "unclassified". The transformations will be checked in this order
as we described them in this paragraph (see more discussion about the order of
checking transformation in Section 5.3 and 5.4).

Following these comparisons, we will conduct statistical analysis to examine the
significance of the specific transformation of exact repetition in our comparisons. In
parallel to the statistical analysis, wewill employ a separate process where the trans-
formations are used to create new features. These features will then be visualised
through PCA for visual examination, thereby making the proportions of transfor-
mations more examinable and yielding more insights.

6.2 Data and background

We begin by introducing more in detail the two sub-problems we will be tackling,
as well as the datasets we will be using. As there are overlaps in datasets across
chapters, we do not reiterate all the details here, but describe each dataset in more
detail in Appendix A.
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Human annotations

We have seen that datasets of human-annotated musical patterns are rare, and
agreement amongst human annotators is rarer still. These disagreements can be
attributed to ambiguity in the musical material, subjectivity of the annotators,
different annotation protocols, and different annotation tools used. As a result,
controversies remain when it comes to using human annotations for musical
pattern discovery research, and other MIR tasks. In order to study the differences
and commonalities between different annotators, we can now employ primary
and misc. transformations to compare different pattern occurrences by grouping
these according to their relations, which sheds light on the potential criteria the
annotators have used. Alongside the JKU-PDD and the MTC-ANN datasets,
we use the dataset collected by ANOMIC for this purpose. We will call this
dataset the HEMANAll dataset in this section because the musical pieces used
are identical to the initial HEMAN experiment. We divide this dataset into two
sub-datasets based on the annotators’ musical backgrounds: HEMANHigh (with
a high self-rated musical background) and HEMANLow (with a low self-rated
musical background). The datasets HEMANAll, HEMANHigh, and HEMANLow
are collectively referred to as the HEMAN datasets. In comparing JKU-PDD,
MTC-ANN, and the HEMAN datasets, we compare different corpora with distinct
underlying annotation processes to obtain an overview of what transformations we
can observe in human annotations while ignoring the annotators’ backgrounds or
the specific annotation procedures. In comparing within the HEMAN datasets, we
compare groups of annotators with a different musical background for the same set
of musical pieces and with the same annotation procedure. This comparison may
give insight into the effects of annotators’ different musical backgrounds on the
proportions of different types of musical transformation they annotated as pattern
occurrences.

In terms of the musical pieces in the datasets, JKU-PDD contains 5 musical pieces
by Bach, Beethoven, Chopin, Gibbons, and Mozart; MTC-ANN is a collection of
Dutch folk songs; HEMAN datasets contain 6 pieces by Bach, Beethoven, Haydn,
and Mozart. Please see Appendix A for more details about each dataset.

The JKU-PDD andMTC-ANNdatasets are highlighted in the comparison between
algorithmically discovered patterns and human-annotated patterns. We highlight
these datasets due to their widespread use in the field of musical pattern discovery.
Furthermore, only the JKU-PDD dataset is used to showcase two other methods to
examine the transformation proportions, i.e. through statistical testing and PCA.
While other datasets may warrant closer scrutiny in future research, we currently
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focus on these datasets for the examination of multiple algorithms as described be-
low.

Algorithms

As previously discussed, datasets of human-annotated patterns are scarce, while
there is potentially an abundance of output produced by musical pattern discovery
algorithms. Persistent challenges with evaluating and deploying such algorithms
exist: the output size of algorithms can be large, which are costly to examine man-
ually; implementation logic can be hard to comprehend, which could be caused by
any of the numerous procedures that comprise the algorithm, or by a binary-only
release for which we only have access to the output; patterns extracted by differ-
ent algorithms can vary significantly given the same input, which creates contro-
versy when it comes to using human annotations as ground truth and designing an
all-encompassing evaluation strategy. The transformations provide us with a lens
through which to examine the output using musically relevant concepts, therefore
enabling straightforward understanding and comparison of the relations between
pattern occurrences.
For investigating patterns from the algorithms, we use the six pattern discovery

algorithms submitted to the MIREX task during 2014-20171. Each algorithm has its
own series of procedures to extract patterns from music, e.g. clustering, matching,
and counting, and so forth. The number of pattern occurrences extracted varies
across algorithms and corpora. We run the following algorithms, introduced in
Chapter 2 and 4, on the JKU-PDD and MTC-ANN datasets, with the numbers in
parentheses denoting the extracted pattern occurrences from each dataset, in that
order: SYMCHM (59, 229), SIAF1 (794, 4486), SIACR (1590, 4683), SIACP (399,
3400), VM1 (2969, 25497), VM2 (463, 4599), and for comparison, human annota-
tions (105, 1546).

6.3 Transformations in human annotations

Observation

By employing the Pattrans package, we can effectively quantify the relations be-
tween patterns occurrences in terms of musical transformations. This quantification
allows us to make the following observations.
1This task did not get new submissions after 2018 and changed focus to creating a new task—
Patterns for Prediction.
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Figure 6.1: Transformations found in the human-annotated patterns in 3 datasets and 2 sub-
datasets. The colours correspond to different transformations. The primary
and misc. transformations are introduced in Section 5.3. Primary transforma-
tions are exact repetition, chromatic transposition, and rhythmic-only repetition.
Misc. transformations contain the following transformations and their compo-
sitions: retrograde, augmentation, diminution, and approximation. All other
occurrences which we could not match with any transformations nor approxi-
mations are grouped into "unclassified".

In Figure 6.1, looking across the datasets, we observe a substantial proportion of
primary transformations, with exact repetition being consistently prominent. In ad-
dition, we notice varying proportions of misc. transformation and unclassified in-
stances. Chromatic transposition and rhythmic-only repetition are notably prevalent
in certain datasets.
Exact repetition, chromatic transposition, and rhythmic repetition together make

up themajority (71.4% for JKU-PDD, 83.6% forHEMANAll, 87.7% forHEMANLow,
77.0% forHEMANHigh) of the pattern occurrence relations, with exception ofMTC-
ANN (46.9%)—although it does have a percentage close to 50%. The MTC-ANN
dataset also has the most unclassified occurrence relations.
The JKU-PDD dataset exhibits the highest proportion of exact repetition amongst

all datasets, with virtually no unclassified instances present. Both HEMANAll and
HEMANLow feature a high proportion of chromatic transposition, while HEMAN-
High is characterised by a significant proportion of rhythm-only repetition. The
proportions of misc. transformations and unclassified instances are relatively low
in the HEMANAll, HEMANLow, and HEMANHigh datasets.
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Implication

The fact that we see a substantial proportion of primary transformations is support-
ing evidence that the primary transformations are of major importance to human-
annotated patterns. Additionally, as the proportion of unclassified relations (oc-
currences that could not be related with the transformations in Pattrans) tends to
be small, and the proportions of those relations classifiable by transformations are
above 70% for all datasets, this is a positively validating result for the use of our
transformation approach.
In the case ofMTC-ANN,we have seen that pattern occurrences within the dataset

can be short, leading to a situation where even small alterations in the short patterns
may cause the occurrence relation to become unidentifiable. This situation is an
indication that recovering the human-annotated patterns using an algorithm in this
dataset is difficult.
The annotations in the HEMAN dataset, as described in Chapter 3, are gathered

using a tool with automatic exact repetition and chromatic transposition tagging. A
potential side effect is that we see a higher proportion of chromatic transpositions
in HEMANAll than other datasets. This raises awareness of the possible side effects
caused by providing the functionality of automatic repetition tagging in annotation
tools. Annotators with higher self-rated musical background scores, in HEMAN-
High, had a higher proportion of rhythmic-only repetition, which is an indication
that rhythmic-only repetitions are more prominent as musical patterns for the an-
notators with more musical backgrounds.

6.4 Transformations in algorithmic output

Observation JKU-PDD

In a similarmanner to human annotations, we can employ Pattrans on the pattern oc-
currences extracted algorithmically, and compare the output of six algorithms with
the human annotations of JKU-PDD. This allows us to make the following observa-
tions.
In Figure 6.2, we observe different combinations of proportions of transformations.

More specifically, we make the observation that although most of the algorithms
retrieve smaller proportions of exact repetition than in the patterns annotated by
humans, all algorithms extract a non-zero number of exact repetition.
SYMCHM is the only algorithm with more exact repetition and chromatic trans-

position in the proportion of the extracted pattern occurrence relations. However,
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Figure 6.2: Transformations found in human-annotated and algorithmically extracted pat-
terns in the JKU-PDD dataset. Using the same specifications as Figure 6.1.
The number of pattern occurrences extracted by each algorithm is as follows:
SYMCHM—59, SIAF1—794, SIACR—1590, SIACP—399, VM1—2969, VM2—
463, Anno—105.

Figure 6.3: Transformations found in human-annotated and algorithmically extracted pat-
terns in the MTC-ANN dataset. Using the same specifications as Figure 6.1.
The number of pattern occurrences extracted by each algorithm is as fol-
lows: SYMCHM—229, SIAF1—4486, SIACR—4683, SIACP—3400, VM1—25497,
VM2—4599, Anno—1546.
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SYMCHM does not extract patterns with rhythmic repetition. VM1 and VM2, be-
longing to a family of wavelet-based pattern discovery algorithms, have the highest
number of unclassified pattern relations. SIACP and SIACRhave higher proportions
of misc. transformations compared to other algorithms.

With consideration of the background on the algorithms and human annotations,
wewill nowdiscuss additional observations inmore detail. In the JKU-PDDdataset,
human-annotated pattern occurrences are mostly related to each other by straight-
forward exact repetition and chromatic transposition. With the exception of SYM-
CHM, the algorithms extract pattern occurrences with a lower proportion of exact
repetition than in human annotations. The SYMCHMalgorithm employs amachine
learning approach. Transformations are not explicitly encoded in the algorithm.
Nevertheless, we observe that a large proportion of the output can be classified into
different transformations, which indicates that the algorithm is able to learn these
transformations. In thisway, we interpret the output of the algorithmusing domain-
specific concepts (i.e. musical transformations), which have valuable potential to
phenomenologically verify and interpret a complicated algorithm in a multifaceted
way. The fact that SYMCHMdoes not extract rhythmic-only occurrences alignswith
the observations in (Ren, Volk, et al., 2018) and Chapter 4, which has shown that the
rhythmic features of this set of pattern occurrences are considerably different from
those found in other algorithms and human annotations.

In VM1 and VM2, a clustering algorithm was used as the final step to group the
pattern occurrences. The large number of unclassified relations can be linked to this
clustering step, whereby the distance metric used in the clustering algorithm may
capture relations that cannot be matched to the transformations we considered.

SIACP, SIACR, and SIAF1 belong to the geometric family of pattern discovery al-
gorithms. The names of the algorithms correspond to different parameter settings
concerning themaximisation of the recall (SIACR), precision (SIACP), and F-1 score
(SIAF1). We see that patterns discovered by the three algorithms have occurrence
relations mostly in the category of misc. transformation, where there is a diverse
combination of transformations and approximations. Notably, chromatic transposi-
tions are not present in SIACP and barely present in SIACR. This presence or lack
thereof could be an artefact resulting from the combined effects of the filtering steps
in the algorithms.

When considering the absolute numbers of pattern occurrences, the majority of
algorithms consistently identify at least three times as many pattern occurrences as
humans do. The SYMCHM algorithm detects fewer pattern occurrences, approxi-
mately 60% of those identified by humans. This leads us to consider SYMCHM is
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learning fewer transformations, thereby resulting in a higher proportions of detect-
ing exact repetitions.

Observation MTC-ANN

We extend our method to the MTC-ANN dataset—we use Pattrans on the Dutch
folk songs in the MTC-ANN dataset and compare the output of six algorithms with
the human annotations. Similarly to what we observe in Figure 6.3 in the previous
dataset, all algorithms except SYMCHM retrieve smaller proportions of exact rep-
etition than those found in human annotations. All algorithms extract a non-zero
quantity of exact repetition. All algorithms have non-zero values for proportions of
rhythmic-only repetitions, with the highest proportion found in human annotations.
Fewer than 40% of the human-annotated pattern occurrences cannot be accounted
for by any transformation we considered.
SYMCHM shows higher proportions of misc. and unclassified transformations

compared to its results for the JKU-PDD dataset. However, SYMCHM’s proportion
of exact repetition remains the highest amongst the algorithms. Small proportions
of chromatic and rhythmic-only repetitions are discovered. Despite not factoring
in rhythmic information, SYMCHMmay have discovered other regularities in pitch
that coincided with rhythmic repetition, contributing to a non-zero proportion of
rhythmic-only repetitions.
VM1 and VM2 yield similar large proportions of unclassified transformations as

with JKU-PDD. This could be again the effects from the clustering step of the algo-
rithms.
SIACP, SIACR, and SIAF1 demonstrate less unclassified transformations compared

to their JKU-PDD results. SIACP and SIACR exhibit a higher proportion of misc.
transformations, while SIAF1maintains a similar proportion compared to their JKU-
PDD results. As discussed in Section 6.3, pattern occurrences within theMTC-ANN
dataset can be short. Even minor alterations in these short patterns can render the
occurrence relation unidentifiable or only relatable by transformations that permit
approximation, falling into the misc. transformation category.
In terms of the absolute numbers of pattern occurrences, similar to the results ob-

tained from the JKU-PDD dataset, most algorithms consistently detect at least twice
as many pattern occurrences as humans do. The SYMCHM algorithm finds fewer
pattern occurrences, roughly 15% of the pattern occurrences that humans identify.
Furthermore, in light of our analysis of the results for JKU-PDD, although we are
still not sure howmany transformations this algorithm is learning, it undeniably ex-
tracts pattern occurrences with relations that are not covered by the transformations
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we consider, and can have a lower proportion of exact repetition compared to what
we observed in JKU-PDD.

In summary, Pattrans applied to the MTC-ANN dataset offers further evidence
that, apart from SYMCHM, other algorithms tend to discover more patterns that
contain misc. transformations, and the transformations we considered are less ca-
pable of covering their occurrence relations. We also see the distinct composition of
transformations for each algorithm (family) and reveal the varying proportions of
transformations within human-annotated musical patterns. Such insights serve to
add further depth to the understanding of the nuanced diversity of musical pattern
discovery, as we discuss further below.

Implication JKU-PDD and MTC-ANN, in combination with previous results

Using transformations to detect differences between algorithms provides us with
further insights about the potential applications of transformations and algorithms
in varying scenarios. The transformations can serve as a filtering technique for pat-
tern output, allowing for the removal of those patterns that are irrelevant to the
desired transformations, if desired. To be more precise, one can enhance the occur-
rence precision score by filtering out a specific pattern occurrence when the under-
lying transformation is irrelevant. Similarly, by removing an entire pattern when
all transformations between its occurrences are deemed irrelevant, one can improve
the establishment precision score. Another potential application could involve the
selection of algorithms capable of identifying patterns with varying degrees of oc-
currence relation proportions that resemble human annotations. With this applica-
tion, it is important to acknowledge that, depending on the context and purpose,
human annotations are gathered using different strategies and protocols as well, as
discussed in Chapter 3 and 4. For example, annotated patterns from a musicologist
to analyse the structural elements ofmusic are likely to be different from the patterns
found by a music therapist for informing their suggestions (Foubert et al., 2017) or
music teachers for pointing out pedagogically interesting passages. In these specific
cases, having a perspective on what the relations are between the occurrences can
helpwith choosing one or a combination of algorithms. If the goal is to reveal hidden
patterns and pattern occurrence relations for the task of compression, wavelet and
geometric-based algorithms are more likely to retrieve pattern occurrences with re-
lations that have a lower percentage of exact repetition than SYMCHM. If the appli-
cation’s goal is to retrieve patterns for composing new music, which was attempted
by Herremans and Chew (2017), the choice of the algorithms can be based upon the
envisioned relations between potential pattern occurrences in the music.
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Worth noting is that, although the percentages of transformations in the SYMCHM
algorithm may be more similar to those identified by human annotators compared
to other algorithms, the actual musical patterns may differ. Additionally, while the
SYMCHM algorithm yields a manageable number of pattern occurrences in JKU-
PDD andMTC-ANN datasets, it misses approximately 40% and 85% of occurrences
in JKU-PDDandMTC-ANN respectively. Relying solely on the percentages of trans-
formations may not provide a complete picture of the human-annotated and au-
tomatically discovered musical patterns. At the same time, incorporating musical
transformations and Pattrans in conjunction with established measures in MIR may
facilitate a more thorough comparison of musical patterns annotated by humans
and extracted by algorithms. We will illustrate this final point with the following
paragraph.
Building upon our discussion in Chapter 4, where we examined the extracted pat-

terns by algorithms and datasets used in this chapter, we further discuss the con-
nections and implications of our findings below. In Section 4.2.2, we visualised the
locations of pattern occurrences. Although there were instances where the algorith-
mically extracted pattern occurrences overlapped with human annotations in the
song from the JKU-PDD dataset, a significant number did not match human an-
notations. Our transformation approach allows for more insights into how these
unmatched pattern occurrences relate to each other in terms of music transforma-
tions. In Section 4.2.4, we examined the pattern occurrences in their feature space,
focusing on the actual notes within the patterns occurrences, as opposed to their
relations with each other. This examinationrevealed a long-tail distribution of the
pattern occurrences from VM1, VM2, SIAF1, SIACR, and SIACP. These occurrences
are likely to be related by themisc. and unclassified transformations, given the large
proportions of these transformations.
Further implications can be obtained by juxtaposing our findings with the results

from MIREX. As introduced in Section 4.1, two key MIREX metric sets are the es-
tablishment metrics—assessing an algorithm’s ability to establish that a pattern is
repeated at least once during a piece—and the occurrencemetrics, gaugingwhether
an algorithm can retrieve all occurrences of a pattern. While VM1 excels in estab-
lishment metrics and also performs well in occurrence recall, it scores low on oc-
currence precision. These results from MIREX reinforce the validity of our results:
low precision suggests that VM1 tends to find a larger number of occurrences be-
yond those identified by humans, possibly those occurrenceswhose relations cannot
be explained by the transformations we considered. MIREX results further add to
our findings: VM1’s high scores in occurrence recall indicate that the algorithm de-
tects many of the occurrences that are also identified by humans. SYMCHM scores
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low on establishment metrics, which aligns with our previous observation about
the low absolute number of pattern occurrences it discovers. SYMCHM’s occur-
rence precision scores tend to outperform VM1, as SYMCHM tends not to find an
excessive number of occurrences beyond those identified by humans, which corrob-
orates our observation that the percentages of transformations are closer to those of
humans. Moreover, since no algorithm achieved perfect scores in MIREX, we can
alleviate our concerns about the possibility that the algorithms have covered the
human-annotated patterns and their occurrences perfectly, and have added other
occurrences to the established or not-yet-established patterns in addition to the per-
fect coverage. Without additional supporting evidence, it could be true that the al-
gorithms discover all human annotations, given that algorithms produce a greater
number of pattern occurrences; furthermore, despite lower proportions of exact rep-
etitions, the algorithms can still cover the exact repetitions favoured by humans.
However, in conjunction with the insights from the earlier sections, it becomes ap-
parent that these algorithms do not fully recover all human annotations and append
additional patterns to them.

Considerations on the absolute numbers of pattern occurrences

It is fair to question the validity of comparing percentages when there is a large dif-
ference in the total number of detected pattern occurrences between human annota-
tions and algorithms, as well as amongst algorithms themselves. Even under these
circumstances, comparing percentages can offer valuable insights, as they provide a
relative perspective, which can reveal insights that may not be obvious in the abso-
lute numbers. However, the use of percentages does not always provide a complete
picture. Hence, in our analysis, we also took into account the absolute numbers and
incorporated insights from prior chapters to ensure the validity of our analysis.

6.5 Statistical analysis

In the previous two subsections, we compared transformations in patterns with dif-
ferent human annotations and algorithms. In this subsection, our objective is to
compare human-annotated patterns with algorithmically extracted patterns, focus-
ing specifically on the proportions of exact repetitions as a feature. This choice is
motivated by the substantial proportions of exact repetitions observed in human
annotations as well as the pivotal role it holds in music, especially in the JKU-PDD
dataset. Moreover, considering the scope of the dissertation, it provides an oppor-
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tunity for us to thoroughly explore and analyse the intricacies associated with this
specific transformation.

The Kruskal-Wallis one-way analysis of variance (Kruskal &Wallis, 1952) is selected
for this comparison because it is a non-parametric statistical test. Non-parametric
tests are preferable in our comparison because theydonot rely on assumptions about
the underlying distribution of the data or the parameters of the distribution, such as
normality of residuals in the samples. Moreover, the test is designed to determine
whether samples originate from the same distribution or from statistically signifi-
cantly different distributions across multiple groups. Such characteristics make the
Kruskal-Wallis test well-suited for our purpose.

This part of the analysis is conducted using the JKU-PDD dataset. First, we
compare all human annotations to all the patterns extracted by SYMCHM, SIACP,
SIACR, SIAF1, VM1, and VM2 in terms of the proportions of exact repetition and
chromatic transposition between their pattern occurrences. The null hypothesis is
that there is no significant group difference between the algorithmically extracted
patterns and the human-annotated patterns in their proportions of exact repetition,
and with the significance level α = 0.052. Subsequently, we examine the individual
algorithms SYMCHM, SIAF1, and VM13 using the proportions of exact repetition,
comparing each algorithm separately to the human annotations. The null hypoth-
esis is that there is no significant difference between the algorithmically extracted
patterns by SYMCHM, SIAF1, and VM1, and the human-annotated patterns, with
the same significance level α = 0.05.

Observation

When comparing the proportions of exact repetitions in all human annotations to
those in all algorithmically extracted patterns, we obtain a p-value<< 0.05. Assum-
ing the null hypothesis is true, which suggests no significant difference between the
algorithmically extracted patterns and the human-annotated patterns in their pro-
portions of exact repetition, the small p-value tells us that the probability of obtain-
ing a difference at least as large as the one we observed in the sample data is much
smaller than 0.05. Given the sufficiently small p-value, we reject the null hypothe-
sis. This suggests that there is evidence of a significant difference between the two
groups.

2The 0.05 significance level is a widely used threshold for determining statistical significance and is
therefore used in our study.

3These algorithms are chosen because they represent different types of algorithms, and as we will
see later in Figure 6.4, their distributions are also representative.
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Given that the result is significant for exact repetitions, it is reasonable to further
investigate the performance of each individual algorithm in terms of exact repeti-
tions to determine if the results hold consistently across each algorithm. Figure 6.4
presents the results for exact repetition through a boxplot, showing the outcomes of
the Kruskal-Wallis performed in three folds (see three p-values on the upper part
of the figure: SYMCHM—0.89, SIAF1—5.7e-10, VM1—0.35). These tests, similar to
the one-way test performed earlier in this section, were conducted to compare the
algorithmic patterns4and human annotations5. We can see that SYMCHM and VM1
have a non-significant p-value (0.89 and 0.35 respectively) while SIAF1’s p-value
(5.7e-10) is significant (null hypothesis rejected). In other words, the output from
SIAF1 exhibits a significantly different proportion of exact repetition compared to
human annotations, while the differences between the other two algorithms (SYM-
CHM and VM1) and human annotations are not statistically significant when using
a significance level of α = 0.05. This exposes the individual differences between the
algorithms.

Kruskal-Wallis, p-value = <2e-16
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Figure 6.4: Boxplot andKruskal-Wallis test results comparing proportions of exact repetition
in human annotations(jkupddanno) and extracted by algorithms(SYMCHM,
VM1, VM2, SIAF1, SIACR, SIACP) in the JKU-PDD dataset. Each point repre-
sents the percentage of exact repetition in a pattern.

4These include algorithms SYMCHM, SIAF1, andVM1. Other algorithmswere not explicitly tested,
as they belong to the same algorithmic family as these three and exhibit similar boxplot distribu-
tions.

5Human-annotations are indicated by the label "jkupddanno".
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Implication

The differing proportions of transformations can inform the future design of pat-
tern discovery algorithms. If the authors of these algorithms wish to imitate the
pattern discovery behaviours of human annotators, they may report first the pat-
tern occurrences that have musicological and music-theoretic support, e.g. those
have simple musical transformations between the two occurrences. The purpose of
the algorithms, however, is not confined to the replication of the reference data.

More generally, calculating and comparing the proportions of transformations can
serve as an extra step to answer questions about algorithms, such as: does the algo-
rithm discover simple patterns in a way that can be explained via the musical con-
cepts of transformation? Or, is the algorithm trying to be more "innovative" in the
patterns it discovers?

Given the importance of these transformations, in the next section, we propose a
set of new features based on the proportions of transformations, which we call the
transformation profile (TPr). We then use PCA on these TPrs to further compare
how the human-annotated and algorithmically extracted patterns differ in this trans-
formation feature space. In this way, we can use PCA to reduce the number of the
transformations and examine how each pattern’s occurrences compare with those
of another pattern’s occurrences.

6.6 A transformation profile for each pattern

As transformations characterise the relations between pattern occurrences, we can
use the proportion of each transformation to describe patterns. More specifically,
we can create a feature vector based on how often a transformation appears in the
occurrence set.

For each pattern, we define a transformation profile (TPr) from the proportion of
different transformations:

TPr(Pattern) =

{
c(t1)
n∑

i=1

c(ti)
,
c(t2)
n∑

i=1

c(ti)
, . . . ,

c(tn)
n∑

i=1

c(ti)

}
(6.1)

where ti is a certain transformation indexed by i, c(ti) is the count of a certain trans-
formation, and n is the number of different transformations. The denominator is
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essentially the count of all occurrences if we take into account the "unclassified" as
a type of unknown transformation.

The feature vector is the numeric vector representation of the bar charts presented
in Section 6.3 and 6.4, that is, the constituents of occurrence relations, as defined in
Eq. (6.1). By representing the patterns using TPr, we can further investigate and
compare the patterns in this feature space spanned by the proportion of exact rep-
etition, transposition, and other transformations. By doing so, we may gain new
insight into the distribution of occurrences for both human-annotated and automat-
ically extracted patterns within this feature space, which may facilitate a better un-
derstanding of the output and enable more in-depth examination of the patterns.

Each transformation corresponds to a dimension in our TPr. The more transfor-
mations in our analysis, the greater the number of dimensions the TPrs will have. To
examine a set of patterns’ higher-dimensional TPrs, we can use Multi-Dimensional
Scaling (MDS) methods to visualise it. As we explained and used in Chapter 4,
MDS projects higher-dimensional spaces onto lower-dimensional spaces spanned
by the first few principal components that come from the original PCA technique
or its variations. In this visual way, we can demonstrate the relative positioning of
patterns based on the transformations they contain.

In Figure 6.5, we plot each individual pattern as a data point in the PCA decom-
position of the TPr feature space. The PCA is calculated based on the JKU-PDD
annotations, and the algorithmic patterns are projected into the space for compar-
ison. For each pattern, we colour and size the data point differently depending on
its source: algorithmically extracted or human-annotated.

Observation

From the calculation, the first Principal Component (PC) explains 63.6% of the vari-
ance, and the second PC explains 23.6%. The fact that the main contributions to
the first and second PCs come from exact repetitions and transposition highlights
the importance of simple transformations. Moreover, by examining the principal
components and the graphical depictions provided by the PCA projection, we are
able to obtain a better view of the collective traits of the transformations in musical
patterns.

In Figure 6.5, we first notice that data points form a linear relationship in this fea-
ture space. It follows that there are correlations between the axes. This correlation
is expected, as the proportions of transformations sum to 1 and are therefore not
independent of each other.
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Figure 6.5: PCA visualisation of patterns’ TPrs of human-annotated and algorithmic pat-
terns in JKU-PDD. Each point represents a pattern extracted by algorithms (small
black points) or annotated by humans (large red points). The highly ranked
transformations in the first Principal Component (PC1) are exact repetition
(37.24%), misc. transformation (29.42%), and rhythmic repetition (22.45%). For
the second Principal Component (PC2), the highly ranked transformations are
transposition (76.10%), and misc. transformation (15.19%).
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We can further make some key observations that provide more insights for the
algorithmic output, at least for the JKU-PDD dataset. Given the JKU-PDD dataset,
what is immediately obvious to us is that the algorithmically discovered patterns,
projected into the PCA space, tend to interpolate the anchoring human annotations.
In simpler terms, the algorithmic output fills in the space between the annotations
and do not form a separate cluster.

Implication

PCA is a technique used to identify and visualise the main directions in which data
points spread out. In essence, these directions, i.e. the PCs, capture the most sub-
stantial variances within the dataset. If the TPrs exhibit similar spreads, it suggests
that they share similar variations.

In the context of the JKU-PDDdataset, despitemanydifferent proportions of trans-
formations reported in Section 6.3 and 6.4, there is no separate clustering of algo-
rithmic data points from those of human annotations in the PCA space. Therefore,
the algorithmic patterns show a certain degree of alignment with human annota-
tions in this setting—when considering individual patterns and when considering
the variance of the two PCs of the transformation proportions. Note that the two
main musical transformations for PC1 and PC2 are exact repetition accounting for
37.24% of PC1 and transposition accounting for 76.1% of PC2. In short, these PCA
results provide support that the algorithmic output conforms to the variance of the
proportions of transformations in human annotations.

Given Figure 6.2 and Figure 6.3 underscoring the differences between human and
algorithmic transformation proportions, questions may arise about the seemingly
contradictory results. However, there is no direct contradiction, because in Figure
6.5, we examine the patterns individually on a two-dimensional plane, as opposed
to previously, where we accumulated all the patterns and compared them across
five groups of transformation(s). Given the multitude of patterns and our inability
to visualise in high dimensional spaces, the algorithmic points that are not overlap-
ping with the human annotations can accumulate and contribute to the differences
observed in Figure 6.2 and 6.3.

3D interactive visualisation

In addition to the 2D visualisation, we provide 3D interactive visualisations us-
ing multiple MDS methods such as t-distributed Stochastic Neighbor Embedding
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(tSNE) and kernel Principal Component Analysis (kPCA)6. Figure 6.6 is a screen-
shot of the 3D PCA visualisation interface. For each individual pattern, we colour
and mark the data point differently depending on its source: the algorithm and the
musical piece. The additional third dimension allows us to have more direct access
to the spread of data in the TPr feature space. By interactively engaging with the
visualisation, we can examine the TPrs of individual patterns and musical pieces
as desired. For instance, we can observe in Figure 6.6 that the distribution forms
a shape resembling a tetrahedron, with a large range of variation along the third
dimension.

Figure 6.6: Interactive 3D PCA visualisation of the patterns’ TPrs for human-annotated and
algorithmic patterns in JKU-PDD.. In addition to the two dimensions in Fig-
ure 6.5, the third dimension mainly consists of rhythmic repetition (69.61%) and
misc. transformation (21.03%),

6.7 Discussion

In this chapter, through the systematic lens of the transformations between pattern
occurrences belonging to the same pattern, we compared different human annota-
tions, and algorithmically extracted patterns. The cross-comparison of human an-
notations from different corpora reveals that a large proportion of the pattern occur-
rence relations can be explained by the transformations we consider, thereby estab-
lishing the importance of such transformations in human-annotated patterns. Each
human annotation dataset exhibits unique characteristics in terms of the propor-
tions of transformations found in their pattern occurrences: although further con-
firming evidence is required to draw definitive conclusions, initial findings suggest
6The visualisations can be accessed by using this URL with different endings such as pca, tsne, and
kpca: https://irisyupingren.github.io/research/3d/pca
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that the Dutch folk song dataset has the most misc. and unclassified transforma-
tions in proportion; the HEMANHigh and HEMANLow datasets demonstrate the
highest proportions of chromatic transposition and rhythmic-only transformations,
respectively.

In addition, we used six pattern discovery algorithms and showed that human an-
notations tend to contain higher percentages of exact repetition and other primary
transformations than the algorithmically extracted patterns. More specifically, pri-
mary transformations account for a large proportion of human-annotated pattern
occurrence relations; by contrast, the primary transformations only account for a
small proportion of algorithmically extracted pattern occurrence relations, which
tend to contain more misc. and unclassified transformations, except one algorithm
(SYMCHM). We also compared the absolute numbers of pattern occurrences of al-
gorithms and human annotations, which reveals that algorithms can also fail to re-
trieve the desired patterns even if the proportions of transformations are similar.
While further investigation is required to establish a connection between the mech-
anisms of the algorithms, the human annotation process, and the proportions of
transformations observed in the extracted pattern occurrences, these findings are
an initial step in examining and interpreting the potentially extensive output gener-
ated by the algorithms—if a substantial percentage of the pattern occurrences can be
encapsulated by a small number of transformations (e.g., exact repetition, transposi-
tions, and rhythmic repetitions), as seen in SYMCHM and human annotations, this
offers insights into the nature of these extracted and annotated occurrences in terms
of the transformations. Furthermore, given the desired transformations, algorithm
designers can use these transformations to filter out a specific pattern occurrence
from a pattern or an entire pattern, which can improve the occurrence precision and
establishment precision of the algorithms. Ultimately, if the algorithms can extract
pattern occurrences with the desired transformations, an improvement in both the
establishment and occurrence recall is possible.

We also utilised statistical methods to analyse the significance of the differences.
One statistical test verifies the significant discrepancies between human annota-
tions’ and algorithmic output’s proportions of exact repetitions in the JKU-PDD
dataset. More statistical tests yield mixed results regarding the significance and
non-significance of the transformations’ proportions, given the different algorithms
and transformations. We also devised TPr and used them in conjunction with PCA
to show that, in terms of transformations, the algorithmically discovered patterns
conform to human annotations. We contend that using Pattrans in tandem with
statistical analysis, PCA, and potentially other established methods and measures
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in MIR7 lead to richer insight and a more thorough comparison between musical
patterns. By doing so, our approach contributes to enhancing the evaluation step
in the design of musical pattern discovery algorithms.

6.8 Concluding remarks

In the rest of this chapter, we will discuss a fewmore related concepts, implications,
and limitations of our method.

Regarding distance measures

Distance measures are of much importance in MIR research. Dual to the similarity
measures we mentioned in Section 2.3.1, various distance measures have been used
in MIR research: correlation distance, city block distance, Euclidean distance, Earth
Mover’s distance, and so on (Janssen et al., 2017; Typke et al., 2005).

There are interesting connections to be found between our transformation-based
approach and the distance/similarity-based approach to studying musical patterns.
Let d be a distance measure, and g be a transformation, and x be a musical pattern
occurrence. We can then measure the distance before the transformation and af-
ter, which gives us d(x,g(x)). Depending on which distance measure is used, and
whether there is a transformation involved, we may be able to use them to compare
different aspects of repetition and variation to varying levels. For example, when
d(x,g(x)) = 0, the distance is invariant under the transformation, or the transfor-
mation is an identity transformation—g(x) = x.

We did not provide a ranking of the algorithms

Readers might expect a final ranking of the performances of algorithms at the end of
this chapter. For two reasons, we do not conclude with such a ranking. Firstly, using
transformations is only one way to look at which algorithms match most closely
to the human annotations, and sometimes it is even desirable for the algorithms
and human annotations to have different transformations: a case-by-case analysis is
more informative than an overall ranking. Secondly, we do not attempt to provide
utilitarian feedback on which algorithm or transformation is more useful. Utility is
context-dependent. Instead, we argue that different algorithms should be used for
different purposes and in different contexts: education, MIR, and composition, just
7The use of Pattrans in conjunction with established measure in MIR, such as the MIREXmeasures,
was not experimentedwith in this chapter due to its scope, but its usemay be a valuable approach
to consider in future studies.
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to name a few. Instead of using a single metric such as accuracy or cross-entropy,
we provide richer insight by applyingmore semanticallymeaningful considerations,
i.e. musical transformations.
Admittedly, we could have used transformations to produce a numeric mapping

between algorithms and different applications, such as a conclusion that algorithm
A is better than algorithm B for this purpose because the transformations produced
byAfit better in this context. However, we do not have enoughdata regardingwhich
transformations are more desirable than others for which application.

Other limitations

The focus of using the transformations is limited to a computational context to pro-
vide insight into the differences between different annotators and between different
annotators and algorithms. We do not touch upon the intentionality behind the
musical transformations, which is outside the scope of this work. In addition, com-
paring percentages of transformations performs best when the absolute numbers of
pattern occurrences are similar to each other. While evidence from other chapters
and sections substantiates the results of our analysis on the transformation propor-
tions, it is important to approach with caution when analysing transformation pro-
portions alone. We are also aware that there are almost certainly other annotations,
algorithms, and corpora in the wide world that are not featured in this disserta-
tion.
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Chapter 7 Conclusions and Future
Work

In this dissertation, we have extensively investigated one of the widespread phe-
nomena of music—patterns—as well as the connection to automating the discovery
of patterns in music. In this final chapter of the dissertation, we reflect on what we
have learned from the previous chapters, providing a supplementary discussion on
topics related to our contributions.

7.1 Summary of the chapters and their contributions

In Chapter 1, we introduced the scientific topics of this dissertation, outlined the
challenges regarding musical patterns and musical pattern discovery algorithms,
and presented our thesis statement:

Human-perceived musical patterns, a type of highly subjective and ubiq-
uitous abstraction, have important connections to musical transforma-
tions, which, when explored compositionally through a functional pro-
gramming language, informs both human-to-algorithm and algorithm-
to-algorithm comparisons of discovered musical patterns.

In Chapter 2, we investigated the concept of pattern from a range of perspectives
and examined musical pattern discovery algorithms to show the breadth and diver-
sity of the field of musical pattern discovery. Following our investigation, we have
addressed the questions posed at the beginning of this dissertation concerning the
concept of musical patterns and their discovery algorithms: what is the current state
of research in the area of musical pattern discovery? How broad and diverse are the
concepts of musical patterns and musical pattern discovery algorithms?
We started to address these questions by first introducing repetition and variation

as our central themes and making connections with other related concepts. With
these central themes and related concepts in mind, we examined a range of studies
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relating to musical patterns and the algorithms that discover them automatically.
Through this investigation, we answered our research questions, highlighting the
wide-ranging nature of both the concept of pattern and the pattern discovery al-
gorithms. Difficulties were identified when trying to provide a precise definition
of "pattern", and these difficulties contribute to the diversity and complexity of re-
search on musical patterns and pattern discovery algorithms. Furthermore, the dif-
ferences in how these algorithms function—such as how they handle input, the op-
erations they perform, and the filters they employ—complicate direct comparisons
between them. Through this process, we addressed the challenges of crafting a com-
prehensive overview andmanaging diverse perspectives by selectively highlighting
key studies and by categorising perspectives and concepts to streamline our analy-
sis.
The key contribution of Chapter 2 is demonstrating the breadth and diversity of

the field of musical pattern discovery through a review of relevant literature inMIR,
music theory, and musicology. With this review, we shed light on the critical role
repetition and variation play in understanding musical patterns. Our analysis of 18
pattern-related concepts highlights the multi-layered nature of the subject of musi-
cal pattern. We also set the stage for subsequent chapters by introducing 11 musical
pattern discovery algorithms, listing their goals, methods, data representations, fil-
tering techniques, and evaluations performed.

In Chapter 3, we designed annotation tools ANOMIC and PAF, gathered human
annotations, and analysed the gathered data using the features of the annotated
patterns. As such, we have answered the questions we asked at the beginning of
this dissertation regarding the collection of human-annotated musical patterns as
ground truth data for comparing algorithms: How canwe efficiently collect human-
annotated musical patterns? Which factors have an impact on the annotations?
Through feature analysis, we showed that features such as note range, interval-

lic leaps, and pitch direction are significantly similar amongst the patterns anno-
tated by musicians and significantly different between the patterns annotated by
musicians and non-musicians. Considerations on using reference data for evaluat-
ing algorithms were also discussed, namely: the benefits of collecting more human-
annotated musical patterns, enhancing the reference data by identifying subgroups
of annotators that highly agree with each other, and using multiple reference an-
notations rather than single ones for a more comprehensive comparison of algo-
rithms. By analysing the annotations collected by these annotation tools, our re-
sults showed that many factors should be taken into consideration when gathering
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and using human-annotatedmusical patterns, such as the annotators’ musical back-
grounds, the interface of the annotation tools, and the protocol of the annotation
experiments, including the influences of sheet music and piano roll formats, as well
as the automatic occurrence matching functionality of the annotation tools, on the
patterns being annotated. We also detailed the MIREX task, which is closely related
to musical pattern discovery, discussed the HEMAN dataset, and introduced two
digital annotation tools for gathering human annotations along the way. Through
this process, we mitigated the challenges regarding reference data in musical pat-
tern discovery by developing multiple annotation tools and experiments, as well as
employing agreement metrics and feature analysis.

Thiswork contributes to deepening our understanding of howdifferent annotation
interfaces and instructions influence annotated patterns. The different annotation
interfaces enable a study of the disparities and commonalities amid patterns iden-
tified by annotators with varying levels of musical expertise and theoretical back-
grounds, thereby providing a solid foundation for the informed use of reference
data in comparing and developing pattern discovery algorithms.

In Chapter 4, we proposed four methods for comparing musical pattern discov-
ery algorithms. Thus, we have addressed the questions that were initially raised in
this dissertation about the comparison between human-annotated musical patterns
and the patterns extracted by pattern discovery algorithms: how do we compare
human-annotated and algorithmically extracted musical patterns in addition to ex-
isting comparison methods like the F1 measures, to deepen our understanding of
musical patterns? In what ways do the human-annotated and algorithmically ex-
tracted patterns diverge the most and in what ways are they similar?

We answered these questions by designing and employing four methods, which
are LFV, PP, CC, and SPI. Through this multifaceted approach, we observed
discrepancies across musical dimensions when comparing the musical patterns
extracted by different algorithms to those annotated by humans. These discrepan-
cies are not only apparent in the visualisations of pattern locations and discernible
through the use of classifiers and synthetic data, but they also pose challenges
when attempting to harness the collective wisdom of algorithms by combining their
results. Notably, the most significant differences between the features of human-
annotated patterns and those extracted by algorithms arise in rhythmic features.
Through this process, we addressed the challenges posed by the complexity and
diversity of algorithms, as well as the limitations of current metrics, by creating and
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employing a range of methods to interpret and compare algorithmically extracted
musical patterns.
Our primary contributions stem from these novel methods we introduced for ex-

amining the outputs of pattern discovery algorithms. These methods offer more
comprehensive approaches for comparing algorithms than existing state-of-the-art
methods, which include measures such as precision, recall, and the F1 measures
when directly comparing the onsets and pitches in the patterns. Specifically, visual-
isation aids in deciphering the large output patterns from algorithms and suggests
the possibility of combining results from multiple algorithms, although the com-
bined outcomes are not particularly impressive because the output patterns from
the algorithms differ too much. Additionally, identifying key features during clas-
sification helps pinpoint the dimensions where algorithms fail to match human-
annotated patterns’ features. The final contribution in Chapter 4 is the use of syn-
thetic pattern insertion, which enables us to gain new insight into howwe expect the
algorithms to perform given controlled input data, revealing both alignment and
mismatches between human expectations and algorithmic outputs across a range
of algorithms. None of these results could have been uncovered using traditional
evaluation metrics. Through these novel contributions, we advocate for a more nu-
anced comparison between algorithmic outputs, employing a combination of meth-
ods rather than solely relying on conventional measures to pave the way for en-
hanced performance and interpretability in the field of musical pattern discovery.

In Chapter 5, we showcased the implementation of Pattrans, our ownDSL for com-
paring musical pattern occurrences using musical transformations. Hence, we have
addressed the questions presented at the beginning of this dissertation related to the
application of musical transformations for matching musical pattern occurrences:
can we identify the transformations that explain the variation between different pat-
tern occurrences? More concretely, how do we implement a library to automate this
identification process?
We answered the research questions by implementing Pattrans, which allows

for multiple transformations to be applied individually or in conjunction for the
purpose of examining algorithmically extracted and human-annotated musical
patterns. The underlying design of Pattrans leverages Haskell’s type system and
ideas from category theory. We introduced the primary transformations—exact
repetition, chromatic transposition, rhythmic-only repetition—we implemented
in the library, as well as the miscellaneous transformations such as retrograde,
augmentation, diminution, and approximation. Through this process, we address
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the challenge that existing comparison methods are largely centred on the indi-
vidual pitch-and-onset content of patterns by implementing Pattrans with musical
transformations to match the relations between pattern occurrences.

Our key contribution of Chapter 5 is the implementation of a library in the func-
tional programming language Haskell, named Pattrans, designed to model musi-
cally important transformations compositionally.

In Chapter 6, we employed Pattrans to explore the transformations between occur-
rences of musical patterns in both human-annotated and algorithmically extracted
pattern datasets, with the aim of comparing these patterns by assessing how trans-
formations differ or align between the pattern occurrences. In doing so, we have re-
sponded to the questions that were initially proposed in this dissertation regarding
the use of musical transformations to compare musical patterns: what distinctions
or similarities can be drawn when using a system that employs musical transfor-
mations to analyse patterns? What musical transformations do we find in patterns
extracted by musical pattern discovery algorithms versus those annotated by hu-
mans?

The questions are answered by initially comparing the proportions of musical
transformations between human-annotated pattern occurrences in the datasets of
JKU-PDD, MTC-ANN, and HEMAN. By comparing the transformations between
pattern occurrences quantitatively, we showed that human-annotated patterns tend
to contain a higher proportion of primary transformations than the algorithmically
extracted ones in both JKU-PDD andMTC-ANN datasets. We have also used statis-
tical testing and PCA to analyse the relations revealed by musical transformations
between pattern occurrences extracted by different algorithms and annotated by
humans using the JKU-PDD dataset—the results offered a mixed and nuanced
view, varying across different algorithms when compared to human annotations.
Through this process, we tackled the challenges of handling a large number of
hard-to-interpret algorithmic patterns and their comparisons by employingmusical
transformations and leveraging Pattrans to quantify transformation proportions.

Chapter 6 contributes to revealing that a large proportion of the pattern occurrence
relations in human annotations can be explained by the transformationswe consider.
Furthermore, the findings on exact repetition underscore the divergence between
the human-annotated patterns and algorithmic ones, and musical transformations
may serve as filtering and summarising tools to narrow this gap. Statistical testing
reveals that one algorithm exhibited significantly different transformation propor-
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tions, while two others did not differ significantly—similar methodologies can be
extended to additional algorithms and corpora for comparing patterns discovered
by both algorithms and humans. PCA provides evidence supporting a conformance
between human-annotated patterns and those extracted by algorithms in terms of
the variance of the proportions of transformations, suggesting that, in terms of the
proportion of primary transformations within each pattern, algorithms are discov-
ering patterns similar to those recognised by humans. Through these contributions,
our approach of using transformation proportions to comparemusical patterns adds
new tools to traditional metrics by offering a multifaceted view, specifically by ap-
plying the systematic lens of transformations to the pattern occurrences within the
same pattern, enabling their better grouping and comparison.

7.2 Looking Ahead

Algorithms

In the context of discovery algorithms, our approaches described in Chapter 4 and 6
possess a versatility that allows for their application beyond the specific algorithms
discussed in this dissertation. By expanding their applicability to a wider range of
pattern discovery algorithms in music, we could foster a more comprehensive com-
parison of musical patterns and pattern discovery algorithms and potentially stim-
ulate the development of novel algorithms. We can also try to use what we learned
about patterns and transformations in designing the algorithms. This could involve
selecting specific transformations or using transformations as filters to reduce the
algorithms’ output size. Using synthetic data is another important direction going
forward. There have been rapid developments and promising results in theML field
regarding using synthetic data for both training and testing data for algorithms (Lu
et al., 2023; Nikolenko, 2021). Expanding on the example we have presented in Sec-
tion 4.2.5, synthetic data can be enhanced by incorporating musical transformations
and their combinations. This approach would likely increase the diversity of the
synthetic data, potentially rendering it more realistic for musical pieces that contain
musical transformations. Other simulation methods can also extend the possibili-
ties to control the structures of patterns, such as data degradation processes with
different degrees of severity (McLeod et al., 2020).

Beyond the scope of this dissertation, there is a multitude of existing musical pat-
tern discovery methodologies that were not considered, as well as ample possibility
for designing new algorithms employing methods that differ from those explored
in this study. Although we cannot detail all these pattern discovery methodologies,
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we acknowledge that some of them raise important issues about the nature of pat-
terns and transformations, such as the role of context and attention. For instance,
while we have not incorporated any Bayesian aspects when using statistics in our
approaches in Chapters 3 and 6, these aspects could be explored in future studies
and could provide valuable insights into how our approach deals with uncertainty
and prior knowledge.

Functional programming

On the functional programming front, we can further experiment with the order of
the transformations, the selection of the prototype pattern, and analysis for other
datasets. Varying the order of transformations also offers an intriguing area of ex-
ploration, and our implementation can be adjusted to accommodate such variations,
which could reveal how different transformation sequences may influence our re-
sults. Modifying the selection of the prototype pattern could also be added as a
part of the implementation, and the act of modification may impact the pattern oc-
currences that will be checked against the transformations. Although we anticipate
that the choice of a prototype pattern would not significantly influence our analysis,
a different outcomewould provide insights into the role of the first occurrence of the
pattern, which is our current prototype pattern. Moreover, expanding our analysis
to include other datasets would not only validate and broaden the applicability of
our findings but also offer valuable feedback for refining our current implementa-
tion. By undertaking an iterative process, we can ensure that our implementation
continues to perform effectively and robustly across a diverse range of musical con-
texts.
In combination with the synthetic data mentioned above, creating an expressive

DSL for generating the desired data is a promising direction as well. This could
allow us to more abilities when inserting musical patterns, thereby extending the
possibilities of our comparison between pattern discovery algorithms.

Music and annotations

The music data we used in this dissertation is limited, but the world teems with
music of different types. The scope we set ourselves for this dissertation is mono-
phonic symbolic datasets. By limiting ourselves to monophonic MIDI datasets, we
must acknowledge the exclusion of polyphonic data and music from various cul-
tures. As described in (Cook, 2000), "in Indian and Chinese music it is often the
notes between the notes, so to speak, that are responsible for the effect of the music."
Moreover, polyphonic music, which features multiple and simultaneous melodic
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lines, extends beyond the scope of our monophonic focus as exemplified in intri-
cate pieces like Bach’s fugues or contemporary jazz ensembles. Another example
is John Cage’s 4’3”. Putting aside the debate about whether it qualifies as music,
our discussion does not extend to patterns present in modern compositions like this
one. Looking ahead, it is certainly feasible to extend our datasets and consider poly-
phonic and audio data. This would require the integration of music transcription
algorithms to convert audio data into a symbolic format that the pattern discovery
algorithms can process. By incorporating additional datasets, we could address a
wider range of musical phenomena and capture the diversity inherent in global mu-
sical practices.

In terms of gathering annotations, we believe that the widespread adoption of dig-
ital tools for collecting pattern annotations is inevitable in the near future. The two
experiments we have conducted could be refined and carried out in a more con-
trolled environment, which would help record and eliminate variables that might
influence the annotations, such as the number of times participants listen to the mu-
sic or fatigue during the process. We can attract more annotators by considering
gamification, introducing elements such as rewards or competitive elements, which
may enhance engagement and counteract fatigue during annotation. Furthermore,
annotations could cover a more diverse range of music. These annotations can also
be collected with specific tasks in mind, such as tasks that could relate to compres-
sion and classification—identifying representative patterns that cover the musical
piece, or patterns that distinguish one piece from another.

A challenge, however, is that while we have encountered tasks such as compres-
sion, we do not yet have a comprehensive understanding of what "all the tasks"
might encompass. Some even argue that there will never be enough annotated data
to train all the models for all the tasks we need to perform (Roth, 2017). If these
views turn out to be true, we might need to transition from using data to supervise
the training of algorithms, and instead embrace strategies from weakly-, self-, and
unsupervised methodologies. Even so, we believe that annotation data would still
be a valid starting point for developing algorithms.

Convergence of other similar research

Independently from our work, a number of recent studies have used transforma-
tions and synthetic data for analysis and composition (Hunt et al., 2019, 2020; Hunt,
2020; Silva et al., 2020). Additionally, there are publications in other research areas
that are also relevant to the discussions from preceding chapters. For example, in
the research area of program synthesis, learning the transformations in images has
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been investigated (Banburski et al., 2020). Wittgenstein’s perspective aligns with our
approach to some extent: "understanding music consists in grasping the internal
relationships between musical events" (Kaduri, 2006). Moving forward, uncovering
advancements in various fields that parallel our methodologies could be beneficial
for further refining our approaches.

Generative AI

Considering the ongoing advancements in AI content generation, the ability to iden-
tify patterns and plausible transformations between these pattern occurrences could
be instrumental in distinguishing between human-produced content and algorith-
mically generated content. If there are systematic differences in the features of these
patterns or the transformations between the occurrences, these differences could be
employed for differentiation purposes. Moreover, the progress made in generative
AI can be used to produce realistic synthetic data, which can include embedded pat-
terns. This approach allows for an assessment of pattern recognition algorithms in
terms of their effectiveness in uncovering these integrated patterns.

7.3 Bird’s eye view

Throughout this dissertation, we have delved into the intricacies of musical patterns
and their discovery algorithms, offering a comprehensive study that propels us be-
yond the current state of the art. We unpacked the conceptual diversity in the field,
introduced annotation tools and comparison methodologies, and constructed Pat-
trans to explore musical transformations. Our work goes beyond analysing existing
methods and offers new tools andperspectives: whether it is identifying the nuances
that separate expert musicians from non-musicians in pattern annotation or illumi-
nating the divergences between human and algorithmically extracted patterns, our
research opens new avenues for scrutinising pattern discovery algorithms. Look-
ing forward, this research sets the stage for future innovations in the nuanced and
human-centred understanding of musical patterns. In doing so, we pave the way
for evolving computational methods in music research and enriching our collective
understanding ofmusical patterns and their integral role inmusical compositions.
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Appendix A Datasets

In this appendix, we introduce the datasets we use in this dissertation. Whenwe use
the word "music", by default, we mean these dataset we investigated, unless explic-
itly disambiguated for a more general discussion. As put in (Cook, 2000), "the con-
cept of ‘music’ was firmly rooted in a specific corpus of musical works, and through
that in a specific time and place."

A.1 JKU-PDD

JKU-PDD, as the publicly available dataset from the MIREX task, has been used
in evaluating musical pattern discovery algorithms. Compiled by MIR researchers,
it contains one piece each by Bach, Mozart, Beethoven, Gibbons, Chopin, and 26
patterns and 105 occurrences annotated by experts. A list of the peace and the dates
of the composers can be seen in Table A.1.

Composer Dates Piece

Orlando Gibbons 1583–1625 “The Silver Swan”
Johann Sebastian Bach 1685–1750 Fugue in A minor, BWV 889
Wolfgang Amadeus Mozart 1756–1791 Minuet from Piano Sonata in Eb major, K. 282
Ludwig van Beethoven 1770–1827 Scherzo from Piano Sonata in F minor, op. 2, no. 1
Frédéric Chopin 1810–1849 Mazurka in B minor, op. 24, no. 4

Table A.1: A summary of the pieces in the JKU-PDD dataset.

Although the pattern occurrences are not annotated exhaustively (Meredith, 2015),
it has been widely used for evaluating musical pattern discovery algorithms. Ac-
cording to (Collins et al., n.d.), the annotations are constructed from three sources:
Barlow andMorgenstern 1948, Schoenberg 1967, and Bruhn 1993. Some annotations
were revised with added annotations for Gibbons’ "The Silver Swan". For example,
because Barlow and Morgenstern 1948 is intended as a comprehensive yet concise
companion for the classical music enthusiast, themes that are longer than the width
of the page were curtailed for the sake of brevity. These themes are lengthened back
to their musically appropriate length in the dataset.
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When comparing annotations of the same piece across sources, it is quite common
to find the sources in agreement. Although the sources have not gone through a
inter-annotator agreement analysis, such a level of agreement is encouraging.

We use the monophonic version of this dataset, and to monophonise the music,
the procedures of the clipped-skyline approach were followed as described below.
From the polyphonic version, the clipped-skyline algorithmoutputs the highest note
at each unique onset with two scenarios. First, if the current highest note is still
sounding when a new lower note begins, the new lower note is ignored. Second, if
the current highest note is still sounding when a new higher note begins, the new
higher note is included in the output, and the previous note’s duration is clipped in
time.

A.2 MTC-ANN

MTC-ANN is an annotation dataset for a collection of Dutch folk songs (VanKranen-
burg et al., 2016). The MTC-ANN dataset has been used for studying oral tradition
in Dutch folk songs (VanKranenburg et al., 2019), and the annotations consider inter-
opus pattern occurrences. Inter-opus occurrences are not considered within one
song, but between the songs within the same tune family.

Tune family is a concept in ethnomusicology that groups together tunes sharing
the same ancestor in the process of oral transmission (Boot et al., 2016). Oral trans-
mission plays a significant role in folk music. Through this often imperfect com-
munication process, certain parts of melodies remain stable, variations are created,
repeated patterns emerge (Janssen, 2018). Formulated in ethnomusicological stud-
ies, the concept of tune family describes the structures in this stream of transfor-
mations: folk songs that are supposed to have a common ancestor in the process
of oral transmission are grouped into a tune family (Cowdery, 1984). Local struc-
tures within the melodies—namely, characteristic motifs, or prominent, nonliterally
repeated patterns—are detected to be useful in determining music similarity and
classifying tune families (Cowdery, 1984). Subsequently, in an annotation study on
the influence of different musical dimensions on human similarity judgements of
melodies belonging to the same tune family, repeated patterns between melodies
turned out to play the most important role for similarity amongst all considered
musical dimensions (Volk & VanKranenburg, 2012). Therefore, algorithms which can
extract these repeated patterns automatically that would be useful for tune family
classification.
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During themaking ofMTC-ANN, three experts were asked to annotate the promi-
nent patterns in each song which best classify the song into one of 26 tune families.
The dataset consists of 360 Dutch folk songs with 1,657 annotated pattern occur-
rences.

A.3 HEMAN and its different versions

As we introduced in Chapter 3, we use the same music material for three exper-
iments, with the first one that initiated the others being called HEMAN. In the
datasets, we observe that disagreement amongst annotators is common.
Only one of these experiments have the pattern-occurrence hierarchy, and that is

the dataset gathered by ANOMIC.
We therefore call this dataset gathered by ANOMIC the HEMAN dataset in Chap-

ter 7.
This HEMAN dataset contains 2763 annotations of pattern occurrences from 26

participants in at-home self-paced listening experiments. We separate the dataset
into two subsets:

• HEMANLow, which is a sub-dataset of HEMAN, consists of the responses of
participants with a self-rated musical background score < 5 on a scale of 1-10.

• HEMANHigh is the complement of HEMANLow in HEMAN, and therefore
consists of annotations of participants with a higher self-rated musical back-
ground.
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Appendix B List of Publications

Some of the work contained in this dissertation has appeared in the following pub-
lications:

• The research reported in Chapter 3 was published in:

Investigating Musical Pattern Ambiguity in a Human Annotated Dataset, IY Ren,
O Nieto, HV Koops, A Volk, W Swierstra. International Conference on Music Per-
ception and Cognition/European Society for the Cognitive Sciences of Music. Graz,
Germany, 2018.
Exploring annotations for musical pattern discovery gathered with digital annota-

tion tools. D Tomašević, S Wells, IY Ren, A Volk, M Pesek. Journal of Mathematics
and Music 15:2, p. 194-207, 2021.

• The research reported in Chapter 4 was published in:

FeatureAnalysis of Repeated Patterns inDutch Folk Songs using Principal Compo-
nentAnalysis. IY Ren, HVKoops, DBountouridis, AVolk,WSwierstra, RVeltkamp.
Folk Music Analysis, Thessaloniki, Greece, 2018.
Analysis by Classification: A Comparative Study of Annotated and Algorithmi-

cally Extracted Patterns in Symbolic Music Data. IY Ren, A Volk, W Swierstra,
R Veltkamp. International Society of Music Information Retrieval, Paris, France,
2018.
In Search of the Consensus amongMusical Pattern Discovery Algorithms. IY Ren,

HV Koops, A Volk, W Swierstra. International Society of Music Information Re-
trieval, Suzhou, China, 2017.

• An earlier version of Pattrans and analysis presented in Chapter 5 and 6 was
published in:

Orestis Melkonian (contribution: main library implementer), Iris Yuping Ren (con-
tribution: ideation, writing, and application of the library), Wouter Swierstra, and
Anja Volk. “What constitutes a musical pattern?”. In Proceedings of the 7th ACM
SIGPLAN International Workshop on Functional Art, Music, Modeling, and Design
(FARM 2019). ACM, New York, NY, USA, p. 95-105, 2019.
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Samenvatting

Het vinden van patronen is een gangbare praktijk bij menselijke intellectuele in-
spanningen. Het is een complexe uitdaging die zowel door mensen als door algorit-
men wordt uitgevoerd. Al tientallen jaren wordt er onderzoek gedaan naar algorit-
men voor het ontdekken van muzikale patronen. Onderzoekers vergelijken zowel
door mensen geannoteerde patronen met algoritmische output, als algoritmische
output met elkaar. Traditionele uitkomstmaten hebben echter niet volledig de diepe
inzichten opgeleverd die deze evaluaties zouden kunnen bieden. Dit proefschrift
draagt bij aan het vergelijken van mechanismen voor het ontdekken van muzikale
patronen in zeven hoofdstukken.
Hoofdstuk 1 geeft de achtergrond van het proefschrift, inclusief een overzicht

vanonderzoeksbenaderingen, contexten, reikwijdte, hoofdstelling, en een op-
somming van de bijdragen die dit proefschrift maakt aan het onderzoeksgebied.
Hoofdstuk 2 duikt in het concept van muzikale patronen, en onderzoekt het diverse
landschap van algoritmen voor het ontdekken van muzikale patronen. Deze
verkenning onthult de complexiteit rond de definitie van patronen en de veelzijdige
aard van deze algoritmen. Hoofdstuk 3 is gewijd aan de verzamelinstrumenten
voor door mensen geannoteerde muzikale patronen en de analyse van factoren
die annotaties beïnvloeden. We zien dat muzikale achtergronden invloed hebben
op geannoteerde patronen; toolinterfaces en automatische matching beïnvloeden
de lengte en frequentie van annotaties. Hoofdstuk 4 introduceert vier methoden
die zijn toegesneden op het vergelijken van algoritmen voor het ontdekken van
muzikale patronen. Deze methoden bieden nieuwe inzichten in de discrepanties
tussen de door mensen geannoteerde patronen en hun algoritmisch geëxtraheerde
tegenhangers. Deze methoden bieden een meer alomvattende benadering voor het
vergelijken van algoritmen, en helpen bij de interpretatie en evaluatie van algo-
ritmische resultaten. Hoofdstuk 5 implementeert Pattrans, een domeinspecifieke
taal (DSL) in de functionele taal Haskell, voor het vergelijken van voorkomens
van muzikale patronen door middel van muzikale transformaties. We verdiepen
ons in het ontwerp van deze DSL om de relaties tussen verschillende voorkomens
van patronen op een modulaire manier te beschrijven en analyseren. Hoofdstuk
6 gebruikt Pattrans om transformaties tussen voorkomens van muzikale patronen
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nauwkeurig te onderzoeken. We ontdekken onder meer dat door mensen gean-
noteerde patronen doorgaans een groter aandeel exacte herhalingen hebben, en
dat verschillende algoritmen verschillende transformatieverhoudingen vertonen in
vergelijking met menselijke annotaties, wat bijdraagt aan een genuanceerder beeld
van patroonvergelijkingen.
Samenvattend draagt dit proefschrift niet alleen nieuwe perspectieven bij aan

de vergelijking van muzikale patronen, maar introduceert het ook methoden en
hulpmiddelen die het veld van de ontdekking van muzikale patronen verrijken.
We onderzoeken het concept van muzikale patronen, voeren patroonannotatie-
experimenten uit en visualiseren en analyseren door mensen geannoteerde en
algoritmisch geëxtraheerde patronen. Bovendien zien we het potentieel van de
muzikale transformaties die schuilgaan achter zich herhalende en variërende
patronen en patroonvoorkomens. Met behulp van Haskell modelleren we de relatie
tussen patronen en transformaties. Hierna onderzoeken we hoe we transformaties
kunnen gebruiken ommuzikale patroonvoorkomens te relateren en te classificeren.
Tijdens ons hele traject pleiten we voor een meer alomvattende benadering van
patroonvergelijking, die verder gaat dan traditionele uitkomstmaten.
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