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Introduction

For more than two centuries, the description of gravity relied on the theory elaborated by Isaac Newton
in his work “Philosophiae Naturalis Principia Mathematica”. The Newtonian law of gravity provides
an extremely accurate description of the phenomena observable on Earth, where gravity is relatively
weak. However, in 1859, the observation of the anomalous precession of Mercury’s perihelion began to
question the reliability of Newton’s theory. In 1887, Michelson and Morley performed an experiment
to measure the speed of light in different inertial frames [1]: at the time, light was supposed to travel
only through a specific medium, called ether, and Maxwell’s equations, which predict the speed of light
to be equal to c, were thought to be valid only in the rest frame of such medium, while the velocity
in the other frames could be obtained through the Galilean formulas for the addition of velocities.
Nonetheless, Michelson and Morley’s experiment ended up showing that light propagates always with
the same speed. While the scientific community started discussing possible flaws in the experiment,
Albert Einstein adopted a different approach: assuming that the experiment results were correct, he
formulated a new theory to explain them. The theory of special relativity, published in 1905, was
therefore based on the assumption that the speed of light c is a universal constant and nothing can
travel faster than that. This highlighted another issue within the Newtonian theory, in which the
gravitational interaction was instantaneous, hence meaning that gravity would propagate with infinite
speed. Ten years later, in 1915, Einstein proposed a relativistic theory of gravity, the theory of general
relativity [2], in which gravity is no longer regarded as a force, but as an effect of matter, or energy,
on the geometry of spacetime. General relativity (GR) could explain the precession of perihelion, but
it lead also to more “exotic” predictions, difficult to prove experimentally, like the existence of black
holes, the expansion of the universe, and the production of gravitational waves.

Black holes (BHs) are extremely compact objects, which curve spacetime to such an extent that
a boundary, called event horizon, is formed, after which everything, even light, is forced to fall onto
the black hole. This implies that direct electromagnetic observations of black holes are not possible:
however, we can still aim at detecting the signal emitted by the accretion disk of matter around them.
Indirect evidence of the existence of these objects was found by investigating the motion of stars
and galaxies, whose trajectories can sometimes be explained only by the presence of very massive,
but not visible, objects. Starting from the 1960s, further evidence was provided by the detection of
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Figure I.1: Image of the M87 supermassive black hole obtained by EHT (left), compared with a simulated
image obtained from general relativistic magnetohydrodynamic (GRMHD) models (center and right). Figure
from Ref. [3].

X-ray signals emitted by their accretion disk. In 2019, the first image of a BH was captured, obtained
by the Event Horizon Telescope (EHT) collaboration from radio telescopes’ data [3–8]. This image
is in remarkably good agreement with the predictions of general relativity and with the computer
simulations derived from them, as shown in Fig. I.1. According to GR, the heated matter accreting
onto the BH emits photons, whose trajectories are curved by the strong gravitational field surrounding
it; this results in a bright photon ring, with, at its center, a shadow corresponding to the line where
the photons’ trajectories fall into the horizon. The pictures obtained by EHT reveal an outstanding
agreement with such prediction, but still they show the shadow of the BH: only gravitational signals
can supply a direct observation of these objects.

According to general relativity, gravitational waves (GWs) are perturbations, or ripples, in the
spacetime fabric that originate from the acceleration of masses and propagate with the speed of light.
As we shall see later, they can be detected by observing the change in distance between two or more test
masses. However, spacetime is quite rigid and also the most catastrophic events, like the coalescence of
a binary black hole (BBH) system, cause displacements of the order O(10−18m) or smaller. Therefore,
building an experiment able to detect gravitational waves posed a huge challenge. Although indirect
evidence of GWs already existed, e.g., from the orbital decay of the Hulse-Taylor binary pulsar [9], after
their prediction it took a hundred years to actually detect GWs. The design and, later, construction
of laser interferometers for the detection of GWs began in the 1970s, but the numerous technological
challenges required over forty years to obtain the first measurement. On the 14th of September 2015,
the two LIGO (Laser Interferometer Gravitational-wave Observatory) interferometers detected for the
first time a GW signal emitted by a coalescing binary black hole system [10], opening a new window
on the Universe. Since then, the two LIGO detectors in the United States, one in Livingston and
one in Hanford, and, since 2017, also the Virgo detector in Italy, have been periodically taking data
during observing runs (see Fig. I.2) alternated with periods of detectors maintenance, during which
various technological improvements are applied in order to increase their sensitivity. While the first
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Figure I.2: Schematic representation of the LIGO-Virgo-KAGRA observing runs: O1, from the 12th September
2015 until the 19th January 2016, with the signal (left) of the first GW detection GW150914 (figure from
Ref. [10]); O2, from the 30th November 2016 until the 20th August 2017, which lead to the first detection
of a GW signal from a BNS system, with an artistic illustration (center) of the merger of two neutron stars
(credit:NSF/LIGO/Sonoma State University/A. Simonnet); O3, which lasted almost one year, bringing the
total number of events to 90 (right); and, finally, O4 that is currently ongoing. In the plot on the right,
reporting the cumulative number of detections, the width of the bar corresponding to each observing run is
proportional to its duration in days; this plot shows a sharp increase in the number of detections during O3.

observing run, O1, lead to the first GW detection ever, during the second one, O2, the first signal from
a binary neutron star (BNS) system was detected, GW170817 [11]. Thanks to the joint detection of
the γ-ray burst GRB 170817A and of transient counterparts in the whole electromagnetic spectrum,
this extraordinary event inaugurated the era of multi-messenger astronomy [12, 13]. The effect of
the interferometers’ improvements introduced between one observing run and the other is clearly vis-
ible from the plot on the right in Fig. I.2, showing the increase in the number of detections. The
last observing run, O3b1, lead to the detection of 49 new events, bringing the total to 90, collected in
third Gravitational-Wave Transient Catalog, GWTC-3 [14]. At the moment, the LIGO-Virgo-KAGRA
(LVK) collaboration efforts are focused on O4, started on 24th May 2023 and currently ongoing.

The increasing number of detections enables us to study the features of GW sources at a population
level and to combine information from multiple events. However, it also implies a higher probability
to observe events outside the expected “vanilla” populations. During O3, for the first time GW

1The O3 observing run was divided into O3a, from 1st April 2019 until 1st October 2019, and O3b, from 1st November
2019 until 27th March 2020, with a month in-between to upgrade the detectors.
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signals emitted by neutron star-black hole systems were detected, GW200105 and GW200115 [15],
providing the first direct evidence of the existence of such systems. Furthermore, some detections
displayed such particular features to deserve the label of “special events”, which we briefly describe
below. GW190412 [16] provided the first detection of a signal from a binary black hole system with
unequal masses, including the contribution of higher-order modes. The source of GW190521 [17] is the
heaviest system detected so far: the mass of the final BH produced classifies it as an intermediate mass
black hole, thus providing the first direct detection of such an object; in addition, the masses of the
component BHs fall in the so-called pair-instability mass gap, and their existence cannot be explained
with the current theory of stellar evolution. GW190425 [18] represented the second observation of a
BNS signal; this time no electromagnetic counterpart was detected, probably due to the large distance
of the source and the poor sky localization.2 Interestingly, the total mass of the system was estimated
to be roughly 3.4M�, much larger than the mass of BNS systems in the population known from
electromagnetic observations so far. Finally, GW190814 [19] was the detection of a signal produced
by the coalescence of a BH with mass ∼ 23.2M� and an object with mass ∼ 2.6M�, which is larger
than the current estimates of the maximum mass that can be supported by a neutron star (NS), but,
based on previous X-ray and GW observations, we also do not expect BHs with masses lower than
∼ 5M�.

As one can see from these examples, the information extracted from GW data already started
challenging our current knowledge and models of GWs sources.

The analysis of GW signals emitted by the coalescence of binaries of compact objects, like black
holes or neutron stars, allows us to infer information about the sources and their population, but
also to probe fundamental physics, by testing the predictions of general relativity or constraining the
equation of state of supranuclear-dense matter inside neutron stars. The theory of general relativity is
expected to break down at Planck scales, because of significant quantum fluctuations in the classical
spacetime geometry, but an universally accepted quantum theory of gravity is still missing. Therefore,
we want to test GR, not only to prove its validity, but also to look for hints regarding what is needed
in a quantum formulation. Gravitational waves allow us to probe GR in the strong field regime. Dif-
ferent kinds of tests have been developed, investigating various aspects of generation and propagation
of GWs, but also the features of possible non-GR sources. Up to now, no evidence of GR violations
has been found [20–22].

The sensitivity of current earth-based laser interferometers allows them to detect signals emitted
during the coalescence of binary systems of neutron stars or stellar mass black holes. However,
different detectors are expected to survey other regions in the frequency band, as shown in Fig. I.3.
The Laser Interferometer Space Antenna (LISA) will be a laser interferometer in space, composed
by three spacecrafts orbiting around the Sun, with a distance of roughly 109 m between each other.
It will allow to detect GW signals in the frequency band [10−5 − 1] Hz, produced, for example, by
supermassive BHs, or during the inspiral of binary systems with extreme mass ratios, like BHs and

2GW170817 was detected with three detectors, the two LIGO ones and Virgo, and therefore the sky position of the
source was constrained with great accuracy, ∼ 28 deg2.
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Figure I.3: Sensitivity curves for different detectors together with the frequency spectra of GW signals emitted
by various sources. Plot generated via http://rhcole.com/apps/GWplotter [24].

white dwarfs. On the other hand, pulsar timing array detectors can measure GW signals from the
stochastic background by looking for their effect on the very precise radio signals emitted by pulsars.
Recently, the NANOGrav collaboration announced the evidence of such signals in the released pulsar
timing data set from the last 15 years [23].

Moreover, a next generation of ground-based laser interferometers is planned to be built in the
upcoming years: the Einstein Telescope in Europe and the Cosmic Explorer in the United States.
Their increased sensitivity promises to provide more and louder signals, for all kinds of sources emit-
ting in the region [5 − 103] Hz. This will allow us to put tighter constraints on the neutron stars’
equation of state and on possible deviations from GR, to infer more information about the populations
of compact objects binaries and their origin, and possibly to observe new phenomena. However, it
will also present numerous challenges from the data analysis point of view. We will start detecting
overlapping signals, i.e., multiple signals, from different sources, at the same time. The loudness of the
detections will highlight possible systematic errors in the analysis, starting from the ones induced by
the waveform models employed; therefore, it is necessary to build more accurate models and possibly
to evaluate their systematics beforehand. Finally, the large amount of signals, together with their
increased loudness and longer duration, imply a huge increase in the computational cost for their
analysis, which will represent one of the main challenges and potential bottlenecks for future analyses.

This thesis is organized as follows: in Chapter 1, we introduce gravitational waves in the framework
of general relativity, including their generation, sources, and detection. In Chapter 2, we discuss the
data analysis tools: waveform models, Bayesian analysis, and computational techniques, with a focus
on possible methods to reduce the computational cost of the analyses. In Chapter 3, we introduce a
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new test of general relativity, based on the amplitude of subdominant modes in the GW signals and
the measurement of possible deviations of their values from the predictions of general relativity. In
Chapter 4, we perform a hypermodels study of the heaviest binary-black-hole signals detected so far,
with the goal to study potential systematic biases deriving from the use of different waveform models.
In Chapter 5, we present a new frequency-domain waveform model that describes the GW signal
emitted during the full coalescence of a binary neutron star system, including the postmerger, and
its application in parameter estimation analyses with future detectors to try and unravel information
about the supranuclear-dense matter equation of state in NSs. Finally, in Chapter 6, we investigate
the influence of the different designs proposed for the Einstein Telescope detector on the study of
GW signals from binary neutron star systems, focusing on the extraction of the tidal deformability
parameters. In Chapter 7, we conclude and summarize the research presented in this thesis.
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Chapter 1

Gravitational waves in general relativity: from
sources to detection

Gravitational waves are predicted and described by general relativity. In this chapter, we provide
a summary of the basic concepts of general relativity that are needed to understand the theory of
gravitational waves, from their generation to the detection. We then focus on the compact objects
which can generate them, black holes and neutron stars, and we conclude with a general overview of
gravitational-wave detectors.

1.1 General Relativity

In general relativity, gravity is no longer regarded as a force, but as an effect of the spacetime geometry:
the presence of mass, or energy, induces a curvature in spacetime, and moving test bodies are forced
to follow the trajectories created by such curvature. Mathematically, this connection between mass
and spacetime geometry is described by the Einstein field equations (EFEs). The idea of a curved
spacetime originates from the experiment on gravitational redshift, born as a thought experiment in
Einstein’s theory and later carried out in 1960 [25]: according to Einstein’s equivalence principle, a
uniform gravitational field cannot be distinguished from a uniform acceleration; when applied to pho-
tons, it translates to the fact that a gravitational field affects the frequency of a photon in the same
way a moving source does. This effect cannot be explained in a flat spacetime and therefore lead to
the idea of a non-flat geometry.

In the following, Greek letters represent spacetime coordinates, and Latin letters the space ones.
Moreover, we use the Einstein summation convention, i.e., we sum over repeated upper and lower
indices

xαy
α =

∑
α

xαy
α. (1.1)
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Chapter 1. Gravitational waves in general relativity: from sources to detection

In general, to characterize a 4-dimensional spacetime geometry we need (i) a system of coordinates
xα = (x0, x1, x2, x3), through which we can uniquely describe an event, and (ii) the line element
describing the physical distance between two points separated by a coordinate distance dxα

ds2 = gαβdx
αdxβ, (1.2)

where gαβ is the metric tensor, in the form of a 4 × 4 symmetric matrix. The proper distance
√
ds2

provides a way to measure physical distances on the metric.
In a curved spacetime, vectors and vectorial quantities can be defined only locally. At a given

point xα, a vector a is defined in terms of basis vectors eα as

a(x) = aα(x)eα(x), (1.3)

where aα(x) are the vector components with coordinates x. The metric tensor g is defined as the
tensor that takes two basis vectors into a real number

g(eα, eβ) = eα · eβ = gαβ (1.4)

and is used to raise and lower indices, for example xα = gαβx
β.

With this description of spacetime, the trajectory of a particle can be characterized by a curve
xµ(λ), parametrized by λ. The motion of free-falling test masses follows trajectories referred to as
geodesics, defined as the path that minimizes the distance

√
ds2, and is described by the geodesic

equation
d2xβ

dλ2
+ Γβµν

dxµ

dλ

dxν

dλ
= 0. (1.5)

In Eq. 1.5, Γβµν are the Christoffel symbols, defined as

Γβµν ≡
1

2
gαβ(∂µgαν + ∂νgµα − ∂αgµν), (1.6)

where ∂σ = ∂/∂xσ is the partial derivative with respect to the coordinates xσ. The Christoffel symbols
are symmetric in the lower indices, i.e., Γβµν = Γβνµ.

Despite the overall curvature, in GR spacetime is locally flat: if we consider sufficiently small
patches, each one of them can be adequately described by a flat metric, like the Minkowski one
ηµν = (−1, 1, 1, 1). This local flatness property states that, for each point P in the spacetime, we can
always find a local inertial frame (LIF), i.e., a coordinate system in which

gµν |P = ηµν (1.7a)

∂gµν
∂xα

∣∣∣∣
P

= 0. (1.7b)

A measure of the space-time curvature in GR is given by the Riemann tensor

Rαβγδ = ∂γΓαδβ − ∂δΓαγβ + ΓαγσΓσδβ − ΓαδσΓσγβ. (1.8)
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1.2. Linearized theory of gravity

The Riemann tensor has various symmetry properties, and can be contracted into the Ricci tensor

Rαβ = gµνRµναβ , (1.9)

which can be further contracted into the Ricci scalar

R = gαβRαβ. (1.10)

The Einstein field equations, as mentioned, describe how mass and energy modify the spacetime
geometry generating curvature. The Ricci tensor and the Ricci scalar describe the spacetime curvature
term in the EFEs, through the Einstein tensor

Gαβ = Rαβ −
1

2
Rgαβ. (1.11)

The source of the curvature, instead, is described by the energy momentum tensor Tαβ, where
T 00 gives the energy density, T i0 and T 0i represent, respectively, the energy flux and the momentum
density, and T ij is the stress tensor. In a flat spacetime, the energy-momentum conservation is
expressed as ∂µTµν = 0. In GR, the generalization of the energy-momentum conservation is obtained
with ∇µTµν = 0, where ∇µ is the covariant derivative, defined as

∇µV σ = ∂µV
σ + ΓσµρV

ρ, (1.12)

for a generic tensor V σ.

Finally, with the quantities defined above, the Einstein field equations take the form

Gαβ =
8πG

c4
Tαβ, (1.13)

with G and c being the universal gravitational constant and the speed of light in vacuum, respectively.

1.2 Linearized theory of gravity

In regions of spacetime where the gravitational field is weak, for example in absence of very massive
objects, the EFEs can be studied more easily in their linearized version, obtained with a perturbation
approach.

In the weak-field limit, we consider spacetime as described by small perturbations around the flat
metric

gµν = ηµν + hµν , (1.14)

with |hµν | � 1. In this limit, the linearized theory of gravity originates from an expansion of Einstein’s
equations around the flat metric and to the linear order in hµν .

In general, under a coordinate transformation xµ → x′µ, the metric gµν transforms as

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ. (1.15)

9



Chapter 1. Gravitational waves in general relativity: from sources to detection

However, the values of the metric components depend on the reference frame; therefore, in the weak
field limit, to preserve the condition |hµν | � 1, we need to restrict ourselves to coordinate transfor-
mations

xµ → x′µ = xµ + ξµ, (1.16)

with small ξµ, meaning that the derivative ∂µξν must be of the same order of |hµν | or smaller. Under
such coordinate transformations, Eq. 1.15 becomes

g′µν = ηµν + h′µν , (1.17)

with
h′µν = hµν − (∂µξν + ∂νξµ). (1.18)

Equation 1.18, which describes how the metric perturbation transforms, derives just from con-
straints imposed on the coordinate transformations, and therefore it does not change the physics of
|hµν |. Equation 1.17 shows that, in the weak-field limit, metric perturbations can be treated as a
tensor propagating on the flat spacetime. Moreover, since we ignore effects O(h2) or higher, in this
limit the Minkowski metric ηµν can be used to raise and lower indices.

To linearize the Eistein field equations, we start by expanding the Riemann tensor to the first
order in |hµν |:

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) . (1.19)

From Eq. 1.19 we can obtain the linearized Ricci tensor and Ricci scalar, which lead to the following
expression for the linearized Einstein tensor

Gαβ =
1

2

(
∂α∂

µhµβ + ∂µ∂βhαµ − ∂µ∂µhαβ − ∂α∂βhµµ
)
− 1

2
ηαβ (∂ν∂µhµν − ∂µ∂µhνν) . (1.20)

We now define the inverse trace
h̄µν = hµν −

1

2
ηµνh, (1.21)

where
h = ηµνhµν . (1.22)

Substituting this into Eq. 1.20, and recalling the Einstein field equations in Eq. 1.13, we find the
linearized Einstein equations

�h̄αβ + ηαβ∂
µ∂ν h̄µν − ∂µ∂βh̄αµ − ∂µ∂αh̄βµ = −16πG

c4
Tαβ, (1.23)

where � ≡ ∂α∂α represents the d’Alambertian operator.

The weak-field condition, in which spacetime is described by a perturbed metric gµν = ηµν +

hµν , with |hµν | � 1, is satisfied in an infinite number of coordinate systems. Since a coordinate
transformation like the gauge transformations in Eq. 1.18 does not change the value of a tensor
components, a solution of the linearized Einstein equations remains a solution in every coordinate
system obtained from such transformations. Therefore, when imposing gauge conditions to fix the
coordinate system in which we want to solve the Einstein equations, we have the freedom to choose
the coordinate system that simplifies Eq. 1.23 the most.

10



1.2. Linearized theory of gravity

Applying Eq. 1.18 to the inverse-trace h̄µν we get

h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂σξσ) . (1.24)

In particular, for each h̄αβ, we can always find a h̄′αβ that satisfies the Lorentz gauge

∂αh̄′αβ = 0 (1.25)

and for which the linearized Einstein equations become

�h̄′αβ = −16πG

c4
Tαβ. (1.26)

One can show that it is always possible to find a gauge transformation like Eq. 1.24 to a coordinate
system that satisfies the Lorentz gauge by choosing ξν such that

�ξν = ∂µh̄
µν . (1.27)

Since the d’Alambertian � is an invertible operator, Eq. 1.27 always has a solution that can be found
via a Green’s function. Moreover, any further gauge transformation does not spoil the Lorentz gauge,
provided that the functions ξµ satisfy the homogeneous equation

�ξµ = 0. (1.28)

This means that, also after imposing the Lorentz gauge, we are left with some gauge freedom.

1.2.1 Solution in vacuum: gravitational waves

We study gravitational signals as measured by the detectors, thus far from the source that produced
them. Therefore, we now look for solutions of Eq. 1.26 outside the source, in vacuum, i.e. for Tµν = 0,
where, dropping the prime for convenience, the equation becomes

�h̄αβ =

(
− 1

c2

∂2

∂t2
+∇2

)
h̄αβ = 0. (1.29)

Equation 1.29 is a wave equation and its general solution is a linear combination of plane waves
in the form

h̄µν = Aµν cos(kσx
σ) = Aµν cos(ωt− k · x). (1.30)

Therefore, in the weak-field limit, perturbations of spacetime propagate on the flat spacetime back-
ground as plane waves, and thus we call them gravitational waves.

In order to satisfy the wave equation, we need kαk
α = 0, which yields ω = c|k|, meaning that

gravitational waves propagate with the speed of light. Furthermore, from the Lorentz gauge, we get
kµA

µν = 0, which implies that they are transverse waves.

We saw that imposing the Lorentz gauge does not completely fix the coordinate system. We can
use the gauge freedom left to impose further constraints on the components of h̄αβ:

h̄0µ = 0 (1.31a)

h̄µµ = 0. (1.31b)
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Chapter 1. Gravitational waves in general relativity: from sources to detection

Such choice of coordinates is called the transverse-traceless (TT) gauge. In this coordinate system,
the Lorentz gauge becomes ∂β h

β
α = 0. The perturbation h̄αβ is a 4 × 4 symmetric matrix, with 10

independent components. However, after imposing the Lorentz gauge and the conditions deriving from
the TT gauge, we are left with only two degrees of freedom, which correspond to the two independent
polarizations of gravitational waves, usually called plus and cross polarizations, and denoted as h+

and h×, respectively. Assuming, without loss of generality, that the waves direction of propagation is
along the z-axis, the metric perturbation in the TT gauge can be written as

h̄TT =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 =


0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0

 cos
[
ω
(
t− z

c

)]
(1.32)

The most general solution of Eq. 1.29 is a superposition of plane-wave solutions as Eq. 1.32, with
different amplitudes, frequencies, and propagation directions.

1.2.2 The effect of gravitational waves

To understand the physical effect of gravitational waves, we look at their influence on the motion of
bodies. Particles with a rest mass, i.e., forced to have a velocity smaller than c, must follow timelike
directions, for which ds2 < 0. In this case, the proper time τ , i.e., the time measured by an observer
in their own reference frame, can be defined as the time measured by a clock carried by the particle
along its trajectory, which we can parametrize with τ as xµ = xµ(τ). Defining the four-velocity uµ as

uµ =
dxµ

dτ
, (1.33)

the geodesic equation in Eq. 1.5 can be rewritten as

duµ

dτ
+ Γµαβu

αuβ = 0. (1.34)

In the TT gauge, if we consider a particle initially at rest, its four-velocity will be uα = (1, 0, 0, 0).
Writing gµν = ηµν + hµν , and expanding to the first order in hµν , Eq. 1.34 becomes

duµ

dτ
= −1

2
ηµσ (∂αhβσ + ∂βhασ − ∂σhαβ)

= −
(
∂0hµ0 −

1

2
∂µh00

)
, (1.35)

where in the last line we used uα = (1, 0, 0, 0). However, since we are in the TT gauge, according to
the condition in Eq. 1.31a, h00 = hµ0 = 0, and hence duµ/dτ = 0. This means that, for a particle
initially at rest, i.e., for which dxi

dτ

∣∣∣
τ=0

= 0, the derivatives dxi/dτ remain zero at all times, therefore
the coordinates do not change, and particles remain at rest also after the arrival of a gravitational
wave. This does not imply that gravitational waves have no physical effect on particles, but that
coordinates in the TT gauge have been chosen in such a way that they remain invariant after a GW
passes by. To observe the physical effect of GWs, we need to look at two or more particles and how
their proper distance changes.
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1.2. Linearized theory of gravity

Interaction of gravitational waves with matter

Let us consider two nearby particles, each one in free-falling motion and therefore moving along time-
like geodesics, one parametrized by xµ(τ) and the other one by xµ(τ) + ξµ(τ), where the separation
vector ξµ(τ) connects points with the same proper time τ on the two geodesics. The relative accel-
eration between the two particles can be computed as the second time derivative of ξµ. Assuming
that the separation vector is smaller than the typical scale on which the gravitational field changes
significantly, the relative acceleration is given by

D2ξµ

Dτ2
= −Rµνρσξρ

dxν

dτ

dxσ

dτ
, (1.36)

where the covariant derivative DV µ/Dτ of a vector V µ(x) along the curve xµ(τ) is defined as

DV µ

Dτ
≡ dV µ

dτ
+ ΓµνρV

ν dx
ρ

dτ
. (1.37)

In Eq. 1.36, Rµνρσ is the Riemann tensor, hence in a flat spacetime the relative acceleration is zero.

For two particles initially at rest, the geodesic deviation equation in the TT gauge becomes

d2ξi

dτ2

∣∣∣∣
τ=0

= −
[
ḣij

dξi

dτ

]
τ=0

, (1.38)

meaning that, if the coordinates of masses initially at rest remain constant, also their coordinate
separation must remain constant. Therefore, the arrival of a GW does not affect the coordinate
distance between two particles, because we specifically built the coordinate system to ensure that
coordinates do not change. To see the effects of GWs we need to look at the changes in proper
distance or proper time.

Gravitational-wave detectors, however, cannot be described in the TT gauge, because in real
laboratories coordinates are fixed by rigid rulers, and hence a passing GW will cause a displacement
in the position of test masses. The easiest coordinate system that we can define for a laboratory is a LIF
one, for an experimental setup shielded from any gravitational fields and possible GWs. In principle, if
we consider sufficiently small regions of spacetime, finding such coordinates is always possible, thanks
to the local flatness property. However, ground-based detectors cannot be shielded from the Earth’s
gravitational field. Therefore, the coordinate system defining these detectors can be found from a LIF
through a coordinate transformation that takes into account the Earth’s gravitational acceleration
and the effects of Earth’s rotation [26]. In this new frame, called proper detector frame, the equation
for geodesic deviation Eq. 1.36 becomes

d2ξi

dτ2
+ ξσ∂σΓi00

(
dx0

dτ

)2

= 0. (1.39)

Moreover, since at the LIF expansion point P we have ∂0Γi00 = 0, Γµνρ = 0 and ∂0Γi0j = 0, Eq. 1.39
can be rewritten as

d2ξi

dτ2
= −Ri0j0ξj

(
dx0

dτ

)2

. (1.40)
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Chapter 1. Gravitational waves in general relativity: from sources to detection

Figure 1.1: Displacement induced on a ring of test masses by a GW travelling perpendicular to the plane of the
ring, on top for the plus polarization h+ and at the bottom for the cross polarization h×; T = 2π represents
the period.

Considering that dt2 = dτ2
[
1 +O(h2)

]
, to the linear order in h we can use the derivative with

respect to the coordinate time instead of the proper time. Finally, the Riemann tensor is invariant,
hence, for convenience, we can compute it in the TT gauge, finding

ξ̈i =
1

2
ḧTTij ξ

j , (1.41)

which implies that in the proper detector frame the physics effects of a GW passing by can be de-
scribed in terms of a Newtonian force. We remind here that the geodesic deviation equation, Eq. 1.36,
was derived under the assumption that the separation vector is much smaller than the typical scale of
variation of the gravitational field, which can be characterized by the wavelength λ; therefore, Eq. 1.41
is valid only for L� λ, with L the length of the detector.

To understand the effect of GWs on test masses, let us consider particles in the (x, y) plane, and
a GW propagating along the z direction. Initially the test masses are at (x0, y0), and a GW causes a
displacement (δx, δy). From Eq. 1.32, if we consider a GW with plus polarization only, Eq. 1.41 gives

δẍ =
ḧ+

2
(x0 + δx) =

A+

2
(x0 + δx)ω2 cosωt (1.42a)

δÿ = − ḧ+

2
(y0 + δy) = −A+

2
(y0 + δy)ω2 cosωt. (1.42b)
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1.2. Linearized theory of gravity

Since δx and δy are of order O(h), integrating and keeping terms up to the linear order in h, we find

δx(t) =
h+

2
x0 =

A+

2
x0 cosωt (1.43a)

δy(t) = −h+

2
y0 = −A+

2
y0 cosωt. (1.43b)

Similarly, for a GW with cross polarization only, we obtain

δx(t) =
h×
2
y0 =

A×
2
y0 cosωt (1.44a)

δy(t) =
h×
2
x0 =

A×
2
x0 cosωt. (1.44b)

This displacement induced by GWs is shown in Fig. 1.1 for the case of a ring of test masses.
Such configuration helps visualize why the two polarizations are called plus and cross: while the plus
polarization causes simultaneously a stretch along the x (y) direction and a compression along the y
(x) one, the cross polarization produces this periodic stretch and compression along directions rotated
by 45◦ with respect to the x, y-axes. This is different with respect to electromagnetism, were the two
polarizations are shifted by π/2, not π/4.

1.2.3 Generation of gravitational waves

In order to understand how gravitational waves are produced, we start from the Einstein field equa-
tions, which in the weak-field limit read

�h̄µν = −16πG

c4
Tµν . (1.45)

The solution of Eq. 1.45 can be found via the Green’s function satisfying

�xG(x− x′) = δ4(x− x′) (1.46)

as
h̄µν =

−16πG

c4

∫
d4x′G(x− x′)Tµν(x′). (1.47)

In particular, since we assume that the radiation emitted by the source is outgoing and that there
is no incoming radiation from past infinity, the solution is given by the retarded Green’s function,
which takes into account the time needed for the effect of the source to propagate, considering that
the interaction is not instantaneous.

As we saw in Sec. 1.2.1, GWs propagating outside the source, in vacuum, take a simple form in
the TT gauge. As part of the TT gauge, we have h̄0µ = 0 (see Eq.1.31a), therefore in the following
we can focus on the spatial components only. Outside the source, we can always find coordinate
transformations to the TT gauge. In particular, for a generic wave hµν propagating in the n̂ direction,
we define the operator Λij,kl(n̂) to extract the TT part of the perturbation, such that

hTTij = Λij,kl(n̂)hkl. (1.48)

This operator is built from the projector operators

Pij(n̂) = δij − ninj (1.49)
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Chapter 1. Gravitational waves in general relativity: from sources to detection

as
Λij,kl(n̂) = PikPjl −

1

2
PijPkl. (1.50)

The operator Λij,kl(n̂) exhibits various properties, among which symmetry, i.e. Λij,kl = Λkl,ij , and
tracelessness, i.e. Λii,kl = Λij,kk = 0. In particular, the latter one implies hTTij = Λij,klhkl = Λij,klh̄kl.
Therefore, the general solution to Eq. 1.45 is

hTTij (t,x) =
4G

c4
Λij,kl(n̂)

∫
d3x′

1

|x− x′|
Tkl

(
t− |x− x′|

c
,x′
)
. (1.51)

Normally, Eq. 1.51 cannot be solved analytically. However, we are interested in studying the
gravitational waves that we measure, i.e., that reach our detectors at a distance from the source r
much larger than the typical size of the source d.1 This allows us to expand |x− x′| ' r− x′ · n̂, with
r = |x|, and n̂ = x/|x|. For r � d, we can take the limit r →∞, and to the leading order in O(1/r)

Eq. 1.51 simplifies to:

hTTij (t,x) =
1

r

4G

c4
Λij,kl(n̂)

∫
d3x′Tkl

(
t− r

c
+

x′ · n̂
c

,x′
)
. (1.52)

Now, let us consider non-relativistic sources, for which velocities inside the source are much smaller
than the speed of light, v � c, and, consequently, the reduced wavelength of the radiation emitted
is much larger than the typical size of the system. For such sources, we can Taylor-expand the time
dependence of Tkl in the parameter x′·n̂

c as

Tkl

(
t− r

c
+

x′ · n̂
c

,x′
)
' Tkl

(
t− r

c
,x′
)

+
x′ini

c
∂tTkl +

1

2c2
x′ix′jninj∂2

t Tkl + ... (1.53)

If we define the moments of the stress tensor T ij as

Sij(t) =

∫
d3xT ij(t,x), (1.54a)

Sij,k(t) =

∫
d3xT ij(t,x)xk, (1.54b)

Sij,kl(t) =

∫
d3xT ij(t,x)xkxl, (1.54c)

(1.54d)

and so on, Eq. 1.52 can be written as

hTTij (t,x) =
1

r

4G

c4
Λij,kl(n̂)

[
Skl +

1

c
nmṠ

kl,m +
1

2c2
nmnpS̈

kl,mp + ...

]
tret

, (1.55)

where everything is evaluated at the retarded time tret = t − r/c. We notice that the expansion in
Eq. 1.55 is equivalent to expanding in terms of (v/c). This can be seen by considering that, for exam-
ple, when going from the term Skl to 1

cnmṠ
kl,m, the xm in the momentum integral brings an additional

factor O(d), which, combined with the time derivatives, leads to a factor O(v). This, together with
the pre-factor 1/c, results in an overall difference O(v/c) between the two terms; the same holds for

1The typical size of a binary system, for example, is the distance between the two objects in the binary, while for an
isolated body is its radius.
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1.2. Linearized theory of gravity

the following ones.

To grasp the physical meaning of such expansion, we resort to energy-momentum conservation.
Since we are working in the linearized theory, we can use the conservation law in the flat spacetime
∂µT

µν = 0 to rewrite the T ij in terms of the energy density T 00 and the linear momentum T 0i/c,
finding their respective moments

M =
1

c2

∫
d3xT 00(t,x)

M i =
1

c2

∫
d3xT 00(t,x)xi

M ij =
1

c2

∫
d3xT 00(t,x)xixj

M ijk =
1

c2

∫
d3xT 00(t,x)xixjxk

−

P i =
1

c

∫
d3xT 0i(t,x)

P i,j =
1

c

∫
d3xT 0i(t,x)xj

P i,jk =
1

c

∫
d3xT 0i(t,x)xjxk,

and similarly for the higher-order ones. If we consider a volume V enclosing and larger than the source,
the linearized energy-momentum conservation equation ∂µTµν = 0 leads to the following identities for
the time derivatives of the moments found above:

Ṁ = 0 (1.56a)

Ṁ i = P i (1.56b)

Ṁ ij = P i,j + P j,i (1.56c)

Ṁ ijk = P i,jk + P j,ki + P k,ij (1.56d)

and

Ṗ i = 0 (1.57a)

Ṗ i,j = Sij (1.57b)

Ṗ i,jk = Sij,k + Sik,j . (1.57c)

Equations 1.56a and 1.57a simply express the mass and linear momentum conservation. Using the
identities above, we can write Sij = 1

2M̈
ij and, to leading order, Eq. 1.55 becomes

hTTij =
4

r
Λij,klM̈

kl
(
t− r

c

)
. (1.58)

Therefore, to the leading order, the gravitational-wave emission is produced by the variation of the
mass quadrupole moment; for this reason, Eq. 1.58 is also called the quadrupole formula. This is
different from electromagnetism, where the lowest order emission is provided by the dipole moment.
In GR, the dipole moment depends on P i, as shown in Eq. 1.56b, but the total momentum in conserved,
and hence the dipole variation is zero. If we consider a wave propagating along the n̂ = ẑ direction,
from Eqs. 1.58 and 1.32, and computing explicitly the components of Λij,klM̈kl, we find the two
polarizations as

h+ =
1

r

G

c4

(
M̈11 − M̈22

)
, (1.59a)

h× =
2

r

G

c4
M̈12. (1.59b)
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1.2.4 Multipolar expansion

In the last section, we saw how GWs’ generation can be understood in terms of a multipole expansion
of the stress-energy tensor moments. In the following, we will explicitly discuss only the leading-order
term, but in general a gravitational-wave signal includes also all the higher-order harmonics [27]. The
multipolar expansion of the GW strain can be decomposed in terms of the spherical harmonic modes
h`m as [28]

h(t, ι, φ; Ξ) =
∞∑
`=2

∑̀
m=−`

h`m(t,Ξ)Y −2
`m (ι, φ), (1.60)

where Y −2
`m (ι, φ) are the spin-weighted spherical harmonics of weight −2, (ι, φ) two angles describing

the direction of the GW radiation in the frame of the source, and Ξ includes all the other binary
parameters influencing the signal. We denote each mode with (`,m), with the (2, 2) mode being
the fundamental one, corresponding to the mass-quadrupole moment. While, as we will see in the
next section, the GW fundamental mode has a frequency twice the orbital one, the other harmonics
correspond to frequencies that are integer multiples of the orbital frequency [29,30]. The higher-order
modes’ amplitude is usually suppressed with respect to the dominant mode one [31–33]; however,
the subdominant modes amplitude depends both on the intrinsic and extrinsic parameters of the
binaries, and the contribution of higher-order harmonics becomes non-negligible for specific values
of the inclination angle ι, and for increasing total mass and mass ratio [34]. Measuring the higher-
order modes’ contribution in a GW signal helps to break the degeneracy between some of the binary
parameters, for example between distance and inclination [35]. Moreover, the presence of higher-order
modes provides new ways to test the theory of general relativity, as we shall see in detail in Chapter 3.
Among the events detected so far, clear evidence of the presence of higher-order harmonics was found
in GW190412 [16] and GW190814 [19].

1.3 Sources

As we saw in Sec. 1.2.3, gravitational waves are produced by time variations of the mass quadrupole
and higher moments. Physically, this translates into different possible GW signals and sources: con-
tinuous waves emitted, for example, by isolated spinning neutron stars with an irregularity on their
surface; the stochastic background produced by unresolved binaries, or the relic of GWs in the early
Universe, before recombination; bursts from supernovae explosions; chirping signals generated by
the coalescence of binary systems of compact objects, like neutron stars or black holes. The latter
is what current detectors have been observing and will be the focus of the work presented in this thesis.

The coalescence of binary systems is usually divided into three phases (see for example Fig. 2.1).
During the inspiral, the two objects orbit around each other, emitting energy via GWs, until they
plunge into one another in the merger phase; finally, during the ringdown or postmerger phase, a
new stable configuration is reached. In this section, we present a first approximate description of the
system dynamics and the GW emission during the inspiral phase. We shall see later how accurate
waveforms for the GW emission during the full coalescence are built. We briefly describe the compact
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1.3. Sources

objects forming these binaries, BHs and NSs, and we provide an overview of their main features and
how they affect the emitted GW signals.

1.3.1 Binary systems in the Newtonian framework

Let us approximate a binary as two point-like particles with mass m1 and m2 orbiting around each
other in circular orbits, separated by a distance R, in a Newtonian framework. In the center-of-mass
frame, assuming that the z-axis points towards the observer, and that the perpendicular to the orbit
plane can be tilted with respect to ẑ by an angle ι, one can show that the position of the two objects
is described by

x1(t) =
µ

m1
Rê(t) (1.61a)

x2(t) = − µ

m2
Rê(t), (1.61b)

where µ = m1m2/(m1 +m2) is the reduced mass and ê(t) is a unit vector pointing from the center of
mass to m1

ê(t) = (cos(ωorbt), cos(ι) sin(ωorbt), sin(ι) sin(ωorbt)) , (1.62)

with ωorb being the orbital angular frequency. The mass density is

T 00

c2
= m1δ

3(x− x1) +m2δ
3(x− x2), (1.63)

and, computing the mass-quadrupole elements, from Eqs. 1.59a-1.59b we find

h+ =− 4

r

GµR2ω2
orb

c4

1 + cos2(ι)

2
cos(2ωorbtret) (1.64a)

h× =− 4

r

GµR2ω2
orb

c4
cos(ι) sin(2ωorbtret). (1.64b)

From Kepler’s third law

ω2
orb =

G (m1 +m2)

R3
, (1.65)

therefore, defining the chirp mass

Mc =
(m1m2)3/5

(m1 +m2)1/5
, (1.66)

we can rewrite Eqs. 1.64a-1.64b for the plus and cross polarizations as

h+ = −4

r

(
GMc

c2

)5/3 (ωorb

c

)2/3 1 + cos2(ι)

2
cos(2ωorbtret) (1.67a)

h× = −4

r

(
GMc

c2

)5/3 (ωorb

c

)2/3
cos(ι) sin(2ωorbtret). (1.67b)

These expressions highlight some important aspects:

• To the leading order, i.e., for the quadrupolar mode, gravitational waves are emitted with a
frequency that is twice the orbital one. This follows from the fact that the mass quadrupole
is quadratic in ê and therefore remains the same when, after half an orbital period, ê → −ê.
Hence, the quadrupole moment period is half the orbital one, and the GW emission frequency
is twice the orbital frequency.
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Chapter 1. Gravitational waves in general relativity: from sources to detection

• The masses of the objects in the binary enter the expression for h+ and h× only through the
Mc combination.

• The inclination of the orbital plane with respect to the line of observation plays a crucial role in
determining what we can measure. For example, for an edge-on orbit, i.e., with ι = 90◦, the cross
polarization h× becomes zero; on the other hand, for ι = 0◦ or ι = 180◦, the two polarizations
are present with the same amplitude.

1.3.2 Inspiral of compact objects binaries

Until now, we assumed that the two objects follow a fixed Newtonian, circular orbit, ignoring the
backreaction of gravitational waves onto the background spacetime. However, in reality, GWs carry
energy and therefore contribute to the spacetime curvature. To take this into account, we cannot work
anymore in the approximation of linearized gravity, which describes GWs as perturbations propagating
on a flat background metric. If we expand the EFEs to the quadratic order, the quadratic corrections
will describe the metric modifications induced by the linear order ones, i.e., the emitted GWs. In
this second-order expansion, we can derive some “effective” EFEs that describe the average effect of
GWs with an effective energy-momentum tensor tαβ, which includes gravitational waves as an effective
source of spacetime curvature. If we are studying GWs far away from the source, the TT gauge is
valid, and, for a Minkowski background metric, we can write the GW radiated power, or luminosity,
in terms of the h+ and h× polarizations as

Pgw =
dEgw

dt
=

c3r2

16πG

∫
dΩ
〈
ḣ2

+ + ḣ2
×

〉
, (1.68)

with Ω being the solid angle. Substituting h+ and h× with Eqs. 1.67a and 1.67b, and defining
ωgw = 2ωorb

2, the radiated power can be rewritten as

dEgw

dt
=

32

5

c5

G

(
GMcωgw

2c3

)10/3

. (1.69)

Therefore, the emission of GWs causes energy loss from the binary. The total energy of the binary
system is the sum of its potential and kinetic energy

E = Ekin + Epot = −Gm1m2

2R
. (1.70)

In order for this energy to become more and more negative, as a consequence of the emission of GWs,
the orbital radius R needs to decrease, and thus the orbit shrinks. However, if R decreases, from
Kepler’s law (Eq. 1.65) we have that the frequency ωorb increases, and, from Eq. 1.69, more power is
radiated through GWs, so the binary’s energy and separation R decrease further, leading to an even
larger ωorb and so on, until R becomes so small that the two objects finally merge.

2We saw before that, for the quadrupolar mode, the frequency of the emitted gravitational waves is twice the orbital
one.
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In the adiabatic, or “quasi-circular motion”, regime, i.e., as long as the orbital velocity’s change
over one period is small compared to the orbital velocity itself

ω̇orb � ω2
orb, (1.71)

orbits can still be approximated as circular and with a slowly-varying radius. Under this approxima-
tion, if we assume that the energy radiated by GWs corresponds to the energy lost by the system, we
can equate the time derivative of energy in Eq. 1.70 to Eq. 1.69, and, using fgw = ωgw/2π, we obtain

ḟgw =
96

5
π8/3

(
GMc

c3

)5/3

f11/3
gw . (1.72)

Solving Eq. 1.72 leads to the following expression for the frequency of GWs:

fgw =
1

π

(
5

256

1

t− tc

)3/8(GMc

c3

)−5/8

, (1.73)

with tc being the coalescence time, i.e., the time at which fgw diverges. In practice, we never witness
the frequency reaching infinity, because when the two objects get close enough, they plunge one into the
other. More specifically, in a fully relativistic derivation, one would find that there exists an innermost
stable circular orbit (ISCO), a minimum value of the radial distance between the two objects after
which, in the Schwarzschild geometry, stable circular orbits are no longer allowed. At this point, the
adiabatic, quasi-circular motion approximation does not hold anymore. If M = m1 +m2 is the total
mass of the binary, this distance is given by

RISCO =
6MG

c2
, (1.74)

and the GW frequency at ISCO is

fgw,ISCO =
c3

63/2πGM
. (1.75)

After this point, the merger phase of the coalescence begins, but its description requires completely
different tools. For example, since we are dealing with compact objects, at such short distances strong-
field effects become important, and the flat-spacetime approximation for the background does not hold
anymore.

Keeping our focus on the inspiral phase, Eq. 1.73 shows how the frequency increases with time,
producing the chirping effect typical of compact binary coalescence (CBC) signals; an example of this
effect is visible in the time-frequency map of GW170817 shown in Fig. 1.2. Another useful quantity
to understand the current GW observations is the time T that a CBC signal spends in a frequency
band [fmin, fmax], which can be derived from Eq. 1.72 as

T ≈ 2.18s

(
1.21M�
Mc

)5/3
[(

100Hz

fmin

)8/3

−
(

100Hz

fmax

)8/3
]
. (1.76)

The inverse dependence on Mc shows clearly that lighter systems spend more time in band than
heavier ones. Moreover, if we focus on the inspiral part and thus take fmax = fgw,ISCO, this difference
is accentuated by the fact that heavier systems have a lower ISCO frequency (see Eq. 1.75). This is
the reason why the binary neutron star signals we detect are longer than the binary black hole ones.
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Figure 1.2: Time-frequency map for GW170817 in the LIGO detectors, where the color scale from blue to yellow
means smaller to larger amplitude values, respectively. The GW signal with its chirping effect, i.e., its frequency
increasing with time, is clearly visible. Figure from Ref. [12]

Finally, we can derive an expression for the waveform describing the inspiral GW emission in
this adiabatic, Newtonian, and quadrupolar approximation. With respect to Eqs. 1.67a-1.67b, where
the amplitudes of h+ and h×, having R and ωorb fixed, were constant, taking into account the GWs
backreaction, and therefore the time evolution of R(t) and ωorb(t), means that the argument (ωorb tret)

must be substituted by the phase Φ(tret), whose time evolution is given by Φ̇(t) = ωorb(t). The
contributions related to Ṙ can be neglected during inspiral, because of the adiabatic approximation.
The inspiral waveform for the two polarizations therefore reads

h+ = −4

r

(
GMc

c2

)5/3(ωorb(tret)

c

)2/3 1 + cos2 (ι)

2
cos (2Φ(tret)) (1.77a)

h+ = −4

r

(
GMc

c2

)5/3(ωorb(tret)

c

)2/3

cos(ι) sin (2Φ(tret)) , (1.77b)

with

Φ(t) =

(
c3 (tc − t)

5GMc

)5/8

+ Φc, (1.78)

where Φc is an integration constant, representing the phase at t = tc.

1.3.3 Binary black holes

Most of the GW events detected until now [14, 36–38] originated from binary black hole systems. In
this section, we discuss how we can use GWs to investigate the properties of these objects and to
probe the theory of general relativity.

Current detectors can measure signals produced by binaries of stellar mass BHs, i.e., with a mass
below ∼ 100M�. Studying the properties of these systems allows us to gather information about
their population and hence about the physics processes behind their formation [39, 40]. The events
detected so far already challenged our knowledge about this topic. The inferred mass distribution of
BBH systems now includes more low-mass and unequal-mass binaries than the predictions by previous
models. Moreover, the event GW190521 [17, 41] formed a remnant BH of roughly 140M�, i.e., an
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intermediate mass BH (IMBH). IMBHs are heavier than stellar BHs and lighter than supermassive
ones, with a mass between 102 and 105M�. Although there was indirect evidence of the existence of
these objects, GW190521 provided the first direct observation. In addition, the mass of the heavier
BH component in the binary was confidently estimated to lie in the so-called pair-instability mass gap.
According to stellar evolution theory, if the core formed at the end of a star’s life has mass greater
than a certain threshold value,3 an electron-positron pair production process initiates, which removes
part of the radiation pressure supporting the star against gravitational collapse. As a consequence,
the core starts contracting and it heats up, leading to a supernova explosion that blows the star away,
leaving no compact remnant behind. This process is expected to prevent the formation via stellar
evolution of BHs with masses between roughly 50 and 120M� [42,43]. Despite the uncertainty about
the precise limits of this gap, according to the current estimates the primary component of GW190521,
with an estimated mass m1 ' 85M�, could not be formed as the result of a stellar evolution process.
This raises the question of how a system like the one that generated GW190521 is created.

There are two main formation channels predicted for binary systems of compact objects [44]:

• Isolated binary evolution: in a binary system of massive stars, both of them, at the end of their
lives, become a compact object, thus creating a compact binary [45–53];

• Dynamical capture: formation of a binary by encounter and gravitational capture of two compact
objects [54–62].

Since dynamical capture processes require dense environments, like globular clusters, they are
expected to be less common than the formation by evolution of an isolated binary. However, this
channel can lead to hierarchical mergers, in which two “light” BHs merge to form a heavier one,
which can then merge again with another BH or NS. Such process could explain the formation of
the primary component of GW190521 and offers also a sensible explanation for the formation of
IMBHs. The way in which the binary is formed influences its properties and hence leaves an imprint
in the emitted GW signal. Besides the components and remnant masses, the strongest signature is
embedded in the spin [63], i.e., the rotation axis of the binary’s components, and in particular their
orientation with respect to the axis of the orbit. If BHs spins are non-zero, they interact with the
orbital angular momentum and with each other, causing visible effects in the emitted gravitational
waves. While compact binaries formed by the evolution of isolated systems are expected to have spins
aligned with the orbital angular momentum, compact binaries produced by dynamical capture can
have spins pointing in random directions. The latter will cause precession of the orbital plane and the
spin vectors themselves [64], causing phase and frequency modulations in the emitted GWs [65, 66].
Two effective spin parameters are usually employed to describe the spin of a BBH system: the effective
inspiral spin [67,68] and the effective precessing spin [66,69]. The effective inspiral spin describes the
spin aligned with the orbital angular momentum and is defined as a mass-weighted combination of
the aligned component spins

χeff =
m1χ1 +m2χ2

m1 +m2
· L, (1.79)

3Pair instability supernovae are predicted to happen for core masses greater than ∼ 65M�, but the exact threshold
value is still subject to great uncertainty.
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where L is the instantaneous orbital angular momentum, mi with i = 1, 2 are the component masses,
and χi = cSi/(Gm

2
i ), with Si being the spin angular momentum, represent the dimensionless compo-

nent spins, which for BHs have values in the range [0, 1]. Measuring a non-zero value for χeff proves
the presence of spin in the system, and its sign provides information about alignment or misalignment
with respect to the orbital angular momentum.

On the other hand, the effective precessing spin describes the in-plane spin components, which
cause the precession, and is defined as

χp = max

[
χ1 sin(θ1),

(
3 + 4q

4 + 3q

)
qχ2 sin(θ2)

]
, (1.80)

where q = m2/m1 is the mass ratio, and θi are the angles of Si with respect to the orbital angular
momentum L. A non-zero value of χp would indicate precession, providing evidence in support of
formation via dynamical capture.

Until now, the analyses performed by the LVK collaboration do not show strong evidence of pre-
cession for a specific event. However, on a population level, the analyzed BBH systems show some
misalignment of the spins with respect to the orbital angular momentum [39,40].

General relativity provides precise predictions of the GW signal emitted by BBH systems during
the full coalescence. Therefore, we can use GWs to perform tests of the theory of general relativity.
Before the detection of GWs, general relativity could be tested only in the weak-field regime, for
example from the precession of Mercury perihelion, or the orbit decay of binary pulsars due to the
emission of GWs. However, gravitational-wave signals from CBCs allow us to probe GR in the strong-
field regime, because of the short distance between the two objects and the relativistic speeds they
reach at the end of the inspiral.

A wide range of GR tests are currently performed [20–22], e.g., to probe the consistency between
data and GR predictions from our waveforms, but also the no-hair theorem [70,71] and the properties of
the remnant. Some other analyses investigate the propagation of GWs, looking for potential evidence
of dispersion and putting constraints on the graviton mass, or try to measure possible deviations from
the values of post-Newtonian coefficients (which will be discussed in detail in Sec. 2.1.2) predicted by
GR. One can also look for the presence of polarizations different from the two tensor modes that we
label as plus and cross. Finally, some analyses inquire the nature of the compact objects involved in
the merger, which might not be general-relativistic BHs, for example by measuring the spin-induced
quadrupole moment. Furthermore, exotic compact objects, including fuzzballs, gravastars, bosons
stars, and other objects described by exotic physics, all have in common the lack of an horizon,
which leads to the emission of gravitational waves echoes; finding evidence of GW echoes would be a
smoking-gun pointing to the existence of such objects.

Until now, no evidence for deviations from GR has been found, but there is an ongoing effort to
develop new analyses and improve the current ones. Deviations from GR like the ones listed above
produce deviations in the GW signal from what we would expect in GR, and hence we can measure
these effects in different ways. However, multiple kinds of systematics can mimic deviations of GR,
therefore a very accurate modeling of the waveforms is required.
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1.3.4 Binary neutron stars

Neutron stars are formed by the collapse of massive stellar cores and are supported against gravita-
tional collapse by the pressure of degenerate neutrons. NSs typically have masses between 1 and 3
M� and radii of the order of 10 km, hence the matter inside NSs reaches extremely high densities,
up to 3-4 times the nuclear saturation density ρ0 ∼ 2.7× 1014g/cm3. Therefore, neutron stars offer a
unique tool to study the equation of state of supranuclear-dense matter, considering that such den-
sity conditions cannot be reproduced in laboratory experiments. Until a few years ago, the study of
NSs was limited to electromagnetic observations, but gravitational waves now offer a new channel to
investigate these objects. Up to now, two events generated by the coalescence of BNS systems have
been detected: GW170817 [72] and GW190425 [18]. GW170817 was a very loud event and allowed
already to place some constraints on the equation of state [73, 74]. In this section, we first introduce
how NSs are described in GR and the equation of state that describes their matter. We then turn to
BNS systems, focusing on the properties that can be measured from GW signals. Finally, we discuss
the importance of the postmerger phase and we introduce the concept of quasi-universal relations.

Equation of state

The gravitational field of isolated, non-rotating NSs is described by a static, spherically-symmetric
metric. Their matter can be modeled as a perfect fluid, described by the energy-momentum tensor

Tµν = (ρ+ P )uµuν + Pgµν , (1.81)

where ρ is the total energy density, P the pressure, and uµ the four-velocity uµ = dxµ/dτ .
From the EFEs one can derive the hydrostatic equilibrium equations for a perfect fluid, which

describe the structure of NSs: the Tolman-Oppenheimer-Volkov (TOV) equations [75,76]

dm(r)

dr
= 4πr2ρ(r) (1.82a)

dP

dr
= −Gm(r)ρ(r)

r2

(
1 +

P

c2ρ(r)

)(
1 +

4πr3P

m(r)c2

)(
1− 2Gm(r)

c2r

)−1

, (1.82b)

with r being the coordinate radius. In Eq. 1.82b, the first term represents the Newtonian equation for
hydrostatic equilibrium, while the other ones are relativistic corrections generated by the metric.

In order to solve these equations and find the functions ρ(r), P (r) and m(r), we need some
information about the matter inside NSs. Such information is encoded in the equation of state (EOS)
P (ρ). With an EOS and some boundary conditions, usually chosen as P (R) = 0 and P (0) = pc,
with pc being the central pressure and r = R corresponding to the NS’s surface, one can solve the
TOV equations, obtaining the functions m(r, ρc) and P (r, ρc), which depend parametrically on the
central density ρc and determine all the macroscopic properties of the NS, such as its mass and radius.
Finding the “true” EOS describing the extremely dense matter inside NSs remains one of the most
important open questions in physics. During the inspiral phase of a BNS coalescence we can assume
NSs’ matter to be “cold”, i.e., with a temperature T = 0, because the thermal effects are negligible
for the structure, composition, and pressure of the NSs. For cold NSs, in principle, all we need to
construct the EOS is the density of baryons in the core. However, deriving the EOS is not an easy
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Figure 1.3: Mass-radius profiles for different EOSs included in the LIGO Algorithms Library (LAL) software
suite [77]. The pink lines represent EOS with not pure nucleonic matter, for example including mesons, hy-
perons or quark matter. The green horizontal lines show the mass of the two heaviest pulsars observed so far,
PSR J0348 + 0432 [78] and PSR J1614− 2230 [79], together with their 1-σ uncertainty.

task, since one needs to take into account many-body effects, and nucleon-nucleon interactions must
be described with the strong interaction, which is still not completely understood. The different ways
in which one can deal with these two aspects lead to different predictions for the EOS. Moreover, the
possible presence of phase transitions and hyperons, quarks or strange matter adds a further level
of uncertainty. The various EOSs translate into different mass-radius profiles for the NSs, as shown
in Fig. 1.3, and therefore constraining these parameters through GW signals helps constraining the
EOS. Finally, the EOS determines also what is the maximum mass that can be supported by the
TOV equations,4 MTOV. Therefore, also the precise mass measurements for pulsars contribute to
constraining the EOS, by providing a lower limit for the maximum mass that a physically-meaningful
EOS must reach.

4The maximum TOV mass corresponds to the point where, in the mass-radius function, the stable, rising branch
starts decreasing, hence becoming unstable.
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Tidal deformability

The coalescence of a BNS system happens very similarly to a BBH one. The key difference is the
presence of matter. During a BNS coalescence, the matter of one NS is deformed by the tidal field
produced by the other one. Such effect is described with a quadrupole moment Qij , which, switching
for simplicity to geometric units, i.e., setting c = G = 1, is written as

Qij = −λEij = −Λm5Eij , (1.83)

where m is the NS mass, Eij the tidal field experienced by the NS, and Λ is called tidal deformability.
The tidal deformability parameter is defined by the NS’s properties as

Λ =
2

3
k2

(
R

m

)5

, (1.84)

where k2 is the tidal Love number and R the NS’s radius, thus Λ depends on the EOS. In geometric
units, Λ is a dimensionless quantity.

The macroscopic properties, determined by the EOS, of the NSs in a binary system leave an imprint
in the GW signal emitted during the coalescence. Therefore, studying these GW signals unravels
information about the EOS of NSs’ matter. The mass and tidal deformability parameters influence
the gravitational waveform already during the inspiral, and therefore we can try to estimate them.
However, while the chirp mass can be recovered with a high precision, the effect of Λ is less strong and
enters the waveform only around a few hundreds Hz, making it more complicated to obtain precise
measurements for this parameter. For GW170817, the measured properties of the progenitor system
ruled out large values of the tidal deformability parameter [73], hence showing evidence disfavoring
the stiffest EOSs. In the future, the increased detectors sensitivity will allow us to place tighter and
tighter constraints on the m-Λ relation and, consequently, on the EOS.

Postmerger

After the merger, the fate of the BNS system is determined by its mass and EOS, depending on which
the binary can:

• Promptly collapse to a BH.

• Form a hyper-massive NS, which, thanks to differential rotation, can have mass larger than
MTOV, and survives for a few ms before collapsing to a BH.

• Form a supra-massive NS that can survive up to a roughly an hour before collapsing to a BH,
if the baryonic mass is less than the limit supported by a rigid rotating NS.

• Produce a stable NS.

In the case of formation of a NS remnant, a GW signal is emitted also during the postmerger
phase, carrying a wealth of information about the EOS. While, during the inspiral, NSs’ matter could
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be described by a cold EOS, in the postmerger temperatures up to 50-100 MeV 5 can be reached,
and therefore one needs to take into account the non-zero temperature corrections to the EOS. The
postmerger GW signal usually includes a main emission peak, commonly denoted as f2 or fpeak, related
to quadrupole oscillations in the matter fluid, plus multiple subdominant peaks produced by various
processes [80–82]. The complicated spectra of the postmerger GW emission are strongly influenced by
the EOS, therefore analyzing these signals helps gathering information about the EOS in a different
density and temperature regime with respect to the inspiral. In addition, the even higher densities
reached in this phase can lead to phase transitions, which might also leave an imprint in the GW
signal.

Quasi-universal relations

Modeling NSs and their emission is complicated by the fact that NS properties depend on the EOS,
which we do not know, and different EOS models lead to very different properties and predictions.
However, quasi-universal relations have been found between different NS parameters or features of the
emitted GW spectrum, which approximately do not depend on the EOS, and can therefore be used for
a more general description and analysis, also if the EOS is not known. These quasi-universal relations
are usually calibrated to numerical relativity waveforms (see Sec. 2.1.1). One of the first examples of
such relations is the “I-Love-Q” relation [83] between the NSs’ moment of inertia, their Love numbers
and the spin-induced quadrupole moment. Various relations have been discovered between different
NSs’ properties [84–89] and in relation to the emitted GW spectrum [90–94].

Quasi-universal relations are widely employed also in the study of postmerger signals [80,82,95–105]
to link the features in the emitted GW spectrum, such as the frequency of the dominant peak, to some
parameters of the binary system.

1.4 Detection

In this section we focus on GWs detection, discussing the basics of laser interferometers, the main
sources of noise affecting the measurement, and how we model them. We review how GW signals are
extracted from noise and we finally provide an overview of existing and planned detectors.

1.4.1 Interferometers

We saw in Sec. 1.2.2 that the effect of GWs is to periodically stretch and compress space in perpen-
dicular directions. A well-suited instrument to measure such effect is a Michelson interferometer, with
two orthogonal arms. The basic layout is shown in Fig. 1.4: a laser is shone into a beam splitter, which
reflects 50% of the laser beam into one arm and transmits 50% into the other one. The beams are
then reflected back by two mirrors placed at the end of each arm and recombine at the beam splitter.
Part of the recombined laser goes to the output photodiode, while part is fed back to the system. In
the system at rest, i.e., in absence of GWs, the two beams, when they recombine at the beam splitter,

5Temperature can be expressed in units of energy by conversion through the Boltzmann constant kb, so that 1K ='
8.62× 10−5eV and 1MeV ' 1.16× 1010K.
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Figure 1.4: Schematic representation of a laser interferometer used to detect GWs.

interfere destructively. A GW will cause a change in the interferometer’s arm length, hence producing
a variation in the interference at the output. More specifically, if we write the electric field of the
input laser as

Elaser = E0e
−iωLt−ikL·x, (1.85)

with ωL and kL being the laser frequency and wavenumber, respectively, the total electric field after
recombination at the beam splitter is [106]

Eout = −iE0e
−iωLt+ikL(L1+L2) sin [kL (L1 − L2)] , (1.86)

where L1 and L2 are the lengths of the two arms, and the power measured at the output is proportional
to

|Eout|2 = E2
0 sin2 [kL (L1 − L2)] . (1.87)

Therefore, a change in arm length induced by a GW causes a variation in the detector output power.

In general, an interferometer is sensitive to the gravitational-wave strain, defined as

h(t) =
δL

L
, (1.88)

with L the arm length in absence of GWs.
The strain h(t) is the effect of GWs as seen by the interferometer, and we need to trace it back

to the actual metric perturbations that we want to measure. The strain depends on the geometry of
the detector and is related to the metric perturbations arriving at the interferometer hdet

ij through the
detector tensor Dij

h(t) = Dijhdet
ij (t). (1.89)
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In most of the derivations reported up to now, we assumed that GWs are traveling in the ẑ direction.
However, in general, they can propagate along any arbitrary direction, and the signal arriving at the
detector hdet

ij does not usually correspond to h+, h×. In order to write the general strain in terms of h+

and h×, we consider a new coordinate system (x′, y′, z′) in which the GW propagates along ẑ′. With
respect to the (x, y, z) frame, the direction of the z′-axis is given by two polar angles (θ, φ). Moreover,
once we have the direction of the z′-axis, we need to fix the (x′, y′) coordinate system in which the
hij components correspond to h+ and h×; this is done by choosing a specific rotation angle ψ on the
plane perpendicular to ẑ′, called polarization angle. The transformation from (x, y, z) to (x′, y′, z′) can
be described by the rotation matrix Rik, such that

hdet
ij = RikRjlhkl, (1.90)

where hkl is computed for the direction of propagation along ẑ.
Finally, the strain can be written in terms of the cross and plus polarizations as

h(t) = DijRikRjlhkl = h+(t)F+(θ, φ, ψ) + h×(t)F×(θ, φ, ψ), (1.91)

where F+(θ, φ, ψ) and F×(θ, φ, ψ) are called antenna or beam pattern functions. These functions in-
clude all the angular information about the signal and they depend on the detector geometry. Their
value essentially contains information about how sensitive a given detector is to a GW coming from
a direction (θ, φ) and with a polarization angle ψ. Every detector has blind spots, i.e., sky locations
from where GWs cannot be detected. For example, a GW arriving from a direction perpendicular to
the bisector of the detector will stretch and compress the two arms by the same amount, therefore
the strain h will be zero. Therefore, one of the advantages of building a network of detectors with
different orientations is that one detector can cover the blind spots of another one.

In reality, GW detectors are not simple Michelson interferometers. They must be sensitive to a
strain h ∼ 10−21 or smaller, therefore more sophisticated instruments are needed. For example, as
appears from Eq. 1.88, to reduce the strain h to which the detector is sensitive, one can increase
the interferometer’s arm length. Current detectors have an arm length of 3-4 km, but the effective
arm length is increased to hundreds of km by implementing a Fabri-Perot cavity along the arms,
between the “input” and “end” mirrors in Fig. 1.4. A review of GW interferometers instrumentation
and techniques can be found in Ref. [107].

1.4.2 Noise characterization

The signal measured by a GW detector is not the “pure” strain h(t), but it is contaminated by different
kinds of noise. In general, the output signal of a detector is a time series s(t) and can be written as

s(t) = h(t) + n(t), (1.92)

where n(t) represents the combined noise from all the various sources. Different kinds of noise affect
GW interferometers, for example:
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• Gravity gradient noise: gravitational coupling of the mirrors with moving massive bodies near the
detector and mass density fluctuations of the air or earth surrounding it. Since the gravitational
force cannot be shielded, gravity gradient creates a “wall” of noise that prevents current detectors
from measuring anything below 10 Hz [108,109].

• Seismic noise: mechanical vibrations, both of anthropogenic and natural origin, which cause a
displacement of the mirrors; a system of attenuators is employed to reduce this kind of noise.

• Thermal noise: vibrations of mirrors or suspensions induced by the thermal movement of par-
ticles.

• Quantum noise: related to the wave-particle nature of light, it involves two effects; quantum
shot noise, caused by the uncertainty in the number of photons measured as output, and radi-
ation pressure noise, i.e., the mirror displacement generated by the fluctuating pressure of the
momentum carried by photons. Increasing the laser power would help reducing the shot noise
contribution, but at the same time radiation pressure noise is reduced by employing a low-power
laser. Current detectors try to find a balance between these two conditions, slightly favoring the
low-frequency part of the spectrum, where CBC signals spend more time in band.

Various technological solutions allow us to reduce the different kinds of noise. Moreover, if we know
how to model it, noise caused by specific effects can be directly subtracted from the data. More details
about the noise in GW detectors and related solutions can be found in Ref. [110–112].

Understanding the properties of the interferometers’ noise is crucial in order to detect and analyze
GW data. The noise in GW detectors n(t) is modeled as a stochastic Gaussian and stationary process:6

the noise generated by the system of the detector at different times produces different noise realizations,
whose probability can be described by a Gaussian function, and time shifts do not change the noise
statistical properties. Stationary Gaussian processes are described only by their average value 〈n(t)〉,
which can be set to zero without loss of generality, and by their autocorrelation function

C(τ) ≡ 〈n(t+ τ)n(t)〉, (1.93)

which describes the correlation of noise realizations separated by a time interval τ .
In frequency domain, stationarity implies that the noise Fourier components are uncorrelated

〈ñ∗(f)ñ(f ′)〉 = δ(f − f ′)S(2)
n (f). (1.94)

In Eq. 1.94, S(2)
n (f) is the power spectral density, which can be defined as the Fourier transform of the

correlation function

S(2)
n (f) ≡

∫ +∞

−∞
C(τ)ei2πfτdτ. (1.95)

6Noise modeling algorithms like the one introduced in Ref. [113] take into account also possible non-stationary features
of the noise. Moreover, a considerable effort is invested into the characterization and subtraction of glitches, bursts of
excess noise caused by different instrumental artifacts, which can mimic GW signals or overlap with them, complicating
their detection and analysis [114–118].
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More specifically, Eq. 1.95 defines the two-sided power spectral density ; however, invariance under
time translation implies that C(−τ) = 〈n(t − τ)n(t)〉 = 〈n(t)n(t + τ)〉 = C(τ), and consequently
Sn(−f) = Sn(f). Therefore, the integral over all frequencies can be substituted by an integral over
positive frequencies only and we can define the one-sided power spectral density (PSD)

1

2
Sn(f) = S(2)

n (f), (1.96)

which is usually employed in GW science, since the use of positive frequencies only is physically
justified. From a physics point of view, Eq. 1.94 means that, in frequency domain, the noise in
different frequency bins is uncorrelated and in each bin ñ(f) follows a Gaussian distribution with

amplitude
√
S

(2)
n (f).

The PSD has units of 1/Hz, and detector sensitivities are typically characterized by its square
root, the amplitude spectral density (ASD), with units of 1/

√
Hz. As an example, the pink, blue and

orange lines in Fig. 1.5 show the Advanced LIGO and Advanced Virgo sensitivities during O3.

1.4.3 Extracting signals from noise

In order to detect a GW signal, we need to somehow extract h(t) in Eq. 1.92 from the detector
output s(t) that includes noise. As we saw in the previous section, different noise sources influence
the detectors’ output, and usually the strain induced by GWs is smaller than the noise contribution.
However, if we have a model for h(t), we can multiply it by the data s(t) and take the time average
over the observation time T

1

T

∫ T

0
dt s(t)h(t) =

1

T

∫ T

0
dt h2(t) +

1

T

∫ T

0
dt n(t)h(t). (1.97)

In Eq. 1.97, the first term is definite-positive, while the second one represents a random walk
process. Hence, they can be approximated as

1

T

∫ T

0
dt h2(t) +

1

T

∫ T

0
dt n(t)h(t) ∼ h2

0 +
(τ0

T

)1/2
n0h0, (1.98)

with h0 and n0 the characteristic amplitude of the signal and noise respectively, and τ0 the variation
timescale of h(t). Ideally, Eq. 1.98 implies that for T → ∞ the noise contribution can be completely
filtered out. In reality, our observation time, and the GW signals themselves, have a finite duration.
However, Eq. 1.98 shows that, in general, with this matched filtering technique, we do not need h0 > n0

to detect a signal, but just

h0 >

√
τ0

T
n0. (1.99)

The factor
√
τ0/T can be of the orderO(10−2) for typical BBH signals, but alsoO(10−5) for continuous

ones.
Matched filtering searches are improved by applying a filter K(t) to the data

ŝ ≡
∫ ∞
−∞

dt s(t)K(t) =

∫ ∞
−∞

df s̃(f)K̃∗(f), (1.100)

with ã(f) the Fourier transform of a(t), and ∗ denoting the complex conjugate. We can then define the
signal-to-noise ratio (SNR) as the ratio between the mean value 〈ŝ〉 when a signal h(t) is present and
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the root mean square
〈
ŝ2
〉1/2 when there is no GW signal in the data. Writing these two quantities

explicitly in the Fourier domain, one finds that the signal-to-noise ratio ρ reads [106]

ρ =

〈
h|K̂

〉
√〈

K̂|K̂
〉 , (1.101)

where K̂(f) ≡ 1
2Sn(f)K̃(f) and the noise-weighted inner product 〈a|b〉 is defined as

〈a|b〉 ≡ 4<
∫ fhigh

flow

ã∗(f)b̃(f)

Sn(f)
df, (1.102)

with Sn(f) being the noise spectral density. The optimal filter, for which ρ is maximum when a GW
signal is present and minimum where the data consist of noise only, is

K̃(f) ∝ h̃(f)

Sn(f)
, (1.103)

which gives the optimal signal-to-noise ratio

ρopt =
√
〈h|h〉. (1.104)

A GW signal is usually observed by multiple detectors, each one with a SNR determined by its
antenna pattern. The information coming from multiple detectors can be combined, and, in general,
the significance of an event is given by the network signal to noise ratio

ρnet =

√√√√ N∑
i=1

ρ2
i , (1.105)

with ρi being the SNR of the single detector and N the total number of detectors.
Although very powerful, this approach requires a model for the GW signal h(t), which strongly

depends on the parameters of the sources. Therefore, matched-filter searches need template banks of
many GW waveforms for possible different sources. The LVK collaboration relies on multiple pipelines
for this kind of searches: PyCBC [119], MBTA [120], and GstLAL [121].

Without going into details, we mention here that also model-independent search methods have been
developed, for example the cWB pipeline [122, 123]. These searches typically require only coherent
response between the detectors: GW signals are expected to show, with a given time delay, in all the
operating detectors, while spurious signals, like glitches, usually happen in a single detector with no
correlation with the other ones. One of the main advantages of model-independent searches is that
they do not rely on template banks, which are highly computationally expensive to build, especially
for CBC signals generated by low-mass binaries. Moreover, if different factors are taken into account,
like precession or eccentricity, the number of required templates increases. One must also consider the
possibility of signals for which we do not have yet good models, like bursts from supernovae explosions,
and which therefore cannot be detected with the approach described above.
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Identification of events

The SNR of a candidate event basically tells us how strong the signal is compared to noise, therefore
the higher the SNR, the larger the probability that we are dealing with a GW event. A SNR above
a minimum value, usually between 4 and 8, means that the data are likely to contain a GW signal.
However, also noise fluctuations, due to instrumental or environmental sources, might cause high SNR
values, even though a GW signal is not present. Therefore, in order to assess the significance of a
candidate event, the SNR distribution of the noise must be evaluated first. This is accomplished by
computing a background distribution of the noise SNR, considering segments of detector data where we
are sure that no GW signal is present. Since a passing GW is expected to be seen in all the detectors,
unless its sky location corresponds to a blind spot of one of them, while noise artifacts should not be
correlated between detectors, one condition to claim the presence of a GW signal is usually to have
a detection in more than one instrument, with a time difference compatible with the travel time of
the GW. To estimate the background SNR distribution, time segments in different detectors, with
different artificial time shifts, are usually employed. The triggers from the background noise are then
ranked according to their SNR.7 Once we have this background distribution, for each candidate event,
we compute the false alarm rate probability, i.e., the probability of obtaining a SNR equal or larger
than the one of the candidate event just from the background fluctuations. Dividing the false alarm
probability by the total time of observation used to compute the background distribution, we obtain the
false alarm rate (FAR), which defines the significance of a detection. Choosing a threshold on the FAR
means deciding how many “errors”, intended as detections that in reality are just noise artifacts, we
consider acceptable. For example, in GWTC-3, the threshold on FAR to consider an event significant
was set to 2.0 yr−1 [14]. Setting a threshold on the FAR corresponds to set a threshold on the ranking
statistics used to compute it. For example, during O3, public alerts for potential CBC events were
released for events with FAR > 1/ (2 months), roughly corresponding to a SNR of 8.5 [124].

1.4.4 Existing and planned detectors

Currently, there exist four operating ground-based interferometers:8 two Advanced LIGO [111] in-
struments (both in the United States, one in Hanford and one in Livingston), Advanced Virgo [112]
in Italy, and KAGRA [125–127] in Japan. Another LIGO detector is being built in India [128] and is
supposed to become operational in a few years.

From the first observing run O1, various technological improvements have been implemented in
the Advanced LIGO and Advanced Virgo detectors; the increased sensitivity is clearly proven by the
rise in the number of detections, which went from the 11 detections of O1 and O2 together to the
74 of O3. However, the sensitivity can be further increased, but some of the required technological

7Here we are assuming that the optimal combined SNR is used as ranking statistics. Although this might be a good
choice for purely Gaussian and stationary noise, real detectors’ noise is affected by glitches and transients of different
nature. Therefore, in reality, search pipelines usually employ more sophisticated ranking statistics. An overview of how
the different pipelines find candidate triggers and identify events can be found in Appendix D of Ref. [14].

8There exist another ground-based interferometer in Germany, GEO600, with a 600 m arm length, which is however
used only to develop and test new technologies.
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Figure 1.5: Example of ASD curves for different detectors. The pink, blue and orange lines show, respectively,
the average sensitivity of LIGO Hanford, LIGO Livingston and Virgo during O3, while the green line represents
the expected ASD for ET. The gray area indicates the frequency band dominated by gravity gradient noise for
current detectors. The construction of ET underground will reduce this source of noise, thus allowing to gain
sensitivity down to a few Hz.

improvements necessitate the construction of new detector sites. For the upcoming years, a new
generation of detectors is planned [129]. Up to now, two of such third-generation (3G) detectors
have been proposed: the Einstein Telescope (ET) [130–135] in Europe and the Cosmic Explorer
(CE) [136–139] in the United States. One key improvement in both cases will be the increased arm
length. While CE is currently planned to include one or two L-shaped interferometers, with 20 and
40 km arm length, for ET also a different design has been proposed: a triangular detector effectively
composed of three interferometers, each one with an opening angle of 60 degrees between the arms.
Specific studies have been performed in order to understand how the different proposed designs could
affect various science cases [140].

One of the key improvements for ET is going to be an increased sensitivity below 10 Hz, which
will be achieved by placing the detector underground, thus reducing the gravity gradient noise (see
Fig. 1.5). Moreover, ET is expected to include a xylophone configuration [133], essential to reduce
the contributions of quantum noise over the whole frequency band: each detector will be actually
composed by two interferometers, one operating a high-power laser, which will increase sensitivity at
high frequencies, and one with a low-power laser, and potentially operating at cryogenic temperatures,
which improves sensitivity at low frequencies.
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Finally, the construction of another detector has been proposed, built specifically to obtain a high
sensitivity in the kilohertz band, where the merger and postmerger part fo the GW signal emitted by
BNS systems usually lies. This detector, called Neutron Star Extreme Matter Observatory [141], or
NEMO, would be built in Australia as an L-shaped interferometer with 4 km arm length. Although
its construction has not been approved yet, it is expected to have a large impact on the study of BNS
systems.
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Data analysis tools

This chapter provides an overview of the models, the statistical and computational tools employed
in gravitational-wave data analysis. The first section concerns the waveform templates used both
in matched-filtering searches and in the subsequent analyses of the event. We then review Bayesian
inference, focusing on its application to parameter estimation analyses, and finally we introduce the
main sampling algorithms employed. Moreover, since GW analyses are computationally expensive, we
need to find ways to reduce their computational cost: in the last part of this chapter, we discuss two
of such techniques, relative binning and reduced order quadratures.

2.1 Waveforms

Accurate predictions of the gravitational waveforms emitted by CBC systems play a crucial role not
only in the signal detection, as we saw in Sec. 1.4.3 regarding matched filtering, but also for the follow-
up analyses that aim to recover the parameters and properties of the sources. In order to find the
exact waveform of the gravitational signal, one needs to solve the Einstein field equations in Eq. 1.13,
which, unfortunately, cannot be accomplished analytically. Different methods have been developed
to compute theoretical models of the gravitational signal emitted during the different phases of the
binary system coalescence (see Fig. 2.1): the inspiral part can be modeled through the post-Newtonian
or the effective-one-body approximations; during the late inspiral and merger, when the strong-field
effects become important, the full EFEs must be solved numerically, by means of numerical relativity
(NR) simulations; after the merger, the ringdown phase of BBH systems is described via black hole
perturbation theory, while the postmerger phase of BNS systems again requires full NR solutions. The
different approximations and methods employed to compute the waveform lead to the construction of
multiple families of waveform approximants. This section provides an overview of how the different
waveform models are built, focusing on two models that will constitute the starting point for part
of the work presented in this thesis, IMRPhenomXPHM and IMRPhenomD_NRTidalv2. At the end of the
section, Table 2.1 provides a summary of the approximant families discussed.
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Figure 2.1: Example of a gravitational waveform emitted by a non-spinning binary black hole system with
m1 = 20M�, m2 = 18M�, and at a distance of 100 Mpc, zoomed around the merger. The colors show
approximately the different regimes, in which different techniques are needed to compute the waveform.

2.1.1 Numerical Relativity

Since it is not possible to find analytical solutions of the Einstein Field equations

Rαβ −
1

2
Rgαβ =

8πG

c4
Tαβ, (2.1)

they must be solved numerically. Building numerical codes to evolve the spacetime around coalescing
binary systems represented a great challenge for many years, until some breakthrough studies [142–144]
allowed to develop techniques to successfully simulate the coalescence of compact binaries (see, e.g.,
Ref. [145] for a review). In order to perform the required numerical integrations, spacetime coordi-
nates are quantized into a grid. Additionally, the “3 + 1” formulation allows to separate the time and
space evolution of the equations by foliating the spacetime into a sequence of space-like surfaces at
a constant time. Today, different codes to perform NR simulations are available, for both BBH and
BNS systems: BAM [146–149], THC [150], LazEv [151], the Spectral Einstein Code (SpEC) [152],
Whisky [153], and SACRA [154]. NR techniques are employed to simulate the gravitational signal
emitted by merging binary systems, but also accretion to BHs, the electromagnetic signal emitted by
BNSs, core-collapse supernovae, and a variety of astrophysical processes in which strong-field gravity is
involved [155]. NR simulations can take into account different physics and microphysics processes, and,
thanks to the accurate predictions of gravitational waveforms, they provide the data against which all
the developed waveform approximants are calibrated. Ideally, one would want the full gravitational
waveform being generated by a NR simulation, but they are computationally extremely expensive
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and cannot be used directly to analyze GW data. Although, usually, simulations are performed on
supercomputers, only the last orbits of the inspiral can be simulated: for BBH systems, the number of
inspiral orbits ranges from just a few up to roughly 100, depending on the system’s parameters and the
code’s features, with an average of approximately 20 in the most recent SXS catalog [156]; for BNSs,
instead, NR simulations generally include the last 10-15 orbits [157,158]. Therefore, to obtain the full
inspiral signal, different methods need to be employed: the post-Newtonian and the effective-one-body
approximations. Nonetheless, there exists a family of gravitational waveform models, known as surro-
gate models [159,160], which are directly interpolated on a set of pre-computed NR waveforms. These
models are extremely accurate and yield the most similarity compared to NR simulations. However,
they are slow to generate, and they can be built only for systems with a rather high total mass, given
the computational cost of the NR simulations needed, which increases for lower values of masses. The
most recent waveform model in this family is the time-domain approximant NRSur7dq4 [161].

2.1.2 Post-Newtonian expansion

In Sec. 1.3.1, we computed h+ and h× from the quadrupole formula and, in Sec. 1.3.2, we found their
expression taking into account the backreaction of the emitted GWs in an adiabatic, Newtonian, and
quadrupolar approximation. We also saw, in Sec. 1.2.3, that in reality GWs are not generated only
by the quadrupole moment, but have a multipolar structure that effectively represents an expansion
in O(v/c). All these derivations assumed GWs propagating on a flat spacetime far from the source,
where we took into account at most the second order corrections due to the energy carried by GWs.
However, when we deal with CBCs, the GWs’ source is gravitationally bound, and we cannot ignore
the spacetime curvature induced by the source itself. More specifically, for a two-body gravitationally
bound system, we can write its kinetic and potential energy in terms of the reduced mass µ and the
total mass Mtot, and the virial theorem reads

1

2
µv2 =

GµMtot

2r
, (2.2)

with r being the orbital separation. Since GMtot/rc
2 represents the gravitational interaction potential

near the source, Eq. 2.2 shows that taking into account the source’s gravity translates into an expansion
inO(v2/c2), and hence it cannot be treated independently from the expansion we introduced previously
(see Sec. 1.2.3). For semi-relativistic (v2/c2 � 1)1 and weakly gravitating (GMtot/rc

2 � 1) sources,
these curvature corrections are expressed through the post-Newtonian (PN) expansion in (v/c) [162],
in which the n-th order corresponds to the O

(
v2n/c2n

)
term.

The effects produced by the spacetime curvature induce corrections at different orders both in
the metric and in the stress-energy tensor, leading to modified equations of motion, from which one
computes the radiated energy and energy flux up to the needed order in (v/c). Working in the adiabatic
approximation, the GW luminosity originates from the change in the binary’s orbital energy averaged
over one period

F = −dE
dt
. (2.3)

1During the final phase of the inspiral, the two objects can reach velocities up to ∼ c/2, therefore high orders in
O(v/c) must be taken into account to obtain an accurate approximation.
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The energy balance equation Eq. 2.3 provides an easy way to write evolution equations for all the
binary parameters,2 for example v̇ = dE/dt dv/dE = −F/ ( dE/dv).

To simplify notation, in the following we will switch to geometrical units, i.e., c = G = 1. In
particular, the expansion is carried out in terms of the characteristic velocity of the binary, a dimen-
sionless parameter defined as v = (πMtotfgw)1/3. Writing the energy and flux in terms of the velocity
v, and using Kepler’s third law, we find two ordinary differential equations to describe the evolution
of the orbital phase, and, consequently, of the gravitational one3 [164,165]

dΦorb

dt
− v3

Mtot
= 0 (2.4a)

dv

dt
+
F(v)

E ′(v)
= 0, (2.4b)

or

t(v) = tref +

∫ vref

v
dv
E ′(v)

F(v)
(2.5a)

Φorb(v) = φorb,ref +

∫ vref

v
dv v3 E ′(v)

MtotF(v)
. (2.5b)

In the equations above, E ′ is the derivative with respect to v of the binding energy per unit mass
E = E/Mtot, while we can arbitrary choose the values of the reference quantities vref , tref and φorb,ref ,
with the latter two being integration constants.

Currently, the energy and flux are known to the 4 and 4.5 PN order respectively [166–173]:

E4(v) = −1

2
ηv2

{
1−

(
3

4
+

1

12
η

)
v2 −

(
27

8
− 19

8
η +

1

24
η2

)
v4 (2.6)

+

[
−675

64
+

(
34445

576
− 205

96
π2

)
η − 155

96
η2 − 35

5184
η3

]
v6

+

[
−3969

128
+

(
−123671

5760
+

9037

1536
π2 +

896

15
γe +

448

15
ln(16v2)

)
η

+

(
−498449

3456
+

3157

576
π2

)
η2 +

301

1728
η3 +

77

31104
η4

]
v8 +O(v10)

}

2In principle, one should take into account also the angular momentum balance equation. However, this is not needed
if we consider circular orbits and no eccentricity, which in this scenario is justified because the GWs backreaction is
expected to circularize the binary’s orbit, so that when the emitted GW signal enters in the sensitive band of current
detectors, the orbits can be effectively assumed circular in most cases [163].

3We saw in Sec. 1.3.1 that, for the fundamental GW mode, the frequency of the emitted GWs is twice the orbital one,
ωgw = 2ωorb. Since the phase is related to the frequency by dφ(t)/dt = ω, it follows that the orbital and GW phase are
related by φgw = 2φorb. In reality, as discussed in Sec. 1.2.4, GWs include also subdominant harmonics, with frequencies
∼ kωorb, where k is an integer number. Here, we discuss only the leading-order term, and therefore we have φgw = 2φorb.
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and

F4.5(v) =
32

5
η2v10

{
1−

(
1247

336
+

35

12
η

)
v2 + 4πv3 (2.7)

−
(

44711

9072
− 9271

504
η − 65

18
η2

)
v4 −

(
8191

672
+

583

24
η

)
πv5

+

[
6643739519

69854400
+

16

3
π2 − 1712

105
γe +

(
41

48
π2 − 134543

7776

)
η − 94403

3024
η2 − 775

324
η3

− 856

105
ln
(
16v2

)]
v6 −

(
16285

504
− 214745

1728
η − 193385

3024
η2

)
πv7

+

[
−323105549467

3178375200
+

232597

4410
γe −

1369

126
π2 +

39931

294
ln 2− 47385

1568
ln 3 +

232597

8820
ln
(
v2
)

+

(
−1452202403629

1466942400
+

41478

245
γe −

267127

4608
π2 +

479062

2205
ln 2 +

47385

392
ln 3 +

20739

245
ln
(
v2
))

η

+

(
1607125

6804
− 3157

384
π2

)
η2 +

6875

504
η3 +

5

6
η4

]
v8

+

[
265978667519

745113600
− 6848

105
γe −

3424

105
ln
(
16v2

)
+

(
2062241

22176
+

41

12
π2

)
η

− 133112905

290304
η2 − 3719141

38016
η3

]
πv9 +O

(
v10
)}

,

where η = m1m2
(m1+m2)2 is the symmetric mass ratio, with m1,2 being the component masses, and

γ = 0.577216... the Euler-Mascheroni constant. Inserting the expansions in Eqs. 2.6-2.7 into Eqs. 2.4a-
2.4b yields an expression for the time evolution of the GW phase. Different ways of expanding and
working with the quantity E ′(v)/F(v) in the integrals in Eqs. 2.5a-2.5b lead to different expressions
for the GW phase evolution and therefore to different waveform approximants. The models com-
puted directly from the PN expansion belong to the so-called Taylor family (see, e.g., Ref. [165] for
an overview of the various models in this family). For example, for the TaylorT2 model, the quan-
tity E ′(v)/F(v) is expanded at a consistent PN order, then integrated as in Eqs. 2.5b-2.5a to obtain
φorb(v) and t(v), which are solved numerically to find φ(t). However, GW searches and data analy-
sis are usually performed in frequency domain, therefore one needs Fourier domain models, such as
TaylorF2. The Fourier transform is commonly obtained through the stationary phase approximation
(SPA), which we briefly describe below.

From Eqs. 1.77a-1.77b, the time domain plus and cross polarizations can be written as

h+(t) = B(t)
(
1 + cos2(ι)

)
cos(2Φorb) (2.8a)

h×(t) = B(t)2 cos(ι) sin(2Φorb), (2.8b)

with B(t) representing the overall pre-factor. Since, from Eq. 1.91, h(t) = F+h+ + F×h×, the time
domain gravitational waveform reads

h(t) = B(t)

√
F 2

+ (1 + cos2(ι))2 + F 2
×4 cos2(ι) cos(Φgw(t) + φ0)

= A(t) cos(Φgw(t) + φ0), (2.9)
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where we used the fact that the GW phase is Φgw = 2Φorb,4 and with

φ0 = arctan

(
−F×2 cos ι

F+ (1 + cos2 ι)

)
. (2.10)

Thus, its Fourier transform will be

h̃(f) =

∫ +∞

−∞
dtA(t) cos(Φgw(t))e2πift

=
1

2

∫ +∞

−∞
dtA(t)

[
ei2πft+iΦgw(t) + ei2πft−iΦgw(t)

]
. (2.11)

In the first term of this integral, exp[i2πft+iΦgw(t)] has an argument that increases monotonically
with time and is rapidly oscillating, therefore its contribution approximately averages to zero. The
argument of the second term is also rapidly oscillating, but the largest contribution to the integral
comes from the point t∗ where the argument [i2πft− i2Φorb(t)] is maximum, also called saddle point.
The SPA approximation consists in expanding the exponential of the second term around this saddle
point. More specifically, the condition for the maximum reads

d

dt
[2πft− Φgw(t)]

∣∣∣∣
t=t∗

= 0, (2.12)

resulting in

πf =
1

2
Φ̇gw(t∗). (2.13)

Writing the Taylor expansion of the second term’s argument around t∗ and up to the quadratic
term,5 and assuming that the amplitude A(t) varies only slowly near t∗, we find

h̃SPA(f) =
1

2
A(t∗)ei(2πft

∗−Φgw(t∗))

∫ +∞

−∞
dt e−

Φ̈gw
2

(t−t∗)2

. (2.14)

Changing the integration variable and using∫ +∞

−∞
dx e−ix

2
=
√
πe−i

π
4 , (2.15)

we finally obtain

h̃SPA(f) =
1

2
A(t∗)

√
2π

Φ̈gw

ei[2πft
∗−π

4
−Φgw(t∗)]. (2.16)

The TaylorF2 approximant is then calculated by inserting in Eq. 2.16 the parameteric equations
Φorb(v) and t(v) that are found for the TaylorT2 model.

The final expression for the frequency-domain waveform in TaylorF2 reads

h̃(F2)(f) = A(F2)(f)e−iΦ
(F2)(f), (2.17)

4We remind that this holds because here we are interested only in the dominant mode (`,m) = (2, 2).
5The linear term in (t− t∗) cancels out due to the condition in Eq. 2.12.
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with the (quadrupolar) amplitude

A(F2)(f) =

√
F 2

+ (1 + cos2(ι))2 + F 2
×4 cos2(ι)

2r

√
5π

96
M5/6

c (πf)−7/6 (2.18)

and phase, implemented up to the 3.5 PN order,6

ΦF2(f) = 2πftref + Φref +
π

4
+

3

128η
v−5

[
7∑

k=0

φkv
k +

6∑
k=5

φlk ln(v)vk

]
. (2.19)

In Eq. 2.19, Φref represents some reference phase, while φk and φlk are the PN coefficients, whose
explicit expressions can be found in Appendix B of Ref. [174]. TaylorF2 comes with the advantage
of a completely analytical expression in frequency domain, which makes it very fast to evaluate, a
crucial feature in analyses like parameter estimation, as we will see later. However, it describes only
the inspiral part of the waveform, missing all the information from the merger and after. Moreover,
for high-mass systems, differences between the various models appear at high PN orders [165], due
to the different methods with which they are computed, the adiabatic approximation starts to break
down, and the merger and ringdown contribution to the emitted GW signal becomes larger and
larger. Therefore, it is important to build full inspiral-merger-ringdown (IMR) models that describe
the gravitational waveform emitted during the full coalescence.

2.1.3 Effective one body

A different approximation consists in mapping the two-body dynamics of the compact binary, up to
the highest PN order available, into an effective-one-body (EOB) description of the motion of a particle
with mass µ = m1m2/(m1 +m2) in an effective background metric geff

µν [175,176]. With this effective
external metric, the line element takes the form

ds2
eff ≡ geff

µνdx
µdxν = −A(r)c2dt2 +

D(r)

A(r)
dr2 + r2(dθ2 + sin2 θdφ2), (2.20)

where A(r) and D(r) can be Taylor-approximated as

A(r) =

4∑
i=0

ai(η)

ri
, (2.21a)

D(r) =
3∑
i=0

di(η)

ri
, (2.21b)

with the ai(η) and di(η) coefficients known up to the 3PN order [177]. The waveform up to the 3.5
PN order is computed by including the radiation-reaction contribution to the GW flux [178, 179].
Moreover, in order to improve the agreement with NR data in the last stages of the merger, i.e., at
high frequencies, a pseudo-4PN coefficient a5(η) is added to A(r) [176].

6The calculation of the 4 and 4.5 PN order of energy and flux, respectively, was provided only very recently. Therefore,
it will take some time to update the waveform models, and the models presented here and in the following include PN
information only up to the 3.5 PN order.
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Motion in this effective metric is described by an effective Hamiltonian Heff , from which one can
obtain the real Hamiltonian as

Hreal = Mtot

√
1 + 2η

(
Heff − µ

µ

)
−Mtot. (2.22)

If spin is not included, the binary is constrained to move on a plane, and hence we can use polar
coordinates (r, φ, pr, pφ), with pr and pφ the conjugate momenta. Finally, the EOB gravitational
waveforms can be computed by solving the following system of equations [176]:

dr

dt̂
=
∂Ĥreal

∂pr
(r, pr, pφ), (2.23a)

dφ

dt̂
=
∂Ĥreal

∂pφ
(r, pr, pφ), (2.23b)

dpr

dt̂
= −∂Ĥreal

∂r
(r, pr, pφ), (2.23c)

dpφ

dt̂
= F̂φ(r, pr, pφ), (2.23d)

where Ĥreal = Hreal/µ, t̂ = t/Mtot, and F̂φ represents the φ-component of the radiation-reaction force.

A full IMR waveform can then be created by adding a merger-ringdown model, obtained as a
superimposition of quasi-normal modes [176]. Moreover, the accuracy of EOB models is further
improved by introducing higher-order pseudo-PN terms and calibrating them against NR data [180–
183]. Spin effects can also be taken into account in the EOB formalism [184], by considering the
effective Hamiltonian of a particle of mass µ and effective spin S∗ moving in the deformed spacetime
of a BH with mass M = m1 + m2 and spin S = S1 + S2, where S1,2 are the components’ spins. The
region of validity in the parameter space of the EOB waveforms can be extended with calibration
against NR waveforms [185]; recent models include also precession [186].

Among the state-of-the-art EOB approximants we find SEOBNRv4PHM, which features precession
and higher-order modes [187], and the models in the new SEOBNRv5 family [188–191], developed in
preparation for the O4 observing run.

2.1.4 Phenomenological models

The EOB approach, together with calibration to NR simulations, provides very accurate IMR wave-
form models. However, these models are built in time domain, and a system of differential equations
needs to be solved in order to compute them, therefore they are rather slow to generate. Considering
the huge amount of waveform generations, O(106 − 107), required in GW analyses like parameter
estimation (see Sec. 2.2.2), the computational cost can become a major bottleneck. On one side, one
can find strategies to reduce the computational cost, for example by constructing reduced order mod-
els [192] (more details are given in Sec. 2.3.3). However, there exist also different and faster approaches
to the construction of gravitational waveform approximants.

An example are the phenomenological models, constructed with analytical ansätze that are cal-
ibrated against NR waveforms, where different ansätze are built for the inspiral, intermediate, and
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merger-ringdown regions. These models comprise an approximant family known as Phenom. In the
following, we discuss the IMRPhenomD model [174, 193], which represents the starting point for more
complete approximants currently employed in GW data analysis.

IMRPhenomD includes information only for the dominant (`,m) = (2, 2) mode, thus in frequency
domain the waveform reads

h̃22(f ; Ξ) = A(f ; Ξ)eiφ(f ;Ξ), (2.24)

where Ξ = (M,η, χ1, χ2) are the physical parameters for the binary, with χ1,2 the dimensionless
component spins. This waveform model employs a piecewise analytical expression for A(f ; Ξ) and
φ(f ; Ξ), distinguishing three different frequency regions: inspiral, intermediate, and merger-ringdown.

Phase

The model of the signal emitted during inspiral is built starting from the TaylorF2 phase ΦF2(f) in
Eq. 2.19, which describes the non-spinning, point-particle part of the phase, ψpp. However, as we saw
in Sec. 1.3.3, binary systems, especially BBHs, can have spin, which interacts with the orbital angular
momentum and with the spin itself; moreover, for BNS systems, the tidal deformabiliy also affects the
phase. Therefore, in general, the GW phase can be expressed as

ψ = ψpp + ψso + ψss + ψt, (2.25)

where ψso and ψss are the spin-orbit and spin-spin contributions, respectively, and ψt the tidal one.
In IMRPhenomD, spin-spin corrections are taken into account up to 2PN order [194–196] and spin-orbit
ones up to 3.5 PN order [197]. Since the waveform intends to describe BBH systems coalescences, we
do not need to include the tidal term for now. EOB approximants achieve a higher accuracy than PN
ones towards the end of the inspiral thanks to higher terms in O(v/c) that cannot be modeled by the
PN formalism. In the inpiral phase of IMRPhenomD, these higher order terms are included by adding
the next higher-order PN terms through some coefficients σi, yielding

ΦIns = ΦF2
spin(f ; Ξ) +

1

η

(
σ0 + σ1f +

3

4
σ2f

4/3 +
3

5
σ3f

5/3 +
1

2
σ4f

2

)
, (2.26)

where ΦF2
spin(f ; Ξ) is the TaylorF2 phase including spin contributions.

In the intermediate region, which connects the inspiral and the merger-ringdown regimes, the phase
ansatz reads

ΦInt =
1

η

(
β0 + β1f + β2 ln(f)− β3

3
f−3

)
. (2.27)

Finally, the merger-ringdown phase is modeled with

ΦMR =
1

η

[
α0 + α1f − α2f

−1 +
4

3
α3f

3/4 + α4 tan−1

(
f − α5fRD

fdamp

)]
, (2.28)

with fRD the ringdown frequency of the final BH, and fdamp the ringdown damping frequency.
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The model coefficients σi, βi and αi are calibrated against hybrid waveforms, created by adding
a late-inspiral and merger-ringdown description from NR simulations to an early-inspiral signal ob-
tained from the SEOBv2 model.7 For the intermediate and merger-ringdown regime, however, all the
information comes from NR simulations.

The full IMR waveform is built requiring C(1) continuity between the different regions, which are
joint via the step functions

θ(f − f0) =

−1, f < f0,

1, f ≥ f0

, (2.29)

and
θ±f0

=
1

2
[1± θ(f − f0)] . (2.30)

The complete IMR phase is given by

ΦIMR(f) = ΦIns(f)θ−f1
+ θ+

f1
ΦIntθ

−
f2

+ θ+
f2

ΦMR(f), (2.31)

with the transition frequencies being Mtotf1 = 0.018 and f2 = 0.5fRD.8 The final waveform phase is
determined up to an arbitrary phase and time shift, which are absorbed by the (σ0, σ1) coefficients.
(α0, α1) and (β0, β1) are determined by the C(1) conditions, while all the other coefficients are found
via calibration against the hybrid waveforms.

Amplitude

The inspiral amplitude is derived from a re-expanded SPA amplitude as

AIns = A0

6∑
i=0

Ai(πf)i/3 +A0

3∑
i=1

ρif
(6+i)/3, (2.32)

where the expansion coefficients Ai are given in Ref. [193], and the normalization factor A0 is obtained
by factoring out the PN leading contribution proportional to f−7/6,

A0 ≡
√

2η

3π1/3
f−7/6. (2.33)

The ρi fitting coefficients are arbitrarily set to three in order to ensure a better performance at high
frequencies while maintaining a quite simple form.

The merger-ringdown amplitude, instead, is modeled as a Lorentzian around the main ringdown
frequency,9 multiplied by an exponential to render the decay at the end of the full IMR waveform

AMR

A0
= γ1

γ3fdamp

(f − fRD)2 + (γ3fdamp)2 × exp

[
− γ2

(γ3fdamp)
(f − fRD)

]
. (2.34)

7SEOBv2 labels the uncalibrated version of the SEOBNRv2 approximant [185]. The adjustments obtained via calibration
to NR waveforms are set to zero in order to avoid possible biases caused by the different parameters space of the NR
simulations considered for SEOBv2NR compared to the ones employed for the calibration of IMRPhenomD.

8The fits performed to calibrate the various coefficients, however, are carried out on wider frequency regions, in order
to avoid boundary effects.

9The ringdown signal in time is described as a damped sinusoid, hence its Fourier transform is a Lorentzian.
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In Eq. 2.34, the γi coefficients are calibrated against NR data, while fRD and fdamp are computed
from the final mass and spin fits on NR waveforms. The effect of the exponential term is to move the
amplitude peak from the Lorentzian peak value fRD to

fpeak =

∣∣∣∣∣∣fRD +
γ3fdamp

(√
1− γ2

2 − 1
)

γ2

∣∣∣∣∣∣ . (2.35)

For the intermediate region, the amplitude is modeled as a fourth-degree polynomial

AInt = A0(δ0 + δ1f + δ2f
2 + δ3f

3 + δ4f
4). (2.36)

The δi coefficients are determined by the continuity conditions with the other regions at the transition
frequencies Mtotf1 = 0.014 and f2 = fpeak, and by matching the amplitude value Anr(fint) at the
intermediate frequency fint = (f1 + f2)/2 with values obtained from NR simulations.

The complete IMR amplitude is then

AIMR(f) = AIns(f)θ−f1
+ θ+

f1AInt(f)θ−f2
+ θ+

f2
AMR(f), (2.37)

with the θ-functions defined as in Eqs. 2.29-2.30.

Therefore, in total, the waveform is described by 17 phenomenological coefficients

Λj = {ρi, Anr(fint), γi, σi, βi, αi} . (2.38)

These coefficients are mapped onto the space of the binary’s physical parameters [67,68,198] through

Λj =

3∑
m=0

2∑
m=0

(χPN − 1)m
(
λjnmη

n
)
, (2.39)

where η is again the symmetric mass ratio, and χPN is defined as

χPN =
m1χ1 −m2χ2

M
− 38η

113
(χ1 + χ2) . (2.40)

The fitting coefficients λjmn are given in Ref. [174].

We now turn to the description to two state-of-the-art phenomenological models, which will be
employed for some of the work presented in this thesis: IMRPhenomXPHM, for precessing BBH systems
including higher-order modes, and IMRPhenomD_NRTidalv2 for BNSs.

IMRPhenomXPHM

An improved version of the IMRPhenomD model, IMRPhenomXAS, was developed in Ref. [199], where,
among others, a more refined phenomenological ansatz was employed, and the calibration was per-
formed on a wider set of NR waveforms. Nonetheless, IMRPhenomXAS still describes signals solely from
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binaries with aligned spins and includes the contribution of the (`,m) = (2, 2) fundamental mode
only. However, we know that compact binary systems can be precessing, and for high-mass-ratio and
high-mass systems the subdominant modes become non-negligible. Therefore, a waveform model that
does not take into account these two effects might lead to significant biases in the analyses. Moreover,
detecting the contribution of higher-order modes in the signal is expected to break the degeneracy
between distance and inclination angle [16]. Consequently, state-of-the art waveforms include both
these effects.

IMRPhenomXHM [200] is a phenomenological approximant constructed as IMRPhenomXAS, but includ-
ing different models for the subdominant modes (`, |m|) = (2, 1), (3, 3), (3, 2), (4, 4), each one calibrated
to NR data. As introduced in Sec.1.2.4, the multipolar expansion of the GW strain can be decomposed
in terms of the spherical harmonic modes h`m as

h(t, ι, φ; Ξ) =

∞∑
`=2

∑̀
m=−`

h`m(t,Ξ)Y −2
`m (ι, φ). (2.41)

The waveform model provides a description only for the |m| modes, because, in absence of preces-
sion, the equatorial symmetry, i.e., the fact that the geometry of the system is symmetric with respect
to the orbital plane, which remains constant over time, implies

h(t, ι, φ; Ξ) = h∗(t, π − ι, φ; Ξ), (2.42)

and, for the individual modes,
h`m(t,Ξ) = (−1)`h∗`,−m(t,Ξ). (2.43)

In the Fourier domain, each mode is described by

h̃`−m(f) = A`m(f)e−iΦ`m(f) (2.44)

and gives a contribution to the GW polarizations

h̃`m+ (f) =
1

2

(
Y`−m + (−1)`Y ∗`m

)
h̃`−m(f), (2.45a)

h̃`m× (f) =
i

2

(
Y`−m − (−1)`Y ∗`m

)
h̃`−m(f). (2.45b)

IMRPhenomXHM is built in the frequency domain from closed-form expressions for the amplitude
and phase of each mode in a piecewise way, with different expressions for the inspiral, intermediate
and merger-ringdown regions.

The ringdown signal is modeled through the quasi-normal modes emission of a perturbed Kerr
black hole [201] as

h(t, ι, φ) ≈
∑
`mn

a`mne
i(ω`mnt)+Φ`mn

−2Y`m(ι, φ), (2.46)

where −2Y`m(ι, φ) are the -2 spin-weighted spheroidal harmonics [202, 203], ω`mn the ringdown fre-
quencies, which depend only on the final BH’s mass and spin, a`mn the amplitude parameters, and
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Φ`mn some phase offsets. The difference between the spherical harmonics structure used to extract
the NR gravitational waveforms and the spheroidal harmonics employed to describe the ringdown
signal can lead to an effect known as mode-mixing [204], when multiple spheroidal components get
mixed into one spherical harmonic. As a consequence, for some modes, amplitude and phase do not
vary smoothly in the region after the merger, creating a behaviour difficult to model analytically.
IMRPhenomXHM includes a mode-mixing description for the (3, 2) mode.

The inspiral model is based on the SPA and retains the same expression for each (`,m) mode.
The amplitude description is based on a PN expansion together with some higher-order pseudo-PN
coefficients, calibrated against NR simulations, to model the high-frequency part of the signal for which
PN expressions are not available yet. The phase ansatz is based on the fact that, at low frequencies,
the equatorial symmetry implies

Φ`m ∼
m

2
Φ22. (2.47)

The approximation errors entailed by this assumption are negligible until the system reaches the
minimal energy circular orbit [204], where the inspiral part for the phase ansatz is ended. In the
intermediate region, the amplitude is modeled as an inverse fifth-order polynomial, whose coefficients
are determined by ensuring continuity with the inspiral and ringdown regions and by requiring that
the amplitude values at specific collocation points recover the values fitted from NR waveforms. A
similar procedure is employed to determine the coefficients for the phase ansazt. However, in this
case, the ansatz for the (3, 2) mode includes one extra degree of freedom to account for mode-mixing
effects. Finally, the ringdown amplitude is modeled similarly to IMRPhenomD, with the core structure
represented by a Lorentzian and an exponential factor, where the coefficients are again determined by
continuity conditions and by calibration with NR data. Considering that the strongest mode-mixing
effects appear in the ringdown region, for the (3, 2) mode the NR waveforms to which the ansatz
is calibrated are first translated into a spheroidal-harmonic basis. Similarly, the model for the ring-
down phase takes a different form for the (3, 2) mode, for which it is expressed in spheroidal harmonics.

Finally, the precessing approximant IMRPhenomXPHM [205] is obtained from IMRPhenomXHM through
the so-called twisting-up procedure [69, 206, 207]. Two different coordinate systems are considered:
the inertial J-frame, where the ẑJ axis is aligned with the total angular momentum J, and the co-
precessing L-frame, where the ẑL axis is aligned with the orbital angular momentum L. Twisting-up
means building an approximate mapping between the aligned-spin waveform modes in the co-precessing
frame and the precessing waveform modes in the inertial frame.

The underlying idea is that the waveform model describing the signal emitted from a precessing
binary can be approximated with an aligned-spin model in the frame that follows the motion of the
orbital angular momentum. Therefore, the gravitational waveform is modeled with IMRPhenomXHM in
the non-inertial L-frame and then everything is rotated into the inertial J-frame. The exact form of
this rotation is derived from the system dynamics, described by the Euler angles α, β, γ. The GW
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modes in the two frames are related via the following transformations

hJ`m =
∑̀
m′=−`

D`∗mm′(α, β, γ)hL`m′ (2.48a)

hL`m′ =
∑̀
m=−`

D`mm′(α, β, γ)hJ`m. (2.48b)

In Eq. 2.48a-2.48b, D`mm′ are the Wigner D-matrices [208]

D`mm′(α, β, γ) = eimαeim
′γd`mm′(β), (2.49)

with d`mm′(β) the real-valued Wigner d-matrices, which are polynomials in cos(β/2) and sin(β/2).
Therefore, the frequency-domain GW polarizations in the inertial frame, as a function of the modes

in the co-precessing L-frame, read10

h̃J+(f > 0) =
1

2

∑
`≥2

∑̀
m′>0

h̃L`−m′(f)eim
′γ
∑̀
m=−`

[
A`m−m′ + (−1)`A`∗mm′

]
, (2.50a)

h̃J×(f > 0) =
i

2

∑
`≥2

∑̀
m′>0

h̃L`−m′(f)eim
′γ
∑̀
m=−`

[
A`m−m′ − (−1)`A`∗mm′

]
, (2.50b)

where the mode-by-mode transfer functions are defined as

A`mm′ = eimαd`mm′(β)−2Y `m. (2.51)

IMRPhenomXPHM represents a computationally efficient, state-of-the art model for the GW signal
emitted during BBH coalescences. It includes both precession and higher-order modes, hence it was
one of the models employed in the LVK analyses of O3 data [14,38].

IMRPhenomD_NRTidalv2

In BNS systems, the effects of matter leave an imprint in the GW signal emitted during coalescence.
Measuring such signatures represents one of the main goals of GW data analysis, because it allows us
to constrain the EOS describing NSs’ matter.

In frequency domain, the gravitational waveform reads

h̃(f) = Ã(f)e−iψ(f), (2.52)

where the phase can be divided into the explicit contributions

ψ(ω̂) = ψpp(ω̂) + ψso(ω̂) + ψss(ω̂) + ψt(ω̂) + ... (2.53)

10Since h̃J+,×(f) is the Fourier transform of the real function hJ+,×(t), the following property holds: h̃J+,×(f) =

h̃J∗+,×(−f). Therefore, one can equivalently consider only the positive or negative frequency regime. In this case, positive
frequencies are chosen for consistency with other GW data-analysis tools.
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with ω̂ = Mtotωgw the dimensionless GW frequency. The tidal term ψt enters at the 5PN order and
in the PN approximation is computed as [209–211]

ψt(v) =
3

128η
v−5

2∑
i=1

ΛiX
4
i

[
−24(12− 11Xi)v

10 (2.54)

+
5

28
(3179− 919Xi − 2286X2

i + 260X3
i )v12 + 24π(12− 11Xi)v

13

− 24

(
39927845

508032
− 480043345

9144576
Xi +

9860575

127008
X2
i −

421821905

2286144
X3
i

+
4359700

35721
X4
i −

10578445

285768
X5
i

)
v14

+
π

28
(27719− 22127Xi + 7022X2

i − 10232X3
i )v15

]
,

where i = {1, 2} is the index labeling the two NSs in the binary, Xi = mi
Mtot

, Λi = 2
3k2

(
Ri
mi

)5
is the

tidal deformability parameter introduced in Eq. 1.84, with Ri and mi being the radius and mass of
the component NSs, respectively, and η = m1m2/M

2
tot as usual.

The NRTidal approach introduced in Ref. [158] provides a closed-form approximation for the
phase tidal contribution in Eq. 2.54, calibrating it against NR simulations obtained with different
EOSs. This model can be added to all the existing waveform approximants for BBH systems, creating
a BNS waveform model. In its improved version NRTidalv2 [212], the frequency-domain tidal phase
contribution is obtained via the SPA and approximated as

ψt(x) = −κt
eff

39

16η
x5/2P̃NRTidalv2(x), (2.55)

with x = (ω̂)2/3. In the above Eq. 2.55, κt
eff is the effective tidal coupling, defined as

κt
eff =

2

13

[(
1 + 12

X2

X1

)(
X1

C1

)5

k1
2 + (1↔ 2)

]
, (2.56)

where {1, 2} represents the NS label, C1,2 ≡ m1,2/R1,2 the NS compactness, with R1,2 the NS radius,
and k1,2

2 the static quadrupolar tidal Love numbers [213–216]. The Padé approximant P̃NRTidalv2(x)

is parameterized as

P̃NRTidalv2(x) =
1 + ñ1x+ ñ3/2x

3/2 + ñ2x
2 + ñ5/2x

5/2 + ñ3x
3

1 + d̃1x+ d̃3/2x3/2 + d̃2x2
, (2.57)

where ñ1, ñ3/2, ñ2, and d̃3/2 are fixed by requiring agreement with the PN expression in Eq. 2.54, while
the other coefficients are fitted against NR waveforms. Due to the lack of a large set of high-quality NR
simulations for asymmetric BNS systems, the NRTidalv2 model is constructed for equal-mass binaries
only. Adding the NRTidalv2 model for the tidal phasing to the IMRPhenomD approximant results in
the BNS waveform model IMRPhenomD_NRTidalv2.

The GW phase tidal contribution depends on two combinations of the NS’s tidal deformabilities
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2.2. Bayesian inference

Λ1 and Λ2, the mass-weighted tidal deformability [217,218]

Λ̃ =
8

13

[(
1 + 7η − 31η2

)
(Λ1 + Λ2) +

√
1− 4η

(
1 + 9η − 11η2

)
(Λ1 − Λ2)

]
(2.58)

=
16

3

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 +m2)5

and

∆Λ̃ =
1

2

[√
1− 4η

(
1− 13272

1319
η +

8944

1319
η2

)
(Λ1 + Λ2) (2.59)

+

(
1− 15910

1319
η +

32850

1319
η2 +

3380

1319
η3

)
(Λ1 − Λ2)

]
,

where we assumed m1 > m2.
Λ̃ and ∆Λ̃ determine the tidal phase contribution to the 5PN and 6PN order, respectively, therefore

their effect appears in the high-frequency part of the GW signal, starting from a hundred Hz. Being
the leading order, Λ̃ is usually much better constrained than ∆Λ̃. In principle, both Λ̃ and ∆Λ̃ are
needed in order to determine the tidal deformabilities Λ1,2 of both NSs, but in the NRTidal (as well as
in the NRTidalv2) model the system is assumed to have equal masses and hence, assuming the same
EOS for both NS, the same tidal deformability, Λ1 = Λ2. The analysis of GW170817 data with the
IMRPhenomD_NRTidalv2 model already allowed us to place some constraints on the measurement of Λ̃

and, consequently, on the EOS [73].

2.2 Bayesian inference

Once a GW signal is detected, a lot of information can be extracted from it. For example, we want to
determine which kind of source emitted the signal and recover its parameters, or check whether the
signal is consistent with the predictions of general relativity. Different analyses have been developed
to investigate multiple aspects of the GWs signals and sources, usually in the framework of Bayesian
inference, which is the topic of this section.

2.2.1 Probabilities and Bayes theorem

The probability of a proposition or event A, defined as a subset of the set of all outcomes of an
experiment, tells us how likely A is to be true or to happen, and takes values between 0, corresponding
to impossible, to 1, corresponding to certain. The sum of probabilities of all possible outcomes is 1 by
definition. Two events are defined to be mutually exclusive when their joint probability is P (A∩B) ≡
P (A,B) = 0 and independent when P (A ∩ B) ≡ P (A,B) = P (A)P (B). Finally, for two mutually
exclusive events, the probability of event A or event B to happen is simply P (A∪B) = P (A) +P (B).

From these “rules” we can define the conditional probability of an event A occurring given another
event B as11

P (A|B) =
P (A ∩B)

P (B)
. (2.60)

11Since probabilities are not absolute, but related to the context in which they are measured, every probability is
conditioned to whatever background information I is available at the moment of performing the experiment. Therefore,
in principle, each probability should be expressed as p(A|I), p(B|I), p(A|B, I), and so on, but here we drop the I-
conditioning to simplify notation.
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There exist two different approaches to statistics: Bayesian and frequentist. In Bayesian statis-
tics, probabilities µ are random variables with a probability distribution p(µ). Based on some prior
knowledge, we might have some degree of belief in p(µ) before the experiment, and we use the data to
update our knowledge about p(µ). On the other hand, frequentist statistics considers probabilities as
fixed values and does not incorporate any prior knowledge. The probability µ is determined through
the experiment, as the frequency of specific outcomes; with more and more repetitions of the experi-
ment, the collected data sample gets closer and closer to the true population distribution. Although
both approaches are employed in different branches of physics, the frequentist one assumes that we
have access to multiple realizations of the same experiment, which allows us to “count” the different
outcomes. This is not possible in GW physics, were we have access to data only from single events.
Therefore, in GW data analysis usually a Bayesian approach is adopted.

Bayesian statistics is based on Bayes theorem, which can be derived from Eq. 2.60

P (A|B) =
P (B|A)P (A)

P (B)
. (2.61)

Essentially, Bayes theorem shows how our prior knowledge about something, in this case about the
event A, is updated thanks to the data B, resulting in the posterior knowledge P (A|B).

Given a set of mutually exclusive and exhausting events Bi, where the latter condition simply
means that

∑
i P (Bi) = 1, the marginalization rule states

P (A) =
∑
i

P (A,Bi). (2.62)

Probability distributions can be discrete, when we assign a probability value to each outcome,
or continuous, when we evaluate them for a continuum of values in a given range. A continuous
probability for a variable x is described by a probability density function pdf(x), defined as

P (x ∈ [a, b]) =

∫ b

a
pdf(x) dx. (2.63)

In this case, the marginalization rule becomes

pdf(x) =

∫
pdf(x, y) dy. (2.64)

2.2.2 Parameter estimation

In the context of GW data analysis, Bayes theorem can be employed to find the probability of specific
values for the source’s parameters, given the observed detector data d and under the hypothesis H.
H represents a hypothesis regarding the signal in the data, for example if it was generated from a
BNS or BBH system; in parameter estimation (PE) analyses, usually H corresponds to the waveform
model employed to analyze the data.

Equation. 2.61 can be formulated as:

p(~θ|H, d) =
p(d|H, ~θ)p(~θ|H)

p(d|H)
, (2.65)
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where ~θ denotes the set of parameters. The posterior probability p(~θ|H, d) represents the probability
density function of a specific set of parameters values ~θ, given the data d and the hypothesis H. The
prior probability density p(~θ|H) encodes our prior knowledge about the source or the model: for
example, if our hypothesis is that the signal was produced by a BNS system, we know that the com-
ponent masses will be in the range [1−3]M�, not larger. The evidence, or marginal likelihood, p(d|H)

describes the probability of observing the data d given the model H, independently of the specific
choice of parameters ~θ; for PE purposes, it just serves as a normalization factor. It is determined by
the requirement that probability must be normalized∫

dN θp(~θ|d,H) = 1, (2.66)

with N being the total number of parameters, and is given by

p(d|H) =

∫
d~θ p(d|H, ~θ)p(~θ|H), (2.67)

where the integral is performed over the whole parameter space. The evidence, however, constitutes
the key ingredient in model selection and hypothesis ranking, as we shall see in Sec. 2.2.4. Finally,
the likelihood p(d|H, ~θ) represents the probability of observing the data d with the specific set of
parameters ~θ and model H. Assuming that the data consists of Gaussian noise n(t) and a GW signal
h(t, ~θ), cf. Eq. 1.92, where now the detector output is denoted by d, in the frequency domain the
likelihood takes the form [219]

p(d|H, ~θ) ∝ exp

[
−1

2
〈d− h(~θ)|d− h(~θ)〉

]
, (2.68)

with the GW signal h(~θ) depending on the source parameters. In Eq. 2.68, 〈a|b〉 indicates the noise-
weighted inner product defined in Eq. 1.102 as

〈a|b〉 ≡ 4<
∫ fhigh

flow

ã∗(f)b̃(f)

Sn(f)
df, (2.69)

with Sn(f) the noise spectral density, ã(f) the Fourier transform of a(t), and ∗ denoting the complex
conjugate.

2.2.3 Characterizing and combining posteriors

The posterior probability density p(~θ|H, d) contains information about all the N parameters in ~θ.
Therefore, once obtained p(~θ|H, d), we need to extract information about the single parameters θi.
This is accomplished through the marginalization rule in Eq. 2.64 as

p(θi|H, d) =

∫
d~λ p(~θ|d,H) for~λ = ~θ\θi. (2.70)

Equation 2.70 allows us to get the one-dimensional posterior distribution for each of the parameters in
the set ~θ. From such distribution, one can compute point estimates, i.e., significant values providing
the best estimate of the parameter given its posterior, like the mean value

θmean
i =

∫ θmax
i

θmin
i

dθi p(θi|d,H), (2.71)
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or the median value θmedian, defined through

1

2
=

∫ θmedian
i

θmin
i

dθi p(θi|d,H). (2.72)

The width of the posterior distribution indicates how well the parameter is constrained and provides
the uncertainty on the point estimate values. We can define a γ-credible interval as the interval
[θlow
i , θhigh

i ] in which a parameter θi falls with probability γ:

γ =

∫ θhigh
i

θlow
i

dθi p(θi|d,H), (2.73)

where θlow
i and θhigh

i are defined as

1

2
(1− γ) =

∫ θlow
i

−∞
dθi p(θi|d,H) and 1

2
(1− γ) =

∫ +∞

θhigh
i

dθi p(θi|d,H). (2.74)

The most commonly used credible intervals are 90%, 68% or 95%, with the last two corresponding,
respectively, to the 1-σ and 2-σ standard deviation intervals for a Gaussian probability distribution.

It has been shown [220] that, under the correct prior assumptions, these credible intervals actually
represent the confidence we have in the recovered parameters, and therefore are consistent with the
frequentist confidence intervals. In frequentist analysis, the γ-confidence interval represents the range
in which we expect the outcome to be γ times out of the total number of realizations.

If we have data from N independent events d1, d2, ..., dN with measurements of the same set of
parameters ~θ, we can combine their information to obtain tighter constraints on ~θ by computing the
combined posterior

p(~θ|d1, d2, ..., dN ,H) =
p(d1, d2, ..., dN |~θ,H)p(θ|H)

p(d1, d2, ..., dN |H)
. (2.75)

Since the N measurements are independent, their joint probabilities are

p(d1, d2, ..., dN |~θ,H) =
N∏
i=1

p(di|~θ,H), (2.76)

p(d1, d2, ..., dN |H) =
N∏
i=1

p(di|H) (2.77)

and the combined posterior can be written as

p(~θ|d1, d2, ..., dN ,H) = p(~θ,H)

N∏
i=1

p(di|~θ,H)

p(di|H)

= p(~θ,H)1−N
N∏
i=1

p(~θ|di,H). (2.78)
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2.2.4 Hypothesis ranking and model selection

One of the main applications of Bayesian analysis is comparing different hypotheses to investigate
which one explains the data better. Let us consider two different hypotheses, HA andHB; for example,
one might represent a signal consistent with GR and the other one a signal with deviations from GR.
For each one of them, the data yield a posterior distribution, which from Bayes theorem reads

p(HA|d) =
p(HA)p(d|HA)

p(d)
, (2.79)

and same for hypothesis HB. In Eq. 2.79, p(HA) denotes the prior associated with hypothesis HA and
p(d|HA) is the marginal likelihood, or evidence, of hypothesis HA, i.e., the denominator in Eq. 2.65.
Model comparison is performed by considering the ratio between the posterior probabilities for the
different hypotheses, also called odds ratio

OBA =
p(HB|d)

p(HA|d)
=
p(d|HB)p(HB)

p(d|HA)p(HA)
= BBA πBA . (2.80)

The prior odds πBA = p(HB)/p(HA) represents our prior degree of belief in the different hypothesis.
If, before looking at the data, we have no reason to prefer one of the models, the prior odds is usually
set to πBA = 1. The Bayes factor BBA , on the other hand, is obtained from the evidence ratio, and,
using Eq. 2.67, reads

BBA =
p(d|HB)

p(d|HA)
=

∫
d~θB p(d|~θB,HB)p(~θB|HB)∫
d~θA p(d|~θA,HA)p(~θA|HA)

. (2.81)

In particular, we have distinguished between the set of parameters ~θA for hypothesis HA and ~θB for
HB, because different models can have different sets of parameters. This leads us to the advantage
of comparing models through odds ratios or Bayes factors:12 it naturally embeds Occam’s razor, the
principle according to which, if two theories explain the data equally well, the simplest one is to be
preferred. For example, if we compare one model, H1, with one free parameter, and another model,
H2, with two free parameters, the second model will likely describe the data better, thanks to its
additional degree of freedom. This will result in a higher likelihood for this model p(d|~θ2,H2), which
is however not “physical”, i.e., due to the fact that H2 actually is the best theory for the data, but
just a spurious effect of the additional degree of freedom. The Bayes factor, however, is computed
as the ratio of the integrals over the parameters space of the likelihood times the parameters prior;
therefore, a model with more parameters will have a larger parameter space and a “penalizing” prior
that compensates the effect of the larger likelihood.

Also in this case, if we have a set of N independent observations d1, d2, ..., dN , we can combine
Bayes factors, and consequently odds ratios, to obtain more stringent constraints

BB(comb)
A =

p(d1, d2, ..., dN |HB)

p(d1, d2, ..., dN |HA)
=

∏N
k=1 p(dk|HB)∏N
k=1 p(dk|HA)

=
∑
k

BBA,k, (2.82)

where BBA,k denotes the Bayes factor from the k-th observation.

12If we have no initial preference for one of the models compared, and therefore πBA = 1, the Bayes factor is equivalent
to the odds ratio, OBA = BBA . If, instead, one of the hypotheses is preferred due to our prior knowledge, we set
πBA = p(HB)/p(HA) = α. However, it just gives an overall scaling factor to the odds ratio.
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2.3 Computational methods

Estimating posterior probability densities or evidences to perform Bayesian analyses as explained in
the previous section can prove to be a very challenging task from the computational point of view.
Likelihood or evidence evaluations require multidimensional integrals over the space of parameters ~θ:
when dealing with CBCs, the GW signal depends on both the intrinsic parameters of the binary, e.g.,
masses and spins, and extrinsic ones, such as distance, inclination, and so on. For BBH systems, we
are speaking of a total of 15 parameters, which become 17 for BNSs, since in this case we need to
include also the NSs’ tidal deformabilities. In addition, some analyses extend the existing models to
allow for additional effects, for instance due to GR violations, hence further increasing the number of
free parameters.

Approximation methods exist to predict the accuracy of measurements from GW data, like the
Fisher matrix formalism, which we briefly describe below. Let us consider a signal h with a high SNR
and generated from a source with parameters θ̂k in ~θ: if the priors are chosen constant over some
parameter ranges, the posterior probability density will depend only on the likelihood. Assuming
Gaussian and stationary noise, the likelihood can be approximated as a multivariate Gaussian centered
on the true parameters’ values θ̂k

p(~θ|d,H) ∝ p(d|H, ~θ) ∝ e−
1
2

∑
ij Γijδθ

iδθj . (2.83)

In Eq. 2.83, δθk = θk− θ̂k ' θk− θkml, because, given the high SNR, the maximum likelihood (ML)
values θkml, i.e., the parameter values at which the likelihood peaks, are assumed to correspond to the
true parameter values. The Fisher matrix elements Γij are computed as

Γij =

〈
∂h

∂θi

∣∣∣∣ ∂h∂θj
〉∣∣∣∣

ml
, (2.84)

estimated at the maximum likelihood values ~θml, and provide an estimate of the accuracy with which
a parameter can be estimated. In this high-SNR scenario, the parameters distribution is approxi-
mated with a Gaussian centered at θkml and with standard deviation ∆θk =

√
Σkk, with Σij being

the variance-covariance matrix and Σkk the diagonal element corresponding the parameter k, with no
summation implied. The inverse of the Fisher matrix yields the covariance matrix, Σij ≡ (Γij)

−1, and
thus the estimate of the uncertainty on the parameters recovery.

Although the Fisher matrix formalism supplies a very efficient way to evaluate measurement accu-
racy, it relies on the assumption that the signal has a very high SNR and, therefore, that the posterior
distribution for ~θ peaks at the maximum likelihood value ~θml. However, in reality, we do not always
deal with high-SNR signals, and the presence of noise in real interferometer data will cause a shift of
~θml with respect to the true parameters’ values. Furthermore, we are not interested only in the esti-
mated error for parameters measurements, but we want to recover realistic posterior distributions and
compute the evidence. For this purpose, different techniques have been developed to extract informa-
tion from the GW data. The direct computation of posteriors and evidences is usually not possible due
to the high dimensionality of the parameter space, therefore sampling methods are employed, meaning
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that the population’s features are estimated from samples that form a subset of the population. In
this section, we introduce two stochastic sampling methods, i.e., algorithms based on repeated ran-
dom sampling, which are widely used in GW data analysis: nested sampling and Markov chain Monte
Carlo (MCMC) sampling. Despite their efficiency, the computational cost of these algorithms becomes
higher and higher with the increasing number of events, their SNR, and their duration, making it a
crucial point to develop techniques to reduce the computational cost. Two of these methods, relative
binning and reduced order quadratures, are introduced at the end of this section.

2.3.1 Nested sampling

The nested sampling algorithm, introduced by Skilling in 2006 [221], computes the evidence in Eq. 2.67

p(d|H) =

∫
d~θ p(d|H, ~θ)p(~θ|H) (2.85)

by evaluating the contributions of nested shells in the prior space volume and supplies posterior
distributions as a byproduct. To simplify notation, following Ref. [221], we call the evidence Z, the
likelihood function p(d|H, ~θ) = L = L(~θ), and the prior p(~θ|H) = π(~θ); thus, Eq. 2.85 can be rewritten
as

Z =

∫
L(~θ)π(~θ) d~θ. (2.86)

This multi-dimensional integral is substituted with a one-dimensional one by defining the prior
mass

X(λ) =

∫
~θ:L(~θ)>λ

π(~θ) d~θ (2.87)

as the integral over the prior volume of all parameter points ~θ whose likelihood L(~θ) is greater than a
value λ. Since the prior π(~θ) is normalized, X(λ) ∈ [0, 1], where X = 1 represents the mass enclosed in
the hypersurface where all points have likelihood greater than λ, i.e., λ corresponds to the minimum
likelihood value λ = Lmin, while X = 0 corresponds to the situation where no point with a larger
likelihood can be found, i.e., to λ = Lmax. This allows us to approximate Eq. 2.86 as

Z =

∫ 1

0
L(X)dX, (2.88)

where L(X) is the inverse of Eq. 2.87 and is a positive-valued, monotonically decreasing function
of X. For a prior mass X within the prior parameter space enclosing all the points with likelihood
smaller than λ, L(X) is the likelihood of the points on the hypersurface that bounds the prior mass X.

Nested sampling finds, in the parameter space defined by the prior, points ~θk with increasing
values of likelihood Lk and decreasing prior mass Xk. From these samples, the evidence is computed
by approximating the integral in Eq. 2.88 with a Riemann sum

Z ∼ Ẑ =

N∑
k=0

f(Lk)∆Xk ≡
N∑
k=0

ŵk, (2.89)

where ∆Xk = Xk−1 − Xk is the difference in prior mass, and the exact expression for the function
f(Lk) depends on the integration rule applied. For example, one can employ a trapezoidal integration
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scheme with f(Lk) = 1/2(Lk−1 + Lk).

According to Bayes theorem, the parameters’ posterior distribution, with the new notation, reads

p(~θ|d,H) =
L(~θ)π(~θ)

Z
. (2.90)

Therefore, using the discrete approximation above, we can find the posterior distribution by assigning
to each sample point ~θk an importance weight

p(~θk|d,H) ≡ pk ' p̂k =
ŵk∑N
k=0 ŵk

=
ŵk
Z
. (2.91)

Basically, the posterior probability of a given set of parameters ~θk corresponds to its relative contri-
bution to the total evidence.

The nested sampling algorithm works as follows:

1. First, Nlive live points
{
~θ1, ~θ2, ..., ~θNlive

}
are randomly sampled from the prior and their likelihood

computed.

2. The sample with the lowest likelihood, which we label as ~θk, is removed from the live points,
i.e., it becomes a dead point, and its prior mass Xk is estimated statistically, then saved together
with the point’s likelihood Lk as (Lk, Xk).

3. The evidence is increased by Zk = f(Lk)∆Xk.

4. We randomly draw a new sample ~θj from the prior, with the condition that L(~θj) > Lk; in this
way, we have again Nlive live points.

5. We repeat the previous steps, finding a series of (Lk, Xk) values, with increasing values of likeli-
hood Lk and decreasing values of prior mass Xk. The algorithm stops when a given termination
condition is reached; an example of a possible termination condition will be provided later.

From the sequence of (Lk, Xk) values provided by the nested sampling algorithm, we can compute the
evidence and the posterior distributions with Eq. 2.89 and Eq. 2.91.

Two main technical difficulties arise when implementing this algorithm. First, in step (2.) one
needs to compute the prior mass. Calculating it explicitly turns out to be very challenging in the
high-dimensional parameter space we are investigating. Therefore, the value of Xk at each step is
estimated statistically. The underlying idea is that, since the sampled points are all drawn from the
prior distribution, according to the probability integral transform,13 the prior mass, which technically
is the cumulative distribution function of samples drawn from the prior with likelihood values L > Lk,
follows a uniform distribution, p(X) = U [0, 1]. At the first iteration we set X0 = 1, meaning that we
are considering the maximum prior mass possible, enclosed by the hypersurface comprised by points

13The probability integral transform states that, if we draw random samples from a continuous (probability) distribution,
their cumulative distribution function will follow a uniform distribution.
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Parameter space Prior mass

.
.

....
.

.

Increasing number of iterations

Figure 2.2: Left : Representation of likelihood hypersurfaces for different sampled points assuming one live point
and a two-dimensional parameter space. Right : evolution of the likelihood as function of the prior mass L(X),
as introduced in Eq. 2.88; at each iteration of the algorithm, i.e., for subsequent dead points, the likelihood
increases and the prior mass shrinks.

with the minimum likelihood. However, as we proceed, the points we remove from the live points will
have increasing likelihood and decreasing corresponding prior masses, as shown in Fig. 2.2. Therefore,
at each iteration, instead of computing the prior mass of the specific point ~θi, we pick a value of prior
mass in U [0, Xk], whith k = i − 1, since we know that the new prior mass must be Xi < Xk. In
particular, if we have a set of Nlive points, each one with prior mass Xi, the probability of having prior
mass not larger than a value χ corresponds to the probability of having all prior masses {Xi} smaller
or equal to χ. Assuming the samples are independent, we can write

P ({Xi} ≤ χ) =

Nlive∏
i=1

P (Xi ≤ χ). (2.92)

Since the prior mass distribution, as we saw before, is uniform in [0, 1], and for a uniform distribution
the cumulative distribution function is

F (y) =

∫ y

0
dy′ = y, (2.93)

we have

P ({Xi} ≤ χ) =

Nlive∏
i=0

∫ χ

0
dXi

=

Nlive∏
i=1

χ = χNlive . (2.94)
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Finally, the probability density for the prior mass maximum value χ is given by

p(χ) =
d

dχ
P({Xi} ≤ χ) = Nliveχ

Nlive−1. (2.95)

Therefore, at each iteration, instead of computing the prior mass of the given point, we pick a value
from the p(χ) distribution. Mathematically, from Eq. 2.95 we see that χ follows a beta distribution

p(χ) = Beta(χ;Nlive, 1), (2.96)

which represents the probability distribution of the maximum value of prior mass. Nested sampling
implies that at each iteration we find a prior mass smaller than the previous one. Therefore, we set
X0 = 1, but for the following points the upper bound of the prior mass is determined by the prior
mass of the last dead point, so Xi ∈ [0, Xi−1]. We define the shrinkage ratio t = Xk/Xk−1, which
follows the same distribution

p(t) = Beta(t;Nlive, 1). (2.97)

In practical terms, at each iteration k we generate a beta distribution depending on the number
of live points Nlive, from which we randomly draw a value of the shrinkage ratio tk, and we compute
the prior mass as Xk = tkXk−1.

This shrinking effect of the prior mass leads us to the second technical difficulty of this algorithm:
drawing random and independent samples from the prior mass gets more and more difficult as Xk

gets smaller. In principle, a brute force method would be to just pick a point, compute its likelihood
and reject it if it does not satisfy the constraint L(~θk) > L(~θk−1). However, one can easily see how
this becomes more and more inefficient as Lk increases and Xk decreases. Different nested sampling
algorithms employ different techniques to overcome this issue, for example by “guessing” the distribu-
tion of parameters in a likelihood shell from the distributions in the previous ones [219,222–224].

The statistical approach to the evaluation of Xk through random draws of tk from a beta distribu-
tion generates uncertainties on the estimated values. Nonetheless, the mean and standard deviation
on the shrinkage ratio, considering large values of Nlive, read

〈t〉 =
N

N + 1
≈ 1− 1

N
≈ e−1/N (2.98)

σ2
t =

N

(N + 1)2(N + 2)
≈ 1

N2
. (2.99)

Therefore, the uncertainty on t decreases with increasing Nlive and, if we choose a sufficiently large
number of live points, typically of the order O(103), it becomes negligible. This justifies the statistical
evaluation of t, but in the end we are interested in the parameters’ posterior and in the Bayes factors,
whose statistical error generally does not become negligible even by increasing the number of live
points (cf. Fig. 4 in Ref. [219]).

The final missing piece is the algorithm termination criterion. At each iteration, the remaining
evidence is approximated with

∆Ẑk ≈ Lmax,kXk, (2.100)
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where Lmax,k is the likelihood of the point with the maximum likelihood among the remaining live
points. The idea is to stop when the evidence is estimated with the desired accuracy, which is translated
into a threshold on the log-ratio between the estimated and the remaining evidence

ε < ∆ ln Ẑk ≡ ln

(
Ẑk + ∆Ẑk
Ẑk

)
. (2.101)

The value ε � 1 is chosen arbitrarily. This criterion essentially means that we stop the algorithm
when we think that the maximum contribution that could come by adding sample points is negligible,
i.e., a fraction ε, compared to the evidence accumulated up to that point.

2.3.2 Markov chain Monte Carlo

With a different approach, the MCMC method samples directly the posterior distribution, without
need to compute the evidence first. Markov chain processes define a sequence of states of a system, in
which each state Xi depends on the previous one Xi−1 and only on the previous one, meaning that all
the earlier states Xi−2, Xi−3... play no role in determining Xi. Markov chains are usually characterized
by a transition matrix M , a square matrix that describes the probability of transition from one state
to another, and a stationary distribution ξ, i.e., a probability distribution that does not change over
time: ξ = ξM . The existence of a stationary distribution for a transition matrix M relies on the
detailed balance condition14In general, “detailed balance” refers to systems that can be decomposed
into elementary processes and indicates that, at equilibrium, every process is in equilibrium with its
reverse. which requires that the transformation matrix M satisfies the reversibility condition

ξiMij = ξjMji ∀i, j. (2.102)

This condition is necessary to ensure that

{ξM}j =
∑
i

ξiMij =
∑
i

ξjMji = ξj , (2.103)

where in the last step we used the fact that the sum of transition probabilities from one state to
all possible states is normalized to 1, i.e.,

∑
jMij = 1, and therefore that ξM = ξ. If, for a given

Markov chain, a unique stationary distribution is guaranteed to exist, the process is called “ergodic”.
In GW data analysis, the stationary distribution is the posterior distribution we want to estimate. In
particular, MCMC techniques employed in GW data analysis usually are Metropolis-Hastings MCMC
algorithms [225,226], whose basic workflow is outlined in the following.

The algorithm begins by choosing a random point ~θ in the prior π(~θ). Then, the next point is
generated from the proposal distribution Q(~θ′|~θ), which provides the conditioned probability of the
new point ~θ′ given the current point ~θ.15 We compare the posterior probability of the new and the

14,
15For example, in a basic Metropolis algorithm, the proposal function is a simple Gaussian; however, the proposal

function represents the key component in MCMC sampling and determines the algorithm’s efficiency, therefore more
sophisticated distributions are usually employed.
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starting point by assessing their ratio

racc =
p(~θ′|H, d)

p(~θ|H, d)
=
L(~θ′)π(~θ′)

Z

Z

L(~θ)π(~θ)
=
L(~θ′)π(~θ′)

L(~θ)π(~θ)
. (2.104)

Equation 2.104 shows clearly why Metropolis-Hastings MCMC algorithms do not need evidence cal-
culations. We either accept the new point ~θ′, and thus append it to the list of samples, or reject it, in
which case we append ~θ to the samples list. In both cases, we repeat the procedure, using as starting
point the one added to the set of samples.

In order to find a criterion to decide whether or not to accept the new point ~θ′, let us consider
again the detailed balance equation, which can be written as

p(~θ|H, d)Mθθ′ = p(~θ′|H, d)Mθ′θ. (2.105)

The probability to transition from state ~θ to ~θ′, denoted by Mθθ′ , is divided into the two steps that we
just mentioned: i) make a proposal for ~θ′, and ii) accept ~θ′ with an acceptance probability α. Therefore,
the detailed balance condition can be decomposed as

ξiqijaij = ξjqjiaji, (2.106)

where qij is the proposal transition matrix, which, in our case, corresponds to the proposal distribution
Q(~θ′|~θ), and aij represents the acceptance probability. In Ref. [226], Hastings proposed to choose

aij =

 1 if ξjqji
ξiqij

≥ 1

ξjqji
ξiqij

if ξjqji
ξiqij

≤ 1
, (2.107)

which, in the algorithms applied to GW signals, means that the new point ~θ′ is accepted according to
an acceptance probability defined as

α = min

{
1,
L(~θ′)π(~θ′)Q(~θ′|~θ)
L(~θ)π(~θ)Q(~θ|~θ′)

}
= min

{
1, racc

Q(~θ′|~θ)
Q(~θ|~θ′)

}
. (2.108)

Practically, if the probability of the new point ~θ′ is larger than the probability of ~θ, the point is
accepted, otherwise we randomly decide whether to accept it or not. This decision is made by drawing
a random number from a uniform distribution u ∈ [0, 1]: if α ≥ u the point is accepted, otherwise
rejected.

Introducing temperature

The procedure known as parallel tempering [227, 228] allows us to deal with multimodal probability
distributions and to compute the evidence Z. Choosing an efficient proposal function Q(~θ′|~θ) becomes
complicated when dealing with multimodal distributions, where large-likelihood regions are separated
by low-probability ones, and moving from one to another is not straightforward for the sampler. The
idea of parallel tempering is to run MCMC with different chains, typically 10 or 20, each chain with
a different “temperature” T that modifies the likelihood and, consequently, the posterior as

p(~θ|d,H)T = L(~θ)1/Tπ(~θ), (2.109)
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with T ∈ [1, Tmax]. The chain with T = 1 samples the “true” posterior distribution, while for the
other ones the effect of the 1/T factor is to smoothen the likelihood profile: a flatter likelihood is
easier to explore, also if multiple peaks are present in the “original” one. The chains communicate
between themselves by periodically proposing swaps of their location in the parameter space with the
location of adjacent chains. In this way, the regions with high support found by the high-temperature
chains, which in general are able to explore a wider region, can be investigated in more detail by the
low-temperature chains. This swapping happens with an acceptance rate

rs = min

1,

(
L(~θj)

L(~θi)

) 1
Ti
− 1
Tj

 , (2.110)

with Ti < Tj .

MCMC algorithms do not directly compute the evidence as the nested sampling ones, but parallel
tempering allows us to estimate its logarithm via thermodynamic integration [229–231]. Introducing
the parameter β = 1/T , with 0 ≤ β ≤ 1, where β = 1 corresponds to the “true” posterior and β = 0

to the prior distribution, the evidence is expressed as a function of temperature as

p(d|H, β) =

∫
d~θ p(d|H, ~θ)βp(~θ|H). (2.111)

Differentiating the logarithm of the evidence with respect to β, we recover the expectation value of
ln(Z) for the chain with temperature 1/β from

d

dβ
ln p(d|H, β) = 〈ln p(d|H, ~θ)〉β. (2.112)

Therefore, the evidence logarithm can be obtained by integrating

lnZ =

∫ 1

0
dβ 〈ln p(d|H, ~θ)〉β '

β=1∑
β=1/Tmax

∆β〈ln p(d|H, ~θ)〉β, (2.113)

which is quite straightforward to compute since 〈ln p(d|H, ~θ)〉β is simply calculated as the sample
average for the chain with temperature 1/β.

Thinning and burn-in

Adjacent samples collected with MCMC sampling are correlated, since each new sample is computed
from the previous one, and this correlation can hinder the calculation of the statistical properties of
the final probability distributions. In order to avoid such correlation, one typically keeps only one
sample every τ steps, where τ is the integrated autocorrelation time of the chain and can be computed
by various existing codes, e.g., Refs. [232, 233]. If Ns is the total number of accumulated samples,
this thinning process leaves us with Ns/τ independent, i.e., not correlated, effective samples.

The stationary distribution of a Markov chain process does not depend on the sampling starting
point. However, it takes a few iterations for the algorithm to achieve the stationary distribution, hence
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the first samples accumulated are not guaranteed to be representative of the posterior distribution
we want to sample. This “adjustment” phase is called burn-in, and the samples collected during this
stage must be removed in order to avoid biases in the posterior distribution.

Termination condition and variable number of parameters

While in nested sampling we can define a clear, although to a certain extent arbitrary, termination
condition, in MCMC we stop the simulation when the algorithm has sufficiently converged towards the
posterior distribution. Different diagnostic methods have been developed in order to test convergence,
both analytical and empirical (see for example Ref. [234] for a review). One of the most popular
methods is the Gelman-Rubin statistic [235]: the underlying idea is that, if the sampler converged
to the true distribution, all chains should be similar, since they should all resemble the stationary
distribution, and one should find only small variations within the single chains, i.e., the chains should
be almost stationary. This is evaluated by computing a coefficient R, with R = 1 meaning that the
chain reproduces exactly the stationary distribution. In practice, this will never be the case, because
it would require an infinite number of samples. Typically, the sampling algorithm is considered con-
verged when R is close to 1, with the specific value depending on the context.

Finally, without going into details, we mention that there exists an extension of the MCMC
algorithm, the Reversible Jump Markov chain Monte Carlo (RJMCMC) [236], which allows sampling
over a parameter space with variable dimension, by jumping between subspaces. Its application is
particularly useful in Bayesian model comparison, when, depending on the model, the parameters
vector ~θ has a non-fixed size. In GW data analysis, an example would be comparing a BBH model
with a BNS model, since the latter includes also the tidal deformability parameters.

2.3.3 Reducing the computational cost

Stochastic sampling methods allow us to estimate both the parameters’ posterior probability density
and the evidence needed for Bayesian hypothesis ranking. Nested and MCMC sampling resort to
different solutions to overcome the computational challenge that a direct calculation of these quan-
tities would imply. However, running this kind of analyses on GW data takes from days to months,
depending on the features of the signal. The main computational bottleneck is the likelihood term,
which in frequency domain is given by Eq. 2.68

L(d|H, ~θ) = p(d|H, ~θ) ∝ exp

[
−1

2

〈
d− h(~θ)|d− h(~θ)

〉]
, (2.114)

with the overlap integral 〈·|·〉 defined in Eq. 2.69

〈a|b〉 ≡ 4<
∫ fhigh

flow

ã∗(f)b̃(f)

Sn(f)
df. (2.115)

Computing the likelihood integral requires many evaluations of the waveform, on a dense and
uniform frequency grid in the range [flow, fhigh], where the step df is the inverse of the signal duration
and typically takes values between df = 0.25 Hz, for heavy BBHs, and df ' 0.04 Hz, for BNSs. De-
spite the ongoing effort to develop faster waveform approximants, the number of evaluations required,
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O(106 − 107), and the size of the frequency grid still make these analyses computationally expensive.
This issue will exacerbate with future detectors, whose improved sensitivity will lead to more, louder,
and longer signals. The latter does not only include a larger number of BNSs detections: in the 3G
detectors era, ET is expected to gain sensitivity down to 10 Hz and even lower. This will increase
the range of the frequency grid over which the likelihood integral is computed, but it also implies
that significantly more inspiral cycles will be in band, also for BBHs signals, increasing the duration
of the detected GW signals; consequently, both the density and size of the grid will increase. There-
fore, computational costs represent one of the primary challenges for GW data analysis with future
detectors. In this section, we present two techniques that have been developed in order to reduce the
computational cost of parameter estimation analyses, relative binning and reduced order quadratures
(ROQs). Although with different procedures, the core idea of both these methods is to approximate
the likelihood instead of calculating it explicitly.

Relative binning

The relative binning technique [237–239] relies on the assumption that the sets of parameters with
a non-negligible posterior probability produce similar waveforms h(f), whose ratio, therefore, varies
smoothly in the frequency domain. If we choose a reference or fiducial waveform h0(f) that describes
sufficiently well the data, and if we divide the frequency range [flow, fhigh] in small bins, within each
frequency bin b = [fmin(b), fmax(b)] the ratio between the sampled (non-negligible) waveforms h(f)

and the fiducial one can be approximated by a linear function in frequency

r(f) =
h(f)

h0(f)
= r0(h,b) + r1(h,b)(f − fm(b)) + ..., (2.116)

with fm(b) being the central frequency of the bin b.

Considering a discrete frequency grid fk, the overlap integral 〈a|b〉 in Eq. 2.69 can approximated
with the discrete form

〈a|b〉 ≈ 4<∆f
∑
k

ã∗(fk)b̃(fk)

Sn(fk)
, (2.117)

with ∆f = 1/T , where T is the observation time, i.e., in this case, the signal duration.

The logarithm of the likelihood in Eq. 2.114 can be written as

lnL(d|H, ~θ) =
1

2

[
2〈d|h(~θ)〉 − 〈h(~θ)|h(~θ)〉 − 〈d|d〉

]
. (2.118)

Equation 2.118 includes two terms which require waveform evaluations, 〈d|h(~θ)〉 and 〈h(~θ)|h(~θ)〉. For
frequency-domain waveforms, relative binning approximates these discrete overlap integrals as

〈d(f)|h(f)〉 ≈
∑

b

(A0(b)r∗0(h,b) +A1(b)r∗1(h,b)) , (2.119a)

〈h(f)|h(f)〉 ≈
∑

b

(
B0(b)|r0(h,b)|2 + 2B1(b)<[r0(h,b)r∗1(h,b)]

)
, (2.119b)
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where A0(b), A1(b), B0(b), and B1(b) are called summary data and are given by

A0(b) = 4
∑
f∈b

d(f)h∗0(f)

Sn(f)/T
, (2.120a)

A1(b) = 4
∑
f∈b

d(f)h∗0(f)

Sn(f)/T
(f − fm(b)), (2.120b)

B0(b) = 4
∑
f∈b

|h0(f)|2

Sn(f)/T
, (2.120c)

B1(b) = 4
∑
f∈b

|h0(f)|2

Sn(f)/T
(f − fm(b)). (2.120d)

The summary data are computed on the frequency grid with maximum resolution ∆f , but only
for the reference waveform h0(f). The overlaps for all the sampled waveforms h(f) are then obtained
from Eqs. 2.119a-2.119b and need only the calculation of the coefficients r0(h,b) and r1(h,b). One
needs to compute these coefficients for each sampled waveform, but they can be determined from the
values of r(f) in Eq. 2.116 computed only at the edges of the frequency bin b. Therefore, relative
binning allows to greatly reduce the number of waveform evaluations required for the analysis.

Binning scheme The next question is, how do we decide the binning of the frequency grid. The
choice of the bins in which the waveform will be evaluated plays a crucial role and is dictated by the
requirement that the differential phase change in each bin must be smaller than some threshold δφ:

|δΨmax(fmax(b))− δΨmax(fmin(b))| < δφ, (2.121)

with δΨmax(f) being the maximum phase change at a given frequency f . This condition ensures
that the parameters obtained as perturbations of the fiducial waveform ones still yield a significant
contribution to the likelihood. In Ref. [237], the binning is determined by expressing the GW signal
phase as

Ψ(f) =
∑
i

αif
γi , (2.122)

where, based on the PN approximation, each term i, characterized by a coefficient αi and a frequency
power γi, represents the effect of one or more parameters.16 To ensure small variations in the phase,
the absolute value change of the αi coefficient of each term in Eq. 2.122 can be at maximum

δαmax
i ≈ 2πχ/(f∗,i)

γi , (2.123)

with χ being a tunable factor, f∗,i = fmax for γi > 0 and f∗,i = fmin for γi < 0. Thus, from Eq. 2.122,
the maximum phase difference at a given frequency is computed as

δΨmax(f) = 2πχ
∑
i

(f/f∗,i)
γisgn(γi), (2.124)

16In principle, the PN expression for the GW phase includes also logarithmic terms in frequency. However, Eq. 2.122
does not aim at reproducing the PN phase formula, but it just exploits the idea, derived from the PN theory, that
different source’s parameters yield a contribution to the phase proportional to different powers of frequency.
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where the factor sgn(γi) is introduced to take into account the case in which the signs combination
of the αi coefficients produce the maximum possible differential phase change. Although the phase
expression in Eq. 2.122 originates from PN theory, we stress that this choice is made simply to obtain
an analytical expression for δΨmax, i.e., Eq. 2.124, which can be easily implemented in the relative
binning algorithms. In the work presented in this thesis, we will use the relative binning technique
also to analyze GW signals in regimes where the PN formalism is not valid. However, we will show
in Sec. 5.3.5 that, as long as the frequency bins are chosen small enough to ensure a differential phase
change below the desired threshold, it does not matter how the bins are computed, and the relative
binning method can be employed.

Reduced order models and quadratures

The overlap integrals 〈d|h(~θ)〉 and 〈h(~θ)|h(~θ)〉 in Eq. 2.118, in their discrete form given in Eq. 2.117,
include the sum over a frequency grid with a large number L of points, with L ∼ int([fhigh − flow]T).
Large values of L cause computational issues, not only in the calculation of the sum, but also because
the waveform needs to be evaluated L times. The basic idea of a reduced-order model approach is
to find a representation of the data with fewer degrees of freedom; well-known expamples are the
spectral value decomposition or the principal components analysis. A highly computationally efficient
method, developed specifically for parameterized problems, is the reduced basis approach [240]. When
applied to gravitational waveforms, a reduced basis denotes a representation of the waveform space
for a given set of parameters, whose span can accurately reproduce all the waveforms in that space.
In the frequency domain, a waveform h(~θ, f) can be approximated as

h(~θ, f) ≈ PEm [h(~θ; f)] ≡
m∑
i=1

〈ei|h(~θ)〉ei, (2.125)

where the vectors in the reduced basis Em = {ei}mi=1 are orthonormal with respect to the inner product,
P is a projection operator, and 〈ei|h(~θ)〉 the projection coefficients, identified through minimization
of the error [241] ∥∥∥∥∥h(f ; ~θ)−

m∑
i=1

〈ei|h(~θ)〉ei(f)

∥∥∥∥∥
2

. (2.126)

Without going into details, since this technique will not be employed in the work presented in this
thesis, we mention that a reduced order quadrature rule is obtained by identifying a suitable reduced-
order-model model and inserting it into the equation for the overlap integral. For GW waveforms, one
way to build ROQs [241–245] is with a combination of the reduced basis and empirical interpolation
methods [246]. The speed-up obtained through ROQs can reach O(100) for the analysis of BNS
signals.

Relative binning and ROQs provide two different methods to approximate the likelihood and therefore
accelerate its computation. The main caveat for ROQs resides in the need of computing beforehand
the set of basis, which implies a computational cost. Moreover, since building a basis for the whole
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parameter space results difficult, ROQs are usually built separately for different regions of the pa-
rameter space. These regions are identified with different chunks in chirp-mass values, which offer
the great advantage of investigating regions of the template space where waveforms have a similar
duration. However, this further division of the waveform space means an increased computational
cost to find the reduced basis. On the other hand, ROQs produce very reliable results and ensure a
great accuracy for the waveform representation. In addition, we do not need any information about
the signal to analyze, apart from a crude estimate of the chirp mass, which is however usually provided
by low-latency analyses, needed to decide which basis to employ, .

On the other hand, relative binning offers a fast tool to speed-up parameter estimation analyses,
without the need to pre-compute anything. However, this approach requires a fiducial waveform that
describes well the data and that can be difficult to infer when analyzing real events: although one can
employ the parameters estimated in low-latency analyses to build the fiducial waveform, the signal
might still involve “unpredicted” features which are not well described by the available models.

Both methods provide valid ways to reduce the computational cost of GW data analysis, especially
for parameter estimation. Which one to employ strongly depends on the context: if we need to analyze
a few simulated events, relative binning is the best choice, since we can easily find a fiducial waveform
and the computational cost of building ROQs would not be compensated by the gain in the analysis of
a few events. If, on the other hand, we want to analyze many events, especially real ones, and maybe
repeat the analysis with different configuration settings, ROQs are to be preferred, considering their
accuracy and the variety of signals, or settings, that we want to investigate.
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Chapter 3

Testing general relativity using higher-order
modes of gravitational waves from binary black

holes

In Sec. 1.3.3, we discussed how the detection of GW signals allows us to perform various tests of
GR in the strong-field regime. Among them, parameterized tests employ suitable parametrizations to
look for deviations of GR related to specific effects, but not to specific alternative theories of gravity.
For example, there exist tests that parametrize possible deviations from the coefficients in the PN
expansion of the phase of the emitted GW signal; these parameters are introduced in the waveform
model used for the analysis and estimated with a Bayesian inference [209,247].

In this chapter, we present a new parametrized test of GR, designed to look for deviations of the
amplitude of the subdominant modes in the GW signal from the values predicted by GR. The content
of this chapter is based on the work in Ref. [248].

3.1 Introduction

As we discussed in Sec. 1.2.4, according to GR, the GW signal emitted by a coalescing binary system
includes not only the fundamental quadrupolar mode, but also higher-order modes [27], whose contri-
bution to the signal becomes non-negligible for high-mass and high-mass-ratio systems. During O3,
strong evidence was obtained for the presence of higher-order modes in the gravitational wave signals
GW190412 and GW190814 [16,19,249], which were emitted by coalescing binary compact objects with
significantly different component masses. Measuring these subdominant harmonics of the basic signal
enables more precise measurements of the source parameters, and can allow for stronger constraints
on certain deviations from GR [32,33].

Several tests of GR that directly probe the harmonic structure for binary black hole coalescences1

1Given the low mass of the lighter component of GW190814 (' 2.6M�), there is a possibility that it was a signal from
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were proposed in Refs. [252–255]. These fall into two categories. In the first case, one tests the phase
evolution, e.g., by testing for deviations in the way parameters like the chirp mass and symmetric
mass ratio enter into the expressions for the different harmonics [252]. This kind of test has already
been applied to GW190412 and GW190814 in Ref. [256]. A second test looks for anomalies in the
amplitudes of the subdominant modes [253]; the latter test is the focus of our work.

Specifically, defining h(t) ≡ h+(t)− ih×(t) with h+, h× the two polarizations, we saw in Sec. 1.2.4
that the GW signal from a coalescing binary can be written as

h(t; ι, φ0, ~λ) =
∞∑
`=2

∑̀
m=−`

Y `m
−2 (ι, φ0)h`m(t;~λ), (3.1)

where the Y `m
−2 are spin-weighted spherical harmonics of weight −2, (ι, φ0) indicate the direction of

the radiation in the source frame, and ~λ collects all other parameters in the problem. The latter
are the total mass M ≡ m1 + m2 (with m1, m2 the component masses), the mass ratio q ≡ m1/m2

(where we assume m1 ≥ m2), the dimensionless spin vectors S1 and S2 at some reference time tref , a
reference phase ϕref , and the luminosity distance DL. The h`m will be referred to as the “modes” of the
gravitational-wave signal. Taking the contribution with ` = 2, m = ±2 to constitute the fundamental
mode, the test of GR considered here follows Ref. [253] to allow for deviations in the amplitudes of
the higher-order modes:

h(t; ι, φ0, ~λ)

=
∑
m=±2

Y 2m
−2 (ι, φ0)h2m(t;~λ)

+
∑

HOM

∑̀
m=−`

(1 + c`m)Y `m
−2 (ι, φ0)h`m(t;~λ), (3.2)

where HOM stands for the ` labels of the higher-order modes. The c`m are free parameters, to be mea-
sured together with all the other parameters in the problem; the case where GR is valid corresponds to
c`m = 0. Although for precessing signals one does not have the symmetry h`−m = (−1)`h∗`m [257], for
definiteness we set c`−m = c`m. Here we will perform parameterized tests where the c`|m| are allowed
to vary one by one, as in the phase-based tests performed in [21, 22, 258–260], and we will focus on
modes that will usually be the strongest, namely the ones with (`, |m|) = (3, 3) and (`, |m|) = (2, 1).
We will not only perform parameter estimation, as was done in Ref. [253], but also model selection;
as we shall see, the latter will be of particular importance here.

To leading order, the observed strengths of the higher harmonics are set by the total mass M ,
the inclination angle ι, and the relative mass difference ∆ ≡ (m1 −m2)/M [27, 162]. One aim of the
work presented here is to investigate to what extent deviations in amplitudes of the harmonics can be
determined depending on the values of these parameters, in terms of both parameter estimation and

a neutron star-black hole rather than a binary black hole coalescence [19], but studies based on the known properties
of neutron stars make a BBH origin much more likely [250, 251]. For the purposes of this chapter we will assume that
GW190814 came from a BBH coalescence.
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model selection. Secondly, when performing tests that allow for non-zero c`m, there will be correlations
between these and the angular parameters, notably ι, which will affect both the measurability of the
deviations from GR and the shapes of the posterior distributions. We will map out this interplay,
which is necessary to interpret the results of our tests. Finally, for the first time we apply this test to
GW190412 and GW190814.

3.2 Properties of higher harmonics and waveform model

Let us start by recalling some properties of the harmonics h`m in Eq. (3.1), which we will need to
interpret the results in subsequent sections. In doing so we limit ourselves to qualitative statements,
mostly referring to the inspiral regime; for explicit dependences on the parameters in the problem we
refer to Refs. [27, 162]. The salient features relevant to us here are:

(i) At zeroth post-Newtonian order (0PN) in amplitude there is the harmonic with ` = |m| = 2,

which is the most dominant of all multipole modes.

(ii) At 0.5PN order in amplitude, harmonics with (`, |m|) = (2, 1), (3, 3), (3, 1) appear. In the work
presented here, we will be the most interested in the (2, 1) and (3, 3) harmonics, since the (3, 1)

harmonic is suppressed with respect to the others due to its small overall numerical prefactor.
For purposes of testing GR we will also not consider harmonics that only appear at higher PN
orders.

(iii) The (2, 1) and (3, 3) modes are proportional to the relative mass difference ∆ = (m1 −m2)/M ,
so that they are more prominent for systems with a higher value of q = m1/m2.

(iv) The fact that the harmonics enter the polarizations through the spin-weighted spherical har-
monics Y `m

−2 (ι, φ0) causes their prominence to depend sensitively on the inclination angle ι, as
illustrated in Fig. 3.1. For systems that are “face-on” (ι = 0) or “face-off” (ι = 180◦), only the
fundamental harmonic is visible. The subdominant harmonics on which we will focus on are
strongest around ι ' 50◦ and ι ' 130◦. In the figure we also indicate the peak likelihood values
of ι for GW190412 and GW190814.

(v) Finally, the observed power in the subdominant modes relative to that in the (2, 2) mode increases
with the total mass. During inspiral, at a given frequency f the ratios of the subdominant mode
amplitudes to that of the dominant one grow with M through powers of (Mf)1/3, though also
the merger part of the signal and the shape of the noise power spectral density Sn(f) will have
an effect.

To make the latter point more concrete, let us define the quantities

α`m ≡
∫ fhigh

flow

|h̃`m(f ;~λ)|2
Sn(f)

df∫ fhigh

flow

|h̃22(f ;~λ)|2
Sn(f)

df
, (3.3)

where h̃`m(f ;~λ) is the (`,m) mode in the frequency domain, and Sn(f) denotes the one-sided detector
noise power spectral density, which we take to be the one for Advanced LIGO at design sensitivity
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Figure 3.1: The absolute values of spin-weighted spherical harmonics of weight −2 as function of the inclination
angle ι. The vertical lines indicate the peak likelihood values of ι for GW190412 (black dashed) and GW190814
(red dashed), located at ' 47◦ and ' 49◦, respectively [16,19].

[111]. The integrals are evaluated from a lower cut-off frequency flow = 20 Hz to an upper cut-off
frequency fhigh = 2048 Hz, which amply suffices for the kinds of signals considered in this work.
The waveform model is taken to be the most up-to-date phenomenological inspiral-merger-ringdown
model IMRPhenomXPHM [205,261], described in Sec. 2.1.4, which incorporates harmonics with (`, |m|) =

(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) modes, as well as effects of spin-induced precession. Figure 3.2 shows
the dependence of the α`m on total mass M and mass ratio q, for (`,m) = (2, 1), (3, 3), where, for
simplicity, we have focused on binaries composed of non-spinning black holes. Note that q = 3, 6, 9

correspond to ∆ ' 0.5, 0.71, 0.8, respectively, which explains why the curves with q = 6, 9 are closer
to each other than to the ones for q = 3.

3.3 Analysis framework and setup of simulations

We now explain our data analysis methodology for measuring source parameters and to rank hypothe-
ses based on the available detector data. Next we will detail the choices made for simulations that
were performed to understand the response of the analysis framework to possible violations of GR in
the amplitudes of different harmonics.

3.3.1 Analysis framework

As discussed in Sec. 2.2, in a Bayesian setting the posterior probability density p(θk|d,H) for a par-
ticular parameter θk in the set of parameters ~θ is obtained by integrating out all the other parameters
~ξ in ~θ = (θk, ~ξ):

p(θk|d,H) =

∫
d~ξ p(θk, ~ξ|d,H). (3.4)
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Figure 3.2: The relative signal power in the real part of h`m for some of the higher-order modes with respect
to the dominant (2, 2) mode, as a function of the total mass M of the binary, for three different values of the
mass ratio q and assuming Advanced LIGO at design sensitivity.

Additionally, we will want to rank hypotheses: the GR hypothesis HGR versus hypotheses HNonGR,

which allow one of the c`m to be non-zero. To this end we calculate Bayes factors, or ratios of evidences,

BNonGR
GR ≡ p(d|HNonGR)

p(d|HGR)
, (3.5)

where p(d|HNonGR) and p(d|HGR) are obtained using Eq. 2.67, taking H to be HNonGR or HGR, respec-
tively. In practice it is usually convenient to focus on the logarithm of the Bayes factor, lnBNonGR

GR ,
as will also be done here. To interpret the size of (log) Bayes factors, one could make use of the
Jeffreys scale [262], in which BNonGR

GR > 102 (or lnBNonGR
GR & 4.6) would be deemed a “decisive” grade

of evidence. Alternatively, one could construct a background distribution for lnBNonGR
GR from a large

number of injections that are in accordance to GR (see e.g. [263]), though this is computationally
costly. Here we mainly want to show trends; a more extensive treatment of (log) Bayes factors is left
for future work.

It will also be important to consider the loudness of a signal as it appears in a detector. The
optimal signal-to-noise ratio is defined as ρ ≡ 〈h(~θ)|h(~θ)〉1/2, as introduced in Sec. 1.4.3. For a
network of detectors, the combined optimal SNR is obtained by summing in quadrature the SNRs in
the individual detectors.

Finally, for estimating the evidence integrals as in Eq. 2.67, and obtaining samples for posterior
density distributions p(~θ|d,H), we used nested sampling [219,221] as implemented in the LALInfer-

ence package [220] of the LIGO Algorithms Library (LAL) software suite [77]. Both for simulated
signals and for template waveforms we use IMRPhenomXPHM, with testing parameters c`m added as in
Eq. (3.2) in the case of non-GR waveforms. For the purpose of our analyses, the free parameters are
then the usual ones that enter a binary black hole signal, together with one of the c`m in the case of
a non-GR hypothesis. The posterior density distribution for a c`m by itself is obtained from the joint
posterior distribution by integrating out all other parameters, as in Eq. 3.4.
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3.3.2 Setup of the simulations

To understand the response of our analysis pipeline to GR violations in mode amplitudes with various
strengths, we add simulated signals, or injections, to synthetic stationary, Gaussian noise for a network
of Advanced LIGO and Advanced Virgo detectors following the predicted noise spectral densities at
design sensitivity [111, 112]. Since higher-order modes are more prominent for larger total masses,
we will start by considering heavier BBH systems. However, later we will also analyze the real GW
events GW190412 and GW190814 to look for GR violations. To this end, we also perform injections
for lower-mass systems whose source parameter values and SNRs are set to the maximum-likelihood
values obtained from analyses on these events that assumed GR to be correct. Specifically:

• We will inject signals with M = 65M� and M = 120M�, for mass ratios q = 3, 6, 9. Here the
inclination angle is fixed to be ι = 45◦, and the network SNR to 25. For simplicity, in these
injections we set the spins to zero, although, in general, the analyses presented here allow for
non-zero, precessing spins.

• For GW190412-like injections, M = 46.6M�, q = 4.2, ι = 47◦. Spin-related and other param-
eters are set to their maximum-likelihood values for the real event [16], so that, in particular,
these injections have precessing spins. The network SNR is 19.8.

• For GW190814-like injections, M = 27.6M�, q = 9.3, ι = 49◦; here too all parameters are set
to the maximum-likelihood ones [19]. The network SNR is 25.

We also need to choose values for the deviation parameters c33 and c21 in the injections. Since the
(3, 3) mode will tend to be the strongest (see Fig. 3.2), we can expect smaller values of c33 to lead
to detectable GR violations than for c21, where “detectable” indicates that the 90% credible region of
the posterior density function has support that excludes zero. We found that, at least for the higher
masses listed above, the following choices provide examples ranging from non-detectability to easy
detectability of the GR violations:

• c33 = 0.5, 1.5, 3.

• c21 = 1, 3, 6.

Hence these are the values for which we will show results in the next section.

3.4 Results of simulations, and analyses of GW190412 and GW190814

We now describe the results for our simulations, as well as for the real events GW190412 and
GW190814, in terms of parameter estimation and hypothesis ranking. In doing so, it will be use-
ful to make a distinction between the more massive BBHs (M = 65, 120M�), the injections with
parameters similar to those of the real events, and the real events themselves.
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Figure 3.3: lnBNonGR
GR for M = 65M� (top row) and M = 120M� (bottom row), for different mass ratios q

indicated by the differently shaped markers. The horizontal axes show the injected values of c33 (left column)
and c21 (right column). In each case, the non-GR hypothesis has the corresponding c`m as free parameter.

3.4.1 More massive binary black holes

Let us first look at results for injections with M = 65M� and M = 120M�. To have an easier
overview it is convenient to first look at the behavior of log Bayes factors, lnBNonGR

GR , which we do in
Fig. 3.3. The trends are as follows:

1. As expected, for a larger injected c`m, the log Bayes factor is larger. The cases c33 = 0.5 and
c21 = 1 lead to lnBNonGR

GR that tend to be consistent with zero, meaning that the data are
not sufficiently informative to clearly distinguish between hypotheses. However, starting from
c33 = 1.5 or c21 = 3, the lnBNonGR

GR are significantly away from zero, and, as will be seen in terms
of parameter estimation below, here the GR deviations tend to be detectable.

2. Higher values of M lead to higher lnBNonGR
GR , consistent with there being more power in the

higher-order modes relative to the (2, 2) mode; see Fig. 3.2.

3. Again as expected, on the whole a larger mass ratio q tends to lead to a higher lnBNonGR
GR ,

consistent with there being more power in the higher-order modes. We do see that the lnBNonGR
GR

tend to differ less between q = 6 and q = 9 than between q = 3 and q = 6; in fact, forM = 65M�

and c33, the log Bayes factors for the higher two values of q are nearly equal. Again pointing to
Fig. 3.2, we note that the cases q = 6 and q = 9 are closer to each other than to q = 3 in terms
of the power present in higher-order modes.

Figure 3.4 shows posterior probability densities for the corresponding injections. The trends show
broad consistency with what we saw for the log Bayes factors. In particular, for the injected values
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Figure 3.4: Violin plots for the posterior density distributions of c33 (top two rows) and c21 (bottom two rows),
for M = 65, 120M�, and q = 3 (left column), q = 6 (middle column), and q = 9 (right column). In each case
the black horizontal bars indicate 90% confidence intervals, and the red horizontal bar the injected value; the
black vertical line shows the support of the posterior.
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3.4. Results of simulations, and analyses of GW190412 and GW190814

Figure 3.5: lnBNonGR
GR for injections with GR parameters similar to those of GW190412 and GW190814.

c33 = 0.5 and c21 = 1, posterior densities either include the GR value of zero, or extend to quite close
to it, while, for higher injected values, the GR value tends to be outside the support of the distribution.
Also, the 90% confidence intervals tend to be tighter for higher total mass and for higher mass ratio,
again consistent with the behavior of the lnBNonGR

GR in Fig. 3.3, and indeed with Fig. 3.2.

3.4.2 Injections with parameters similar to those of GW190412 and GW190814

Next we turn to injections with GR parameters close to those of the real events GW190412 and
GW190814. Figure 3.5 shows results for lnBNonGR

GR . Here too the trends are as expected: the log
Bayes factor increases with increasing injected values for c33 and c21. Note that although GW190412
had a higher mass than GW190814 (M = 46.6M� versusM = 27.6M�), the mass ratio of GW190412
was considerably smaller than that of GW190814 (q = 4.2 versus q = 9.3). The log Bayes factors are
higher for the latter event, consistent with Fig. 3.2. We see that for GW190412 one has lnBNonGR

GR < 0

for c33 = 0.5, and the same is true for both injections in the cases c21 = 1 and c21 = 3, presumably
due to the lower mass ratios. We note that uncertainties on log Bayes factors can be expected to be
of O(few) [219]. Hence the small negative values can be interpreted as being consistent with zero, and
the lnBNonGR

GR are uniformative in these cases.
Figure 3.6 shows posterior probability distributions for the same injections. In all cases, the

injected value for c33 and c21 lies within the support of the posterior. For c21 the results look like
what one might expect, but for c33 the posteriors are bimodal, with the true value not always lying
in the strongest mode. As will be clarified in the next section, this behavior results from a partial
degeneracy between c33 and the inclination angle ι.

3.4.3 Results for GW190412 and GW190814

Finally, we turn to the real events GW190412 and GW190814. Table 3.1 shows the results for lnBNonGR
GR

when comparing the hypothesis of a non-zero c33 or c21 with the GR hypothesis. All the log Bayes
factors are negative, so that we have no reason to suspect a violation of GR in the amplitudes of
subdominant modes.

More interesting are the posterior distributions for c21 and especially c33, which are shown in
Figs. 3.7 and 3.8. For both events, the posterior for c21 is unimodal and consistent with the GR value
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Figure 3.6: Violin plots for the posterior density distributions of c33 (top row) and c21 (bottom row), for
injections similar to GW190412 (left column) and GW190814 (right column). In each case the black horizontal
bars indicate 90% confidence intervals, and the red horizontal bar the injected value; the black vertical line
shows the support of the posterior.
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Event GW190412 GW190814

c33 -1.25 -3.96

c21 -2.48 -1.77

Table 3.1: Values of lnBNonGR
GR for analyses of the real events GW190412 and GW190814.

of zero. However, just like in the simulations of the previous section, the posterior for c33 is bimodal,
also for both events.

As it turns out, this bimodality results from a degeneracy between c33 and the inclination angle
ι. The lower panels of Figs. 3.7 and 3.8 show mismatches between (a) a reference waveform h̃ref(f),
which is a GR waveform with maximum-likelihood parameters for the respective signals, and (b) a
waveform h̃(c`m, ι; f) in which c`m and ι can take on arbitrary values, but all other parameters are
the maximum-likelihood ones from the GR analysis. Specifically, we compute the mismatch

MM = 1−max
t0,ϕ0

〈href |h(c`m, ι)〉√
〈href |href〉

√
〈h(c`m, ι)|h(c`m, ι)〉

, (3.6)

where the maximization is over a rigid time shift and overall phase.
In the bottom panels of Figs. 3.7 and 3.8, these mismatches are indicated with color coding, with

dark colors signifying small mismatch. Overlaid are dashed lines indicating the peak-likelihood values
in the (bimodal) posterior distribution for ι obtained when analyzing the events with either c21 or c33

as additional free parameters. Focusing first on the case of c33 and GW190412 in Fig. 3.7, we see that
there are two regions in the (c33, ι) plane where mismatches are low: one region that contains the GR
value c33 = 0 and is consistent with the lower value of ι, and another region consistent with the higher
ι value and c33 6= 0. In either region, waveforms h(c33, ι) are consistent with the reference waveform
href , which explains the bimodality in the posterior for c33. By contrast, based on the analogous plot
for (c21, ι), no such bimodality is to be expected, and, indeed, the posterior for c21 is unimodal. The
corresponding Fig. 3.8 for GW190814 leads to similar conclusions.

3.5 Summary and conclusions

We have set up a Bayesian analysis framework to test GR by looking at the amplitudes of subdom-
inant modes in GW signals from BBH coalescences, employing a state-of-the-art waveform model.
Specifically, we allow for modifications in the amplitudes of the (3, 3) and (2, 1) modes, which tend
to be the strongest among the subdominant modes. Apart from performing parameter estimation on
the associated testing parameters c33 and c21, this allows for hypothesis ranking between the presence
and absence of such anomalies in the modes.

Results from simulations involving injected waveforms in stationary, Gaussian noise largely follow
the trends one would expect based on the dependence of mode amplitudes on total mass and mass
ratio: for similar SNRs, heavier and more asymmetric systems make it easier to find violations of GR
of the type studied here.
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Figure 3.7: Top panels: Posterior density functions for c21 (left) and c33 (right) for GW190412. Bottom panels:
Contours of constant mismatch between the maximum-likelihood GR waveform, and a waveform in which ι and
c21 (left) or c33 (right) are varied while keeping all other parameters the same. The dashed vertical lines indicate
the GR values c21 = 0 and c33 = 0, respectively, and the dashed horizontal lines indicate the peak-likelihood
values for ι obtained from the analyses of GW190412 with respectively c21 and c33 as free parameters.

We then performed the first analysis of this kind on the real events GW190412 and GW190814,
which were associated with significantly unequal component masses, and in which strong evidence
for subdominant mode content had been found [16, 19, 249]. Log Bayes factors indicated no evidence
for a GR violation in either the (2, 1) or (3, 3) mode. In the case where the (3, 3) mode was being
investigated, the posterior density function for c33, while being consistent with the GR value c33 = 0,
did exhibit bimodality, but this was shown to result from correlations between c33 and the inclination
angle ι. Since the bimodality was also present in c33 posterior densities for injections with parameters
similar to the ones of GW190412 and GW190814 and c33 6= 0, some caution is called for in interpreting
such posteriors, at least for BBHs with total mass M . 50M�. However, our results show that log
Bayes factors lnBNonGR

GR , which were not considered in previous work in this context [253], are robust
indicators for or against the presence of a violation of GR.

Even in systems with significantly asymmetric masses and high total mass, with second-generation
detectors, GR violations have to be sizeable (c33 & 1.5 and c21 & 3) in order to be confidently
detected. It will be of interest to see how the sensitivity of our method will improve going towards
Einstein Telescope, Cosmic Explorer, and the space-based LISA [264], but this is left for future work.
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Figure 3.8: The same as in Fig. 3.7 but for GW190814.
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Chapter 4

Comparing gravitational waveform models for
binary black hole mergers through a

hypermodels approach

Waveform models constitute a key ingredient not only in template-based searches, but also in GW
analyses like parameter estimation. As described in Sec. 2.1, different approximation methods exist
to derive waveform models. The increasing sensitivity and the consequent larger number of detections
in future observing runs, and especially with future-generation detectors, will start showing potential
systematics induced by different waveform models. A study of this possible systematic bias is therefore
important not only to interpret upcoming results, but also to highlight a possible avenue for future
waveform model development. In this chapter, based on Ref. [265], we employ a hypermodels approach
to sample directly on four state-of-the-art binary black hole waveform models from different families,
in order to quantify possible preferences between the models from the 13 heaviest GW sources with
moderate to high signal-to-noise ratios in GWTC-3.

4.1 Introduction

With close to 90 significant observations of binary black hole mergers [14], hyperparameters charac-
terizing population models [40] as well as more stringent bounds on strong-field gravity parameters
from combining multiple events [20] have been estimated. Ongoing and future observing runs of
the LVK collaboration will operate at higher sensitivities and enable us to see many more events.
However, as the statistical biases reduce through improved detector sensitivities and by combining
multiple events, the systematic effects from the GW models employed to analyze our data will start
dominating. Several studies have been made to expose this problem with future-generation detectors,
e.g., Ref. [266].

Typically, GWs’ source properties are inferred by analyzing the data with multiple waveform
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models where the estimates broadly agree. This serves as a consistency test between different models
developed employing different techniques. Separate analyses are therefore performed on a single event
to obtain estimates of the same. However, while individual sources may be consistent, combining the
data may expose a bias or preference for one model over another. In this work, we infer the parameter
properties of the 13 heaviest significant BBH observations by Advanced LIGO and Advanced Virgo
in GWTC-3 and quantify the preference for one waveform model over another from the combined
GW data. The choice of events is determined by the fact that, for one of the models employed, the
region of validity covers only high values of the binary’s total mass; moreover, the shorter duration of
signals produced by high-mass systems reduces the computational cost of the analysis. Reference [267]
has looked at a very similar problem from a technical point of view, performing a joint Bayesian
analysis with three different models on a large set of simulated events, showing consistent results
with the ones obtained via a Bayesian model averaging method and with a significant gain in terms of
computational cost. However, the analyzed signals were all simulations apart from one real GW event,
GW200129_065458, also included in our suite of events. The focus of our work is instead on real events,
with the goal to investigate possible systematic biases caused by the different waveform approximants.
We employ four waveform models: NRSur7dq4 [161], IMRPhenomXPHM [205], IMRPhenomTPHM [268], and
SEOBNRv4PHM [187]. In Ref. [269], all the events in GWTC-3 are analyzed with the NRSur7dq4 model,
finding, in some cases, different results with respect to the ones obtained with the IMRPhenomXPHM and
SEOBNRv4PHM models in the LVK analyses.

For our study, we focus on the method introduced in Ref. [270], henceforth referred to as hyper-
models. The purpose of our study is to obtain a quantitative measure of selection, in this case by
using the odds ratio, between one waveform and another from a combination of GW events.

4.2 Methods

In this section, we introduce the waveform models and the Bayesian framework, in particular the
hypermodels method, employed in this study.

4.2.1 Waveform models

For our analysis, we consider four state-of-the-art BBH waveforms, all including precession and higher-
order modes. The construction of the precessing approximant is usually based on a non-precessing
one. The specific subdominant modes (`, |m|) included, and listed below, are the ones provided by the
aligned-spin model: when constructing the precessing one, it will include all the higher-order modes
corresponding to a given `, although their description might be incomplete based on the mode content
of the aligned-spin approximant. The employed models are briefly described below. More details
regarding how the different approximants are built are given in Sec. 2.1.

NRSur7dq4

NRSur7dq4 [161] is a time-domain surrogate model that extends the previous NRSur7dq2 [271] to
higher values of mass ratio. Surrogate models [159,160] are constructed by interpolating over a set of
precomputed waveforms, in this case numerical-relativity waveforms built over the parameter space
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for precessing BBH systems. This approach produces very accurate waveforms, since it does not rely
on any approximation, except for the numerical discretization in the simulations. However, due to
the computational cost of NR simulations, only a limited parameter space region can be covered. In
particular, the NRSur7dq4 model is valid for mass ratio values up to 1/q ≤ 6, where now we assume
q = m2/m1 withm1 > m2, and for total mass valuesM & 66M� (cf. Fig. 9 in Ref. [161] for the precise
range of validity as a function of the system’s mass ratio). NRSur7dq4 includes, in the co-precessing
frame, all the subdominant modes up to ` ≤ 4.

SEOBNRv4PHM

SEOBNRv4PHM [187] is a time-domain, effective-one-body precessing waveform built from the aligned-
spin model in Ref. [272]. The EOB formalism maps the dynamics of two bodies into the dynamic
of a reduced-mass body moving in a deformed metric. The gravitational waveforms computed with
this approach are accurate but slow to generate. For SEOBNRv4PHM, the precessing sector is not
calibrated to NR simulations. In the co-precessing frame, it includes the subdominant harmonics
(`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5), and it is valid for mass ratio values in the range 1 ≤ 1/q ≤ 50.

IMRPhenomXPHM

IMRPhenomXPHM [205] is a phenomenological, frequency-domain approximant based on the non-precessing
IMRPhenomXHM model and constructed via the so-called “twisting-up” procedure (see Sec. 2.1.4), which
allows us to map non-precessing systems to precessing ones. IMR phenomenological models are built
from piecewise closed-form expressions, which make them computationally cheap. IMRPhenomXHM is
constructed separately for the three different inspiral, intermediate, and ringdown regions. The in-
termediate region is fully calibrated to NR simulations, while the inspiral and ringdown ones also
include information from the post-Newtonian expansion or black hole perturbation theory, respec-
tively. In the co-precessing frame, this approximant includes the subdominant modes (`, |m|) =

(2, 1), (3, 3), (3, 2), (4, 4), which are calibrated to NR waveforms individually. The model is valid for
spin magnitude values up to 0.99 and 1/q < 1000.

IMRPhenomTPHM

This approximant also belongs to the family of phenomenological models, but it is built in the time
domain. Although working in the frequency domain offers an additional speed-up when computing the
noise-weighted inner products, a time-domain model allows a direct description of the system’s dynam-
ics. IMRPhenomTPHM [268] is built from the non-precessing model IMRPhenomTHM [273] via the “twisting-
up” procedure, which is however different to the procedure applied in the frequency domain. In the co-
precessing frame, this model includes the subdominant harmonics (`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5).
The parameter range of validity is defined by: m2 ≥ 0.5M�, with m2 being the secondary mass, and
spin magnitude |χ1,2| ≤ 0.99 for 1/q ≤ 20.
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4.2.2 Bayesian framework

Analyzing GW signals in a Bayesian framework, as described in Sec. 2.2, allows both inference of the
source parameters and a comparison between different possible models describing the gravitational
waveform. The source parameters ~θ can be recovered from the detector data d evaluating the posterior
p(~θ|d,Ω), where Ω is the waveform model. We employed the same default priors used in the parameter
estimation analysis for these events in the LVK catalog papers [14, 38], adjusting them as follows in
order to respect the region of validity of all the four approximants considered: 1/q ≤ 6, χ1,2 ≤ 0.99,
m2 ≥ 0.5M�. For some events, we also adjust the prior on chirp mass to ensure Mc ≥ 26M�, to
allow for the validity of NRSur7dq4 in the entire region of the prior volume. As discussed in Sec. 2.2.4,
the evidence enables us to compare different models, say ΩA and ΩB, computing the odds ratio

OAB =
p(ΩA|d)

p(ΩB|d)
. (4.1)

The posterior probability density and the evidence can be estimated with stochastic sampling
methods. In particular, here we employ the hypermodels approach introduced in Ref. [270], with
a Metropolis-Hastings MCMC algorithm, based on the implementation of the Bilby-MCMC sam-
pler [274].

4.2.3 Hypermodels

If n is the number of models we want to study, the waveform model Ω employed during the sampling
is substituted with a hypermodel Ω = {Ω0,Ω1, ...,Ωn−1}. The parameter space investigated by the
sampler, therefore, becomes {~θ, ω}, where ~θ are the usual source parameters, while ω is a categorical
parameter ω ∈ [0, 1, ..., n− 1] representing the waveform approximant. We define a mapping between
the value of the parameter ω and a specific waveform approximant, so that at each iteration the
sampler picks a value of {~θ, ω} and generates the waveform with parameters ~θ and the approximant
corresponding to ω. We employ an uninformative prior π(ω) = 1/n, which translates into a prior odds
πAB = 1 for all the combinations of models considered. Among the final N posterior samples, we can
distinguish the samples for each waveform ` from the value of the ω parameter. If n` is the number
of samples for the `-th approximant, its probability with respect to the other waveforms is given by
p` = n`/N . The odds ratio between two models ω = A and ω = B is computed as

OAB =
pA
pB

=
nA
nB

. (4.2)

The error on pA,B is given by the variance of a Poisson process, yielding σ2
pA,pB

= pA,B/N ; thus,
propagating the uncertainty, and ignoring any correlation, the variance for the odds ratio OAB is given
by

σ2
OAB
≈

(OAB)2

N

(
1

pA
+

1

pB

)
. (4.3)
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4.3 Results

We analyze 13 events of GWTC-3, focusing on the ones with the highest total mass (M > 59.4M�),
and with moderate to high SNRs. In particular, we consider events with a network SNR ρnet ≥√
D × 82, where D is the number of interferometers detecting the event, corresponding to at least a

signal-to-noise ratio 8 per detector, without, however, constraints on the single detector SNR.1

The waveform models employed include higher-order modes, and we restricted to the modes that
are available for all models: (`,m) = (2, 2), (2, 1), (3, 3), (4, 4), (2,−2), (2,−1), (3,−3), (4,−4). We re-
mark that this implies that the models are not used at their full capabilities, since we could not include
their full mode content. For SEOBNRv4PHM, the sampling rate must ensure that the Nyquist frequency
is larger than the ringdown frequency. For most events, this means that the required sampling rate
was higher than the one used for the LVK catalog papers [14, 38]; therefore we estimated the events’
power spectral densities in the needed frequency range, using BayesLine [113] and the same settings
as in Refs. [14, 38]. The new PSDs are released together with the obtained samples in Ref. [275].

The detector frame masses and spins estimated with the various models are reported in Table 4.1
and Table 4.2, respectively, while Table 4.3 shows the median value, along with its 90% confidence
interval, of the distribution of the log-likelihood, lnL. For each model, it corresponds to the distribu-
tion of the log-likelihood values (see Sec. 2.2.2) for all the samples with parameters {~θ, ω} for which
ω corresponds to the specific model. The logarithm is used simply because, as shown in Eq. 2.68,
in the frequency domain the likelihood takes an exponential form, and therefore it is easier for the
samplers to compute its logarithm. In general, we expect that higher values of lnL correspond to a
higher probability for a given model. However, Table 4.3 reports the median of the recovered lnL
distribution, therefore, since the shape of the distribution will affect the median value, in some cases
the model with the largest lnL value might not correspond to the model with the largest probability.

Regarding the spins, information is reported through two parameters (cf. Sec. 1.3.3), the effective
inspiral spin

χeff =

(
m1χ1,‖ +m2χ2,‖

)
m1 +m2

, (4.4)

with χ1,‖, χ2,‖ being the spin components parallel to the angular momentum, and the effective pre-
cessing spin

χp = max

{
χ1,⊥,

q (4q + 3)

4 + 3q
χ2,⊥

}
, (4.5)

where χ1,⊥, χ2,⊥ are the spin components perpendicular to the angular momentum. Figure 4.1 shows
the posterior probability density of Mc, q, χeff , and χp for all the events, comparing the posteriors
recovered with the different waveform models.

We can usually place only weak constraints on χp. Thus, its posterior distribution is heavily
affected by the prior one, which in turn is determined by the source parameters χ1, χ2, and q, and
peaks at non-zero values of χp also in the absence of precession. Therefore, recovering a non-zero
value of χp does not constitute sufficient evidence of precession, but we need to check if the posterior

1This is a conservative choice, since usually a network SNR of roughly 8 is already enough to consider a detection
significant. However, it ensures a signal loud enough to obtain significant results in parameter estimation analyses.
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lnL

Event NRSur SEOB IMRX IMRT Combined

GW150914 322.2+2.7
−4.3 321.6+2.5

−4.1 322.2+2.8
−4.0 322.4+2.6

−4.4 322.2+2.7
−4.3

GW190519_153544 114.6+3.7
−4.9 115.4+3.7

−5.3 115.1+3.3
−5.1 114.6+3.2

−5.2 115.0+3.5
−5.1

GW190521_074359 320.0+3.5
−4.8 321.3+3.2

−5.1 319.7+3.1
−4.4 320.6+3.4

−4.6 320.6+3.5
−4.8

GW190620_030421 64.1+3.9
−5.3 64.0+4.1

−5.6 63.7+3.6
−5.4 64.2+3.8

−5.6 64.0+3.9
−5.5

GW190630_185205 117.7+3.1
−5.1 116.8+3.2

−5.1 116.9+3.1
−4.9 117.7+3.1

−5.0 117.4+3.2
−5.1

GW190910_112807 90.5+3.3
−4.6 90.8+3.9

−4.6 90.4+3.1
−4.5 90.4+3.7

−4.5 90.5+3.5
−4.6

GW191222_033537 70.0+2.5
−4.1 69.5+2.5

−4.0 69.3+2.5
−4.0 70.1+2.5

−4.1 69.8+2.6
−4.1

GW200112_155838 166.2+2.9
−4.4 165.5+2.8

−4.6 165.6+2.7
−4.4 166.4+2.9

−4.4 166.0+2.9
−4.5

GW200224_222234 188.1+3.6
−4.5 188.0+2.7

−4.4 188.6+3.3
−4.6 187.4+2.7

−4.5 188.1+3.3
−4.5

GW200311_115853 145.4+2.7
−4.2 146.0+2.6

−4.2 146.2+2.5
−4.3 145.6+2.8

−4.2 145.9+2.7
−4.3

GW190521 88.0+4.2
−5.6 87.4+4.2

−5.4 83.6+4.3
−4.3 88.4+3.6

−5.5 87.8+4.1
−5.8

GW191109_010717 133.3+3.9
−6.2 136.4+5.6

−6.9 132.2+6.9
−6.6 135.9+5.4

−6.7 135.8+5.9
−6.9

GW200129_065458 347.2+4.4
−7.1 341.0+2.6

−3.8 345.3+4.7
−6.4 341.1+5.3

−4.6 346.1+4.8
−7.0

Table 4.3: Median values and their 5% and 95% quantiles from the probability density functions of the recovered
lnL with the different models and for the combined results. For each event, the highest value of lnL is marked
in bold.
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Figure 4.1: Posterior probability densities for Mc, q, χeff , and χp as recovered with the different waveform
approximants and for the combined posterior, for all the events analyzed.
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Event NRSur SEOB IMRX IMRT Combined

GW150914 0.008 0.010 0.050 0.017 0.015

GW190519_153544 0.010 0.017 0.010 0.011 0.011

GW190521_074359 0.037 0.029 0.027 0.029 0.029

GW190620_030421 0.010 0.006 0.016 0.012 0.006

GW190630_185205 0.030 0.067 0.049 0.065 0.050

GW190910_112807 0.023 0.012 0.009 0.014 0.014

GW191222_033537 0.012 0.011 0.014 0.012 0.011

GW200112_155838 0.012 0.015 0.011 0.014 0.012

GW200224_222234 0.008 0.011 0.024 0.010 0.010

GW200311_115853 0.026 0.018 0.041 0.038 0.031

GW190521 0.243 0.158 0.007 0.264 0.202

GW191109_010717 0.095 0.227 0.070 0.422 0.243

GW200129_065458 0.459 0.005 0.330 0.051 0.378

Table 4.4: Dχp,prior
JS values in bit computed between the posterior of χp obtained with our analysis and the prior

distribution conditioned to χeff , for the posteriors recovered with the different waveforms and the combined one.
Events for which we find values of χp significantly different from the prior are marked in italic.
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distribution is significantly different from the prior one. This is evaluated through the Jensen-Shannon
(JS) divergence [276], which estimates the difference between two probability distributions p1 and p2

as

DJS(p1(x)||p2(x)) =
1

2

[∑
x

p1(x) ln

(
p1(x)

m(x)

)
+
∑
x

p2(x) ln

(
p2(x)

m(x)

)]
, (4.6)

with m(x) = 0.5(p1(x) + p2(x)). The JS divergence derives from the Kullback-Leibler (KL) diver-
gence [277], or relative entropy,

DKL(p1(x)||p2(x)) =
∑
x

p1(x) ln

(
p1(x)

p2(x)

)
, (4.7)

which basically quantifies the information lost when we use p2(x) to model the “true” distribution
p1(x). The KL divergence is not symmetric, i.e., DKL(p1(x)||p2(x)) 6= DKL(p2(x)||p1(x)). In order to
get a symmetric quantity, instead of directly computing the KL divergence between p1(x) and p2(x),
one considers the average distribution m(x) = 0.5(p1(x) + p2(x)) and computes the average of the KL
divergence of both p1(x) and p2(x) with respect to m(x), obtaining the JS divergence as

DJS(p1(x)||p2(x)) =
1

2
[DKL(p1(x)||m(x)) +DKL(p2(x)||m(x))] . (4.8)

Table 4.4 shows the JS divergence values for χp posteriors with respect to their prior distribution,
D
χp,prior
JS . We also compare our results with the ones from LVK analyses in Table 4.5, where the

difference between the posterior distributions is again evaluated as a JS divergence. Furthermore, the
probability percentages for each model for the different events, with their associated errors, are given
in Table 4.6 for each event.

4.3.1 Single events

In this section, we comment on the individual event recoveries with the different waveform models.

GW150914

For this event, the parameters and the log-likelihoods recovered are consistent for all four models. The
recovered values for the source parameters can be found in Tables 4.1-4.2, and are consistent with the
LVK results [36, 38], as shown in Table 4.5. The probabilities for each approximant are reported in
Table 4.6, where we see a slight preference for the IMRPhenomTPHM model.

GW190519_153544

In this case, data show a preference for IMRPhenomXPHM (see Table 4.6), although parameter estimates
and log-likelihood values are consistent for all the models. As shown in Table 4.2, we find support for
positive, non-zero values of χeff . This is consistent with the results reported in Ref. [38].

GW190521

GW190521 is the most massive event detected so far, and one among the ones with the strongest
signature of higher-order modes in the signal [17, 41]. The consequently high values needed for the
prior on chirp mass, combined with the employed prior on mass ratio, cause potential issues within the
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IMRPhenomXPHM SEOBNRv4PHM

Event D
χp

JS Dχeff
JS DMc

JS Dq
JS D

χp

JS Dχeff
JS DMc

JS Dq
JS

GW150914 0.006 0.001 0.007 0.005 0.005 0.076 0.032 0.052

GW190519_153544 0.002 0.001 0.001 0.001 0.011 0.002 0.014 0.007

GW190521_074359 0.007 0.004 0.005 0.001 0.024 0.033 0.005 0.007

GW190620_030421 0.005 0.001 0.007 0.001 0.001 0.001 0.006 0.001

GW190630_185205 0.002 0.001 0.004 0.002 0.010 0.022 0.025 0.015

GW190910_112807 0.002 0.000 0.002 0.001 0.007 0.002 0.015 0.009

GW200112_155838 0.002 0.007 0.004 0.003 0.009 0.018 0.014 0.026

GW200224_222234 0.001 0.003 0.006 0.001 0.004 0.016 0.018 0.006

GW200311_115853 0.002 0.001 0.001 0.001 0.006 0.006 0.015 0.014

GW190521 0.019 0.003 0.066 0.075 0.020 0.003 0.018 0.035

GW191109_010717 0.024 0.006 0.012 0.006 0.029 0.011 0.016 0.007

GW200129_065458 0.003 0.010 0.005 0.008 0.139 0.046 0.137 0.141

Table 4.5: Values of Jensen-Shannon divergence for χp, χeff ,Mc, and q, computed between the posteriors recov-
ered by our analysis and the LVK ones [14,38] for the available waveforms, IMRPhenomXPHM and SEOBNRv4PHM.
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IMRPhenomTPHM model since the computed peak frequency for the (`,m) = (2, 2) mode might be below
the 20 Hz low-frequency cutoff used for the analysis. To avoid this issue, for this event we adjust the
prior on mass ratio such that 1/q ≤ 2. The recovered values for mass and spin parameters are reported
in Table 4.1 and Table 4.2, respectively. They are consistent with the results in Ref. [38], where, how-
ever, only the IMRPhenomXPHM and SEOBNRv4PHM approximants were used,2, and with the NRSur7dq4
results first shown in the discovery paper [17]. We find evidence of precession for the NRSur7dq4,
SEOBNRv4PHM, and IMRPhenomTPHM models, cf. Table 4.4. The probabilities for the different approxi-
mants are shown in Table 4.6: the IMRPhenomTPHM model is slightly favored over the other ones, while
IMRPhenomXPHM is strongly disfavored. Interestingly, these findings are consistent with the fact that
the IMRPhenomXPHM model provides a less accurate description of precession in the ringdown phase:
being a frequency-domain model, it is not straightforward to compute a specific closed-form ansatz for
the Euler angles during the ringdown, and therefore the same prescription for the inspiral is employed;
moreover, the stationary phase approximation (see Sec. 2.1.2) is used in the whole waveform, although
it is not adequate for the merger and ringdown. These limitations become more evident in the case
of signals where the merger and ringdown phase prevail, like GW190521. Nevertheless, the extremely
short duration of this event and the lack of the inspiral part of the signal3 make it difficult to draw clear
conclusions. Many works investigated this event from different perspectives and explored the possible
processes that lead to the formation of such a system. One of the most investigated hypotheses is
the presence of eccentricity [278–280], which could mimic precession [281, 282]. Multiple alternative
scenarios that could lead to the emission of this signal have been proposed, like dynamical capture
in hyperbolic orbits [283], a primordial BH merger [284], and a high-mass BH-disk system [285]. In
Ref. [286], an analysis of this event with a population-based prior led to the conclusion that neither
of the component masses lies in the pair-instability supernova mass gap. In Ref. [287], the use of a
high-mass prior showed the possibility of GW190521 being an intermediate-mass-ratio BBH merger.
However, a further investigation carried out in Ref. [288], where different precession prescriptions and
higher-order-modes contents were investigated with the IMRPhenomXPHM and IMRPhenomTPHM models,
showed that, despite the presence of a multimodal likelihood for the mass ratio parameter, the peaks
are characterized by very different probabilities. The parameters recovered by our analysis are consis-
tent with both the IMRPhenomXPHM and IMRPhenomTPHM results in Ref. [288], when using models with
the same settings.

GW190521_074359

This event shows a preference for the SEOBNRv4PHM approximant, although the recovered parameters
and log-likelihood values are similar for all four models. Also in this case, our results are consistent
with the ones in the LVK papers [38], and we find no evidence of precession.

2In Ref. [38] further analyses computed the precession SNR to be too small to claim the presence of strong evidence
for precession.

3As discussed in Sec. 1.3.2, the GW signal emitted by heavier binaries spends less time in band, and the GWs emitted
during their inspiral involve lower frequencies. In addition, the ISCO frequency at which commonly we consider the
inspiral ended is also inversely proportional to the total mass of the binary. Therefore, for GW190521, due to its high
total mass, the signal entered in band only during the merger-ringdown phase of the coalescence.
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GW190620_030421

The LVK studies report this source as a BBH binary with high effective spin χeff . In our re-analysis,
we find all the waveform families to perform comparably and return consistent estimates of param-
eters as well as the values of log-likelihood. Moreover, the existing LVK analyses on this event with
IMRPhenomXPHM and SEOBNRv4PHM return consistent results with ours. We also find support for posi-
tive values of χeff , as shown in Table 4.2. The estimates of intrinsic parameters from different models
are consistent with each other; however, from the values of posterior probability (see Table 4.6),
NRSur7dq4 seems to be the most favored.

GW190630_185205

We find consistent estimates of parameters and log-likelihoods among all models compared, and no
evidence for spin. Among the four models considered, NRSur7dq4 and IMRPhenomTPHM seem to be
most preferred by the data, with almost the same probability.

GW190910_112807

This event again returns very consistent estimates of log-likelihood and intrinsic parameters among the
different models. In particular, we find no evidence for spins. From the values of posterior probabilities
supported by all waveforms, we also note that the data have an almost equal preference for all models.

GW191109_010717

We find SEOBNRv4PHM to be the most favored model, as reported in Table 4.6. We also recover a
high probability for IMRPhenomTPHM, while NRSur7dq4 and IMRPhenomXPHM are strongly disfavored.
We find evidence of non-zero χp with both SEOBNRv4PHM and IMRPhenomTPHM, but not for the other
two models, as shown in Tables 4.2 and 4.4. For all models, we find significant support for negative
values of χeff , confirming the results in Refs. [14, 289]. In the latter, the possibility of formation by
dynamical capture for the binary generating this event is discussed. However, GW191109_010717
was among the O3 events that required data mitigation due to the presence of glitches. In particular,
GW191109_010717 was affected by a glitch in both the detectors online at the time of the event,
in the frequency range 25-45 Hz for Hanford and 20-32 Hz for Livingston. As shown in Ref. [118],
different deglitching procedures influence the posteriors obtained for both χeff and χp. In particular, if
the Livingston data are analyzed only for frequencies larger than 40 Hz, the support for negative χeff

disappears. However, this result is not sufficient to label the negative support of χeff as a noise artifact,
since most of the spin information comes from low frequencies, and, being GW191109_010717 already
a signal with a short inspiral, removing the low-frequency part discards most of the information,
yielding non-informative results. The presence of glitches overlapping a significant part of the inspiral
for both the detectors is also regarded as the most likely cause for deviations from general relativity
found for this event by some LVK testing-GR analyses [20].
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Event NRSur SEOB IMRX IMRT

GW150914 27.55 ± 0.7 16.22 ± 0.8 23.34 ± 0.7 32.88 ± 0.7

GW190519_153544 20.82 ± 0.6 20.95 ± 0.6 40.87 ± 0.5 17.35 ± 0.6

GW190521_074359 14.76 ± 1.2 40.50 ± 1.0 17.53 ± 1.2 27.22 ± 1.1

GW190620_030421 32.98 ± 0.6 19.48 ± 0.6 20.22 ± 0.6 27.32 ± 0.6

GW190630_185205 33.79 ± 0.6 15.36 ± 0.6 18.90 ± 0.6 31.95 ± 0.6

GW190910_112807 22.86 ± 0.6 25.92 ± 0.6 27.85 ± 0.6 23.37 ± 0.6

GW191222_033537 28.11 ± 0.5 20.58 ± 0.6 18.78 ± 0.6 32.53 ± 0.5

GW200112_155838 30.56 ± 0.6 15.61 ± 0.6 19.82 ± 0.6 34.01 ± 0.5

GW200224_222234 21.82 ± 0.6 23.39 ± 0.6 40.43 ± 0.5 14.36 ± 0.7

GW200311_115853 15.68 ± 0.6 27.70 ± 0.6 35.69 ± 0.6 20.93 ± 0.6

GW190521 31.78 ± 0.6 26.39 ± 0.6 4.60 ± 0.7 37.23 ± 0.5

GW191109_010717 7.54 ± 1.6 62.29 ± 1.0 5.06 ± 1.7 25.11 ± 1.5

GW200129_065458 46.94 ± 1.4 0.66+1 .9
−0 .66 51.14 ± 1.3 1.25 +1 .9

−1 .25

Table 4.6: Probability percentages recovered for the different models for each event, including errors. Events
that strongly favor or disfavor some of the models are marked in italic.

GW191222_033537

Although the returned parameter estimates, as well as log-likelihood values, are quite similar, IMRPhenomTPHM
seems to be the most favored model (see Table 4.6), while the least favored model is IMRPhenomXPHM.
We find no evidence for spins.

GW200112_155838

We recover similar probabilities for all the approximants, with SEOBNRv4PHM slightly disfavored and
IMRPhenomTPHM slightly favored, as shown in Table 4.6. Consistently, we find no significant difference
between the recovered parameters and log-likelihoods for the different waveforms. The IMRPhenomXPHM
and SEOBNRv4PHM posteriors estimated by our study are consistent with the LVK ones.
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GW200129_065458

We find a strong preference for NRSur7dq4 and IMRPhenomXPHM, while the probability for SEOBNRv4PHM
and IMRPhenomTPHM is close to zero. This discrepancy is reflected in the posteriors of χp, with
NRSur7dq4 and IMRPhenomXPHM finding strong evidence for high χp values, cf. Table 4.4, while for
the other two models results are dominated by the prior. This is consistent with what was found
in the LVK GWTC-3 analysis, where IMRPhenomXPHM recovers χp and SEOBNRv4PHM does not. In
Ref. [290], strong evidence for precession was found when analyzing this event with the NRSur7dq4
model. For this event, precession was measured also in Ref. [291], where the recoil velocity was also
estimated. The main difference between these two works and the LVK analysis, which did not find
conclusive evidence of precession, is that in the latter data were analyzed only with the IMRPhenomXPHM
and SEOBNRv4PHM approximants. In Refs. [290] and [291], the NRSur7dq4 model was used, because,
being generated from NR simulations, it is expected to be more accurate, as shown by the mis-
match computation in Ref. [290]. However, in our study, we do not find an overall preference for
NRSur7dq4. GW200129_065458 data were affected by a glitch overlapping the event in the Livingston
detector [118], therefore, in our analysis, we used the deglitched data, as was done in Ref. [14]. Ref-
erence [292] explores the influence of data quality issues for this event, finding that the evidence for
precession comes exclusively from the Livingston strain of data between 20-50 Hz, where such issues
are present.

GW200224_222234

For this event the recovered parameters and log-likelihood values are consistent for the different
waveforms. We find a slight preference for IMRPhenomXPHM, cf. Table 4.6. Our results for both
IMRPhenomXPHM and SEOBNRv4PHM are consistent with the LVK analysis. We do not find support
for precession.

GW200311_115853

Specific to this event, we find no evidence of spin and consistent source parameters and log-likelihood
estimates among all models. However, IMRPhenomXPHM seems to be the most favored approximant by
the event (cf. Table 4.6).

4.3.2 Combined events

Figure 4.2 shows the cumulative joint odds ratio as a function of the number of events, while Table 4.7
reports the odds ratio values obtained by combining information from all the sources analyzed. We do
not find a specific approximant being preferred or disfavored consistently for all the events. Combining
results for all the 13 sources, the NRSur7dq4 model results favored with respect to SEOBNRv4PHM, with
an odds ratio of 29.43. However, this value is dominated by the results for GW200129_065458, and
without this event the odds ratio becomes 0.46. This is unexpected, because NRSur7dq4, being fully
informed by NR simulations, is assumed to be the most accurate model and therefore to describe the
data best. Table 4.7 shows also how odds ratios change with the three events with a strong preference
for one of the models: while GW200129_065458 is responsible for NRSur7dq4 being favored over
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Figure 4.2: Evolution of the joint odds ratio for each approximant with respect to SEOBNRv4PHM as events are
added; for any one event shown on the x-axis, the joint odds ratio is calculated from all the events occurring
to the left of that event. The events in the gray-shaded area are affected by possible data quality issues. Note
that the symmetric error bars 1σ are included in the data points but too small to be discernible.

SEOBNRv4PHM, GW191109_010717, which instead finds a significant preference for SEOBNRv4PHM and
IMRPhenomTPHM, balances this result; if we do not take GW191109_010717 into account, NRSur7dq4
and IMRPhenomXPHM are strongly favored over SEOBNRv4PHM, with an odds ratio ONRSur

SEOB = 243.31 and
OIMRX

SEOB = 57.84, respectively. In addition, without this event, OIMRT
SEOB = 12.62, and ONRSur

IMRT = 19.27.
Similarly, the results from GW190521 heavily influence the final odds ratio for IMRPhenomXPHM: if
we do not include this event, we obtain OIMRX

SEOB = 26.99. Without these three sources, we find no
significant preference for any of the models.

We look for possible trends for the preference of given approximants with respect to the binary
parameters, which would point to the waveforms with the best description for specific regions of the
parameter space. Figure 4.3 shows the probabilities recovered for the different models as a function of
the sources’ mass and spin parameters, and the optimized network matched-filter SNR, as computed
by the parameter estimation analyses in the catalog papers [14, 38]. We do not find any trends with
respect to the binary parameters or the signal SNR.

Interestingly, we find that for all the events that show a strong preference for one of the models,
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4.3. Results

Figure 4.3: Posterior probability for the different approximants as a function of the LVK estimated values of
Mc (top left panel), q (top right), χeff (middle left), χp (middle right), and SNR (bottom left panel).
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i.e., GW190521, GW191109_010717, and GW200129_065458, the preferred models are not the same,
but in each case are the ones that recover precession. This is particularly evident in the case of
GW190521, where IMRPhenomXPHM does not recover evidence of precession and has a probability only
of roughly 4%, while the other models, which show evidence supporting non-zero values of χp, all have
a probability roughly 30%. Although, as mentioned, the results for these events might be biased by
their short duration or potential data quality issues, the fact that a given model recovers precession
better than another one systematically implies a higher probability. Evidence for this behavior is
supported by the fact that the preferred models are different for the three events, leaving the recovery
of precession as the only element systematically connected to higher probability values.

4.4 Injection runs

In addition to the analysis of real GW events, we want to corroborate in the following the validity of
the method through an injection study. For this purpose, we perform a hypermodels analysis with the
same waveform approximants and settings previously described, to analyze simulated signals in zero
noise.

Model Mc [M�] q a1 θ1 [rad] a2 θ2 [rad] DL [Mpc]

Injection 1 IMRPhenomTPHM 108.79 0.92 0.97 2.59 0.93 1.66 2751.72

Injection 2 SEOBNRv4PHM 71.32 0.54 0.99 1.12 0.81 1.96 3488.44

Injection 3 IMRPhenomXPHM 28.94 0.42 0.88 1.55 0.73 1.95 1358.51

Injection 4 NRSur7dq4 28.94 0.42 0.88 1.55 0.73 1.95 1358.51

Injection 5 IMRPhenomXPHM 65.72 0.63 0.81 1.74 0.68 1.72 2000.0

Injection 6 NRSur7dq4 65.72 0.63 0.81 1.74 0.68 1.72 2000.0

Injection 7 IMRPhenomXPHM 65.72 0.63 0.64 0.0 0.58 0.0 2000.0

Injection 8 NRSur7dq4 65.72 0.63 0.64 0.0 0.58 0.0 2000.0

Table 4.8: Approximant model and parameters used for injections; a1,2 and θ1,2 represent the magnitude and
tilt angle of the components’ spins, while DL is the luminosity distance.

The details of the injections are given in Table 4.8. Injection 1 and 2 are produced using the
maximum-likelihood parameters and approximants recovered from the analyses of GW190521 and
GW191109_010717, respectively. Injection 3 and 4 are generated with the maximum-likelihood pa-
rameters of GW200129_065458 using IMRPhenomXPHM and NRSur7dq4, which are the models with the
highest recovered probability and likelihood, respectively. For the other injections we employed the
maximum-likelihood mass values recovered for GW190519_153544, a fixed luminosity distance, and
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Figure 4.4: Probability density distributions for lnL for the different models considered in the analysis. The
legend reports the recovered probability percentages, including errors; the model marked in bold is the one used
for the injection.
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two different values of spin magnitudes and inclinations, considering injections both with IMRPhenomXPHM
and NRSur7dq4. Figure 4.4 shows the probability density distributions of the recovered log-likelihoods
for the different models, together with their percentage probabilities, including errors. In most cases
we clearly recover the highest probability for the injected model. When the most favored model is not
the injected one, however, the probability of the injected model is very close to the highest one. This
is likely due to the fact that the two waveform descriptions are very similar, and the injected model is
guaranteed to provide the best fit only at the injection point. To further understand why the injected
model in some cases is not the most favored one, a detailed analysis of different ingredients for all
employed waveform models would be required, which is however outside the scope of this paper. From
the statistical point of view, the injection study indicates that our uncertainty on the odds might not
measure the full uncertainty. A validation of the uncertainty estimates would need multiple runs on
the same data set.

We also note that, in order to validate the method, we performed these analyses in zero noise: in
real-events analysis, the presence of noise and noise fluctuations will affect the differences between the
evidences.

4.5 Summary

We analyzed the 13 events with the highest mass and moderate to high SNR among the ones de-
tected so far by Advanced LIGO and Advanced Virgo, using the “hypermodels” technique developed
in Ref. [270]. This method allows us to sample directly over different waveform approximants, in
order to determine which one is favored by the data. We analyzed data with four different approx-
imants, all including precession and higher-order modes: NRSur7dq4, SEOBNRv4PHM, IMRPhenomXPHM,
and IMRPhenomTPHM. For each event, we recover the source parameters, finding both mass and spin pa-
rameters to be in agreement with the LVK results, cf. Table 4.5. For three events, GW191109_010717,
GW200129_065458, and GW190521, we recover non-zero values for the effective precession spin pa-
rameter, with a distribution significantly different from the prior one. These events are also the ones for
which we find a strong preference for some models over the other ones, although the preferred approx-
imants are different. GW191109_010717 shows a strong preference for SEOBNRv4PHM, with NRSur7dq4
and IMRPhenomXPHM being disfavored. On the other hand, for GW200129_065458 NRSur7dq4 and
IMRPhenomXPHM are strongly favored, and the probability for SEOBNRv4PHM and IMRPhenomTPHM is
close to zero. Finally, GW190521 recovers a very low probability, roughly 4%, for IMRPhenomXPHM,
while the other models do not show significant differences among them. However, GW191109_010717
and GW200129_065458 data were affected by glitches [118], and the short duration of GW190521
implies that we could not see its inspiral phase; therefore, we cannot draw clear conclusions about
these events. Nonetheless, we systematically find that the models recovering evidence for non-zero
values of χp are the ones with the higher probabilities. For all the other events, we recover only slight
preferences for a given approximant, with the recovered parameters’ posteriors and log-likelihoods
being similar.

We also performed some zero-noise injection runs to validate our method, showing that in most
cases we recover the highest probability for the injected model, although an extensive injection study

106



4.5. Summary

would be needed in order to fully validate the uncertainty estimates.
Overall, we do not find one model to be consistently preferred over the others. This is unexpected,

considering that we included NRSur7dq4 in the analysis, which is predicted to be the most accurate
model for high-mass signals, being interpolated from NR simulations. However, we also remark that
the models are not used at their full capabilities since, in order to compare them, we consider only
the subdominant modes present in all of them. The odds ratios combined over all the sources show
NRSur7dq4 being favored over SEOBNRv4PHM, with ONRSur

SEOB = 29.43, while for IMRPhenomXPHM and
IMRPhenomTPHM we find OIMRX

SEOB = 4.70 and OIMRT
SEOB = 5.09 respectively. However, this result is mostly

determined by GW200129_065458, for which SEOBNRv4PHM and IMRPhenomTPHM probabilities are close
to zero. If we remove this event from the combined odds ratio calculation, we obtain ONRSur

SEOB = 0.42.
Finally, if we do not take into account the three sources favoring one of the approximants, we find no
significant preference for any of the models.
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Chapter 5

Unraveling information about
supranuclear-dense matter from the complete
binary neutron star coalescence process using
future gravitational-wave detector networks

Binary neutron star mergers offer a unique tool to study the EOS of supranuclear-dense matter, which
can be constrained through measurements of the NSs’ macroscopic properties. We saw in Sec. 1.3.4
that the EOS determines not only the signal emitted during inspiral, but also the possible postmerger
one, which contains a wealth of information but proves very difficult to detect and analyze. In this
chapter, based on Ref. [293], we build a waveform model to describe the GW signal emitted during
the full coalescence of a BNS system, and we employ it in parameter estimation analyses with future
detectors, with the goal to extract information about the EOS.

5.1 Introduction

In addition to a more detailed analysis of the inspiral, third-generation GW detectors such as the
Einstein Telescope and the Cosmic Explorer are also expected to detect GWs from the postmerger
phase of the BNS coalescence [294–298]. This is of special interest, since the postmerger probes a
different, even higher density and temperature regime than the inspiral. During the inspiral only
densities up to the central density of the individual stars are probed, which corresponds to about 3 to
4 times the nuclear saturation density, while the postmerger phase probes densities even beyond five
times the nuclear saturation density; cf. Fig. 1 of Ref. [299]. In addition, also temperatures of about
50 MeV are reached during the postmerger phase, which is large enough that the effect of different
transport coefficients will start to impact the data [300–302].

Unfortunately, postmerger studies pose numerous challenges. First, the amplitude of the post-
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merger part of the observed GW signal is expected to be weaker than the inspiral one [80,99,100,103,
303]. Second, at higher frequencies, the detectors’ sensitivity drops due to quantum shot noise. For
these reasons, it is not surprising that the dedicated searches for GWs emitted by a possible remnant
of GW170817 [304, 305] found no evidence of such a signal and showed that with the sensitivity of
Advanced LIGO and Advanced Virgo the source distance should have been at least one order of mag-
nitude less for the postmerger signal to be detectable. Finally, postmerger physics includes thermal
effects, magnetohydrodynamical instabilities, neutrino emission, dissipative processes, and possible
phase transitions [306–312], which make the postmerger particularly difficult to model, but, on the
other hand, allow us to investigate a variety of interesting physical processes. Because of the com-
plexity of the evolution, the study of the postmerger relies heavily on numerical-relativity simulations,
which, however, are also limited due to their high computational cost and the fact that it is currently
not possible to take into account all the physical processes that influence the postmerger.

Nonetheless, previous studies based on NR simulations showed some common key features of
the postmerger GW spectrum, finding in some cases universal relations with the NS properties
[80, 82, 95–105], and some efforts have been made also to construct full inspiral, merger, and post-
merger models for BNS coalescences. Also morphology-independent analyses of the postmerger GW
signal have been proposed in Refs. [81, 97, 104], while in Ref. [313] a hierarchical model to generate
postmerger spectra was developed. With a different approach, Refs. [314–316] construct analytical
models for the postmerger signal, based on features found in NR simulated waveforms. Breschi et
al. in Ref. [317] proposed a frequency-domain model for the postmerger, built with a combination of
complex Gaussian wavelets, and showed in Ref. [318] how this model performs using a 3G detector
network. Wijngaarden et al. [319] built a hybrid model, using analytical templates for the premerger
phase and a morphology-independent analysis, based on sine-Gaussian wavelets, for the postmerger
one.

Following similar ideas, we construct a phenomenological frequency-domain model for the entire
BNS coalescence consisting of the inspiral, merger, and postmerger phases. Our final aim is to employ
the developed model for parameter estimation analyses. Moreover, we investigate the performance
of different detector networks to determine the improvement that future detectors will bring to our
analysis.

5.2 The waveform model

We construct a frequency-domain waveform model, IMRPhenomD_NRTidalv2_Lorentzian, to describe
the full inspiral, merger, and postmerger of a BNS coalescence. To model the coalescence during
the inspiral up to the merger, we rely on IMRPhenomD_NRTidalv2 [212], described in Sec. 2.1.4. The
postmerger phase is modelled with a three-parameter Lorentzian describing the main emission peak
of its spectrum, following Tsang et al. [320]. For the Lorentzian, we use two different approaches:
in one case, we compute the parameters from quasi-universal relations, describing them as a function
of the BNS’s properties; in the other one, we treat them as free parameters. Both versions can be
directly employed by existing parameter estimation pipelines; see, e.g., Refs. [321,322].
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In this section, we describe how we model the postmerger part of the signal and how we connect
it to the inspiral-merger model to obtain the full waveform. As we explained in Sec. 2.1, waveform
approximants are commonly calibrated against NR data, which are employed also to check the accuracy
of the models. In particular, for this work we employ the NR postmerger data and the complete
inspiral-merger-postmerger hybrid waveforms in the CoRe [323,324] and SACRA [157] databases.

5.2.1 Inspiral-merger-postmerger model construction

Multiple studies have shown that the postmerger GW spectrum includes various strong peaks [80,
82, 95, 98–103, 325]. For simplicity, we limit ourselves to the main emission peak at a frequency f2,
which corresponds to the dominant GW frequency; see, e.g., Ref. [95]. Following this approach, the
postmerger can be described in time domain by a simple damped sinusoidal waveform [320], whose
Fourier transform is a Lorentzian. Therefore, in frequency domain, we model the postmerger with a
three-parameter Lorentzian

h22(f) =
c0c2√

(f − c1)2 + c2
2

e
−i arctan

(
f−c1
c2

)
, (5.1)

where c0 corresponds to the maximum amplitude value, c1 to the dominant emission frequency f2,
and c2 to the inverse of the damping time, which sets the Lorentzian’s width.

We determine the coefficients ci with two different approaches: (I) we treat them as free parameters,
and try to measure c0, c1, and c2 together with the other BNS’s properties; and (II) we compute the ci
coefficients from quasi-universal relations that describe them as functions of the system’s parameters.

Depending on its properties and EOS, a given BNS could undergo a prompt collapse to a black
hole, hence without a postmerger emission. In this scenario, while in case (I) we expect that the values
recovered for the free parameters reflect the absence of a postmerger signal, in (II) the quasi-universal
relations employed might lead to a bias in the estimation of the binary’s intrinsic parameters. For
this reason, we ideally want to use the Lorentzian model with quasi-universal relations only when we
know that a postmerger emission is present. Since the threshold mass for a prompt collapse is EOS-
dependent and still unknown, following Ref. [314] we assume that a BNS system undergoes prompt
collapse if the tidal polarizability parameter κT2 is lower than a threshold value κthr = 40. The quantity
κT2 is defined as

κT2 = 3
[
Λ1

2(X1)4X2 + Λ2
2(X2)4X1

]
, (5.2)

where Λj2 = 2
3k2 (Rj/mj)

5 with j ∈ {1, 2} are the dimensionless tidal deformabilities, and Xj = mj/M .
Here k2 is the dimensionless ` = 2 Love number, Rj and mj are the radius and gravitational mass of
the individual stars, respectively, and M = m1 +m2 is the BNS’s total mass.1

Quasi-universal relations for the Lorentzian parameters

For the approach introduced as method (II), we use quasi-universal relations, i.e., phenomenological
relations that are independent of the EOS (see Sec. 1.3.4), to constrain the coefficients ci in Eq. (5.1).
This provides a direct connection between the Lorentzian coefficients and the BNS’s properties.

1See also Ref. [326] for more updated relations which were not yet available when we started this work.
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Since the postmerger Lorentzian model extends the waveform used for inspiral and merger beyond
its merger frequency fmerg, a straightforward way to find the value of c0 is by rescaling the amplitude
of the IMRPhenomD_NRTidalv2 waveform at merger ANRTidalv2(fmerg) . Specifically, we use

c0 = σ ×A0 ×ANRTidalv2(fmerg), (5.3)

where A0 is the mass and distance scaling factor employed in IMRPhenomD [174]. The prefactor σ
is added to obtain a better calibration to the NR waveforms, and we set σ = 10.0, which gives the
lowest mismatch values (the definition of mismatch and details about its computation are provided in
Sec. 5.2.2).

Since c1 represents the dominant postmerger oscillation frequency f2, we resort to the fit in Eq. (8)
of Ref. [320]

Mc1(ζ) = β
1 +Aζ

1 +Bζ
, (5.4)

with β = 3.4285× 10−2, A = 2.0796× 10−3, and B = 3.9588× 10−3. The parameter ζ is

ζ = κTeff − 131.7010
M

MTOV
. (5.5)

In the last equation, κTeff = (3/18) Λ̃, with Λ̃ being the binary’s mass-weighted tidal deformability
(cf. Eq. 2.58). Although ζ, and therefore c1, in Eq. (5.5) is a function of the maximum mass allowed
for a non-rotating stable NS, MTOV, which depends on the specific EOS, we fix MTOV = 2M� for the
model version with quasi-universal relations in this work.2 The median relative error introduced on
ζ by this approximation is 0.31, for the hybrid waveforms in the SACRA and CoRe database. This
error propagates to the c1 parameter causing a median relative error of approximately 5%.

With this choice for c0 and c1, a model for c2 is built from a set of 48 non-spinning NR waveforms,
from the CoRe database. For this, we first find the values of c2 that minimize the mismatch of
the Lorentzian waveform and the NR one between 0.75 c1 and 8192 Hz using a flat noise power
spectral density; see Sec. 5.2.2 for details. The flat PSD ensures that no high-frequency information
is suppressed in the match computation. For each waveform, c2 minimization is performed using the
‘L-BFGS-B’, ‘SLSQP’, ‘TNC’, and ‘Powell’ methods available in SciPy [329], and the value of c2

with the least mismatch value is used. It was seen that c2 showed a similar trend against κTeffq
−2,

where q = m2/m1, with m1 > m2, is the mass ratio, as c1 does against ζ. Hence, NR data were
fitted with an analogous ansatz. However, using obtained from performing a simple curve fit showed
unphysical amplitude behaviour for a few of the NR waveforms. For further tuning, the mismatch was
minimized for all the NR waveforms by varying the fit parameters, and the parameters that gave the
least mismatch were then recorded and added to the model. The functional form of c2 and the values
obtained for the fit parameters in this manner are

c2 = 2 + γ
1 + CκTeffq

−2

1 +DκTeffq
−2
, (5.6)

2In principle, we could treat MTOV as a free parameter, but this would impair the main benefit of this version
of the model—namely to avoid additional parameters to sample over. However, in the future, given the increasing
number of multi-messenger detections of binary neutron star mergers and the possibility to observe high-mass pulsars
[78, 94, 327, 328], one can expect to have a significantly smaller uncertainty in MTOV than today. The value of the
maximum supported mass estimated from this new information will then provide the fixed value of MTOV to employ in
our model.
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with γ = 19.4579017, C = −9.63390738 × 10−4, and D = 6.45926154 × 10−5. The median relative
error for c2 during minimization is 0.56.

The full waveform

To obtain a model describing the full coalescence, the previously derived postmerger model is con-
nected to the waveform describing the inspiral and merger part of the signal, for which we use the
phenomenological waveform IMRPhenomD_NRTidalv2 [212].

Amplitude: To ensure a smooth transition3 between the two models, we apply a Planck-taper
window αPl(f):

αPl(f) =


0 for f < ftr,

exp[fend−ftr

f−ftr
+ fend−ftr

f−fend
+ 1]−1 for ftr < f < fend,

1 for f > fend.

(5.7)

The window is applied just before the frequency of the main postmerger peak f2, which corresponds
to our model’s parameter c1. The value of the window’s starting frequency ftr is chosen to ensure a
good match with NR waveforms. In particular, in Ref. [320] one of the time-domain features identified
in the postmerger signal morphology is the first postmerger minimum, which corresponds to a clear
amplitude minimum present shortly after the merger, before the amplitude starts increasing again. By
comparison with NR waveforms in the CoRe database, we found that this feature is best reproduced
by our model when the Planck window is applied between ftr = 0.75 c1 and fend = 0.9 c1. Following
Ref. [174], we add an exponential correction factor exp

[
−p(f−c1)

c2

]
to the Lorentzian amplitude, in

order to smoothen possible kinks arising when going to the time domain. We set p = 0.01, which is
enough to reduce the kink, but not so large that it significantly influences the merger amplitude.

Phase: To ensure that the waveform phase is C1 continuous, we introduce two coefficients a and
b, writing the phase as

φIM(f) = φLor(f) + a+ bf, (5.8)

with φIM being the phase of IMRPhenomD_NRTidalv2 waveform and φLor = arg(h22(f)) the Lorentzian
one. The values of a and b are computed at the same transition frequency ftr = 0.75 c1 at which we
start the Planck-taper window for the amplitude, such that

dφIM

df

∣∣∣∣
ftr

=
dφLor

df

∣∣∣∣
ftr

+ b, (5.9)

φIM(ftr) = φLor(ftr) + bftr + a. (5.10)

Finally, to reduce the Lorentzian contribution to the pre-merger and merger amplitude, we multi-
ply the waveform by a factor exp[−i2π∆t f ], which will induce a time shift of ∆t in the time-domain
waveform; ∆t is computed as the time interval between the merger and the first postmerger minimum

3We note that the employed approach neglects any contribution of the postmerger signal towards frequencies below
the merger frequency.
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Figure 5.1: Mismatches between hybrid waveforms from the CoRe (in the gray-background band) and SACRA
databases, and our postmerger model, for both the versions free-pm and qu-pm. The top panel shows mis-
matches in the postmerger frequency band (i.e., within [1.1 fmerg, 4096] Hz), while the bottom panel shows
mismatches for the whole waveform (within [30, 4096] Hz). In the latter case, for comparison we show also
mismatches computed between the hybrids and the no-pm model.

described by Eq. (2) in Ref. [320].

The frequency-domain gravitational waveform can be written as

h̃(f) = A(f)eiφ(f), (5.11)

with A(f) the amplitude and φ(f) the phase. Therefore, in our model the full waveform is given by:

h̃(f) =


AIM(f)eiφIM for f < ftr,(
AIM(f) + αPl(f)ALor(f)e

− p(f−c1)
c2

)
ei(φLor+bf+a)−i2π∆tf for f > ftr,

(5.12)

where AIM(f) and φIM(f) are the amplitude and phase, respectively, of the IMRPhenomD_NRTidalv2
waveform, and ALor = |h22(f)| the amplitude of the Lorentzian one.

In the following, we refer to the IMRPhenomD_NRTidalv2_Lorentzian postmerger model with
quasi-universal relations as qu-pm, to the one with free Lorentzian parameters as free-pm, and to
the model without postmerger, IMRPhenomD_NRTidalv2, as no-pm.
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5.2.2 Mismatch

The mismatch between two waveforms h1 and h2 is defined as

MM = 1−maxφc,tc
〈h1(φc, tc)|h2〉√
〈h1|h1〉 〈h2|h2〉

, (5.13)

where tc and φc are an arbitrary time and phase shift, and 〈·|·〉 the noise-weighted inner product,
as defined in Eq. 2.69. To validate the IMRPhenomD_NRTidalv2_Lorentzian model, we compute
mismatches with the hybrid waveforms in the CoRe and SACRA databases. The mismatch is computed
with PyCBC [330] functions and zero noise, i.e., with a flat PSD. For the free-pm model, to get the
Lorentzian parameters that better describe each hybrid’s postmerger, we optimize the mismatch over
c1, c2; we do not include the Lorentzian maximum value c0 in the minimization, because, giving just
an amplitude scaling factor, the mismatch is insensitive to it. The initial values for the optimization
are found with a least-squares fit on the postmerger part of the hybrid waveform, for f ≥ 1.3 fmerg.
Fixing c1 and c2 to the optimal values, we then compute the optimal value for c0 with a least-square
fit on the hybrid’s postmerger signal. We use the optimal values for the ci coefficients to generate
the free-pm waveform, for which we compute the mismatch with the hybrid in different frequency
ranges. For the qu-pm model, instead, the Lorentzian parameters are computed from the quasi-
universal relations described in Sec. 5.2.1, using the values of the hybrid’s binary parameters. The
top panel of Fig. 5.1 shows the mismatches in the frequency band [1.1 fmerg, 4096] Hz: despite our
simple description of the postmerger, for almost all hybrids mismatches lie below 0.3 when using the
free-pm model. Mismatches values increase systematically by roughly a factor of 3 when computing
them with respect to the qu-pm model, which is expected since in this case the Lorentzian parameters
are not optimized to the hybrid waveform. When considering the whole waveform, in the frequency
range [30, 4096] Hz, the mismatch is always below 0.005, as shown in the bottom panel of Fig. 5.1.
Also in this case, for most hybrids the free-pm model gives better matches compared to the qu-

pm one. The fact that mismatches computed over the whole waveform do not follow the trend of
the ones computed only in the high frequency region is due to the fact that different values of the
Lorentzian parameters translate also into different tapering and continuity conditions, influencing the
late inspiral-merger phase too. For comparison, we show also the mismatches computed in the same
frequency range with the no-pm waveform. The plot does not highlight a systematic improvement
in the mismatches when using one of the models; the difference between the mismatch obtained with
the no-pm and free-pm models varies from 0.0019 to 8× 10−6, with an average variation of 0.0005.
In some cases, the no-pm model gives lower mismatches than one of the models with postmerger.
This occurs because the no-pm waveform includes no signal after the merger, therefore computing the
mismatch for frequencies higher than the merger one, in a region where the waveform is zero, does
not contribute to the overall mismatch. Hence, the lack of the postmerger signal does not reduce the
match computed up to the merger frequency. However, in more than 60% of cases, the mismatch
is reduced when using the free-pm model, showing that our postmerger description with optimized
parameters improves the signal characterization.
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5.3 Methods and setup

In this section, we explain the framework used for data analysis, describing the employed detector
networks, the analysis setup, and the BNS sources that we study to determine to what extent future
detector networks will enable postmerger studies. We show an example of the performance of future
detectors in general parameter estimation analyses, and we provide more details about the application
in this specific context of the relative binning technique, employed to reduce the computational cost
of the analyses.

5.3.1 Detector networks

Ground-based GW detectors have the best sensitivity around a few tens to hundreds of Hz, which
makes the inspiral and merger signal of coalescing compact objects the perfect candidate for detections.
In this work, however, we are interested in the postmerger part of the signal, which is usually weaker
and involves higher frequencies. Current detectors are strongly limited at these high frequencies, but
the improvements planned for the future detectors’ upgrades and the next-generation detectors are
expected to make postmerger measurements feasible. Therefore, one of the goals of this work is to
assess how future detectors can improve the studies we present.

We include in our analysis the upgraded versions of existing detectors, Advanced LIGO+, Advanced
Virgo+, and KAGRA, as well as new detectors whose construction has been planned for the next few
years, LIGO-India and NEMO, and the next detector generation, the Einstein Telescope and the
Cosmic Explorer. Advanced LIGO+ design [334] will improve the current 4 km arm-length detectors
in Hanford (H) and Livingston (L) sites, including a frequency-dependent light squeezing and new test
masses with improved coating. Advanced Virgo+ (V), similarly, is the planned upgrade for the current
Advanced Virgo detector in Cascina, Italy [112]. This transition will happen in two separate phases
and include upgrades like the introduction of signal recycling and a higher laser power. Advanced
LIGO+ and Advanced Virgo+ are the planned designs for the O5 observing run, which is scheduled
to start roughly in 2025, and during which their BNS detection range will reach approximately 330
Mpc and 150-260 Mpc, respectively [124]. KAGRA (K) [125–127] is a 3 km arm-length interferometer
built underground in the Kamioka mine in Japan, which already employs innovative technologies like
cryogenic mirrors. For O5, its sensitivity at the end of the observing run is predicted to allow a
BNS range of at least 130 Mpc [124]. The LIGO network involves a third detector in India (I) [128],
which is currently under construction and is expected to become operative approximately in 2025.
Finally, the Neutron Star Extreme Matter Observatory, or NEMO (N), is an Australian proposal for
a gravitational-wave detector with 4 km arm length, specifically designed to have a high sensitivity in
the kilohertz band [141]. The possible location of NEMO has not been decided yet, therefore for this
work we arbitrary place it at the location shown in Fig. 5.2. Although not officially approved yet, we
include it in our analysis, since its high-frequency sensitivity is particularly interesting for postmerger
studies.

3G detectors are expected to increase the sensitivity by a factor between 10 and 30 [124] with
respect to current LIGO detectors, but they require the construction of new facilities and are expected
to start observing in the mid 2030s. At the moment, the intended 3G detector network includes plans
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Figure 5.2: Left : location of the detectors used in this study, top panel for second generation (2G) detectors and
bottom panel for third generation (3G) ones. Right : PSDs, in units of [1/Hz], for the different detectors. The
Advanced LIGO+ PSD [331] is used for H, L, and I detectors. Since the official sensitivity curve for Advanced
Virgo+ is not available yet, we computed its ASD curve by scaling the one of the LIGO detectors by a factor
4/3 to account for the different arm length. ET sensitivity is the one referred to as “ET-D” and provided in
Ref. [134], while CE sensitivity is given in Ref. [332]; for KAGRA we employ the PSD labeled as “Combined”
in Ref. [333].

for Cosmic Explorer in the United States and the Einstein Telescope in Europe. CE is planned as
an L-shaped interferometer with 40 km arm length.4 For the purpose of this paper, we assume it
placed at the current Hanford site. The ET design includes a so-called “xylophone” configuration,
which guarantees an improved sensitivity at high and low frequencies at the same time [134]. The two
candidates for the ET site are Sardinia, in Italy, and Limburg, at the border between the Netherlands,
Germany, and Belgium.5 For this work, we assume ET is placed at the current Virgo site. Although
the final design of ET is still under development, here we consider it as a triangular detector—i.e.,
composed of three V-shaped interferometers with a 60◦ opening angle and 10 km arms.

In this work, we study four different detector networks: HLV, HLVKI, HLVKIN, and ETCE. The
detectors’ locations and sensitivities are shown in Fig. 5.2.

4Recently, also a configuration consisting of a 40 km and an additional 20 km detector has received attention and
was considered as the reference concept for the recent Horizon study of Ref. [138]. In Ref. [139], also a tunable design
for the CE detector was proposed, which would enhance sensitivity in the kilohertz band.

5In addition, recent interest arose for a third possible site located in the eastern part of Germany.
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5.3.2 Parameter estimation

In the following, we employ a Bayesian framework to recover the source’s parameters, as discussed
in Sec. 2.2.2. To sample the likelihood function, we employ the nested sampling package dynesty
[335,336], which is included in the bilby library [321,322].

The computational cost of parameter estimation analyses increases both with the duration of the
signal and the maximum frequency employed. In our case, we set fmax = 4096 Hz, since the postmerger
GW signal is expected to lie within the few-kilohertz regime. Moreover, we study BNS systems, whose
low masses imply a long signal duration. Although we set the starting frequency to flow = 30 Hz, the
typical duration of the signal in band is still roughly 200 s. To overcome the issue of the computational
cost of the analyses needed for this work, we resort to the technique of relative binning, described in
detail in Sec. 2.3.3. To use relative binning with bilby inference, we employ the code in Ref. [337].
More details about the application of relative binning method to our analysis are provided in Sec. 5.3.5.

5.3.3 Simulations

We test the performance of our model in parameter estimation analyses with simulated signals. We
consider three different sources, and analyze them through bilby injections, i.e., using our own GW
models, and through injecting NR hybrids with the same parameters; cf. Table 5.1. The employed
hybrids have a postmerger signal duration of roughly 10 ms, and the postmerger contribution to their
SNR for each detector network is shown in Tab. 5.2.

All simulated signals are injected with zero inclination ι and polarization angle ψ, and with sky
location (α, δ) = (0.76,−1.23) rad. The sky location has been chosen such that none of the employed
detector networks is particularly preferred. Depending on the analysis, we performed injections at three
different distances: 225 Mpc, 135 Mpc, and 68 Mpc, which, in a network with Advanced LIGO+ and
Advanced Virgo+, correspond approximately to a signal-to-noise ratio of 30, 50, and 100, respectively.
Table 5.3 reports the SNR for Source2[qu-pm] injections in the different detector networks and at
different distances. We use priors uniform in [0.5, 1.0] for mass ratio q, and uniform in [Mc,s −
0.05M�,Mc,s + 0.05M�] for chirp mass, where Mc,s is the chirp mass of the source and the prior
width is given by the precision on chirp-mass measurements that we anticipate for future detectors.
Regarding tidal deformability parameters, we sample over Λ̃ and ∆Λ̃, with a prior uniform in [0, 5000]

and [−5000, 5000], respectively, where ∆Λ̃ is defined as in Eq. 2.59. Luminosity distance priors are
uniform in comoving volume, with DL ∈ [1, 450] Mpc. Although all the sources considered are non-
spinning, our baseline model IMRPhenomD_NRTidalv2 allows for aligned spins; we choose a uniform
prior on the spin magnitudes |χ1|, |χ2| ∈ [0.0, 0.20]. Finally, when using the postmerger model with
free parameters for recovery, we choose uniform priors c1 ∈ [2000, 4096] Hz and c2 ∈ [10, 200] Hz, while
for c0 we employ a logarithmic uniform prior in [5× 10−27, 1× 10−22] s.

5.3.4 Parameter estimation with future detectors

Our discussion will focus on the recovery of the Λ̃ parameter, or of the c1 parameter in the case of
the free-pm model, because these are the quantities that encode most of the information about the
EOS. However, it is also interesting to look at the recovery of all the other parameters of the binary,
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Name Mc [M�] q Λ̃ Injection

Source1[NR−inj] 1.17524 0.8 604 NR: H_121_151_00155 [338]

Source1[qu-pm] 1.17524 0.8 604 Bilby: quasi-universal

Source1[free-pm] 1.17524 0.8 604 Bilby: free parameters

Source2[NR−inj] 1.08819 1.0 966 NR: H_125_125_0015 [339]

Source2[qu-pm] 1.08819 1.0 966 Bilby: quasi-universal

Source2[free-pm] 1.08819 1.0 966 Bilby: free parameters

Source3[NR−inj] 1.17524 1.0 607 NR: H_135_135_00155 [338]

Source3[qu-pm] 1.17524 1.0 607 Bilby: quasi-universal

Source3[free-pm] 1.17524 1.0 607 Bilby: free parameters

Table 5.1: Properties of the sources used for injections. The NR hybrids are taken from the SACRA database,
where the employed EOSs of the NR data are simple two-piece polytropes as outlined in Ref. [157]. For the
hybridization, we follow the procedure outlined in Sec. III C of Ref. [158]. The inspiral waveform model with
which we hybridize is SEOBNRv4T [340]. For bilby injections, we used our IMRPhenomD_NRTidalv2_Lorentzian
model, both with quasi-universal relations and with free Lorentzian parameters. In case of injections with the
free parameters model, the injected c0, c1, c2 values are obtained from the best fit of the correspondent NR
hybrid.

to see how future detectors will help improving our knowledge of these systems. Figure 5.3 shows
the comparison between the normalized posterior probability density forMc, q, Λ̃, χ1, χ2, α , δ, and
luminosity distance DL, obtained using different detector networks, for Source2[qu-pm] injections at
68 Mpc and in zero noise. We find that 3G detectors will yield a strong improvement not only for
what concerns Λ̃ recovery, but also in the estimation ofMc, q, and DL; in particular, with the ETCE
network we can estimateMc with a precision roughly 10 times better than the LHV one. We find only
a slight improvement in the recovery of the spin magnitude values χ1 and χ2. The best estimation of
the sky location parameters (α, δ) comes from the LHVKIN network, which is expected considering
the larger number of detectors and their geographical distribution, as shown in Fig. 5.2.

We also note that the improvement obtained by adding NEMO to the network is roughly of a factor
1.9 and 1.6 forMc and q, respectively, when computed in comparison with the LHVKI network, but
it reaches a factor 4.4 for Λ̃ estimation. As we will discuss in Sec. 5.4.2, this is achieved thanks to
the postmerger contribution to the signal, which for NEMO is significant as a result of its very high
sensitivity in the kilohertz band.

Overall, future detectors will grant very precise constraints on the BNS parameters, allowing us
to better understand the properties and populations of these objects. We also point out that, for
computational reasons, our analyses are performed starting from a frequency flow = 30 Hz, and hence,
in reality, additional information will be available by analyzing signals starting from lower frequencies.
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Source1[NR−inj] Source2[NR−inj] Source3[NR−inj]

Total PM Total PM Total PM

LHV 100 2.0 94 2.5 100 2.7

LHVKI 107 2.1 101 2.6 108 2.9

LHVKIN 126 6.8 119 8.8 126 9.9

ETCE 1267 10.2 1190 12.3 1268 13.3

Table 5.2: SNR of the NR waveforms employed in our analysis for the different detector networks (with acronyms
as shown in Fig. 5.2), considering the source at a distance of 68 Mpc; we show both the SNR for the whole
waveform (in the ‘Total” column), computed starting at 30 Hz, and the SNR of the postmerger part of the
signal (in the ‘PM” column), computed starting from the merger frequency.

Network Distance [Mpc] SNR

ETCE 68 1239

135 624

225 355

LHVKIN 68 121

135 61

225 36

LHVKI 68 105

135 53

225 31

LHV 68 98

135 49

225 30

Table 5.3: SNR values for zero-noise Source2[qu-pm] injections in the different networks (with acronyms as shown
in Fig. 5.2) and for different distances.
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Figure 5.3: Normalized posterior probability density for the binary’s parameters recovered with the qu-pm
model with the different detector networks, for Source2[qu-pm] at 68Mpc; the dashed vertical lines show the
injected values.

This will lead to a large improvement especially for the 3G detectors, because, for example, the
xylophone configuration of ET, with the low-frequency interferometer possibly operating at cryogenic
temperatures, will ensure a good sensitivity down to flow = 5 Hz. The additional information carried in
the many inspiral cycles at low frequencies will further improve the constraints on the BNS parameters
(see Sec. 6.3.3 for more details), resulting particularly beneficial for the spin parameters, considering
that at low frequencies also spin-induced quadrupole moment effects become significant.

5.3.5 Relative binning settings and validity

The relative binning method allows us to greatly reduce the computational cost of our analysis. As
explained in Sec. 2.3.3, a fundamental requirement to employ this technique is having a reference
waveform that describes the data sufficiently well. Although with real data we do not know the exact
parameters of the source a priori, we can use information from low-latency analyses and quasi-universal
relations to find the values to use as the fiducial parameters. Since there might still be biases in the
parameters determined in such a way, we checked the influence of the choice of fiducial parameters,
performing some tests with different fiducial values for Λ1, Λ2, and we found consistency between
results.

In Ref. [237], the authors show results obtained with this method for GW170817, which, despite
being a loud event, has an SNR much lower to the ones we study in this work (cf. Table 5.3). The
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Figure 5.4: Comparison between the normalized posteriors for the binary’s parameters recovered with the qu-pm
model, for Source2[qu-pm] injections at 135 Mpc with the LHVKIN network, using the relative binning technique
with different precision requirements. The different colors show the posteriors for the analysis with different
values of δφ, while the black dashed lines represent the injected values.

approximations used in relative binning are not expected to retain validity only in a given SNR range,
but we tested the efficacy of this method applied to very loud signals by checking the consistency
against results obtained with the nested sampling package LALInference [220] of the LAL software
suite [77].

Finally, when using the relative binning method, the choice of frequency bins in which the waveform
is evaluated plays a crucial role. Following Ref. [237], this choice is dictated by the requirement that
the differential phase change in each bin is smaller then some threshold δφ. In Ref. [237], the phase
change is computed assuming a post-Newtonian description of the signal, in which the effect of the
different binary parameters enters the phase with different powers of frequency. In the merger and
postmerger part of the signal, the PN approximation is not valid anymore. It is not easy to find a
similar way to properly describe the phase in the postmerger, without having to evaluate the waveform
and incurring in computationally expensive processes that would undermine the speed-up advantage of
this method. On the other hand, the phase computed with the PN approximation is then interpolated
with frequency, and the frequency bins are determined by evaluating this interpolant over a grid of
phases determined by the required precision δφ. Therefore, if such a threshold is chosen small enough
(for our analysis we set δφ = 0.01), we expect that the way in which the phase change is computed will
play little role, and the dense frequency binning produced ensures that the bins’ width will be small
enough to allow a linear interpolation of the ratio between the generated waveform and the fiducial
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δφ Total bins PM bins

0.005 6285 2767

0.007 4489 1976

0.01 3143 1384

0.03 1049 462

0.05 630 277

Table 5.4: Number of frequency bins employed in the relative binning method for different values of δφ, both
for the frequency range [30, 4096] Hz and in the postmerger region, starting at the merger frequency.

one anyway, as in Eq. 2.116. If this was not true, we would expect that changing the threshold δφ, and
consequently the frequency bins over which the waveform is evaluated, would yield different results
also if δφ was kept small. Figure 5.4 shows the posteriors recovered with the qu-pm model for the
binary parameters of a Source2[qu-pm] injection at 135Mpc, with the LHVKIN network. We repeated
the analysis multiple times, keeping the same settings but changing the frequency binning by using
different values of δφ. We keep δφ small, but consider both larger and smaller values with respect
to the δφ = 0.01 used throughout this work. As the plot shows, we find great consistency between
the results obtained with all the different values of δφ. Consequently, despite the fact that the PN
approximation does not hold in the postmerger phase, using it to determine the frequency bins for the
relative binning method does not spoil the results, provided that the chosen δφ results in small bin
widths.

Table 5.4 reports the number of frequency bins employed by the relative binning technique for
different values of δφ, both in the whole frequency range considered for the analysis and for the
postmerger region only. Choosing small values of δφ means increasing the number of bins over which we
evaluate the waveform and therefore the computational cost of the analysis; nevertheless, performing
the analysis using relative binning with these settings is still much faster than running “standard”
parameter estimation analyses, which, for this kind of signals, are not computationally feasible. For
standard parameter estimation, the waveform needs to be evaluated on a uniform grid that, with
signals of the duration of roughly 200 s as the ones analysed here, includes approximately 8 × 104

points. Hence, considering that relative binning needs the evaluation of each sampled waveform only
at the edges of the bins, this technique greatly reduces the number of required waveform evaluations.

5.4 Results

In the following, we present the results of our simulations, for what concerns both the performance
of our model and the improvement we obtain with future detectors. When using the postmerger
model with quasi-universal relations, we are mainly interested in studying how well we can recover
the tidal deformability parameter Λ̃. Since the quasi-universal relations that we derived depend on Λ̃,
we expect that the postmerger part of the signal, when detected, brings additional information about
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Figure 5.5: Posterior probability density for Λ̃ in the case of bilby injections with the qu-pm model, for
sources at 68 Mpc and with the ETCE network, and recovery with the three different models no-pm, qu-pm,
and free-pm, in blue, orange, and green, respectively. The black dashed lines correspond to the injected values.

this parameter. This will likely lead to a narrower posterior with respect to what we can obtain using
a model without postmerger. In the case of the postmerger model with free Lorentzian parameters,
instead, we study how well the Lorentzian parameters c0, c1, c2 can be recovered, and especially c1

since it represents the frequency of the main postmerger emission peak.

5.4.1 Best-case scenario

We start by testing both versions of our model, free-pm and qu-pm, in the best-case scenario, i.e., for
bilby injections in zero noise, for sources as described in Table 5.1, at a distance of 68 Mpc and with
the ETCE network. Figure 5.5 shows the posterior probability density of Λ̃ for signals obtained with
qu-pm injections and recovered with both our postmerger models, qu-pm and free-pm, and with the
model without postmerger no-pm. As expected, the Λ̃ posterior becomes tighter when going from the
no-pm to the qu-pm model, with the width of the 90% confidence interval reducing by about 30%,
from 23.11 to 15.84 in the case of Source2[qu-pm], and from 15.42 to 11.07 for Source3[qu-pm]. In the
free-pm recovery case, the posteriors become wider, with the width of the 90% confidence interval
reaching 27.66 for Source2[qu-pm]. We also note that when analyzing the data with this model, the
median of Λ̃ is slightly underestimated with the respect to the injected values. Both these features
are predictable due to the higher number of parameters we have to sample over.

For Source1[qu-pm], the injected value lies outside the no-pm Λ̃ posterior distribution, but is well
recovered with both the qu-pm and free-pm models. Given that the sampler converged to the
maximum-likelihood values for the parameters, this shift is not caused by sampling issues, but is prob-
ably due to the fact that injections are performed with a signal including postmerger, and when we
recover with a model without the postmerger description, the waveform tries to latch on to the signal
after the merger, causing a bias in the parameter estimation. This is confirmed by the comparison,
shown in Fig. 5.6, between the injected Source2[qu-pm] waveform, the no-pm waveform generated with
the maximum-likelihood parameters recovered with the no-pm model, and the one generated with the
injected parameters. The maximum-likelihood no-pm waveform tries to recover part of the injected
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Figure 5.6: Injected signal for Source1[qu-pm] (gray solid line), compared to the no-pm waveform generated with
the injected parameters (dashed blue line) and with the maximum-likelihood parameters recovered with the
no-pm model (dash-dotted cyan line).

postmerger signal, resulting in a deviation with respect to the no-pm waveform obtained from the
injection parameters, which explains the bias in the Λ̃ posterior.

Figure 5.7 shows the posteriors for the c1 Lorentzian parameter in the case of injection and recovery
with the free-pm model, for the three different sources. The injected values of c0, c1, and c2 are
the ones that yield the best fit on the NR hybrid with the same system’s parameters of the source
considered. The c1 parameter, which corresponds to the frequency of the main postmerger emission
peak, is well recovered in all cases. Although we are mainly interested in the recovery of c1, the free-

pm model provides posteriors also for the c0 and c2 parameters, which are related to the maximum
amplitude and width of the Lorentzian, respectively. Note that the c0 and c2 parameters, which are
not shown in the figure, are not recovered as well as the c1 parameter, but their injected values lie in
the 90% confidence interval of the posterior in all cases, as reported in Table 5.5. While our model
works for the main purpose of measuring the frequency of the dominant postmerger peak, the shifts
that we see in the other parameters suggest that we can further improve the free-pm model; see,
e.g., Refs. [317,319] for recent developments including postmerger features beyond the main emission
frequency.
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Figure 5.7: Posteriors of c1 parameters for the three different sources, obtained when using the free-pm model
both for injection and recovery. The black dashed lines show the injected values.

log c0 log c0,inj c2 c2,inj

Source1[free-pm] −56.79+0.29
−0.34 -56.65 96.40+52.55

−36.90 74.0

Source2[free-pm] −56.18+0.21
−0.24 -56.15 52.01+19.13

−14.19 48.0

Source3[free-pm] −55.89+0.19
−0.211 -55.90 41.26+14.06

−9.52 39.0

Table 5.5: Median with 5% and 95% quantile values of the posterior probability density for the c0 and c2

parameters, together with their injected values, for each of the three sources analyzed, in the case of injection
and recovery with the free-pm model.

5.4.2 Detector network performances in zero noise

We want to investigate how future detector networks will improve our postmerger analysis. For this
purpose, we inject signals obtained from the qu-pm model in zero noise and recover both with the
qu-pm and the no-pm model. We analyze signals injected at three different distances (68 Mpc, 135
Mpc, and 225 Mpc), and we compare results for the four detector networks LHV, LHVKI, LHVKIN,
and ETCE (as described in Sec. 5.3.1). Due to limited computational resources, we look only at two
different sources, Source2[qu-pm] and Source3[qu-pm].

Figure 5.8 shows the Source2[qu-pm] injected signal and the corresponding NR waveform: the sig-
nal injected with our qu-pm model describes well the main postmerger emission peak, but the NR
waveform morphology includes also different subdominant emission peaks that our single Lorentzian
cannot describe, and more structure in the frequency region right after the merger. Both these features
should be addressed in future improvements of the model. In the same figure we show the maximum-
likelihood waveforms recovered both with the qu-pm and the no-pm model, for a zero-noise injection
with the ETCE network. The recovered maximum-likelihood qu-pm signal overlaps with the injected
one, showing how well 3G detectors will be able to recover this kind of signals. In the inspiral region,
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Figure 5.8: Frequency-domain waveform for Source2[qu-pm], injected at a distance of 68 Mpc and using the
qu-pm model (gray solid line), and the corresponding NR waveform (black dotted line). The dashed orange
line and the cyan solid line show the maximum-likelihood waveforms recovered for a zero-noise injection in the
ETCE network with the qu-pm and no-pm model, respectively. The orange and cyan shaded regions show the
90% confidence interval on the recovered waveforms for the two models.

this applies also to the no-pm maximum-likelihood waveform. The inspiral signal, which we see is well
recovered also with the no-pm model, already contains information about the Λ̃ parameter; therefore,
for a ETCE network with such high SNR, we expect that little contribution to the Λ̃ measurement
comes from the postmerger part of the signal, given that this parameter is already very well con-
strained from the inspiral.

Figure 5.9 shows the uncertainty Λ̃90conf , computed as the width of the 90% confidence interval of
the Λ̃ posterior probability density, as a function of the detector network employed for the analysis,
comparing the different distances and recovery models. As expected, Fig. 5.9 shows that for all the
detector networks considered, and for both models, the width of the 90% confidence interval decreases
with decreasing distance. In particular, for the LHV network, we find an improvement of ∼ 50%

when going from 225 Mpc to 135 Mpc, and of ∼ 25% (for Source2[qu-pm] even 56%) when going from
135Mpc to 68 Mpc, for both models; for the ETCE network we find an improvement ∼ 45% when
going from 225Mpc to 135 Mpc, and ∼ 55% when going from 135 Mpc to 68Mpc. Using the qu-pm

model yields systematically tighter constraints on Λ̃, thanks to the additional information arising from
the quasi-universal relations that describe the postmerger part of the signal. For both the sources,
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Figure 5.9: Width of the 90% confidence interval of Λ̃ posterior for Source2[qu-pm] (top panel) and Source3[qu-pm]

(bottom panel), as functions of the different detector networks. Orange shades represent recovery with the
qu-pm model, green shades with the no-pm one.
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in the case of injections at 225 Mpc and with the LHV or LHVKI network, we see no significant
differences in Λ̃90conf in the case of recovery with the qu-pm or no-pm model. Considering that such
injections generate a SNR ' 30 in the case of the LHV network, this is consistent with the fact that
in these situations we do not detect the postmerger signal.

Interestingly, the best improvement when using the qu-pm model comes in the case of the LHVKIN
network. Going from the LHVKIN to the ETCE network, the constraint on Λ̃ improves of about ∼ 70%

for both models, while adding NEMO to the LHVKI network leads to an improvement in Λ̃90conf of
∼ 60% for the qu-pm model, against the just ∼ 40% for the no-pm one. For both sources, we also
see that for the LHVKIN network the constraint on Λ̃ obtained with the qu-pm model for injections
at 135 Mpc is better than the one we retrieve with the no-pm model for injections at 68 Mpc. 3G
detectors are expected to have the best sensitivity over the whole frequency band, and indeed we see
that for the ETCE network we get the smallest Λ̃90conf for both models. However, the high sensitivity
at lower frequencies allows us to obtain precise measurements of Λ̃ from the inspiral part of the signal
alone, therefore reducing the impact of the possible information gained from the postmerger phase.
In the case of the LHVKIN network, instead, the constraint on Λ̃ from the inspiral is the one of
second-generation detectors, but the high sensitivity of NEMO in the kilohertz band leads to a better
detection of the postmerger, and therefore to significantly tighter constraints when using the qu-pm

model. If its realization is approved, adding NEMO to the network of second-generation detectors
will significantly help the detection of postmerger signals and related studies. We note that for this
work we analyze signals with a lower frequency cutoff flow = 30 Hz, missing many inspiral cycles; an
additional improvement on Λ̃ measurements will be provided by the use of a lower flow.

5.4.3 Detector network performances in non-zero noise

In the previous sections, we focused on model and network performances, using injections in zero
noise. Now we want to investigate the influence of noise on our study. For this reason, we repeat
the analysis using Gaussian noise. Due to limited computational resources, we restrict to only two
sources, Source2[qu-pm] and Source3[qu-pm], and to one distance, 68 Mpc. We inject signals using the
qu-pm model, and we recover them with both the qu-pm and no-pm models, comparing results for
the different detector networks LHV, LHVKI, LHVKIN, and ETCE. Figure 5.10 shows Λ̃90conf for the
different detector networks. In order to assess the impact of noise fluctuations, we show results for two
different noise realizations, which we call noiseA and noiseB. Due to the noise impact on the analysis,
we do not see the clear trends that we found in the zero-noise runs, as described in the previous section
Sec. 5.4.2. In the case of Source3[qu-pm] (bottom panels in Fig. 5.10), with the noiseA realization the
constraints obtained with the qu-pm model are even wider than the ones recovered with the no-pm

model. The most extreme fluctuation is found for Source3[qu-pm], in the case of LHVKI network and
qu-pm model, for which Λ̃90conf = 88.26 in case of noiseA and Λ̃90conf = 4.84 for noiseB. However, we
see that in general Λ̃90conf decreases with more advanced detectors, with an improvement between 80%

and 90% when going from the LHV to the ETCE network. In most cases the qu-pm model allows
us to better determine Λ̃, although the quantitative improvement strongly depends on the source
and especially on the noise realization. Moreover, noise fluctuations impact also the median of the
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Figure 5.10: Width of the 90% confidence interval of Λ̃ posterior for Source2[qu-pm] (top row) and Source3[qu-pm]

(bottom row), as a function of the different detector networks, obtained with two different noise realizations,
noiseA for the left panels, and noiseB for the right ones.

Λ̃ posterior probability density, causing different shifts with respect to the injected values (see Table
5.6). Although such shifts appear to be small, they can cause the posterior’s median to lie outside the
90% confidence interval, especially in the case of the ETCE network, where the Λ̃90conf is remarkably
small.

5.4.4 Results for the free-parameter model

In the following, we show some results obtained with the postmerger model using free Lorentzian
parameters. Performing parameter estimation analysis with the free-pm waveform requires sampling
over three additional parameters, which implies even higher computational costs. For this reason, we
could not run the same analyses with the free-pm model as we did for the qu-pm one. As shown in
Sec. 5.4.1, with high-SNR and zero-noise injections we can recover c1 accurately. In Fig. 5.11, we show
how different detector networks can recover the c1 parameter in the case of Gaussian noise injections,
for simulated signals corresponding to Source3[free-pm] at 68 Mpc. In the case of second generation
detectors, we basically recover the prior, although with a peak within [2500,3000] Hz, where also the
injected value lies. Adding NEMO to the network leads to a strong improvement, resulting in a very
sharp peak for the c1 posterior. The recovered value of c1 with the LHVKIN network is slightly
overestimated with respect to the injected value. However, this happens also for the ETCE network,
where again the posterior is a sharp peak, and the injected value lies in its lower tail, outside of the
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Model Λ̃m noiseA Λ̃m noiseB Λ̃inj

Source2[qu-pm] qu-pm 956.68+7.08
−8.37 959.93+6.87

−8.71 966

no-pm 966.35+9.35
−11.82 953.10+13.11

−19.11 966

Source3[qu-pm] qu-pm 608.04+11.65
−6.27 602.36+7.86

−12.49 607

no-pm 611.76+6.68
−7.51 604.35+6.84

−7.70 607

Table 5.6: Median values with 90% confidence interval for the posterior probability density of Λ̃ in case of two
different noise realizations, labeled as noiseA and noiseB, for injections at 68 Mpc in the ETCE network and for
recovery with the two different models qu-pm and no-pm; the last column reports the injected value of Λ̃.

90% confidence interval. In Sec. 5.4.1, we saw that, for the ETCE network, for the same simulated
signal injected in zero noise, the value of c1 is recovered very well. Therefore, we conclude that the
shifts in the posterior peaks for the ETCE and LHVKIN networks for the injections in Gaussian noise
are most likely due to noise fluctuations, which, as reported in Sec. 5.4.3, for this source affect also the
Λ̃ measurements. Although the free-pm model still needs improvement for the analysis of real signals,
the results in Fig. 5.11 are promising, and in particular they show that adding NEMO to a network of
second-generation detectors will certainly make a difference for the study of BNS postmerger signals.

5.4.5 Numerical relativity injections

Finally, we analyze simulated signals obtained by injecting NR waveforms on top of Gaussian noise.
Analyses performed with the free-pm model do not recover either of the Lorentzian parameters,
mainly because of the complex structure of the postmerger signal, as we will explain later. Figure 5.12,
instead, shows the posterior probability density of Λ̃ for injections at 68 Mpc in the ETCE network.
For Source2[NR−inj] the recovered posteriors of Λ̃ peak at the injected value, but for the other sources
the posterior is shifted with respect to it. For Source1[qu-pm], the Λ̃ injected value lies in the tail of
the posteriors recovered with the qu-pm and free-pm model, and completely outside the posterior
obtained with the no-pm model; for Source3[qu-pm], the posteriors recovered with all the models
peak at values between 575 and 578, with the injected value Λ̃ = 607 lying completely outside their
distributions. These shifts are due to noise fluctuations, as we showed in Sec. 5.4.3, and possible
limitations of our waveform models. The case analyzed here, using the ETCE network, generates a
signal with a high SNR, and therefore a narrow posterior probability density for Λ̃; hence, the shifts
induced by noise fluctuations can result in the injected value being situated outside the 90% confidence
interval.

Using one of the postmerger models to analyze signals obtained with NR waveforms does not lead
to a meaningful improvement in the Λ̃ constraints as the ones shown in Sec. 5.4.1. This is consistent
with the fact that mismatches computed over the whole waveform (cf. lower panel of Fig. 5.1) do not
show significant improvements when using one of the postmerger models, considering that the noise
and the complicated morphology of the NR injection make it more difficult for our models to recover
the postmerger part of the signal, and therefore almost all the Λ̃ information comes from the inspiral.
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Figure 5.11: Posterior probability density for the c1 Lorentzian parameter for the different detector networks,
in the case of Gaussian-noise injections for Source3[qu-pm] at 68 Mpc. The dashed vertical line indicates the
injected value.

Nonetheless, when using the postmerger models, we see a modest improvement in the recovery of Λ̃

for Source2[NR−inj], with respect to the no-pm one, and a clear improvement for Source1[NR−inj]. The
latter is consistent with the results found in Sec. 5.4.1 for this source, where we concluded that, when
using the no-pm model, the presence of a postmerger signal, to which the no-pm waveform tries to
latch on, causes a bias in the Λ̃ parameter recovery.

In Sec. 5.4.3, we saw that noise fluctuations alone can impact the performance of our model, but in
this case an additional issue is the fact that the NR simulations contain a more complex GW structure
in the postmerger, which is not fully recovered with our simple Lorentzian model. This appears
clearly in Fig. 5.13, which shows the injected NR waveform together with the maximum-likelihood
ones recovered with the different models and their 90% confidence interval. The postmerger peak
obtained with the qu-pm model is slightly shifted with respect to the main postmerger peak of the
NR waveform; however, the same shift was present also in the Source2[qu-pm] injected waveform in
Fig. 5.8, and hence we conclude that it is due to the imperfection of the model, not to issues in the
parameter estimation process. When optimizing the mismatches to compute the best values of the
fit parameters for our quasi-universal relations, it is likely that the model tries to adapt to the whole
morphology of the postmerger NR signal, thus shifting with respect to what would be the description of
the main emission peak only. For the free-pm model maximum-likelihood waveform, the postmerger
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Figure 5.12: Posterior probability density for Λ̃ as recovered with the different models (no-pm, qu-pm and
free-pm) in the case of signals simulated by injecting NR waveforms in Gaussian noise at a distance of 68 Mpc,
for the ETCE detector networks. The black dashed lines show the injected values.

peak lies at a higher frequency than the true one, is much wider and with a non-physical amplitude,
though this does not affect the Λ̃ recovery (cf. Fig. 5.12). Given the large bias in c0, and the fact
that the injected values vary in a small range, an improvement would probably be obtained already
by restricting the prior range for this parameter. For comparison, in Fig. 5.13, we show also the
waveform obtained from the free-pm model with the optimized parameters computed as explained
in Sec. 5.2.2: the postmerger peak of the optimized free-pm waveform overlaps to the one of the
NR waveform. Hence, the free-pm model can in principle describe the data well, but the additional
information contained in the complex and more structured morphology of the postmerger in the NR
signal makes it challenging for our simple model to recover all the parameters correctly. Therefore,
both our qu-pm and free-pm models need to be improved towards more structured signals.

The fact that, with the free-pm model, the postmerger Lorentzian parameters cannot be recovered
with a good precision causes the 90% confidence interval of the recovered waveform to be very broad.
The spectra recovered with the qu-pm model, instead, lie in a narrower interval because their values
are determined by the binary’s parameters, which, with 3G detectors, are recovered with a very high
accuracy, as shown in Sec. 5.3.4. We also note that the optimized free-pm model peak does not
present the same shift as the qu-pm one, which is consistent with the fact that the mismatches in the
the high-frequency region shown in Fig. 5.1 are systematically lower for the free-pm model.

Moreover, hybridization of NR waveforms starts from the few last cycles of the inspiral, so that
also the late-inspiral and merger waveform is based on NR simulations, and thus different from the
model we employ. The difference between the hybrids and the waveform models in the late-inspiral
region is visible also in Fig. 5.13 and can lead to biases, affecting the results obtained not only with
our free-pm or qu-pm models, but also with the model without postmerger.
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Figure 5.13: Frequency-domain waveform of the injected NR (black dotted line) waveform, compared to the
waveforms generated from the maximum-likelihood parameters recovered for each model. The dashed gray line
shows the free-pm waveform obtained by optimizing the Lorentzian parameters as explained in Sec. 5.2.2.
The shaded regions represent the 90% confidence interval of the posterior of the recovered waveform with the
different models.

5.5 Conclusions

We have developed an analytical, frequency-domain model to describe the GW emission during the
inspiral, merger, and postmerger phases of a BNS coalescence. For the inspiral and merger, we em-
ployed the IMRPhenomD_NRTidalv2 waveform. We incorporate the postmerger part through modeling
the main emission peak with a Lorentzian, whose parameters, in the two versions of our model, are
either free or determined by quasi-universal relations. Due to the computational cost of the analysis,
our study was limited to a restricted number of BNS systems.

We have shown that in the best-case scenario of simulations with zero noise and high SNR – i.e.,
at a distance of 68 Mpc and with the ETCE network – the qu-pm model leads to better constraints
on the Λ̃ posteriors compared to the ones obtained with the no-pm model, and the free-pm model
grants an accurate measurement of the frequency of the main postmerger emission peak. Within our
study, we find that noise fluctuations can significantly impact the results; as shown in Sec.5.4.3, they
produce both large differences on the accuracy of Λ̃ measurements (quantified by the width of the 90%

confidence interval of the recovered Λ̃ posterior, e.g., Fig. 5.10) and shifts in the median value of such
posterior, cf. Table 5.6. In some cases, this overcomes the improvement on Λ̃ measurements yielded
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by the use of the qu-pm model and calls for caution in the interpretation of the results, to distinguish
the effects of a different model from the ones of noise. It is important to note that the shifts in Λ̃

recovery caused by noise fluctuations, which are evident especially in high-SNR injections, given the
narrowing of the posterior, also affect the results obtained with the model without postmerger. In
general, including the postmerger during the analysis provides tighter constraints on the Λ̃ posterior
than the original inspiral-only IMRPhenomD_NRTidalv2 model.

Finally, we used our model to recover signals obtained by injecting NR waveforms. Although we
still see improvements in some cases when using the postmerger models, they are not as significant
as we found for the simulated signals. This is due to noise effects and the fact that NR waveforms
include postmerger signals with a complex structure, which a simple Lorentzian model struggles to
recover. Despite the promising results, we conclude that our model, in both its versions, still needs
improvements in order to be employed in the analysis of real signals.

Another central point of our study was to assess the performance of different detector networks,
and to understand how future detectors will improve the analysis of postmerger signals. In particular,
we considered four different networks: (i) Advanced LIGO+ in Hanford and Livingston together with
Advanced Virgo+; (ii) the same network as (i) extended by KAGRA and LIGO-India; (iii) the same
network as (ii) extended with NEMO; (iv) a network consisting of a 40 km Cosmic Explorer and a 10
km, triangular Einstein Telescope. Although 3G detectors, as expected, will give the best constrains
on Λ̃, we found that NEMO, thanks to its very high sensitivity in the kilohertz band, yields the biggest
improvement when using the qu-pm model.

This study showed how, with future detector networks, GW observations from the postmerger
phase of a BNS coalescence will allow us to unravel information about the fundamental physics de-
scribing supranuclear-dense matter.
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Chapter 6

Measuring tidal effects with the Einstein
Telescope: A design study

Originally, the Einstein Telescope’s design consisted of a triangular detector, with three V-shaped
interferometers built a few hundred meters underground in order to reduce the seismic noise [130,134].
However, the ET collaboration has recently been investigating also an alternative design, with two
L-shaped interferometers. In the study presented in this chapter, based on Ref. [341], we investigate
how the different designs impact the estimate of the source’s parameters, especially tidal deformability,
for GW signals emitted from BNS systems.

6.1 Introduction

The observation of the first gravitational-wave signal from a BNS source, GW170817, thanks also
to the simultaneous observation of electromagnetic radiation emitted as its counterpart [12, 13, 342],
already allowed to place some constraints on the supranuclear-dense matter EOS.

As a detector with a much wider frequency band sensitive to GWs, the Einstein Telescope promises
to observe BNS signals for many cycles, increasing the detected signals’ duration up to an hour. ET will
certainly provide more constrained bounds on the neutron star EOS, even without an accompanying
electromagnetic counterpart [343–349].

Unfortunately, it is very challenging to perform realistic studies exploiting the full capability of ET
due to the wide frequency range it will cover and the large associated computational costs. However,
significant progress has been made regarding GW searches for ET signals, e.g., Refs. [350, 351], and
full parameter estimation studies, as discussed below. Reference [352] performed the first full Bayesian
estimation analysis of GW signals from BNS sources observed by ET with a lower frequency cutoff flow

of 5 Hz. For this, they constructed reduced order quadratures to make their study computationally
feasible. Here, we perform PE employing relative binning (see Sec. 2.3.3) to reduce the computational
cost of our analysis. We use a lower frequency cutoff of flow = 6 Hz, to provide realistic estimates of
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Figure 6.1: Top panel: Location of the ET detectors in case of two L-shaped interferometers, showing also the
possible different arm lengths in misaligned orientations. Bottom panel (left): PSD curves for the xylophone
configuration in cryogenic mode for different arm lengths. Bottom panel (right): Representation of the ET
triangular configuration, located in Sardinia for the purpose of this work.

the source parameters, such as the chirp mass or the tidal deformability.
In the past, various PE studies have already been performed to estimate the Science returns

to constrain tidal deformability from BNS observations in ET, including using ET in a network of
detectors, e.g., Refs. [93, 131, 135, 293, 343–349, 352–364]. However, up to our knowledge, all of them
have focused on the originally proposed triangular design with three interferometers, each having a
60◦ opening angle and arm length of 10 km, arranged in an equilateral triangle.

Recently, there has been an increasing interest in studying also different detector configurations
and layouts. With this regard, Ref. [140] provided a detailed discussion with respect to numerous
scientific cases and how they are affected by different proposed designs for ET, including different
arm lengths and shapes. More explicitly, Ref. [140] considered the originally conceived triangular
configuration, as well as two separate L-shaped detectors; for the latter, also different alignments, i.e.,
orientation between the detectors. In the study presented here, we compare these different designs,
cf. Fig. 6.1, for recovery of tidal deformability and the other parameters of BNS systems via full
PE analysis. In all the studied cases, we analyze BNS simulations and look at differing results from
varying the detector setup, keeping the source properties of the BNS system and the settings of the
PE analyses unchanged.

6.2 Methods

Following standard techniques, we perform a Bayesian analysis (see Sec. 2.2.2) to construct posterior
probability density functions on the parameters of interest, i.e., those characterizing the gravitational
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waveform describing a BNS merger. To sample the likelihood function, we employ the bilby library
[321,322] and specifically the dynesty [335,336] algorithm. The waveform model used for both signal
injection and recovery is IMRPhenomD_NRTidalv2 [212].

As we use quite low values of flow to make our estimates realistic with what is envisaged for the ET
detector, our likelihood integral calculation is computationally expensive. For this reason, we resort to
the technique of relative binning, introduced in Sec. 2.3.3. This approach reduces our computational
costs noticeably and makes our runs computationally feasible. For our purposes, we followed the
implementation outlined in Ref. [239];however, we used a different waveform, IMRPhenomD_NRTidalv2,
and we employed the above code in conjunction with the sampling library bilby, as implemented in
the code in Ref. [337].

6.2.1 Sources and configurations

We consider three different sources (A,B,C) with parameters chosen following mainly the injection
study performed by the LVK collaboration to mimic GW170817 [73]. The properties of the sources
used for injections are listed in Table 6.1, where mi, χi, and Λi, with i ∈ {1, 2} are the mass,
dimensionless spin, and dimensionless tidal deformability of the component neutron star, respectively,
whileMc is the chirp mass and Λ̃ the binary’s mass-weighted tidal deformability, as defined in Eq. 2.58.

All the simulated signals are injected at a distance DL = 100 Mpc with inclination ι = 0.4 rad,
zero polarization angle, and at a sky location (α, δ) = (1.375,−1.211) rad. The priors used for the
analysis are reported in Table 6.2, where δΛ̃ is defined in Eq. 2.59.

Name m1, m2 [M�] Mc [M�] Λ1, Λ2 Λ̃ χ1, χ2

Source A 1.68, 1.13 1.19479 77, 973 303 0, 0

Source B 1.38, 1.37 1.19700 275, 309 292 0.02, 0.03

Source C 1.38, 1.37 1.19700 1018, 1063 1040 0, 0

Table 6.1: Source properties used for injections.

Two different shapes have been proposed for ET in Ref. [140]: (i) a single detector with a triangular
configuration, henceforth called ∆, (ii) two L-shaped detectors1 in separate locations, with aligned or
misaligned arms, henceforth called 2L-0◦ and 2L-45◦, respectively. The ∆ configuration consists of
three V-shaped detectors, with each V having a 60◦ opening angle between the arms. For 2L-0◦, the
detectors have arms with the same orientation, while in the case of 2L-45◦ one detector has the arms
rotated by 45◦ with the respect to the other one.

The ∆ detector may have an arm length of 10 km or 15 km, while the L-shaped ones may have an
arm length of 15 km or 20 km. As of now, there are two main candidate sites for ET,2 one in Sardinia

1L-shaped detectors have a 90◦ opening angle between the arms, as the basic interferometer configuration described
in Sec. 1.4.1. The two LIGO instruments and Virgo are all L-shaped.

2Recently, also a third location in Saxony, Germany, has been considered as a possible site option.
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Parameter Range

Mc [Mc,s ± 0.05 [M�] ]

q [0.5, 1]

χ1, χ2 [0.0, 0.15]

DL [1,500] Mpc

Λ̃ [0,5000]

δΛ̃ [-5000, 5000]

Table 6.2: Priors employed in the PE analysis, where Mc,s represents the chirp-mass injected value of the
specific source analyzed. For the luminosity distance DL, the prior is taken uniform in comoving volume; for
all the other parameters, the prior is uniform in the indicated range.

Name Shape Relative orientation Arm length

∆10km Triangular - 10 km

2L-0◦ 15km 2 L-shaped aligned 15 km

2L-45◦ 15km 2 L-shaped misaligned 15 km

2L-0◦ 20km 2 L-shaped aligned 20 km

2L-45◦ 20km 2 L-shaped misaligned 20 km

∆15km Triangular - 15 km

2L-0◦ 10km 2 L-shaped aligned 10 km

2L-45◦ 10km 2 L-shaped misaligned 10 km

Table 6.3: Names used throughout this work for the different detector configurations and arm lengths.

(Italy) and one in Limburg (at the border shared by Netherlands, Belgium and Germany) [140]. In
this paper, the ∆ detector is located in Sardinia, whereas in the case of two L-shaped detectors one is
in Sardinia and the other one in Limburg. All detector configurations used in our work are listed in
Table 6.3.

One of the main challenges to reach the sensitivity planned for ET is dealing with quantum noise,
which includes shot noise at high frequencies and radiation pressure noise at low frequencies. A high
laser power reduces shot noise, but a low laser power is instead required to reduce radiation pressure
noise. To counter this problem, ET will in practice be composed of two interferometers working
together in a xylophone configuration, one detector optimized for low frequencies and with a low
laser power, and the other one optimized at high frequencies and with a high power. Low-frequency
sensitivity is also affected by thermal noise, therefore a further improvement is expected if the low
frequency detector operates at cryogenic temperatures [134].
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Figure 6.2: Violin plots for the posterior density distribution of Λ̃ for the five reference detector configurations
and for all three sources in Table 6.1: Source A (top panel), Source B (middle panel), and Source C (bottom
panel). The black horizontal bars indicate the median value and the 90% confidence interval, the black vertical
lines mark the support of the posterior; the red horizontal line shows the injected value of Λ̃. For each posterior
we also report the median, together with the 5% and 95% quantile values.
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Figure 6.3: Posteriors for chirp massMc (top left), tidal deformability Λ̃ (top right), mass ratio q (bottom left),
and effective spin χeff (bottom right), for Source B (cf. Tab. 6.1). The different colors correspond to the various
configurations considered, while the red line indicates the injected values.

6.3 Results

In this section, we present the results of PE runs, comparing the different detector configurations, arm
lengths and laser power. We also look at the improvement we get when analyzing data starting at
different frequencies.

6.3.1 Detector configuration comparison

First, we test how the different detector configurations (∆, 2L-0◦ or 2L-45◦) perform in PE analyses.
We take into account only the five reference configurations [140]: ∆ with 10 km arms, 2L-0◦ and
2L-45◦, both with 15 km or 20 km arms. For this comparison, all the runs are performed with
starting frequency flow = 10 Hz, and using the PSD curve for the xylophone configuration with the
low frequency detector operating at cryogenic temperatures, henceforth denoted as “LFHF”. Figure 6.2
shows the posteriors for the tidal deformability parameter Λ̃ for the three different sources, reporting
the median and 90% intervals for each configuration.

For Source B, in Fig. 6.3 we show also the posterior distributions for the other binary parameters:
chirp massMc, mass ratio q = m2/m1, with m1 > m2, and effective spin χeff , as defined in Eq. 1.79.
From Fig. 6.3 and especially from Fig. 6.2 we see an improvement going from the ∆ to the two L-
shaped detectors, since, for example, the width of the 90% interval on Λ̃ reduces between 12% and
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Figure 6.4: Comparison of Mc, Λ̃, and q posteriors between ∆, 2L-0◦, and 2L-45◦ with same arm length, for
Source C (cf. Table 6.1). The darker color shade refers to detectors with 15 km arm length, the lighter one to
detectors with 10 km arm length. The red line indicates the parameter’s injected value. For each parameter
and configuration, we also report the median and 5% and 95% quantile values; forMc, also the reported values
have an offset 1× 10−5 + 1.19700M�.

24% when going from the ∆10km to the 2L-45◦ configuration. However, we must take into account
the fact that the ∆ detector here is assumed to have a shorter arm length, which has a great influence
on the PSD, cf. Fig. 6.1. For this reason, we also compare the ∆ and 2L configurations assuming
they have the same arm length. Figure 6.4 shows Source C posteriors for Mc, q, and Λ̃, for the
different configurations, but assuming the same arm length. In this case, we do not see a strong
difference in the parameters recovery, as indicated by the 5% and 95% quantile values reported in
the plot. This suggests that the specific configuration does not have a major impact on the precision
of parameter estimation. However, if the configuration choice is bound to a certain arm length, e.g.,
due to limitations to the overall budget, one must take into account the improvements obtained with
longer arms.

6.3.2 Effect of varying PSDs

As mentioned in the previous sections, the current plan for ET includes a “xylophone” configuration,
in which each detector is effectively composed of two interferometers, operating a high- or low- power
laser. The high-power laser is expected to improve sensitivity at high frequencies, the low-power one,
on the other hand, improves sensitivity below 30 Hz [133,134]. We perform the same PE analysis using
the PSD of the different interferometers and we compare results. In particular, we study the PSD
for the detector optimized at high frequencies (HF-PSD), the one optimized at low frequencies (LF-
PSD), and the xylophone combination (LFHF-PSD), with the low-frequency interferometer operating
at cryogenic temperatures. Since we are interested only in the effect of the PSD, here we study just

143



Chapter 6. Measuring tidal effects with the Einstein Telescope: A design study

Figure 6.5: Posteriors ofMc, Λ̃, q, and χeff , for Source C (cf. Table 6.1) and the ∆10km configuration, recovered
with the different PSDs. The vertical black lines show the median and the 90% confidence interval, while the
black horizontal line indicates the support of the posterior; the red line shows the paramter’s injected value.
ForMc, the reported median and quantile values have an offset ×10−5 + 1.19700M�.

one source, Source C, and one detector configuration, ∆10km, performing the analysis from a starting
frequency flow = 10 Hz.

The posteriors forMc, q, Λ̃, and χeff are shown in Fig 6.5, where we also report the median and the
5% and 95% quantiles for each parameter. The PSD optimized at low frequencies yields much worse
results than the other ones, with a 90% confidence interval 2.5 times larger in the case of mass ratio.
Λ̃ is not recovered with the LF-PSD, while it is constrained with an accuracy of almost 4% in the
other cases. Λ̃ represents an extreme case, since its contribution enters the gravitational-wave phase
mainly at high frequencies, from a few hundreds Hz and above [365, 366], and therefore is affected
by the shape of LF-PSD, as shown in Fig 6.6, more than other parameters. In general, we obtain a
much worse parameter recovery when using the LF-PSD alone, meaning that, if the preferred solution
of a xylophone implementation is not available, the high-frequency optimized PSD is favorable, in
particular if we want to constrain Λ̃.

6.3.3 Effect of varying minimum frequency

A big achievement of the ET is to improve the sensitivity at low frequencies. Therefore, in this section,
we will study the impact of choosing different starting frequencies in the PE analysis. We note that
lowering the starting frequency by only a few Hz has a huge impact on the duration of the waveform
and therefore on the computational cost of the analysis. We analyze injections with the parameters
of Source B, for two different configurations, ∆10km and 2L-45◦ 15km. In each case, we perform PE
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Figure 6.6: Comparison between the amplitude spectral densities corresponding to the PSD optimized at low
frequencies (LF-PSD), in red, the PSD optimized at high frequencies (HF-PSD), in brown, and the one of the
xylophone configuration (LFHF-PSD), in grey, with a typical injected GW siganl (dotted line). All the PSDs
shown refer to a detector with 10 km arm length. The sensitivity of the LF-PSD becomes too low at high
frequencies to allow to detect the signal above ∼ 100 Hz.

studies with the following starting frequencies: 6, 7, 8, 9, 10, and 20 Hz. In this case, the analysis
is performed in zero noise since we want to focus on the impact of flow without risking to take into
account possible fluctuations induced by the noise realizations. In fact, specific noise realizations can
cause a shift in the posterior recovered for Λ̃. This shift is usually within 5% of the actual Λ̃ value,
and, therefore, goes unnoticed in the analysis performed with current detectors. However, we showed
that for ET the precision with which Λ̃ can be measured improves noticeably. This means that, due
to these shifts, we might end up seeing the injected values lying outside the 90% confidence interval
of the posterior when simulations involve Gaussian noise (as discussed also in Sec. 5.4.3). When real
ET data will be analyzed in the future, this is a point that must be evaluated very carefully. For our
purposes, up to now, we compared only results obtained with the same flow, and, as long as we use the
same noise seed, we expect a possible fluctuation to affect all the runs in the same way, and, therefore,
to be not relevant in our comparison. Here, however, we use different starting frequencies, leading
to longer signals and more cycles being analyzed. In this case, the outcome of noise fluctuations
can be different for the different flow used. To quantify this, in Table 6.4 we report the median and
90% interval values of the posteriors on Λ̃, obtained from analysis both in Gaussian and zero noise,
with the same seed but different flow. While we see fluctuations in the median values recovered from
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Gaussian-noise runs, in the zero-noise case the median is almost constant. Therefore, to compare Λ̃

recovery with different starting frequencies, we look at zero-noise injections. Figure 6.7 shows the
posteriors and their 90% width for the different flow values. We see a clear improvement when going
to lower frequencies, especially for the recovery of chirp mass. The plot also highlights how, in general,
the 2L-45◦ 15km configuration yields tighter constraints on the parameters’ posteriors, but we stress
again that the main impact is given by the arm length, not the configuration per se.

flow Gaussian noise zero noise

2L-45◦ 15km 7 Hz 279.31+9.55
−11.35 287.90+8.35

−9.54

8 Hz 292.90+8.40
−8.33 287.36+9.01

−9.59

9 Hz 278.639.75
10.72 287.65+8.95

−10.92

10 Hz 285.7411.15
−13.26 287.40+9.03

−10.96

20 Hz 296.72+10.46
−11.66 286.18+12.01

−14.42

∆10km 7 Hz 277.27+11.87
−13.52 287.29+10.95

−12.59

8 Hz 292.95+9.15
−9.77 287.11+11.21

−12.79

9 Hz 274.62+12.78
−14.09 285.51+11.71

−13.97

10 Hz 273.16+15.18
−17.09 285.5111.71

−13.97

20 Hz 280.09+13.76
−17.10 285.21+14.56

−17.86

Table 6.4: Recovered Λ̃ values with 90% intervals, comparing Gaussian-noise and zero-noise runs for different
values of flow.

6.4 Summary

We performed PE studies to compare the different proposed designs for ET. We focus on BNS sys-
tems, in particular, to find out how well the tidal effects will be measured. We compare different
detector shapes, considering a single triangular detector and two L-shaped ones. In the latter case,
we investigate both the cases of aligned or misaligned detectors. Moreover, ET will be composed of
two interferometers, one optimized at high and one at low frequencies. We compared results obtained
using the different PSDs, the low- and high- frequency one, as well as the xylophone PSD, obtained
by combining the two. Finally, we looked at how the PE results improve when using lower cutoff
frequencies, investigating flow = 20, 10, 9, 8, 7, 6 Hz. We find that:

(i) The shape and alignment of the detectors have very little influence on the recovery of parameters.

(ii) The chosen arm length, instead, plays an important role, as expected given its effect on the
PSD. This means that, when comparing the currently proposed configurations, the ∆10km one
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performs worse, but this is merely due to the fact that it has a shorter arm length with respect to
the 2L ones. When comparing the different configurations, and assuming the same arm length,
we find no significant difference in the results.

(iii) The constraints recovered with the LF-PSD are much worse than the other ones, especially with
respect to Λ̃. This is expected since with the LF-PSD the signal above a hundred Hz is not
detectable.

(iv) Noise fluctuations have a very strong impact on the Λ̃ measurement, causing the posteriors’
median values to shift. With ET, Λ̃ will be measured with a very high accuracy, therefore,
although such shifts are of the order of a few percent, they can be enough for the injected value
to lie outside the support of the posterior.

(v) Regarding the different cutoff frequencies, we studied two different detector configurations,
∆10km and 2L-45◦ 15km, and find no substantial difference between them. The parameters
posteriors become clearly tighter when going to lower frequencies. This is particularly evident
in the case ofMc posteriors, but an improvement is also present for Λ̃, although only of about
20%.
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Figure 6.7: Left: Posterior distributions forMc, q, Λ̃, and χeff for the different choices of flow and for Source
B (cf. Table 6.1), in green for the ∆ configuration with 10 km arms, in orange for the 2L-0◦ with 15 km arms.
The red horizontal lines correspond to the parameters’ injected values. Right: Width of the 90% confidence
interval for each parameter, as a function of the value of flow.
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Chapter 7

Conclusions

Since their prediction in Einstein’s theory of general relativity, gravitational waves took a hundred
years to be actually detected. Nevertheless, the wait was well rewarded since measuring GWs did
not only provide a strong confirmation of the predictions of GR, but also offered a new way to study
fundamental interactions. The information extracted from GW signals allows us to probe the theory
of general relativity in the strong-field regime, as well as to study the equation of state describing the
extremely dense matter inside neutron stars. In this thesis, we investigated both these aspects. In
particular, we also turned our attention to next-generation detectors, which are expected to increase
sensitivity by roughly a factor 10 and to extend the detection bandwidth both at lower and higher
frequencies with respect to current detectors. We studied how this will help us constrain the EOS
of neutron stars’ matter, both by measuring the tidal parameters from the GWs emitted during
the inspiral phase and by including the information from a potential postmerger signal. The high
sensitivity of future detectors, however, comes also with downsides: the computational cost of the
analyses will increase, thus it is necessary to find alternative techniques in order to make the analyses
feasible; furthermore, the high precision with which we will be able to measure the sources’ parameters
will enhance the effect of systematic errors, induced, for example, by the waveform models employed
to analyze the data.

Testing general relativity using higher-order modes in gravitational waves

The GW signal emitted by compact binary coalescences has a multipolar structure. Although, usu-
ally, the higher-order modes are suppressed with respect to the fundamental one, their contribution
becomes non-negligible for binaries with specific features, like large total mass or considerably dif-
ferent component masses. Evidence for the presence of higher-order modes was found in the two
high-mass-ratio events GW190412 and GW190814.

In Chapter 3, we developed a method to probe GR by testing whether the amplitude of subdom-
inant modes are consistent with the values predicted by general relativity. We introduced, in the
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expression for GWs multipole expansion, some coefficients c`m that parametrize possible deviations in
the amplitude of the (`,m) mode with respect to GR predictions. We analyzed signals in a Bayesian
framework, which allows us both to recover the value of c`m with a standard parameter estimation
analysis, together with all the other parameters of the source, and to perform hypothesis ranking
between the GR model and our modified non-GR one. We focused on the two subdominant modes
that are expected to be the strongest, (`,m) = (2, 1), (3, 3). We tested our method on simulated
signals and then we applied it to the real events GW190412 and GW190814, finding no evidence for
violations of GR. Finally, we investigated correlations between the parameters we introduced and the
inclination angle, which cause bimodality in the c`m posteriors, especially for the (3, 3) mode. Because
of this effect, conclusions about possible violations of GR should be inferred only from the hypothesis
ranking results.

Comparing gravitational waveform models for binary black hole mergers

The increased sensitivity of future-generation detectors will enhance the effect of systematic errors
on GW data analysis. For parameter estimation, one of the main source of systematics lies in the
waveform models employed. As discussed in Sec. 2.1, different waveform models are built with different
approximations, which can lead to biases in the analyses.

In Chapter 4, we analyzed the 13 heaviest events with a significant SNR in GWTC-3 employing a
hypermodels approach, which allows us to directly sample over different waveform approximants and
to compute probabilities for them, identifying possible preferences among the models. We did not find
any model to be overall preferred or disfavored with respect to the other ones, and for most of the events
we recovered similar probabilities for all approximants. Only three events show a strong preference for
some of the models: GW190521, GW191109_010717, and GW200129_065458. However, the favored
models are not the same in the three cases, and, due to their short duration or data quality issues,
we cannot draw strong conclusions from these three events only. We did not identify any trends of
the models’ probabilities with respect to the parameters of the source or the signal SNR. However, we
uncovered an interesting correlation with precession: in the three events significantly favoring some
models, the preferred ones are always the models that recover evidence for precession for that event.
This is not related to how precession is treated in the different approximants, given that the preferred
models are different every time, but, in general, the fact that a model recovers precession results in a
higher probability for that model.

Including the postmerger for binary neutron stars

After the coalescence, depending on its EOS and total mass, a BNS system can promptly collapse to
a BH or form a NS remnant, in which case a GW signal is emitted. This postmerger signal carries
information about the NS’s EOS, in a different density and temperature regime with respect to the
inspiral. Current detectors are strongly limited by quantum shot noise in the kilohertz band, where
the postmerger signal is expected to lie. However, future detectors, with their increased sensitivity,
are expected to start detecting postmerger signals.

In Chapter 5, we presented a frequency-domain model to describe the GW signal emitted during
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the full coalescence of a BNS system. For the inspiral and merger part we employed one of the state-
of-the-art models, while the postmerger is described with a three-parameter Lorentzian. Postmerger
physics includes a variety of processes, which results in a complicated signal morphology with a rich
structure; for simplicity, we describe only the main emission peak.

The goal is to employ our model in parameter estimation analyses. We developed two versions of
the model: one, called free-pm, in which the Lorentzian parameters are treated as free parameters
and recovered within a Bayesian framework together with all the other parameters of the source; in
the other one, named qu-pm, the Lorentzian parameters are instead determined from the binary’s
parameters through some quasi-universal relations. In the latter case, we focused on the measurement
of the tidal deformability since it represents the parameter containing the most information about the
EOS, given that chirp mass is usually determined with a high accuracy. We expect that the additional
information coming from the signal emitted during the postmerger phase leads to tighter constraints
on the tidal deformability.

When analyzing high-SNR simulated signals in zero noise, our free-pm model recovers well the
Lorentzian parameters, especially the one corresponding to the frequency of the main emission peak,
and the qu-pm model yields more precise measurements of the tidal deformability parameter with
respect to the results obtained with a model without postmerger, as expected. However, we found that
noise fluctuations can significantly impact our results. Moreover, when analyzing signals obtained by
injecting NR simulations, our model, based on a simple Lorentzian, struggles to recover the complicated
postmerger morphology. Therefore, both versions of our model need to be improved, in order to be
applied to the analysis of real signals.

In addition, we compared different networks of future detectors, to assess their performance in
postmerger studies. We showed that NEMO, a proposed detector in Australia with improved sensi-
tivity at high frequencies, if approved, will greatly help the detection and study of postmerger signals
with second-generation detectors, thanks to its high sensitivity in the kilohertz band.

Studying binary neutron stars with the Einstein Telescope

Third-generation detectors are expected to provide very accurate measurements of the parameters of
compact binaries that emit GWs. For the Einstein Telescope, different designs have been proposed: a
triangular detector, effectively composed of three V-shaped interferometers with a 60◦ opening angle
between the arms, and two L-shaped interferometers, either with aligned or misaligned arms. In all
cases, different arm lengths are possible.

In Chapter 6, we studied how the different designs influence the results of parameter estimation
analysis for BNS systems, focusing especially on the recovery of the tidal deformability parameter.
We showed that the shape and alignment of the detector do not affect the final result, but the arm
length does, which is expected given that a longer arm length results in a higher sensitivity.

Moreover, ET is planned to be built underground and to employ cryogenic technologies, signifi-
cantly improving the sensitivity at low frequencies and allowing us to detect signals down to a few
Hz. We showed the benefits of gaining sensitivity at this end of the detector bandwidth: we analyzed
signals starting from different frequencies between 6 and 20 Hz, finding a strong improvement in the
measurement of the binary parameters, especially for the chirp mass.
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When we talk about gravity, the first thing that will probably come to mind is an apple falling on the
head of poor Sir Isaac Newton. This lucky accident, according to the myth, led him to the formulation
of his theory of gravity. Newton’s law of gravitation could describe well the phenomena observed on
Earth, where gravity is usually quite weak, but, with time, more sophisticated experiments led to
observations that his theory could not explain. All the limitations in Newton’s theory were overcome
in general relativity, a relativistic theory of gravity developed by Albert Einstein a century later, in
1915.

General relativity brought some major perspective changes in the description of gravity. First
of all, we now talk of spacetime: each event is assigned spacetime coordinates, meaning that it is
determined not only by its position in the three-dimensional space we are used to, but also by a time
coordinate. In simpler words, the idea is that when you organize a party, you decide the location, but
you also need to set the time. Secondly, in Newton’s theory, gravity is a force attracting one body
to another, according to their mass. In general relativity, instead, gravity is related to the spacetime
geometry. Let us picture the spacetime as an elastic fabric: if one places a mass on it, the fabric
gets deformed, bending around the massive object (see Fig. S.1). The more compact the object, i.e.,
the more massive for a given size, the stronger the produced curvature will be. Now, if you place a
marble on this fabric, it will move following the curvature produced by the first, more massive object,
and eventually fall onto it. This is the basic idea of general relativity: masses deform the spacetime
geometry producing curvature, and this geometry is what determines how massive objects move. From
a mathematical point of view, this is elegantly described by the Einstein field equations.

In this context, gravitational waves are ripples in the spacetime fabric, produced by masses when
they accelerate. Consider the situation where we have a compact object, producing its curvature in
spacetime, and then we suddenly remove it: without the compact object, the curvature will disappear,
but this process is not instantaneous. Similarly, when a massive object moves, the spacetime defor-
mations it produces move with it. The spacetime adapting to the changing curvature that follows an
accelerating mass is what produces these waves in spacetime, which propagate with the speed of light.
To visualize it, a useful analogy is picturing the ripples produced on the surface of a pond when you
throw a rock in the water.
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Figure S.1: Artistic representation of the curvature induced in spacetime by objects with different compactness,
with the yellow one being the most compact one. Credit:ESA–C.Carreau

How do we detect gravitational waves?

When gravitational waves pass by, they periodically stretch and compress spacetime, and this gives
us the opportunity to detect them. Current gravitational-wave detectors, such as LIGO, Virgo, and
KAGRA, are laser interferometers: basically, they are made of two laser beams that are shone at an
input point and that travel along what are called “arms” of the interferometer, usually in perpendicular
directions, for a few kilometers; a mirror is placed at the end of each arm, hence each laser beam is
reflected back, and the two beams recombine at the output. Light has a wave nature, so each laser beam
includes a series of minima and maxima (see left panel of Fig. S.2). When the two beams recombine,
interference effects happen: if one beam is at a maximum and one at minimum, for example, the two
beams “cancel out” and the output is zero; this effect is called destructive interference (see Fig. S.2).
The idea of interferometric detectors is that the instrument at rest, i.e., when there are no gravitational
waves passing by, is set to have a specific output, for example a destructive interference. When a
gravitational wave arrives, one arm gets stretched and the other one compressed, hence changing the
length of the path that the two lasers need to travel. Therefore, when they recombine, we will not
have destructive interference anymore, but the output will change in time based on the effect of the
passing gravitational wave.

So far so good, but here is the problem: the change in the arms’ length induced by gravitational
waves is usually very small, of the order of 0.000000000000000001 meters or smaller. For comparison,
the diameter of a human hair is usually 0.000001 meters. Laser interferometry allows us to measure
very small changes in the length of the arms, but there are multiple sources of noise that make
this measurement difficult. Moreover, the spacetime fabric is very rigid and not easy to deform,
therefore only catastrophic events, which involve extremely high velocities and large masses, produce
gravitational waves whose effect we can observe. Among such catastrophic events, in this thesis we
focus on the coalescence of binaries of compact objects, like neutron stars or black holes, which we
briefly describe below.
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Figure S.2: Schematic representation of destructive interference between two laser beams. The two lasers, laser
1 and laser 2, are made by a series of minima and maxima in their amplitude (left). When they recombine at
the output of the interferometer, one can set the detector in such a way that, at rest, the minima of one laser
perfectly corresponds to the maxima of the other one (center), and therefore the combined output, shown in
red, is zero (right).

Sources of gravitational waves

Stars, like our Sun, are essentially clouds of hydrogen, which is so compressed in the core of the star
that it burns, creating helium through nuclear reactions. This hydrogen-burning process releases an
enormous amount of energy, which is what makes the stars shine, but also provides an essential source
of energy to contrast the inward pressure of gravity, due to the star’s own mass, that would make
it collapse onto itself. Eventually, all the hydrogen in the star will be transformed into helium: at
this point the nuclear fusion process, lacking its fundamental ingredient, stops, and there is no more
“outward” pressure to contrast the gravitational one, thus the star begins to collapse. However, this
results in the helium atoms being compressed and squashed together, the temperature increases, and
it can become so high that also helium starts burning, producing heavier elements. This new nuclear
reaction provides further energy to prevent the star’s gravitational collapse.

Stellar evolution is a process in which heavier and heavier elements are produced, and the energy
released by these nuclear reactions balances the pressure of gravity, preventing the collapse of the star
(see Fig. S.3). However, at a certain point, the star runs out of fuel: for the most massive stars, for
example, this happens when the element produced in the core is iron. Due to its nuclear structure,
iron requires additional energy in order to burn into other elements, thus the nuclear reactions that
supplied the star with internal energy stop, and the star begins to collapse onto itself.

Depending on the mass of its core, the star can have different fates. For more massive cores, the
final product is a black hole. Black holes are exceptionally compact objects, which deform the space-
time to such an extent that anything, even light, getting too close to them—that is, going beyond
what is called the black hole “event horizon”—cannot escape from the curvature generated and are
forced to fall into the black hole. Something different happens for less massive cores, roughly with a
mass less than three times the mass of the Sun: when the star’s core starts to collapse, the protons
and electrons of its atoms are squashed together and they form neutrons. The interactions between
neutrons provide the pressure that stops the collapse and eventually supports the final product, a
neutron star.
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Figure S.3: Representation of the balance in a star between the inward pressure of gravity and the outward
pressure produced by the energy released in nuclear reactions.

A compact binary is a system of compact objects, like two neutron stars, two black holes, or a
neutron star and a black hole, orbiting around each other. While orbiting, the system releases energy
through gravitational waves; however, this implies that the system loses energy, and consequently the
orbit shrinks, with the the two objects moving closer and closer. Smaller orbits, on the other hand,
mean higher orbital velocities, and higher velocities result in more energy radiated via gravitational
waves. Therefore, the system loses even more energy, the orbit gets even smaller and faster, more
energy is emitted via gravitational waves, and so on, until the two objects get so close that they finally
merge. During this whole coalescence process, a gravitational-wave signal is emitted, whose features
depend on the properties of the system.

What can we study?

By analyzing gravitational-wave signals we can extract information about the parameters of the binary
system that emitted them. For example, we can estimate which was the mass of the two objects, or
how far from Earth the source was. This is particularly useful to understand the population properties
of binary black hole or neutron star systems, in order to answer questions like “How many of them do
we expect in the Universe?”, or “What mass do they usually have?”. We also investigate how binary
systems are formed, since different formation channels will result in specific differences in some of the
parameters.

However, with gravitational waves we can also take a step further and investigate more general
and fundamental aspects of physics. They allow us to study how the extremely dense matter inside
neutron stars behaves, as we shall see in more detail later. Furthermore, gravitational waves offer
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us an extremely useful tool to probe the theory of general relativity. We can design methods to test
specific features in the gravitational-wave signals and check whether they are in agreement with the
predictions of general relativity.

What we observed so far

The first detection of a gravitational-wave signal happened on 14 September 2015: the two LIGO
interferometers in the United States measured a signal produced by the coalescence of two black holes.
After that, the number of detections kept increasing, and on 17 August 2017, for the first time, a
signal produced by a binary neutron star system was detected, GW170817.

Gravitational wave events are named after the time at which they are observed: the prefix “GW”,
for “gravitational wave”, followed by two digits for the year, two for the month, and two for the day.

Until now, we have observed 90 events in total, and currently the detectors are taking data again.
With the increasing number of detections, we also started observing events outside the expected
“vanilla” population, i.e., with less common or unexpected features, such as very heavy or very different
component masses. All the events detected so far were generated by the coalescence of a compact
binary system, but some of them already started to challenge our current understanding of the theory
underlying these processes, for example, about how binary black holes are formed. Until now, however,
no evidence of violations of general relativity has been found.

How do we analyze data?

As mentioned, the gravitational-wave signal emitted by a coalescing compact binary system depends
on the properties of the objects in the binary, such as their masses. Therefore, we can study these
objects by estimating the parameters that describe their features from the emitted gravitational waves.
In order to accomplish this, we need three main ingredients: the measured gravitational-wave data, a
model to describe them, and an idea of the range in which the parameters lie, called prior.

Gravitational-waveform models describe how we expect the gravitational-wave signal to look like
during the coalescence process, until the merger of the two objects and possibly also after that. An
example of a gravitational waveform provided by one of these models is shown in Fig. S.4. Usually,
these waveform models take as input the parameters of the source and supply as output the emitted
gravitational-wave signal (see Fig. S.5).

In order to estimate the source parameters for a given event, the basic idea is that we pick some
values for the parameters in the prior range, we use our waveform model to generate the gravitational-
wave signal that would be emitted by a source with the chosen parameters, and we compare it with
the measured data. We repeat the process for many values in the prior range, and finally we find
which parameters produce the gravitational waveform that best describes our data.

Waveform models represent an essential ingredient in the analysis of gravitational-wave data. Cre-
ating these models is however not an easy task: in principle, to get the exact form of the gravitational-
wave signal, one should solve the Einstein field equations. This cannot be done analytically, so one
must resort to some approximations. However, different approximations can be employed to build
waveform models, and thus different models exist, which can yield different results in the analysis.
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Figure S.4: Example of a gravitational-wave signal emitted by a binary black hole coalescence. The green area
corresponds to the inspiral phase, when the two black holes are still orbiting one around each other. The red
one, instead, corresponds to the phase when the two objects plunge into each other and merge. Finally, the
yellow area shows the signal emitted by the remnant, i.e., the object formed after the merger.

About future detectors

Currently, there exist four gravitational-wave interferometers, two in the United States, one in Italy,
and one in Japan, and a fifth one is undergoing construction in India. Another detector exists in
Germany, GEO600, which is however used mainly to develop and test new technologies. We saw that
measuring gravitational waves is not an easy task, given how small the signal is. There exist specific
methods to tackle the multiple sources of noise, and there is a constant effort to improve the sensitiv-
ity of the detectors, i.e., to make them capable of measuring smaller and smaller signals. Currently,
this is accomplished by implementing changes to the existing detectors. However, in order to obtain
even higher sensitivities, some technological improvements planned for the future will require the con-
struction of new interferometers, which are therefore called “future-generation”, or “third-generation”,
detectors. As of now, the plan for third-generation detectors includes the Einstein Telescope in Europe
and the Cosmic Explorer in the United States.

Third-generation detectors, with their increased sensitivity, are expected to measure many more
events, in a wider frequency range. This, of course, will provide us with an unprecedented opportu-
nity to study compact binary systems, and possibly also different gravitational-wave sources, but it
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Figure S.5: Example of gravitational-wave signals produced by the same waveform model for different values of
masses of the two compact objects in the binary. For simplicity, masses are usually measured in terms of the
mass of the Sun, M�.

will come with some disadvantages: we will measure so many signals that some of them will overlap,
therefore making it difficult to analyze data for a specific source; the signals will be very loud, and
therefore we will start seeing the effect of systematic biases induced by our analysis methods; finally,
due to both their number and loudness, the detections will require a huge amount of computational
resources to be analyzed.

Testing general relativity

As mentioned, with gravitational waves we can probe the theory of general relativity. Different tests
with this purpose exist, which investigate various aspects of gravitational waves, but until now none
of them highlighted any violation of general relativity. In this thesis, we proposed a new test that
looks at the higher-order modes in gravitational-wave signals. Let us think of a guitar: when one
plucks its strings, the sound produced has a fundamental mode, but also higher overtones. The same
thing happens with gravitational waves, where we have a fundamental mode, called quadrupolar, but
also higher harmonics, as in sound waves. Usually, the fundamental mode is the strongest one, and
for most of the signals emitted by binary systems the higher harmonics are not significant. However,
when the source system has specific features, for example, when the masses of the two objects in the
binary are very different, the higher-order modes provide a stronger contribution to the emitted signal
and we can measure them.

General relativity predicts exactly how this higher-order modes signal will be, therefore we devel-
oped a method to check whether the amplitude of the two strongest harmonics is consistent with the
predictions of general relativity. In particular, in our test we measure a possible deviation from the
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amplitude value predicted by general relativity, but we also compare a general-relativity waveform
model with a model that allows such deviations in the amplitude of the higher-order modes, finding
which one is favored by the data. We apply this test to two real events, GW190412 and GW190814,
the two observations from sources with the largest difference between component masses, and find no
evidence of general relativity violations.

Comparing waveform models

As we discussed, building waveform models requires some approximations. Employing models with
different approximations generates, in the results of many analyses, differences that will become no-
ticeable, and therefore a potential issue, with future-generation detectors. We presented a study in
which we analyze some of the events detected so far with four different models and we try to identify
possible preferences among them. This would serve as an indicator of which model employs the best
approximation for some kinds of events, or which one includes the best description of a given effect.

Overall, we do not find a model constantly favored (or disfavored) over the others. We recover a
strong preference for some models only for three events: although the preferred models are not the
same, we find that, in all cases, they are the ones that recover evidence of an effect called precession.
Imagine the two compact objects orbiting around each other as if they were moving on a table: the
table is what we call “orbital plane”. If the table is not still but wobbling, we have precession (see
Fig. S.6). This effect leaves a well-defined imprint in the emitted gravitational waves, and its presence
would give us important information about the way in which the binary system formed. In our work,
we do not find a correlation between the source parameters and the preference for some models, but,
in general, the fact that a model recovers precession results in a higher probability for that model.

Figure S.6: Schematic representation of the orbital plane precession effect.

Studying neutron stars

The matter inside neutron stars reaches extremely high densities, as if we were compressing the mass
of one million space shuttles into a tablespoon. Matter with such densities cannot be reproduced in
laboratory experiments, hence studying the properties of neutron stars is extremely important in order
to try and understand how this exceptionally dense matter behaves, i.e., its equation of state. The
equation of state of neutron stars’ matter determines their macroscopic properties, such as their mass
and radius. For a given value of mass, an equation of state will tell us exactly what the radius of the
neutron star is. However, we still don’t know which is the equation of state of this very dense matter.
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Various theoretical models exist, which lead to different predictions: if we take ten physicists, each
one with their own equation of state model, and ask them what is the radius of a neutron star with
a mass two times the mass of the Sun, we will get ten different answers. Gravitational waves offer us
a unique tool to study this equation of state: the properties of the neutron stars in a binary system
influence the gravitational-wave signal emitted during the coalescence, therefore, by analyzing this
signal, we can recover their parameters and place constraints on the equation of state. For example,
let us suppose that we measure the mass to be two solar masses and the radius between 10 and 11
kilometers; if we have an equation of state model predicting a radius of 15 kilometers for a star with
two solar masses, we would know that the model is wrong.

Unfortunately, while mass can be measured from gravitational-wave signals with great accuracy,
the same does not hold for radius, since it is not one of the quantities that directly determine the
emitted gravitational-wave signal. The other quantity that we can estimate from gravitational waves is
the tidal deformability parameter. While black holes are essentially a place in spacetime where gravity
is so strong that nothing can escape from the curvature they produce, in the case of neutron stars the
presence of matter plays an important role. To understand the concept of tidal deformability, let us
resort to the analogy with ocean tides. The Moon orbits around the Earth, and it generates its own
gravitational field. The Moon’s gravitational pull is different in different regions on Earth, depending
on their position with respect to the Moon. The difference between the Moon’s gravitational pull at
a specific location and its average gravitational pull on Earth generates some so-called tidal forces,
which stretch the Earth’s body in one direction and squash it in the other. This is what causes the
ocean high and low tides, because water is pulled from (or pushed towards) the Earth. In principle,
this phenomenon affects also the land, but since it is more difficult to move, we just do not notice. A
similar thing happens with neutron stars in a binary system: each one of them has its own gravitational
field and generates a tidal field on the other one, deforming it.

How much the matter in a neutron star is deformed by these tidal forces is described by the
tidal deformability parameter, and it depends on how the neutron star matter behaves, i.e., on its
equation of state, just like land behaves differently than seawater. The relation between the mass
and tidal deformability of a neutron star is uniquely determined by its equation of state. Therefore,
since we can determine the mass of the neutron stars in a binary from the emitted gravitational-wave
signal, if we can obtain also an estimate of their tidal deformability we can constrain the equation of
state. Unfortunately, the tidal deformability is not easy to determine, since its effect on the emitted
gravitational waves is much weaker than the one of mass.

Postmerger studies

We usually try to estimate the mass and tidal deformability of the neutron stars in a binary system
from the gravitational-wave signal emitted during the inspiral phase, i.e., when the two neutron stars
are still orbiting around each other. However, this is not the end of the story. We mentioned earlier
that at some point the two neutron stars will get so close that they plunge one into the other, in what
we call merger. After that, different scenarios are possible: the formation of a black hole, of a massive
and fast-rotating neutron star remnant, or, less commonly, of a stable neutron star. The fate of the
binary after the merger is determined by the binary total mass and, above all, by the equation of
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state.
If a massive neutron star remnant is formed, it survives at most a few seconds before collapsing

into a black hole, but during this time it emits a gravitational-wave signal that can provide us with
a wealth of information about the equation of state. Unfortunately, studying this postmerger signal
is not easy: first of all, it usually involves frequencies between 2000 and 4000 Hertz, and our current
detectors are not sensitive enough at such high frequencies. Moreover, a lot of different physical
processes are involved in this phase, and we do not have a complete theoretical model to describe it.

In this thesis, we developed a waveform model to describe the gravitational-wave signal emitted
during the inspiral, merger, and postmerger phases of a binary neutron star system coalescence. For
the inspiral and merger, we employ one of the state-of-the-art models commonly used to analyze
signals emitted by binary neutron star systems. Regarding the postmerger phase, instead, its signal
is predicted to show a very complex structure with multiple peaks, but, for simplicity, we model
only the peak describing the emission of the fundamental mode. We employed our model to analyze
simulated data for future detectors, and we found that it helps put tighter constraints on the tidal
deformability parameter with respect to a model without postmerger, and also to estimate the main
emission frequency of the postmerger gravitational-wave signal. However, when analyzing signals with
more complex structures, and therefore more similar to possible real data, our simple model struggles
to recover the postmerger signal, and therefore we need to improve it before we can actually use it to
analyze data from real events.

Current detectors are not sensitive enough to observe postmerger signals, but future ones are
expected to start detecting them. Therefore, we also compared various futures detectors, assessing
their performance in the study of the equation of state from postmerger signals.

Possible impact of Einstein Telescope designs

Einstein Telescope is expected to have a sensitivity ten times higher than current detectors. The
technological improvements needed to reach such conditions require the construction of a new site. The
Einstein Telescope collaboration has been investigating different design options for the new detector,
among which the shape it should have. Currently, the main candidates are a triangular shape, or two
L-shaped detectors, i.e., with two perpendicular arms, either with the same orientation or not. For
each shape, the detector arms can also have different lengths. The construction of a detector with
these different designs will require different technologies, different costs, and so on, but an important
question is whether it will impact the scientific outcome. The influence of the detector design on
several analyses has been investigated. In this thesis, we presented a detailed study of the impact
of the different designs on the estimation of binary neutron stars parameters, in particular of the
tidal deformability. We showed that the detector’s shape and alignment play a little role, but longer
detector arms will supply more precise measurements of the parameters, as expected since longer arms
yield a higher sensitivity.

Moreover, one of the main achievements of the Einstein Telescope will be to gain sensitivity at
low frequencies, below 20 Hertz, where current detectors are strongly limited. If we can observe the
coalescence of a binary system starting at low frequencies, it means we can observe it for more time,
and therefore obtain more information. In our study, we concretely showed, and quantified, how
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analyzing signals starting from lower frequencies will improve the estimate of the binary’s parameters.

We often hear that “gravitational waves opened a new window on the Universe”: indeed, they offer us
a new way to look (or better, to listen) at the Universe, providing us with information that cannot
be obtained through electromagnetic observations—let us just think about black holes. Through
gravitational waves we can investigate many different phenomena, but also more fundamental issues,
like probing the theory of general relativity or understanding the extremely dense matter inside neutron
stars. In this thesis, we worked on both these topics, focusing not only on what we can study with
current detectors but also on the impact of future ones.
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Wanneer we het over zwaartekracht hebben, is het eerste dat waarschijnlijk in gedachten zal komen,
een appel die op het hoofd van de arme Sir Isaac Newton valt. Volgens de mythe leidde dit gelukkige
ongeluk hem tot de formulering van zijn zwaartekrachttheorie. Newton’s wet van de zwaartekracht kon
goed de fenomenen verklaren die op aarde werden waargenomen, waar de zwaartekracht doorgaans vrij
zwak is, maar met de tijd leidden meer geavanceerde experimenten tot waarnemingen die zijn theorie
niet kon verklaren. Alle beperkingen in Newton’s theorie werden een eeuw later in 1915 overwonnen in
de algemene relativiteitstheorie, een relativistische theorie van zwaartekracht ontwikkeld door Albert
Einstein.

Algemene relativiteit bracht enkele belangrijke perspectiefveranderingen in de beschrijving van
zwaartekracht. Allereerst spreken we nu van ruimtetijd : elk evenement krijgt ruimtetijdcoördinaten
toegewezen, wat betekent dat het niet alleen wordt bepaald door zijn positie in de driedimensionale
ruimte waaraan we gewend zijn, maar ook door een tijdcoördinaat. In eenvoudiger bewoordingen, het
idee is dat wanneer je een feest organiseert, je niet alleen de locatie kiest, maar ook de tijd instelt.
Ten tweede, in de theorie van Newton is zwaartekracht een kracht die het ene lichaam naar het andere
trekt, afhankelijk van hun massa. In de algemene relativiteitstheorie daarentegen is zwaartekracht
gerelateerd aan de ruimtetijd-geometrie. Laten we ons de ruimtetijd voorstellen als een elastische
stof: als je er een massa op plaatst, wordt de stof vervormd en buigt om het massieve object heen
(zie Fig. Sn.1). Hoe compacter het object is, dat wil zeggen, hoe massiever voor een gegeven grootte,
hoe sterker de geproduceerde kromming zal zijn. Nu, als je een knikker op deze stof plaatst, zal het
bewegen in overeenstemming met de kromming die wordt veroorzaakt door het eerste, meer massieve
object, en uiteindelijk erop vallen. Dit is het basisidee van de algemene relativiteit: massa’s vervormen
de ruimtetijd-geometrie en produceren kromming, en deze geometrie bepaalt hoe massieve objecten
bewegen. Vanuit een wiskundig oogpunt wordt dit elegant beschreven door de vergelijkingen van
Einstein.

In deze context zijn zwaartekrachtsgolven rimpelingen in de ruimtetijdstof, geproduceerd door
massa’s wanneer ze versnellen. Stel je de situatie voor waarin we een compact object hebben, dat
zijn kromming in de ruimtetijd produceert, en dan plotseling weghalen: zonder het compacte object
zal de kromming verdwijnen, maar dit proces is niet onmiddellijk. Op dezelfde manier, wanneer een
massief object beweegt, bewegen de ruimtetijdvervormingen die het produceert met zich mee. De
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ruimtetijd die zich aanpast aan de veranderende kromming die volgt op een versnellende massa, is wat
deze golven in de ruimtetijd produceert, die zich met de snelheid van het licht voortplanten. Om het
te visualiseren, is een nuttige analogie om je voor te stellen de rimpelingen die worden geproduceerd
op het oppervlak van een vijver wanneer je een steen in het water gooit.

Figure Sn.1: Artistieke weergave van de kromming veroorzaakt in de ruimtetijd door objecten met verschillende
compactheid, waarbij de gele het meest compacte is.Credit:ESA–C.Carreau

Hoe detecteren we zwaartekrachtsgolven?

Wanneer zwaartekrachtgolven passeren, rekken en comprimeren ze periodiek de ruimtetijd, en dit
geeft ons de kans om ze te detecteren. Huidige zwaartekrachtgolfdetectoren, zoals LIGO, Virgo en
KAGRA, zijn laserinterferometers: in feite bestaan ze uit twee laserstralen die worden uitgezonden
naar een invoerpunt en die langs zogenaamde “armen” van de interferometer reizen, meestal in lood-
rechte richtingen, over enkele kilometers; aan het einde van elke arm bevindt zich een spiegel, waardoor
elke laserstraal wordt teruggekaatst, en de twee stralen komen weer samen bij de uitvoer. Licht heeft
een golfkarakter, dus elke laserstraal omvat een reeks minima en maxima (zie het linkerpaneel van
Fig. Sn.2). Het idee van interferometrische detectoren is dat het instrument in rust, dat wil zeggen
wanneer er geen zwaartekrachtgolven passeren, is ingesteld op een specifieke uitvoer, bijvoorbeeld de-
structieve interferentie. Wanneer een zwaartekrachtgolf arriveert, wordt de ene arm uitgerekt en de
andere samengedrukt, waardoor de lengte van het pad dat de twee lasers moeten afleggen verandert.
Daarom hebben we bij de recombinatie geen destructieve interferentie meer, maar de uitvoer zal in de
tijd veranderen op basis van het effect van de passerende zwaartekrachtgolf.

Tot zover gaat het goed, maar hier is het probleem: de verandering in de lengte van de armen die
wordt veroorzaakt door zwaartekrachtgolven is meestal zeer klein, van de orde van 0,000000000000000001
meter of kleiner. Ter vergelijking, de diameter van een menselijk haar is meestal 0,000001 meter. Laser-
interferometrie stelt ons in staat om zeer kleine veranderingen in de lengte van de armen te meten,
maar er zijn meerdere bronnen van ruis die deze meting moeilijk maken. Bovendien is de structuur
van de ruimtetijd zeer rigide en niet gemakkelijk te vervormen, daarom produceren alleen catastrofale
gebeurtenissen, die gepaard gaan met extreem hoge snelheden en grote massa’s, zwaartekrachtgolven
waarvan het effect we kunnen waarnemen. Onder dergelijke catastrofale gebeurtenissen richten we
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Figure Sn.2: Schematische weergave van destructieve interferentie tussen twee laserstralen. De twee lasers, laser
1 en laser 2, bestaan uit een reeks minima en maxima in hun amplitude (links). Wanneer ze weer samenkomen
aan de uitvoer van de interferometer, kan men de detector zodanig instellen dat, in rust, de minima van de ene
laser perfect overeenkomen met de maxima van de andere (midden), en daarom is de gecombineerde uitvoer,
weergegeven in rood, nul (rechts).

ons in deze scriptie op de samensmelting van dubbele compacte objecten, zoals neutronensterren of
zwarte gaten, die we hieronder kort beschrijven.

Bronnen van zwaartekrachtsgolven

Sterren, zoals onze Zon, zijn in wezen wolken van waterstof, die zo samengeperst zijn in de kern van
de ster dat het brandt en helium creëert door middel van nucleaire reacties. Dit waterstofverbrand-
ingsproces geeft een enorme hoeveelheid energie vrij, wat de sterren doet schijnen, maar ook een
essentiële energiebron biedt om de inwaartse druk van de zwaartekracht tegen te gaan, te wijten aan
de massa van de ster zelf, die ervoor zou zorgen dat de ster in zichzelf instort. Uiteindelijk zal alle
waterstof in de ster worden omgezet in helium: op dit punt stopt het nucleaire fusieproces, omdat
het zijn fundamentele ingrediënt mist, en is er geen “uitwendige” druk meer om de gravitationele druk
tegen te gaan, waardoor de ster begint in te storten. Dit resulteert echter in samengeperste heliu-
matomen die tegen elkaar botsen, de temperatuur stijgt en kan zo hoog worden dat ook helium begint
te branden en zwaardere elementen produceert. Deze nieuwe nucleaire reactie levert meer energie om
het gravitationele instorten van de ster te voorkomen.

Sterevolutie is een proces waarin steeds zwaardere elementen worden geproduceerd, en de energie
die vrijkomt bij deze nucleaire reacties balanceert de zwaartekrachtdruk, waardoor de instorting van
de ster wordt voorkomen (zie Fig. Sn.3). Op een bepaald punt raakt de ster echter door zijn brandstof
heen: voor de meest massieve sterren gebeurt dit wanneer het element dat in de kern wordt gepro-
duceerd ijzer is. Vanwege de nucleaire structuur heeft ijzer extra energie nodig om in andere elementen
te branden. Hierdoor stoppen de nucleaire reacties die de ster van interne energie voorzagen, en begint
de ster in zichzelf te storten.

Afhankelijk van de massa van de kern kan de ster verschillende uitkomsten hebben. Voor kernen
met meer massa is het eindproduct een zwart gat. Zwarte gaten zijn uitzonderlijk compacte objecten
die de ruimtetijd zodanig vervormen dat alles, zelfs licht, dat te dichtbij komt (dat wil zeggen, voor-
bij wat de ’waarnemingshorizon’ van het zwarte gat wordt genoemd) niet kan ontsnappen aan de
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Figure Sn.3: Weergave van het evenwicht tussen de inwaartse druk van de zwaartekracht en de uitwaartse druk
die wordt geproduceerd door de energie die vrijkomt bij nucleaire reacties.

gegenereerde kromming en gedwongen wordt in het zwarte gat te vallen. Iets anders gebeurt voor ker-
nen met iets minder massa, ongeveer met een massa minder dan drie keer die van de zon: wanneer de
kern van de ster begint in te storten, worden de protonen en elektronen van zijn atomen samengeperst
en vormen ze neutronen. De interacties tussen neutronen zorgen voor de druk die het ineenstorten
stopt en uiteindelijk het eindproduct ondersteunt, namelijk een neutronenster.

Een compact dubbelsysteem bestaat uit twee compacte objecten, zoals twee neutronensterren, twee
zwarte gaten, of een neutronenster en een zwart gat, die om elkaar heen draaien. Terwijl ze draaien,
geeft het systeem energie af via zwaartekrachtgolven; dit betekent echter dat het systeem energie ver-
liest, en als gevolg daarvan krimpt de baan, waarbij de twee objecten steeds dichter bij elkaar komen.
Kleinere banen betekenen daarentegen een hogere omloopsnelheid, en hogere snelheden resulteren in
meer energie die wordt uitgestraald via zwaartekrachtgolven. Daarom verliest het systeem nog meer
energie, krimpt de baan nog meer en wordt deze sneller, wordt er nog meer energie uitgestraald via
zwaartekrachtgolven, enzovoort, totdat de twee objecten zo dicht bij elkaar komen dat ze uiteindelijk
samensmelten. Gedurende dit hele samensmeltingsproces wordt een zwaartekrachtgolfsignaal uitge-
zonden, waarvan de kenmerken afhangen van de eigenschappen van het systeem.

Wat kunnen we bestuderen?

Door gravitatiegolfsignalen te analyseren, kunnen we informatie extraheren over de parameters van
het dubbelsysteem dat ze heeft uitgezonden. Bijvoorbeeld, we kunnen schatten wat de massa was van
de twee objecten, of hoe ver de bron van de aarde verwijderd was. Dit is bijzonder nuttig om de pop-
ulatiekenmerken van binaire systemen van zwarte gaten of neutronensterren te begrijpen, om vragen
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te beantwoorden zoals “Hoeveel van hen verwachten we in het universum?” of “Welke massa hebben
ze meestal?”. We onderzoeken ook hoe binaire systemen worden gevormd, aangezien verschillende
vormingskanalen specifieke verschillen tussen sommige van de parameters zullen opleveren.

Met gravitatiegolven kunnen we echter ook een stap verder gaan en meer algemene en funda-
mentele aspecten van de natuurkunde onderzoeken. Ze stellen ons in staat om te bestuderen hoe
het extreem dichte materiaal binnen neutronensterren zich gedraagt, zoals we later in meer detail
zullen zien. Bovendien bieden gravitatiegolven een uiterst nuttig hulpmiddel om de theorie van de
algemene relativiteit te onderzoeken. We kunnen methoden ontwerpen om specifieke kenmerken in
de gravitatiegolfsignalen te testen en te controleren of ze overeenkomen met de voorspellingen van de
algemene relativiteit.

Wat we tot nu toe hebben gedetecteerd

De eerste detectie van een gravitatiegolfsignaal vond plaats op 14 september 2015: de twee LIGO-
interferometers in de Verenigde Staten maten een signaal dat werd geproduceerd door de samensmelt-
ing van twee zwarte gaten. Daarna bleef het aantal detecties toenemen, en op 17 augustus 2017
werd voor het eerst een signaal gedetecteerd dat werd geproduceerd door een binaire neutronenster,
GW170817.

Gravitatiegolfgebeurtenissen worden genoemd naar het tijdstip waarop ze worden waargenomen:
het voorvoegsel “GW”, voor “gravitatiegolf”, gevolgd door twee cijfers voor het jaar, twee voor de
maand en twee voor de dag.

Tot nu toe hebben we in totaal 90 gebeurtenissen waargenomen, en momenteel nemen de detectoren
weer gegevens op. Met het toenemende aantal detecties begonnen we ook gebeurtenissen te observeren
buiten de verwachte “standaard” populatie, dat wil zeggen, met minder voorkomende of onverwachte
kenmerken, zoals zeer zware of zeer verschillende componentmassa’s. Alle tot nu toe gedetecteerde
gebeurtenissen werden gegenereerd door de samensmelting van een compact binair systeem, maar
sommige van hen begonnen al onze huidige begrip van de theorie achter deze processen uit te dagen,
bijvoorbeeld over hoe binaire zwarte gaten worden gevormd. Tot nu toe is er echter geen bewijs
gevonden van schendingen van de algemene relativiteit.

Hoe analyseren we gegevens?

Zoals we eerder hebben vermeld, hangt het gravitatiegolfsignaal dat wordt uitgezonden door een
samensmeltend binair systeem af van de eigenschappen van de compacte objecten in het systeem, zoals
hun massa’s. Daarom kunnen we deze objecten bestuderen door de parameters die hun kenmerken
beschrijven te schatten op basis van de uitgezonden gravitatiegolven. Om dit te bereiken, hebben we
drie belangrijke ingrediënten nodig: de gemeten gravitatiegolfgegevens, een model om ze te beschrijven,
en een idee van het bereik waarin de parameters liggen, de zogenaamde “prior”.

Gravitatiegolfvormmodellen beschrijven hoe we verwachten dat het gravitatiegolfsignaal eruit zal
zien tijdens het samensmeltingsproces, tot aan de merger van de twee objecten en mogelijk ook daarna.
Een voorbeeld van een gravitatiegolfvorm die wordt geleverd door een van deze modellen wordt getoond
in Fig. Sn.4). Gewoonlijk nemen deze golfvormmodellen de parameters van de bron als invoer en

169



Openbare samenvatting

Figure Sn.4: Voorbeeld van een gravitatiegolfsignaal uitgezonden door de samensmelting van een binair zwart
gat. Het groene gebied komt overeen met de inspiral, wanneer de twee zwarte gaten nog steeds om elkaar heen
draaien. Het rode gebied daarentegen komt overeen met de fase waarin de twee objecten in elkaar storten en
samensmelten. Tenslotte toont het gele gebied het signaal dat wordt uitgezonden door het overblijfsel, dat wil
zeggen het object dat wordt gevormd na de samensmelting.

leveren ze als uitvoer het uitgezonden gravitatiegolfsignaal (zie Fig. S.5).
Om de bronparameters voor een bepaalde gebeurtenis te schatten, is het basisidee dat we enkele

waarden voor de parameters in het vooraf bepaalde bereik kiezen, ons golfvormmodel gebruiken om
het gravitatiegolfsignaal te genereren dat zou worden uitgezonden door een bron met de gekozen
parameters, en we vergelijken het met de gemeten gravitatiegolfgegevens. We herhalen het proces
voor veel waarden in het vooraf bepaalde bereik, en uiteindelijk vinden we welke parameters het
gravitatiegolfsignaal produceren dat onze gegevens het beste beschrijft.

Golfvormmodellen vormen een essentieel ingrediënt in de analyse van gravitatiegolfgegevens. Het
creëren van deze modellen is echter geen gemakkelijke taak: in principe zou men om de exacte vorm
van het gravitatiegolfsignaal te krijgen, de Einstein-veldvergelijkingen moeten oplossen. Dit kan niet
analytisch worden gedaan, dus men moet zijn toevlucht nemen tot enkele benaderingen. Er kun-
nen echter verschillende benaderingen worden gebruikt om golfvormmodellen te construeren, en dus
bestaan er verschillende modellen die verschillende resultaten kunnen opleveren in de analyse.
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Figure Sn.5: Voorbeeld van gravitatiegolfsignalen geproduceerd door hetzelfde golfvormmodel voor verschillende
waarden van de massa’s van de twee compacte objecten in het binaire systeem. Voor eenvoud worden massa’s
meestal gemeten in termen van de massa van de Zon, M�.

Over toekomstige detectoren

Op dit moment bestaan er vier gravitatiegolfinterferometers, twee in de Verenigde Staten, één in Italië
en één in Japan, en er wordt momenteel een vijfde gebouwd in India. Er bestaat nog een detector in
Duitsland, GEO600, die echter hoofdzakelijk wordt gebruikt om nieuwe technologieën te ontwikkelen
en te testen. We hebben gezien dat het meten van gravitatiegolven geen eenvoudige taak is, gezien
hoe zwak het signaal is. Er bestaan specifieke methoden om de verschillende bronnen van ruis aan
te pakken, en er is voortdurende inspanning om de gevoeligheid van de detectoren te verbeteren, dat
wil zeggen, om ze in staat te stellen steeds zwakkere signalen te meten. Momenteel wordt dit bereikt
door wijzigingen aan te brengen in de bestaande detectoren. Echter, om nog hogere gevoeligheden
te bereiken, zullen sommige geplande technologische verbeteringen voor de toekomst de bouw van
nieuwe interferometers vereisen, die daarom “toekomstige generatie” of “derde generatie” detectoren
worden genoemd. Op dit moment omvat het plan voor detectoren van de derde generatie de Einstein
Telescoop in Europa en de Cosmic Explorer in de Verenigde Staten.

Detectoren van de derde generatie, met hun verhoogde gevoeligheid, worden verwacht veel meer
gebeurtenissen te zullen meten, over een breder frequentiebereik. Dit zal ons natuurlijk een ongekende
kans bieden om compacte binaire systemen te bestuderen, en mogelijk ook verschillende bronnen van
gravitatiegolven, maar het zal enkele nadelen met zich meebrengen: we zullen zoveel signalen meten
dat sommige ervan zullen overlappen, waardoor het moeilijk wordt om gegevens voor een specifieke
bron te analyseren; de signalen zullen erg luid zijn, en daarom zullen we het effect beginnen te zien van
systematische vertekeningen veroorzaakt door onze analysemethoden; zowel het aantal als het volume
van de detecties zal een enorme hoeveelheid rekenkracht vereisen om te worden geanalyseerd.
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Het testen van de algemene relativiteit

Zoals eerder vermeld, kunnen we met gravitatiegolven de theorie van de algemene relativiteit onder-
zoeken. Er bestaan verschillende tests met dit doel, die verschillende aspecten van gravitatiegolven
onderzoeken, maar tot nu toe heeft geen van hen enige schending van de algemene relativiteit aange-
toond. In dit proefschrift hebben we een nieuwe test voorgesteld die kijkt naar de hogere modi in
gravitatiegolfsignalen. Laten we denken aan een gitaar: wanneer men de snaren plukt, heeft het
geproduceerde geluid een grondtoon, maar ook boventonen. Hetzelfde gebeurt met gravitatiegolven,
waar we een grondtoon hebben, de zogenaamde “kwadrupool”, maar ook hogere harmonischen, zoals
bij geluidsgolven. Gewoonlijk is de grondtoon de sterkste, en voor de meeste signalen die worden
uitgezonden door binaire systemen, zijn de hogere harmonischen niet significant. Echter, wanneer
het bronssysteem specifieke kenmerken heeft, bijvoorbeeld wanneer de massa’s van de twee objecten
in het binaire systeem zeer verschillend zijn, leveren de hogere modi een sterkere bijdrage aan het
uitgezonden signaal en kunnen we ze meten.

De algemene relativiteit voorspelt precies hoe dit signaal van hogere modi zal zijn, daarom hebben
we een methode ontwikkeld om te controleren of de amplitude van de twee sterkste harmonischen
overeenkomt met de voorspellingen van de algemene relativiteit. In het bijzonder meten we in onze
test een mogelijke afwijking van de amplitudewaarde voorspeld door de algemene relativiteit, maar
we vergelijken ook een golfvormmodel van de algemene relativiteit met een model dat dergelijke
afwijkingen in de amplitude van de hogere modi toestaat, waarbij we vaststellen welk model wordt
ondersteund door de gegevens. We passen deze test toe op twee echte gebeurtenissen, GW190412 en
GW190814, de twee waarnemingen van bronnen met het grootste verschil tussen de componentmassa’s,
en vinden geen bewijs van schendingen van de algemene relativiteit.

Vergelijken van golfvormmodellen

Zoals we hebben besproken, vereist het bouwen van golfvormmodellen enkele benaderingen. Het
gebruik van modellen met verschillende benaderingen leidt tot verschillen in de resultaten van veel
analyses, die merkbaar zullen worden en daarom een potentieel probleem vormen met detectoren van
de toekomstige generatie. We hebben een studie gepresenteerd waarin we enkele van de tot nu toe
gedetecteerde gebeurtenissen analyseren met vier verschillende modellen, en we proberen mogelijke
voorkeuren tussen hen te identificeren. Dit zou dienen als een indicator van welk model de beste
benadering gebruikt voor bepaalde soorten gebeurtenissen, of welk model de beste beschrijving van
een bepaald effect bevat.

Over het algemeen vinden we geen model dat consequent wordt bevoordeeld (of benadeeld) ten
opzichte van de anderen. We stellen alleen een sterke voorkeur vast voor sommige modellen voor drie
gebeurtenissen: hoewel de voorkeursmodellen niet hetzelfde zijn, vinden we dat ze in alle gevallen de
modellen zijn die bewijs aanleveren voor een effect dat ‘precessie’ wordt genoemd “precessie” herstellen.
Stel je de twee compacte objecten voor die om elkaar heen draaien alsof ze op een tafel bewegen: de
tafel is wat we het “baanvlak” noemen. Als de tafel niet stil staat maar wiebelt, hebben we precessie
(zie Fig. Sn.6). Dit effect laat een goed gedefinieerde afdruk achter in de uitgezonden gravitatiegolven,
en de aanwezigheid ervan zou ons belangrijke informatie geven over de manier waarop het binaire
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systeem is gevormd. In ons werk vinden we geen correlatie tussen de bronparameters en de voorkeur
voor bepaalde modellen, maar over het algemeen leidt het feit dat een model precessie toelaat tot een
hogere waarschijnlijkheid voor dat model.

Figure Sn.6: Schematische voorstelling van het effect van precessie in het baanvlak.

Het bestuderen van neutronensterren

De materie binnen neutronensterren bereikt extreem hoge dichtheden, alsof we de massa van één
miljoen spaceshuttles in een eetlepel zouden samenpersen. Materie met zulke dichtheden kan niet
worden gereproduceerd in laboratoriumexperimenten, daarom is het bestuderen van de eigenschappen
van neutronensterren uiterst belangrijk om te proberen begrijpen hoe deze uitzonderlijk dichte ma-
terie zich gedraagt, dat wil zeggen, de toestandsvergelijking. De toestandsvergelijking van de materie
in neutronensterren bepaalt hun macroscopische eigenschappen, zoals hun massa en straal. Voor een
bepaalde massa vertelt een toestandsvergelijking ons precies wat de straal van de neutronenster is.
We weten echter nog steeds niet wat de toestandsvergelijking is van deze zeer dichte materie. Er
bestaan verschillende theoretische modellen, die leiden tot verschillende voorspellingen: als we tien
natuurkundigen nemen, elk met hun eigen model van de toestandsvergelijking, en hen vragen wat
de straal is van een neutronenster met een massa twee keer de zonsmassa, krijgen we tien verschil-
lende antwoorden. Gravitatiegolven bieden ons een uniek instrument om deze toestandsvergelijking te
bestuderen: de eigenschappen van de neutronensterren in een binaire systeem beïnvloeden het grav-
itatiegolfsignaal dat wordt uitgezonden tijdens de samensmelting, dus door dit signaal te analyseren,
kunnen we de parameters herstellen en beperkingen opleggen aan de toestandsvergelijking Stel bi-
jvoorbeeld dat we de massa met grote nauwkeurigheid meten als twee zonsmassa’s en de straal tussen
10 en 11 kilometer; als we een toestandsvergelijking hebben die een straal voorspelt van 15 kilometer
voor een ster met twee zonsmassa’s, zouden we weten dat het model fout is.

Helaas kan de straal niet met dezelfde nauwkeurigheid worden gemeten als de massa uit grav-
itatiegolfsignalen, omdat het niet een van de grootheden is die rechtstreeks het uitgezonden grav-
itatiegolfsignaal bepalen. De andere grootheid die we uit gravitatiegolven kunnen schatten, is de
vervormbaarheidsparameter. Terwijl zwarte gaten in wezen een plaats zijn in de ruimtetijd waar de
zwaartekracht zo sterk is dat niets kan ontsnappen aan de kromming die ze produceren, speelt in
het geval van neutronensterren de aanwezigheid van materie een belangrijke rol. Om het concept
van getijdevervormbaarheid te begrijpen, kunnen we terugvallen op de analogie met oceaantijden.
De Maan draait om de Aarde en genereert zijn eigen zwaartekrachtsveld. De zwaartekracht van de
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Maan is verschillend in verschillende regio’s op Aarde, afhankelijk van hun positie ten opzichte van de
Maan. Het verschil tussen de zwaartekracht van de Maan op een specifieke locatie en zijn gemiddelde
zwaartekracht op Aarde genereert zogenaamde getijdenvelden, die het lichaam van de Aarde in de ene
richting uitrekken en in de andere richting samendrukken. Dit veroorzaakt de hoge en lage getijden in
de oceaan, omdat het water van de aarde wordt getrokken (of er naartoe wordt geduwd). In principe
heeft dit fenomeen ook invloed op het land, maar omdat het moeilijker te verplaatsen is, merken we
het gewoonlijk niet. Iets soortgelijks gebeurt met neutronensterren in een binair systeem: elk van hen
heeft zijn eigen zwaartekrachtsveld en genereert een getijdenveld op de andere, waardoor het wordt
vervormd.

Hoeveel de materie in een neutronenster wordt vervormd door deze getijdenvelden wordt beschreven
door de vervormbaarheidsparameter en die hangt af van hoe de materie van de neutronenster zich
gedraagt, dat wil zeggen, van zijn toestandsvergelijking, net zoals land zich anders gedraagt dan
zeewater. De relatie tussen de massa en de getijdevervormbaarheid van een neutronenster wordt
uniek bepaald door zijn toestandsvergelijking Daarom kunnen we, aangezien we de massa van de
neutronensterren in een binaire systeem kunnen bepalen uit het uitgezonden gravitatiegolfsignaal,
als we ook een schatting kunnen krijgen van hun getijdevervormbaarheid, de toestandsvergelijking
inperken. Helaas is de getijdevervormbaarheid niet gemakkelijk te bepalen, omdat het effect ervan op
de uitgezonden gravitatiegolven veel zwakker is dan dat van de massa.

Studies na samensmelting

We proberen doorgaans de massa en getijdenvervormbaarheid van de neutronensterren in een binair
systeem te schatten aan de hand van het zwaartekrachtsgolfsignaal dat wordt uitgezonden tijdens de
inspiral fase, dat wil zeggen wanneer de twee neutronensterren nog steeds om elkaar heen cirkelen. Dit
is echter niet het einde van het verhaal. Eerder vermeldden we dat op een gegeven moment de twee
neutronensterren zo dicht bij elkaar komen dat ze samensmelten, wat we een merger noemen. Daarna
zijn verschillende scenario’s mogelijk: de vorming van een zwart gat, een massieve, snel roterende
overblijvende neutronenster, of, minder vaak, een stabiele neutronenster. Het lot van het binaire
systeem na de merger wordt bepaald door de totale massa van de binaire systeem en, vooral, door de
toestandsvergelijking

Als er een massieve neutronenster overblijft, overleeft deze hoogstens enkele seconden voordat
hij instort tot een zwart gat, maar in deze tijd zendt hij een zwaartekrachtsgolfsignaal uit dat ons
veel informatie kan verschaffen over de toestandsvergelijking Helaas is het bestuderen van dit post-
samensmeltingssignaal niet eenvoudig: ten eerste gaat het meestal om frequenties tussen 2000 en
4000 Hertz, en onze huidige detectoren zijn niet gevoelig genoeg voor dergelijke hoge frequenties.
Bovendien zijn er veel verschillende fysische processen betrokken bij deze fase, en hebben we geen
volledig theoretisch model om het te beschrijven.

In dit proefschrift hebben we een golfvormmodel ontwikkeld om het zwaartekrachtsgolfsignaal te
beschrijven dat wordt uitgezonden tijdens de inspiral, merger en postmerger fase van een samensmelt-
ing van binaire neutronensterren. Voor de inspiral en mergersfase gebruiken we een van de state-of-
the-art modellen die doorgaans worden gebruikt om signalen te analyseren die worden uitgezonden
door binaire neutronensterrensystemen. Het post-samensmeltingssignaal wordt voorspeld een zeer
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complexe structuur te vertonen met meerdere pieken, maar voor eenvoud hebben we slechts de piek
gemodelleerd die de emissie van de fundamentele modus beschrijft. We gebruiken ons model om
gesimuleerde gegevens te analyseren voor toekomstige detectoren, en we ontdekken dat het helpt
om strakkere beperkingen te leggen op de vervormbaarheidsparameter en ook om de belangrijkste
emissiefrequentie van het post-samensmeltingssignaal te schatten. Wanneer we echter signalen anal-
yseren met complexere structuren, en dus meer lijken op mogelijke echte gegevens, worstelt ons een-
voudige model om het post-samensmeltingssignaal te beschrijven, en daarom moeten we het verbeteren
voordat we het daadwerkelijk kunnen gebruiken om gegevens van echte gebeurtenissen te analyseren.

Huidige detectoren zijn niet gevoelig genoeg om post-samensmeltingssignalen waar te nemen, maar
toekomstige detectoren worden verwacht ze te gaan detecteren. Daarom hebben we ook toekomstige
detectoren vergeleken en hun prestaties beoordeeld in een studie van de toestandsvergelijking aan de
hand van post-samensmeltingssignalen.

Eventuele impact van ontwerpen van de Einstein Telescoop

De Einstein Telescoop wordt verwacht een gevoeligheid te hebben die tien keer hoger is dan die
van de huidige detectoren. De technologische verbeteringen die nodig zijn om deze omstandigheden
te bereiken, vereisen de bouw van een nieuwe locatie. De Einstein Telescoop samenwerking heeft
verschillende ontwerpmogelijkheden voor de nieuwe detector onderzocht, waaronder de vorm die het
zou moeten hebben. Momenteel zijn de belangrijkste kandidaten een driehoekige vorm of twee L-
vormige detectoren, dat wil zeggen, met loodrechte armen, met dezelfde oriëntatie of niet. Voor elk
ontwerp kunnen de armen van de detector ook verschillende lengtes hebben. De bouw van een detector
met deze verschillende ontwerpen zal verschillende technologieën, kosten, enzovoort vereisen, maar een
belangrijke vraag is of dit van invloed zal zijn op het wetenschappelijke resultaat. De invloed van het
ontwerp van de detector op verschillende analyses is onderzocht. In dit proefschrift hebben we een
gedetailleerde studie gepresenteerd van de impact van de verschillende ontwerpen op de schatting van
de parameters van binaire neutronensterren, met name van de getijdevervormbaarheid. We hebben
laten zien dat de vorm en uitlijning van de detector een kleine rol spelen, maar langere armen van
de detector zullen nauwkeurigere metingen van de parameters opleveren, zoals verwacht, aangezien
langere armen een hogere gevoeligheid opleveren.

Bovendien zal een van de belangrijkste prestaties van de Einstein Telescoop zijn om gevoeligheid te
krijgen bij lage frequenties, onder de 20 Hertz, waar huidige detectoren sterk beperkt zijn. Als we de
coalescentie van een binaire systemen kunnen observeren die bij lage frequenties beginnen, betekent
dit dat we ze langer kunnen observeren en dus meer informatie kunnen verkrijgen. In onze studie
laten we concreet zien en kwantificeren we hoe het analyseren van signalen die bij lagere frequenties
beginnen, de schatting van de parameters van het binaire systeem zal verbeteren.

We horen vaak dat “gravitatiegolven een nieuw venster op het heelal hebben geopend”: inderdaad,
ze bieden ons een nieuwe manier om naar het heelal te kijken (of beter gezegd, te luisteren), en
voorzien ons van informatie die niet kan worden verkregen via elektromagnetische observaties—laten
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we gewoon denken aan zwarte gaten. Via gravitatiegolven kunnen we veel verschillende verschijnselen
onderzoeken, maar ook meer fundamentele kwesties, zoals het testen van de algemene relativiteitsthe-
orie of het begrijpen van extreem dichte materie in neutronensterren. In dit proefschrift hebben we
aan beide onderwerpen gewerkt, met de focus niet alleen op wat we kunnen bestuderen met huidige
detectoren, maar ook op de impact van toekomstige detectoren.
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Quando parliamo di gravità, probabilmente la prima cosa che ci viene in mente è una mela che cade
sulla testa del povero Sir Isaac Newton. Questo fortunato incidente, secondo il mito, lo portò alla
formulazione della sua teoria della gravità. La legge della gravitazione di Newton poteva descrivere
bene i fenomeni osservati sulla Terra, dove di solito la gravità è abbastanza debole, ma, nel tempo,
esperimenti più sofisticati portarono a osservazioni che questa teoria non riusciva a spiegare. Tutte
le limitazioni nella teoria di Newton furono superate nella relatività generale, una teoria relativistica
della gravità sviluppata da Albert Einstein un secolo più tardi, nel 1915.

La relatività generale portò alcuni importanti cambiamenti di prospettiva nella descrizione della
gravità. Innanzitutto, ora parliamo di spaziotempo: ad ogni evento vengono assegnate delle coordinate
spaziotemporali, ovvero è determinato non solo dalla posizione nello spazio tridimensionale a cui siamo
abituati, ma anche da una coordinata temporale. In parole semplici, quando si organizza una festa, si
decide il luogo, ma bisogna anche fissare l’orario. In secondo luogo, nella teoria di Newton, la gravità
è una forza che attrae un corpo ad un altro, a seconda della loro massa. In relatività generale, invece,
la gravità è legata alla geometria dello spaziotempo. Immaginiamo lo spaziotempo come un tessuto
elastico: se ci mettiamo sopra una massa, il tessuto si deforma, piegandosi attorno all’oggetto massivo
(vedi Fig. Si.1). Più compatto è l’oggetto, cioè più è massivo per una data dimensione, più forte sarà
la curvatura prodotta. Ora, se appoggiamo una biglia su questo tessuto, essa si muoverà seguendo la
curvatura prodotta dal primo oggetto, più massivo, e alla fine cadrà su di esso. Questa è l’idea di base
della relatività generale: le masse deformano la geometria dello spaziotempo generando una curvatura,
e questa geometria è quello che determina come gli oggetti massivi si muovono. Da un punto di vista
matematico, ciò è elegantemente descritto dalle equazioni del campo di Einstein.

In questo contesto, le onde gravitazionali sono increspature nel tessuto dello spaziotempo, prodotte
dalle masse quando accelerano. Consideriamo la situazione in cui abbiamo un oggetto compatto, che
produce la sua curvatura nello spaziotempo, e poi all’improvviso lo rimuoviamo: senza l’oggetto
compatto, la curvatura sparirà, però questo processo non è istantaneo. Analogamente, quando un
oggetto massivo si muove, le deformazioni dello spaziotempo che produce si muovono con esso. Lo
spaziotempo che si adatta alla curvatura che cambia, come conseguenza di una massa che accelera,
è ciò che produce queste onde sullo spaziotempo, che si propagano con la velocità della luce. Per
visualizzarlo, un’analogia utile è immaginare le increspature sulla superficie di uno stagno prodotte

177



Sintesi per il pubblico

quando si getta un sasso nell’acqua.

Figure Si.1: Rappresentazione artistica della curvatura indotta nello spaziotempo da oggetti con compattezze
diverse, dove quello giallo è il più compatto. Credit:ESA–C.Carreau

Come si rilevano le onde gravitazionali?

Le onde gravitazionali, quando passano, allungano e comprimono lo spaziotempo periodicamente, e
questo ci fornisce l’opportunità di rilevarle. Gli attuali rivelatori di onde gravitazionali, come LIGO,
Virgo e KAGRA, sono interferometri laser: sostanzialmente, sono composti da due raggi laser, emessi
a un punto di entrata, i quali viaggiano lungo quelli che vengono chiamati “bracci” dell’interferometro,
di solito in direzioni perpendicolari, per qualche kilometro; alla fine di ciascun braccio è posizionato
uno specchio, quindi ogni raggio laser viene riflesso indietro e i due raggi si ricombinano all’uscita. La
luce ha una natura ondulatoria, quindi ogni raggio laser include una serie di minimi e massimi (vedi
pannello a sinistra della Fig. Si.2). Quando i due raggi si ricombinano, si creano effetti d’interferenza:
se, per esempio, un raggio è a un massimo e l’altro a un minimo, i due raggi si “cancellano” e l’ampiezza
dell’onda risultante è zero; questo effetto viene chiamato interferenza distruttiva (vedi Fig. Si.2). L’idea
degli interferometri laser è che lo strumento a riposo, cioè quando non passano onde gravitazion-
ali, è impostato in modo tale da avere un’uscita specifica, per esempio un’interferenza distruttiva.
Quando arriva un’onda gravitazionale, un braccio viene allungato e l’altro compresso, cambiando di
conseguenza la lunghezza del percorso che i due raggi devono compiere. Pertanto, quando si ricombi-
nano, non si avrà più un’interferenza distruttiva, ma l’uscita cambierà nel tempo a seconda dell’effetto
del passaggio dell’onda gravitazionale.

Fin qui tutto bene, ma c’è un problema: il cambiamento nella lunghezza dei bracci indotta dalle
onde gravitazionali è estremamente piccolo, dell’ordine di 0.000000000000000001 metri o meno. Per
fare un confronto, il diametro di un capello umano è tipicamente 0.000001 metri. L’interferometria
laser ci permette di misurare cambiamenti nella lunghezza dei bracci molto piccoli, ma ci sono varie
fonti di rumore che rendono difficile questa misura. Inoltre, il tessuto dello spaziotempo è molto rigido
e non si deforma facilmente, quindi soltanto eventi catastrofici, che coinvolgono velocità estremamente
elevate e masse molto grandi, generano onde gravitazionali di cui possiamo rilevare l’effetto. Tra
questi eventi catastrofici, in questa tesi ci concentriamo sulla coalescenza di sistemi binari di oggetti
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Figure Si.2: Rappresentazione schematica dell’interferenza distruttiva tra due raggi laser. I due laser, laser 1 e
laser 2, sono composti da una serie di minimi e massimi nella loro ampiezza (sinistra). Quando si ricombinano
all’uscita dell’interferometro, si può impostare il rivelatore in modo tale che, a riposo, i minimi di un raggio
laser corrispondano perfettamente con i massimi dell’altro (centro), e di conseguenza l’onda risultante all’uscita,
mostrata in rosso, sia zero (destra).

compatti, come stelle di neutroni o buchi neri, descritti brevemente di seguito.

Sorgenti di onde gravitazionali

Le stelle, come il nostro Sole, sono essenzialmente nubi d’idrogeno, talmente compresso nel nucleo
della stella da bruciare, creando elio tramite delle reazioni nucleari. Questo processo di combustione
dell’idrogeno rilascia un’enorme quantità di energia, che è ciò che fa brillare la stella, ma fornisce
anche una fonte di energia essenziale per contrastare la pressione della gravità, dovuta alla massa
della stella stessa, che la farebbe collassare su sé stessa. Alla fine, tutto l’idrogeno nella stella sarà
stato trasformato in elio: a questo punto il processo di fusione nucleare si ferma, dato che manca
del suo ingrediente fondamentale, e non c’è più alcuna pressione verso l’esterno che contrasti quella
gravitazionale, pertanto la stella inizia a collassare. Tuttavia, questo comporta la compressione e
agglomerazione degli atomi di elio, con un conseguente aumento della temperatura che può diventare
talmente elevata che anche l’elio inizia a bruciare, producendo elementi più pesanti. Questa nuova
reazione nucleare fornisce ulteriore energia per prevenire il collasso gravitazionale della stella.

L’evoluzione stellare è un processo in cui vengono prodotti elementi sempre più pesanti e l’energia
rilasciata da queste reazioni nucleari bilancia la pressione della gravità, prevenendo il collasso della
stella (vedi Fig. Si.3). Tuttavia, a un certo punto la stella esaurisce il combustibile: per le stelle più
massive, questo succede quando l’elemento prodotto nel nucleo è il ferro. A causa della sua struttura
nucleare, il ferro necessita di energia aggiuntiva per bruciare in altri elementi, perciò le reazioni nucleari
che avevano fornito energia interna alla stella si fermano, e la stella inizia a collassare su sé stessa.

A seconda della massa del suo nucleo, la stella può avere destini diversi. Per i nuclei più massivi, il
prodotto finale è un buco nero. I buchi neri sono oggetti eccezionalmente compatti, che deformano lo
spazio tempo talmente tanto che qualsiasi cosa, persino la luce, che arriva troppo vicino a loro—cioè,
che supera quello che viene chiamato “orizzonte degli eventi” del buco nero— non può sfuggire alla cur-
vatura generata dal buco nero ed è costretta a cadervi dentro. Qualcosa di diverso succede per nuclei
meno massivi, con una massa minore di approssimativamente tre volte la massa del Sole: quando il
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Figure Si.3: Rappresentazione dell’equilibrio in una stella tra la pressione verso l’interno della gravità e la
pressione verso l’esterno prodotta dall’energia rilasciata nelle reazioni nucleari.

nucleo della stella inizia a collassare, i protoni e gli elettroni dei suoi atomi vengono schiacciati insieme
e formano neutroni. Le interazioni tra neutroni forniscono la pressione che ferma il collasso ed infine
supportano il prodotto finale, una stella di neutroni.

Una binaria compatta è un sistema di oggetti compatti, come due stelle di neutroni, due buchi neri,
o una stella di neutroni e un buco nero, che orbitano uno attorno all’altro. Mentre orbitano, il sistema
emette energia attraverso onde gravitazionali; tuttavia, questo implica che il sistema perde energia,
e di conseguenza l’orbita si restringe, con i due oggetti che si muovono sempre più vicini. Orbite
più piccole, d’altra parte, significano velocità orbitali più elevate, e velocità più elevate risultano in
più energia emessa sotto forma di onde gravitazionali. Pertanto, il sistema perde ancora più energia,
l’orbita diventa ancora più piccola e veloce, più energia viene emessa attraverso onde gravitazionali
e cosi via, finché i due oggetti si avvicinano talmente tanto che alla fine si fondono. Durante tutto
questo processo di coalescenza viene emesso un segnale di onde gravitazionali le cui caratteristiche
dipendono dalle proprietà del sistema.

Cosa possiamo studiare?

Analizzando segnali di onde gravitazionali possiamo estrarre informazioni riguardo ai parametri del
sistema binario che li ha emessi. Per esempio, possiamo stimare quale era la massa dei due oggetti, o
a che distanza dalla Terra si trovava la sorgente. Ciò è particolarmente utile per capire le proprietà
delle popolazioni di sistemi binari di buchi neri o stelle di neutroni, per rispondere a domande come
“Quanti di questi sistemi ci aspettiamo che ci siano nell’Universo?”, oppure “Che massa hanno tipica-
mente?”. Possiamo anche studiare come i sistemi binari vengono formati, dato che diversi meccanismi
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di formazione risultano in specifiche differenze in alcuni dei parametri.
Tuttavia, con le onde gravitazionali possiamo anche compiere un passo ulteriore ed indagare aspetti

più generali e fondamentali della fisica. Ci permettono di studiare come si comporta la materia
estremamente densa all’interno delle stelle di neutroni, come vedremo in maggior dettaglio di seguito.
Inoltre, la onde gravitazionali ci offrono uno strumento estremamente utile per testare la teoria della
relatività generale. Possiamo ideare vari metodi per testare specifiche caratteristiche nei segnali di
onde gravitazionali e verificare se sono in accordo con le previsioni della relatività generale.

Cosa abbiamo osservato finora

La prima rivelazione di un segnale di onde gravitazionali avvenne il 14 settembre 2015: i due inter-
ferometri LIGO negli Stati Uniti misurarono un segnale prodotto dalla coalescenza di due buchi neri.
In seguito, il numero di rivelazioni continuò ad aumentare e il 17 agosto 2017 venne rilevato, per la
prima volta, un segnale prodotto da un sistema binario di stelle di neutroni, GW170817.

Gli eventi di onde gravitazionali vengono chiamati in base al momento in cui sono stati osservati:
“GW”, per “onda gravitazionale” (in inglese “gravitational wave”), seguito da due cifre per l’anno, due
per il mese e due per il giorno.

Fino ad oggi, abbiamo osservato 90 eventi in totale e al momento i rivelatori stanno nuovamente
acquisendo dati. Con l’aumentare del numero di rivelazioni, abbiamo anche iniziato a osservare eventi
al di fuori della cosiddetta popolazione “vanilla”, cioè eventi con caratteristiche meno comuni o inaspet-
tate, come masse dei componenti del sistema binario molto pesanti o molto diverse tra loro. Tutti gli
eventi osservati finora sono stati generati dalla coalescenza di un sistema binario compatto, ma alcuni
di loro hanno già iniziato a mettere alla prova la nostra attuale comprensione della teoria alla base
di questi processi, per esempio riguardo a come vengono formate le binarie di buchi neri. Tuttavia,
finora non è stata trovata alcuna evidenza di violazioni della relatività generale.

Come analizziamo i dati?

Come menzionato, il segnale di onde gravitazionali emesso da un sistema binario in coalescenza dipende
dalle proprietà degli oggetti compatti nella binaria, come le loro masse. Pertanto, possiamo studiare
questi oggetti stimando i parametri che descrivono le loro caratteristiche dalle onde gravitazionali
emesse. Per realizzare ciò, ci servono tre ingredienti principali: i dati di onde gravitazionali misurati,
un modello per descriverli e un’idea dell’intervallo in cui si trovano i parametri, chiamato prior.

I modelli di forme d’onda gravitazionali descrivono come ci aspettiamo che sia il segnale emesso
durante il processo di coalescenza, fino alla fusione e possibilmente anche dopo. Un esempio di forma
d’onda gravitazionale fornito da uno di questi modelli è mostrato in Fig. Si.4. Solitamente, i mod-
elli di forma d’onda prendono in entrata i parametri della sorgente e forniscono il segnale di onda
gravitazionale emesso (vedi Fig. Si.5).

Per stimare le proprietà della sorgente per un dato evento, l’idea di base è che scegliamo dei valori
per i parametri nell’intervallo del prior, usiamo il nostro modello di forma d’onda per generare il segnale
di onda gravitazionale che sarebbe emesso da una sorgente con quei parametri e lo confrontiamo con i
dati misurati. Ripetiamo il processo per molteplici valori nell’intervallo del prior e alla fine troviamo
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Figure Si.4: Esempio di segnale di onda gravitazionale nel tempo (chiamato strain dalla deformazione che
produce), emesso dalla coalescenza di una binaria di buchi neri. L’area verde corrisponde alla fase di inspiral,
quando i due buchi neri stanno ancora orbitando l’uno attorno all’altro, Quella rossa, invece, corrisponde alla
fase in cui i due oggetti si tuffano l’uno nell’altro e si fondono. Infine, l’area gialla mostra il segnale emesso dal
remnant, cioè l’oggetto formato dopo la fusione.

quali parametri producono la forma d’onda gravitazionale che descrive meglio i nostri dati.

I modelli di forma d’onda rappresentano un ingrediente fondamentale nell’analisi dati delle onde
gravitazionali. Creare questi modelli, tuttavia, non è un compito facile: in teoria, per ottenere l’esatta
forma del segnale di onda gravitazionale, si dovrebbero risolvere le equazioni del campo di Einstein.
Dato che non si possono risolvere analiticamente, però, bisogna ricorrere a delle approssimazioni.
Tuttavia, diverse approssimazioni possono essere impiegate per costruire modelli di forma d’onda, e
quindi esistono diversi modelli che possono portare a diversi risultati nelle analisi.

Rivelatori futuri

Attualmente, esistono quattro interferometri per le onde gravitazionali, due negli Stati Uniti, uno in
Italia e uno in Giappone, e un quinto è in costruzione in India. Esiste un altro rilevatore in Germania,
GEO600, che però viene principalmente utilizzato per sviluppare e testare nuove tecnologie. Abbiamo
visto che misurare le onde gravitazionali non è un compito semplice, visto quanto è piccolo il seg-
nale. Esistono metodi specifici per affrontare le varie sorgenti di rumore e c’è uno sforzo costante per
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Figure Si.5: Esempio di segnali di onde gravitazionali prodotti dallo stesso modello di forma d’onda per diversi
valori delle masse dei due oggetti compatti nella binaria. Per semplicità, le masse sono tipicamente misurate in
termini della massa del Sole, M�.

migliorare la sensibilità dei rivelatori, cioè per renderli capaci di misurare segnali sempre più piccoli.
Al momento, ciò viene realizzato implementando cambiamenti sui rivelatori esistenti. Tuttavia, per
ottenere sensibilità ancora maggiori, alcuni miglioramenti tecnologici pianificati per il futuro richieder-
anno la costruzione di nuovi interferometri, che di conseguenza vengono chiamati rivelatori di “futura
generazione” o di “terza generazione”. Ad ora, il piano per rivelatori di terza generazione include
Einstein Telescope in Europa e Cosmic Explorer negli Stati Uniti.

Si prevede che i rivelatori di terza generazione, con la loro aumentata sensibilità, misureranno molti
più eventi, in un intervallo di frequenze più esteso. Questo, naturalmente, ci offrirà un’opportunità
senza precedenti di studiare i sistemi binari compatti, e verosimilmente anche altre sorgenti di onde
gravitazionali, ma avrà anche degli svantaggi: misureremo così tanti segnali che alcuni di essi si
sovrapporranno, rendendo quindi difficile analizzare i dati per una specifica sorgente; i segnali saranno
molto forti, di conseguenza inizieremo a vedere l’effetto di errori sistematici indotti dai nostri metodi
di analisi; infine, visto sia il loro numero che la forza, le rivelazioni richiederanno un’enorme quantità
di risorse computazionali per essere analizzate.

Testare la relatività generale

Come menzionato, con le onde gravitazionali possiamo verificare la teoria della relatività generale. Es-
istono diversi test con questa finalità, che esaminano vari aspetti delle onde gravitazionali, ma finora
nessuno di essi ha evidenziato violazioni della relatività generale. In questa tesi, abbiamo proposto un
nuovo test che esamina le armoniche di ordine superiore nei segnali di onde gravitazionali. Pensiamo
a una chitarra: quando pizzichiamo le sue corde, il suono prodotto ha un’armonica fondamentale, ma
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anche toni superiori. La stessa cosa accade con le onde gravitazionali, dove abbiamo una frequenza
fondamentale, chiamata quadrupolare, ma anche armoniche superiori, come nelle onde sonore. Solita-
mente, la radiazione fondamentale è la più forte, e per la maggior parte dei segnali emessi da sistemi
binari le armoniche superiori non sono significative. Tuttavia, quando il sistema sorgente ha caratter-
istiche specifiche, per esempio quando le masse dei due oggetti nella binaria sono molto diverse tra
loro, le armoniche superiori forniscono un contributo maggiore al segnale emesso e possiamo misurarle.

La relatività generale predice esattamente come sarà il segnale emesso da queste armoniche supe-
riori, perciò abbiamo sviluppato un metodo per verificare se l’ampiezza delle due armoniche più forti è
coerente con le predizioni della relatività generale. In particolare, nel nostro test misuriamo possibili
deviazioni dal valore di ampiezza previsto dalla relatività generale, ma compariamo anche un modello
di forma d’onda che segue la relatività generale con un modello che invece permette queste deviazioni
nell’ampiezza della armoniche superiori, trovando qual è quello preferito dai dati. Abbiamo applicato
questo test a due eventi reali, GW190412 e GW190814, le due osservazioni da sorgenti con la maggiore
differenza tra le masse dei componenti, e non abbiamo trovato evidenza di violazioni della relatività
generale.

Confrontare modelli di forme d’onda

Abbiamo visto che costruire modelli di forme d’onda richiede delle approssimazioni. Utilizzare modelli
con diverse approssimazioni genera, nei risultati di varie analisi, differenze che diventeranno apprezz-
abili, e quindi un potenziale problema, con i rivelatori di futura generazione. Abbiamo presentato uno
studio in cui analizziamo alcuni degli eventi rivelati finora con quattro diversi modelli, e proviamo a
identificare possibili preferenze tra di essi. Questo servirebbe come indicatore di quale modello imp-
iega l’approssimazione migliore per certi tipi di eventi, o quale include la migliore descrizione di un
determinato effetto.

Nel complesso, non troviamo un modello costantemente favorito (o sfavorito) rispetto agli altri.
Abbiamo trovato una forte preferenza per alcuni modelli solamente per tre eventi: nonostante i modelli
preferiti non siano gli stessi, abbiamo constatato che, in tutti i casi, sono quelli che trovano evidenza
di un effetto chiamato precessione. Immaginiamo i due oggetti compatti che orbitano l’uno attorno
all’altro come se si muovessero su un tavolo: il tavolo è quello che chiamiamo “piano orbitale”. Preces-
sione significa che il tavolo non è fermo ma oscilla (vedi Fig. Si.6). Questo effetto lascia un’impronta
ben definita nelle onde gravitazionali emesse e la sua presenza ci fornirebbe importanti informazioni
riguardo al modo in cui il sistema binario si è formato. Nel nostro lavoro, non abbiamo trovato una
correlazione tra i parametri della sorgente e la preferenza per alcuni modelli, però, in generale, il fatto
che un modello trovi precessione risulta in una probabilità maggiore per quel modello.

Studiare le stelle di neutroni

La materia all’interno delle stelle di neutroni raggiunge densità estremamente elevate, come se stessimo
comprimendo la massa di un milione di space shuttles in un cucchiaio. La materia con queste alte
densità non può essere riprodotta negli esperimenti di laboratorio, perciò studiare le proprietà delle
stelle di neutroni è estremamente importante per provare a capire come questa materia eccezionalmente
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Figure Si.6: Rappresentazione schematica dell’effetto di precessione del piano orbitale.

densa si comporta, cioè la sua equazione di stato. L’equazione di stato della materia delle stelle di
neutroni determina le loro proprietà macroscopiche, come la massa e il raggio. Per un determinato
valore di massa, un’equazione di stato ci dirà esattamente qual è il raggio della stella di neutroni.
Tuttavia, ancora non sappiamo quale sia l’equazione di stato di questa materia così densa. Esistono
vari modelli teorici, che portano a previsioni differenti: se prendiamo dieci fisici, ognuno con il proprio
modello di equazione di stato, e chiediamo loro quale sia il raggio di una stella di neutroni con una
massa due volte la massa del Sole, otterremo dieci risposte diverse. Le onde gravitazionali ci offrono
uno strumento unico per studiare quest’equazione di stato: le proprietà delle stelle di neutroni in un
sistema binario influenzano il segnale di onda gravitazionale emesso durante la coalescenza, pertanto,
analizzando questo segnale, possiamo recuperare i loro parametri e porre vincoli sull’equazione di
stato. Ad esempio, supponiamo di misurare che la massa sia circa due volte la massa del Sole e il
raggio tra 10 e 11 kilometri; se abbiamo un’equazione si stato che prevede un raggio di 15 kilometri
per una stella di due masse solari, sapremmo che quel modello è sbagliato.

Sfortunatamente, mentre la massa può essere misurata dai segnali di onde gravitazionali con grande
precisione, lo stesso non vale per il raggio, dato che non è una delle quantità che determinano diretta-
mente il segnale emesso. L’altra quantità che possiamo stimare dalle onde gravitazionali è il parametro
di deformazione mareale (tidal deformability in inglese). Mentre i buchi neri sono sostanzialmente un
luogo nello spaziotempo in cui la gravità è così forte che nulla può sfuggire alla curvatura che pro-
ducono, nel caso delle stelle di neutroni la presenza di materia gioca un ruolo importante. Per capire
il concetto di deformazione mareale, ricorriamo all’analogia con le maree degli oceani. La Luna orbita
attorno alla Terra e genera un proprio campo gravitazionale. L’attrazione gravitazionale della Luna è
diversa in diverse regioni sulla Terra, a seconda della loro posizione rispetto alla Luna. La differenza
tra l’attrazione gravitazionale della Luna in un luogo specifico e la sua attrazione gravitazionale media
sulla Terra genera delle cosiddette forze mareali, che allungano il corpo terrestre in una direzione e lo
comprimono nell’altra. Questo è ciò che causa le alte e basse maree degli oceani, perché l’acqua viene
allontanata dalla (o spinta verso la) Terra. In teoria, questo fenomeno riguarda anche la terraferma,
ma, dato che è più difficile da muovere, semplicemente non ce ne accorgiamo. Una cosa simile succede
con le stelle di neutroni in un sistema binario: ognuna di loro ha il proprio campo gravitazionale e
genera un campo di marea sull’altra, deformandola.

Quanto la materia in una stella di neutroni viene deformata da queste forze mareali è descritto dal
parametro di deformazione mareale, e dipende da come si comporta la materia della stella di neutroni,
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cioè dalla sua equazione di stato, proprio come la terraferma si comporta diversamente dall’acqua del
mare. La relazione tra la massa e il parametro di deformazione mareale di una stella di neutroni è
determinata unicamente dalla sua equazione di stato. Di conseguenza, dato che possiamo determinare
la massa delle stelle di neutroni in una binaria dal segnale di onda gravitazionale emesso, se riusciamo
a ottenere anche una stima della loro deformazione mareale possiamo porre dei vincoli sull’equazione
di stato. Purtroppo, la deformazione mareale non è facile da determinare, poiché il suo effetto sulle
onde gravitazionali emesse è molto più debole di quello della massa.

Studi sul postmerger

Solitamente cerchiamo di stimare la massa e la deformazione mareale delle stelle di neutroni in un
sistema binario dal segnale di onde gravitazionali emesso durante la fase di inspiral, cioè quando le
due stelle di neutroni stanno ancora orbitando l’una attorno all’altra. Tuttavia, la storia non finisce
qui. Abbiamo menzionato prima che a un certo punto le due stelle di neutroni arrivano così vicine che
si fondono, in quello che chiamiamo merger (o fusione). Dopo di ciò, diversi scenari sono possibili:
la formazione di un buco nero, di una stella di neutroni massiva e ad alta rotazione, oppure, meno
comunemente, di una stella di neutroni stabile. Il destino di una binaria dopo il merger è determinato
dalla massa totale della binaria e, soprattutto, dall’equazione di stato.

Se dopo la fusione viene prodotta una stella di neutroni massiva, questa sopravvive al massimo
pochi secondi prima di collassare in un buco nero, ma durante questo tempo emette un segnale di onde
gravitazionali che ci può fornire moltissime informazioni sull’equazione di stato. Sfortunatamente,
studiare questo segnale di postmerger non è facile: innanzitutto, solitamente avviene a frequenze tra
2000 e 4000 Hertz, e i nostri attuali rivelatori non sono abbastanza sensibili a queste alte frequenze.
Inoltre, molti processi fisici diversi sono coinvolti in questa fase e non abbiamo un modello teorico
completo per descriverla.

In questa tesi, abbiamo sviluppato un modello di forma d’onda per descrivere il segnale di onda
gravitazionale emesso durante le fasi di inspiral, merger e postmerger della coalescenza di un sistema
binario di stelle di neutroni. Per l’inspiral e il merger, utilizziamo uno dei modelli all’avanguardia
comunemente usato per analizzare segnali emessi da binarie di stelle di neutroni. Riguardo alla fase di
postmerger, invece, si prevede che il suo segnale mostri una struttura molto complessa con molteplici
picchi, ma, per semplicità, modelliamo solo il picco che descrive l’emissione del modo fondamentale.
Abbiamo utilizzato il nostro modello per analizzare dati simulati per i rivelatori futuri e abbiamo
constatato che aiuta a porre limiti più stringenti sul parametro di deformazione mareale rispetto ad
un modello senza postmerger e anche a stimare la frequenza di emissione principale del postmerger.
Ciononostante, quando si analizzano segnali con strutture più complesse, e quindi più simili a possibili
dati reali, il nostro semplice modello fatica a recuperare il segnale di postmerger e perciò dobbiamo
migliorarlo prima di poterlo effettivamente usare nell’analisi di dati da eventi reali.

I rivelatori attuali non sono abbastanza sensibili per osservare segnali di postmerger, però ci aspet-
tiamo che quelli futuri inizino a rivelarli. Pertanto, abbiamo anche confrontato vari rivelatori futuri,
per determinare la loro prestazione nello studio dell’equazione di stato da segnali di postmerger.
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Possibile impatto del design di Einstein Telescope

Si prevede che Einstein Telescope avrà una sensibilità dieci volte superiore a quella dei rivelatori attuali.
I miglioramenti tecnologici necessari per raggiungere queste condizioni richiedono la costruzione di un
nuovo sito. La collaborazione di Einstein Telescope sta studiando diverse opzioni per il design del
nuovo rivelatore, tra cui la forma che dovrebbe avere. Al momento, i principali candidati sono una
forma triangolare oppure due detector a forma di L, cioè con due bracci perpendicolari, con lo stesso
orientamento oppure no. Per ogni forma, i bracci del rivelatore possono anche avere lunghezze diverse.
La costruzione di un rivelatore con questi diversi design richiederà tecnologie diverse, costi diversi e
così via, ma una domanda importante è se avrà un impatto sul risultato scientifico. L’influenza del
design del rivelatore è stata studiata per diverse analisi. In questa tesi, abbiamo presentato uno
studio dettagliato dell’impatto dei diversi design sulla stima dei parametri di una binaria di stelle di
neutroni, in particolare della deformazione mareale. Abbiamo mostrato che la forma e l’orientamento
del rivelatore ricoprono poca importanza, ma bracci del rivelatore più lunghi ci faranno ottenere misure
dei parametri più precise, come previsto dato che bracci più lunghi implicano una maggiore sensibilità.

In aggiunta, una delle principali conquiste di Einstein Telescope sarà di guadagnare sensibilità
a basse frequenze, sotto i 20 Hertz, dove i detector attuali sono fortemente limitati. Se possiamo
osservare la coalescenza di un sistema binario partendo da basse frequenze, significa che possiamo
osservarla per più tempo e quindi ottenere più informazioni. Nel nostro studio, abbiamo mostrato
concretamente e quantificato come analizzare i segnali partendo da frequenze più basse migliorerà la
stima dei parametri della binaria.

Spesso sentiamo dire che “le onde gravitazionali hanno aperto una nuova finestra sull’Universo”: infatti,
ci offrono un nuovo modo di guardare (o meglio, di ascoltare) l’Universo, fornendoci informazioni che
non possono essere ottenute da osservazioni elettromagnetiche—basti pensare, per esempio, ai buchi
neri. Attraverso le onde gravitazionali possiamo studiare molti fenomeni diversi, ma anche aspetti più
fondamentali, come verificare la teoria della relatività generale o capire come si comporta la materia
estremamente densa dentro le stelle di neutroni. In questa tesi, abbiamo lavorato su entrambi questi
argomenti, concentrandoci non solo su quello che possiamo studiare con i rivelatori attuali, ma anche
sull’impatto di quelli futuri.
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