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1
Introduction

Magnetic Resonance Imaging (“MRI”) has established itself as one of the dom-
inant imaging modalities in current clinical practice and biomedical research.
Compared to other imaging modalities, MRI provides superior soft tissue con-
trast and, unlike X-ray and CT imaging, it does not expose the patient to
ionizing radiation. Arguably though, the main strength of MRI is found in
its versatility in generating different types of images, each providing different
clinical insights. The versatility also continuous to make MRI an exciting field
of research. To this day, new MRI imaging biomarkers are being discovered
[187], new hardware [12] and software techniques [131] are being developed to
improve image quality and non-diagnostic applications of MRI such as image-
guided radiotherapy are being explored [40].

This thesis will focus on technological advancement of a relatively new quan-
titative MRI technique called Magnetic Resonance Spin Tomography in Time-
domain (“MR-STAT”) [141]. The main development goal was to design and
implement data acquisition procedures as well as image reconstruction tech-
niques for MR-STAT to allow the technique to be utilized in a clinical setting.
In this general introduction, the image formation mechanisms in both quali-
tative and quantitative MRI are first described. Then, challenges associated
with tradional quantitative MRI approaches are outlined and subsequently re-
cent advancements in the field are discussed. Finally the MR-STAT technique
is introduced.

1
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2

1.1 Conventional Magnetic Resonance Imaging

1.1.1 MR Image Formation
The main image formation mechanism underlying all the different MRI tech-
niques can be briefly explained as follows. Certain atomic nuclei within the
human body, with hydrogen nuclei being the most abundant example, have a
magnetic moment. In normal conditions, due to thermal motion, these mag-
netic moments cancel out on a macroscopic level. However, in MRI, a patient
is placed within a strong, static magnetic field. The nuclei will interact with
this external field in such a way that local ensembles of nuclei will have a net
magnetization along the direction of the external field. By convention, in MRI
the main magnetic field points in the z direction and the xy plane is referred
to as the transverse plane. Local ensembles of nuclei are referred to as spin
isochromats and can be thought of as three-dimensional magnetization vectors
M(t) = (Mx(t),My(t),Mz(t)), where t refers to time. By utilizing additional
hardware components of the MR system such as transmit coils and gradient
coils, the external magnetic field B(t) experienced by spin isochromats can be
modified and motion of the spin isochromats can be induced. These spin dy-
namics are described by a set of phenomenological equations called the Bloch
equations [19]:

dM(t)

dt
= γ (M(t)×B(t))−

(
Mx(t)

T2
,
My(t)

T2
,
Mz(t)−M0

T1

)
. (1.1.1)

Here γ is the gyromagnetic ratio of the nuclei, T1 is the longitudinal relaxation
time of the spin, T2 the transverse relaxation and M0 is the initial Mz compo-
nent of the spin isochromat. In particular, if B0 is the strength of the static
magnetic field (in the z-direction) experienced by a spin isochromat, then the
spin isochromat can be excited by transmitting electromagnetic waves at the
Larmor frequency γB0. The result of the excitation is that the spin isochro-
mat starts precessing (with the same Larmor frequency) around a circle in the
transverse plane: the plane orthogonal to the direction of the main magnetic
field. During the precession, the time-varying transverse component of the spin
isochromat itself generates electromagnetic waves that can be picked up by a
receive coil placed in close vicinity of the patient. Such a receive coil, however,
picks up signal from all excited spin isochromats within its receive field at once.
To be able to form an image, spatial localisation of the signals coming from dif-
ferent spin isochromats is required. For this purpose, gradient coils are used to
modify the magnetic field at different spatial locations. Typically there is one
gradient coil for each spatial direction (x, y, z) which modifies the static mag-
netic field in that particular direction. With gradient coils, spin isochromats
at different spatial locations can thus be made to precess at different frequen-
cies, giving the spins phase offsets relative to each other in the transverse plane
and allowing spatial frequencies within the excited object to be exposed and
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measured. In MRI, the spatial frequency domain is typically referred to as
k-space. The order in which k-space samples are acquired is described by the
(time-dependent) gradient trajectory k(t), defined as the time-integral

k(t) = γ

∫ t

0

G(s)ds, (1.1.2)

with G(t) the vector of gradient waveforms in all spatial directions. If we
let m(r, t) denote the transverse magnetization of a spin isochromat at spatial
location r, represented as a complex number, then the signal s picked up by a
(homogeneous) receive coil at sampling time t can be expressed as the volume
integral

s(k(t)) =

∫
V

m(r, t)e−2πik(t)·rdr, (1.1.3)

where V is the excited volume. Note that Eq. 1.1.1 highlights a Fourier rela-
tionship between the measurable signal s(t) and the spatial distribution of the
transverse magnetization m. The image reconstruction procedure in conven-
tional MRI approaches consists of applying a discrete Fourier transform to a
discrete set of k-space samples denoted s. For successful image reconstruction,
however, several conditions imposed by the Fourier transform must be satisfied.

First, the Fourier transform assumes that m has no time-dependency. In
reality, the spin isochromats in principle continuously evolve in time in accor-
dance with the Bloch equations. To accommodate the Fourier-reconstruction,
conventional MRI pulse sequences are designed in such a way that spin isochro-
mats are brought into a steady-state. That is, during sampling times, the mag-
netization at each spatial location is - to good approximiation - independent of
time. Steady-states are typically achieved by applying a repetitive sequence of
radiofrequency excitations.

The second assumption is that the gradient coils used to modify the main
magnetic field result in linear field variations in space. This assumption is
encapsulated in the dot product k(t) · r within Eq. 1.1.1. Achieving gradient
linearity over a sufficiently large volume is an important constraint that is taken
into account in the design of gradient coils [75].

Third, successful image formation requires that the Nyquist sampling crite-
rion is satisfied. Given a desired field-of-view (“FOV”), this criterion describes a
maximum allowed k-space distance ∆k between sample points to prevent alias-
ing artefacts in the image domain. The desired resolution in the image domain
further specifies the highest spatial frequencies kmax that must be sampled.

Assuming a Nyquist-sampled k-space is acquired during a steady-state MR
acquisition with linear gradient coils, a Fast Fourier Transform (“FFT”) is typ-
ically applied to generate an image. Such an image only has clinical value if
there is sufficient contrast between between healthy and non-healthy tissue.
Contrast in MR images is realized by exploiting differences in nuclear magnetic
properties of different tissues such as proton density and T1 and T2 relaxation
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times. These nuclear magnetic tissue properties affect the signal emitted by
spin isochromats. Through a choice of carefully timed RF excitations and
gradient fields, images can be generated whose contrast is predominantly de-
termined by differences in one of the nuclear magnetic properties at a time. The
resulting contrast images are said to be weighted by the nuclear magnetic prop-
erties (e.g. T1-weighted or T2-weighted). The versatility in contrast generation
mechanisms is one of the key strengths of MRI.

1.1.2 Conventional MRI Workflow

Certain tissue abnormalities may be hard to detect on one contrast while being
clearly visible on another. Therefore, in a typical MRI exam, multiple contrasts
are acquired one after another. For each individual contrast, a different pulse
sequence is played out and - in principle - the requirements imposed by the FFT-
based reconstruction are fulfilled. A graphical overview of this current clinical
workflow is depicted in Fig. 1.1. Two fundamental issues can be identified with
the conventional MRI workflow.

First, scan times are relatively long. For a single contrast, scan times are
in the order of minutes. A full MRI exam during which several contrasts are
acquired may take 30 minutes or longer. During the exam, patients are asked
to lie still or perform breathholds to prevent motion artefacts in the images,
adding to patient discomfort. The lengthy acquisition process also makes it
challenging to perform dynamic imaging. The long scan times result from a
combination of several factors. Given a desired field-of-view and spatial reso-
lution, the Nyquist criterion dictates which and how many spatial frequencies
must be sampled. The spatial frequencies, however, can in principle only be
sampled sequentially (in contrast to say, a photo camera, that acquires voxel
intensities in all voxels simulatenously). In between samples, the gradient coils
must be activated to give spin isochromats different phase offsets. Further-
more, in order to achieve and maintain a steady-state for a specific contrast,
RF excitations, other gradient waveforms and even waiting times may also be
necessary in between sampling. Pulse sequences therefore typically consist of
a base sequence block (with a duration that is referred to as repetition time)
that is repeated multiple times with different gradient field encodings until a
Nyquist-sampled k-space is acquired.

While the acquisitions are lengthy, the FFT-based image reconstruction
procedure is typically very fast, allowing images to be generated at the scanner
console almost instantly after having acquired the data. In general it can be
said that in the current MRI paradigm the acquisiton procedure is designed in
such a way to accommodate a fast and easy reconstruction.

Over time, several techniques have been introduced into clinical practice
that relax the Nyquist sampling criterion at the expensive of more compli-
cated reconstructions procedures. Notable examples include parallel imaging
[135, 146] and compressed sensing [109]. With parallel imaging, k-spaces are
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Figure 1.1: Graphical overview of current clinical MRI workflow. Multiple contrast
images are acquired with different pulse sequences that are designed to emphasize
differences in one nuclear magnetic tissue property at a time. Steady-states must be
achieved and each k-space must in principle satisfy the Nyquist criterion. Contrast
images are generated from the k-space using FFT-based reconstructions. Modern
advancements in the form of parallel imaging and compressed sensing are ignored in
this overview.
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typically undersampled in a regular fashion. In the reconstruction, data from
multiple receive coils is combined to compensate for the missing spatial fre-
quency information. With compressed sensing, k-spaces are undersampled
based on pseudo-random patterns. Regular FFT reconstructions would result
in images with additional noise-like undersampling artefacts. By incorporating
image priors into the reconstruction in the form of assumed sparsity in a suit-
ably chosen domain (for example, the wavelet domain), the aliasing noise can
be removed. These acceleration techniques have been further enhanced in re-
cent years by incorporating data-driven artificial intelligence approaches [131].
With these acceleration strategies, the number of required repetitions of a base
sequence block can be reduced. However, the duration of each sequence block
(which may contain long waiting times) remains unchanged as its duration is
dictated by the desired contrast.

A second fundamental issue with conventional MRI is that the images ob-
tained by Fourier transform-based reconstructions only provide qualitative in-
formation of the imaged object. The voxel values in the reconstructed images
are only weighted by biophysical tissue properties and provide no quantitative
estimates of the properties themselves. Radiologists may diagnose a patient’s
condition based on certain regions of interest appearing hyper- or hypointense
in, for example, T1 or T2-weighted scans without knowing the actual T1 and T2

values of the tissues.
Diagnosis in the current MRI paradigm is thus based on human interpre-

tation rather than an objective assessment of quantitative values. The actual
voxel values in qualitative MR images are, however, also influenced by many
factors unrelated to biophysical tissue properties such as the pulse sequence
used during scanning, hardware components of the scanner, scanner software
releases and data processing pipelines. As such it is challenging with qualita-
tive MRI to perform longitudinal- and multi-center patient studies [3, 99] as
well as monitor disease progression [60] or treatment response [147].

1.2 Quantitative MRI

The issue of conventional MRI approaches resulting in qualitative images is
adressed by quantitative MRI (“qMRI”). Rather than providing images that
are weighted by certain biophysical tissue properties, it is possible with qMRI
to provide maps with quantitative estimates of actual biophysical tissue prop-
erties. Traditional qMRI approaches follow a two-step procedure. In the first
step, the spatial localisation step, several contrast images are acquired that -
through a slight modification of the pulse sequences - are weighted differently
by the tissue parameter of interest. For each voxel, multiple sample points are
thus obtained. In a second step, the parameter estimation step, a signal model
is fitted to the sample points in each voxel individually. The pulse sequences
are typically designed in such a way that relatively simple analytic signal mod-
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k-Spaces Contrast Images Tissue Parameter Map

Step 2:
Image Reconstruction

Step 1: 
Spatial Localisation

Pulse Sequences

Steady-state, Nyquist

FFT

Voxel-wise
Fit of 

Analytical
Model 

Figure 1.2: Graphical overview of the traditional, two-step qMRI approach. In the
first step, the spatial localisation step, several contrast images are acquired, each
weighted differently by the tissue parameter of interest. In the second step, the
parameter estimation step, an analytical signal model is fitted to the signal in each
voxel separately

els are available. Depending on whether the signal model admits a linear or
non-linear dependency on the tissue parameter of interest, either direct inver-
sion or iterative inversion techniques are employed. The traditional, two-step
qMRI is visualized in Fig. 1.2.

As an example of the traditional qMRI approach, consider a spin-echo ex-
periment. The transverse magnetization in each voxel is assumed to follow an
exponential decay curve with the decay rate depending on the T2 relaxation
time of the tissue in that voxel. In order to arrive at a T2 map, multiple
qualitative images are acquired with different echo times. That is, the decay
curve in each individual voxel is sampled at multiple (echo) time points. A T2-
dependent exponential decay model can then be fitted in each voxel separately
in order to obtain a map of T2 relaxation times.

Quantitative tissue parameter maps obtained with qMRI should in prin-
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ciple be independent of MR hardware1 and the exact pulse sequences used.
Therefore, qMRI could play an important role in previously mentioned ar-
eas where the qualitative nature of conventional MRI proves to be challeng-
ing (longitudinal- and multi-center studies, disease progression, treatment re-
sponse). In addition, qMRI could facilitate the formation of multi-center, stan-
dardized datasets [178, 62] which could be beneficial for further incorporating
data-driven artificial intelligence techniques into radiological workflows.

Despite the above described promises, qMRI has only seen limited clinical
adoption so far. A major hurdle in this respect is formed by the prolonged scan
times of the traditional qMRI approach compared to conventional, qualitative
MRI. For each quantitative tissue parameter map, multiple contrast images are
acquired. And for each of these contrast images, the Nyquist sampling criterion
must be satisfied. Each of the pulse sequences may contain waiting times to
achieve the desired contrasts. The factors that result in qualitative MRI having
lengthy acquisitions are thus amplified in qMRI.

Like in the case of conventional, qualitative MRI, it can be said that early
qMRI approaches have been designed in such a way to facilitate computation-
ally cheap and straightforward reconstructions. With computational resources
having become cheaper and more accessible over time, in more recent years re-
searchers have focussed their attention on qMRI methods that allow for more
flexibility in the acquisition procedure at the expense of more computationally
demanding reconstruction procedures. Prime examples of this paradigm shift in
qMRI are MR Fingerprinting [110] and MR Spin Tomography in Time-domain
[141].

1.3 MR Fingerprinting

MR Fingerprinting (“MRF”) was introduced in 2013 by Ma et al. [110] as a
qMRI technique that allows for the estimation of multiple quantitative tissue
parameter maps using data from one short scan. With such a technique, the
multiple qualitative scans that are typically performed during a conventional
MRI exam (see Fig 1.1) could in principle be replaced by a single (MRF)
scan. The initially proposed implementation of the MRF technique relies on
the following ingredients. Pulse sequences are used that encode the information
from multiple (non-linear) tissue parameters into the signal simulatenously as
opposed to one parameter at a time in the traditional qMRI approach. Typ-
ical MRF scans continuously vary the flip angle, repetition time and/or echo
time during the sequence to keep the spins in a transient state. Compared to
steady-state sequences, such transient-state sequences can have better encoding
capabilities [4]. Analytical signal models are in general not available for such
transient-state sequences and numerical integration of the Bloch equations (i.e.

1Assuming the same field strength, since T1 and T2 are field-strength dependent parame-
ters.
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Bloch simulations) is typically required to describe the spin dynamics. Prior
to scanning, a dictionary is assembled which consists of Bloch simulation re-
sults for many different combinations of tissue parameters (e.g. T1 and T2 ).
Then, during the actual data acquisition, many snapshot images are acquired
to sample the transient-state spin dynamics. Acquiring fully sampled k-spaces
for each snapshot would result in scan times that are prohibitively long for
clinical applications, just like in the traditional qMRI setting. Instead, each
k-space is highly undersampled. Spatial localisation is performed through the
application of (non-uniform) FFTs on each k-space. In each voxel, a time-series
referred to as fingerprint is obtained. In a subsequent parameter estimation
step, the fingerprint in each individual voxel is matched to the precomputed
dictionary. However, due to the undersampling of the k-spaces, the fingerprints
are corrupted by aliasing artefacts. Assuming spatio-temporal incoherence of
the aliasing artefacts, and assuming that a pulse sequence with sufficient pa-
rameter encoding power is used, the dictionary matching procedure can still
select the correct tissue parameters. The MRF workflow is visualized in Fig.
1.3. To this date, MRF is an active field of research and has been used with
a wide variety of pulse sequences (e.g. gradient-balanced, gradient-spoiled and
RF-spoiled) to estimate many different combinations of tissue parameters and
scan parameters, including T1, T2, B1 transmit imhomogeneity, ∆B0, T1ρ [143],
magnetization transfer [77, 181, 7] and apparent diffusion coefficient [1]. The
MRF technique has been employed in various clinical trials [78].

The originally proposed MRF implementation can be considered a two-step
approach with separate spatial localisation and parameter estimation steps.
However, compared to the more traditional qMRI approaches it allows for
shorter scan times. Scan times for MRF are typically in the order of minutes
for entire 3D volumes. The reductions in scan time are made possible through
a combination of several factors. Most importantly, rather than having acqui-
sitions designed to (predominantly) encode only one tissue parameter type at
a time, the pulse sequences are designed to encode multiple tissue parameter
into the measured signal at once. The pulse sequences also typically do not
have waiting times (e.g. long repetition times or inversion times) or dummy
pulses to bring the spins into a steady-state are required. High undersampling
factors within transient-state acqisitions are allowed by leveraging the favorable
undersampling properties of non-Cartesian trajectories.

Two important limitations can be identified with the MRF technique that
may limit its future potential as a definitive qMRI solution. First, MRF suffers
from the curse of dimensionality. The computer memory required for storing
the pre-computed dictionary scales expontially with the number of different tis-
sue parameters that are estimated. For up to three parameters, dictionary sizes
are in the order of gigabytes (depending on the resolution in the parameter di-
rections) and are managable on modern desktop computers. For estimating four
different tissue parameters simultaneously, dictionary sizes of hundreds of giga-
bytes have been reported. As the models used in qMRI become more complex,



i
i

i
i

i
i

i
i

10

k-Spaces

Snapshots

Transient-state
Sequence

FFT

Voxel-wise
dictionary 

matching

Tissue Parameter
Maps

Measured �ngerprint
(with aliasing noise)

Best dictionary match

Figure 1.3: Graphical overview of the MRF approach to qMRI. A single transient-
state sequence (in this example: a continuously varying flip angle sequence) is used
that encodes information from multiple tissue parameters into the MR signal. Many
snapshot images are acquired to sample the transient spin dynamics. Each snapshot
image is highly undersampled (in this example: one spiral arm for each snapshot) and
as a result the snapshots suffer from aliasing noise. On a voxel-per-voxel basis, the
measured fingerprints are then matched against a pre-computed, Bloch equations-
based dictionary. Assuming spatio-temporal incoherence of the aliasing noise, the
dictionary matching procedure can succesfully return multiple tissue parameters esti-
mates for each voxel. Note that the spatial localisation step ((non-uniform) FFT) and
the parameter estimation step (dictionary matching) are separated like in traditional
qMRI approaches.
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with more parameters to be included in the signal models, the dictionary-based
MRF approach may become infeasible due to memory requirements. Besides
memory requirements, dictionary matching times may also become problem-
atic. Dictionary matching times in the order of hours for estimating T1 and
T2 maps for a 3D volume have been reported [35] and the matching times in
principle also scale exponentially as more tissue parameter types are included
in the reconstruction.

A second issue with the MRF approach is that, through the application of
the (non-uniform) FFT on the undersampled k-spaces in the spatial localisation
step, artificial aliasing noise is introduced that is not inherently part of the
measured MR data. The dictionary matching procedure implicitly assumes that
the aliasing noise in each voxel manifests itself as zero-mean Guassian noise. In
that scenario, i.e. when spatio-temporal incoherence of the aliasing artefacts
is achieved, the artificial noise is expected to result in reduced precision in
the reconstructed tissue parameter maps only. However, when the aliasing
noise is not incoherent, the accuracy of the reconstructed parameter maps
may be negatively affected. This issue particularly manifests itself in case of
Cartesian acquisitions [150]. Therefore the MRF technique is predominantly
used in conjunction with non-Cartesian trajectories such as spiral and radial.
At the same time, Cartesian acquisitions remain dominant in current clinical
practice due to their robustness to hardware and modelling imperfections. In
addition, radiologists are typically trained on contrast images generated using
the conventional MRI approach with Cartesian acquisitions and are accustomed
to the point spread function [137] associated with this type of acquisition. For
clinical adoption of qMRI, a technique that is as fast as MRF yet works reliably
with Cartesian gradient encoding schemes may be necessary.

1.4 MR-STAT

MR Spin Tomography in Time-domain (“MR-STAT”) is a recently proposed
technique that combines ideas from MRF together with volumetric inversion.
With volumetric inversion, rather than following a two-step approach with sep-
arate spatial localisation and parameter estimation steps, there is only a single
step during which spatial localisation and parameter estimation are performed
jointly. In this single step, the tissue parameters in all voxels simultaneously are
fitted against the measured k-space (or time-domain) data. No intermediate
contrast images are formed in the process.

Volumetric inversion requires a forward model that takes quantitative tissue
parameter maps as input and returns a simulated k-space signal based on a
(pulse sequence dependent) physics model. The volumetric inversion technique
was proposed by Block et al. in 2009 [20] in the context of pulse sequences
for which analytical signal models are available and which typically encode one
non-linear tissue parameter into the signal at once [189, 89, 175]. In MR-STAT,
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a more generic forward model is used instead that, similar to MRF, allows arbi-
trary (transient-state) sequences to be utilized. More specifically, let Nv be the
number of voxels within the desired field-of-view, αj the current tissue param-
eter estimates in voxel j, rj the spatial coordinates of voxel j, m(αj , rj , t) the
transverse magnetization in voxel j at timepoint t obtained through numerical
integration of the Bloch equations and ∆V the volume element for each voxel.
The complex MR signal s at any arbitrary timepoint t is then modelled as the
spatially discretized version of Eq. 1.1.1:

s(t) =

Nv∑
j=1

m(αj , rj , t)e
−2πik(t)·rj∆V . (1.4.1)

Now let Nt be the total number of sample points acquired during a pulse
sequence and let t1, . . . , tNt

be the Nt sample times. The MR-STAT forward
model is then defined as

s := [s(t1), . . . , s(tNt
)] ∈ CNt . (1.4.2)

Next, let d ∈ CNt be a vector of measured data obtained using an MR sys-
tem. In MRF and other qMRI methods the measured data is organized into
(undersampled) k-spaces in order to be Fourier-transformed. In MR-STAT,
the measured data is not intended to be Fourier-transformed and instead the
samples are simply stored in a vector in the order in which they were acquired.
That is, the measured data is interpreted as time-domain data. Quantitative
tissue parameter maps estimates are obtained by directly fitting 1.4.1 against
the measured time-domain signal. Stated differently, if we let α denote the
quantitative parameter maps of interest (i.e. the concatenation of αj for all
voxels j) then an MR-STAT reconstruction amounts to finding a numerical
solution to the following inverse problem:

argminα
1

2
‖d− s(α)‖22. (1.4.3)

Note that, rather than solving independent inversion problems in each voxel
separately as in the two-step approach to qMRI, in MR-STAT a single large-
scale non-linear inversion problem is solved for all voxels simultaneously. The
MR-STAT workflow is summarized in Fig. 1.4. The main benefit of the one-step
volumetric inversion approach employed in MR-STAT is that it naturally allows
the sampling of spatial frequencies to be distributed over different contrasts
[153]. This can be explained as follows. In the two-step approach, for each
individual contrast image in the spatial localisation step, a Nyquist-sampled k-
space must in principle be acquired (assuming no parallel imaging/compressed
sensing techniques are employed). Spatial frequencies sampled for one con-
trast can not be used to fill in the k-space of another contrast without the
FFT introducing image artefacts (e.g. blurring) that would propagate into
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Time-domain
Signal

Transient-state
Sequence

Volumetric Inversion:

Tissue Parameter Maps

time

Bloch-Equation based Forward Model:

Figure 1.4: Graphical overview of the MR-STAT approach to qMRI. Like in MRF,
a single transient-state sequence (in this example: a continuously varying flip angle
sequence) is used that encodes information from multiple tissue parameters into the
MR signal. The measured signal is not interpreted as k-space data but as time-domain
data instead. A volumetric, Bloch equations-based signal model is fitted directly
against the time-domain data to obtain estimates of multiple tissue parameter maps
without forming intermediate contrast or snapshot images. The spatial localisation
and parameter estimation steps are performed simultaneously.
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the quantitative tissue parameter maps. On the other hand, in the volumetric
inversion approach, both the time-varying contrast information and sampling
pattern are intertwined in the forward model. Missing k-space information for
one contrast is naturally complemented with k-space information from other
contrasts. As such, even if a transient-state sequence with continuously chang-
ing contrast is utilized it may be possible to reconstruct tissue parameter maps
free of aliasing artefacts despite each contrast being highly undersampled. Dif-
ferent from the MRF approach there is no artificial aliasing noise introduced
into the reconstruction with MR-STAT and therefore, unlike with MRF, there
is no incoherence requirement. This allows for even more freedom in the ac-
quisition procedure compared to MRF. In particular, the MR-STAT technique
is more suitable for Cartesian gradient encoding schemes, which demonstrate
strongly coherent aliasing noise in the context of MRF [150].

In addition, since no pre-computed dictionary is used in MR-STAT, the
curse of dimensionality that was identified with MRF (i.e. exponentially grow-
ing dictionary size as more types of tissue parameters are added) is elided.

Note that, whereas in the earlier proposed volumetric inversion techniques
the FFT operator is used as part of the forward model, in MR-STAT the gradi-
ent encoding is modelled explicitly (through the e−2πik(t)·rj term) rather than
implictly (through the application of an FFT and an undersampling opera-
tor). A benefit of the MR-STAT approach in this respect is that spin dynamics
during readouts, such as T2, T ∗2 and/or off-resonance induced rotation can be
properly modelled. In addition, non-linear gradient fields could in principle
be incorporated into the model (through modificiation of Eq. 1.1.1 and Eq.
1.1.1). Compared to other qMRI methods, the forward model in MR-STAT is
more comprehensive and better describes the underlying biophysical processes
during an MR examination.

A major challenge with the MR-STAT approach is the increased compu-
tational complexity of the reconstruction procedure. Due to the non-linear
dependency of the signal model (i.e. Eq. 1.4.1) on the tissue parameters,
there is no direct solution to the MR-STAT problem (i.e. Eq. 1.4.3). Iterative
techniques must be employed instead. Such iterative techniques require an ini-
tial guess for the tissue parameter maps α and then - based on certain update
rules - modify the initial guess until the forward model s(α) and measured data
d are sufficiently close. At each iteration, relatively expensive Bloch simula-
tions must be performed in each voxel in order to evaluate the forward model.
Besides evaluating the forward model, the update rules typically require the
gradient of the objective functon to be minimized (Eq. 1.4.3), which involves
computing partial derivatives of the forward model with respect to the tissue
parameters in all voxels (i.e. the Jacobian matrix ). The gradient points in
the direction in which the objective function increases fastest, so a gradient
descent type algorithm may take a step in the direction of the negative gradi-
ent in an attempt to minimize the objective function. Convergence of such an
algorithm can be improved by incorporating knowledge of the curvature of the
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objective function. This knowledge is contained in the so called Hessian ma-
trix, i.e. which contains second order partial derivatives of the forward model.
Evaluating the forward model as well as the Jacobian and Hessian matrices is
a challenge on its own due to the problem size of typical MR-STAT reconstruc-
tions. For 2D acquisitions, there can be tens of thousands of unknowns in the
MR-STAT reconstruction problem. For 3D MR-STAT, problems the number
of unknowns can run into the millions. The reconstruction procedure must be
carefully designed to be able to deal with such large numbers of unknowns in
terms of both computation time and computer memory. Another computa-
tional challenge is related to the fact that, rather than relying on the FFT in
the forward operator for which highly optimized external libraries exist, the
gradient encoding is modelled explicitly in MR-STAT. Custom software must
therefore be designed and optimized to simulate the gradient encoding within
the MR-STAT framework.

Whereas in conventional (q)MRI the acquisition procedure is designed to
accommodate fast and easy image reconstructions, with MR-STAT maximum
freedom is allowed in the acquisition at the expense of more challenging and
lengthy reconstruction procedures. Even though in theory MR-STAT recon-
structions can be performed off-line after a patient has already moved out of
the MR scanner, relatively short reconstruction times remain important for
acceptance of a new technique like MR-STAT into clinical workflows.

1.5 Thesis Outline

As stated in the opening section of this chapter, the main goal of the project
that resulted in this thesis was to design and implement data acquisition pro-
cedures as well as image reconstruction techniques for MR-STAT to allow the
technique to be utilized in a clinical demonstrator setting. Prior to starting the
project, the theoretical framework for MR-STAT had already been developed
and the feasibility was demonstrated in silico as well as experimentally on a
pre-clinical MR system. The next step, the actual start of this project, involved
designing a two-dimensional pulse sequence suitable for in vivo scanning, im-
plementing the sequence on a clinical MR system and validating the sequence
on healthy volunteers. The results of this work are reported in Chapter 2.
The computational challenges associated with MR-STAT reconstructions are
mitigated by utilizing a FFT-based decoupling technique in this work. With
this technique, one-dimensional FFTs are applied along the readout direction
of data from two-dimensional, Cartesian MR-STAT acquisitions. This allows
the two-dimensional reconstruction problem to be reformulated as multiple in-
dependent one-dimensional reconstruction problems. For each of the individual
subproblems, the variable project method is used which requires the Jacobian
matrix to be stored in computer memory. Unlike in a two-dimensional setting,
storing the model matrices is no problem in one-dimensional situations. In
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addition, the decoupling allows for a straightforward parallel implementation
of the reconstruction. While convenient on the one hand, the decoupling tech-
nique limits MR-STAT to two-dimensional Cartesian-based acquisitions and
does not allow spin dynamics during readouts to be taken into account. A
more generic reconstruction algorithm is therefore desired.

In Chapter 3, a Gauss-Newton based MR-STAT reconstruction algorithm
is developed that - through a matrix-free approach - has a neglible computer
memory footprint. As such, the technique can in principle be used to perform
reconstructions for arbitrary, non-Cartesian MR-STAT sequences at clinically
relevant resolutions. Although not demonstrated, it can in principle also be
used in three-dimensional settings. The computationally demanding tasks of
the reconstruction algorithm can be performed in parallel across different com-
pute units. However, unlike with the FFT-based decoupling technique - com-
munication between compute units is required during the reconstruction pro-
cedure and a parallel algorithm is more challenging to implement. In the work
presented in Chapter 3, the algorithm was implemented on a high performance
computing cluster with many CPUs and it was validated on two-dimensional
Cartesian MR-STAT scans. Despite the use of many CPUs, reconstruction
times are still in the order of hours per two-dimensional slice in this work.

One of the bottlenecks in the proposed MR-STAT reconstruction algorithm
is formed by the need to scale the gradient of the objective function at each
iteration with curvature information contained in the Gauss-Newton approxi-
mation to the Hessian matrix. In Chapter 4, it is recognized that the Hessian
matrix - which was assumed to be too large to store into computer memory
at first - admits a predictable structure. The actual structure depends on
the pulse sequence used during the data acquisition. In the specific case of
a pulse sequence comprising a Cartesian gradient trajectory and a smoothly
varying flip angle it is demonstrated that the Hessian matrix admits a sparse
structure. The entries of the (approximate) Hessian can be computed in par-
allel and stored in computer memory in this case. By adapting the MR-STAT
reconstruction accordingly, reconstruction times in the order of fifteen min-
utes rather than several hours were achieved on a high performance computing
cluster with many CPUs. The sparse Hessian approach can be interpreted as
a generalization of the FFT-based decoupling approach. Unlike the decoupling
approach, spin dynamics during readouts can be taken into account with this
reconstruction technique. For non-Cartesian trajectories, the structure of the
Hessian matrix is more complicated, less sparse and in general the technique
may not be useful in non-Cartesian settings.

In many different fields, including the field of MRI, GPU hardware has
been utilized to perform computations with better runtime performance com-
pared to CPU-based implementations. In Chapter 5, a GPU-compatible MR-
STAT reconstruction algorithm is introduced and validated. The Julia pro-
gramming language is an indispensible tool in this context. It allows for rela-
tively quick prototyping and great flexibility without compromising on runtime
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performance. In addition, kernel functions that can be executed on GPU hard-
ware can be written directly within Julia. Rather than a completely matrix-free
Gauss-Newton approach as introduced in Chapter 3, a partially matrix-free al-
gorithm is proposed in this work. With this algorithm, the entries of the model
matrices which are the most expensive to compute are stored in GPU mem-
ory. The remaining cheaper entries are only computed at the time they are
needed like in the matrix-free approach. The partially matrix-free MR-STAT
reconstruction algorithm on the GPU allows for reconstruction times in the
order of two minutes per slice. It also generalizes to non-Cartesian gradient
trajectories. Bloch simulations form an important ingredient in the MR-STAT
reconstructions but are also relevant to other qMRI techniques such as MRF.
The Bloch simulations toolbox developed as part of this work is released as a
standalone Julia package called BlochSimulators.jl. The package is open-source
and freely available online.

In all chapters up to Chapter 6, all the MR-STAT validations were per-
formed using Cartesian gradient trajectories. On the other hand, other qMRI
techniques like MRF typically use non-Cartesian trajectories. Non-Cartesian
trajectories may have benefits in terms of improved time-efficiency on the one
hand, but are known to suffer from higher sensitivity to hardware imperfections.
With MR-STAT, in principle both Cartesian and non-Cartesian trajectories
can be used and the question arises which type of trajectory is more suitable
in clinical settings. Therefore, in Chapter 6, Cartesian and radial MR-STAT
are benchmarked in terms of time-efficiency and robustness.

Finally, in Chapter 7, the main findings of the individual chapters are
discussed within the context of the aims of this research project. Challenges
that need to be addressed are discussed and suggestions for future research
directions are provided.
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Abstract

Quantitative Magnetic Resonance Imaging (MRI) is based on a
two-steps approach: estimation of the magnetic moments distribu-
tion inside the body, followed by a voxel-by-voxel quantification of
the human tissue properties. This splitting simplifies the compu-
tations but poses several constraints on the measurement process,
limiting its efficiency. Here, we perform quantitative MRI as a one
step process; signal localization and parameter quantification are
simultaneously obtained by the solution of a large scale nonlinear
inversion problem based on first-principles. As a consequence, the
constraints on the measurement process can be relaxed and acquisi-
tion schemes that are time efficient and widely available in clinical
MRI scanners can be employed. We show that the nonlinear to-
mography approach is applicable to MRI and returns human tissue
maps from very short experiments.
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2.1 Introduction

The possibility to store and process vast amounts of data at increasingly faster
rates has boosted the application of numerical methods in physical sciences.
Nowadays, solutions can be found to problems with hundred thousands or mil-
lions of unknowns [170, 90]. A representative example is seismic full waveform
inversion [169]; the underlying process is based on a wave equation which is
nonlinear in the spatially-dependent unknowns. The reconstruction over 2D or
3D regions of the Earth’s interior is obtained by means of iterative algorithms.
It is even possible to estimate multiple parameters simultaneously, such as wave
velocity, density, anisotropy and attenuation.
Analogously to seismic waveform inversion, quantitative magnetic resonance
imaging (qMRI) aims at reconstructing several parameters which characterize
the internal structure of the human tissue; in particular, the proton density
(ρ), the longitudinal (T1) and transverse (T2) relaxation rates, among others.
One important difference between tomographic techniques and state of the art
qMRI lies in their methodology. Quantitative MRI is built upon a two step
approach. Firstly, each local contribution to the volumetric signal is estimated
(signal localization), returning spatial maps of the transverse magnetic mo-
ment; this is usually achieved by applying a multi dimensional inverse Fourier
transform to the data. Subsequently, the tissue parameters quantification is
carried out for each location separately. The second step (parameter estima-
tion) is thus obtained from a series of magnetization images by fitting relatively
simplistic signal models [112] or by searching over a dictionary of complex sig-
nal fingerprints [110, 36].
This separation leads to a simplified computational process but with significant
costs. In order to satisfy the stringent criteria for Fourier encoding, one has to
assume that the signal evolution during the read-out only reflects the intended
gradient encoding. Long single-shot read-outs generally violate this condition,
leading to image artifacts, e.g., geometrical distortion and intra-voxel dephas-
ing. To avoid such artifacts, most clinical MR sequences have been designed
to manipulate the nuclear spins into a reproducible state, which allows multi-
ple measurements to be aggregated into one coherent frequency representation
of the desired image (k-space). Consequently, MRI scans can be relatively
time consuming when compared to CT or PET exams. Additionally, due to
the overly simplifying assumptions in the Fourier encoding-based signal model,
system imperfections such as off-resonances and radiofrequency field inhomo-
geneity are not easily taken into account.
MR Fingerprinting (MRF) [110] has shown a great potential to recover multi-
parametric maps from unprecedented short acquisitions allowing strong alias-
ing artifacts to exist in each of the individual images. The RF excitation and
gradient acquisition schemes need to be designed properly to ensure incoher-
ence between the signal and the undersampling artifacts which are interpreted
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as zero-mean noise-like perturbations. Interleaved spiral [110] and radial [36]
readout gradients are therefore preferred. These type of sequences are however,
prone to gradient system imperfections such as eddy currents and thus require
an additional sophisticated calibration of the hardware [156].
In this work, we pose quantitative MRI as a nonlinear tomographic problem by
directly utilizing the fundamental relationship between the time-varying sig-
nal and the laws of physics that describe the experiment. Thereby, we unify
the traditionally disjoined processes of signal localization and parameter esti-
mation into one process. The macroscopic ensemble of magnetic spins in the
body is treated as a large-scale nonlinear dynamical system, which is probed by
superimposing a train of radiofrequency (RF) excitations and gradient fields.
The tissue properties are obtained by inversion of the underlying large scale
nonlinear model. We name this method MR-STAT, which stands for Mag-
netic Resonance Spin TomogrAphy in Time-domain. We show that quantita-
tive parameter maps can be accurately reconstructed by employing nonlinear
optimization algorithms and parallel computing infrastructures which do not
necessarily rely on the Fourier decoding step for spatial localization. The data
collection process can thus be liberated from the standard sequence design con-
straints and very short acquisitions (order of seconds) provides sufficient data
for correct reconstructions. Although the time-domain formulation would in
principle accommodate any read-out strategy, we show that established, exper-
imentally robust cartesian gradient acquisition schemes can also be employed;
a step which should facilitate the translation of the technique to clinical MRI
systems. Finally, MR-STAT is also able to estimate the precision of the recon-
structed multi-parametric maps; another important step towards the clinical
application of qMRI.

2.2 Theory

2.2.1 The coupled space-time signal model
The behavior of the space/time dependent magnetization vector, m(r, t) is
determined by superimposed radiofrequency and gradient magnetic fields, re-
spectively denoted by b(t) and G(t) · r. The response of the magnetic spins is
also affected by the T1(r) and T2(r) relaxation rates, which carry diagnostic
information. The relationship between all these quantities is given locally by
the Bloch equation [82]:

d

dt
m = γb×m− q (2.2.1)

where

b =

 Re {b}
Im {b}
G · r

 , q =

 mx

T2my

T2
mz−1
T1

 , m(r, 0) =

 0
0
1


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and γ denotes the gyromagnetic ratio.
The signal, s, from a receiver coil is obtained from Faraday’s law of induction
[29]:

s(t) =

∫
V

ρ(r)m(r, t)dr (2.2.2)

where ρ denotes the proton density of the tissue weighted by the spatially
varying complex receive RF field B−1 . m is the transverse component of m and
V is the volume enclosing the spins which emit signal.
The first step in qMRI typically aims at reconstructing the spatially dependent
magnetization state. This is achieved by designing the experiment such that
the signal can be modeled as:

s(t) = s(k(t)) =

∫
V

ρ(r)m∗(r)e−2πık(t)·rdr (2.2.3)

where m∗ must be a time-independent state of the magnetization and k rep-
resents the accumulating effect of the gradient fields. Note that the system re-
sponse is decoupled into a space-only dependent component ρm∗ and a Fourier
encoding term exp(−2πık(t) · r) which is independent from tissue parameters.
The unknown term is thus ρm∗. If Fourier transform requirements are fulfilled
by the experimental settings, Inverse Fourier transform can be applied to the
data to reconstruct ρm∗, obtaining thus a magnetization image. This decou-
pled approach typically leads to either long measurement times (m∗ must be
in the steady-states or in static equilibrium) or to large reconstruction arti-
facts if the Nyquist sampling criterion is not fulfilled [110]. In the subsequent
step, model-fitting strategies based on the Bloch eq. (2.2.1) can be applied to
each voxel separately to recover the tissue parameters on a local level. In the
MR fingerprinting case [110], this is performed by an exhaustive search over a
pre-computed dictionary of signals; a reconstruction strategy which although
robust and straightforward, is undermined by the large dictionaries needed
for high dimensional multi-parametric data. Furthermore, even a slight mod-
ification of a sequence requires an ad-hoc computation of the corresponding
dictionary.
Instead of relying on the standard decoupled Fourier model, we reconsider the
coupled space-time equation, Eq. (2.2.2), and solve it directly. Denoting by
d(t) the demodulated signal measured by the receiving coil of the MR scanner,
the resulting tomographic approach is:

Find the system’s parameters, α, that minimize∫
τ
|s(α, t)− d(t)|2dt

such that the Bloch equations (Eq. 2.2.1) and Faraday’s law (Eq.)2.2.2) hold.
(2.2.4)
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In the equation, τ denotes the union of temporal acquisition intervals and α
represents the unknown parameters over the whole region. Note that the recon-
struction acts on the signal in the time domain to directly derive the spatial
distribution of the tissue’s characteristics. In the MR-STAT framework, the
link between temporal and spatial domain is still provided by the gradient
fields, but now the k-space data set constitutes a non-trivial entanglement of
spatial and spin-dynamic information.
During an MR-STAT experiment, the magnetization is thus no longer expected
to be in steady-states or equilibrium conditions but is free to evolve. Since there
are no particular requirements on the state of the system, the excitation/acqui-
sition scheme can be designed to boost the time-efficiency and to minimize the
impact of gradient hardware imperfections. In this work, we consider measure-
ment schemes (sequences) where RF excitation pulses and acquisition intervals
are contiguous, thus the repetition time TR and echo-time TE are kept as short
as possible (see Fig. 2.1); there are no dead times and the data collection rate
is thus maximized. We choose to employ a so-called gradient read-out scheme
which is the standard acquisition modality due to its robustness with respect
to hardware imperfections.
Since the reconstruction process no longer relies upon Fourier decoding, the

Acq Acq AcqExc Exc Exc

Figure 2.1: Fragment of an MR-STAT data acquisition sequence. The spatially se-
lective RF pulse is scaled by the tip angles θj . Gx and Gy are encoding gradients.
Gz is the slice selective gradient. Note that the excitation (Exc) and acquisition
(Acq) intervals follow one another without interruption, that is, the fixed echo and
repetition times are the shortest possible.

underlying physical model can be easily expanded to include system imperfec-
tions such as off-resonance frequency, ω(r), and transmit RF fields heterogene-
ity, B+

1 (r). These quantities enter the reconstruction problem (2.2.4) through
the vector of applied magnetic field b in the Bloch equation (2.2.1):

b = (Re
{
B+

1 b
}
, Im

{
B+

1 b
}
,G · r + ω/γ)T .
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Consequently, the extended set of unknowns in the MR-STAT equation (2.2.4)
is

α = (T1, T2, |ρ|,∠ρ, |B+
1 |, ω).

The MR-STAT reconstruction problem (Eq. (2.2.4)) can be solved by a generic
purpose derivative-based nonlinear minimization algorithm upon the discretiza-
tion of the spatial and temporal domains. See the Methods section for the
implementation details.

Spatial encoding, identifiability and precision estimates

The encoding capability of the MR-STAT approach can be derived by standard
techniques in inversion theory. In particular, the identifiability of a system’s
parameters [81] is reflected by the covariance matrix C ≡ η2(DTD)−1 where
D is the Jacobian matrix of the model with respect to the parameters α and
η is the noise variance.
To minimize noise amplifications, C should have a moderate condition number.
This depends on both the acquisition length as well as the spatial resolution: for
a fixed reconstruction grid, decreasing the sequence length leads to a more ill-
conditioned matrix C and noise perturbations or model imperfections are thus
amplified. In the extreme case that the sequence is too short, C becomes rank-
deficient (infinitely large condition number) and the uniqueness of the solution
is no longer guaranteed unless other regularization terms are introduced. This
is analogous to reconstructions of undersampled k-space data in, for example,
compressed sensing MRI [109, 50].
To illustrate this theoretical analysis with a concrete example, we consider a
homogeneous object with properties:

(T1, T2, |ρ|,∠ρ, |B+
1 |, ω) = (0.833[s], 0.083[s], 1[a.u.], 0[rad], 1[a.u.], 0[Hz])

and construct C for varying spatial resolution and sequence length. The latter
is expressed in terms of the number of readout lines in the sequence. The
flip angles are randomly drawn from a normal distribution centered around 0
(see also the top of Fig. 2.2). The conditioning of the covariance matrix is
reported in Fig. 2.3. As expected, the longer the sequence, the lower the noise
amplification. The number of unknowns increases with the grid size, leading
to a larger scale problem requiring more data (longer sequences) to be fully
determined and to be robust to noise perturbations. When C has full rank,
the MR-STAT problem is fully determined and the algorithm returns not only
the parameter maps but also their spatially dependent standard deviations.
The standard deviation of the n-th parameter is given by σn ≈

√
[C]n,n. Note

the analogy between σn and the so-called geometry factor (g-factor) in parallel
imaging [135].
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Figure 2.2: Tip angles and time-domain signal for the MR-STAT sequence applied to
the in-silico simulated head experiment at 3T.

2.3 Methods

2.3.1 Implementation

For reasons that will soon become clear, we split the vector of unknowns in
two parts, namely: α = (ρ,β) where β contains the spatial distribution of
(T1, T2, |B+

1 |, ω). Given a demodulated dataset in the time domain, d(t), the
reconstructed parameter maps, (ρrec,βrec), are obtained by solving the follow-
ing nonlinear least squares problem, which is derived upon the discretization
of Eq. (2.2.4):

(ρrec,βrec) = arg minρ,β
J∑
j=1

∣∣∣∣dj − R∑
r=1

ρrmj,r(T1,r, T2,r, |B+
1,r|, ωr)∆s

∣∣∣∣2 ∆t,

such that Eq. 2.2.1 holds.
(2.3.1)

The first and second sum in the objective function approximate, respectively,
the time and the volume integral from Eq. (2.2.4) and Eq. (2.2.2). J is the
total number of acquired data samples, R is the number of spatial grid points,
∆s and ∆t are, respectively, the space and time discretization intervals. Using
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Figure 2.3: Noise amplification in the MR-STAT experiment when all six parameters
(T1, T2, |ρ|,∠ρ, |B+

1 |, ω) are reconstructed. The numerical values inside the table refer
to the log10 of the condition number of the covariance matrix C. Large values mean
large noise amplification. The condition number is reported as a function of the
experiment length (numbers of readout lines) and spatial resolution (grid sizes) for a
small scale, homogeneous in-silico model. The number of samples per readout line is
equal to the number of grid points along one dimension. An empty cell means that
C is rank deficient (infinite condition number) and the problem can not be solved.

matrix-vector notation, Eq. (2.3.1) can be written as:

(ρrec,βrec) = arg minρ,β ‖d−M(β)ρ‖2

such that Eq. 2.2.1 holds
(2.3.2)

where the matrix M(β) is given by

[M(β)]j,r ≡ ∆smj,r(T1,r, T2,r, |B+
1,r|, ωr).

Since the reconstruction problem is nonlinearly dependent on β and linearly
dependent on ρ, it can be solved by the variable projection method (VARPRO)
[57]. Note that, if the vector β was a solution of Eq. (2.3.2), then the parame-
ters ρ could be found by solving a linear least squares problem, whose solution
is given by

ρ = M†(β)d (2.3.3)

where M† is the pseudo-inverse of M. Substituting this back into Eq. (2.3.2)
we obtain the reduced functional:

β∗ = arg min
β

∥∥[I−M(β)M†(β)
]
d
∥∥2
. (2.3.4)
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Note that the linear parameter no longer plays a role in the equation.
VARPRO solves Eq. (2.3.2) by first solving the reduced nonlinear problem in
Eq. (2.3.4). The optimal linear parameters are eventually found by substitu-
tion into Eq. (2.3.3): ρ∗ = M†(β∗)d.
Solving Eq. (2.3.4) instead of Eq. (2.3.2) results in a faster and more robust
convergence for non-convex problems. Additionally, initial guesses for ρ are
unnecessary.
The largest computational burden for solving Eq. (2.3.4) is given by the calcu-
lation of the derivatives of the system matrix M with respect to the nonlinear
variables, that is: dM(β)/dβ. In this work, they are calculated by first or-
der forward finite difference approximations. We point out that the VARPRO
method has many applications and has even been used to solve different MR
problems before [21, 74, 162].
The minimization problem is implemented in Matlab making use of the built-in
trust region minimization algorithm and the VARPRO implementation given
by [125]. The Bloch equation simulator is implemented in C [64] and was
adapted to include slice profile response, off-resonance effects and B+

1 inho-
mogeneities. The reconstruction is halted after 30 iterations or earlier if the
maximum component of the gradient of the objective function is smaller than
10−6 (first order optimality measure).
Unless otherwise stated, the reconstruction algorithm is initialized with the
following values:

(T1, T2, |B+
1 |, ω)start = (1.0[s], 0.1[s], 1.0[a.u.], 0.0[Hz]).

These values are uniform over the whole FOV. As explained in the Implemen-
tation subsection, the (complex) proton density variable need not be initialized
since it is reconstructed by solving a standard linear least squares problem.

2.3.1.1 Computational complexity and parallelization

On the computation side, the MR-STAT reconstruction problem for a 2D or
3D geometry at realistic spatial resolution is extremely demanding. Since all
parameter maps are reconstructed at once, the number of unknowns is vast.
To illustrate: for a 2D acquisition of a Ns × Ns voxels grid, the number of
unknowns is N2

s ×6 since there are 6 parameters per voxel. Since Ns ∼ O(102),
the total number of unknowns is O(105). As a consequence, the number of
data points should also be O(105). the response of the system also has to be
calculated in the slice selective direction to correctly incorporate the effect of
the slice profile. The reconstruction algorithm must calculate the response of
the physical equations for O(105) voxels over O(105) time points.
For the second and third reconstruction tests in this work (see below), we
parallelize the computations in the following way: suppose that we employ a
Cartesian acquisition scheme with the read-out direction along the y-axis; in
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this case, the signal, sj , over the j-th read-out interval, τj , is given by

sj(t) ∝
∫
X×Y×Z

m(r, tj)e
tj−t

T2 eı(t−tj)ω(r)e−ıγGy(t−tj)ydr

where the 3D integration interval X × Y × Z ⊂ R3 contains all nuclear spins
emitting a signal. Given that for this kind of sequence, the duration of the
read-out τj is only one millisecond or less, we can neglect the T2 decay and
the dephasing due to ω. The signal equation becomes (we use the 1D k-space
notation: ky ≡ γ/2π

∫ t
tj
Gy(τ)dτ):

sj(ky) ≈
∫
X

∫
Y

∫
Z

m(x, y, z, tj)e
−i2πkyydxdydz

and applying 1D Fourier Transform along the y direction, Fy:

Fysj(ỹ) ≈
∫
X

∫
Z

m(x, ỹ, z, tj)dxdz

Fysj(ỹ) represents the signal generated at time tj by the nuclear spins located
in the 2D interval X × Z at the y-coordinate given by ỹ. The signal from
spins with different y-coordinates does not contribute to Fysj(ỹ). In other
words: the MR-STAT reconstruction problem can be decomposed into many
independent subproblems, each one corresponding to a given coordinate ỹn with
n = 1, . . . , Ns. Parallelization is thus carried out by assigning each subproblem
to a different computing core. The reconstruction time is defined as the longest
runtime amongst all jobs.
The whole code is compiled as a Linux stand-alone executable and deployed to
the High Performance Computing cluster of the UMC Utrecht by linking it to
the corresponding Matlab run-time library.

2.3.2 Reconstructions

To demonstrate the design flexibility of MR-STAT, we employ several types
of acquisition schemes: one where the tip angles are randomly drawn from a
normal distribution (Fig. 2.2); one which follows a sinusoidal pattern where
each lobe is weighted by a randomly chosen value (Fig. 2.4-Top) and one with
piecewise constant excitations (Fig. 2.5-Top). For the latter RF-train, each
constant tip angle section is preceded and followed by a half-angle pulse acting,
respectively, as excitation and tip-back pulses. All the sequences start with a
180o inversion pulse. Each read-out interval is centered between excitations
and all gradients are balanced, thus a single isochromat accurately represents
the dynamics of a voxel.
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Figure 2.4: In-vivo experimental validation of MR-STAT for a sinusoidal RF train
sweep. From top to bottom: the flip angle train, the recorded signal and the recon-
structed parameter maps.

2.3.2.1 In silica low resolution reconstruction

A simple 2D object made of three homogeneous compartments is reconstructed
on a 32×32 grid (See Fig. 2.6). The T1 and T2 rates for the three compartments
A, B, and C correspond to cerebrospinal fluid (CSF), gray and white matter
values, respectively. In this case, the off-resonance and transmit RF maps were
set to ω = 0 Hz andB+

1 = 1 [a.u.], respectively. A random RF excitation train is
applied analogously to the one shown in Fig. 2.2. Two-hundred and fifty-six RF
pulses are interleaved with a 2D Cartesian read-out gradient scheme consisting
of 32 phase encoding steps which are repeated 8 times. The resulting sequence
duration is 1.2 seconds. Gaussian noise is superimposed to the time-domain
signal such that ‖noise‖/‖signal‖ = 0.01.
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Figure 2.5: In-vivo experimental validation of MR-STAT for a piecewise constant tip
angle excitation. From top to bottom: the flip angle train, the recorded signal and
the reconstructed parameter maps.

2.3.2.2 In-silica high resolution reconstruction

The central slice of a numerical human brain model [9] is used to create a syn-
thetic MR-STAT data set. The reconstructed in-plane resolution is 1mm×1mm
which corresponds to a 216× 216 voxels matrix. The tissue parameters for the
biological components are given in Table 2.1. The amplitude and phase maps
of the transmit RF field are obtained from a numerical electromagnetic sim-
ulation of a 3T headcoil driven in quadrature. Without loss of generality, a
uniform receive sensitivity is assumed in this example. The off-resonance map
is taken from [87] and is scaled to fit the range of [−15, 15] Hz in the head (see
the bottom of Fig. 2.7). For the acquisition, a Cartesian trajectory is used.
The duration of each read out is 0.86 ms with a 4 µs dwell time per sample.
The read out lines (ky direction) cover the 2D k-space in ascending order, start-
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Figure 2.6: Precision estimate test. A simple 2D object (top row) undergoes a sim-
ulated MR-STAT acquisition and reconstruction. The reconstructed T1 (left) and T2

(right) maps are shown on the second row. The histogram plots report the distribu-
tion of the reconstructed values over each compartment A, B and C. The standard
deviations of these distributions are reported in Table 2.2 and show great similarity
with the estimated standard deviation values.
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Table 2.1: True and Mean values of the reconstructed relaxation times per tissue type.
The standard deviation of the reconstructed values for each tissue type is reported in
brackets.

T1 [ms] T2 [ms]
true recon (std) true recon (std)

CSF 2569 2565.7 (±38.9) 329 329.1 (±2.8)
Gray m. 833 833.4 (±18.9) 83 83.0 (±0.8)
White m. 500 500.9 (±12.2) 70 70.0 (±0.6)
Fat 350 352.2 (±8.9) 70 70.0 (±0.5)
Muscle 1000 1000.6 (±31.0) 47 47.0 (±0.6)
Skin 569 570.1 (±7.7) 329 328.3 (±4.0)
Blood 1700 1699.3 (±21.7) 300 299.6 (±2.5)
Dura 2000 2001.1 (±41.1) 280 279.2 (±5.2)

ing with the smallest negative values of kx and repeating this pattern for the
equivalent of 8 full k-space coverages. In total, 1728 lines are acquired in 8.3
seconds resulting in approximately 3.7 · 105 time data points. The random tip
angles sequence is shown at the top of Fig. 2.2.
A Gaussian shaped RF pulse and a slice selective gradient waveform along the
z axis are applied. The RF pulse is 1 ms long and is defined on a 0.1 ms
dwell time step. The slice profile variation throughout the sequence is taken
into account by discretizing the spatial domain in the slice-selective direction
by 50 points and integrating the magnetization response for each point. This
integration is applied to both the forward (signal simulation) and backward
(reconstruction) steps. Gaussian noise is superimposed to the time-domain
signal such that ‖noise‖2/‖signal‖2 = 0.01. The resulting time-domain signal
is shown at the bottom of Fig. 2.2.
The parameter ω is initialized by applying a median filter to the true off-
resonance map. In experimental practice, this dataset could be generated with
a fast B0 calibration scan. The other parameters are initialized with the same
values as reported in the Implementation subsection.

2.3.2.3 In-vivo experimental demonstration at 3.0 Tesla

Finally, MR-STAT is implemented on a 3T whole-body MR system (Philips-
Ingenia). A single slice is acquired for a brain of a healthy volunteer with
a 15 channel receive head-coil. Written informed consent from the volunteer
participating in this experiment was obtained.
We employ two different sequences. The first RF train (Fig. 2.4, top) consists of
16 sinusoidal sweeps. Each lobe corresponds to a k-space filling and is randomly
scaled to achieve maximum amplitude levels in the range 5o ≤ θ ≤ 75o.
The second RF train (Fig. 2.5, top) consists of piecewise constant flip angles,
whose values are drawn from a uniform distribution in the range [5o, 60o]. Each
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of the 16 k-space fillings is thus characterized by the same tip angle excitation.
In addition, a half-angle pre-pulse and a half angle tip-back pulse are applied,
respectively, before and after each segment.
In both sequences, the excitation phases alternate between 0o and 180o. A
Gaussian shaped RF pulse with duration 0.81 ms and a slice selective gradient
are employed to achieve a 3mm slice thickness. The shortest possible values
for TE and TR are chosen, namely (TE , TR) = (2.78, 5.56) ms. The sequences
are preceded by an adiabatic inversion pulse. The sequence parameters are
converted into MATLAB format and imported in the reconstruction software.
Analogously to the synthetic case, the slice profile variation across the sequence
is included in the model by simulating the RF pulses on a 15 µs grid and taking
11 samples along the slice direction. As starting values for ω we choose 0 Hz
everywhere.
The spatial resolution is 1.8× 1.8 mm2 and the scan time is 7.8 seconds. The
measured signals are shown in Figures 2.4 and 2.5.
In these two tests, we reconstruct T1 and T2 values and we treat the other
parameters as nuisance variables, that is, they are considered unknown but
their estimation is not required to be precise.

2.4 Results

2.4.1 In silica low-resolution reconstruction
Fig. 2.6 illustrates the application of MR-STAT to the small scale reconstruc-
tion test. The distribution of reconstructed values from each compartment are
reported in the histogram plots. The standard deviations as estimated from
the covariance matrix C are averaged over each compartment and are reported
in Table 2.2. In the same Table, also the true standard deviations obtained

T1 T2

Compartment
√

[C]n,n std of recon
√

[C]n,n std of recon
A (CSF) 112.8 [ms] 114.1 [ms] 2.0 [ms] 1.8 [ms]
B (Gray m.) 16.1 [ms] 14.2 [ms] 0.9 [ms] 0.8 [ms]
C (White m.) 6.6 [ms] 5.8 [ms] 0.9 [ms] 0.8 [ms]

Table 2.2: Precision estimation test. Estimated standard deviations per compartment
as derived from the covariance matrix C versus the true standard deviation calculated
after the reconstruction. The estimated precision levels are very close to the obtained
ones.

from the reconstructed values are reported. These are calculated as√√√√ 1

K − 1

K∑
k=1

|T recon
i − T true

i |2, i = 1, 2
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where K is the number of voxels in a given compartment. From Table 1 it is
clear that not only the T1 and T2 values are accurately reconstructed (as shown
in Fig. 2.6), but also the estimated and truly obtained precision levels are very
similar.
The convergence curve for the reconstruction algorithm is reported in Fig. 2.8
and displays the relative residual norm as a function of the iteration number,
that is, the model-data misfit normalized on the norm of the data:

relative residual norm =
‖d−M(β)ρ‖

‖d‖ .

The data-model misfit eventually reaches the noise level after 5 iterations and
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Figure 2.8: Convergence curve of the MR-STAT reconstruction algorithm for the
precision estimation test (see also Fig. 2.6). The relative residual norm (data-model
misfit normalized on the norm of the data) is reported as a function of the iteration
number. Note that the algorithm eventually converges to the thermal noise level.

the algorithm halts soon afterwards.

2.4.2 In-silica high resolution reconstruction
Beside T1, T2 and ρ, also the transmit field profile and off-resonance map are
reconstructed; they are displayed in Figures 2.9 and 2.7. They closely agree
with the true values. In Table 2.1, the mean values and corresponding variations
over each tissue type are reported and show high precision.
The root-mean-squared-errors (RMSE) for the B+

1 and ω maps are also very
small, namely:

RMSE(|B+
1 |) = 0.0043 [a.u.], RMSE(ω) = 0.12 [Hz].

The reconstruction time is about 90 minutes. The median number of performed
iterations as calculated over all parallel reconstruction processes is 13.
The standard deviations estimated by MR-STAT for T1 and T2 are shown,
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Figure 2.9: T1 and T2 maps for the synthetic MR-STAT acquisition and reconstruc-
tion. (a) and (c): true and reconstructed maps. (b) and (d): standard deviation
maps estimated by MR-STAT and the error in the reconstructions (|T true
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respectively, in Fig. 2.9(b) and Fig. 2.9(d). For comparison, the actual error
maps, respectively defined as |T1 − T recon

1 | and |T2 − T recon
2 |, are also reported

and they show clear similarities.

2.4.3 In-vivo experimental demonstration at 3.0 Tesla

The obtained T1 and T2 maps are shown at the bottom of Fig. 2.4 and Fig. 2.5.
The reconstruction algorithm was halted after 12 iterations since the solution
did not significantly improve during the last few iterations. The computation
time was about 12 minutes for both datasets.

2.5 Discussion

Traditional quantitative MR methods are typically performed in two steps;
first a series of images is reconstructed, then the quantitative parameters are
estimated from these images on a voxel-by-voxel basis. The recently intro-
duced MRF method [110] works along similar lines, but shifts the focus away
from the signal localization process and onto the temporal dynamics of the
spin-system. Although MRF still adheres to the traditional two step proce-
dure, it sacrifices accurate signal triangulation in favour of a high sampling
rate. The resulting undersampling artifacts in each image are treated as a
large, zero-mean, noise-like process, thus the signal model includes a substantial
pseudo-stochastic component. MR-STAT relies instead on a fully deterministic
strategy by employing a coupled space-time model that encapsulates the entire
MR experiment. Consequently, the model accuracy is drastically enhanced and
the brute-force exhaustive search is replaced by iterative minimization methods
which exploit the structure of the underlying dynamics. The MR-STAT ap-
proach aims thus at a better utilization of the information carried by the data
and to the elimination of the dictionary search, which is notoriously hindered
by the curse of dimensionality. Another important benefit of taking this route
is that it provides deep insights into the important aspect of error estimation.
The availability of standard deviation maps is a valuable tool for quality moni-
toring; a fundamental aspect for the clinical application of quantitative MRI. It
is important to realize that the gradient trajectory used in MR-STAT does not
necessarily relate directly to the spatial resolution. The k-space in MR-STAT
is not a spatial frequency domain, as is the case in standard MRI acquisition
approaches. Although some demonstrations shown here still use a one dimen-
sional Fourier transform along the read-out direction for parallelization, the
MR-STAT formalism can, in principle, remove the explicit Fourier relationship
between the time and image domain in its entirety. This will be beneficial in
the case of non-cartesian trajectories such as radial and spiral or for non-linear
gradient field systems [73]. As we move more and more along this direction,
it may be better to think of trajectories in gradient space than in an actual
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k-space. Inversion theory provides tools to generalize the concept of encoding
capability for transient-states sequences when time and space dependence are
implicitly entangled in the signal and results from Fourier theory are no longer
applicable.
The primary cost of the MR-STAT approach is that all quantitative param-
eters must be estimated at once, which leads to a formidable inversion prob-
lem. We have however been able to reconstruct multi-parametric maps using
a high performance computing facility within a reasonable computation time.
The experimental design is more flexible since neither steady-states or static
equilibrium conditions are needed nor the incoherence between undersampling
artifacts and true signal; this allows for very short acquisitions (few seconds
for a 2D slice) based upon experimentally reliable cartesian read-out schemes.
In one of the experiments (see Fig. 2.5), we employed a step-wise flip-angle
scheme combined with a standard bSSFP sequence, which is a widely available
protocol on regular MR systems and does not require major adaptations on
the acquisition. Also on the reconstruction side, flexibility is guaranteed by
the inverse approach of MR-STAT; any changes made by the operator at the
console during the exam can be easily accommodated in the reconstruction.
MR-STAT has been developed upon the philosophy that scanner time is much
more expensive than computing time. We believe that this gap will keep grow-
ing in the future as computing power and algorithmic acceleration constantly
increase. The current trends in bio-informatics and genomics show that local
computing clusters or cloud computing on remote servers are becoming in-
creasingly available in a hospital setting. The moderate investment in terms of
the required computing infrastructure is highly profitable given the potential
of MR-STAT for improving cost-effectiveness and patient comfort due to the
reduced scan times and simpler workflows.
This study has focused on the computational and experimental proof-of-principle
of MR-STAT. There is room left to study and optimize the accuracy, precision
and speed of this framework. For instance, regularization techniques could be
applied to reduce the noise amplification in the in-vivo measurements. Other
techniques that could enhance MR-STAT are parallel imaging [146, 135, 61]
and compressed sensing [109, 50]. The availability of multiple independent
receivers and sparsity regularization terms can dramatically improve the tri-
angulation of the signal origins thus greatly improving the conditioning of the
comprehensive optimization problem. In general, optimum experiment design
techniques [27, 184] could be applied to maximize the differentiation between
signal evolutions and possibly enhance the rate of convergence while maintain-
ing short acquisition times.
With this work, we intended to prove that quantitative MRI can be treated as
a nonlinear tomographic problem and therefore large scale nonlinear optimiza-
tion techniques can be successfully applied. We hope that that this manuscript
will inspire researchers from other fields, to try and apply their experience
and knowledge in the area of large scale inversion problems to the qMRI and
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medical imaging in general.

2.6 Conclusion

A new framework for multi-parametric quantitative MRI, called MR-STAT,
has been presented. Signal localization and parameter estimation are solved si-
multaneously by inverting a coupled space-time model from time domain data.
This is obtained by established large scale nonlinear inversion techniques run-
ning on a high performance computing facility. The measurement efficiency is
boosted by the elimination of dead times and traditional assumptions that in-
ject artifacts into standard reconstruction approaches are circumvented. More-
over, this new formalism provides insights into the precision estimation of fast
quantitative MRI.
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Abstract

MR-STAT is a recently proposed framework that allows the re-
construction of multiple quantitative parameter maps from a single
short scan by performing spatial localisation and parameter estima-
tion on the time domain data simultaneously, without relying on the
FFT. To do this at high-resolution, specialized algorithms are re-
quired to solve the underlying large-scale non-linear optimisation
problem. We propose a matrix-free and parallelized inexact Gauss-
Newton based reconstruction algorithm for this purpose. The pro-
posed algorithm is implemented on a high performance computing
cluster and is demonstrated to be able to generate high-resolution
(1mm× 1mm in-plane resolution) quantitative parameter maps in
simulation, phantom and in-vivo brain experiments. Reconstructed
T1 and T2 values for the gel phantoms are in agreement with results
from gold standard measurements and for the in-vivo experiments
the quantitative values show good agreement with literature val-
ues. In all experiments short pulse sequences with robust Cartesian
sampling are used for which conventional MR Fingerprinting recon-
structions are shown to fail.
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3.1 Introduction

Conventional magnetic resonance imaging (“MRI”) methods rely on the Fourier-
Transform relationship between signal and local magnetization value for spatial
encoding. Tissue differentiation is possible in the resulting qualitative images
because different tissue types have distinct MR-related biophysical properties
like T1 and T2 relaxation times. Quantitative MRI (“qMRI”) methods aim to
estimate MR-related biophysical properties like T1 and T2 relaxation times.
Quantitative images could provide additional diagnostic value and are more
suited for the purpose of multi-center studies and computer-aided diagnosis
[159, 45]. The most straightforward and robust choices for T1 and T2 mapping
sequences, i.e. single echo (inversion recovery) spin echo sequences have pro-
hibitively long scan times. Over time, a multitude of alternative pulse sequences
have been developed that reduce acquisition times to clinically acceptable lev-
els [116, 108, 47, 46]. In recent years acquisition times have been reduced even
further with advanced reconstruction techniques that include more information
of the underlying physical processes in the reconstructions [13], add a-priori
knowledge in the form of sparsity or low-rank constraints [189] and/or allow
estimation of multiple parameter maps simultaneously [158, 144]. A prime ex-
ample is MR Fingerprinting (“MRF”, [110]). In MRF a transient-state pulse
sequence with quasi-random components is used and many highly undersam-
pled k-spaces are acquired in a single, short acquisition. The Fast Fourier
Transform (“FFT”) is applied on each k-space to generate many snapshot im-
ages. Then, on a voxel-per-voxel basis, the measured fingerprints are matched
to a precomputed Bloch-equation based dictionary to obtain the quantitative
parameters. Through this novel combination of transient-state sequences with
a pattern recognition step, MRF has been able to drastically reduce qMRI
acquisition times.

MR-STAT [141] is a recently proposed qMRI framework that, similarly to
MRF, aims to estimate multiple parameter maps from a single short scan simul-
taneously. However, instead of performing FFTs in a separate step for spatial
localisation of signal, parameter maps are fitted directly to the measured time-
domain signal using a Bloch-equation based volumetric signal model. That
is, a single large-scale non-linear optimisation problem is numerically solved
in which the spatial localisation and parameter estimation are performed si-
multaneously. In addition, instead of using a dictionary matching procedure,
in MR-STAT gradient-based iterative methods are used to solve the optimisa-
tion problem. Compared to MRF, the MR-STAT approach results in different
trade-offs made in the reconstruction. Since the FFT is no longer explicitly
used to transform back and forth between image space and frequency space,
the spatial gradient encoding is entangled directly into the MR-STAT signal
model. With this approach, data from different readouts of a transient state
pulse sequence can be naturally combined into a single reconstruction process.
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There is no reliance on dictionary compression [5] or compressed sensing [44]
techniques to suppress aliasing artefacts. As will be demonstrated, MR-STAT
allows for the reconstruction of high quality parameter maps from very short
scans even when using standard and experimentally reliable Cartesian sampling
strategies.

Solving the non-linear optimisation problem that results from using the
volumetric signal model in MR-STAT does introduce new computational chal-
lenges. As will be discussed, the computational and memory requirements
scale quadratically with the resolution and parallelizing the computations is
non-trivial because the FFT is not used to spatially decouple the unknowns.
In Sbrizzi et al. [141], to alleviate the computational challenges at high reso-
lution, a 1D FFT along the readout direction was still employed to decouple
the problem in one direction in space, resulting in many smaller and indepen-
dent 1D subproblems to be solved. This hybrid approach only partly benefits
from the above mentioned advantages of using a volumetric signal model, e.g.,
dynamical behaviour during readouts cannot be taken into account. Further-
more, it can only be used with Cartesian sampling strategies. Thirdly, if the
technique is applied to 3D acquisitions, each of the resulting 2D subproblems
will itself be a large-scale problem. Therefore, to unlock the full potential of
MR-STAT, a specialized reconstruction algorithm is required that:

1. does not require storage of large model matrices (i.e. is matrix-free),

2. is suitable for a parallel computing implementation to reduce computation
times,

3. is extensible to non-Cartesian sampling strategies.

In the current work we present a reconstruction algorithm for MR-STAT based
on an inexact Gauss-Newton method (see [148] and Algorithm 7.2 in [120])
that satisfies the above requirements. For partial derivative computations that
are needed in the reconstruction we propose to use exact algorithmic differen-
tiation. With the new reconstruction algorithm we demonstrate the potential
of the MR-STAT framework through simulation studies, phantom experiments
and by reconstructing high-resolution in-vivo brain maps. Although in princi-
ple the reconstruction algorithm can be used with non-Cartesian sampling, in
all experiments we will use Cartesian sampling patterns. The reason is that
Cartesian sequences - which are used in the vast majority of clinical exams -
are challenging to work with in the context of conventional MRF [150] whereas
with MR-STAT parameter maps can be reconstructed successfully even when
using very short acquisitions in the order of seconds per slice.
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3.2 Theory

In this section we first review the MR-STAT framework as presented in Chap-
ter 2. Then we discuss the computational challenges resulting from the large
scale reconstruction problem and we propose techniques to deal with these
challenges.

3.2.1 MR-STAT Framework

The time evolution of a single spin isochromat m = (mx,my,mz) with spatial
coordinates r = (x, y, z) and tissue properties θ = (T1, T2, . . .) is governed by
the Bloch equations.

Let m = mx + imy be the transverse component of the magnetization in
the rotating frame. The demodulated time-domain signal s is equal to the
volume integral of the transverse magnetisation of all spins within the field of
view V , weighted by their effective proton spin densities ρ. For the purpose of
this work, ρ includes also the amplitude of the receive coil sensitivity and the
transceive phase, thus ρ is a complex quantity, i.e. ρ = ρx + iρy. In short:

s(t) =

∫
V

ρ(r)m(r,θ(r), t)dr. (3.2.1)

After discretization of the field of view V into Nv voxels, each having volume
∆V , equation 3.2.1 becomes

s(t) =

Nv∑
j=1

ρjmj(θj , t)∆V . (3.2.2)

Here mj is the magnetization in voxel j, which can be computed by numerical
integration of the Bloch equations.

Let Nt be the total number of signal samples and let t1, . . . , tNt denote the
sampling times. Define the magnetization vector mj in voxel j as

mj := (mj(θj , t1), . . . ,mj(θj , tNt
)) ∈ CNt (3.2.3)

and the signal vector s ∈ CNt as

s =

Nv∑
j=1

ρjmj , (3.2.4)

where ∆V is assumed to be the same in all voxels and is absorbed into the
proton density. Note that if we introduce the magnetization matrix M ∈
CNt×Nv ,

Mi,j := mj(θj , ti), (3.2.5)
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and proton density vector ρ ∈ CNv

ρ = (ρ1, . . . , ρNv
) , (3.2.6)

then s can be written as
s = Mρ. (3.2.7)

Let Np denote the number of distinct parameters per voxel (including real
and imaginary parts of the proton density). Then s depends on N := Nv ×Np
different parameters. All parameters are concatenated into a single vector
α ∈ RN in such a way that indices {j + kNv | k = 0 . . . , Np − 1} denote the
parameters associated with voxel j.

Now, given a vector of measured time-domain samples d ∈ CNs , define the
residual vector r ∈ CNt as

r(α) = d− s(α) (3.2.8)

and define the non-linear least-squares objective function f : RN → R as

f(α) =
1

2
‖r(α)‖22 (3.2.9)

The parameter maps α∗ are obtained by numerically solving

α∗ = argminαf(α), (3.2.10)

subject to physical constraints represented by the Bloch equations and realis-
tically attainable intervals for the parameters.

Computational Challenges
Note that (3.2.10) is a non-linear optimization problem that requires iterative
algorithms to be solved. At each iteration, the signal s = Mρ needs to be
computed and that requires the Bloch equations to be integrated for each voxel.
In addition, the gradient of f (i.e. the vector of partial derivatives of f with
respect to each of the parameters) needs to be computed. From the least-
squares structure of the problem it follows that the gradient can be expressed
as

g = ∇f = Re
{
JHr

}
, (3.2.11)

where J ∈ CNt×Nv is the Jacobian matrix defined as

J(α) :=

[
∂r

∂α1
. . .

∂r

∂αN

]
, (3.2.12)

JH is the Hermitian transpose of J and Re {} is the real-part operator.
A gradient-descent type algorithm could be used to minimize (3.2.10) but

it may result in poor convergence (see Chapter 3 of Nocedal and Wright [120]).
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Table 3.1: On-disk sizes of MR-STAT matrices for Np = 4 and Nt = N = 4×Nv for
an increasing number of voxels Nv. The memory sizes are computed as 2 ·Nv ·Nt · 8
bytes (M), 2 · N · Nt · 8 bytes (J) and N2 · 8 bytes (H) respectively. The factors of
2 come from the real and imaginary components and the factor of 8 represents the
bytes necessary to store 64-bit floating point numbers.

Image size Voxels (Nv) M J H
64× 64 4, 096 1 GB 4 GB 2 GB

128× 128 16, 384 16 GB 64 GB 32 GB
256× 256 65, 536 256 GB 1,024 GB 512 GB
512× 512 262, 144 4,096 GB 16,384 GB 8,192 GB

Second-order methods (i.e. Newton methods) typically lead to better conver-
gence. At each iteration, these methods require the inversion of a linear system
involving (an approximation to) the Hessian matrix H ∈ RN×N , which includes
curvature information and is defined as

H(α) :=

[
∂2f

∂αi∂αj

]Np

i,j=1

. (3.2.13)

A second-order MR-STAT reconstruction algorithm would follow the steps as
outlined in Algorithm 3.1:

Algorithm 3.1 Minimize f(α) = 1
2‖d− s(α)‖22

Require: Initial guess α
while not converged do
1. Compute residual: r = d− s = d−Mρ
2. Compute gradient: g = Re

{
JHr

}
3. Solve linear system: Hp = −g
4. Update parameters: α = α+ p

end while

Using Algorithm 3.1 for MR-STAT poses several practical challenges due
to the large scale of the problem.

First of all, to estimate N parameters, the number of sample points Nt will
in general be in the order of N = Np×Nv as well. Assuming Nt ≈ N , it follows
that M will be of size Nt × Nv ≈ (NpNv) × Nv (complex entries) and J will
be of size 2Nt ×N ≈ (NpNv)× (NpNv) (complex entries). Since H will be of
size (NpNv)× (NpNv) as well, it follows that all three matrices scale with N2

v .
In Table 3.1, the required computer memory to store matrices of these sizes is
reported for various values of Nv for the case Np = 4. It can be seen that, even
for 2D acquisitions, it will be infeasible to store these matrices in memory for
clinically relevant resolutions.



i
i

i
i

i
i

i
i

50

Secondly, the actual time needed to compute the entries of M, J and H
scales with N2

v as well. When using a regular desktop computer the recon-
struction times quickly become too long to make MR-STAT useful in clinical
practice.

Fortunately, as will be detailed in the next section, Algorithm 3.1 only re-
quires matrix-vector products with the matrices M,J and (approximations to)
H. These matrix-vector product can be computed without having to store the
full matrices in memory. Moreover, the computation of the matrix-vector prod-
ucts can be efficiently distributed among multiple computing cores on a high
performance computing cluster, reducing the MR-STAT computation times to
acceptable levels for off-line reconstructions.

3.2.2 Solution Strategies

3.2.2.1 Computing the time-domain signal s

In the first step of Algorithm 3.1 we need to compute r = d− s for the current
estimate of the parameters α. Recall that

s = Mρ =

Nv∑
j=1

ρjmj . (3.2.14)

Since the time evolution of the magnetization in each voxel is assumed to be
independent from other voxels, the mj can be computed independently from
each other. In particular, storage of the matrixM is not required for computing
s, see Algorithm 3.2.

Algorithm 3.2 Compute s(α) = Mρ (matrix-free, serial)

Initialize s = zeros(Nt,1)
for j ← 1 to Nv do
1. Integrate Bloch equations in time to obtain mj =

[mj(t1), . . . ,mj(tNt
)]
T

2. Set s = s + ρjmj

end for
Return s

Note that Algorithm 3.2 only requires the allocation of two vectors of length
Nt, which is feasible on modern computing architectures for both 2D and 3D
acquisitions. The computation of s can then be parallelized usingNc computing
cores by following the procedure outlined in Algorithm 3.3 (see also [149, 102]).

The communication requirements for this parallelized algorithm can be sum-
marized as follows:

• To distribute the parameters, the master process sends N/Nc parameters
to each of the Nc slaves.
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Algorithm 3.3 Compute s(α) = Mρ (matrix-free, parallel)

Require: Master process pm, slave processes pi for i ∈ [1, . . . , Nc].
1. pm distributes α: each pi receives the parameters associated with voxels
[(i− 1) ∗Nv + 1, . . . , i ∗Nv].
2. Each pi uses Algorithm 3.2 to compute a “local” version of the signal s̃i.
3. Each pi communicates s̃i back to the pm.
4. On pm the signal s is computed as s =

∑Nc

i=1 s̃i.

• To receive the local signals from the slaves, each slave sends a vector of
length Nt ≈ N to the master process.

3.2.2.2 Computing the gradient g

To compute g = ∇f for the current estimate of the parameters α, recall that

g = Re
{
JHr

}
. (3.2.15)

Since J is defined as
J =

[
∂r

∂α1
. . .

∂r

∂αN

]
, (3.2.16)

it follows that

g =


Re
{〈

∂r
∂α1

, r
〉}

...
Re
{〈

∂r
∂αN

, r
〉}
 . (3.2.17)

To compute the ∂r
∂αi

, again note that the magnetization in different voxels
is assumed to evolve independently. Hence if αi is a parameter associated with
voxel j (i.e. j = i mod Nv), it follows that

∂r

∂αi
= −

∂
(∑Nv

r=1 ρrmr

)
∂αi

= −∂ (ρjmj)

∂αi
. (3.2.18)

Using Algorithm 3.4 only requires storage of one vector of length N for
the output and - in principle - one complex vector of length Nt to store the
intermediate partial derivative vector. In practice we will compute the Np
partial derivatives for each voxel simultaneously so that Np complex vectors of
length Nt are stored simultaneously. For a high-resolution 2D scan this only
requires limited memory (in the order of tens of megabytes).

Utilizing Algorithm 3.4, the computation of g can be performed in parallel
as outlined in Algorithm 3.5. The parallelization schemes for both the signal
and gradient computations are visualized in Figure 3.1.

Communication requirements for the parallel gradient computation can be
summarized as follows:
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Algorithm 3.4 Compute g(α) = Re
{
JHr

}
(matrix-free, serial)

Initialize g = zeros(N ,1)
for j ← 1 to Nv do
for k ← 1 to Np do
1. Set i = j + (k − 1)Nv
2. Compute partial derivative ∂r

∂αi
= −∂(ρjmj)

∂αi

3. Set g[i] = Re
{〈

∂r
∂αi

, r
〉}

end for
end for
Return g

Algorithm 3.5 Compute g(α) = Re
{
JHr

}
(matrix-free, parallel)

Require: Master process pM , slave processes pi for i ∈ [1, . . . , Nc].
1. pm distributes α: each pi receives the parameters associated with voxels
[(i− 1) ∗Nv + 1, . . . , i ∗Nv].
2. pm distributes r to each pi.
3. Each pi uses Algorithm 3.4 to compute a “local” gradient g̃i.
4. Each pi communicates g̃i back to the pm.
5. On pm the gradient s is computed by vertical concatenation of the g̃i.
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Figure 3.1: Visualization of the (matrix-free) algorithms to compute the signal [left]
and the gradient [right] in a parallelized fashion.
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• To distribute the parameters, the master process sends N/Nc parameters
to each of the Nc slaves.

• To distribute the residual vector the master process sends a vector of
length Nt to each slave.

• To receive the local gradients from the slaves, each slave sends a vector
of length N/Nc to the master process.

Note that for both algorithms 3.3 and 3.5, the communication requirements
scale linearly with the number of parameters N for a fixed number of cores Nc.
Since N = Nv ×Np, it follows that the communication requirements scale lin-
early with Nv as well. As discussed in the previous section the computational
requirements scale quadratically with Nv. Therefore we hypothesize that, as
long as Nc � Nv, the communication overhead is negligible compared to re-
duction in computation times achieved by dividing the computation load over
Nc computing cores. That is, we expect the total computation time to de-
crease linearly with the number of cores available under this assumption. This
hypothesis is confirmed in Figure 3.2 in the results section.

3.2.2.3 Incorporating Curvature Information

Given the ability to compute the gradient g using the matrix-free, parallelized
algorithm from the previous subsection, in principle the so called limited-
memory Broyden–Fletcher–Goldfarb–Shanno (“L-BFGS”, [119]) method can be
applied to obtain the update step p at each iteration. The L-BFGS method
approximates the inverse of the Hessian matrix using a limited number of gradi-
ent vectors from previous iterations. However, in practice the L-BFGS method
was observed to result in poor convergence.

Alternatively, since we are dealing with a least-squares problem, a Gauss-
Newton method might be used in which the Hessian matrix H in Algorithm
3.1 is approximated by Re

{
JHJ

}
and

Re
{
JHJ

}
p = −g (3.2.19)

is solved to obtain update steps p. Note that the matrix Re
{
JHJ

}
is of the

same size as the Hessian matrix itself and thus, in principle, cannot be stored
into computer memory. If, however, we use iterative techniques (e.g. a Conju-
gate Gradient method) to solve the linear system Re

{
JHJ

}
p = −Re {g}, we

only need matrix-vector products with Re
{
JHJ

}
. In the previous subsection

it was outlined how matrix-vector products of the form JHv may be computed
in a matrix-free, parallelized fashion. Similar techniques can be applied to
matrix-vector products of the form Jv. Hence matrix-vector products of the
form Re

{
JHJ

}
v can be computed in a matrix-free, parallelized fashion by first

computing y = Jv and subsequently computing Re
{
JHy

}
. With this tech-

nique, the linear system in equation (3.2.19) can be solved numerically even
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for large scale problems. In practice it will not be necessary to solve equation
(3.2.19) to high precision and the number of iterations in this inner loop can be
limited, resulting in an inexact Gauss-Newton method (see [148] and Algorithm
7.2 in [120]) as outlined in Algorithm 3.6

Algorithm 3.6 (Inexact Gauss-Newton MR-STAT) Minimize f(α) = 1
2‖d −

s(α)‖22
Require: Initial guess α0, initial trust radius ∆0

while not converged do
Compute s (matrix-free, parallel)
Set r = d− s
Compute g = JHr (matrix-free, parallel)
Solve with CG iterations (inner GN loop):
Re
{
JHJ

}
p = −g (matrix-free, parallel)

Set α = α+ p
end while

3.3 Methods

The matrix-free, parallelized MR-STAT reconstruction algorithm was tested
on both simulated and experimentally acquired data.

3.3.1 Pulse Sequence

In all test cases, a transient-state 2D balanced gradient-echo pulse sequence
similar to the pulse sequence in Sbrizzi et al [141] was used. Throughout the
whole sequence the TR was fixed and TE was set to TR/2. A linear, Cartesian
sampling strategy was employed together with time-varying flip angles that
change according to a smoothly varying pattern. We refer to Supplementary
Material S1 for more details on the sampling trajectory and flip angle pattern.
The phase of the RF pulse alternated between 0 and 180 degrees. Changing the
flip angles prevents the spins from reaching a steady-state and by following a
smoothly varying pattern the spin-echo behaviour of bSSFP sequences [142] is
preserved to a large extent. This spin-echo like behaviour is needed for proper
T2 estimation and at the same time it also effectively eliminates sensitivity
to ∆B0 within a certain passband of off-resonances [6]. An added benefit
of the smoothly changing flip angle train is the improved convexity of the
minimization landscape [140].

Each RF pulse has a Gaussian envelope and at the start of the pulse se-
quence a non-selective inversion pulse is played out for enhanced T1 encoding.
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The pulse sequence was implemented on a 1.5 T clinical MR system (Ingenia,
Philips Healthcare, Best, The Netherlands).

3.3.2 Reconstructions

All reconstruction code was written in the open-source Julia programming lan-
guage [15]. To compute the MR-signal for a given set of parameters, an opti-
mized Bloch-equation solver was implemented which also takes into account the
slice profile [165]. To compute exact partial derivatives algorithmic differenti-
ation in forward mode [179] was implemented. We refer to the Supplementary
Material S2 for more details.

The inexact Gauss-Newton method was implemented using a trust-region
framework (following [148] and Algorithm 7.2 in [120]). In order to facili-
tate bound constraints on the parameters, reflection at feasible boundaries was
incorporated [38]. For the L-BFGS method, an implementation from the Op-
tim.jl package [86] was used. The reconstruction algorithm was implemented
on a high performance computing cluster which consists of multiple Intel Xeon
Gold 6148 nodes with 40 cores each, on which the CentOS Linux 7 (Core)
operating system is installed.

For all experiments, T1, T2 and ρ (complex) maps are reconstructed. For
the data obtained with clinical MR systems we also reconstruct |B+

1 | to take
into account transmit field inhomogeneities. The off-resonance ∆B0 was set to
zero and thus it was not reconstructed because of the flat spectral response of
the balanced sequence within the passband. The non-linear parameters were
initialized as follows: T1 = 1000 ms, T2 = 100 ms, |B+

1 | = 1 a.u. and ∆B0 = 0
Hz. In previous work [141] the Variable Projection method (“VARPRO”, [57])
was utilized to separate the linear parameters (i.e. proton density) from the
non-linear parameters. The VARPRO method in principle requires computing
(through SVD or QR decomposition) and storing an orthogonal basis for the
matrix M. For the matrix sizes in the current work that would be computa-
tionally infeasible and it is non-trivial to extend the VARPRO technique to
matrix-free methods. Therefore, in the current work we treat the proton den-
sities as non-linear parameters. We only make use of the linearity to provide
an initial guess for the proton densities. That is, given the initial guess for
the non-linear parameters, the (complex) proton density was initialized as the
least squares solution to the linear system M(α0)ρ = d obtained using a linear
solver (LSQR). Based on the resulting initial guess for the proton density, a
mask was drawn to exclude regions with no significant proton density from
subsequent simulations.

In all reconstructions, logarithmic scaling is applied to both T1 and T2

parameters. The variable substitution brings both variables in a similar range
and it thus improves convergence of the algorithm.
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3.3.3 Numerical Brain Simulation

Signal from a numerical brain phantom [9] with a field-of-view of 192 mm ×
192 mm and voxel size of 1 mm × 1 mm was simulated using the transient-state
pulse sequence. A total number of 8×192 = 1536 readouts were simulated (each
phase encoding line was acquired eight times but note that for each readout
line the flip angle and thus state of the spins is different) with a TR of 7.88 ms
and a TE of 3.94 ms. The total sequence duration was 12.1 s.

Reconstructions were performed using 64 cores. The number of outer and
inner iterations for the inexact Gauss-Newton method were limited to 40 and
20, respectively.

For comparison purposes, we also performed MRF reconstructions on signal
from the numerical brain phantom using the Cartesian trajectory, as well as
signal from radial and spiral trajectories for which MRF is known to work
well. In all three cases the same flip angle train, TE and TR were used. For
the radial case, kmax was extended by a factor of

√
2 and each readout the

spoke was rotated by the golden angle. For the spiral acquisition a variable
density spiral was generated [98, 84] that would require 24 interleaves to fully
sample the inner region of k-space and 48 interleaves for the outer region of
k-space. The spiral was rotated by the golden angle each readout. Data dMRF

was then simulated by applying a forward operator, consisting of the (non-
uniform) FFT [51] and an undersampling operator, on fingerprints simulated
using the numerical brain phantom. To perform the MRF reconstructions, a
dictionary consisting of 100 T1 values from 0.1 s to 5.0 s in increments of 4 %
and 100 T2 values from 0.01 s to 2.0 s in increments of 5.5 % was generated. The
T1 and T2 values of the phantom were not used in generating the dictionary.
The dictionary was compressed in the time direction to rank 5 [114] using
the SVD. For all trajectories (linear) low-rank forward operators EMRF were
formed that consisted of the expansion of low-rank coefficients to the full time-
series, a nuFFT operator, and a sampling operator compression [5]. Low-rank
snapshot images xMRF were reconstructed from the undersampled data dMRF

by solving the linear system

xMRF = argminx‖dMRF −EMRFx‖22 (3.3.1)

with LSQR (similar to e.g. [191] and low-rank inversion in [5]). Finally, dic-
tionary matching with the compressed dictionary was performed on xMRF to
obtain the parameter estimates.

To further study the effect of noise on the MR-STAT reconstruction al-
gorithm, additional reconstructions were performed where complex Gaussian
noise was added to the simulated signal such that ‖signal‖2/‖noise‖2 = 50, 25
and 10.
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3.3.4 Gel Phantom Experiment

Signal from a 2D transverse slice of six gadolinium-doped gel phantoms (TO5,
Eurospin II test system, Scotland) was collected on the 1.5 T MR system using
the manufacturer’s thirteen-channel receive headcoil. In total 8 × 96 = 768
readout lines were acquired with a spatial resolution of 1 mm × 1 mm × 5
mm and a field-of-view of 96 mm × 96 mm. The TR and TE were 7.4 ms
and 3.7 ms, respectively, resulting in a total acquisition time of 5.7 s. For
reproducibility purposes the MR-STAT scan was repeated four times with full
relaxation in between the different scans.

Parameters that describe the pulse sequence were exported from the scanner
and subsequently loaded into Matlab [113]. The measured signals from different
receive channels were compressed into a single signal by applying the principal
component analysis and choosing the principle mode [31].

Reconstructions of the parameter maps were performed using the inexact
Gauss-Newton method on the computing cluster using 32 cores. The number
of inner iterations was limited to fifteen whereas the number of outer iterations
was limited to ten.

To assess correctness of the T1 and T2 maps reconstructed with MR-STAT,
data was also acquired using gold standard methods in the form of an inversion-
recovery single spin-echo protocol with inversion times of [50, 100, 150, 350,
550, 850, 1250] ms for T1 mapping and a single echo spin-echo protocol with
echo times of [8, 28, 48, 88, 138, 188] ms for T2 mapping.

3.3.5 In-vivo experiments

Using the 1.5 T clinical MR system we also acquired signal from 2D transverse
slices of the brain in three healthy volunteers. Each volunteer gave written
informed consent. For each acquisition, a total of 8 × 192 = 1536 readout
lines were acquired with acquisition parameters as reported in Table 3.2. After
masking, approximately 25,000 voxels remain for which quantitative param-
eters are estimated. The MR-STAT reconstructions were performed with 64
cores using the reconstruction settings as for the gel phantom experiment.

To demonstrate the effect of accelerated acquisitions, we also performed
reconstructions using time-domain data corresponding to the first 896 TRs
and the first 448 TRs from one of the subjects. The corresponding acquisition
times were 6.8 s and 3.4 s respectively.

One of the in-vivo brain datasets was also used to test the effectiveness
of the parallelization scheme. Individual matrix-vector products of the form
Mv and JHv were computed and timed for 5, 10, 20, 40, 60, 80, 100, 120 and 240
cores respectively.
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Table 3.2: Acquisition parameters for in-vivo MR-STAT brain scans.

Acquisition parameter Subjects 1 and 2 Subject 3
Field strength 1.5 T 1.5 T
In-plane resolution 1 mm × 1 mm 1 mm × 1 mm
Field-of-view 224 mm × 224 mm 224 mm × 224 mm
Slice thickness 5 mm 3 mm
TR 7.6 ms 7.9 ms
TE 3.8 ms 3.95 ms
Readout bandwidth 85.6 kHz 85.6 kHz
Pulse duration 0.76 ms 0.81 ms
Scan time 13.6 s 14.15 s

3.4 Results

3.4.1 Parallelization

In Figure 3.2 the time required to compute matrix-vector products of the form
Mv and JHv for one of the in-vivo datasets is shown for an increasing number
of computing cores Nc. Initially we observe a linear decrease in computation
times, however this linear decrease flattens beyond approximately 64 cores.
This effect can be explained by the increase in communication overhead when
using more cores and increased competition between cores for shared resources
like memory bandwidth and cache memory. Although the linear decrease flat-
tens beyond 64 cores, a decrease in computation times is still observed even
when going towards 240 cores. Because for MR-STAT reconstruction times
are dominated by the computation of these matrix-vector products, the re-
construction times can thus be effectively reduced by the proposed parallel
implementation.

3.4.2 Numerical Brain Phantom

The T1, T2 and proton density maps reconstructed using (Cartesian) MR-STAT
and Cartesian, radial and spiral MRF are shown in Figure 3.3 as well as the
corresponding absolute relative error maps. It can be seen that the parameter
maps reconstructed with either MR-STAT or spiral MRF are in excellent agree-
ment with the ground truth. The radial MRF reconstructions show stronger
residual streaking artefacts but in general the estimated parameter values are
close to the ground truth. For the Cartesian case the MRF reconstruction is
unable to cope with the high undersampling (factor 192), resulting in severely
biased parameter maps.

To quantify the quality of the reconstructions, normalized root mean square
errors (“NRMSE”), high-frequency error norms (“HFEN”, [136], with standard
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Figure 3.2: Time needed to compute matrix-vector products of the form Mv and
JHv for different numbers of cores Nc used on a high performance computing cluster.

deviation of 1.5 pixels) and mean absolute relative errors (“MAPE”) were com-
puted and are reported in Table 3.3. It can be seen that the MR-STAT re-
construction results in the lowest NRSME and MAPE for all three parameters.
The HFEN for the radial and spiral MRF and Cartesian MR-STAT reconstruc-
tions are similar.

In Figure 3.4 convergence curves for MR-STAT with the inexact Gauss-
Newton method for different SNR levels (50, 25 and 10) are shown as well as
mean absolute percentage errors per iteration for T1, T2 and proton density.
For the higher SNR cases the error values stabilize and the method converges
after relatively few, e.g. ten, outer iterations. It can be seen that for the
lowest SNR case, overfitting occurs after around six iterations. Based on these
observations the number of outer iterations for the in-vivo case was chosen to
be ten.

3.4.3 Gel Phantoms

In Figure 3.5, reconstructed T1 and T2 maps for the gel phantoms are shown
and the mean T1 and T2 values per tube are compared to the gold standard
measurements. It can be seen that the mean values are in excellent agreement.
The mean values reported for the different repetitions of the MR-STAT scans
are also in good agreement with each other (i.e. within standard deviations).
In general the standard deviations for the reconstructed T2 values is higher
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Figure 3.3: [First column] Ground truth T1, T2 and proton density maps for the nu-
merical brain phantom. [Second, third and fourth columns] Reconstructed parameter
maps and relative error maps for MRF with linear Cartesian, golden angle radial and
golden angle spiral trajectories, respectively. [Fifth column] Reconstructed parameter
maps and relative error maps for MR-STAT using a linear, Cartesian sampling trajec-
tory. The MRF spiral and MR-STAT reconstructions both show excellent agreement
with the ground truth values. The radial MRF reconstructions show residual aliasing
artefacts and the Cartesian MRF reconstruction is heavily biased.
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Figure 3.4: [Top Left] Convergence curves for the inexact Gauss-Newton MR-STAT
method applied to data generated from the numerical brain phantom with different
noise levels (SNR 50, 25, 10). In all cases the value of the cost function converges to
the value expected based on the noise level. [Top right and bottom row] Mean absolute
percentage errors for T1, T2 and proton density (magnitude) maps per iteration of the
inexact Gauss-Newton method for different noise levels.
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Table 3.3: Three different error metrics (NRMSE, HFEN, MAPE) computed for
the MRF (Cartesian, Radial and Spiral) and MR-STAT (Cartesian) reconstructions
on the numerical brain phantom. No noise was added to the data in these recon-
structions. The MR-STAT reconstructions result in the lowest errors because the
reconstructions do not suffer from undersampling artefacts and because there are no
discretization errors due to a finite dictionary.

Parameter Metric Units MRF Cartesian MRF Radial MRF Spiral MR-STAT Cartesian
T1 NRMSE [a.u.] 0.2302 0.0432 0.0110 0.0025

MAPE [%] 65.6 8.5 2.5 0.4
HFEN [a.u.] 18.1 15.6 15.7 15.7

T2 NRMSE [a.u.] 0.2486 0.0756 0.0492 0.0048
MAPE [%] 56.1 8.1 4.9 0.9
HFEN [a.u.] 3.2 2.5 2.4 2.5

ρ NRMSE [a.u.] 1.0979 0.2626 0.1129 0.0830
MAPE [%] 15.8 4.8 2.7 1.8
HFEN [a.u.] 8.5 5.6 5.5 5.4

than for T1 values, indicating a much stronger encoding of T1 information into
the signal which can be explained by the inversion pulse at the start of the
sequence.

To reconstruct the parameter maps, only five iterations of the reconstruc-
tion algorithm were needed and the total reconstruction time was approxi-
mately nine minutes using 32 computing cores. In Figure 3.6 a logarithmic
plot of the measured signal magnitude and the residual vector after the fifth
iteration are displayed for one of the MR-STAT repetitions. Histograms of the
measured noise and the residual vectors are also shown. It can be seen that
the residual vector follows a zero-mean Gaussian distribution with standard
deviation similar to the noise, indicating that the model used in MR-STAT is
able to adequately describe the measured time-domain signal.

3.4.4 High-resolution 2D brain scan

In Figure 3.7, the reconstructed T1, T2 and proton density (magnitude) maps
for the in-vivo brain scans performed on the three volunteers are shown. The
maps show clear contrast between white matter, gray matter and cerebrospinal
fluid (“CSF”). The maps corresponding to subject 3 appear noisier compared
to the maps corresponding to subjects 1 and 2, which can be explained by
the differences in slice thickness in the acquisition (3 mm vs 5 mm). Mean T1

and T2 values and standard deviations in regions of white- and gray matter
are reported in Table 3.4. The mean values are generally in good agreement
with values found in literature for 1.5 T experiments [41, 46, 28] although
we do observe an underestimation compared to some other studies, especially
in white matter. We expect the underestimation is related to magnetization
transfer that is known to affect the signal of balanced gradient-echo sequences
(in a way that depends on the used TR and RF pulse duration) [17, 127]. The
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Figure 3.5: [Top row] T1 and T2 maps reconstructed with MR-STAT from gel-phantom
data. [Middle and bottom rows] Comparison of mean T1 and T2 values obtained with
MR-STAT and gold standard methods for each of the six gel phantom tubes. For
MR-STAT the acquisition has been repeated four times.
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Figure 3.6: [Top row] Logarithmic plot of the magnitude of the measured time domain
data obtained from the gel phantoms and the magnitude of the residual vector entries
after the fifth iteration of the inexact Gauss-Newton method. [Bottom left] Histogram
of noise values (real and imaginary values concatenated). The noise was measured
using the receive channels right before the actual acquisition and it was subjected to
the same pre-processing steps as the data used in the reconstruction (e.g. compression
to a single channel using SVD). [Bottom right] Histogram of the residual vector entries
(real and imaginary values concatenated) after the fifth iteration of the inexact Gauss-
Newton method.
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Table 3.4: Mean T1 and T2 values and standard deviation in white- and gray matter
regions for each of the three in-vivo brain scans.

Tissue type Subject T1 T2

Frontal white matter 1 505± 48 ms 53.3± 4.0 ms
2 542± 48 ms 57.4± 3.8 ms
3 519± 54 ms 56.1± 4.3 ms

Putamen (gray matter) 1 874± 64 ms 74.8± 4.4 ms
2 956± 66 ms 80.2± 4.5 ms
3 895± 107 ms 78.4± 7.0 ms

reconstruction time for each slice was approximately five hours using 64 cores.
In Figure 3.8 we show T1, T2 and proton density (magnitude) for the same

2D brain slice but reconstructed using data corresponding to, respectively, 13.6
s, 7.8 s and 3.4 s acquisitions. It can be seen that the maps corresponding to
the 6.8 s acquisition are comparable to the maps corresponding to the 13.6 s
acquisition except that more noise is present. Depending on the application
it might be more beneficial to repeat such a shorter sequence multiple times
for noise averaging instead of scanning with the longer sequence. An added
benefit of a shorter sequence duration is that the Bloch simulations are faster
and thus reconstruction times are reduced by approximately the same factor
with which the scantime is reduced. For the 3.4 s acquisition the MR-STAT
problem (Eq. 3.2.10) is underdetermined in the sense that the number of
datapoints is less than the number of unknowns in the problem. As can be
seen in the reconstructed maps, this mostly results in biases in the CSF values.
Note that in none of the reconstructions parallel imaging or compressed sensing
techniques were utilized.

3.5 Discussion & Conclusion

MR-STAT is a framework for obtaining multiple quantitative parameter maps
by fitting directly to measured time-domain data obtained from one short scan.
Rather than relying on the FFT for spatial localisation of signal in a separate
step, the spatial localisation and parameter estimation are performed simulta-
neously by iteratively solving a single non-linear optimization problem using
a signal model that explicitly includes the spatial encoding gradients. The
inherent large scale of the problem brings along new challenges in terms of
computer memory requirements and computation times that make it difficult
to perform MR-STAT reconstructions at high resolutions. To address these is-
sues, we have presented a parallel and matrix-free reconstruction algorithm for
MR-STAT and demonstrated that it can be used to generate high-resolution
quantitative parameter maps.
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Figure 3.7: T1, T2 and proton density (magnitude) maps reconstructed with MR-
STAT from in-vivo brain data obtained at 1.5 T (Philips, Ingenia) from multiple
healthy volunteers. The in-plane resolution was 1× 1 mm2 for all three subjects. For
subjects 1 and 2 the acquisition time was 13.6 s and the slice thickness was 5 mm.
For subject 3 the acquisition time was 14.15 s and the slice thickness was 3 mm.
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Figure 3.8: In-vivo T1, T2 and proton density (magnitude) maps at 1mm× 1mm in-
plane resolution reconstructed with MR-STAT based on acquisitions of, respectively,
13.6 s, 6.8 s and 3.4 s on a 1.5 T MR system (Philips, Ingenia).
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All MR-STAT experiments in the current work have been performed with
linear, Cartesian sampling strategies. This sampling strategy offers important
advantages in the form of robustness to hardware imperfections (e.g. eddy
currents, especially for gradient-balanced sequences [18, 30]), less susceptibility
to ∆B0 related blurring artefacts [14] and direct availability on clinical MR
systems. Within the conventional MRF framework it is more challenging to
work with Cartesian sampling strategies, as demonstrated using the simulation
experiments. Studies that perform Cartesian MRF [93, 32] therefore typically
acquire multiple readout lines per snapshot, resulting in much longer acquisi-
tion times compared to non-Cartesian MRF acquisitions. A formal explanation
of why Cartesian acquisitions are less suitable for MRF is reported in Stolk et
al. (2019) [150]. More advanced iterative MRF reconstructions [192, 191, 5, 44]
might perform better with Cartesian sampling than the currently used MRF
reconstructions (low-rank inversion followed by low-rank dictionary matching)
and an in-depth comparison will be the subject of further studies. It should
also be noted that neither the MR-STAT framework nor the currently proposed
reconstruction algorithm are restricted to Cartesian sampling and further re-
search is also aimed at incorporating non-Cartesian trajectories into MR-STAT.

An additional benefit of the volumetric signal model used in MR-STAT
over FFT-based methods is that dynamic behaviour during the readouts (e.g.
T2-decay and ∆B0 induced phase accumulation) is taken into account. This
may especially be beneficial for improving reconstructions based on acquisitions
with long readouts (e.g. spiral readouts).

MR-STAT reconstructions are performed by solving a non-linear optimiza-
tion problem using gradient-based iterative methods. No pre-computed dic-
tionary is used. Compared to dictionary-matching approaches there are no
discretization errors and the reconstruction procedure is also flexible with re-
spect to changes in sequence parameters (e.g. no rebuilding of a dictionary
required when scan settings change). A downside of using iterative reconstruc-
tion algorithms to solve non-linear optimization problems is the risk of landing
in a local minimum. In practice, with the currently used pulse sequence with
smoothly changing flip angles and initial guess of the parameters, we have not
encountered issues with local minima [140].

Whereas with MRF the addition of new parameters results in an exponential
increase in dictionary size (and thus also an exponential increase in dictionary
generation and matching time), with MR-STAT additional parameters can be
added at a quadratic increase in computation time. The quadratic increase can
be explained as follows. The total number of parameters to be reconstructed N
increases linearly with the number of parameters per voxel (N = NpNv). Since
the minimum number of time points Nt that needs to be acquired - and thus
simulated - is in the order of N , the computation time per Bloch simulation
increases linearly as well. In addition, the number of partial derivative com-
putations that needs to be performed per voxel also increases linearly. That
is, both the number of rows and columns of the Jacobian J increase linearly,
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resulting in approximately a quadratic increase in computation time. In this
respect we do note that, although currently ∆B0 maps are not reconstructed
(because the employed bSSFP sequence used in this work is designed not to be
sensitive to ∆B0 within the “passband”), it is part of all our Bloch simulations
and partial derivative computations. In addition, for the MR-STAT experi-
ments described in the manuscript we used pulse sequences such that Nt ≈ 2N
so that the problem remains overdetermined when an additional parameter is
reconstructed. Therefore, assuming a pulse sequence is used that has sufficient
∆B0 encoding [144, 171], we do not expect to see an increase in computation
times when reconstructing ∆B0 as an additional parameter.

For the phantom experiment we observed that the noise level was reached
for the residual. However, this was not observed for the in-vivo case as certain
effects are still accounted for in the model. Examples include patient motion,
blood flow, magnetization transfer and diffusion effects.

A limitation of the proposed method is that at this moment reconstruction
times are still long for high-resolution scans, especially when compared to the
dictionary matching procedures used in MRF. Even when employing a high
performance computing cluster, reconstruction times are in the order of hours
for a single 2D brain slice. Although possible from a memory point-of-view,
3D reconstructions will take too long for practical purposes with the current
reconstruction setup. The main bottleneck in the reconstructions is formed
by the partial derivative computations needed to solve equation (3.2.19). Fur-
ther research is aimed at performing these computations on GPU architectures
[183, 96], reducing the computational effort through algorithmic improvements
[68] and through the use of surrogate models [186]. Together with (cloud) com-
puting resources becoming cheaper and more accessible over time, we believe it
is possible to accelerate the computations to an extent that MR-STAT becomes
applicable in clinical settings.

Further research is also aimed at reduction of acquisiton time and improving
precision and accuracy of the MR-STAT parameter maps by incorporating
parallel imaging [65], compressed sensing and through sequence optimization.

The main aim of the MR-STAT project is to explore possibilities to achieve
very short acquisition times beyond what is possible with FFT-based frame-
works. Although the MR-STAT framework in principle allows for much flexi-
bility in the data acquisition process (e.g. non-Cartesian acquisitions), in the
current work we have opted for Cartesian sampling patterns because of their
robustness to hardware imperfections and because they clearly exemplify the
benefits of skipping the FFT step (i.e. no introduction of artificial aliasing noise
through application of the FFT on undersampled k-spaces). An additional ben-
efit is the direct availability of such sequences on clinical MR systems. In the
current work we used constantly varying flip angle trains, however, as shown
in Supplementary Material S3, MR-STAT could even be used with Cartesian
bSSFP sequences with a fixed flip angle per k-space that require little to no
pulse programming for their implementation.
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3.6 Supplementary Materials

Supplementary Material S1: MR-STAT pulse sequence

For the simulation, gel phantom and in-vivo MR-STAT experiments discussed
in the main text a pulse sequence was used with linear, Cartesian sampling and
flip angles that change each TR in accordance with a smoothly varying pattern
shown in Fig 3.9. The flip angle pattern starts at zero and then consists of
connected sine-squared waves with randomly generated peak amplitudes. The
sine-squared waves are aligned such that the central line of k-space is sampled
at the peaks.
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Figure 3.9: Overview of the flip angle train and the Cartesian gradient-encoding order
used in the 2D (transient-state) MR-STAT pulse sequence.

Supplementary Material S2: Algorithmic Differentiation
of Bloch equation solver

The Bloch equations define a system of (linear, inhomogeneous) ordinary differ-
ential equations with time-dependent coefficients (e.g. RF and gradient wave-
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forms). To numerically integrate the Bloch equations, the time domain is
discretized into time intervals during which the RF and gradient waveforms
are assumed to be constant. Given the magnetization mt = [mt,x,mt,y,mt,z]

T

in a voxel with coordinates r = [x, y, z]
T at time t, to find (an approximation

to) the magnetization at time t + ∆t we first apply a rotation induced by the
(complex) RF pulse and gradients GR = (GRx, GRy, GRz) that are present
during the time interval [t, t + ∆t] to obtain the rotated magnetization mrot.
Afterwards we apply T1 and T2 induced decay and regrowth to mrot to obtain
mt+∆t. We refer to [165] for more details on the discretization.

To apply the rotation during each time interval, we first compute a rotation
vector a as

a = γ∆t

 −|B+
1 |Re {RF}

|B+
1 |Im {RF}

GR · r + ∆B0/γ

 . (3.6.1)

Now define k = a/‖a‖2 (i.e. k is a unit vector pointing in the same direction as
a) and θ = ‖a‖2. By using Rodrigues’ rotation formula we can compute mrot

as:

mrot = cos(θ)mt + sin(θ)(k×mt) + (1− cos(θ))(k ·mt)k. (3.6.2)

To apply the decay and regrowth we first compute E1 := exp(−∆t/T1) and
E2 := exp(−∆t/T2). Then, the magnetization at time t + ∆t is obtained as
follows:

mt+∆t = mrot ⊗ [E2, E2, E1]T + [0, 0, 1− E1]T , (3.6.3)

where ⊗ denotes the Hadamard product. The simulation is initialized with the
magnetization in equilibrium position along the z−axis, i.e. m0 = [0, 0, 1]T .

Given the update formula for the magnetization, we can apply algorithmic
differentiation to obtain update formulas for the partial derivatives. We illus-
trate this procedure for partial derivatives with respect to T1. First of all, note
that from Eq. 3.6.2 we can derive that

∂mrot

∂T1
=

∂

∂T1
(cos(θ)mt) +

∂

∂T1
(sin(θ)(k×mt))

+
∂

∂T1
((1− cos(θ))(k ·mt)k) . (3.6.4)

Since neither the rotation axis k nor the rotation angle θ depend on T1, it
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follows that
∂mrot

∂T1
= cos(θ)

∂mt

∂T1
+ sin(θ)

∂(k×mt)

∂T1

+(1− cos(θ))
∂(k ·mt)

∂T1
k

= cos(θ)
∂mt

∂T1
+ sin(θ)

(
k× ∂mt

∂T1

)
+(1− cos(θ))

(
k · ∂mt

∂T1

)
k. (3.6.5)

Next, using Eq. 3.6.3, we find that

∂mt+1

∂T1
=
∂mrot

∂T1
⊗ [E2, E2, E1]T + mrot ⊗

∂[E2, E2, E1]T

∂T1

+
∂[0, 0, 1− E1]T

∂T1

=
∂mrot

∂T1
⊗ [E2, E2, E1]T + mrot ⊗ [0, 0,

∆t

T 2
1

E1]T

+[0, 0,−∆t

T 2
1

E1]T . (3.6.6)

By combining Eq. 3.6.5 and Eq. 3.6.6 we have a recursive update formula for
the partial derivatives. Since m0 = [0, 0, 1]

T is independent of T1, the partial
derivatives are initialized with ∂m0

∂T1
= [0, 0, 0]

T
. The procedure to find partial

derivatives with respect to the other parameters is similar.
Although toolboxes exist that can automate the process of computing the

derivatives, we have opted for a manual implementation to optimize for per-
formance. Compared to the finite-difference method utilized in Sbrizzi et al.
(2018) [141] algorithmic differentiation does not require the (non-trivial) choice
of step sizes. And whereas the finite difference method approximates deriva-
tives, with algorithmic differentiation the derivatives are exact. On top of that,
our implementation of the algorithmic differentiation runs faster than the finite
difference method by approximately a factor of two. This speedup can be par-
tially explained by the fact that the relatively expensive sin, cos (for rotations)
and exp (for decay and regrowth) terms that need to be computed at each time
step of the numerical integration can be efficiently reused for computing the
partial derivatives.

Supplementary Material S3: MR-STAT with Cartesian
sampling and constant flip angle per k-space
To demonstrate the flexibility of the MR-STAT framework we also acquired
in-vivo brain data using a pulse sequence that has a constant flip angle per k-
space (but different flip angle between the k-spaces). The data was acquired on
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Figure 3.10: Reconstructed T1, T2 and proton density (magnitude) maps for a 2D slice
of an in-vivo brain of a healthy volunteer at 1.8 mm × 1.8 mm in-plane resolution
using a the pulse sequence with constant flip angle per k-space on a 3 T (Philips,
Ingenia) MR system.

a 3 T clinical MR-system with the following acquisition parameters: in-plane
resolution 1.8 mm × 1.8 mm, field-of-view 201.5 mm × 158 mm, TR 5.6 ms, TE
2.8 ms, slice thickness 3 mm, readout bandwidth 77.2 kHz, number of k-spaces
16, total scan time 7.82 s. The inexact Gauss-Newton method with ten outer
iterations and fifteen inner iterations was used for the reconstruction. The
total reconstruction time was approximately 30 minutes using 64 cores on the
computing cluster. The reconstructed parameter maps and the flip angle train
are shown in Fig. 3.10 and Fig. 3.11 respectively. The results demonstrate
that excellent quality parameter maps can be obtained in a short time using a
pulse sequence that is readily available even on older clinical MR-systems and
requires little to no pulse programming.
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Figure 3.11: Visualization of the pulse sequence with linear, Cartesian sampling and
constant flip angle per k-space.
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Abstract

MR-STAT is a quantitative magnetic resonance imaging frame-
work for obtaining multi-parametric quantitative tissue parameter
maps using data from single short scans. A large-scale optimiza-
tion problem is solved in which spatial localization of signal and
estimation of tissue parameters are performed simultaneously by
directly fitting a Bloch-based volumetric signal model to measured
time-domain data. In previous work, a highly parallelized, matrix-
free Gauss-Newton reconstruction algorithm was presented that can
solve the large-scale optimization problem for high-resolution scans.
The main computational bottleneck in this matrix-free method is
solving a linear system involving (an approximation to) the Hes-
sian matrix at each iteration. In the current work, we analyze
the structure of the Hessian matrix in relation to the dynamics of
the spin system and derive conditions under which the (approxi-
mate) Hessian admits a sparse structure. In the case of Cartesian
sampling patterns with smooth RF trains we demonstrate how ex-
ploiting this sparsity can reduce MR-STAT reconstruction times by
approximately an order of magnitude.
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4.1 Introduction

Magnetic Resonance Imaging (“MRI”) is an imaging modality in which typ-
ically the Fast Fourier Transform (“FFT”) is used to reconstruct qualitative
contrast images from the raw k-space data obtained with an MR system. Tis-
sue types can be differentiated in these images because each tissue is weighted
differently under the influence of its MR-related biophysical properties like T1

and T2 relaxation times. Quantitative MRI (“qMRI”) methods aim to provide
estimates of these biophysical tissue properties. Compared to qualitative MR
images, qMRI can provide additional diagnostic information, and by removing
scanner and sequence variability they are more suited for multi-center studies
and computer-aided diagnosis [159, 45].

Despite these advantages over qualitative MR imaging, qMRI has only
found limited use in clinical practice so far, mainly because of increased scan
times compared to qualitative imaging. In traditional qMRI, series of steady-
state acquisitions are performed in which quantitative tissue parameters are
encoded individually into multiple contrast images (spatial localisation step).
Relatively simple analytical models are subsequently fitted on a voxel-per-voxel
basis to yield estimates of the quantitative tissue parameters [116, 108, 46] (pa-
rameter estimation step). The total scan time can be lenghty as the acquisition
for each contrast image has to satisfy the steady-state and Nyquist sampling
conditions as set forward by the FFT.

Over time, advanced MR reconstruction techniques like parallel imaging
[135, 61] and compressed sensing [109] have been developed that can relax the
sampling conditions per contrast image and thus reduce acquisition times. For
qMRI specifically, methods have been developed that also incorporate sparsity
or low-rankness in the contrast dimension [50, 130, 79, 155] in the sense that
the temporal spin dynamics are represented as a linear combination of rela-
tively few basis vectors. This approach can improve the conditioning of the
spatial localisation step, allowing for further reductions in acquisition times,
but it does require careful tuning of the number of basis vectors used in the
reconstruction. Using too few basis vectors can bias the estimated quantita-
tive tissue parameters whereas using too many basis vectors will result in an
underdetermined problem.

Exploring a different strategy, volumetric model-based reconstruction tech-
niques have been proposed that combine the spatial localisation step and pa-
rameter estimation step into one [20]. Instead of generating contrast images
first, tissue parameter estimates are obtained for all voxels simultaneously by di-
rectly fitting analytical signal models to the measured k-space (or time-domain)
data. These signal models are non-linear and naturally provide sparse repre-
sentations of the temporal spin dynamics. Moreover, the spatial encodings may
be naturally distributed over the different contrasts [153], allowing for higher
undersampling factors. Acquisition times can thus be further reduced com-
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pared to the traditional approaches that separate the spatial localisation and
parameter estimation steps. However, because of the non-linear nature of the
signal models used, iterative reconstruction techniques need to be employed
that require the computation of the gradient of the volumetric signal model
with respect to the tissue parameters. This significantly increases reconstruc-
tion times. The non-linear volumetric inversion approach has been succesfully
applied in the context of e.g. T1-mapping [175], T2-mapping [189] and diffusion
tensor mapping [89].

Another important advancement in the field of qMRI has been the devel-
opment of MR Fingerprinting (“MRF”) [110]. In the original MRF paper it
was proposed to use a transient-state pulse sequence with randomized flip an-
gles, TR’s and TE’s to encode multiple quantitative tissue parameters into
the signal simultaneously. Many highly-undersampled contrast images are re-
constructed with the (non-uniform) FFT. Subsequently, on a voxel-per-voxel
basis, the measured fingerprints are matched to a pre-computed dictionary of
fingerprints to generate the tissue parameter estimates. Because analytical sig-
nal models are not available for the transient-state MRF sequences, numerical
integration of the Bloch equations is required to form the dictionary entries. It
was demonstrated that the dictionary matching procedure is resilient against
the spatio-temporal incoherent undersampling artefacts that are present in the
reconstructed contrast images. With MRF a method was thus introduced that
can generate multiple quantitative tissue parameter maps based on a single,
short acquisition.

In recent years more advanced MRF reconstruction methods have emerged
that improve upon the initially proposed dictionary matching procedure. In
Zhao et al. (2016) [192] the MRF parameter reconstruction problem was for-
mulated as a maximum likelihood estimation problem. A novel reconstruction
algorithm based on the alternating direction method of multipliers (“ADMM”)
was proposed that iterates between reconstructing the time frames and per-
forming the dictionary matching to reduce the effects of undersampling arte-
facts. In Asslander et al. (2017) [6], it was further recognized that - due
to the high undersampling factors applied - the contrast image reconstruction
problem is in principle highly-underdetermined. By incorporating dictionary
compression techniques (originally proposed in McGivney et al. (2014) [114])
into the ADMM method the conditioning of the reconstruction problem was
improved and at the same time reconstruction times were reduced. In a similar
fashion, methods have been proposed that instead rely on compressed sensing
[44] or matrix completion techniques [49]. A common theme in the original and
more advanced MRF methods is to separate the steps of the FFT-based spatial
localisation of the measured signal and the subsequent parameter estimation
like in the tradional qMRI methods.

MR Spin Tomography in Time-Domain (“MR-STAT”) [141] is a recently
proposed qMRI framework that combines the ideas of volumetric non-linear
inversion on the time-domain data with using general transient-state sequences



i
i

i
i

i
i

i
i

Chapter 4. Sparse Hessian MR-STAT 81

that encode multiple tissue parameters into the signal simultaneously. Com-
pared to MRF, the (typically) underdetermined problem of reconstructing the
intermediate contrast images is avoided. Also, no precomputed dictionary is
used thats grows exponentially in size with the addition of new parameters
(like B+

1 , magnetization transfer or ∆B0) and that can potentially bias the
parameter estimates. Compared to the previously mentioned volumetric non-
linear inversion methods a more general signal model is used in which the Bloch
equations are integrated numerically, thus allowing for great flexibility in the
acquisition process like in MRF. Moreover, in MR-STAT the FFT is no longer
used for transforming between image space and k-space. Instead, the effects
of the spatial encoding gradients are modelled explicitly. This allows for the
inclusion of dynamic spin behaviour during readouts (e.g. T2 decay or B0 de-
phasing) like in time-resolved approaches [121, 154, 122]. For the acquisitions
used in the current work short readout are used for which these effects are
assumed to be have negligible impact.

The downside of using such a comprehensive, volumetric forward model
in MR-STAT is that it gives rise to a computationally challenging large-scale
non-linear optimization problem for which dedicated reconstruction algorithms
are required. In previous work [69], a parallelized, matrix-free Gauss-Newton
reconstruction algorithm was presented that can solve the large-scale optimiza-
tion problem also for high-resolution scans where the number of unknowns is in
the order of 105 (2D) to 106 (3D). It was demonstrated that with the MR-STAT
approach high quality tissue parameter maps can be generated from short ac-
quisitions even when using Cartesian readout strategies. However, even when
doing reconstructions on a high performance computing cluster using many
computing cores, reconstruction times for the matrix-free method are still in
the order of hours for a single 2D slice. The main computational bottleneck in
the previously proposed matrix-free method is solving a linear system involv-
ing the Gauss-Newton approximation of the Hessian matrix at each iteration
to produce update steps in parameter space.

In the current work we study the structure of the Hessian in relation to the
dynamics of the physical process (governed by the Bloch equations) and the
sampling pattern used in the data acquisition. We are able to derive conditions
under which the Hessian admits a sparse structure, which allows for

1. storage of the Hessian at each outer iteration of the reconstruction; and
consequently

2. rapid computation of the update directions in parameter space using
sparse matrix-vector multiplications embedded in the iterative solver (Con-
jugate Gradient iterations).

In case of Cartesian sampling patterns combined with smooth RF trains
we demonstrate through in-silico, phantom and in-vivo experiments that MR-
STAT reconstruction times can be reduced by an order of magnitude with the
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sparse Hessian technique without compromising on quality of the reconstructed
parameter maps.

4.2 Theory

In this section we first review the MR-STAT framework as presented in Sbrizzi
et al. [141] and summarize how some of the computational challenges in the
reconstrucion process were previously adressed. Then we derive conditions
under which the Hessian matrix as well as the Gauss-Newton approximation
to the Hessian matrix admit a sparse structure.

Scalar quantities (both real and complex) will be denoted in lower case,
vector quantities in bold lower case letters and matrices in bold upper case
letters.

4.2.1 MR-STAT Framework
The time evolution of a single spin isochromat m = (mx,my,mz) with spatial
coordinates r = (x, y, z) is governed by the Bloch equations. This time evolu-
tion depends on the pulse sequence used (e.g. the RF excitation pulses and the
spatial gradients acting on the spin isochromat) and also on its MR-relevant
biophysical tissue properties θ = (T1, T2, . . .). Let the gradient trajectory as-
sociated with the pulse sequence be denoted by k(t) and let m = mx + imy be
the transverse magnetization component of a spin isochromat in the rotating
frame. The demodulated time-domain signal s obtained with an MR system is
modeled as the volume integral of the transverse magnetization of all excited
spin isochromats within the field of view V of the receive coil. That is,

s(t) =

∫
V

m(θ(r), t)e−2πik(t)·rdr. (4.2.1)

In Eq. (4.2.1), the effects of spatial encoding gradients are included in the
exponential term. Other space/time-dependent behavior of the magnetization,
like rotations due to RF pulses, T1-regrowth and T2-decay, is included in the
m term. Which specific effects are taken into account in the m term in prac-
tice will depend on the type of pulse sequence used in combination with the
choice of which tissue parameters one aims to reconstruct. We also note that
in Eq. (4.2.1) it is possible to include dynamic behaviour during readouts,
e.g. T2-decay and ∆B0 dephasing, although in the current work we will focus
on sequences with short readouts for which these effects are assumed to have
negligble impact on the measureable signal. In a Nyquist-sampled steady-state
sequence, and ignoring transient behaviour during readouts, the transverse
magnetization m loses its time-dependency and the FFT can be used to re-
cover qualitative images. In the more general case of a transient-state sequence
(as proposed in [110, 140]) the FFT can in principle no longer be directly used to
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transform between measured time-domain (or k-space) data and image space.
Therefore, in the transient-state case, we proceed as follows with MR-STAT.
First, we perform spatial discretization on eq. (4.2.1) to obtain

s(t) =

Nv∑
j=1

m(θj , t)e
−2πik(t)·rj∆V , (4.2.2)

where mj is the magnetization in voxel j and ∆V is the volume element for
each voxel. Now let Nt be the total number of samples acquired with the MR
system’s receiver and let t1, . . . , tNt denote the sampling times. If we define the
magnetization vector mj in voxel j as

mj := [m(θj , t1), . . . ,m(θj , tNt
)] ∈ CNt (4.2.3)

and the gradient encoding vector for voxel j as

GRj :=
[
e−2πik(t1)·rj , . . . , e−2πik(tNt )·rj

]
∈ CNt (4.2.4)

then the discretized signal vector s ∈ CNt can be defined as

s =

Nv∑
j=1

mj �GRj . (4.2.5)

Here � denotes the Hadamard product. Let Np denote the number of distinct
parameters per voxel (including real and imaginary parts of the proton den-
sity). Then s depends on N := Nv ×Np different parameters. We concatenate
all parameters into a single vector α ∈ RN in such a way that parameters
{αj+kNv

| k = 0 . . . , Np − 1} are the parameters associated with voxel j.
Given a vector of measured time-domain samples d ∈ CNs , define the resid-

ual vector r ∈ CNt as

r(α) = d− s(α) (4.2.6)

and define the least squares objective function f : RN → R as

f(α) =
1

2
‖r(α)‖22 (4.2.7)

The parameter maps α∗ are obtained by numerically solving

α∗ = argminαf(α), (4.2.8)

subject to physical constraints represented by the Bloch equations and real-
istically attainable intervals for the parameters. We point out that the only
stochastic component in the model is the thermal noise, which is Gaussian dis-
tributed with zero mean. As a consequence, the present formulation is equiva-
lent to a Maximum Likelihood estimation of α∗.
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4.2.2 Inexact Gauss-Newton Method
Note that Eq. (4.2.8) is a non-linear optimization problem. Such problems
are typically solved using iterative procedures such as Newton’s method or
variants thereof. Newton methods start with an initial guess α and then obtain
update steps p in parameter space at each outer iteration of the reconstruction
algorithm by solving the linear system

H(α)p = −g(α). (4.2.9)

Here g ∈ RN is the gradient of the objective function with respect to all the
tissue parameters and H ∈ RN×N is the Hessian matrix which is defined as

H(α) :=

[
∂2f

∂αi∂αj

]N
i,j=1

. (4.2.10)

A difficulty with directly applying a Newton method in the context of MR-
STAT is the inherent large scale of the problem. Even for 2D problems the
number of parameters N can be in the order of 106. Explicitly forming the
Hessian matrix or its inverse is therefore infeasible on present-day computer
architectures. A commonly used technique in least squares problem is to ap-
proximate the Hessian matrix with the Gauss-Newton matrix Re

{
JHJ

}
[120],

where J ∈ CNt×N is the Jacobian matrix defined as

J(α) :=

[
∂r

∂α1
. . .

∂r

∂αN

]
, (4.2.11)

JH is the Hermitian transpose of J and Re {. . .} is the real-part operator. Even
though the matrices J and Re

{
JHJ

}
are also typically too large to be stored in

computer memory for MR-STAT problems, in previous work [69] it was shown
how matrix-vector products of the form Jv and JHv can be computed without
having to explicitly store J in memory. Given the ability to compute these
matrix-vector products, the linear system in Eq. (4.2.9) (with H replaced by
Re
{
JHJ

}
) can then be solved in an iterative fashion using conjugate-gradient

based techniques. Rather than solving Eq. (4.2.9) to arbitrary precision, the
number of iterations performed in this inner loop is limited, resulting in a so
called inexact, matrix-free Gauss-Newton method. A pseudo-algorithm for the
matrix-free Gauss-Newton method is shown in Alg. 4.1.

As demonstrated in Chapter 3, the matrix-free Gauss-Newton MR-STAT
method can be used to reconstruct high resolution parameter maps. However, a
downside of the method is that the columns of J need to be re-computed for each
matrix-vector multiplication in the inner loop (because the size of the problem
prevents J from being stored in computer memory). In other words, at each
iteration of the inner loop, partial derivatives of the signal with respect to each
of the N parameters are computed. With approximately ten inner iterations
needed per outer iteration [69], these computations form the computational
bottleneck of the matrix-free MR-STAT reconstruction algorithm.
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Algorithm 4.1 Matrix-free Gauss-Newton MR-STAT
Minimize 1

2‖d− s(α)‖22
Require: Initial guess α
(“Outer Loop")
while !converged do
1. Compute residual: r = d− s
2. Compute gradient: g = Re

{
JHr

}
3. (“Inner loop") Iteratively solve linear system in
matrix-free fashion: Re

{
JHJ

}
p = −g

4. Update parameters: α = α+ p
end while

4.2.3 Analysis of the sparsity pattern of the Hessian ma-
trix in MR-STAT reconstructions

In this work we will derive conditions under which both the Hessian matrix H
and the approximation Re

{
JHJ

}
admit a sparse structure. The sparse struc-

ture allows for Re
{
JHJ

}
to be computed and stored at each outer iteration

of the reconstruction. The computational effort of subsequent multiplications
with the sparse Re

{
JHJ

}
is then negligible and the linear system in Eq. 4.2.9

can be solved rapidly by an iterative, conjugate gradient based algorithm to
obtain p. Since in practice approximately ten inner iterations are performed
per outer iteration, we expect to see a decrease in MR-STAT reconstruction
times of approximately an order of magnitude. A pseudo-algorithm for this
sparse Gauss-Newton reconstruction algorithm is provided in Alg. 4.2.

Algorithm 4.2 Sparse Gauss-Newton MR-STAT
Minimize 1

2‖d− s(α)‖22
Require: Initial guess α
(“Outer loop")
while !converged do
1. Compute residual: r = d− s
2. Compute gradient: g = Re

{
JHr

}
3. Compute and store sparse approximation: H̃ ≈ Re

{
JHJ

}
4. (“Inner loop") Iteratively solve the linear system: H̃p = −g
5. Update parameters: α = α+ p

end while

In the next subsections we first provide an intuitive argument for sparsity
patterns of the Hessian followed by formal derivation afterwards.
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4.2.3.1 Intuition for sparsity pattern

Intuitively, the sparsity of the Hessian matrix H may be understood as follows.
Assume for simplicity that per voxel we are only estimating T1 and T2 values.
Let T1 and T2 be the arrays obtained by concatenating the T1 and T2 values
of each voxel respectively. Then H admits the following 2× 2 block structure:

H =

 (
∂2f
∂T 2

1

) (
∂2f

∂T1∂T2

)(
∂2f

∂T2∂T1

) (
∂2f
∂T 2

2

)  .

In the more general case of Np parameters per voxel, the matrix H will
consist of N2

p blocks (of which Np(Np + 1)/2 are unique due to symmetry
of the matrix). The off-diagonal elements of each block provide estimates of
covariances between parameters associated with different voxels.

In case of a conventional quantitative MR experiment with Nyquist-sampled,
steady-state sequences, it is common to minimize an objective function for each
voxel individually. This is possible because the spatial encoding gradients elimi-
nate dependencies between voxels, i.e. no aliasing between signal from different
voxels occurs. Spatial decoupling is performed through application of the FFT.
On the other hand, if we applied an MR-STAT reconstruction on such Nyquist
sampled data series (e.g. obtain the parameter maps for all voxels simultane-
ously by solving Eq. (4.2.8)), then the spatial decoupling would manifest itself
in each block of the Hessian consisting of only a main diagonal.

In MR Fingerprinting [110] and MR-STAT, transient-state sequences are
utilized that simultaneously encode multiple parameters into the signal. For
2D problems it is common though that throughout the pulse sequence each
spatial frequency is sampled multiple times (≈ 1000 spirals, radial spokes or
Cartesian readout lines [110, 6, 140]). Over the acquisition as a whole it can
therefore be said that such sequences are still "Nyquist-sampled". However, the
transienst-state nature of the sequences prevents complete decoupling of pa-
rameters associated with different voxels. In an FFT framework, the transient
states can be interpreted as time dependent (or spatial frequency dependent)
perturbations of a steady-state signal. Thus, when applying the FFT, these
perturbations result in convolutions with point spread functions in image space.
Signals and thus parameters associated with different voxels become coupled
despite the Nyquist sampling. Translated to the Hessian matrix as encoun-
tered in the MR-STAT framework, we can no longer expect the blocks to be
diagonal matrices. However, if the transient-state transitions are sufficiently
smooth the convolution kernels will be spatially confined and then we only
expect dependencies between parameters associated with closely neighboring
voxels. For the corresponding Hessian matrices we then expect each block to
have a sparse, banded structure and by iteratively inverting it the point spread
function is essentially refocused [52].
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4.2.3.2 Formal derivation of sparsity pattern

For a formal derivation of the sparsity pattern, first recall that the magnetiza-
tion in a voxel j can expressed as the component-wise product of mj (which de-
pends on the RF excitation pulses and the parameters in voxel j, e.g. T1, T2, . . .,
see eq. (4.2.3)) and the vector GRj containing phase terms from spatial en-
coding gradients (see eq. (4.2.4)).

In order to simplify notation, assume each voxel to only have one associated
parameter so that the same index can be used to denote a voxel j and its cor-
responding parameter αj . Since GRj is independent of the tissue parameters,
it follows that

∂s

∂αj
=
∂ (mj �GRj)

∂αj
=
∂mj

∂αj
�GRj . (4.2.12)

From the least-squares structure of problem (4.2.8) it follows that

∂f

∂αj
= −Re

{〈
∂s

∂αj
, r

〉}
= −Re

{〈
∂mj

∂αj
�GRj , r

〉}
. (4.2.13)

The Hessian entries can then be computed as

Hi,j =
∂2f

∂αi∂αj

= −Re
{〈

∂2mj

∂αi∂αj
�GRj , r

〉}
+Re

{〈
∂mi

∂αi
�GRi,

∂mj

∂αj
�GRj

〉}
. (4.2.14)

However, because the transverse magnetization in voxel i is independent of the
parameters associated with voxel j, the term ∂2mj

∂αi∂αj
is zero if i 6= j. Therefore,

Hi,j = Re
{〈

∂mi

∂αi
�GRi,

∂mj

∂αj
�GRj

〉}
, i 6= j. (4.2.15)

On the other hand,

(JHJ)i,j =

〈
∂mi

∂αi
�GRi,

∂mj

∂αj
�GRj

〉
. (4.2.16)

It can thus be observed that the Gauss-Newton approximation Re
{
JHJ

}
to

the Hessian matrix is exact for the off-diagonal terms of each block. As a result
both matrices will have the same sparsity pattern and in what follows we will
only focus on the matrix Re

{
JHJ

}
instead of H.
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Suppose that we want to reconstruct Np 2D parameter maps, each con-
sisting of Nv = Nx ×Ny voxels. A single full Nyquist sampled k-space would
consist of Nv spatial frequencies in that scenario. Now we make the require-
ment that a sampling strategy is used where each spatial frequency is sampled
exactly Nk ≥ 1 times (Requirement 1). We anctipate here that in practice this
will not be a restrictive requirement.

Assuming that Requirement 1 is satisfied, we sort and reshape mj and
GRj into arrays of size (Nx, Ny, Nk) which are consistent with the k-space
sampling structure. In other words, data is reorganized as standard spatial
frequency arrays for each k-space acquisition.1 Using Matlab notation, define
m(k)
j := mj(:, :, k) and GR(k)

j := GRj(:, :, k). Then Eq. (4.2.16) can be
rewritten as

(
JHJ

)
i,j

=

Nk∑
k=1

〈
∂m

(k)
i

∂αi
�GR

(k)
i ,

∂m
(k)
j

∂αj
�GR

(k)
j

〉
F

, (4.2.17)

where 〈., .〉F is the Frobenius inner product.
Using Parseval’s Theorem and the Convolution Theorem, with F being the

two-dimensional DFT, the time-domain quantities in the above expression can
be transformed into spatial domain quantities as follows:(

JHJ
)
i,j

= (4.2.18)

∑
k

〈
F
(
∂m

(k)
i

∂αi
�GR

(k)
i

)
,F
(
∂m

(k)
j

∂αj
�GR

(k)
j

)〉
F

= (4.2.19)

∑
k

〈
F
(
∂m

(k)
i

∂αi

)
⊗F

(
GR

(k)
i

)
,F
(
∂m

(k)
j

∂αj

)
⊗F

(
GR

(k)
j

)〉
F

. (4.2.20)

Now, because of Requirement 1 and the sorting ofGRj , it follows that F
(
GR

(k)
j

)
=

δj , where δj is a delta-peak at the position of voxel j. The above equation can
thus be rewritten as

(
JHJ

)
i,j

=
∑
k

〈
F
(
∂m

(k)
i

∂αi

)
⊗ δi,F

(
∂m

(k)
j

∂αj

)
⊗ δj

〉
F

. (4.2.21)

Next, by using Leibniz’ integral rule it follows that

F
(
∂m

(k)
i

∂αi

)
=

∂

∂αi
F
(
m

(k)
i

)
(4.2.22)

1For simplicity we ignore possible readout oversampling. Also, for non-Cartesian se-
quences, we assume the data is still acquired on (or interpolated to) Cartesian coordinates.
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and therefore(
JHJ

)
i,j

=
∑
k

〈
∂

∂αi
F
(
m

(k)
i

)
⊗ δi,

∂

∂αj
F
(
m

(k)
j

)
⊗ δj

〉
F

. (4.2.23)

If the pulse sequence used in the acquisition is designed in such a way that
each of the magnetization matrices m

(k)
j is smooth in both spatial directions

(Requirement 2, the related sequence design considerations will be discussed
in Section 4.2.4), then the point spread functions F(m

(k)
j ) will have (to good

approximation) a compact support. Each support supp(m
(k)
j ) in principle de-

pends on the tissue parameters θj . Let Θ be the subset of RNp of physically
viable tissue parameters and define the maximum support χ as

χ :=

Nk⋃
k=1

⋃
θ∈Θ

supp
(
F
(
m(k)(θ)

))
. (4.2.24)

Outside of χ the point spread functions will vanish for all potential tissue
parameters and therefore the partial derivative terms ∂

∂αi
F
(
m

(k)
i

)
will vanish

outside of χ as well. We can then conclude that the right-hand term of (4.2.23)
will be zero for voxels i and j that are separated in space by a distance more
than diam(χ), where

diam(A) := sup{‖x− y‖ | x, y ∈ A}. (4.2.25)

A sparsity pattern thus emerges for the matrix Re {(}JHJ). In the more gen-
eral case of Np parameters per voxel the above arguments can be repeated for
each of the N2

p blocks separately.
To conclude the formal derivation, if a pulse sequence is used where

1. each of the Nv spatial frequencies is sampled exactly Nk times, and

2. each of the magnetization matrices m(k)
j is smooth,

then each of the N2
p blocks of the matrix Re

{
JHJ

}
admits a sparse structure

with off-diagonal elements corresponding to closely neighbouring voxels only.

4.2.4 Pulse sequence design considerations
In this section we discuss the design of pulse sequences that result in smooth
m

(k)
j and thus sparse Re

{
JHJ

}
.

4.2.4.1 Cartesian sampling

For Cartesian sampling patterns with short readouts, the spin dynamics dur-
ing the readouts (e.g. T2 decay and ∆B0 induced dephasing) are assumed to
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have negligble impact on the measurable magnetization. As a result, the mag-
netization matrices m

(k)
j will be (practically) constant, and thus smooth, in

the readout direction and the matrix Re
{
JHJ

}
is already expected to have

a sparsity pattern. More precisely, if we assume the parameters in the MR-
STAT optimization problem are ordered by stepping into the phase-encoding
direction first, the sparsity pattern will be such that each block of Re

{
JHJ

}
will - at most - be a block diagonal matrix with blocks of size Ny × Ny. See
Supplementary Fig. 4.9 for an example. In this “worst case scenario" for
Cartesian sampling, where we only assume smoothness of m(k)

j in the readout
direction, storage requirements and computational requirements for Re

{
JHJ

}
are already reduced by a factor of Nx.

For increased sparsity of Re
{
JHJ

}
, smoothness of m(k)

j in the phase en-
coding direction must be achieved. To this end, we note that if a sequence
with smoothly varying flip angles is used, then the magnetization vector mj

will also be smooth [140]. If, in addition, a linear Cartesian sampling trajec-
tory is chosen, then after reordering and reshaping mj , each of the m

(k)
j will

be smooth as well. In this scenario, there will only be coupling between closely
neighboring voxels in the phase encoding direction. Instead of the blocks of
Re
{
JHJ

}
being block-diagonal matrices (indicating coupling between all vox-

els in the phase encoding direction), we expect them to be banded matrices
(i.e. matrices whose only non-zero entries lie on the main diagonal and other
diagonals on either side) with very moderate bandwidths. To verify the spar-
sity pattern for such a pulse sequence (linear Cartesian with smoothly varying
flip angles), in Fig. 4.1 a logarithmic plot of the magnitude of JHJ is shown
for a small, square numerical phantom of size Nx = Ny = 16. This numerical
phantom is small enough so that JHJ can be computed and stored in its en-
tirety. It can be seen that JHJ admits a block structure (5× 5 blocks, one for
each pair of distinct parameters: T1, T2, |B1|+,Re {ρ} , Im {ρ}) and that each
block is, to good approximation, a very sparse, banded matrix. To capture the
relevant information that is present in Re

{
JHJ

}
, only a tiny fraction of its

N2 components need to be computed and stored.
If instead a very irregular flip angle pattern is used, or if the ordering of

phase encoding lines is randomized, the magnetization matrices m
(k)
j will no

longer be smooth and there will be coupling along the entire phase encoding
direction. This can be seen in Supplementary Fig. 4.7 (irregular flip angle
train) and Supplementary Fig. 4.8 (random ordering of phase encoding lines),
where the blocks of JHJ are block diagonal matrices with blocks of sizeNy×Ny.

In Supplementary Fig. 4.9 a logarithmic plot of the magnitude of JHJ is
shown for a situation where the sampling condition that each spatial frequency
is sampled exactly Nk ≥ 1 times is not fulfilled. In this scenario the central
phase encoding line is sampled much more often than the other phase encoding
lines, resulting in coupling along the entire phase encoding direction.
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Figure 4.1: [a] Logplot of magnitude of JHJ at a certain set of randomly generated
parameters (T1, T2, |B+

1 |,Re {ρ} , Im {ρ} in each voxel of a square matrix of size Nx =
Ny = 16). [b] A zoom of one of the blocks of the matrix in [a]. [c-d] A pulse sequence
with smoothly varying flip angles [c] and linear Cartesian sampling was used where
each spatial frequency was sampled Nk = 8 times [d]. The matrix JHJ in [a] is seen
to consist of 25 blocks (of which 15 are unique due to symmetry) associated with
the different combinations of parameter pairs. Each block contains, approximately,
a main diagonal and a limited number of off-diagonals, indicating that there is only
coupling between close neighbours in the phase encoding direction.

An example with a gradient-spoiled (i.e. “FISP”) sequence instead of a
gradient-balanced sequence is shown in Supplementary Fig. 4.10. In Supple-
mentary Fig. 4.11 a (gradient-spoiled) sequence is used with random TRs and
TEs throughout the sequence.
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4.2.4.2 Non-Cartesian sampling

For non-Cartesian sampling patterns like radial or spiral the point spread func-
tions F

(
m

(k)
i

)
will propagate into all spatial directions. Assuming smooth

m
(k)
j can be achieved, the blocks of JHJ will not just have a band around

the main diagonal like in the Cartesian case but there will be multiple bands.
Depending on the pulse sequence used (e.g. smoothness of the flip angle train),
it may be possible to compute and store the additional bands although the
computational effort and memory requirements will be larger. Experiments
with non-Cartesian sampling are outside the scope of the current work since
MR-STAT, unlike MR Fingerprinting, is usually implemented with Cartesian
readouts.

4.2.5 Determining sparse Hessian bandwidth

To determine an appropriate number of off-diagonals (“bandwidth”) to be com-
puted for each of the Np(Np + 1)/2 unique blocks of JHJ for a pulse sequence
with smoothly varying flip angles and linear Cartesian sampling, we proceed
as follows. Assume x and y correspond to the readout- and phase encoding
directions, respectively. The magnetization response in a voxel with coordi-
nates x = y = 0 is simulated using different combinations of physically realistic
quantitative tissue parameters. After each simulation the resulting magnetiza-
tion vector is reshaped into magnetization matrices (m(k)

j ) and the 2D FFT is
applied on each to generate point spread functions. See Fig. 4.2a for an exam-
ple. To determine an appropriate width (in voxels) of the point spread function
in the phase encoding direction, a threshold value is needed. The maximum
magnitude of the point spread functions in the readout direction (i.e. the line
{(x, y)|y = 0} \ (x = 0, y = 0)) over all parameter combinations is taken as a
threshold value. Given this threshold, for each of the point spread functions
the width is determined as the number of voxels along the line {(x, y)|x = 0}
for which the magnitude of the point spread function is above the threshold,
see e.g. Fig. 4.2b for an example. Based on Eq. (4.2.23), the maximum kernel
width over all simulated parameter pairs is expected to be a good estimate for
the number of off-diagonals to be computed for the sparse Hessian approxima-
tion. Since only a few combinations of parameters are simulated for a single
voxel, the time needed to compute the bandwidth is negligible compared to the
time needed for the MR-STAT reconstructions and can be easily performed at
the start of the reconstruction (or the bandwidth could already be known from
previous reconstructions with similar sequence parameters).
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Figure 4.2: [a] Logarithmic plot of the magnitude of one of the point spread functions
for a sequence with linear, Cartesian sampling and smoothly varying flip angles from
Fig. 4.1. The quantitative parameter values used for the simulation were T1 = 0.8
s, T2 = 0.05s and |B+

1 | = 1.2. In the readout direction the point spread function
is non-zero because of T2-decay during the readouts whereas in the phase encoding
direction it is non-zero because of the varying flip angles. [b] Line plot of the central,
horizontal line of the point spread function shown in the top plot. The threshold
value is determined as the maximum magnitude of the point spread functions in the
readout direction (i.e. the lines {(x, y)|y = 0} \ (x = 0, y = 0)) , over a range of
physically feasible quantitative tissue parameter combinations. The number of voxels
in the phase encoding direction for which the magnitude of the point spread function
is above the threshold is determined to be the width of this point spread function. In
this example the width is five.
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4.2.6 Distributed and memory-efficient computation of
JHJ

Although general methods exist to efficiently compute the entries of a Hessian
with a given sparsity structure [133, 39, 48], in the current work a custom algo-
rithm is used to compute JHJ for the case of sequences with linear, Cartesian
sampling and smoothly varying flip angles. The algorithm is described in the
Supplementary Material and utilizes the Gauss-Newton approximation to the
Hessian and the fact that columns of the Jacobian matrix (associated with
different voxels) can be computed independently from one another. The algo-
rithm is memory-efficient in the sense that only few columns of the Jacobian
matrix need to be stored in memory at once. In addition, the computational
load can also be distributed efficiently among multiple CPUs.

4.3 Methods

The matrix-free MR-STAT (state-of-the-art) method (Alg. 4.1) and the pro-
posed sparse MR-STAT method (Alg. 4.2) are compared on synthetically gen-
erated data, on data from gel phantoms and on in-vivo acquired brain data.

4.3.1 Acquisition scheme
In all experiments, a 2D balanced gradient-echo pulse sequence was used with
smoothly varying flip angles and linear, Cartesian sampling similar to the se-
quence shown in Fig. 4.1. Note that the sequence is designed such that high
flip angles (resulting in high signal) occur when the lower spatial frequencies
are sampled. The peak values of the flip angle trains were generated randomly.
To perform the gel phantom and in-vivo measurements the sequence was im-
plemented on a 1.5 clinical MR system (Ingenia, Philips Healthcare, Best, The
Netherlands). Data was acquired using the manufacturer’s thirteen channel
receive headcoil.

4.3.2 In-silico
For the synthetic experiment, the transienst-state sequence was used to simu-
late data with a (simulated) scan time of 7.8 seconds from a numerical brain
phantom [9]. Noise was added to the simulated signal such that

‖signal‖2/‖noise‖2 = 50.

For the sparse method an optimal bandwidth of five was derived using the
technique described in Section 4.2.5. To test the influence of the bandwidth
on the convergence, reconstructions were performed using bandwidths of one,
three, five (the derived optimal bandwidth for this sequence) and 55. For the
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reconstruction with bandwidth one the number of outer iterations was increased
to 100 because 25 was observed not to be enough to converge in this case.

4.3.3 Gel phantoms

Six gadolinium-doped gel phantoms (TO5, Eurospin II test system, Scotland)
were scanned on the clinical 1.5 TMR system using the manufacturer’s thirteen-
channel receive headcoil. The field-of-view was set to 96 mm × 96 mm with a
spatial resolution of 1 mm × 1 mm × 5 mm. In total 768 readout lines were
acquired with a TR and TE of 7.4 ms and 3.7 ms, respectively, and such that
each spatial frequency was sampled eight times. The readout bandwidth was
85.6 kHz and the total scan time was 5.7 s.

For comparison purposes, data was also acquired using gold standard T1

and T2 mapping methods. For T1 mapping, an inversion-recovery single spin-
echo experiment with inversion times of [50, 100, 150, 350, 550, 850, 1250] ms
was performed. For T2 mapping a single echo spin-echo experiments with echo
times of [8, 28, 48, 88, 138, 188] ms was performed.

4.3.4 In-vivo

After having obtained written informed consent, signal from a 2D transverse
slice of the brain of three healthy volunteers was acquired on the clinical 1.5T
MR system using the vendors receive headcoil. For the first two volunteers, the
field-of-view was set to 224 mm × 224 mm with a spatial resolution 1 mm ×
1 mm × 5 mm. In total 1120 readout lines were acquired with a TR and TE
of 7.6 ms and 3.8 ms, respectively, and such that each spatial frequency was
sampled five times. The readout bandwidth was 85.6 kHz and the total scan
time was 8.5 s. For the third volunteer, the spatial resolution was 1 mm × 1
mm × 3 mm, the TR and TE were 7.9 ms and 3.95 ms and again 1120 readout
lines were acquired in 8.85 s with a readout bandwidth of 85.6 kHz.

4.3.5 Reconstructions

For all three experiments we reconstructed T1, T2 and proton density maps
using both the matrix-free and sparse GN-method. Neither transmit field in-
homogeneity nor off-resonance are taken into account in the reconstructions.
All reconstructions were run on a local high performance computing cluster.
The cluster consists of multiple Intel Xeon Gold 6148 nodes with 40 cores each
and runs on the CentOS Linux 7 (Core) operating system. The reconstruction
algorithms and the Bloch equation simulator were written in the open-source
Julia programming language [15]. The number of inner and outer iterations
for the GN-method were both limited to twenty. Prior to the reconstructions,
signals from the different receive channels were compressed into a single virtual
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Figure 4.3: Convergence curves in terms of both the cost function and normalized
root mean squared errors (“NRMSE”) of the reconstructed T1 and T2 maps are shown
for data from a numerical brain phantom. [a] In the first row, the matrix-free GN-
method and the sparse GN-method are compared. The expected cost upon conver-
gence is plotted as a black line in the left column. The sparse GN-method (with the
derived optimal bandwidth of five) is seen to be approximately an order of magnitude
faster. [b] In the second row, convergence curves for the sparse GN-method with
different bandwidths are shown. The derived optimal bandwidth of five shows the
best performance. A bandwidth of one results in poor convergence, even slower than
the matrix-free method. Having a high bandwidth (e.g. 55) does not result in better
steps in parameter space, it only increases computation time compared to the derived
optimal bandwidth.

receive channel by performing a singular value decomposition and selecting the
dominant singular vector [31].

4.4 Results

In-silico In Fig. 4.3, convergence curves in terms of both the cost function
and the normalized root mean square errors (“NRSME”) are shown. In the first
row, the matrix-free and the sparse method with the derived optimal bandwidth
of five are compared. Upon convergence of the parameter maps towards the
ground truth values, the residual vector r is indistinguishable from noise and
the achieved value of the cost function is expected to be similar to 1

2‖noise‖2.
This value is indicated in the plots in the first column by a horizontal black line.
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In Fig. 4.3a it can be seen that both the matrix-free method and the sparse
method (with the derived optimal bandwidth of five) converge to the noise level.
The sparse method outperforms the matrix-free method by approximately an
order of magnitude.

Convergence curves for different bandwidths used in the sparse method are
shown in the second row of Fig. 4.3. The sparse method with the derived
optimal bandwidth of five shows the best performance. The sparse method
with a bandwidth of one shows poor convergence because important inter-voxel
correlations that arise from the transienst-state nature of the pulse sequence
are ignored. The sparse method with a high bandwidth of 55 also converges
but requires more computational effort because time is spent on non-relevant
inter-voxel correlations.

Gel phantoms Reconstructed T1 and T2 maps for the gel phantoms using the
matrix-free and the sparse reconstruction methods as well as the gold standard
methods are displayed in Fig. 4.4. The mean values and standard deviations
per tube are also reported. It can be seen that the mean values for both
methods agree with the gold standard measurements. The standard deviations
for both methods are also similar. The reconstructions were performed using 32
CPUs. The reconstruction time for the matrix-free method was nine minutes
whereas for the sparse method it was one minute.

In-vivo In Fig. 4.5 in-vivo T1, T2 and proton density maps that are recon-
structed using both the matrix-free and the sparse MR-STAT reconstruction
algorithms are shown. Histograms for all maps are also displayed. From the
maps and the histograms for the three volunteers it can be seen that, for practi-
cal purposes, the matrix-free and sparse methods converge to the same solution.
For both methods we used 96 cores to perform the reconstructions. For the
matrix-free method the reconstruction times were approximately 180 minutes
per dataset whereas for the sparse method the reconstruction times were ap-
proximately sixteen minutes per dataset.

4.5 Discussion

Reconstructing parameter maps with MR-STAT requires dedicated algorithms
that can deal with the inherent large scale of the non-linear optimization prob-
lem that needs to be solved. In the current work we have derived conditions
under which the Hessian, as well as the Gauss-Newton approximation to the
Hessian, admit a sparse structure. After having computed the sparse Hessian,
the linear system in Eq. (4.2.9) can be solved rapidly in order to obtain steps
p in parameter space. Compared to the previously used matrix-free method
the reconstruction times can be reduced by approximately an order of mag-
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Figure 4.4: [a,b] The T1 and T2 maps reconstructed from the gel phantom data using
the sparse MR-STAT method are shown. [c,d] Mean values and standard deviations
are comparable to the values obtained with the matrix-free MR-STAT method. Re-
constructions were performed using 32 cores. The reconstruction time for the matrix-
free method was nine minutes whereas for the sparse method it was one minute. The
mean values obtained per tube also show excellent agreement with the gold standard
reference methods.

nitude without compromising on image quality, as has been demonstrated on
simulation data, gel phantom data and in-vivo brain data.
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Figure 4.5: The T1, T2 and proton density maps as well as histograms reconstructed
from the in-vivo brain data sets using both the sparse and matrix-free MR-STAT
methods are shown. The maps and histograms show excellent agreement between
the sparse and matrix-free method in all three volunteers, demonstrating that the
sparse method can be used to accelerate MR-STAT reconstruction by an order of
magnitude. Note that for volunteers 1 and 2, a slice thickness of 5 mm was use
whereas for volunteer 3 a slice thickness of 3 mm was used in the acquisition.

The sparse Hessian method has only been verified in-vivo using gradient-
balanced sequences in the current work. However, the conditions under which
the Hessian is sparse were derived in a more general setting and , as shown
in Supplementary Figures 4.10 and 4.11, for spoiled sequences similar sparsity
patterns can be obtained as for gradient-balanced sequences. It is therefore ex-
pected that the sparse method will yield similar results in terms of acceleration
for in-vivo measurements with gradient-spoiled sequences.

The derived conditions under which the Hessian is sparse are in principle
not restrictive when performing actual MR measurements. The requirement
of smooth magnetization matrices, which can be accomplished with smoothly
varying flip angles and linear Cartesian sampling, are also important for miti-
gating the effects of eddy currents in gradient-balanced sequences [18, 30]. In
addition, smoothly varying flip angles have also been shown to arise naturally
from optimal sequence design experiments [8, 140]. The requirement to sample
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each of the Nv spatial frequencies Nk ≥ 1 times is in general also easily satisfied
because, in order to make the MR-STAT problem (4.2.8) well-posed, at least
Np ·Nv sample points need to be acquired so that Nk can be set to Np.

In previous work [141, 69] linear, Cartesian sampling strategies were also
used and for high resolution imaging a 1D FFT was applied along the readout
direction prior to reconstruction to decouple the MR-STAT problem into mul-
tiple independent subproblems. The proposed sparse Hessian technique can be
seen as a generalization of this approach. Rather than explicitly decoupling
through application of the FFT - and introducing model inaccuracies (e.g. T2

decay and ∆B0 effects during readout are no longer modelled), the decoupling
in the readout direction happens implicitly through assumptions on the sparsity
pattern of the Hessian matrix. In addition, smoothness of the magnetization
response - resulting in a limited bandwidth in the phase encoding direction and
thus further sparsity - was not used in previous work.

Even though in the sparse method an approximation of Re
{
JHJ

}
is used

(which itself approximates the Hessian matrix), the optimization is observed
to converge to the same parameter maps. In fact, the sparse method can
potentially lead to better update steps because iterations in the inner loop
are computationally cheap and need not be limited, allowing it to take into
account the curvature of the objective function in a more efficient manner. In
the presence of noise we empirically observed it to be beneficial to limit the
number of inner iterations in order to prevent overfitting. Adding regularization
to the reconstruction problem in the form of (joint) sparsity constraints on
the parameter maps [190, 129] might make the reconstruction procedure more
robust and is the subject of further studies.

Note that whereas the matrix Re
{
JHJ

}
is positive-definite by construc-

tion, the sparse approximation is not guaranteed to be positive definite. The
Steihaug algorithm [148] that is used in Alg 4.2 to determine steps in param-
eter space is able to deal with non-positive definite (approximate) Hessians by
terminating when a direction of negative curvature is encountered. In practice
no issues with non-positive definite matrices were encountered.

In the present work we restricted ourselves to sequences with short read-
outs for which the spin dynamics during readouts are assumed to have negligble
impact on the measureable signal. Exploring the benefits of having a forward
model which includes these effects (similar to e.g. time-segmented approaches
[121, 154, 122]) for MR-STAT sequences with longer (e.g. EPI or spiral) read-
outs is the subject of further studies.

Although the conditions that result in a sparse Hessian were derived in
the context of general transient-state sequences for which no analytical models
are available, the outcomes apply equally well if such analytical models are
available. The ideas presented in this work could therefore also be applied
to accelerate other volumetric non-linear inversion methods that rely on such
analytical models [20, 153, 189, 76, 175]. In this respect we note that the
magnetization responses for sequences for which analytical models are available
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(e.g. multi-echo spin-echo, inversion-recovery bSSFP) are typically smooth.
We also note that in some of these works [20, 128], the authors propose first-
order methods to solve the optimization problem while explicitly noting that
scale-invariant methods like the Gauss-Newton method might be preferable but
come with the disadvantage of having to compute the (approximate) Hessian.
By relying on the ideas presented here it might become tractable to compute
the Hessian, making the reconstruction procedures more robust as well.

A major challenge with the MR-STAT approach to qMRI is the long dura-
tions of the reconstructions. With the proposed sparse (approximate) Hessian
technique we have been able to significantly reduce reconstruction times. The
current computational bottleneck in the reconstruction algorithm is formed by
the need to perform Bloch simulations, as well as partial derivative computa-
tions, at each outer iteration of the reconstruction algorithm to compute the
signal s and the columns of the Jacobian J, respectively. Further research
is aimed at using surrogate models (see e.g. [37, 166]) for both these types
of computations in order to reduce reconstruction times so that the potential
benefits of MR-STAT in clinical practice can be explored.

4.6 Conclusion

We have derived conditions under which the Hessian matrices in the MR-STAT
optimization admit a sparse structure. For pulse sequences with linear, Carte-
sian sampling a distributed and memory-efficient algorithm was provided to
explicitely compute the sparse Hessians. Through in-silica, phantom and in-
vivo experiments we have demonstrated that by exploiting the sparsity the
MR-STAT reconstruction times can be reduced by approximately an order of
magnitude, bringing the MR-STAT method closer to clinical practice.
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4.7 Supplementary Materials

Supplementary Material S1: Sparsity patterns

In Section 2.3 of the main manuscript conditions are derived under which the
Hessian matrix in the MR-STAT problem is expected to have a sparse structure.
In Section 2.4 pulse sequence design considerations are discussed for which
the sparsity conditions are satisfied. For gradient-balanced (i.e. “bSSFP” or
“trueFISP” based) pulse sequences with smoothly varying flip angles and linear,



i
i

i
i

i
i

i
i

102

Cartesian sampling a strong sparsity pattern is obtained as shown in Figure 1.
In Supplementary Figure 4.6 a flip angle train is used that is less smooth and
based on the analysis in the main manuscript this will result in more coupling
along the phase encoding direction and thus less sparsity in the approximate
Hessian. This effect can indeed by observed in the figure by the broadening of
the diagonal bands.

If instead an extremely irregular flip angle pattern is used, or if the ordering
of phase encoding lines is randomized, the magnetization matrices m

(k)
j will

no longer be smooth at all and there will be coupling along the entire phase
encoding direction. This can be seen in Supplementary Figure 4.7 (irregular flip
angle train) and Supplementary Figure 4.8 (random ordering of phase encoding
lines), where the blocks of JHJ are block diagonal matrices with blocks of size
Ny ×Ny.

In Supplementary Figure 4.9 a logarithmic plot of the magnitude of JHJ is
shown for a situation where we break the condition that each spatial frequency
is sampled exactly Nk ≥ 1 times. In this scenario the central phase encoding
line is sampled many more times than the other phase encoding line, resulting
in coupling along the entire phase encoding direction.

In Supplementary Figure 4.10 results are shown for a gradient-spoiled (i.e.
“FISP”) sequence with smoothly varying flip angles. In this sequence, a fixed
TR of 8.8 ms and TE of 4.4 ms are used. If instead the TR and TE are
randomized throughout the sequence (with mean, maximum and minimum TR
of 16 ms, 8.8ms and 23.8 ms, respectively, and mean, maximum and minimum
TE of 6.9 ms, 4.4 ms and 9.3 ms, respectively) the magnetization response
remains smooth and has little effect on the sparsity pattern, as can be seen in
Supplementary Figure 4.11.
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Figure 4.6: Logplot of magnitude of JHJ in a similar scenario as in Fig. 1 of the
main manuscript, except that the flip angle train is made less smooth. Each spatial
frequency is still sampled Nk = 8 times. The diagonal block structure of each of
the 25 blocks of JHJ indicates coupling between more voxels in the phase encoding
direction compared to the situation of Fig. 1 of main manuscript.
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Figure 4.7: Logplot of magnitude of JHJ in a similar scenario as in Fig. 1 of the
main manuscript, except that a very irregular flip angle pattern is used. The diagonal
block structure of each of the 25 blocks of JHJ indicates coupling between (almost)
all voxels in the phase encoding direction. Compared to the situation of Fig. 1 of the
main manuscript, the matrix is much less sparse.
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Figure 4.8: Logplot of magnitude of JHJ in a similar scenario as in Fig. 1 of the
main manuscript, except that a random ordering of the phase encoding lines is chosen.
Each spatial frequency is still sampled Nk = 8 times. The diagonal block structure
of each of the 25 blocks of JHJ indicate coupling between (almost) all voxels in the
phase encoding direction. Compared to the situation of Fig. 1 of main manuscript,
the matrix is much less sparse.
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Figure 4.9: Logplot of magnitude of JHJ in a similar scenario as in Fig. 1 of the main
manuscript, except that the central phase encoding line was sampled many more times
than the other phase encoding lines. As a result there is coupling between (almost)
all voxels in the phase encoding direction, as indicated by each block JHJ being a
block diagonal matrix with blocks of size Ny×Ny. Compared to the situation of Fig.
1 of the main manuscript, the matrix is much less sparse.
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Figure 4.10: Logplot of magnitude of JHJ in a similar scenario as in Fig. 1 of the main
manuscript, except that a gradient-spoiled (i.e. “FISP”) sequence is used. Similar to
the case with a gradient-balanced (i.e. “bSSFP” or “trueFISP”) sequence, there is a
high degree of sparsity in the phase encoding direction.
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Figure 4.11: Logplot of magnitude of JHJ in a similar scenario as in Supplementary
Figure 4.10, except that the TR and TE are randomized throughout the pulse se-
quence. As can be seen from the figure, the randomized TR and TE have little effect
on the sparsity pattern.
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Supplementary Material S2: Memory-efficient and
distributed computation of sparse JHJ

Knowing the sparsity structure for JHJ for a sequence with linear, Cartesian
sampling and smoothly varying flip angles, we still need a procedure to compute
its non-zero entries. In this respect, note that the Jacobian matrix J will
generally be too large to fit into computer memory [69]. With the help of
Figure 4.12 we now outline an algorithm to compute the non-zero entries of JHJ
in a memory-efficient manner. Assume the appropriate bandwidth has been
determined to be BW . In the illustration BW = 9 and only two parameters
per voxel, namely T1 and T2, are considered. Assume that the gray entries of
J and JHJ have already been computed and that currently the green and blue
colums of J are stored in memory. With these columns, the green and blue
entries of JHJ can be computed by taking pair-wise inner products of these
columns. Now the blue columns can be dropped from memory and the red
columns of J can be computed and stored. Subsequently, the red entries of
JHJ can be computed and stored. Repeat this process until the entire sparse
JHJ has been stored and computed. This procedure only requires BW × Np
columns of J to be stored into memory at the same time which, for moderate
vales of BW , will be feasible on modern computer architectures.

Also note that, since the columns of J associated with different voxels can
be computed independently from columns associated with other voxels, the
computation of JHJ can be performed parallel by distributing the voxels over
the available number of computing cores.
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Figure 4.12: Illustration of how to compute the sparse JHJ for a linear, Cartesian
sequence with smoothly varying flip angles in a memory-efficient manner. In this
figure we only consider two parameters per voxel, T1 and T2, and the bandwidth is
set to nine. Assume that the gray entries of J and JHJ have already been computed
and that currently the green and blue colums of J are stored in memory. With the
columns, the green and blue entries of JHJ can be computed by taking pair-wise dot
products of these columns. Now drop the blue columns from memory and compute
and store the red columns of J. Then the red entries of JHJ can be computed and
stored. Repeat this process until the entire sparse JHJ has been stored and computed.
Note that, since the columns of J associated with different voxels can be computed
independently from columns associated with other voxels, the computation of JHJ
can be performed parallel by distributing the voxels over the available number of
computing cores.
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Supplementary Material S3: Multi-channel receive arrays
In the derivation in the main manuscript it was assumed that data is received
by only a single receive channel. However, in most MRI acquisitions, data
is received with multiple receive channels. Let Nc ≥ 1 be the number of
receive channels and define di, i ∈ 1, . . . , Nc to be the data from receiver i.
Assuming the coil sensitivities are known (from either a pre-scan or by using
a self-calibration method), let si be the signal model for receiver i. For each
channel a residual vector is defined as ri := di−si and the multi-coil equivalent
of the objective function becomes

f(α) =

Nc∑
i=1

‖ri(α)‖22. (4.7.1)

The corresponding Gauss-Newton approximation to the Hessian matrix is then
given by

Re
{
JHJ

}
=

Nc∑
i=1

Re
{
JHi Ji

}
, (4.7.2)

where
Ji :=

∂ri
∂α

. (4.7.3)

The analysis from the main manuscript can be applied to each of the JHi Ji
terms separately. Assuming the JHi Ji to admit a sparsity pattern, from Eq.
(4.7.2) it follows that the sparsity pattern carries over to Re

{
JHJ

}
.

We also note that because the coil sensitivities only enter as linear scaling
factors in the Jacobian matrices compared to the single-coil case, the computa-
tional overhead of computing the sparse Hessian for the multi-coil case is very
limited.
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Abstract

MR-STAT is a relatively new multi-parametric quantitative MRI
technique. Quantitative paramter maps are obtained by solving
a computationally demanding large-scale non-linear optimization
problem. In this work, we aim to reduce MR-STAT reconstruction
times by leveraging GPU hardware using the Julia programming
language. The computationally demanding tasks of a previously
proposed MR-STAT reconstruction algorithm are identified. One of
these tasks consists of performing many Bloch simulations. A Bloch
simulation framework is developed and released as a standalone
package called BlochSimulators.jl. The package is benchmarked in
terms of runtime performance against other Bloch simulation tool-
boxes developed in C, CUDA or Julia and demonstrates superior
performance. Furthermore, a GPU-compatible (partially matrix-
free) modification of the MR-STAT reconstruction algorithm is pre-
sented that utilizes BlochSimulators.jl. The proposed algorithm re-
sults in MR-STAT reconstruction times in the order of one minute
per 2D slice.
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5.1 Introduction

Magnetic resonance imaging (“MRI”) is a medical imaging modality that is used
in clinical practice to visualize anatomical structures. Compared to other imag-
ing modalities such as CT and PET, the main advantage of MRI is the superior
soft tissue contrast. The MR scanner utilizes radiofrequency waves together
with rapidly switching magnetic gradient fields to be able to sample spatial fre-
quency (“k-space”) information. The inverse Fast Fourier Transform (“FFT”)
is then typically used to generate diagnostic contrast images. While the direct
FFT approach results in very fast reconstructions, the Nyquist-sampling crite-
rion must be satisfied for the FFT to be succesful, which, due to the sequential
manner of sampling spatial frequencies, results in relatively lenghty data ac-
quisition procedures compared to other imaging modalities. For quantitative
MRI (“qMRI”), where the goal is to provide quantitative estimates of certain
physical tissue properties, the same field-of-view is typically imaged multiple
times with different scan settings to generate multiple contrasts, followed by a
voxelwise fit of an analytical signal model. The issue of long scan times is thus
amplified for these traditional qMRI approaches and consequently qMRI has
only seen limited clinical adoption.

In recent years, new transient-state qMRI techniques like MR Fingerprint-
ing [110] and MR-STAT [141] have emerged that drastically reduce qMRI ac-
quisition times. In MR-STAT, the qMRI problem is posed as a large-scale
non-linear inversion problem. Multiple quantitative tissue parameter maps
(e.g. T1, T2) are generated from a single-short scan by fitting a Bloch-equation
based forward model to the measured, transient-state k-space samples. A major
challenge with this technique is managing the reconstruction times and memory
requirements of the reconstruction algorithm. In previous work, MR-STAT re-
construction times have been accelerated by utilizing CPU-parallelization [69],
surrogate modelling [106] as well as algorithmic techniques that rely on the
assumption of Cartesian-based gradient trajectories ([66, 106]).

Since GPU hardware has been demonstrated to result in runtime perfor-
mance gains in many different areas of research, including the field of MRI
reconstructions [152, 174], it could be beneficial to implement (the computa-
tionally demanding parts) of the MR-STAT reconstruction algorithm on GPU
hardware. However, implementing such an algorithm in a low-level language
like CUDA is challenging and time consuming, especially for MRI researchers
whose main area expertise typically does not include low-level programming.

In this work, we will instead use the Julia language programming language
[15] to implement a GPU-accelerated adaptation of the MR-STAT reconstruc-
tion algorithm. Julia is a relatively new programming language that is free
and open source, and it is designed specifically for scientific programming pur-
poses. Its so-called multiple dispatch type system together with its Just-In-
Time (“JIT”) compiler allows for quick and easy prototyping on the one hand



i
i

i
i

i
i

i
i

116

(similar to dynamically typed, interactive languages like Matlab and Python)
while being able to achieve the same runtime performance as low-level, com-
piled languages such as C, C++ and Fortran [83]. Together with the CUDA.jl
package [? ], one can use Julia to write functions that compile down to na-
tive CUDA kernels to be executed on GPU hardware. We will make use of
these language features to implement custom kernels for the computationally
demanding tasks of the MR-STAT reconstruction algorithm. The relevant im-
plementation considerations will be described and the runtime performance
will be benchmarked against previously presented MR-STAT reconstruction
implementations.

One of the important and computationally demanding parts of the MR-
STAT reconstructions is formed by the need to perform Bloch simulations
at each iteration of the iterative reconstruction algorithm. Bloch simulations
are also important for other quantitative, transient-state MR reconstruction
techniques such as MR Fingerprinting and several Bloch simulation software
tools written in a range of programming languages are already available on-
line [64, 149, 102, 172, 33]. Instead of relying on these pre-existing tool-
boxes, a new Julia Bloch simulation toolbox was developed as part of this
work. This toolbox is highly flexible in the sense that it allows users to
implement pulse sequences that can then be executed on multiple hardware
architectures (single CPU, multi-threaded CPU, distributed CPU as well as
GPU) using multiple numbers types (e.g. single- and double precision) and
without code repetition. State-of-the-art runtime performance is achieved, as
will be demonstrated through benchmarks against existing MR physics and
fast surrogate-modelling based toolboxes. Our Bloch simulation toolbox is re-
leased as a stand-alone Julia package called BlochSimulators.jl, available at
https://github.com/oscarvanderheide/BlochSimulators.jl.

5.2 Theory

In this section we first provide a high-level overview of the MR-STAT recon-
struction algorithm presented in [69] and we list the computational bottlenecks
that can benefit from GPU acceleration.

Let d ∈ CNt be the vector of time-domain samples measured at Nt sampling
times t1, . . . , tNt

during an MR experiment. The time-dependent forward model
s (after spatial discretization) that is used to synthesize time-domain samples
is given by

s(t) =

Nv∑
j=1

m(θj , t)e
−2πik(t)·rj∆V , (5.2.1)

where Nv is the number of voxels within the field-of-view, ∆V is the volume
element for each voxel, rj is the vector of spatial coordinates for the voxel
associated with index j, θj is the vector of MR-relevant biophysical tissue

https://github.com/oscarvanderheide/BlochSimulators.jl
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properties (e.g. T1, T2, ρ, . . .) for the voxel associated with index j, k(t) is
the k-space trajectory and m is the complex transverse magnetization whose
time-varying behavior is obtained from Bloch simulations. Define the vector s
as

s := [s(t1), . . . , s(tNt
)] ∈ CNt .

Note that s depends on the tissue parameters θj for all voxels j. Concatenate
all tissue parameters into a single vector α. The parameter maps (contained
in α) are then obtained by numerically solving the inverse problem

α∗ = argminα
1

2
‖d− s(α)‖22 . (5.2.2)

using the Gauss-Newton iterative algorithm as outlined in Alg. 5.1.

Algorithm 5.1 Minimize α→ 1
2‖d− s(α)‖22

Require: Initial guess α0

while not converged do
1. Evaluate forward model s at α
2. Compute residual: r = d− s
3. Compute gradient: g = Re

(
JHr

)
, where J := − ∂s

∂α

4. Solve linear system: Re
(
JHJ

)
p = −g

5. Update parameters: α = α+ p
end while

The computationally demanding steps of this iterative algorithm are Steps
1, 3 and 4. In Step 1, Bloch simulations must be performed in each voxel to
be able to evaluate the forward model s. Even for 2D reconstructions, there
can be approximately 105 voxels with approximately 106 time-points per voxel.
In Step 3, the gradient of the objective function is computed, which requires
a matrix-vector multiplication with the Jacobian matrix J whose columns are
given by partial derivatives of the forward model s with respect to the tissue
parameters in all voxels α. Computing partial derivatives of the forward model
is typically even more computationally demanding than the Bloch simulations
themselves. In Step 4, a linear system involving the Gauss-Newton matrix JHJ
is numerically solved. However, as described in [69], directly inverting JHJ is
infeasible for the typical MR-STAT problem sizes. Instead, it was proposed
to numerically solve the linear system by an iterative solver for linear least
squares problems (LSQR [126]). This solver requires repeated multiplications
with J and JH . The number of entries of the matrix J is typically in the order
of 106 × 106 for 2D problems and is therefore too large to store in computer
memory. A matrix-free algorithm was proposed to be able to compute the
matrix-vector multiplications required for steps 3 and 4 and the feasibility of
this approach was demonstrated on a CPU computing cluster.
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The main aim of this work will be to accelerate MR-STAT reconstructions
by using Julia to perform each of the following computationally demanding
tasks on GPU hardware:

(A) Bloch simulations (Step 1);

(B) Partial derivatives of the forward model s with respect to α (Step 3); and

(C) Matrix-vector products with J and JH (Step 4).

5.2.1 Bloch Simulations

5.2.1.1 Numerical integration of Bloch equations

In MRI, individual spin isochromats are modeled as 3D vectorsM = (Mx,My,Mz)
whose dynamics are described by the Bloch equations [82]

dM

dt
= (γB(t) + D)M(t) +

M0

T1
. (5.2.3)

Here γ is the nuclear magnetic ratio, B(t) is a 3× 3 matrix containing the
pulse sequence-dependent magnetic field at each timepoint,

D = diag (−1/T2,−1/T2,−1/T1) (5.2.4)

contains the longitudinal (T1) and transversal (T2) relaxation times of the spin
isochromat, and M0 = (0, 0,Mz,0) is its equilibrium magnetization.

In Bloch simulations, the ordinary differential equation (“ODE”) with time-
varying coefficients from Eq. 5.2.3 is integrated in time for a specific pulse
sequence. In general, no analytic solutions exist. However, in specific scenario’s
analytic solutions do exist: when relaxation is ignored and the magnetic field
B(t) is assumed constant during a timestep ∆t, an analytic solution exists in
the form of multiplication with the 3D rotation matrix e−γ∆tB. Alternatively,
when B(t) is ignored during a timestep ∆t, an analytic solution is available in
the form of multiplication with the (diagonal) decay matrix e∆tD and addition
of the (longitudinal) regrowth vector (1− e−1/T1)M0. When performing Bloch
simulations, instead of relying on general purpose ODE solvers, a commonly
used method is to manually discretize the pulse sequence in time and for each
time-step applying a splitting method where first the 3D rotation is applied,
followed by decay and regrowth operations. That is, given M at time t, the
magnetization at time t+ ∆t is computed as

M(t+ ∆t) = e∆tDe−γ∆tB(t)M(t) + (1− e−1/T1)M0. (5.2.5)

We refer to [167] for more details on the splitting approach.
In the presence of spoiling gradients, it may be inefficient to model the MR

signal using individual spin isochromats and the extended phase graph (“EPG”)
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model [71, 72] may be more appropriate. In the EPG model, instead of keeping
track of individual spin isochromats, one tracks the dynamics of so called con-
figuration states. Like in the case of the isochromat model, Bloch simulations
can be performed by repeatedly applying rotation, decay and regrowth opera-
tions but in addition, a spoiling operator is required that shifts configuration
states (see [177] for a review of the EPG framework).

5.2.1.2 BlochSimulators.jl

In this subsection we provide a high level overview of the design of BlochSim-
ulators.jl - our Julia implementation of a Bloch simulation framework with a
focus on speed and flexibility.

For both the isochromat and EPG models, functions are written that imple-
ment the above mentioned rotation, decay, regrowth and spoiling (EPG
only) operations. The functions are designed to be both type-stable and non-
allocating, and form the core of the BlochSimulators.jl package. Type-stability
allows Julia’s JIT compiler to generate efficient machine code without having to
hard-code - for example - whether single or double-precision number types are
used. This is useful because, for example, on GPU one might want to perform
computations using 32-bit (complex) floating point numbers for performance
reasons. On the other hand, when precision is more important than runtime
performance, one might want to use 64-bit floating point numbers instead.

The operator functions are non-allocating in the sense that relatively ex-
pensive heap allocations are avoided during their execution. This is in gen-
eral beneficial for runtime performance. An important ingredient for achieving
non-allocating code is the StaticArrays package which introduces arrays whose
sizes are known at compile time and thus allows them to be stack-allocated. In
BlochSimulators.jl, the isochromats and configuration state matrices are stored
using StaticArrays. In addition, on the GPU, the configuration state matri-
ces are stored in shared memory instead to prevent L1-cache eviction during
simulations. This was observed to result in significantly faster GPU simula-
tions. For the isochromat-based model no difference was observed when using
shared memory, likely because the isochromat vectors are small enough that
they already remain in L1 cache during the entire simulation.

Simulators for entire pulse sequences can in principle be assembled by com-
bining the individual operator functions. Because the individual operator func-
tions are type-stable and non-allocating, a proper combination of these func-
tions should result in type-stable and non-allocating sequence simulations as
well. In BlochSimulators.jl, we follow a convention where computing the mag-
netization at echo times without taking into account gradient encoding is sepa-
rated from computing the magnetization at other readout times (with gradient
encoding) and performing the volume integral in Eq. 5.2.1. The reason for
this separation is twofold. First of all, for some applications such as computing
MRF dictionaries, only the magnetization at echo times without gradient en-
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Figure 5.1: In BlochSimulators.jl a convention is followed where at first only the
magnetization at the different echo times is computed. Eq. 5.2.5 is used to propagate
the magnetization state from the i-th echo time to the (i+1)-th echo time. Typically
there are RF excitations (indicated by the waveforms on the RF line) in between
echo times which may require multiple timesteps to be properly simulated. Given
the magnetization at the ith echo time, the magnetization at the j-th sample point
of that readout (the blue bar on the ADC line) is computed analytically using Eq.
5.2.6.

coding is needed. Secondly, when performing 2D scans, slice profile correction
mechanisms typically involve a summation over multiple simulations per voxel
using either different locations of isochromats in the slice-select direction or
different effective RF flip angles [97]. After the net transverse magnetization
(i.e. after summation) in a voxel at some echo time t∗ has been computed, a
simplification of Eq. 5.2.5 allows the net transverse magnetization at another
time t during that readout to be computed analytically as

M(t) = M(t∗)e−
t−t∗
T2 e−2πi(t−t∗)∆B0e−2πik(t)·r, (5.2.6)

where r is the spatial position of the voxel, k is the k-space trajectory
and ∆B0 is the local off-resonance. The net magnetization in a voxel at other
readout times can thus be computed after the summation necessary for the slice
profile correction, therefore reducing the total number of computations. The
two different timescales (i.e. between echo times and between sample points
within a readout) are illustrated in Fig. 5.1.

In order to compute the magnetization at echo times for a particular se-
quence, a new custom Julia “struct” needs to be introduced first. The struct
should be a subtype of either IsochromatSimulator or EPGSimulator to in-
dicate which model will be used for simulations. The struct must have fields
containing the necessary information to describe the pulse sequence. For ex-
ample, in a variable-flip angle MR-STAT sequence, the sequence struct should
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hold - among other things - the list of different flip angles for each TR. In
a multi-echo experiment, the struct should contain information on how many
echos there are and what their respective echo times are. Given the sequence
struct, a new simulate! method must be added which uses the fields of the
struct, together with the above mentioned core operators, to implement the ac-
tual pulse sequence. Example sequence implementations are provided as part
of the source code of BlochSimulators.jl (stored in src/sequences) but users
of the package are able to assemble their own as well.

To perform Bloch simulations with a given sequence, the user must also
provide a parameters array which contains tissue parameters to be used as
inputs for the simulations (e.g. different combinations of T1 and T2 values, see
src/tissueparameters.jl for currently supported parameter combinations).
In addition, the user must specifiy the computational resource to be used
for the simulations. BlochSimulators.jl supports single CPU (CPU1()), multi-
threaded CPU (CPUThreads()), distributed CPU (CPUProcesses) and GPU
modes (CUDALibs()). A function call of the form

output = simulate(resource , sequence ,
parameters)

will result in an array with the magnetization at echo times for each combina-
tion of input parameters, which can be used as a dictionary for MR Finger-
printing.

In order to evaluate the forward model Eq. 5.2.1, which involves a volume
integral of the magnetization at all readout times, a custom trajectory struct
(subtype of AbstractTrajectory) must be introduced with fields that can
describe the gradient trajectory. For each such struct, a method must be
added to the function to_readout_point which implements Eq. 5.2.6 for that
particular trajectory. Examples are provided for Cartesian and radial gradient
trajectories. In these examples, rather than storing the k-space coordinates for
all sample points, we use a compact representation where for each readout only
the starting point in k-space and the step in k-space per sample point is stored.
This compact representation of the trajectory reduces memory access during
runtime to allow for an increased compute throughput.

Besides a trajectory, the user must also provide coil sensitivity profiles
(coil_sensitivities). The forward model Eq. 5.2.1 is then evaluated with
a function call of the form

output = simulate(resource , sequence ,
parameters , trajectory ,
coil_sensitivities)

A graphical overview of the code structure underlying BlochSimulators.jl
is shown at the online repository (https://github.com/oscarvanderheide/
BlochSimulators.jl).

https://github.com/oscarvanderheide/ BlochSimulators.jl
https://github.com/oscarvanderheide/ BlochSimulators.jl
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5.2.2 Partial derivatives of the forward model

To compute partial derivatives of the forward model with respect to the tis-
sue parameters α, we use the finite difference technique [140] to compute the
partial derivatives at echo times first. The finite difference technique directly
translates the GPU acceleration from BlochSimulators.jl to the partial deriva-
tive computations. Given the partial derivatives at echo times, the partial
derivatives at other readout times are computed by manually differentiating
the analytical expression from Eq. 5.2.6 and, again, custom CUDA kernels are
written in Julia to execute these partial computations on GPU hardware.

5.2.3 Matrix-vector products with J and JH

Computing the gradient in step 3 of Alg. 5.1 involves a matrix-vector multipli-
cation with JH . Numerically solving the linear system in step 4 of Alg. 5.1 also
involves repeated multiplications with J and JH . In previous work [69], it was
argued that storing J requires more computer memory than typically available
and a matrix-free implementation was proposed that computes the matrix-
vector products without having to store J into computer memory. However,
this method requires recomputation of the entries of J for each matrix-vector
multiplication. While memory-efficient, the method involves many redundant
computations. In this work, we propose a partially matrix-free implementation
instead, where at first only the partial derivatives of the transverse magneti-
zation at echo times are computed and stored in computer memory. For 2D
MR-STAT reconstructions at clinically relevant resolutions it should be possi-
ble to store these arrays on modern GPU cards, see Supplementary Material
5.6.

Having stored arrays with partial derivatives at echo times in memory,
matrix-vector multiplications with J and JH can be then performed in parallel
by following slight modifications of the algorithms presented in [69]: instead
of recomputing the partial derivatives at all readout times, the processes read
in the partial derivatives at echo times and then use Eq. 5.2.6 (differentiated
w.r.t. the tissue parameters at hand) to compute the values at the remaining
readout times. Pseudo-code for these algorithms is presented in Alg. 5.2 and
Alg. 5.3. In this pseudo-code, we assume for simplicity that only a single
tissue parameter per voxel is considered and that no coilmaps are used in the
reconstruction.

CUDA kernels are written in Julia to perform the partially matrix-free
evaluation of Eq. 5.2.1 and multiplications with J (Alg. 5.2) and JH (Alg.
5.3) respectively.

With tasks A, B and C being made GPU compatible (with the help of
BlochSimulators.jl), we arrive at a GPU-compatible, partially matrix-free MR-
STAT reconstruction algorithm.
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Algorithm 5.2 Partially matrix-free, parallelized algorithm for computing
matrix-vector products Jx.

Assumptions: Let {nr, ns, nv} be the total number of {readouts, samples
per readout, voxels}.
Input:
- Matrix with partial derivatives at echo times J̃ ∈ Cnr×nv computed with a
sequence struct
- A trajectory struct describing the gradient trajectory
- Input vector x ∈ Rnv
Output:
- Matrix-vector product Jx stored in output ∈ Cnr×ns

Algorithm Kernel:
Let 1 ≤ i ≤ (ns× nr) be the current process’ global index.
r, s = divrem(i, nr) # Readout and sample indices
for v = 1, . . . , nv do
Jr,v = J̃(r, v) # Partial derivative at r-th readout
# Compute partial derivative at s-th sample point
Js,v = ∂to_sample_point(Jr,v, trajectory, s, . . .)
# Multiply with input vector and accumulate result
output(i) += Js,v ∗ x(v)

end for
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5.3 Methods

In this section we will benchmark BlochSimulators.jl in terms of runtime per-
formance against several existing and online available Bloch simulation pack-
ages. Benchmarks will be performed on both CPU and GPU hardware, using
both the isochromat and EPG model. Secondly, we benchmark the runtime of
the partially matrix-free MR-STAT reconstruction algorithm on GPU against
previously presented MR-STAT reconstruction techniques. All CPU-based ex-
periments are performed on an Intel(R) Xeon(R) W-2245. The GPU-based
experiments are performed on an NVIDIA RTX A5000 card.

Algorithm 5.3 Pseudo-code to compute JHy in partially matrix-free, paral-
lelized fashion.
Assumptions: Let {nr, ns, nv} be the total number of {readouts, samples
per readout, voxels}.
Input:
- Matrix with partial derivatives at echo times J̃ ∈ Cnr×nv computed with a
sequence struct
- A trajectory struct describing the gradient trajectory
- Input vector y ∈ Cnr×ns
Output:
- Matrix-vector product JHy stored in output ∈ Cnv
Algorithm Kernel:
Let 1 ≤ v ≤ nv be the current process’ global index.
tmp = 0 # Initialize accumulator
for r = 1, . . . , nr do
Jr,v = J̃(r, v) #Partial derivative at r-th readout
for s = 1, . . . , ns do

# Compute partial derivative at s-th sample point
Js,v = ∂to_sample_point(Jr,v, trajectory, s, . . .)
# Multiply with input vector and accumulate result
tmp += conj (Js,v) ∗ x(v)

end for
end for
output(v) = tmp

5.3.1 Performance Benchmarks: BlochSimulators.jl

First, we compare BlochSimulators.jl against an isochromat-based Bloch sim-
ulator written in the C programming language written by Brain Hargreaves
(URL). This Bloch simulator takes as input vectors with RF excitation and
gradient waveforms and returns the x, y and z components of a spin isochro-
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mat for each simulated time interval. One might use such an isochromat sim-
ulator to simulate gradient-balanced pulse sequences. In BlochSimulators.jl, a
sequence simulator called “Generic3D” is implemented that takes similar input
and produces the same output. For benchmarking purposes, simulations are
performed to generate dictionaries for 1000 up to 10,000 different combinations
of T1 and T2 values for a sequence with 1120 readouts. The simulations are
performed on a single CPU using both single- and double precision floating
point numbers. More details of the simulation setup are described in Supple-
mentary Material 5.6 and the variable flip angle train used in the simulations is
depicted in Supplementary Fig. 5.6. For the Generic3D simulator we generate
dictionaries on the GPU as well using 10,000 up to 350,000 combinations of T1

and T2 values. The maximum number of 350,000 was chosen to be in the order
of a typical MR Fingerprinting dictionary size.

Most pulse sequences are repetitive by nature. For example, in most conven-
tional MR sequences, only the gradient encoding is different between different
repetitions of the base sequence block. For transient-state sequences as used
in MR Fingerprinting or MR-STAT the flip angle typically does change each
TR but the nominal RF excitation waveform is fixed throughout the sequence.
Whereas it would be possible to perform simulations for such a (transient-state)
sequence with the simulator from Hargreaves or the Generic3D simulator from
BlochSimulators.jl, runtime memory access could be reduced by incorporating
knowledge of the repetitive nature of the sequence into the simulation code. For
example, instead of reading in from memory at each timepoint of the simulation
the actual RF field during that timepoint, the nominal RF waveform could be
loaded once up front and scaled with the desired flip angle each TR instead.
We take this approach with the “pSSFP” (pseudo steady-state free precession
[6]) sequence that is provided as an example in BlochSimulators.jl. For this
particular sequence implementation, the TR and TE remain fixed throughout
the sequence but the flip angle is allowed to change each TR. The runtime for
this sequence-specific simulator was benchmarked using a similar setup as used
for the Hargreaves simulator and the Generic3D simulator.

For a third benchmark, we perform simulations for a FISP-type sequence
with time-varying flip angles [85] based on the EPG model (additional se-
quence simulation details are provided in Supplementary Material 5.6). In
BlochSimulators.jl, a sequence simulator “FISP” was implemented for this pur-
pose. We compare this against the FISP-type simulator from SnapMRF [172],
an MR Fingerprinting dictionary simulation framework that runs on GPU
hardware and is written in native CUDA, available at https://github.com/
dongwang881107/snapMRF.

It has been demonstrated that neural networks can be trained to act as
a surrogate model for Bloch simulations with high accuracy and fast runtime
performance [186]. For the fourth benchmark, we compare the FISP simulator
from BlochSimulators.jl against against the recurrent neural network proposed
(“RNN-EPG”) in [104] that is trained to perform simulations for a FISP se-

https://github.com/dongwang881107/snapMRF
https://github.com/dongwang881107/snapMRF
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quence. We note that EPG-RNN was trained on sequences for which the RF
excitations always have the same phase. The calculation of the response of
configuration states to an RF excitation then simplifies and the magnetization
can also be described using real numbers instead of complex numbers. Using
type-stability of BlochSimulators.jl’s kernel function, together with Julia’s mul-
tiple dispatch system, we could use the same FISP sequence implementation
for both scenarios (RF excitations with constant and time-varying phases).

For the final benchmark, we measure runtimes for evaluating the forward
model Eq. 5.2.1 using both BlochSimulators.jl and KomaMRI.jl. KomaMRI.jl
is another Julia Bloch simulation package that allows for evaluation of the
forward model Eq. 5.2.1 for arbitrary sequences and it supports GPU hardware
as well. Both toolboxes were used to simulate the signal from a gradient-
balanced sequence with golden angle radial readouts. We performed signal
simulations for scenarios with 10,000 up to 350,000 voxels using single precision
computations on GPU hardware. Additional sequence details are provided in
Supplementary Material 5.6.

5.3.2 Performance Benchmarks: MR-STAT Reconstruc-
tions on GPU

The Julia GPU implementation of the partially matrix-free MR-STAT recon-
struction algorithm is benchmarked in terms of runtime performance against
the matrix-free distributed CPU implementation from [69], a sparse Hessian
distributed CPU implementation from [66] and a neural-network and ADMM
implementation from [106]. In all these previous reports, the same 2D in-
vivo brain dataset obtained using a clinical 1.5T MR System (Ingenia, Philips
Healthcare, Best, The Netherlands) was utilized. For this dataset, 1120 Carte-
sian readouts were acquired with gradient-balanced, variable-flip angle sequence
with TE/TR = 3.8 ms / 7.6 ms and a total scan time of 8.5 s. The flip angle
train and phase encoding order are depicted in Supplementary Fig. 5.6. The
field-of-view was set to 224 mm × 224 mm × 5 mm and the reconstructed
resolution was 1 mm × 1 mm × 5 mm. The partially matrix-free GPU im-
plementation will be used on this same dataset, using ten outer iterations of
Alg. 5.1 and a maximum of twenty inner iterations (Step 4 of Alg. 5.1) to
reconstruct T1, T2 and proton density (complex) maps.

5.4 Results

In Fig. 5.2, the CPU runtimes for Hargreaves’ simulator and the Generic3D and
pSSFP simulators from BlochSimulators.jl that all use the isochromat model
are displayed. It can be observed that Generic3D simulator outperforms Harg-
reaves’ simulator by approximately 33% while both take the same input, return
the same output, and at runtime essentially perform the same type of calcu-
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Figure 5.2: Runtime performance comparison of Hargreaves’ C simulator (double
precision only) and the Generic3D and pSSFP simulators from BlochSimulators.jl
(single and double precision) on CPU.

lations. This demonstrates the effectivenes of Julia’s Just-In-Time compiler to
generate efficient machine code in this scenario. Secondly, we observe that the
pSSFP simulator is approximately 50% faster than the Generic3D simulator.
That is, making use of the repetitive nature of a pulse sequence to reduce run-
time memory access (e.g. not having to load the same nominal RF waveform
for each TR) significantly increases the compute throughput. In BlochSimula-
tors.jl it is relatively easy to use its kernel functions to assemble a simulator
corresponding to a specific pulse sequence. On a CPU, there is only a small
performance gain when simulations are run using single precision compared to
double precision. Note that the Hargreaves’ simulator is hardcoded to double
precision and therefore no single precision simulations were performed.

Whereas the Hargreaves’ simulator is not GPU compatible, the design of
BlochSimulators.jl allows the Generic3D and pSSFP sequence implementations
to be directly executed on the GPU. In Fig. 5.3, the runtime performance
results for the GPU calculations are shown (on a logarithmic scale). On the
GPU, as expected, we observe more significant differences between single and
double precision. The single precision Generic3D simulator is approximately
six times faster compared to its double precision counterpart. For the pSSFP
simulator, the difference is even larger with the single precision one being fifteen
times faster. Furthermore we observe that the single precision pSSFP simulator
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Figure 5.3: Runtime performance comparison of the Generic3D and pSSFP simula-
tors from BlochSimulators.jl (single and double precision), this time on a GPU. The
runtime performance benefit of using single precision floating point numbers is more
pronounced on GPU hardware.

is approximately five times faster than the single precision Generic3D simulator.
The former performs simulations in 350,000 voxels in 0.22 s. Extrapolating the
CPU runtimes for the single precision pSSFP simulator to 350,000 simulations
would result in a runtime of approximately 140 s. That is, the GPU results in
a 600x speedup in this scenario.

The results from the EPG simulation benchmarks are displayed in Fig.
5.4. For the EPG simulations, we only performed simulations on the GPU at
single precision and we compare the FISP simulator from BlochSimulators.jl,
SnapMRF [172] and RNN-EPG [104]. Even though SnapMRF is written in
native CUDA, the FISP implementation from our BlochSimulators.jl (anno-
tated with “complex” in Fig 5.4 to indicate that the RF excitations can have
varying phases) is more than 50 times faster. This difference may be explained
by different design choices in the implementation such as using shared memory
to store the configuration states, and further exemplifies the ability of Julia’s
compiler to generate efficient machine code. Furthermore, we observe that in
the case where RF excitations are assumed to have constant phase (annoted
with “real” in Fig. 5.4), the FISP implementation from BlochSimulators.jl
is approximately three times as fast as RNN-EPG. However, RNN-EPG was
trained to also return partial derivatives with respect to T1 and T2. If we were
to use a finite difference approach to compute these partial derivatives with
BlochSimulators.jl, the runtimes would be approximately the same.

In Fig. 5.5 the runtimes for evaluating the forward model Eq. 5.2.1 using
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Figure 5.4: Runtime performance comparison of a variable flip-angle FISP-type
sequence. The EPG model is used for signal simulations using an implementation
from BlochSimulators.jl, the native CUDA implementation from SnapMRF [172] and
RNN-EPG [104].
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Figure 5.5: Runtimes for evaluating the forward model Eq. 5.2.1 using both Ko-
maMRI.jl and BlochSimulators.jl on a gradient-balanced sequence with golden angle
radial readouts.

both KomaMRI.jl [33] and BlochSimulators.jl are displayed. We observe that
BlochSimulators.jl is faster, with the speedup factor depending on the number
of voxels used in the simulations. For a typical 2D phantom size of 2562 =
65, 536 voxels BlochSimulators.jl is approximately 75 times faster whereas for
350,000 voxels it is approximately 30 times faster.

In Table 5.1, the reconstruction times for the different MR-STAT recon-
struction techniques on the same underlying dataset are reported. For the pro-
posed partially matrix-free GPU case, the reconstruction time was 68 seconds,
almost twice as fast as the previous state-of-the-art MR-STAT reconstruction
technique from [106]. The T1, T2 and proton density maps reconstructed with
the partially matrix-free MR-STAT algorithm on GPU are shown in Supple-
mentary Fig. 5.7. Regarding the accuracy of the reconstructed maps, we
note that the reconstruction procedure computes the same update steps (see
Alg. 5.1) as the matrix-free [69] approach, and therefore it results in the same
quantitative T1, T2 and proton density. In Table 5.2 we further outline the
computationally demanding tasks of the reconstruction algorithm and what
percentage of the reconstruction time is spent on these tasks. It can be ob-
served that matrix-vector multiplications with J account for approximately
65% of the total reconstruction time, thus forming the main computational
bottleneck.
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Table 5.1: 2D in-vivo MR-STAT reconstruction times

Method Hardware Reconstruction Time
Matrix-free [69] 96 CPU cores 193 minutes
Sparse-Hessian [66] 96 CPU cores 16 minutes
ADMM + neural network [106] 8 CPU cores 2 minutes
Partially matrix-free [this work] 1 GPU 68 seconds

Table 5.2: Breakdown of 2D in-vivo MR-STAT reconstruction times using the par-
tially matrix-free reconstruction algorithm on a GPU

Task Time % of total
Forward model evaluation 6.22 s 9.1 %
Partial derivatives at echo times 2.84 s 4.2 %
Matrix-vector products with J 44.1 s 64.9 %
Matrix-vector products with JH 9.1 s 13.5 %

5.5 Discussion

Managing reconstruction times is one of the main challenges of the MR-STAT
technique. Previously presented acceleration techniques focussed on CPU-
parallelization [69], surrogate modelling [106] or algorithmic techniques that
rely on the assumption of Cartesian-based gradient trajectories ([66, 106]). In
this work we explored a different acceleration direction: GPU architectures.
The Julia language was an essential tool in exploring this direction. Instead
of having to work with a low-level, labor intensive programming language like
CUDA, kernel functions for the computationally demanding parts of the recon-
struction algorithm could be written directly in Julia, making use of many of
its high-level language features, thus allowing for relatively quick prototyping.

The standalone software package BlochSimulators.jl that was developed as
part of this work can be used to perform Bloch simulations using both the
isochromat model and the EPG model with runtime performance that is com-
parable to or better than toolboxes developed in statically typed, compiled
languages (C, CUDA). At the same time, BlochSimulators.jl allows for high
flexibility: sequence simulators can be assembled that can take into account
the repetitive nature that most pulse sequence exhibit for better runtime per-
formance. Besides using BlochSimulators.jl for forward model evaluations in
the context of MR-STAT, the package could be used, for example, for online
generation of MR Fingerprinting dictionaries.

Although not demonstrated in the benchmarks, BlochSimulators.jl also sup-
ports multi-threaded as well as distributed CPU computations. Besides gener-
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alizing to different hardware architectures, it also generalizes to different num-
ber types. This property is convenient because it allows one, for example, to
use single precision floating point numbers on GPU without having to write
additional code. The type-stable design of the kernel functions also allows one
to use more exotic number types in the simulations. As an example, stochas-
tic variables from the Measurements.jl package could be used to propagate
uncertainties in certain parameters (flip angles for example) throughout the
simulations automatically.

We observed that the EPG-based FISP sequence simulator from BlochSimu-
lators.jl has similar runtime performance as the recurrent neural network RNN-
EPG. At the same time, it does not require a training phase and there is no
loss of accuracy that is inherent to trained networks. However, we still believe
neural networks can play an important role in MR-STAT reconstructions. The
RNN-EPG network was trained to be able to predict the signal for a wide range
of varying flip angle trains. For scenario’s where the fixed flip angle trains are
fixed, a different network architecture (e.g. [186]) with better runtime perfor-
mance may be more suitable and have better performance. BlochSimulators.jl
may be a relevant tool in training such networks.

At the moment, the kernel functions in BlochSimulators.jl only recognize
T1, T2, B

+
1 ,∆B0 and spatial coordinates as inputs. In the future we plan to

add support for additional contrast mechanisms such as diffusion using the
Bloch-Torrey equations [160] and magnetization transfer [10].

Both our BlochSimulators.jl and the KomaMRI.jl [33] package use the
CUDA.jl package to achieve GPU support. However, both packages follow
a different implementation approach. In BlochSimulators.jl, signal simulations
are performed with only two kernel calls: one kernel call for simulating the
magnetization at echo times and a second kernel call for incorporating the gra-
dient encoding and volume integration. On the other hand, in KomaMRI.jl,
GPU support is provided by means of performing individual operations on
CuArrays, resulting in many kernel launches per simulation. The overhead
associated with launching many kernels may explain the difference in runtime
performance observed in the benchmarks in this work. Another factor that
may account for the runtime difference is that KomaMRI.jl uses a generic se-
quence format (similar to e.g. the Hargreaves simulator and Generic3D from
BlochSimulators.jl) rather than a sequence specific format (such as pSSFP from
BlochSimulators.jl).

By utilizing BlochSimulators.jl together with additional custom kernel func-
tions, we could implement the partially matrix-free MR-STAT reconstruction
algorithm on GPU hardware. We were able to achieve MR-STAT reconstruc-
tion times that are much faster compared to the MR-STAT reconstructions per-
formed on a CPU cluster (68 seconds vs 193 and 16 minutes, respectively) and
similar to the ADMM MR-STAT reconstruction technique [106]. The ADMM
method, however, assumes a Cartesian-based gradient encoding scheme. The
proposed (GPU accelerated) partially matrix-free method does not rely on this
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assumption and could also work for non-Cartesian MR-STAT [67].
The currently reported reconstruction time of 68 seconds for the 2D in-

vivo brain scan is specific for the acquisition and reconstruction setup that was
used in this work. Increasing the number of samples during the acquisition,
increasing the number of simulated isochromats per voxel (for the purpose of
computing a more accurate slice profile compensation), or increasing the num-
ber of receive coils used in the reconstruction results in increased computation
times. The same holds true also for the previous MR-STAT reconstruction
techniques that were used in the benchmark.

Despite the speedup achieved in this work, reconstruction times are still
too long for online reconstruction in clinical practice. Several options may be
considered to further reduce reconstruction times. First, note that currently
the computational bottleneck is formed by the matrix-vector products with
the Jacobian J (see Table 5.2). In the current GPU implementation of this
matrix-vector product, threads read from and write to global GPU memory
only. Potential acceleration could be achieved by utilizing the GPU memory
layout in a more optimized fashion, for example by performing warp and/or
block reductions prior to writing to global memory.

Besides improving the implementation of the current algorithm, if Cartesian-
based gradient encoding schemes are used, it may be possible to adapt the
Sparse Hessian technique and/or the ADMM splitting technique to GPU hard-
ware for further acceleration. Further, as mentioned above, despite the pSSFP
implementation from BlochSimulators.jl showing comparable performance to
RNN-EPG, other, potentially faster, neural network architectures could be ex-
plored for accelerating Bloch simulations and they could then be utilized to
speed up MR-STAT reconstructions as well.

As outlined in Supplementary Material 5.6, for 2D MR-STAT scans, we can
typically store the transverse magnetization at echo times and partial deriva-
tives in GPU memory. For 3D MR-STAT acquisitions [105] it may not be
possible to do so on a single GPU card due to memory constraints: there are
many more voxels and potentially also many more echo times (depending on
the actual pulse sequence). It may still be beneficial though to store the partial
derivatives at some of the echo times (i.e. checkpointing [34]), and compute
others only when needed during evaluation of the matrix-vector products with
J and JH . We also note that in 3D cases, the Bloch simulations per indi-
vidual voxel are computationally cheaper because in principle it is no longer
necessary to perform multiple simulations per voxel to account for slice profile
effects. Alternatively, if available, a cluster with multiple GPUs could poten-
tially be used to store the transverse magnetization and partial derivatives at
more/all echo times accross different devices. Subsequent evaluation of the
forward model and matrix-vector multiplications with J and JH would require
communication between the different devices.

By combining the above mentioned acceleration strategies, we believe clini-
cally acceptable reconstruction times for multi-slice or 3D MR-STAT scans are
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within reach.
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5.6 Supplementary Materials

Supplementary Material S1: Partially matrix-free 2D MR-
STAT memory estimate
Assume a 2D MR-STAT scan with a field-of-view consisting of 256×256 voxels
and 5× 256 readouts is performed. To store the magnetization at echo times,
together with partial derivatives with respect to T1 and T2, using single preci-
sion (complex) floating point numbers (2 ∗ 4 bytes per complex number) would
require a total of

(256 ∗ 256) ∗ (5 ∗ 256) ∗ 3 ∗ (2 ∗ 4) ∗ 1024−3 = 1.875GB.

Modern GPU cards typically have more than ten GB of global memory avail-
able, meaning that there is some flexiblity to increase the resolution, sequence
length or number of parameters while still being able to store the magnetization
at echo times (together with the partial derivatives) in global memory.

Supplementary Material S2: Isochromat simulation details
For the dictionary simulations based on the isochromat model, a gradient-
balanced sequence consisting of 1120 excitations and readouts was used. A
Gaussian RF waveform was used for the excitation and it was time-discretized
into 25 piecewise constant parts. For each readout, only the magnetization
at echo time was computed. The flip angle was different for each excitation.
The flip angle pattern is depicted in Supplementary Fig. 5.6. The TE and TR
were fixed at 8.0 ms and 4.0 ms. No slice profile correction was performed in
the simulations. The T1 and T2 values used as input for the simulation are
randomly selected from 1000 to 5000 ms and 10 to 1000 ms, respectively.

Supplementary Material S3: Extended Phase Graph sim-
ulation details
For the dictionary simulations based on the EPG model, a gradient-spoiled se-
quence consisting of 1120 excitations and readouts was used. For each readout,
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only the magnetization at echo time was computed. The flip angle was different
for each excitation. The flip angle pattern is depicted in Supplementary Fig.
5.6. The TE and TR were fixed at 8.0 ms and 4.0 ms. To account for slice
profile effects, a partitioned EPG method [97] was used. Multiple independent
simulations were performed per dictionary entry with each simulation using
a different RF excitation scaling factor to mimic the effect of different posi-
tions along the slice direction. The individual simulations were then summed
together. For the FISP implementation from BlochSimulators.jl, this slice pro-
file correction method was part of the sequence implementation and 35 slice
positions were used in the simulations. For SnapMRF, no slice profile correc-
tion mechanism is provided out-of-the-box. For a fair comparison, we therefore
performed the simulations without corrections and multiplied the runtimes by
35.

Supplementary Material S4: Forward model simulation de-
tails
For the benchmark in which the forward model Eq. 5.2.1 is evaluated, a
gradient-balanced sequence consisting of 500 TRs was used together with a
golden angle radial readout trajectory. Each readout had 224 samples. The
TR and TE remained fixed at 8.0 and 4.0, respectively. The nominal RF wave-
form was discretized using 25 timesteps. No slice profile correction mechanism
was applied. To evaluate the forward model within BlochSimulators.jl we used
the pSSFP sequence simulator together with the radial trajectory implemen-
tation (see src/trajectories/radial.jl). For KomaMRI.jl, we modified
its MR Fingerprinting example script (see https://github.com/cncastillo/
KomaMRI.jl/tree/master/examples/3.koma_paper/mrf/MRFsimulation.jl)
to achieve the same sequence setup.

Supplementary Material S5: In-vivo parameter maps
The MR-STAT in-vivo acquisition used a smoothly varying, sinusoidal flip an-
gle pattern with the peaks aligned with the sampling of the center of k-space.
The flip angle train and the (Cartesian) phase encoding order is depicted in
Supplementary Fig. 1. The quantitative T1, T2 and proton density maps re-
constructed from this data using the partially matrix-free MR-STAT algorithm
on GPU are shown in Supplementary Fig. 2.

https://github.com/cncastillo/KomaMRI.jl/tree/master/examples/3.koma_paper/mrf/MRFsimulation.jl
https://github.com/cncastillo/KomaMRI.jl/tree/master/examples/3.koma_paper/mrf/MRFsimulation.jl
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Figure 5.6: The time-varying flip angle train [top] and phase encoding indices for
the Cartesian trajectory [bottom] used in the in-vivo MR-STAT data acquisition as
well as the dictionary/signal simulations.

Figure 5.7: In-vivo T1, T2 and proton density maps reconstructed with the partially
matrix-free MR-STAT algorithm on GPU in 68 seconds. For the data acquisition, a
gradient-balanced sequence with variable flip angle train and Cartesian readouts (see
Supplementary Fig. 5.7) was used.
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Abstract

MR Spin TomogrAphy in Time-domain (“MR-STAT”) is a quan-
titative MR technique in which multiple quantitative parameters
are estimated from a single short scan by solving a large-scale non-
linear optimization problem. In this work we extended the MR-
STAT framework to non-Cartesian gradient trajectories. Cartesian
MR-STAT and radial MR-STAT were compared in terms of time-
efficiency and robustness in simulations, gel phantom measurements
and in-vivo measurements.

In simulations, we observed that both Cartesian and radial MR-
STAT are highly robust against undersampling. Radial MR-STAT
does have a lower spatial encoding power because the outer corners
of k-space are never sampled. However, especially in T2, this is
compensated by a higher dynamic encoding power that comes from
sampling the k-space center with each readout. In gel phantom mea-
surements, Cartesian MR-STAT was observed to be robust against
overfitting whereas radial MR-STAT suffered from high-frequency
artefacts in the parameter maps at later iterations. These arte-
facts are hypothesized to be related to hardware imperfections and
were (partially) suppressed with image filters. The time-efficiencies
were higher for Cartesian MR-STAT in all vials. In-vivo, the ra-
dial reconstruction again suffered from overfitting artefacts. The
robustness of Cartesian MR-STAT over the entire range of exper-
iments may make it preferable in a clinical setting, despite radial
MR-STAT resulting in a higher T1 time-efficiency in white matter.
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6.1 Introduction

Quantitative magnetic resonance imaging (“qMRI”) techniques aim to provide
estimates of MR-related tissue properties like T1 and T2. From these tissue
property maps, image contrasts can be synthesized retrospectively using signal
equations for different MR sequences [16, 22]. An additional advantage of
qMRI over regular, qualitative MRI is that it removes scanner- and sequence
induced variability in the images, which is beneficial for multi-center studies and
computer aided diagnosis [45, 159]. Despite its advantages, clinical adoption of
qMRI is currently limited because most conventional qMRI techniques require
prohibitively long scan times and only produce one tissue parameter map at a
time.

MR Fingerprinting (“MRF”) is a recent multi-parametric qMRI technique
which drastically reduces scan times compared to conventional qMRI methods
[110]. In MRF, transient-state sequences with randomized components (e.g.
flip angles, TR, TE) are used to generate “fingerprints” in each voxel. These
fingerprints are measured with a highly undersampled acquisition and are sub-
sequently matched to a pre-computed dictionary. Assuming spatio-temporal
incoherence of the undersampling artefacts, the dictionary matching procedure
can successfully select the correct tissue parameters [110]. The success of MRF
approach has sparked research interest in highly accelerated, multi-parametric
qMRI techniques [59, 173].

In order to achieve spatio-temporal incoherence in MRF, it is beneficial
to use non-Cartesian acquisition strategies [150]. In the original MRF work
and most subsequent MRF studies, variably density spirals are used in the
acquisition [110, 85]. Radial acquisitions have also been used extensively [6,
43, 36]. Only few studies have been reported that use Cartesian (spin-warp)
imaging in the context of MRF and the studies that do use such acquisitions
report much longer scan times compared to the non-Cartesian MFR studies
[32, 49, 93].

In a different direction from MRF, qMRI has seen advancements in the form
of non-linear volumetric inversion methods that directly estimate tissue param-
eters from measured k-space (or “time-domain”) data [20]. A benefit of using
such a time-domain signal model is that the sampling of spatial frequencies
that are required by the Nyquist criterion can be distributed among different
contrasts [153]. That is, the spatial encoding and the dynamic encoding (i.e.
T1 and T2 encoding) are intertwined. These techniques have initially been pro-
posed in the context of pulse sequences for which analytical signal models are
available [89, 175, 190].

Magnetic Resonance Spin Tomography in Time-domain (“MR-STAT”) is
a recently proposed multi-parametric qMRI framework [141] that combines
the idea of non-linear, volumetric inversion together with the use of generic,
transient-state sequences for performing multi-parametric qMRI. For transient-
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state sequences, each contrast is usually highly undersampled (typically only
one readout per contrast is acquired in MR-STAT), yet by applying the non-
linear volumetric inversion it is still possible to reconstruct high-quality quan-
titative parameters maps from the data [69]. The MR-STAT reconstruction
procedure relies on a forward model that relates multiple quantitative tissue
parameters maps directly to the measured time-domain (k-space) signal. Eval-
uation of the forward model involves numerical integration of the Bloch equa-
tions as, in general, no analytic signal models are available for the type of time-
varying flip angle sequences used in MR-STAT. The forward model gives rise to
a large-scale non-linear inversion problem which is solved through iterative al-
gorithms that require computing partial derivatives of the forward model with
respect to all tissue parameters. In addition, instead of using the (non-uniform)
Fast Fourier Transform (“FFT”) for transforming back and forth between image
space and spatial frequency space, the gradient encoding is taken into account
explictly within the Bloch simulations. In other words, the spatial and dy-
namic encoding are simultaneously modeled. The MR-STAT reconstruction
is computationally challenging and requires dedicated algorithms to manage
computation times as well as computer memory requirements [69, 103, 66].

The feasibility of the MR-STAT approach has been demonstrated in previ-
ous work with acquisitions that rely on Cartesian gradient trajectories. High-
resolution (1 mm in-plane) 2D quantitative T1, T2 and proton density maps
were reconstructed from in-vivo brain data acquired in scan times comparable
to what is reported in MRF studies using non-Cartesian acquisitions [69, 66].
The theory behind the MR-STAT concept, however, is not restricted to Carte-
sian acquisitions. To demonstrate the generic nature of MR-STAT, in the
current work we have extended the framework to non-Cartesian acquisitions.
This allows us to compare Cartesian and non-Cartesian trajectories within
MR-STAT.

The main aim of this chapter will be to perform an empirical comparison of
Cartesian and radial MR-STAT reconstructions performed on both simulated
and measured data. The focus will lie on the efficiency and robustness of the
two different encoding strategies. Efficiency is interpreted in this context as
T1,2-to-noise ratio per square root of scan time [42]. The efficiency is assumed
to capture both the spatial and dynamic encoding capabilities of an acquisition.
Robustness of the iterative reconstruction procedures against model inaccura-
cies (e.g. hardware imperfections) and reconstruction parameters (e.g. the
number of iterations used) will also be studied since they can have a significant
impact on efficiency as well.

For conventional, qualitative MR imaging, it is known that, for example,
radial trajectories have a lower SNR efficiency due to the non-uniform sam-
pling density [163]. That is, in terms of spatial encoding, radial is less efficient
than Cartesian. However, we expect non-Cartesian MR-STAT acquisitions to
potentially have higher dynamic encoding capabilities based on the following
reasoning. The transient-state nature of the MR-STAT acquisition implies that



i
i

i
i

i
i

i
i

Chapter 6. Cartesian vs radial MR-STAT 143

the underlying image contrast is constantly changing. Image contrast informa-
tion is mostly contained in the central region of k-space. With non-Cartesian
acquisitions like radial and spiral, the center of k-space can be sampled with
each readout and thus each readout can provide information about the chang-
ing contrast. On the other hand, with a Cartesian acquisition, readouts that
sample the outer parts of k-space are expected to provide relatively little in-
formation on the underlying contrast changes and thus provide less dynamic
encoding power compared to the central k-space lines. Because in MR-STAT
both spatial and dynamic encoding is required, it is a priori unclear which
trajectory type will result in a higher efficiency.

The choice to consider radial acquisitions in this work - as opposed to other
non-Cartesian trajectories - is motivated by the fact that most acquisition
parameters like TR, TE, total number of readouts, number of samples per
readout, readout bandwidth and total scan time can be kept similar for both.
With, for example, spiral trajectories, one typically acquires fewer readouts
with longer TRs and more samples are acquired per readout depending on the
design of the spirals. A comparison of Cartesian against other non-Cartesian
acquisitions thus requires many design choices that may influence the outcomes.

To study the efficiency and robustness question in the context of Cartesian
and radial MR-STAT, we proceed as follows. Assuming that a pulse sequence
is used that has sufficient T1 and T2 encoding power, and assuming that the
MR-STAT reconstructions have succesfully converged, errors in the final param-
eters maps are caused by either 1) thermal noise on the data, 2) undersampling
artefacts and/or 3) inaccuracies in the forward model (e.g. hardware imperfec-
tions, partial volume effects or unmodelled biophysical phenomena). Since the
model-based MR-STAT reconstruction is expected to be highly robust against
undersampling, we expect errors from undersampling to be minimal for both
the Cartesian and radial cases. To verify whether this is the case, we will first
perform numerical simulations without thermal noise or model imperfections
such that undersampling artefacts are the only expected error source. After-
wards, we will study the efficiency and robustness in the presence of thermal
noise by adding (complex) Gaussian noise to the simulated data. We then pro-
ceed by performing gel phantom and in-vivo measurements where also model
imperfections are expected to be present.
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6.2 Methods

6.2.1 MR-STAT

In MR-STAT, the forward model for the measurable time-domain signal s after
spatial discretization is given by

s(t) =

Nv∑
j=1

m(θj , t)e
−2πik(t)·rj∆V . (6.2.1)

Here Nv is the number of voxels within the field-of-view, ∆V is the volume
element for each voxel, rj is the vector of spatial coordinates for the voxel
associated with index j, θj is the vector of MR-relevant biophysical tissue
properties (e.g. T1, T2, ρ, . . .) for the voxel associated with index j, k(t) is the
k-space trajectory and m is the complex transverse magnetization whose time-
varying behavior is modeled by the Bloch equations. For simplicity, we do not
include receive coils in the forward model in here but it should be noted that
within the actual MR-STAT reconstructions data from multiple coils is taken
into account [69]. Let t1, . . . , tNt denote the sampling times with Nt the total
number of samples and define the vector of time-domain samples s

s := [s(t1), . . . , s(tNt
)] ∈ CNt .

Note that s depends on the tissue parameters θj for all voxels j. All tissue
parameters are concatenated into a single vector α. The forward model (Eq.
6.2.1) then gives rise to a large-scale non-linear inverse problem

α∗ = argminα
1

2
‖d− s(α)‖22 . (6.2.2)

This inverse problem is numerically solved using a Gauss-Newton method that
requires the computation of partial derivatives of the objective function at each
iteration [69].

Instead of using the (non-uniform) FFT to evaluate an approximation to
the forward model (Eq. 6.2.1) as is common in other frameworks (e.g. MRF),
in MR-STAT the forward model (Eq. 6.2.1) is evaluated directly. Both Carte-
sian and non-Cartesian gradient trajectories k(t) can be inserted into the for-
ward model. In the case of non-Cartesian trajectories, no gridding or den-
sity compensation are required as opposed to typical non-uniform FFT imple-
mentations. Also note that, in principle, spin dynamics during readouts (e.g.
T

(∗)
2 −decay or off-resonance induced rotations) can be modeled. These effects

are expected to be neglible for acquisitions with short readouts and therefore
exploring potential benefits of including these dynamics in the forward model
is outside the scope of the current work.
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6.2.2 Acquisition

6.2.2.1 Numerical brain phantom simulations

To compare the theoretical efficiency of both Cartesian and radial acquisitions
in the context of MR-STAT, we first perform a simulation study for which
ground truth parameter values are available. A 2D numerical brain phantom [9]
was generated consisting of several compartments with different combinations
of T1, T2 and proton density values. The field-of-view of the phantom was set
to 224 mm x 224 mm with an in-plane resolution of 1 mm x 1 mm, resulting
in a matrix of 224 × 224 voxels. In a conventional (qualitative) MR setting,
a minimum of 224 phase encoding lines would need to be acquired for the
Cartesian case to satisfy the Nyquist criterion. In a radial setting, a minimum
number of π/2 × 224 would need to be acquired [29] to satisfy the Nyquist
criterion.

For the MR-STAT acquisitions, a gradient-spoiled sequence consisting of
1792 (= 8× 224) TR’s was employed with a varying flip angle train such that
the flip angle at the n-th TR was given by 35× 1− cos(2n/280) (resulting in a
sinusoidal pattern of flip angles between 0 and 70 degrees, see Fig. 6.1a). For
the Cartesian case, linear ordering of the 224 different phase encoding lines was
chosen and the pattern is repeated eight times (Fig. 6.1b middle row). For the
radial trajectory the first readout was identical to the Cartesian ky = 0 line,
and subsequent readout lines were obtained by rotating the previous readout
line with the golden angle, resulting in 1792 different radial angles with a
very dense cumulative sampling of k-space. The TR and TE remained fixed
throughout the sequence with values of 8.8 ms and 4 ms, respectively. For each
of the 1792 readouts a total number of 448 samples per readout (corresponding
to a readout oversampling factor of two) were simulated. The total simulated
acquisition time was 15.8 for both the Cartesian and the radial case. The k-
space coverage for both acquisitions is depicted in Fig. 6.1c and Fig. 6.1d,
respectively.

The magnetization response in each voxel was simulated using the Extended
Phase Graph (“EPG”) method [177]. In these simulations, a Gaussian-shaped
RF excitation waveform was used and the corresponding slice profile was mod-
elled by partitioning each voxel into 35 compartments that experience different
effective flip angles (i.e. the partitioned EPG method [23, 26]). The scaling
factors to determine the effective flip angles were obtained from simulating
the magnetization response at different z-locations for all the different RF-
excitation waveforms corresponding to different flip angles. Using the MR-
STAT forward model (Eq. 6.2.1), time-domain data was simulated for both
Cartesian and radial readout trajectories. The simulation code was written in
the Julia programming language [4] and the simulations were performed on an
NVIDIA GeForce RTX A5000 graphics card.

To study the efficiency and robustness in the presence of thermal noise, we
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corrupted the noiseless datasets with random noise sampled from a complex
Gaussian distribution. The noise was generated such that the signal-to-noise
ratio in decibels (SNRDB) was 15.36 DB for the Cartesian case. The SNRDB
is computed as

SNRDB = 10 log10

(
RMS(signal)2

RMS(noise)2

)
,

where RMS(x) is the root mean square of a vector x. The same noise vector
was added to the radial dataset.

6.2.2.2 Gel phantom measurements

Twelve vials containing gadolinium-doped gel with varying T1 and T2 values
(TO5, Eurospin II test system, Scotland) were scanned using a 3T Philips Inge-
nia Elition X MR System (DDAS spectrometer, software release 5.6) with the
vendors 16-channel receive headcoil. Data from a single 2D slice was acquired
using Cartesian and radial sequences similar to the ones used in the simulation
study. In both cases the in-plane resolution was 1 mm x 1 mm, the field-of-
view was 224 mm x 224 mm and slice thickness was 5 mm. A total number of
1792 readouts were acquired with 448 samples per readout (factor two readout
oversampling) with a readout bandwith of 85.6 kHz. For both acquisitions,
the TE and TR were set to their shortest possible values. For the Cartesian
acquisition the TE was 3.8 ms and the TR was 7.5 ms, resulting in a scan time
of 13.4 s. For the radial acquisition, the TE and TR were slightly different at
4 ms and 8.5 ms, respectively, resulting in a total scan time of 15.2 s.

In addition to the MR-STAT scans, inversion-recovery single spin-echo T1

measurements as well as single echo spin-echo T2 measurements were performed
to obtain reference parameter values for the vials. For the T1 mapping mea-
surement, inversion times of [50, 100, 150, 350, 550, 850, 1250] ms were chosen
and for the T2 mapping measurement echo times of [8, 28, 48, 88, 138, 188] ms
were chosen. The T1 and T2 values were obtained pixel-wise by fitting (non-
linear) exponential regrowth (T1) and exponential decay (T2) curves to the
measurements using the variable projection method [58].

6.2.2.3 In-vivo measurements

In-vivo measurements were performed on a healthy volunteer after having ob-
tained written informed consent. The same scanner hardware acquisition set-
tings were used as for the gel phantom measurements, except that for the
Cartesian acquisition the TR, TE and total scan time were 7.7 ms, 4.0 ms and
13.8 s, respectively. For the radial acquisition the TR, TE and total scan time
were 8.6 ms, 4.0 ms and 15.4 s, respectively.
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Figure 6.1: [a] Flip angle train used for both the Cartesian and radial acquisitions.
[b] The phase encoding order for the Cartesian acquisitions. [c and d] K-space cov-
erage for the Cartesian and radial acquisitions, respectively. Note that the Cartesian
sampling scheme is repeated eight times.
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6.2.3 MR-STAT Reconstructions
To reconstruct quantitative parameter maps from the data, the matrix-free
Gauss-Newton MR-STAT method proposed in van der Heide et. al. [69] was
used to reconstruct quantitative parameter maps from the data. Within this
method, the magnetization response in each voxel was simulated using the EPG
method with the same slice profile correction technique and computer hardware
as described in Subsection 6.2.2.1. Partial derivatives of the magnetization re-
sponse were computed using finite differences. The initial parameter estimates
for T1 and T2 were set to 1.0 s and 0.1 s, respectively. The proton density was
initialized by inserting the initial T1 and T2 values into Eq. 6.2.2, which then
reduces to a linear problem that can be solved using the LSQR algorithm [126].
Given the initial proton density, a spatial mask was generated by selecting the
voxels for which the magnitude of the initial proton density was higher than
10 % of the maximum magnitude. The maximum number of outer iterations
of the iterative reconstruction algorithm was set to twenty and the number of
Conjugate Gradient iterations within each outer iteration was set to twenty as
well.

Raw data from the scanner was exported using ReconFrame (Gyrotools,
Switzerland). In all reconstructions on measured data, the singular value de-
composition was applied prior to the reconstruction to generate virtual coil
data [31]. The number of virtual coils was chosen such that approximately
85% of the total energy was captured (i.e. the sum of the singular values was
approximately 0.85). Coil sensitivity maps were estimated from the measured
data using the ESPIRiT algorithm [164]. To correct for B+

1 inhomogeneities
that may be present at 3T, we measured a B+

1 map separately using the dual
angle method [151]. This B+

1 map was then used in the reconstruction model
to scale the effective RF induced flip angles in each voxel.

For the radial acquisitions, the outer corners of k-space are never sampled,
as can be seen from Fig. 6.1d. In conventional non-uniform FFT based MR re-
constructions, this is not necessarily problematic since the gridding procedure
essentially zero-fills these non-sampled k-space regions. However, for iterative
reconstruction techniques like MR-STAT, these non-sampled regions can cause
strong noise amplification [134]. We therefore filter the reconstructed quantita-
tive parameter maps by applying a circular symmetric window function in the
Fourier domain as after the MR-STAT reconstruction. For the gel phantom
data, the arctan-based filter proposed by Pruessmann et al. (2001) [134] was
used with a cutoff of value set to kx,max and β = 100. For the in-vivo data, we
used the Hann filter defined as

k→ cos


√
k2
x + k2

y

|kmax|

2

where k is the k-space coordinate. The same filters will be applied to parameter
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maps obtained from Cartesian and radial data, respectively.

6.2.4 Efficiency assessment

The time-efficiency of the acquisitions will be computed as

TnNR√
Tscan

, n = 1, 2,

where TnNR is the Tn-to-noise ratio and T is the scan time [42]. For the
numerical brain phantom, we compute the TnNR (n = 1, 2) for each tissue
type separately by dividing the mean Tn value by the standard deviation of
the Tn value for that tissue type. For the gel phantom measurements, values
for TnNR are obtained in a similar fashion by computing the mean values and
standard deviations in manually drawn regions-of-interest in each vial. For the
in-vivo measurements, gray- and white matter segmentation is performed using
the T1 maps as input to FSL Fast [188] and the TnNR values are computed in
these regions.

Because the MR-STAT reconstructions follow an iterative procedure, one
question that needs to be addressed is which iterations will be used for analyzing
the efficiency. For this purpose, whenever ground truth parameter maps are
available, the root mean squared relative errors (“RMSRE”) is utilized. If αgt
denotes the vector of ground truth parameter values, the RMRSE value for the
current estimates of the tissue parameter α is computed as

RMRSE(α) =

 1

Np

Np∑
j=1

(
αj − αgtj

αj

)
The iterations with minimum RMSRE value are assumed to strike a balance

between bias and precision. To assess the robustness of the reconstructions
against overfitting, the efficiencies will also be computed at the final iterations
in each case. Note that in the in-vivo case, no ground truth parameter values
are available so the RMSRE cannot be computed and therefore only the final
iterations are considered.

6.3 Results

6.3.1 Numerical brain phantom simulations

6.3.1.1 Noiseless dataset

In Fig. 6.2 the T1 and T2 maps reconstructed from the noiseless numerical
brainweb phantom datasets are displayed, as well as the relative error maps.
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The RMRSE values for each iteration are shown in Fig. 6.3. In the Carte-
sian case, the relative errors and RMSRE value at iteration twenty are neglibly
small. The parameter maps are reconstructed without apparent aliasing arte-
facts despite each contrast (i.e. each TR) being sampled with only one Carte-
sian readout line. The Cartesian acquisition thus has sufficient spatial and
dynamic encoding power.

In the radial case we do observe non-neglible errors in the parameter maps
and the RMSRE value is orders of magnitude higher compared to the Cartesian
case. We argue that the higher errors are not resolved by acquiring more
spokes per contrast or running more iterations in the reconstruction procedure.
Instead, this reduced spatial encoding power of the radial acquisition is the
result of not sampling the outer corners of k-space (see Fig. 6.1d). This makes
it impossible for the reconstruction procedure to properly resolve the finer
structures in the parameter maps.

In Supplementary Material S1 we adjusted the radial k-space trajectory to
also sample the outer corners to improve the spatial encoding. In that situation
we indeed observe that the parameter maps are properly reconstructed with
neglibly low relative errors and RMSRE values. The errors - although neglible
- are still higher compared to the Cartesian case, but this is expected because,
unlike in the Cartesian case, the image grid does not exactly match with the
sampling grid.

6.3.1.2 Noisy dataset

In Fig. 6.4a the cost (α 7→ 1
2 ‖d− s(α)‖22) is plotted for each iteration of

the MR-STAT reconstructions on the noisy numerical brain phantom datasets.
Since the model used to simulate the data is equal to the model used in the
reconstruction, upon convergence, the cost function is expected to be similar
to 1

2 ‖η‖
2
2, where η denotes the vector of complex noise that was added to both

datasets. The noise level 1
2 ‖η‖

2
2 is plotted as a horizontal line and it can be seen

that for both reconstructions, the noise level is indeed reached. In Fig. 6.4b
the RMRSE values per iteration of the MR-STAT reconstruction algorithm
are shown. No filtering was applied to these reconstructions. Iterations three
and eight results in the lowest RMSRE values for the Cartesian and radial
cases, respectively. At these optimal iterations, the RMSRE value for radial is
lower than for Cartesian. After the optimal iterations, the RMSRE values go up
slightly whereas the cost functions decrease, suggesting that the reconstructions
may be susceptible to overfitting artefacts.

The reconstructed parameter maps and relative error maps at the optimal
iterations are shown in Fig. 6.5 together with the parameter maps at the final
iterations. Like in the noiseless case, no apparent undersampling artefacts are
observed. Although the increase of the RMSRE value suggests that the recon-
structions may be susceptible to overfitting, it is visually difficult to observe
for both the Cartesian and the radial case. That is, the reconstructions appear
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Figure 6.2: The T1 and T2 parameter maps reconstructed from noiseless simulated
brain data. The first column shows the ground truth T1 and T2 maps. The second
column shows the parameter maps and relative error maps for the Cartesian case
after twenty iterations. The third column shows the parameter maps and relative
error maps at iteration twenty for the radial case.
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Simulated brain phantom data (noiseless)
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Figure 6.3: RMRSE values (for T1 and T2 combined) per outer iteration. For the
radial case the RMRSE values are higher because the outer corners of k-space are
never sampled and therefore finer structures in the parameter maps cannot be prop-
erly resolved (i.e. reduced spatial encoding)

to be robust against simulated thermal noise.
The mean T1 and T2 values as well as standard deviations per compartment

at the optimal iterations as well as the final iterations are shown in Fig. 6.6a-
b. It can be observed that the mean tissue parameter values per compartment
are in good agreement with the ground truth values (well within one standard
deviation). The efficiencies per compartment are displayed in Fig. 6.6c-d. We
see that at the final iterations, the radial acquisition results in higher efficiencies
(approximately 25%) for T2 in six out of the seven distinct tissues despite the
radial reconstruction suffering from errors caused by not sampling the outer
corners of k-space. For T1, the Cartesian acquisition is more efficient for four
out of the seven tissues, but in gray- and white matter (arguably the most
relevent tissues for most brain imaging applications) the radial acquisition is
more efficient.

6.3.2 Gel phantom measurements

To assess the efficiency and robustness of the MR-STAT reconstructions on
the Cartesian and radial data obtained from gel phantoms, we follow a similar
procedure as in the numerical brain phantom study. In Fig. 6.7a the RMRSE
values for each iteration are shown. The RMSRE values for the Cartesian
case follow a similar curve as in the noisy numerical brain phantom case and
iteration two is observed to result in the lowest RMSRE value. For the radial
case, the situation is different compared to the noisy numerical brain phantom
case. Without filtering the parameter maps in a post-processing step, the
lowest RMSRE occurs at iteration three but at further iterations the RMSRE
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Figure 6.4: Reconstruction results for the noisy numerical brain phantom dataset. a:
Cost as function of the number of outer iterations. b: RMRSE values (for T1 and T2

combined) per outer iteration.
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Figure 6.5: The T1 and T2 parameter maps reconstructed from noisy simulated brain
data. The first column shows the ground truth T1 and T2 maps. The second and third
columns show the parameter maps and relative error maps for the Cartesian case for
the iteration with the lowest RMSRE value (iteration three) and the final iteration
(iteration twenty), respectively. The fourth and fifth columns show the parameter
maps and relative error maps for the radial case.
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Figure 6.6: a-b: Mean T1 and T2 values and standard deviations per tissue type of
the numerical brain phantom reconstructions. Ground truth parameter values are
displayed using the yellow bars. c-d: Efficiencies for T1 and T2 per tissue type. It
can be observed that overall the radial case results in higher efficiencies.

values rapidly increases, indicating that the radial case is highly susceptible to
overfitting.

In Fig. 6.8 the T1 and T2 parameter maps for the MR-STAT reconstructions
of the gel phantom data are shown. In columns one and two the maps from
the Cartesian acquisition are shown at iterations two and twenty, respectively.
Some mild overfitting artefacts (e.g. high frequency noise) can be observed
in the maps corresponding to iteration twenty when compared to iteration
two. On the other hand, when comparing iterations three and twenty for
the radial acquisition (columns four and five, respectively), the appearance of
strong overfitting artefacts can indeed be observed. Therefore, the application
of a window function to the parameter maps in Fourier domain is deemed
necessary. In this case, an arctan-based filter was chosen [134]. The resulting
RMSRE curves are displayed in Fig. 6.7b and in Fig. 6.8, columns three
and six, the filtered parameter maps are displayed as well. We observe that the
RMSRE values for the radial case stabilize to values comparable to the RMSRE
values and the high frequency noise in the parameter maps is greatly reduced.
For the Cartesian case, this particular choice of filter has no significant impact
on the RMSRE values or the parameter maps. We also visually observe that
for both the Cartesian and radial cases, at the optimal iterations, the T2 of the
vial with the highest T2 value has not fully converged yet.

The mean T1 and T2 values as well as standard deviations per vial at the
iterations with lowest RMSRE values as well as the filtered versions of the



i
i

i
i

i
i

i
i

156

Measured gel phantom data:
RMSRE of T1 and T2 maps per iteration
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Figure 6.7: Reconstruction results for the gel phantom measurements. a: RMRSE
values (for T1 and T2 combined) per outer iteration. b: RMRSE values after applying
an arctan-based filter to the parameter maps in a post-processing step.



i
i

i
i

i
i

i
i

Chapter 6. Cartesian vs radial MR-STAT 157

Figure 6.8: The T1 and T2 parameter maps reconstructed from measured gel phantom
data. The first two columns show the Cartesian reconstrutions at the optimal iteration
(two) and the final iteration (twenty). In columns four and five the corresponding
radial reconstructions are shown. It can be observed that - unlike in the simulation
study - the radial reconstruction is highly susceptible to overfitting artefacts and
applying a filter is deemed necessary. The filtered maps are shown in columns three
(Cartesian) and six (radial). For the Cartesian case, the effect of the filter is difficult
to observe visually. For the radial case, it significantly reduces the high-frequency
noise in the parameter maps.
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Figure 6.9: Reconstruction results for the gel phantom measurements. a-b: Mean
T1 and T2 values as well as standard deviations per vial of the gel phantom for the
outer iterations with the lowest RMRSE values (two for Cartesian, three for radial)
and the final iterations. c-d: Efficiencies per vial are shown. It can be observed that
overall the radial case results in higher efficiencies at the optimal iterations while the
Cartesian case results in higher efficiencies at the latest iteration.

final iterations are shown in Fig. 6.9. The T1 values obtained from both the
Cartesian and the radial reconstructions are in excellent agreement with the
reference values. For T2 we observe good agreement but the deviations from the
reference values are larger compared to T1. This may be explained by potential
errors in the B+

1 maps used in the reconstructions that mostly have an impact
on estimated T2 values [123]. As observed before from Fig. 6.8, the vials with
the highest T2 values have not converged yet at the optimal iterations. The
efficiencies per vial are displayed in 6.9c-d. At the optimal iterations, the radial
case results in higher efficiencies in all vials(except for T1 in vial number ten).
However, at the (filtered) final iterations, a significant drop in efficiencies is
observed for the radial case and the Cartesian case results in higher efficiencies
in all vials (except for T1 in vial number six).

6.3.3 In-vivo measurements

With no ground truth measurements available, the RMSRE values cannot be
computed and an optimal iteration cannot be selected. Therefore we only
consider the final iterations (i.e. iteration twenty) for both the Cartesian and
radial cases. In Fig. 6.10, the T1 and T2 maps at these final iterations are
shown. Like in the case for the gel phantoms, the radial reconstruction suffers
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Cartesian Radial Literature
Mean ± Std
(ms)

Efficiency
(a.u.)

Mean ± Std
(ms)

Efficiency
(a.u.)

Mean
(ms)

White Matter T1 898.4± 78.0 0.098 881.3± 49.3 0.144 954
T2 32.2± 5.0 0.055 31.4± 3.9 0.065 38.7

Gray Matter T1 1471.4± 137.7 0.091 1398.1± 128.8 0.088 1372
T2 57.7± 14.7 0.033 45.3± 12.2 0.03 52.7

Table 6.1: Mean values, standard deviations and efficiencies for in-vivo T1 and T2 in
gray- and white matter regions. Literature values [95] are reported in the last column.

from high frequency noise and windowing is deemed necessary. For this dataset,
a Hann filter was utilized and the filtered maps are shown in Fig. 6.10 as well.
Although the filtering greatly improves the quality of the radial parameter
maps, some high frequency noise is still present after filtering (mostly in or
around cerebrospinal fluid (“CSF”) regions) whereas no high-frequency artefacts
are observed to be present in the filtered Cartesian maps.

In the Cartesian reconstruction, the CSF appears to suffer from flow-induced
artefacts that are known to be present in gradient-spoiled sequences as used in
this work [100]. For the radial case these artefacts are much less severe, likely
because the radial sampling pattern effectively results in the flow effects being
averaged out over the whole duration of the acquisition.

Mean T1 and T2 values in gray- and white matter for the filtered maps as
well as standard deviations and efficiencies are displayed in Table 6.1. Recent
literature values [95] are also reported. For T1, the Cartesian and radial recon-
structions result in similar mean values in gray- and white matter and these
values are in line with literature values. For T2 the mean values for white
matter between Cartesian and radial agree but in gray matter there is a larger
discrepancy between the Cartesian and radial cases. Segmenting the gray mat-
ter is more challenging and segmentation errors may partly explain the larger
discrepancy and larger standard deviations.

In terms of efficiency, the radial reconstruction results in higher efficiencies
in white matter (0.098 vs 0.144 for T1, 0.055 vs 0.065 for T2) whereas for gray
matter the efficiencies are similar to their Cartesian counterparts (0.091 vs
0.088 for T1, 0.033 vs 0.03 for T2).

6.4 Discussion

In this work we have extended the MR-STAT framework with non-Cartesian
gradient trajectories with the main purpose of comparing Cartesian and radial
MR-STAT in terms of robustness and time-efficiency. Because MR-STAT uses
a model-based iterative reconstruction in which spatial and dynamic encoding
are coupled, providing predictions upfront on which acquisition type will result
in higher efficiencies is challenging. We therefore performed an empirical study
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Figure 6.10: Reconstruction results for the in-vivo measurements. The Cartesian
reconstructions at their final iterations are shown in the first (unfiltered) and second
(Hann-filtered) columns. The radial reconstructions at their final iterations are shown
in the third (unfiltered) and fourth (Hann-filtered) columns.

based on simulations and experiments instead.
In general, errors in the reconstructed parameter maps (which directly influ-

ence the efficiency) are the result of thermal noise on the measured data, under-
sampling and/or imperfections in the signal model used in the reconstruction
(due to e.g. hardware imperfections). The parameter maps reconstructed from
the Cartesian noiseless numerical brain phantom dataset did not suffer from
any undersampling (i.e. aliasing) artefacts despite the high undersampling
factor used (one readout per contrast). Also in the radial case no streaking
artefacts were observed in the reconstructed maps. Both Cartesian and radial
MR-STAT are therefore robust against undersampling. However, in the radial
case the outer k-space corners were never sampled and therefore the smaller,
more narrow structures and tissue boundaries could not be properly resolved.
As such, radial MR-STAT has a lower spatial encoding efficiency compared to
Cartesian MR-STAT. For the numerical brain phantom datasets corrupted with
simulated thermal noise, we observed that the radial reconstruction resulted in
higher T2 time-efficiencies (by approximately 25%) compared to the Cartesian
reconstruction in most tissue types. We hypothesize these higher efficiencies
result from the fact that with the radial acquisition the center of k-space is
sampled with each readout, and as such it has higher dynamic encoding power
which compensates for the reduced spatial encoding that was observed in the
noiseless numerical phantom reconstruction. For T1 the radial reconstruction
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only results in higher efficiencies in gray- and white matter (and only slightly
in skin). The difference between T1 and T2 may be explained by the presence
of the inversion prepulse. This prepulse adds strong dynamic T1 encoding to
both acquisitions to the point where the intrinsic higher dynamic encoding of
the radial acquisition may provide little to no benefit. On the other hand, the
reduced spatial encoding for radial is still present, resulting in lower efficiencies
in finer structures for the radial acquisition.

In the gel phantom measurements, we observed that - while the Cartesian
reconstruction procedure results in an RMSRE curve that is similar to the
noisy brain simulation case - for the radial case the situation is different be-
cause the reconstruction procedure is highly susceptible to overfitting. In terms
of sources of errors in the parameter maps, the main difference between the nu-
merical simulation study and the gel phantom study is the presence of potential
model inaccuracies in the latter. For radial (or more general: non-Cartesian)
acquisitions it is known that they are more sensitive to hardware imperfec-
tions (e.g. gradient delays) as compared to Cartesian acquisitions [145]. We
thus hypothesize that the differences between the simulation results and the gel
phantom results come from inaccuracies in the forward model due to hardware
imperfections and that these inaccuracies result in high-frequency artefacts in
the parameter maps at the later iterations of the reconstruction procedure.
In that scenario, the benefits of higher dynamic encoding for radial that was
observed in the noisy numerical brain phantom case is overshadowed by the
presence of these artefacts. We also observed that at the “optimal” iterations,
the vials with the highest T2 had not yet fully converged. An early stopping
strategy thus poses a risk of introducing a signficant bias in the parameter
maps. As an alternative strategy to reduce the impact of the high-frequency
artefacts on the radial reconstructions we applied a k-space filter to the pa-
rameter maps in a post-processing step (similar to Pruessmann et al. (2001)
[134]). Even after the filtering step, the Cartesian acquisition remained more
efficient.

In both the noisy numerical brain phantom and gel phantom experiments
the cost and RMSRE values had stabilized at iteration twenty. We therefore
assumed in this work that twenty iterations would be sufficient for convergence
in the in-vivo reconstructions as well. At these final iterations, the application
of a (Hann) filter was again considered necessary for the radial reconstruction.
For the filtered reconstructions, the radial case resulted in higher efficiencies in
white matter and comparable efficiencies in gray matter. However, some of the
high spatial-frequency artefacts remained visible in the radial parameter maps
even after filtering, which may hamper the clinical acceptability. We expect
the impact of these artefacts to be even stronger on older MR systems with
less performant gradient systems and less advanced eddy-current compensation
mechanisms. The necessity of the filtering also complicates the reconstruction
procedure in the sense that it involves more tweaking parameters (e.g. filter
type and strength). The Cartesian reconstruction, like in the simulations and
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gel phantom experiments, did not display severe high-frequency artefacts. Fil-
tering was not considered necessary but could still be desirable for visualisation
of the parameter maps.

Over the entire range of experiments performed in this work, Cartesian
MR-STAT was able to produce tissue parameter maps without apparent alias-
ing or overfitting artefacts. The reconstruction procedure was robust against
the number of iterations in the reconstruction in all cases, displayed similar
behaviour in both simulations and measurements and required less tweaking
parameters compared to radial MR-STAT. The combination of these factors
may make Cartesian MR-STAT preferable over radial MR-STAT in a clinical
setting despite the lower efficiency in white matter.

An additional downside of the radial acquisitions that is not taken into
account in the current analysis is the effects of off-resonances. Whereas with
Cartesian acquisitions the presence of off-resonances causes shifts in the image,
with radial acquisitions, because the readout direction is different each TR, off-
resonances will have a blurring effect on the reconstructed images. It should
be noted though that with MR-STAT the off-resonance effects during readouts
can be included in the forward model. As such, it should be possible to correct
for this blurring effect by providing a separately measured off-resonance map
to the reconstruction algorithm. Alternatively, a sequence could be designed
that allows for the joint estimation of off-resonance maps with the T1, T2 and
proton-density maps [94].

In the current work, we did not use a density compensation function for
the radial reconstruction to compensate for the fact that the lower spatial fre-
quencies are over-represented. Using such a density compensation, for example
the Ram-Lak filter, as a pre-conditioner may result in faster convergence. We
expect the (unfiltered) final parameter maps to suffer from the same high-
frequency errors as in the reconstructions without density compensation. Re-
ducing the number of iterations may aid in lowering reconstruction times for
radial MR-STAT.

Instead of applying post-processing k-space filters, a more principled ap-
proach to suppress high frequency artefacts during reconstructions would be
to add a spatial regularization term to the parameter maps in the MR-STAT
objective function. This would, however, add additional complexity into the
reconstruction procedure (e.g. choice of regularization function(s) and param-
eter(s), potential non-differentiability of the regularization term). At the same
time we expect the outcomes to be the same: for radial, regularization would
be necessary to stabilize the reconstructions whereas for Cartesian it is not nec-
essary (but it may still be used to reduce noise in the reconstructed parameter
maps).

One important limitation of this work is that we only considered a single
RF train type in all acquisitions. The RF train was designed such that its local
maxima were incoherent with respect to the sampling of the k-space center for
the Cartesian acquisitions [54]. No optimization schemes were applied. For the
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radial case, since all readouts cover equivalent portions of k-space, it may not be
necessary to take the spatial encoding into account such that the optimization
can focus purely on enhancing the dynamic encoding power [8, 140]. In the
Cartesian case however, different readouts cover distinct parts of k-space and
the optimization will have to strike a balance between spatial and dynamic
encoding power. Performing such an optimization is non-trivial and is outside
the scope of this work [55]. Since optimization schemes for Cartesian and
radial can result in different RF trains for both, the efficiencies and conclusion
drawn in the current work may be influenced when considering such optimized
sequences.

Another limitation of this work is that we only considered 2D acquisitions
in this work. For 3D acquisitions, we expect an amplification of the dynamic
encoding benefits of radial over Cartesian. Hardware imperfections in radial ac-
quisitions remain an issue also at 3D and future research will be aimed at better
understanding and mitigating the impact of these imperfections on the radial
reconstructions, for example by utilizing gradient impulse response functions
[168] to correct the gradient trajectory in the forward model (Eq. 6.2.1).

6.5 Conclusion

We extended the MR-STAT framework to non-Cartesian acquisitions and com-
pared Cartesian and radial MR-STAT in terms of robustness and time-efficiency.
While radial MR-STAT resulted in higher T2 efficiencies in numerical simula-
tions, in the gel phantom experiment the efficiencies were lower compared to
Cartesian MR-STAT and we argue this is due to increased sensitivity to hard-
ware imperfections. In clinical practice, the robustness and reliability of Carte-
sian MR-STAT may be preferred, especially on older MR systems where the
impact of hardware imperfections on the radial reconstructions are expected to
be more severe. With this work we thus would like emphasize that Cartesian
acquisitions are still highly relevant in the field of multi-parametric qMRI.
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6.6 Supplementary Materials

Supplementary Material S1: Extending radial readouts
In Fig. 6.2 of the main manuscript the MR-STAT reconstructions performed
on noiseless numerical brain phantom data are shown. The Cartesian recon-
struction results in errors in the parameter maps that are practically zero. The
radial reconstruction has some noise-like residual errors in the parameter maps.
Here we show that these errors are the result of the outer corners of k-space
never being sampled for the radial acquisition.

In columns two and three of Fig. 6.11, we show the same reconstructions
as shown in Fig. 6.2 of the main manuscript but we also display the spatial
frequency content (magnitude) of the error maps. For the radial reconstruction,
the errors occur exactly at the corners of k-space that were never sampled.
We then modified the radial trajectory to also cover these corners during the
acquisition. This was achieved by increasing the number of samples per spoke
by a factor of 2 while keeping the ∆k per sample fixed. Data was simulated
with this modified trajectory and reconstructions performed on this data are
shown in the fourth column of Fig. 6.11. The errors in both T1 and T2 are
practically zero for this modified radial case.

The (original) radial acquisition thus comes with an inherent loss of res-
olution as compared to the Cartesian acquisition. As demonstrated in the
main manuscript, in the presence of thermal noise, this reduced spatial encod-
ing power of radial is partly compensated for by the higher dynamic encoding
power.

The RMSRE curves for the three reconstructions are shown in Fig. 6.12.
While the modified radial case results in RMSRE values that are almost five
orders of magnitude lower than the original radial case, it is still orders of
magnitude higher than the Cartesian case. We hypothesize the higher errors (as
compared to the Cartesian case) are the result of discretization errors sampling
an object (i.e. parameter maps) defined on a Cartesian grid using a non-
Cartesian trajectory and can be ignored for practical purposes.
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Figure 6.11: The T1 and T2 parameter maps reconstructed from noiseless simulated
brain data. The first column shows the ground truth T1 and T2 maps. The second
column shows the parameter maps and relative error maps for the Cartesian case
after twenty iterations (also in frequency domain). The third and fourth columns
show the parameter maps and relative error maps at iteration twenty for the original
and modified radial trajectory, respectively.
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Figure 6.12: RMRSE values (for T1 and T2 combined) per outer iteration. The
extended radial case results in significantly lower RMSRE values as compared to the
original radial case.
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7
Summary and Outlook

In this chapter the contributions from the individual chapters are contextual-
ized and discussed. Current technical challenges with potential solution strate-
gies are outlined and directions for future research are provided.

7.1 Contextual Summary

The overal goal of this thesis was to advance the MR-STAT framework to the
point where it could be utilized in a clinical demonstrator setting to recon-
struct T1, T2 and proton density maps. The project focussed equally the data
acquisition as well as the image reconstruction parts of MR-STAT.

7.1.1 Data Acquisition

On the data acquisition side, pulse sequences with short scan times had to be
designed and implemented that could result in high-resolution in-vivo quan-
titative tissue parameter maps. Initially, in Chapter 2, a Cartesian gradient-
balanced sequence with flip angles drawn from a normal distribution was pro-
posed. While this sequence resulted in succesful MR-STAT reconstructions in
silico, reconstructions on phantom and in vivo data would typically be cor-
rupted by image artefacts. Based on several works that study (hardware in-
duced) model imperfections for gradient-balanced sequences [142, 18, 6], it was
realized that for completely random flip angles, intra-voxel dephasing may oc-
cur and the spin-echo nature of balanced sequences is lost. This spin-echo
nature, however, was an important assumption in the single-isochromat based

169
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forward model used in the reconstructions. The model could therefore not ac-
curately describe the data and as a result the reconstructed parameter maps
would be inaccurate. To resolve this issue, a transition to smoothly varying flip
angles was made that, together with a linear Cartesian sampling of k-space,
do preserve the spin-echo behaviour. The results presented in Chapters 2-5
are all based on this type of sequence. The linear Cartesian sampling pat-
tern is known to be robust to scanner hardware imperfections and - being the
workhorse in current clinical practice - is directly available on the installed base
of MR systems.

While gradient-balanced sequences are superior in terms of signal-to-noise
ratio, a known fundamental issue with such sequences is their sensitivity to off-
resonances. At lower field strengths (e.g. 1.5 Tesla and lower) and with short
repetition times, these issues are manageable but at higher field strengths they
result in severe banding artefacts. In order to facilitate a demonstrator patient
study at 3 Tesla [88], a switch was made during the project to gradient-spoiled
sequences which have little sensitivity to off-resonances but come with reduced
signal-to-noise ratio.

In an attempt to improve the signal-to-noise ratio, the MR-STAT framework
was extended to non-Cartesian acquisition and experiments were performed
using golden angle radial trajectories. The motivation for using radial trajec-
tories rather than, for example, spiral trajectories was to allow for a relatively
straightforward comparison against Cartesian trajectories. This comparison
was performed in Chapter 6. While in simulations the radial trajectory was
shown to be more efficient, in actual measurements it came with reliability and
robustness challenges that were attributed to a higher sensitivity to hardware
imperfections.

7.1.2 Image Reconstruction

On the image reconstruction side, initially in Chapter 2 a one-dimensional FFT
was applied along the readout direction to decouple the MR-STAT reconstruc-
tion problem into multiple one-dimensional MR-STAT problems. For each of
these individual problems, the variable projection method was used. For the
Bloch simulations that are required to evaluate the forward model (and for the
computation of partial derivatives of the forward model using finite differences)
an online available Bloch simulation toolbox written in the C programming
language was used. The reconstruction problems were solved in parallel using
multiple CPUs on a high performance computing cluster.

An issue with the reconstruction technique presented in Chapter 2 is that
the variable projection method requires model matrices to be stored in com-
puter memory. For 1D problems this is feasible but for 2D or 3D problems it
is not. Because the decoupling strategy relies on the assumption of Cartesian
readout trajectories, this reconstruction setup would limit MR-STAT to Carte-
sian only even though the theoretical framework is also valid for non-Cartesian
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trajectories. In addition, for 3D Cartesian acquisitions, the decoupling strategy
would result in multiple 2D problems for which the variable projection method
could not be used. A more generic MR-STAT algorithm that could be used for
arbitrary gradient trajectories was therefore desired.

In Chapter 3 a matrix-free Gauss-Newton based algorithm was developed
that, in principle, can be used for arbitrary sequences because it does not re-
quire storage of model matrices. The matrix-free (and thus memory-efficient)
nature of the algorithm comes at the price of increased computational costs:
entries of the relevant model matrices that are needed multiple times during
the reconstruction are re-computed multiple times because they are no longer
stored. Fortunately, the computations can be performed in parallel to reduce
reconstruction times. Unlike the FFT-based decoupling strategy, communica-
tion between compute units is required during the reconstruction procedure. In
order to implement this algorithm on a high performance computing cluster, a
programming language was needed that could facilitate the communication be-
tween compute units without requiring labor intensive, low-level programming.
The relatively new, free and open-source Julia programming language satis-
fied these requirements and was thus used to implement the parallel, matrix-
free Gauss-Newton algorithm on a high performance computing (CPU) cluster.
While the algorithm allowed for the reconstruction of high-resolution (i.e. 1
mm × 1 mm in-plane resolution) quantitative tissue parameters, reconstruction
times were in the order of hours for a single slice even when approximately 100
CPUs were utilized.

In the search for techniques to reduce reconstruction times, it was realized
in Chapter 4 that the Gauss-Newton matrix used in the MR-STAT reconstruc-
tion technique proposed in Chapter 3 admits a sequence-dependent structure.
Predictions were made based on a theoretical foundation that, for sequences
with Cartesian trajectories and smoothly varying flip angles, the Gauss-Newton
matrix admits (to good approximation) a sparse structure. This insight allows
the non-zero entries to be computed (in parallel) and stored in computer mem-
ory. Subsequent matrix-vector multiplications with the sparse matrix are then
significantly faster when compared to the matrix-free approach. The theoret-
ical predictions were validated in simulations as well as phantom and in vivo
experiments. Reconstruction times were reduced by an order of magnitude, re-
sulting in reconstruction times of approximately fifteen minutes per slice while
still using almost 100 CPUs. The technique developed in Chapter 4 can be
interpreted as a generalization of the FFT-based decoupling technique used in
Chapter 5. Unfortunately, for non-Cartesian trajectories, the technique would
be more much challenging to implement and may not result in significant re-
ductions in reconstruction times due to the less sparse matrix structure.

Prompted by the availability of GPU hardware, as well as having observed
significant computational speedups achieved with GPUs in other research fields
(including MRI), the decision was made to work towards a GPU compatible
MR-STAT reconstruction algorithm in Chapter 5. The Julia programming lan-
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guage turned out to be a valuable tool here as well since it allows one to write
custom CUDA kernels in a high-level manner that can then be executed on
NVIDIA GPU hardware. Kernel functions were written for the computation-
ally demanding tasks of the MR-STAT reconstruction algorithm proposed in
Chapter 3.

In addition, it was recognized that, given the magnetization (and partial
derivatives) in a voxel at some echo time, the magnetization at other sample
points during the same readout are relatively cheap to compute. At the same
time, for 2D reconstructions, storing the magnetization (and partial derivatives)
at echo times only is feasible on modern GPU cards. While the matrix-free
Gauss-Newton method proposed in Chapter 3 requires all entries of the Jaco-
bian matrix to be recomputed multiple times within one outer iteration of the
MR-STAT reconstruction algorithm, with the partially matrix-free approach
proposed in Chapter 5, the expensive entries of the Jacobian are computed
once and then stored into GPU memory. Only the entries of the Jacobian
that are relatively cheap to compute are recomputed multiple times within
one outer iteration. With this technique, 2D MR-STAT reconstructions that
took approximately three hours in Chapter 3 and approximately fifteen min-
utes in Chapter 4 could be performed in 68 seconds on a modern GPU card.
An additional advantage of this approach is that - unlike the sparse Hessian
based acceleration technique proposed in 4 - the technique can also be uti-
lized for non-Cartesian acquisitions and was essential in performing the radial
MR-STAT reconstructions in Chapter 6.

An important part of the MR-STAT reconstructions is formed by the need
to perform Bloch simulations (using either the isochromat or the EPG model)
and to evaluate the signal model 1.1.1. These simulations, however, could
also be relevant to other (q)MRI techniques and therefore the developed Julia
code to perform these simulations was released as a separate, free and open-
source software package entitled BlochSimulators.jl. In Chapter 5 the toolbox
is demonstrated to have state-of-the-art runtime performance on both CPU
and GPU architectures.

Based on the work presented in this thesis, whole-brain multi-2D MR-STAT
acquisitions of five minutes are possible from which T1, T2 and proton density
maps can be estimated with reconstruction times in the order of two minutes
per slice. A first clinical demonstrator study on 30 patients with various dis-
eases has been concluded [88]. A second clinical demonstrator study on a large
group of patients suffering from Parkinson’s disease is being conducted at the
time of this writing [24].

7.2 Discussion

Going forward with MR-STAT, several challenges will need to be addressed
prior to clinical adoption. These challenges are discussed below together with
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suggestions for possible mitigation strategies and other future research direc-
tions leverage the unique features of the MR-STAT framework.

7.2.1 Volumetric coverage

This thesis focussed entirely on single-slice, 2D acquisitions. Volumetric cov-
erage can be achieved in a straightforward manner by performing multiple 2D
acquisitions in a serial manner [88]. However, such an approach is likely to
be suboptimal in terms of scan efficiency and makes it difficult to achieve an
isotropic resolution. Two potentially better approaches should be explored:
interleaved multi-slice and/or 3D acquisitions.

With interleaved multi-slice type acquisitions, the data acquisition for a slice
is interrupted to excite and acquire data from other slices. The interruption
time would allow for T1 regrowth of the longitudinal spin components, resulting
in higher signal (and thus higher scan efficiency) without increasing the overal
scan time. Such an acquisition involves many design choices, e.g. the number
of interruptions and the interruption times are involved, that influence the scan
efficiency. Sequence optimization tools, such as the BLAKJac framework [55]
that was designed specifically for optimizing MR-STAT sequences, are essential
in this context.

Alternatively, 3D MR-STAT acquisitions could be utilized, especially when
clinical applications demand isotropic voxels. A major challenge with 3D ac-
quisitions is that memory requirements and reconstruction times are even more
difficult to manage compared to 2D acquisitions. In exploratory work by Liu
et al. (2023) [107], a stationary [2] MR-STAT sequence was developed that
repeats the same 2D MR-STAT acquisition for different phase encoding steps
in the kz direction. This method allows for decoupling (with the help of parallel
imaging if undersampling in the kz direction is applied) of the 3D reconstruc-
tion problem into multiple 2D reconstruction problems. Compared to multi-2D
acquisitions, these type of 3D acquisitions were observed to have higher scan
efficiencies [107]. From a conceptual point-of-view it would also be interesting
to develop (non-decoupled) 3D MR-STAT reconstruction techniques since the
decoupling strategies put constraints on the acquisition strategy. The benefits
of non-Cartesian MR-STAT imaging that were explored in Chapter 6 could
also be more pronounced for 3D acquisitions (although the challenges in terms
of robustness remain). Like in the interleaved multi-slice case, 3D MR-STAT
acquisitions require many design choices and potential pitfalls that need to be
thoroughly investigated with the aid of sequence optimization tools [55].

7.2.2 Reconstruction times

Using the reconstruction technique presented in Chapter 5, 2D MR-STAT re-
constructions can be performed in the order of minutes on GPU hardware,
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with the actual reconstruction time depending on the desired resolution, se-
quence length, number of receive coils and simulation parameters (e.g. number
of discretization steps for RF excitation waveforms or the maximum allowed
configuration state order in EPG simulations). Reconstruction times for 3D
volumes (acquired using the multi-2D approach) are currently in the order of
hours. While acceptable for research purposes or clinical demonstrators, such
reconstruction times would not be sufficient if MR-STAT were to be adopted on
a large scale in clinical protocols. Reconstruction times would ideally be in the
order of a minute for a 3D volume as this would also allow direct feedback of
scan results to radiologic technologists. Several strategies could be considered
to work towards this goal.

First of all, a GPU implementation of the sparse Hessian technique intro-
duced in Chapter 4 could significantly reduce reconstruction times for Cartesian
MR-STAT sequences. The design of a kernel function for computing and stor-
ing the sparse Hessian approximation is non-trivial and involves many design
choices that could impact the performance of such a kernel. Assuming that a
sparse Hessian approximation is stored in GPU memory, existing libraries to
perform sparse matrix-vector multiplications on GPU hardware [118] could be
leveraged.

For non-Cartesian MR-STAT sequences for which the sparse Hessian tech-
nique is less suitable, speedups could be achieved by improving the existing
kernel functions for the partially-matrix free technique from Chapter 5. As
demonstrated in that chapter, the bottleneck in the partially matrix-free MR-
STAT reconstructions is found in the repeated matrix-vector multiplications
with the Jacobian matrix J and its conjugate transpose. The kernels that im-
plement these multiplications involve many design choices (e.g. letting threads
loop over either columns or row of the matrix) and have not been thoroughly
investigated. Rather than manually searching for optimal design choices in
this respect, tools to automate this process could be utilized [180]. An interest-
ing question in this respect is whether the Julia language - which was used in
this work to develop the kernel functions - remains a viable option or whether
significant speedups can be achieved by using the CUDA language instead.

Rather than performing reconstructions on a single GPU card, MR-STAT
reconstructions could also be performed on (local or cloud-based) GPU clus-
ters consisting of multiple GPU cards. For multi-2D MR-STAT acquisitions,
reconstructing different slices is an embarrassingly parallel problem and each
available GPU could be assigned to a different subset of the slices. For 3D
MR-STAT acquisitions, communication between different GPU cards during
the reconstruction would be required and tools to facilitate this communica-
tion need to be explored [70]. The multi-GPU approach may be necessary to
utilize the partially matrix-free approach in the 3D scenario because the mem-
ory requirements for this algorithm are expected to exceed what is available on
a single GPU card at the time of this writing.

On an algorithmic level, a stochastic modification of the inexact Gauss-
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Newton method proposed in Chapter 3 could be explored. In the inexact
Gauss-Newton method, a linear system of equations involving the full Jaco-
bian matrix J is numerically solved for each outer iteration of the iterative
algorithm to obtain update steps in parameter space. The Jacobian matrix
J contains partial derivatives of the forward model with respect to the tissue
parameters of interest at all sample times. Instead of using all sample points
in the linear system of equations, a stochastic approach that uses only subsets
of the sample points [161, 176] could accelerate the computation of the update
steps. Predicting potential speedup up front is difficult. Reducing the number
of sample points linearly reduces the computation time but at the same time
may require additional iterations for convergence. An optimal balance must
thus be found.

In a different direction, speedups may be possible by incorporating surrogate
models into the reconstruction. In Chapter 5, the performance of the EPG
simulator used in MR-STAT is on-par with the performance of a recurrent
neural network-based surrogate model [104]. However, the recurrent neural
network was chosen as a balance between performance on the one hand and
flexibility with respect to sequence parameters on the other. If, for example in
a clinical setting, a fixed sequence (e.g. fixed flip angles at a fixed resolution) is
used, a different network architecture may be utilized that sacrifices flexibility
to gain additional runtime performance [80].

Besides surrogate modeling, neural networks could potentially be used to
learn the iterative steps of the MR-STAT reconstruction. Such loop-unrolling
techniques [117] have been used successfully in the context of compressed sens-
ing MRI to significantly reduce reconstruction times [139].

A proper combination of the proposed strategies may make it possible to
achieve one-minute MR-STAT reconstructions for 3D volumes.

7.2.3 Accuracy of tissue parameter estimates

In Chapters 2,3,4 and 6 the T1 and T2 maps obtained with MR-STAT were
shown to be accurate for in silico and phantom experiments. For the phantom
experiments, accuracy was assessed by comparing against results from gold
standard techniques (single-echo spin-echo inversion recovery with different in-
version times for T1 mapping, single-echo spin-echo with different echo times
for T2 mapping). Unfortunately, the gold standard techniques have scan times
that are prohibitively long for being performed in vivo. Assessing accuracy
by comparing against other qMRI techniques that have shorter scan times is
not straightforward. For example, for brain imaging, there is a wide range
of reported T1 and T2 values in gray- and white matter [23] and there is no
concensus on what the “true” values are.

The wide variety of reported in vivo relaxation times can be partly at-
tributed to the use of incomplete signal models in qMRI. There are many bio-
physical processes (besides transverse/longitudinal relaxation and proton den-
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sity) that have an impact on the MR signal and can bias the relaxation times if
not accounted for during the reconstruction procedure. Examples include dif-
fusion, flow and magnetization transfer. In addition, system imperfections such
as inhomogeneous B+

1 and B0 fields can also bias the reconstructed relaxation
times. Unfortunately, different qMRI techniques have different sensitivities to
each of these confounding factors. As a result, T1 estimates obtained with one
technique may be biased by one confounder while the T1 estimates obtained
with another technique may be biased by another. Both techniques may thus
return different T1 estimates. Several approaches exist to deal with confounding
factors in qMRI.

The first approach is to design sequences that are insensitive to the con-
founding factors such that they can be ignored during the reconstruction proce-
dure without adversely affecting the relaxation time estimates. As an example,
single-echo FISP-type [124] sequences as used in Chapter 6 are known to be
largely insensitive to B0 inhomogeneities. For such sequences, it is therefore not
necessary to include potential B0 inhomogeneities into the signal model used in
the qMRI reconstruction. It is, however, highly questionable whether sequences
can be designed that are sufficiently insensitive to all potential confounders.

As a second option, separate measurements could be performed to retrieve
confounding parameters so that they can subsequently be included in the MR-
STAT forward model. This is the approach currently taken for B+

1 in Chapter
6. The obvious downside is an increase in acquisition time and a fallback to
the more traditional qMRI approach of estimating individual tissue parameter
types one at a time.

A third option would be to design sequences that - on purpose - have high
sensitivity to the confounders such that they can be reconstructed from the data
as well. For example, in the field of MRF, sequences have been proposed that
allow for reconstruction B+

1 , off-resonance, diffusion, magnetization transfer,
flow, perfusion. A challenge with this latter approach is that the acquisition
times typically become longer as more parameters are encoded into the signal.
At the same time, reconstruction procedures become more complex as well.
With the dictionary-based MRF approach to multi-parametric qMRI, the size
of the dictionary in principle scales exponentially with the number of different
tissue parameter types and one quickly runs into both memory and matching
time issues as more tissue parameter types are included. For MR-STAT, the
memory requirements (for storing part of the Jacobian matrix in the partially
matrix-free algorithm from Chapter 5) and computation time (for computing
partial derivatives of transverse magnetization) in principle scale linearly as
more parameters are included. The MR-STAT approach to qMRI may therefore
be more future-proof in this respect. A challenge with the MR-STAT approach
is that - as more parameter types are included - the risk of encountering local
minima during the iterative reconstruction procedure may increase.
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7.2.4 Spin dynamics during readouts

In MR-STAT, a forward model (Eq. 1.4.1) is used that describes time-domain
sample points by explicitly taking into account the spatial encoding gradients.
A benefit of this approach over FFT-based techniques is that spin dynamics
during readouts, such as T2, T ∗2 or off-resonance effects, can be considered.
However, in this thesis, this benefit has not been explored. Only sequences
with relatively short readouts (in the order of a few milliseconds) were tested
for which the spin dynamics during readouts can typically be ignored. For
sequences with longer readouts, such as spiral or echo planar imaging (“EPI”)
acquisitions [111], spin dynamics during readouts are known to result in image
artefacts (e.g. blurring or geometric distortions) in FFT-based reconstructions.
With MR-STAT it should be possible to reconstruct quantitative maps that
do not suffer from such artefacts and future research could be dedicated to
exploring this unique feature of MR-STAT.

7.2.5 Continuous sampling

In a typical MRI pulse sequence, data is only acquired during the constant part
of the readout gradient. In theory, however, data can be sampled continuously
in between RF excitations, including the ramp up and ramp down moments
of the spatial encoding gradients. Regular Cartesian sequences become hybrid
Cartesian/radial sequences with such an approach [25]. In conventional (non-
uniform) FFT-based reconstructions, the additional data points can be included
by gridding prior to applying an FFT [182, 26]. Data points that are sampled
multiple times during a continuous sampling window are essentially averaged
during the gridding step without taking into account the spin dynamics during
the sampling window. In MR-STAT, no gridding is required and the additional
data points can be included naturally into the reconstruction procedure. This
continuous sampling technique could be leveraged to increase the signal-to-
noise ratio for MR-STAT without increasing scan times. For this approach to
be successfull precise knowledge of the actual gradient waveforms is required.
Tools such as gradient impulse response functions could be essential in this
respect [168].

7.2.6 Convergence and regularization

The MR-STAT reconstruction algorithms presented in this work are all iterative
in nature due to the use of a non-linear forward model. Proper convergence cri-
teria for halting the iterative reconstructions have not been investigated. Early
stopping may result in heavily biased parameter estimates whereas stopping
too late increases reconstruction times and can result in overfitting artefacts.
Commonly used stopping criteria involve the vector norm of the gradient of
the objective function [120], the vector norm of the step in parameter space or
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the change in objective function.
A topic closely related to stopping criteria is regularization. Many (q)MRI

techniques incorporate regularization terms as they allow prior information to
be included to improve image quality [101, 109, 131]. While technically possible
[106], in this thesis no explicit regularization terms have been included in the
MR-STAT reconstructions. A more thorough investigation of different (joint)
regularization strategies for MR-STAT is recommended since regularization can
improve image quality as well as prevent overfitting artefacts.

7.2.7 Uncertainty Estimation

With the MR-STAT approach to qMRI it is in theory possible to estimate
uncertainties associated with the reconstructed tissue parameter maps. If η
denotes the noise on the measured MR data and J the Jacobian matrix of the
MR-STAT problem evaluated at the reconstructed tissue parameters, then the
uncertainty associated with the i-th reconstructed parameter is estimated as√

diag(Re {JHJ}−1
)i/η (see Chapter 2). Such uncertainty maps may prove

to be useful in the clinical assessment of quantitative tissue parameter maps.
For small numerical phantoms, or when using the 1D FFT-based decoupling
strategy, the covariance matrix (Re

{
JHJ

}
)−1, and therefore the uncertainty

maps, can be computed in a straightforward manner. However, when no de-
coupling strategy is employed (such as in Chapters 3-6), directly computing
the covariance matrix is no longer feasible from both a memory and compu-
tation time point of view. Because matrix-vector products with Re

{
JHJ

}
can be computed (either in a matrix-free fashion as proposed in Chapter 3, a
partially matrix-free fashion as proposed in Chapter 5, or by using the sparse
approximation in the case of Cartesian acquisitions as proposed in Chapter 4),
the columns of (Re

{
JHJ

}
)−1 can in principle be estimated one at a time by

solving linear systems of the form

Re
{
JHJ

}
x = ei, (7.2.1)

where ei is the i-th standard basis vector. When Re
{
JHJ

}
can be approx-

imated by a sparse matrix, solving Eq. ?? for each reconstructed may be
computationally feasible. In the more general case, however, the computation
times will be prohibitively long. Further research into alternative strategies for
estimating the diagonal of the covariance matrix [11, 53] is recommended as
uncertainty maps may be important for clinical acceptance of MR-STAT.

7.2.8 MRF vs MR-STAT

Reconstructions in the original MRF implementation proposed by Ma et al.
(2013) [110] and described in Chapter 1 consist of applying (non-uniform) FFTs
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on many highly undersampled snapshot images followed by a voxel-wise dic-
tionary matching procedure. Matching times reported for these original MRF
reconstructions [110, 84] are typically much lower compared to MR-STAT re-
construction times reported in this thesis. The matching, which is in essence a
discretized global parameter search, also avoids potential issues with local min-
ima. However, as described in Chapter 1, MRF introduces artificial aliasing
noise into the reconstructions. In order to reduce the effects of aliasing ar-
tifacts or to reduce acquisition times, iterative reconstruction techniques have
been proposed for MRF [132, 192]. These newer, iterative MRF techniques typ-
ically do not treat the reconstruction problem as a one-step non-linear inversion
problem like in MR-STAT but maintain a two-step approach [4]. In the spatial
localisation step, rather than direct (non-uniform) FFT reconstructions, a lin-
ear imaging operator is inverted iteratively to obtain snapshot images from the
measured data. The subsequent parameter estimation step is then performed
on a voxel-per-voxel basis through dictionary matching. The reconstructions
may alternate between the two different steps [192, 5, 191].

Compared to the initially proposed MRF reconstruction method the iter-
ative MRF reconstructions are computationally more demanding and reintro-
duce potential issues with local minima. Also note that the linear system in the
spatial localisation step is in principle highly underdetermined: since each snap-
shot is highly undersampled, there are many more unknowns than equations.
To deal with this latter issue, techniques have been proposed that reconstruct
the snapshots in a low-rank (time-compressed) basis instead [5, 191, 115]. That
way the number of unknowns in the linear spatial localisation problem can be
reduced significantly. The singular value decomposition is commonly used as
a tool to extract a low-rank basis from the MRF dictionary [114]. However,
as more different types of tissue parameters may be needed in qMRI signal
models in the future, forming and compressing dictionaries becomes (exponen-
tially) more challenging. In addition, a higher rank (i.e. more singular vectors)
may be required to capture enough information about the underlying spin dy-
namics, to the point where the spatial localisation problem becomes highly
underdetermined again.

Despite technical differences in the reconstruction techniques, each with its
own set of advantages and disadvantages, it can be said that the distinction
between MRF and MR-STAT has decreased over time. However, by using the
one-step, non-linear inversion approach, the MR-STAT technique is arguably
more future-proof than the two-step approach-based MRF technique. At the
same time the forward model used in MR-STAT opens up research directions
(e.g. non-linear encoding fields) not permitted by techniques that rely on the
(non-uniform) FFT in their reconstructions.
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7.3 Future Perspectives

Current clinical MRI workflows consist of multiple scans, one for each desired
contrast image. A fast, multi-parametric qMRI technique may replace all those
scans with just a single scan. The reduced scan times can result in lowered
costs and increased patient throughput for hospitals. At the same time, the
obtained quantitative images are richer in information than their qualitative
counterparts. With MR-STAT, a technique has been developed that may de-
liver on this promise of multi-parametric qMRI. The MR-STAT framework uses
a forward model that is more comprehensive compared to other qMRI meth-
ods to allow for maximum freedom in the acquisition procedure. This freedom
has been utilized to design multi-parametric Cartesian-based acquisitions with
scan times that are sufficiently short for incorporation into clinical routines.

The freedom in the MR-STAT acquisitions come at the price of more chal-
lenging reconstructions. A large part of this thesis was devoted to managing
MR-STAT reconstructions in terms of computation times and computer mem-
ory requirements. With the suggestions provided in this chapter, together with
the fact that, in general, computing capabilities become cheaper and more ac-
cessible over time, the reconstruction times may no longer be a limiting factor
in the near future.

Arguably the most important limiting factor when it comes to clinical ac-
ceptance of MR-STAT is the accuracy issue described in subsection 7.2.3. This
issue, however, is not specific to MR-STAT but in principle affects all qMRI
methods. The signal models currently used in qMRI are too simplistic and do
not cover all of the biophysical processes that affect the measured MR signal.
Different qMRI methods may therefore have different sensititivites to confound-
ing factors and thus result in different tissue parameter estimates. It is an open
question in the field of fast, multi-parametric qMRI on what type of acquisition
should be used and which parameters could or should be estimated jointly from
the measured data. Without consensus on this matter, clinical interpretation of
estimated tissue parameters is challenging [60]. Even though quantitative tis-
sue parameter maps are already being explored as potential clinical biomarkers
[56, 92], joint research efforts by the entire qMRI community may be required
on this particular topic before qMRI can truly deliver on its promised benefits.

In the meantime, however, fast multiparametric qMRI techniques such as
MR-STAT could still see adoption in clinical workflows through so called syn-
thetic MRI methods [63]. With synthetic MRI, Bloch-equation based signal
models are used to generate contrast images from quantitative tissue parameter
maps. By using MR-STAT as the backbone for a synthetic MRI engine, the
contrast images that are currently acquired in clinical workflows can be gener-
ated with reduced acquisition times. Succesful synthetisation does require sig-
nal models that accurately describe the clinically used contrast sequences. For
some contrasts analytical signal models have been used to generate synthetic
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images with comparable image quality and diagnostic value as the convention-
ally acquired contrast images [157, 88, 91]. However, for other contrasts, the
analytical signal models are currently lacking and more advanced, data-driven
techniques may be required [138, 185].
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Magnetic Resonance Imaging (“MRI”) is vandaag de dag één van de belang-
rijkste medische beeldvormingstechnieken. Door een combinatie van sterke
magneetvelden en radiogolven kan de binnenkant van het lichaam bekeken wor-
den zonder dat patiënten daarbij worden blootgesteld aan ioniserende straling.
Door de scanner op verschillende manieren aan te sturen kan een diversiteit
aan contrasten gegenereerd worden. De contrastbeelden belichten verschillen
in weefseleigenschappen maar voorzien in principe niet in een daadwerkelijke
kwantificatie van deze weefseleigenschappen. Kwantitatieve beelden bevatten
meer informatie dan de conventionele contrastbeelden en kunnen longitudi-
nale alsmede grootschalige, multi-center patiëntenonderzoeken faciliteren. Be-
staande methoden om weefseleigenschappen te kwantificeren volgen een twee-
staps procedure waarbij per weefseleigenschap eerst meerdere contrastbeelden
worden gegenereerd, gevolgd door het fitten van relatief eenvoudige signaal-
modellen in iedere voxel afzonderlijk. Hoewel de reconstructies doorgaans snel
uitgevoerd kunnen worden zorgen de lange acquisitietijden ervoor dat derge-
lijke kwantitatieve MRI methoden slechts zeer beperkt worden toegepast in de
klinische praktijk.

Magnetic Resonance Spin Tomography in Time-domain (MR-STAT) is een
nieuwe techniek binnen de MRI waarmee meerdere weefseleigenschappen kun-
nen worden gekwantifieerd op basis van één scan van enkele minuten. Anders
dan bij de twee-staps methoden worden geen contrastbeelden gegenereerd maar
worden de weefseleigenscahppen gelijktijdig spatieel gelocaliseerd en gekwan-
tificeerd. Het reconstructieproces binnen MR-STAT bestaat uit het oplossen
van een grootschalig, niet-linear optimalisatieprobleem in alle voxels tegelij-
kertijd en brengt rekenkundige uitdagingen met zich mee. In dit proefschrift
wordt de MR-STAT techniek verder ontwikkeld op zowel het gebied van data-
acquisitie als beeldreconstructie om een klinische demonstratie van de techniek
in praktische zin mogelijk te maken.

In Hoofdstuk 2 wordt de theorie beschreven die ten grondslag ligt aan MR-
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STAT. Middels in silico en lage-resolutie in vivo experimenten wordt de poten-
tie van de techniek aangetoond. Voor de acquisitie wordt gebruik gemaakt van
Cartesische uitleestrajecten in combinatie met variabele fliphoeken. Voor de
reconstructies in dit hoofdstuk wordt gebruik gemaakt van een ontkoppelings-
methode gebaseerd op een ééndimensionale Fourier transformatie. Voor ieder
van de resulterende deelproblemen wordt het variabelen projectie-algoritme
gebruikt. Deze hybride reconstructiemethodiek beperkt MR-STAT echter tot
tweedimensionale, Cartesische acquisities.

In Hoofdstuk 3 wordt een meer generieke reconstructiemethodiek voor MR-
STAT geintroduceerd welke gebaseerd is op een Gauss-Newton algoritme. Er
wordt niet langer gebruik gemaakt van een ontkoppelingsmechanisme waardoor
de reconstructiemethodiek in theorie ook generaliseert naar niet-Cartesisch ac-
quisities. Een hiermee verbonden nadeel is dat zonder ontkoppeling de in de
Gauss-Newton methode benodigde modelmatrices dusdanig groot worden dat
opslag in computergeheugen praktisch onmogelijk is. Opslag van deze ma-
trices is echter niet strikt noodzakelijk: voor het algoritme is het voldoende
om matrix-vector producten met deze matrices uit te kunnen rekenen. Een
zogeheten matrixvrije implementatie wordt voorgesteld waarbij het tevens mo-
gelijk is om de rekentaken in parallel uit te voeren. Communicatie tussen de
processen is hierbij wel vereist. Het parallelle, matrixvrije algoritme wordt
geimplementeerd op een CPU-rekencluster en succesvol toegepast op data uit
hoge-resolutie, tweedimensionale MR-STAT acquisities. Door de matrixvrije
implementatie zou de voorgestelde reconstructiemethodiek in theorie ook kun-
nen werken voor driedimensionale acquisities. De reconstructietijden vormen
echter nog wel een belemmerende factor: met de voorgestelde methode duren
zelfs tweedimensionale reconstructies al enkele uren op het rekencluster.

In de zoektocht naar technieken om de reconstructietijden omlaag te bren-
gen wordt in Hoofdstuk 4 aangetoond dat de zogeheten Gauss-Newton matrix
die wordt gebruikt in de MR-STAT-reconstructietechniek uit Hoofdstuk 3 een
sequentie-afhankelijke structuur heeft. Op basis van een theorie wordt bear-
gumenteerd dat de Gauss-Newton-matrix voor sequenties met Cartesische uit-
leestrajecten en geleidelijk variërende fliphoeken een (bij goede benadering) ijle
structuur heeft. Dit inzicht maakt het mogelijk om de niet-nul elementen (in
parallel) te berekenen en op te slaan in het computergeheugen. Met de ijle bena-
dering kunnen matrix-vectorvermenigvuldigingen aanzienlijk sneller uitgevoerd
worden dan via de matrixvrije aanpak. De theoretische voorspellingen worden
gevalideerd in simulaties, alsmede fantoom- en in vivo experimenten. De re-
constructietijden voor een tweedimensionale acquisitie worden hiermee geredu-
ceerd van enkele uren tot ongeveer vijftien minuten op een CPU-rekencluster.
De techniek ontwikkeld in dit hoofdstuk kan worden geïnterpreteerd als een
generalisatie van de op de ééndimensionale Fourier-transformatie gebaseerde
ontkoppelingsmethode die wordt gebruikt in Hoofdstuk 2. De voorgestelde
techniek is voor niet-Cartesiaanse trajecten echter moeilijk te implementeren
en leidt mogelijk niet tot significante verminderingen in reconstructietijden van-
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wege de minder ijle matrixstructuur.
Geïnspireerd door de toegenomen beschikbaarheid van videokaarten en door

de observatie van significante rekenversnellingen met videokaarten in andere on-
derzoeksgebieden (waaronder MRI), is besloten om in Hoofdstuk 5 te werken
aan een GPU-implementatie van het MR-STAT reconstructie-algoritme. De re-
latief nieuwe Julia-programmeertaal blijkt hierin een waardevol instrument te
zijn. Met deze hoog-niveau programmeertaal is het namelijk mogelijk om code
te schrijven welke direct gecompileerd kan worden naar instructies welke op
videokaarten uitgevoerd kunnen worden zonder in te leveren op rekensnelheid.
De rekenkundig intensieve taken van het reconstructie-algoritme uit Hoofdstuk
3 worden middels Julia uitvoerbaar gemaakt op videokaarten. Tevens wordt
een aanpassing van het reconstructie-algoritme voorgesteld. In plaats van op
een volledig matrixvrije manier te werk te gaan wordt een deel van de mo-
delmatrices (namelijk die elementen die het duurst zijn om uit te rekenen) wel
degelijk opgeslagen en een ander deel (de elementen die relatief snel uitgerekend
kunnen worden) wordt zoals in de matrixvrije methode behandeld. Met deze
gedeeltelijk matrixvrije Gauss-Newton reconstructietechniek blijkt het mogelijk
te zijn om tweedimensionale MR-STAT reconstructies in ongeveer een minuut
uit te voeren op één videokaart. Een bijkomend voordeel van deze aanpak is
dat de methode - in tegenstelling tot de ijle benaderingsmethode uit Hoofdstuk
4 - ook toegepast kan worden ingeval van niet-Cartesische acquisities. Een
belangrijk onderdeel van de MR-STAT reconstructies bestaat uit het uitvoe-
ren van zogeheten Bloch simulaties. Bloch simulaties zijn ook voor andere
(kwantitatieve) MRI technieken relevant. De Julia code om Bloch simulaties
uit te voeren (al dan niet op videokaarten) is als zelfstandig pakket genaamd
BlochSimulators.jl beschikbaar gesteld op het internet. In Hoofdstuk 5 wordt
aangetoond dat dit softwarepakket beter presteert in termen van rekentijden
dan andere beschikbare softwarepakketten om Bloch simulaties uit te voeren.

Gebruikmakend van de in Hoofdstuk 5 ontwikkelde reconstructmethode
wordt in Hoofdstuk 6 een verkenning gedaan van niet-Cartesische uitleesstra-
tegiën voor MR-STAT. Meer specifiek wordt er een vergelijking tussen Carte-
sische en radiale MR-STAT gedaan in termen van efficiëntie en robuustheid.
Anders dan bij conventionele, niet-kwantitatieve MRI is het niet op voorhand
te voorspellen welke van de twee acquisitiemethoden tot een hogere efficiëntie
leidt. In simulatie-experimenten resulteert de radiale uitleesstrategie in een
hogere efficiëntie. Bij fantoom- en in vivo experimenten zijn de conclusies min-
der eenduidig. Dit komt doordat de radiale uitleesstrategie gepaard gaat met
betrouwbaarheids- en robuustheidsuitdagingen die worden toegeschreven aan
een hogere gevoeligheid voor onvolkomenheden in scanner-hardware. Voor kli-
nische toepassingen kan de Cartesische uitleesstrategie daarom mogelijk alsnog
de voorkeur genieten.

Op basis van het werk dat in dit proefschrift wordt gepresenteerd, zijn vol-
ledige multi-tweedimensionale MR-STAT-acquisities van vijf minuten mogelijk
waaruit kwantitatieve afbeeldingen van T1, T2 en proton dichtheid kunnen wor-
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den afgeschat met reconstructietijden van enkele minuten per plak. Een eerste
klinische demonstratie op 30 patiënten met verschillende ziekteverschijnselen
is succesvol afgerond. Op het moment van dit schrijven wordt een tweede kli-
nische demonstratie uitgevoerd bij een grote groep patiënten die lijden aan de
ziekte van Parkinson.



i
i

i
i

i
i

i
i

Publications

Journal Publications

[1] A. Sbrizzi, O. van der Heide, M. Cloos, A. van der Toorn, H. Hoog-
duin, P.R. Luijten, and C.A.T. van den Berg, Fast quantitative MRI as
a nonlinear tomography problem, Magnetic resonance imaging, vol. 46,
pp. 56–63, 2018.

[2] van der Heide, Oscar and Sbrizzi, Alessandro and Luijten, Peter R.
and van den Berg, Cornelis A T, High resolution in-vivo MR-STAT
using a matrix-free and parallelized reconstruction algorithm, NMR in
Biomedicine, vol. 33, p. e4251, apr 2020.

[3] O. van der Heide, A. Sbrizzi, and C.A. van den Berg, Accelerated
MR-STAT reconstructions using sparse Hessian approximations, IEEE
Transactions on Medical Imaging, vol. 39, no. 11, pp. 3737–3748, 2020.

[4] T. Bruijnen, O. van der Heide, M.P.W. Intven, S. Mook, J.J.W. La-
gendijk, C.A.T. van den Berg, and R.H.N. Tijssen, Technical feasibility
of magnetic resonance fingerprinting on a 1.5 T MRI-linac, Physics in
Medicine & Biology, vol. 65, no. 22, p. 22NT01, 2020.

[5] H. Liu, O. van der Heide, C.A.T. van den Berg, and A. Sbrizzi, Fast
and accurate modeling of transient-state, gradient-spoiled sequences by
recurrent neural networks, NMR in Biomedicine, vol. 34, no. 7, p. e4527,
2021.

[6] H. Liu, O. van der Heide, S. Mandija, C.A.T. van den Berg,
and A. Sbrizzi, Acceleration strategies for MR-STAT: Achieving high-
resolution reconstructions on a desktop pc within 3 minutes, IEEE Trans-
actions on Medical Imaging, vol. 41, no. 10, pp. 2681–2692, 2022.

205



i
i

i
i

i
i

i
i

206

[7] O. Akdag, S. Mandija, A.L.H.M.W. van Lier, P.T.S. Borman, T. Schakel,
E. Alberts, O. van der Heide, R.J. Hassink, J.J.C. Verhoeff, F.A.A.M.
Hoesein, and others, Feasibility of cardiac-synchronized quantitative T1
and T2 mapping on a hybrid 1.5 Tesla magnetic resonance imaging and
linear accelerator system, Physics and Imaging in Radiation Oncology,
vol. 21, pp. 153–159, 2022.

[8] M. Fuderer, O. van der Heide, H. Liu, C.A.T. van den Berg, and
A. Sbrizzi, Efficient performance analysis and optimization of transient-
state sequences for multiparametric magnetic resonance imaging, NMR
in Biomedicine, vol. 36, no. 3, p. e4864, 2023.

[9] J.P. Kleinloog, S. Mandija, F. D’Agata, H. Liu, O. van der Heide,
B. Koktas, J.W. Dankbaar, V.C. Keil, E.J. Vonken, S.M. Jacobs, and
others, Synthetic MRI with Magnetic Resonance Spin TomogrAphy in
Time-Domain (MR-STAT): Results from a Prospective Cross-Sectional
Clinical Trial, Journal of Magnetic Resonance Imaging, vol. 57, no. 5,
pp. 1451–1461, 2023.

[10] O. van der Heide, A. Sbrizzi, and C.A.T. van den Berg, Cartesian vs ra-
dial MR-STAT: An efficiency and robustness study, Magnetic Resonance
Imaging, vol. 99, pp. 7–19, 2023.

[11] S. Mandija, S.M. Jacobs, J.P.D. Kleinloog, H. Liu, O. van der Heide,
A.G. Kolk, A. Sbrizzi, and C.A.T. van den Berg, Water content-based
electrical properties tomography: results from a retrospective clinical
study, in submission, 2023.

[12] O. van der Heide, C.A.T. van den Berg, and A. Sbrizzi, GPU-
accelerated Bloch simulations and MR-STAT reconstructions using the
Julia programming language, in submission, 2023.

[13] H. Liu, O. van der Heide, E. Versteeg, M. Froeling, M. Fuderer, F. Xu,
C.A.T. van den Berg, and A. Sbrizzi, A three-dimensional MR-STAT
protocol for high-resolution multi-parametric quantitative MRI, NMR in
Biomedicine, p. e5050, in-press.

[14] F. Xu, S. Mandija, J.P.D. Kleinloog, H. Liu, O. van der Heide,
A. van der Kolk, J.W. Dankbaar, C.A. van den Berg, and A. Sbrizzi, Im-
proving the lesion appearance on FLAIR images synthetized from quan-
titative MRI: a fast, hybrid approach, in submission, 2023.

[15] M. Fuderer, H. Liu, O. van der Heide, C.A. van den Berg, and
A. Sbrizzi, RF phase modulation improves quantitative transient state
sequences under constrained conditions, in submission, 2023.



i
i

i
i

i
i

i
i

Publications 207

[16] E. Versteeg, H. Liu, O. van der Heide, M. Fuderer, C.A. van den Berg,
and A. Sbrizzi, High SNR full brain relaxometry at 7T by accelerated
MR-STAT, in submission, 2023.

Conference Proceedings

[1] O. van der Heide, A. Sbrizzi, A. Kruseman, M. Cloos, P.R. Luijten, and
C.A.T. van den Berg, In-vivo Validation of MR-STAT: Simultaneous Sig-
nal Localization and Quantification of Tissue Parameters on a 3T Clinical
MR-System, in Proc Intl Soc Mag Reson Med, p. 1790, 2017.

[2] O. van der Heide, A. Sbrizzi, P.R. Luijten, and C.A.T. van den Berg,
High-resolution in-vivo multi-parametric MRI using MR-STAT with a
highly parallelized, limited-memory reconstruction algorithm, in Proc Intl
Soc Mag Reson Med, p. 226, 2018.

[3] O. van der Heide, M.A. Eijbersen, C.A.T. van den Berg, P.R. Luijten,
and A. Sbrizzi, Enhanced MR-STAT by a multi-coil reconstruction frame-
work, in Proc Intl Soc Mag Reson Med, p. 2414, 2019.

[4] O. van der Heide, A. Sbrizzi, and C.A.T. van den Berg, Sparse MR-
STAT: Order of magnitude acceleration in reconstruction times, in Proc
Intl Soc Mag Reson Med, p. 2414, 2019.

[5] O. van der Heide, A. Sbrizzi, T. Bruijnen, and C.A.T. van den Berg,
Extension of MR-STAT to non-Cartesian and gradient-spoiled sequences,
in Proc Intl Soc Mag Reson Med, vol. 886, 2020.

[6] M. Eijbersen, H. Liu, O. van der Heide, C.A.T. van den Berg, and
A. Sbrizzi, Multi-parametric quantification of multiple spectral compo-
nents by an extended MR-STAT framework, in Proc Intl Soc Mag Reson
Med, p. 3228, 2020.

[7] S. Mandija, F. D’Agata, H. Liu, O. van der Heide, B. Koktas, C.A.T.
van den Berg, J. Hendrikse, A. van der Kolk, and A. Sbrizzi, A five-minute
multi-parametric high-resolution whole-brain MR-STAT exam: first re-
sults from a clinical trial, in Proc Intl Soc Mag Reson Med, vol. 558, 2020.

[8] H. Liu, O. van der Heide, C.A.T. van den Berg, and A. Sbrizzi, Acceler-
ated MR-STAT Algorithm: Achieving 10-minute High-Resolution Recon-
structions on a Desktop PC, in Proc Intl Soc Mag Reson Med, vol. 3477,
2020.

[9] O. van der Heide, A. Sbrizzi, and C.A.T. van den Berg, Faster Bloch
simulations and MR-STAT reconstructions on GPU using the Julia pro-
gramming language, in Proc Intl Soc Mag Reson Med, p. 3063, 2021.



i
i

i
i

i
i

i
i

208

[10] H. Liu, O. van der Heide, C.A.T. van den Berg, and A. Sbrizzi, Fast
and Accurate Modeling of Transient-state Sequences by Recurrent Neural
Networks, in Proc Intl Soc Mag Reson Med, p. 329, 2021.

[11] H. Liu, T. Bruijnen, M. van Haandel, O. van der Heide, M. Fuderer,
C.A.T. van den Berg, and A. Sbrizzi, Increasing the T2 sensitivity of MR-
STAT sequences by small quadratic RF phase increments, in Proc Intl Soc
Mag Reson Med, p. 625, 2022.

[12] M. Fuderer, O. van der Heide, H. Liu, C.A.T. van den Berg, and
A. Sbrizzi, Non-steady-state sequences for multi-parametric MRI need to
be evaluated in the context of gradient-encoding, in Proc Intl Soc Mag
Reson Med, p. 2786, 2022.

[13] J.P.D. Kleinloog, S. Mandija, F. D’Agata, O. van der Heide, B. Koktas,
S.M. Jacobs, C.A.T. van den Berg, J. Hendrikse, A.G. van der Kolk, and
A. Sbrizzi, Synthetic MRI with MR-STAT: results from a clinical trial, in
Proc Intl Soc Mag Reson Med, p. 597, 2022.

[14] H. Liu, O. van der Heide, M. Fuderer, C.A.T. van den Berg, and
A. Sbrizzi, 3D MR-STAT: Towards a fast multi-parametric protocol with
increased snr, in Proc Intl Soc Mag Reson Med, p. 1348, 2022.

[15] M. Fuderer, H. Liu, O. van der Heide, C.A.T. van den Berg, and
A. Sbrizzi, Multi-parametric quantitative MRI without inversion pulses
by optimized RF phase modulation, in Proc Intl Soc Mag Reson Med,
p. 2176, 2023.

[16] M. Fuderer, O. van der Heide, C.A.T. van den Berg, and A. Sbrizzi,
The influence of diffusion in fast multi-parametric relaxometry, in Proc
Intl Soc Mag Reson Med, p. 2187, 2023.

[17] O. van der Heide, M. Doneva, P. Koken, J. Meineke, M. Fuderer, C.A.T.
van den Berg, and A. Sbrizzi, Cartesian MR-STAT vs spiral MR Finger-
printing: a comparison, in Proc Intl Soc Mag Reson Med, p. 2197, 2023.

[18] E. Versteeg, H. Liu, O. van der Heide, M. Fuderer, C.A.T. van den Berg,
and A. Sbrizzi, Full brain relaxometry at 7T in 3 minutes by accelerated
MR-STAT using a low-SAR flip angle train, in Proc Intl Soc Mag Reson
Med, p. 271, 2023.

[19] H. Liu, O. van der Heide, E. Versteeg, M. Fuderer, F. Xu, M. Froeling,
C.A.T. van den Berg, and A. Sbrizzi, High-resolution three-dimensional
MR-STAT for musculoskeletal applications, in Proc Intl Soc Mag Reson
Med, p. 672, 2023.



i
i

i
i

i
i

i
i

Publications 209

[20] F. Xu, H. Liu, S. Mandija, O. van der Heide, E. Versteeg, M. Fuderer,
C.A.T. van den Berg, and A. Sbrizzi, MR-STAT for fast contrast agent
uptake quantification, in Proc Intl Soc Mag Reson Med, p. 1106, 2023.

[21] S. Mandija, S.M. Jacobs, J.P.D. Kleinloog, H. Liu, O. van der Heide,
A.G. Kolk, A. Sbrizzi, and C.A.T. van den Berg, MR-STAT for fast con-
trast agent uptake quantification, in Proc Intl Soc Mag Reson Med, p. 5166,
2023.

Patents

[1] O. van der Heide, A. Sbrizzi, and C.A.T. van den Berg, Parameter map
determination for time domain magnetic resonance, May 26 2022. Pending
patent applications US17/602,259US, EP20719593.4 and EP2020/059997.



i
i

i
i

i
i

i
i



i
i

i
i

i
i

i
i

Dankwoord

Nico. Alessandro. Toen ik na mijn afstuderen op zoek ging naar een baan
leek het me leuk om samen te werken met met mensen met verschillende ach-
tergronden. Tegelijkertijd vond ik het ook erg belangrijk - en dat vind ik nog
steeds - om met de fiets naar mijn werk te kunnen. Destijds wonend in de Bilt
kwam ik al snel terecht bij de vacaturebank van het UMC Utrecht. Hier stond
een vacature over een nieuwe MRI techniek en het had iets met wiskunde en
programmeren te maken. Het klonk interessant maar het was wel een promo-
tieplek en daar was ik niet specifiek naar op zoek. Dat leek me namelijk nogal
eenzaam en te theoretisch. Ook had ik geen kennis van MRI dus ik had sterke
twijfels of reageren op de vacature wel zin zou hebben. Ik besloot het toch te
doen (nog bedankt trouwens dat ik geen motivatiebrief hoefde te schrijven) en
twee gesprekken verder kon ik starten aan het MR-STAT project. Nu, aan het
einde van het promotietraject, kan ik zeggen dat ik geen enkel moment spijt heb
gehad van de keuze om te gaan promoveren. En dat komt voor een heel groot
deel door hoe jullie de begeleiding hebben aangepakt. In de beginperiode heb
ik uitgebreid de tijd gekregen om mijn gebrek aan MRI kennis weg te werken.
Wekelijkse groepsbespreking waarin we artikelen over specifieke MRI sequen-
ties en technieken bestudeerden zijn daarin zeer waardevol geweest. Later heb
ik van jullie de ruimte en het vertrouwen gekregen om grotendeels zelf te be-
palen aan welke onderdelen van het MR-STAT project ik wilde werken. Daar
waar ik om sturing vroeg heb ik die gekregen. Jullie hebben gezorgd voor een
prettige balans tussen fundamentele vraagstukken onderzoeken en pragmatisch
handelen om patiënten te kunnen scannen. Door jullie voortdurende inzet is
het MR-STAT project gaandeweg steeds groter geworden en is het allesbehalve
een eenzaam traject geweest. Bovenal zijn jullie ook gewoon een vrolijk duo.
Allebei totaal verschillend, maar perfect op elkaar ingespeeld. Bedankt.

Els. Erik. Bedankt voor alle jaren aan onvoorwaardelijke steun. Het maakt
niet uit wat en wanneer ik iets vraag, jullie schieten altijd te hulp. Gaandeweg
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ben ik me steeds meer gaan realiseren hoe bijzonder dit is en dat mag ook best
eens gezegd worden.

Femke, Fenna, Anna en Saartje. Met de verdediging van dit proefschrift
eindigt niet alleen mijn promotietraject, er eindigt tegelijkertijd ook een turbu-
lente periode van verhuizingen, gebroken nachten en kinderopvangpuzzels. We
hebben gelukkig weer een thuis gevonden in Utrecht waar we opgelucht adem
kunnen halen en met uitzicht op veel moois.

Jurjen. Tjebbe. Bedankt dat jullie aan mijn zijde willen staan tijdens deze -
stiekem toch best spannende - levensgebeurtenis.

Verder wil ik alle leden van de promotiecommissie bedanken voor de tijd en
moeite die het gekost heeft om dit proefschrift te beoordelen.

Tot slot wil ik mijn dank uitspreken aan iedereen met wie ik de afgelopen
jaren heb samengewerkt, ideeën heb uitgewisseld, op reis ben geweest, heb
getafelvoetbald, koffie gezet en gedronken heb, aan wie ik Julia heb opgedrongen
en met wie ik heb genoten van de maaltijden in restaurant de Brink. Ik hoop
dat degenen voor wie deze boodschap bedoeld is zich erkend voelen en dat de
waardering wederzijds is.
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