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General introduction:

Multiple levels of crosstalk in hormone networks 
regulating plant defense

Niels Aerts, Marciel Pereira Mendes, Saskia C.M. Van Wees

Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 800.56, 
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ABSTRACT

Plant hormones are essential for regulating the interactions between plants and their 
complex biotic and abiotic environments. Each hormone initiates a specific molecular 
pathway, and these different hormone pathways are integrated in a complex network of 
synergistic, antagonistic, and additive interactions. This inter-pathway communication 
is called hormone crosstalk. By influencing the immune network topology, hormone 
crosstalk is essential for tailoring plant responses to diverse microbes and insects in 
diverse environmental and internal contexts. Crosstalk provides robustness to the 
immune system but also drives specificity of induced defense responses against the 
plethora of biotic interactors. Recent advances in dry-lab and wet-lab techniques have 
greatly enhanced our understanding of the broad-scale effects of hormone crosstalk 
on immune network functioning and have revealed underlying principles of crosstalk 
mechanisms. Molecular studies have demonstrated that hormone crosstalk is modulated 
at multiple levels of regulation, such as by affecting protein stability, gene transcription 
and hormone homeostasis. These new insights into hormone crosstalk regulation of 
plant defense are reviewed here, with a focus on crosstalk acting on the jasmonic acid 
pathway in Arabidopsis thaliana, pinpointing the transcription factors MYC2 and ORA59 
as major targets for modulation by other hormones.
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INTRODUCTION

Plants in nature and agriculture are constantly interacting with their biotic and abiotic 
environment. To ensure their survival in different and often hostile conditions they have 
evolved a sophisticated and flexible environmental signaling network that is steered 
by plant hormones. This elaborate hormone-controlled network finetunes the plants’ 
responses according to highly dynamic and heterogeneous circumstances. Immune 
signaling is part of this overarching network and can be activated and tweaked by the 
intricate molecular communication between the plant and the microbe or insect that it 
encounters. The intertwinement of the immune network with other stress and internal 
networks allows for adjustments in plant defense responses according to the abiotic 
conditions, plant developmental stage and time of day (Atkinson and Urwin, 2012, Lu et 
al., 2017, Nobori and Tsuda, 2019; Figure 1). 

 Plant hormones are central regulators of plant immunity. Depending on the type of 
attacker, different hormones accumulate in the plant, whereby each hormone regulates 
its own core pathway in the immune network (Figure 1). The two most studied defense 
pathways are those regulated by jasmonic acid (JA) and salicylic acid (SA), which form 
the backbone of the hormone-regulated part of the immune system (Wasternack and 
Song, 2017, Zhang and Li, 2019). The JA pathway can be subdivided into two branches 
(Pieterse et al., 2012). The ERF branch of the JA pathway is co-regulated by ethylene 
(ET) and is activated by infection with pathogens with a necrotrophic lifestyle. The MYC 
branch of the JA pathway is co-regulated by abscisic acid (ABA) and generally provides 
protection against chewing insects. The SA pathway is considered to be mostly directed 
against pathogens with a biotrophic lifestyle. So, the infection or infestation strategy 
of the attacker determines which hormones accumulate and which pathways the plant 
activates to express the appropriate defense responses to the attacker at hand. Moreover, 
hormone homeostasis is greatly influenced by the status of the plant, being internal, for 
example age, or being external, for example experiencing other stresses (Berens et al., 
2019, Nobori and Tsuda, 2019). Overall, the final hormone balance and responsiveness 
is a cumulative result of the activation of plant immunity and the plant’s internal and 
external context (Figure 1).

 The plant immune system is built on two layers, and hormone signaling is essential 
for both layers. In the first layer, plants recognize small, conserved microbe- or insect-
derived molecules, called M/PAMPs or HAMPs (for Microbe/Pathogen-Associated 
Molecular Patterns or Herbivore-Associated Molecular Patterns). If there is damage 
caused by an attacker, plant-derived small molecules called Damage Associated 
Molecular Patterns (DAMPs) are released, and these can also be recognized. Recognized 
P/M/H/DAMPs trigger immune signaling, resulting in pattern-triggered immunity (PTI), 
which wards off most of the non-adapted microbes and insects (Dangl et al., 2013, Erb 
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and Reymond, 2019). However, successful microbes and insects, which can be pathogenic, 
beneficial or neutral to the plant, can secrete variable effectors into the host plant to 
suppress PTI signaling. This is known as effector-triggered susceptibility (ETS) and 
commonly is established by repression of effective defense hormone pathways (Han 
and Kahmann, 2019). Resistant plants recognize these effectors or their action, setting off 
a second layer of immunity called effector-triggered immunity (ETI). In the case of plant 
interactions with biotrophic pathogens ETI often results in a hypersensitive response 
(HR), which arrests the invading pathogen (Cui et al., 2015). During PTI, ETS and ETI, plant 
hormones trigger extensive transcriptional reprogramming and thereby tightly regulate 
defense responses (Berens et al., 2017). This ultimately leads to elimination of harmful 
microbes and insects, and accommodation of beneficial microbes and insects, which can 
occur simultaneously in the plant.

SA JA ET ABA

defense

Figure 1: Schematic overview of integration of hormone networks involved in plant defense. 
Microbes and insects elicit the accumulation of specific blends of hormones. The main hormones involved in the 
regulation of plant defense responses are salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid 
(ABA). Each hormone regulates its own pathway, but also influences other hormone pathways in a complex mix 
of synergistic, antagonistic, and additive interactions, a phenomenon known as hormone crosstalk. Moreover, 
accumulation of these hormones and the responsiveness to them can be further modulated by light quality, time 
of day, abiotic stresses such as drought, flooding and salt stress, and by prior or simultaneous interactions with 
other microbes or insects. Integration of the different hormone networks shapes the defense response, leading 
to elimination or accommodation of the microbe or insect in diverse external and internal contexts. 
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It is important for plant health and long-term survival that defense responses are 
finetuned to turn on effective defenses but switch off ineffective defenses. Moreover, 
defense responses need to be balanced with general housekeeping and responses to 
other stresses (Vos et al., 2013, Vos et al., 2015, Berens et al., 2017, Van Butselaar and Van 
den Ackerveken, 2020). To this end, different hormone networks interact in a complex 
interplay of synergistic, antagonistic and additive interactions, a phenomenon known 
as hormone crosstalk (Figure 1). Hormone crosstalk is an important component of the 
architecture of the immune signaling network. Besides finetuning and balancing of 
responses, antagonistic interactions can also serve to provide robustness to the response. 
For example, two sectors can positively regulate the same immune response, but 
negatively regulate each other. That means that if one sector is compromised (for example 
by manipulation by a pathogen) the other sector is derepressed and can take over the 
function of the first sector. The classical example of crosstalk in defense regulation is that 
between the SA and JA pathways. Antagonism between these two pathways is the most 
studied and prevalent form, although large-scale additive and synergistic interactions 
have been described as well (Hickman et al., 2019). Additionally, the ERF branch and MYC 
branch of the JA pathway have been reported to repress each other (Pieterse et al., 2012, 
Gimenez-Ibanez and Solano, 2013, Wasternack and Hause, 2013). 

A molecular and systems-level understanding of hormone crosstalk will improve 
our predictions of effects that disruption or overactivation of parts of the network have 
on the overall plant response. Implementation of this knowledge can help breeders 
to engineer crops with a strengthened immune response without undesired traits like 
enhanced susceptibility to other attackers or decreased plant growth and yield. Here, we 
review recent advances in our understanding of hormone crosstalk within the immune 
network. Different levels of regulation, from network and genome scale to single gene 
and protein scale, are described. We focus on crosstalk in the JA pathway in Arabidopsis 
thaliana (hereafter Arabidopsis), as a showcase for the multiple regulation levels of 
pathway interference in hormone defense signaling.

Crosstalk at the network level

Studying crosstalk at the network level enables the investigation of crosstalk without 
defining beforehand all the individual components. This coarse-grain overview can reveal 
the overall architecture of the hormone-regulated plant immune system. Furthermore, it 
can provide hypotheses about crosstalk at more fine-grain levels, which can be validated 
experimentally. 

A network approach encompasses gathering information on a genome-wide scale. 
As RNA-seq is the most widely available genome-wide technique, information on the 
transcriptome is most commonly used for network-scale analyses until now. However, 
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newly emerging technologies also allow gathering information on other regulation levels 
such as the proteome and translatome (Lee and Bailey-Serres, 2019, Zander et al., 2020). 
In addition to these molecular data, relatively simple phenotypical readouts can be used 
for network analyses. The different types of data are usually gathered from leaves of 
plants that are elicited by a stimulus such as hormone application or pathogen infection. 
Comparisons can be made between effects that one stimulus has on various mutants that 
are impaired in hormone signaling sectors. Alternatively, effects of different hormone 
treatments on one plant genotype (wild type) can be compared. 

Network modeling using hormone mutants

A good example of network-level research is a series of papers that describe how different 
hormone sectors interact to regulate PTI and ETI (Tsuda et al., 2009, Kim et al., 2014, Hillmer 
et al., 2017, Mine et al., 2017). The researchers used single and higher-order mutants of key 
regulators of the SA, JA and ET pathways to understand how each sector contributes to PTI 
and ETI. A mutant of PAD4 was added because although PAD4 is known to be induced by 
SA and SA-eliciting pathogens, itself can regulate both SA-dependent and -independent 
responses (Jirage et al., 1999, Glazebrook et al., 2003). Using bacterial growth as a read-
out, they found that each of the four sectors alone positively contributes to both PTI and 
ETI (see also Figure 1). However, interactions between the sectors differ between the 
PTI and ETI response (Tsuda et al., 2009). The PTI response involves both synergistic and 
antagonistic interactions (Tsuda et al., 2009, Kim et al., 2014) and gene expression in this 
response is almost always influenced by one or multiple interactions between sectors 
(Hillmer et al., 2017). Robustness during PTI is mostly provided by the JA and ET sectors. 
This was demonstrated by the finding that in a mutated JA or ET background knocking 
out another sector had much more impact on MAMP-induced immunity levels against 
two Pseudomonas syringae strains than in the wild-type background (Kim et al., 2014). In 
contrast, during ETI all of the sectors act antagonistically and can (partially) take over the 
response if one of the sectors is inactive. This crosstalk mechanism ensures that the ETI 
response is robust against manipulation or dysfunction of one of the involved network 
sectors caused by an attacker or another stimulus (Tsuda et al., 2009).

An example of how network robustness can be achieved was elegantly demonstrated 
in a follow-up paper by Mine et al. (2017). They provided evidence for a robust regulation 
of SA biosynthesis by interactions between transcriptional regulators of the JA, SA and 
PAD4 sectors. These regulators form a so-called incoherent type 4 feed-forward loop, in 
which two components positively regulate one target, but one of these two components 
also negatively regulates the other component (Mangan and Alon, 2003). In this case, 
both PAD4 and the JA master regulator MYC2 (Kazan and Manners, 2013) positively 
regulate EDS5 (Mine et al., 2017), a gene essential for SA biosynthesis (Rekhter et al., 2019), 
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but MYC2 represses PAD4 (Mine et al., 2017). These interactions provide robustness to the 
system, which was demonstrated by the following. In wild-type plants PAD4 positively 
contributed to basal and flg22-induced EDS5 expression, whereas the JA sector had 
no effect on EDS5 expression and in fact contributed negatively to SA accumulation 
(Mine et al., 2017). However, when PAD4 was compromised, which in nature could result 
from activity of a pathogen effector or high temperature, MYC2 was able to activate 
EDS5 and hence, the JA pathway could positively influence SA biosynthesis. This was 
demonstrated using the dde2 pad4 mutant (impaired in JA signaling and the PAD4 sector), 
which, compared to the pad4 single mutant, contained lower levels of flg22-induced EDS5 
expression and free SA (Mine et al., 2017). So, in the case of SA biosynthesis the JA sector 
can functionally replace the PAD4 sector when the latter is compromised. Moreover, a 
direct interaction between the MYC2 and PAD4 proteins has been shown to affect free 
SA accumulation (Cui et al., 2018), as described in the section ‘Crosstalk at the hormone 
homeostasis level’. Vice versa, the SA sector stimulates JA biosynthesis during ETI (Liu et 
al., 2016), which is described in the section ‘Crosstalk by modulation of protein stability’. 

Network modeling using time series of hormone treatments of wild-type plants

A complementary approach to the above-described systems biology network studies 
using mutants as conducted by the Tsuda and Katagiri groups is using hormone 
applications to wild-type plants. A high-throughput time series set-up can provide 
extra power to the analysis, as this unveils regulatory connections between different 
components that shape the dynamic architecture of the network. Such an approach 
facilitates our understanding of the temporal information flow through the different 
sectors of the individual hormone regulatory networks, including the interactions with 
sectors of other hormone networks. This approach was taken for JA (Hickman et al., 2017, 
Zander et al., 2020), the JA-mimic phytotoxin (of P. syringae) coronatine (Attaran et al., 
2014), SA (Hickman et al., 2019), ET (Chang et al., 2013) and ABA (Song et al., 2016), which 
followed up on seminal time series papers studying responses to pathogen infection 
(Windram et al., 2012, Lewis et al., 2015).

Hickman et al. (2017) built a gene regulatory network (GRN) model of the JA response 
based on a transcriptome study of a time series of 14 time points within 16 after a one-
time treatment of mature Arabidopsis with aqueous methyl jasmonate (MeJA, which 
is converted to JA in the plant). The majority of the differentially expressed genes 
was detected as such within 2 h after treatment. Correlation analysis of expression at 
different time points showed that there were six distinct phases of upregulation and four 
distinct phases of downregulation. Each phase was enriched for different processes and 
contained specific TFs that were predicted to regulate genes in subsequent phases, based 
on enrichment of TF binding motifs in genes differentially expressed during these phases. 
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Intersections of the JA network with other hormone networks were also observed. For 
example, genes related to the SA pathway were downregulated in early phases (1-2 h) and 
genes related to the growth hormone auxin were downregulated in later phases (3-4 h). 

Zander et al. (2020) integrated various data types to elucidate the JA response in 
etiolated seedlings that had perceived continuous treatment with gaseous MeJA for 
up to 24 h. They focused on the role of MYC2 (Boter et al., 2004, Lorenzo et al., 2004, 
Dombrecht et al., 2007) and MYC3 (Fernández-Calvo et al., 2011) as master regulators of 
the JA response by conducting ChIP-seq of these TFs, and ChIP-seq or DAP-seq (basically 
in vitro ChIP-seq) of five of their targets. In addition, six other known JA-related TFs 
were included in their ChIP-seq/DAP-seq experiments. They also generated proteome 
and phosphoproteome data, and integrated this with the other data types to infer a 
regulatory network. This network contained known and new components of the JA 
regulatory network and pointed to known and novel nodes of crosstalk of the JA pathway 
with other hormone pathways. An important role for MYC2 and MYC3 in modulation of 
other hormone pathways was demonstrated by the finding that 37-59% of genes that 
were annotated as being part of other hormone signaling pathways were bound by MYC2 
and MYC3, and that the transcription of these genes responded to the MeJA treatment. 
Furthermore, the JA-induced transcriptional repressor STZ was predicted to suppress 
genes from several other hormone pathways, including the SA, GA and brassinosteroid 
(BR) pathways (Hickman et al., 2019, Zander et al., 2020). 

In a follow-up paper of the Hickman et al. (2017) paper on individual MeJA treatment, 
another part of the same experiment was reported, for which plants received a single 
SA treatment or a combination treatment of MeJA with SA (Hickman et al., 2019). The 
single SA treatment had a greater impact on the transcriptome than the single MeJA 
treatment, affecting the expression of more genes and having more prolonged effects. 
Validation of the built SA GRN model confirmed that specific TFs regulate specific paths 
in the network that are biologically relevant for defense against biotrophic pathogens. 
Comparison of the individual SA and MeJA treatments showed that there is a high level 
of interplay between the SA and JA networks (see also Figure 1). Of the MeJA-responsive 
genes 69% was also modulated by the individual SA treatment, and of the SA-responsive 
genes (which was a greater set) 26% was modulated by MeJA. Contrary to the paradigm 
of SA/JA antagonism, only half of the overlapping genes were regulated in an opposite 
manner (upregulated by SA and downregulated by MeJA or vice versa), while the other 
half of the genes were regulated in a similar direction by the two hormones. Noteworthy, 
hormone biosynthesis and pathways regulators like LOX2, MYC2, EDS1 and PAD4 were 
generally upregulated by the respective hormone treatment but downregulated by 
the other hormone treatment (Figure 2A, see also section ‘Crosstalk at the hormone 
homeostasis level’). Moreover, many of the SA- and MeJA-co-upregulated genes were 
canonical SA and JA pathway genes, like GRX480, ANAC019, ANAC055, some JAZs, and 
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RAP2.6. Many of these genes are also associated with ET and ABA signaling, hinting to 
their responsiveness to a broad range of hormone-inducing environmental stimuli. The 
combined SA and MeJA treatment showed that 68% of the MeJA-responsive genes 
changed their expression when SA was added to the treatment, while this was the case 
for only 12% of SA-responsive genes. While antagonistic and synergistic effects of the 
dual treatment were observed, the vast majority of the effects were just additive. Short-
term effects by MeJA were overridden by SA effects over time, resulting in a dominance 
of the SA profile over the MeJA profile (Hickman et al., 2019).

Chang et al. (2013) combined ChIP-seq of the ET master regulator TF EIN3 with RNA-
seq at 5 time points within 24 h following continuous ET treatment. ET was found to 
influence many other hormone pathways besides the JA pathway (Lorenzo et al., 2003, 
Anderson et al., 2004), as the GA, auxin, BR, ABA, SA and cytokinin pathways were also 
affected by ET treatment. 

A study by Song et al. (2016) investigated the ABA network based on RNA-seq time 
series and ChIP-seq experiments with 21 ABA-responsive TFs in the presence of ABA. 
A complex network of regulation by multiple master regulators, including extensive 
feedback regulation, was revealed. A thousand genes involved in other hormone pathways 
were bound by at least one of the investigated ABA-responsive TFs. However, the genes 
that were bound by a large number of TFs and/or by TFs that showed increased binding 
after ABA treatment usually belonged to the ABA pathway itself. 

CROSSTALK AT THE PROTEIN LEVEL

Proteins can modulate the functioning of other proteins in their own pathway or in other 
hormone pathways through various mechanisms, such as co-activation, repression, 
competitive binding to multiple targets, and chemical modification (e.g. phosphorylation, 
ubiquitination, sumoylation, nitrosylation or sulfonylation). Several molecular players 
in crosstalk have been demonstrated to modulate proteins that act in other hormone 
pathways. These include hormone receptors and their interactors. In addition, TFs have 
been implicated as crosstalk mediators at the protein level, with leading roles for the 
bHLH TF MYC2 and the ERF TF ORA59 as important targets for crosstalk in the JA pathway 
(Figure 2).
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Figure 2: Schematic overview of hormone crosstalk acting on two key transcription factors, MYC2 and 
ORA59, of the two branches of the jasmonic acid pathway. 
(A) Crosstalk acting on the MYC branch master regulator MYC2. In the context of defense, MYC2 mostly regulates 
anti-insect responses. MYC2 is repressed by interacting JAZ repressors and itself can induce transcription of these 
JAZs. Jasmonic acid (JA) induces the breakdown of JAZs thus leading to activation of MYC2. MED25 promotes MYC2 
transcriptional activity, but JAZs and SA-activated NPR1 prevent binding of MED25 to MYC2. MED25 also promotes 
JAZ breakdown by recruiting COI1, and alters JAZ splicing and thereby JAZ sensitivity to JA. MED18 and MED20 
promote transcription of MYC2. EIN3 is activated by JA-mediated breakdown of JAZ proteins and ethylene (ET)-
mediated stabilization. It binds to and represses MYC2 and vice versa. EIN3 also transcriptionally activates ORA59 
and ORA59 can repress MYC2 transcription and vice versa (either directly or indirectly, see also panel B). MYC2 
can enhance its own transcription in the short term but represses it in the long term. During AvrRps4-induced 
ETI, EDS1 can repress MYC2. Furthermore, SA can promote degradation of JAZs via NPR3 and NPR4 during ETI. 
Generally, SA is an inhibitor of MYC2 transcription. Abscisic acid (ABA) directly activates transcription of MYC2 
and enhances binding of the ABA receptor PYL6 to MYC2, modulating transcriptional activity of MYC2, which 
differentially acts on the JAZ6 and JAZ8 promoters (leading to repression versus activation). DELLA proteins bind 
JAZs and thereby JAZs and DELLAs prevent each other from binding to their respective target TFs. Gibberellin 
(GA) induces breakdown of DELLAs and thus indirectly represses MYC2. 
(B) Crosstalk acting on the ERF branch master regulator ORA59. ORA59 mostly regulates defense against 
necrotrophic pathogens. ORA59 is indirectly regulated by both JA and ET through their action on EIN3: JA releases 
EIN3 from its repression by JAZs, and ET stabilizes EIN3. When released from repression and degradation, EIN3 
activates transcription of ORA59. TGA TFs are also needed for this activation. GRX480 and other ROXYs are induced 
by SA and repress the transcriptional activity of these TGAs, leading to reduced transcription of ORA59. EIN3 also 
mediates degradation of ORA59. Because this only leads to reduced ORA59 functioning under high SA levels 
and not under high ET levels we propose that SA specifically modulates EIN3 activity such that it leads to ORA59 
degradation (dotted line). SA activates NPR1’s activity as a co-transcriptional regulator. NPR1 can interact with 
EIN3, leading to repression of EIN3 transcriptional activity. We propose that it is unlikely that NPR1 modulates 
EIN3-mediated ORA59 activation during SA/JA crosstalk (Section ‘Crosstalk by modulation of protein stability’). 
EIN3 is further repressed by MYC2 through direct binding and this also occurs the other way around. MYC2 is 
repressed by interaction of JAZ repressors and itself activates transcription of these JAZs. It is also transcriptionally 
activated by ABA. ORA59 expression is inhibited by MYC2, both directly and possibly indirectly via inhibition of EIN3 
by MYC2. DELLAs bind to JAZs and thereby they inhibit each other from binding to target TFs in their respective 
pathways. GA leads to breakdown of DELLAs, thus indirectly repressing ORA59. MED25 interacts with ORA59 and 
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promotes its transcriptional activity, and MED16 promotes ORA59 transcription. Modulation of JAZ breakdown 
and JAZ RNA splicing by MED25 is not shown here (see panel A). During ETI, SA can promote degradation of JAZs 
via NPR3 and NPR4. Note that in most cases where EIN3 is mentioned, EIL1 likely has the same function. However, 
in most research only EIN3 was extensively characterized.
Mechanisms acting on the gene expression level are colored purple and mechanisms acting on the protein level 
are colored green. Arrows and bar-headed lines indicate positive and negative effects, respectively. Mechanisms 
acting downstream of MYC2 and ORA59 or at the hormone homeostasis level are not shown.

Crosstalk by protein-protein interactions

Protein-protein interactions are of major importance for hormone crosstalk. Recently, 
an extensive network of protein-protein interactions between members of all hormone 
pathways in Arabidopsis was revealed using yeast two-hybrid with 1,226 genes with 
probable or genetically demonstrated functions in plant hormone signaling (Altmann 
et al., 2020). Not only was there high connectivity within each single hormone pathway, 
but also many inter-pathway contact points were uncovered. Validation of a subset of 
these inter-pathway contact points suggested that many of these interactions indeed 
likely represented crosstalk mechanisms. This was demonstrated by the finding that a 
mutant of one interaction partner influenced the plant phenotype that correlated with 
the hormone-associated function of the other interaction partner. It should be noted that 
such validation does not explicitly show that the convergence of two pathways depends 
on the detected protein interaction. Alternatively, it could be regulated by another factor 
that acts downstream in the pathway of the mutated gene. 

Hormone receptors were especially often found to interact with proteins that were 
not involved in the canonical hormone pathway of the receptor (Altmann et al., 2020). 
This suggests that signaling by hormone receptors through non-canonical pathways has 
a more prominent role in integrated hormone signaling than previously anticipated. One 
such example was previously shown for the ABA receptor PYL6, which interacts with the 
JA master regulator MYC2 (Aleman et al., 2016; Figure 2A). In the presence of ABA, the 
binding of PYL6 to MYC2 is enhanced, which alters the transcriptional specificity of MYC2 
from promoting JAZ6 expression to JAZ8 expression. The genome-wide implications of 
this mechanism have yet to be determined. Another example of an interaction between 
hormone receptors and key components of non-canonical hormone pathways is that 
of the SA receptors NPR3 and NPR4 with JAZ repressors. This is discussed in the section 
‘Crosstalk by modulation of protein stability’. 

MYC branch/ERF branch antagonistic crosstalk in the JA defense pathway is likely 
also (partly) regulated by protein-protein interactions. MYC2 can suppress the ERF branch 
by directly binding to the TF EIN3, which causes reduced binding of EIN3 to the promoter 
of a target gene (Song et al., 2014, Zhang et al., 2014; Figure 2). This effect was only shown 
for the promoter of HLS1, a gene involved in the formation of the apical hook in etiolated 
seedlings (Song et al., 2014, Zhang et al., 2014). It is thus unclear if this mechanism also 
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underlies MYC2-mediated antagonism on JA-responsive defense genes in the ERF branch. 
Vice versa, binding of EIN3 and EIL1 to MYC2 represses the transcriptional activity of MYC2 
(Figure 2). This could likely explain the enhanced level of MYC2-regulated VSP2 expression 
in the ein3 eil1 mutant and the reduced growth of a caterpillar that was feeding on this 
mutant (Song et al., 2014). The reciprocal inhibition between MYC2 and ERF branch 
signaling components is not only regulated at the level of protein-protein interactions 
but also at the level of transcriptional regulation. This was demonstrated by the direct 
positive effect of MYC2 on expression of the F-box protein-coding gene EBF1, whose 
protein product targets EIN3 for degradation (Zhang et al., 2014), thus further suppressing 
ET signaling through a combined effect of MYC2 on ET signaling via transcription, protein 
stability and protein-protein interaction. 

Crosstalk by modulation of protein stability

Modulation of stability of activators and especially repressors is an important regulation 
mechanism in many different pathways. The most famous example from hormone defense 
signaling is that of JAZ proteins, which form a co-receptor complex with the E3 ubiquitin 
ligase F-box protein COI1 for JA-Ile, the active form of JA (Fonseca et al., 2009, Sheard et 
al., 2010). JAZ proteins inhibit transcription within the MYC and ERF branch through direct 
binding to key TFs, recruitment of co-repressors, and inhibition of the interaction of the 
Mediator subunit MED25 with MYCs (see section ‘Crosstalk by the Mediator complex’). 
Upon perception of JA-Ile, JAZs are degraded by the 26S proteasome, which releases the 
previously bound TFs, and initiates the JA response (Chini et al., 2007, Thines et al., 2007; 
Figure 2). The key function of JAZ proteins is substantiated by experiments that identified 
JAZs as targets for interference of immune signaling by pathogen and insect effectors. 
For example, HARP1, an effector of the chewing Cotton bollworm (Helicoverpa armigera) 
was recently shown to bind to multiple JAZs in Arabidopsis, cotton (its preferred host) 
and tobacco (Chen et al., 2019). This led to an increase in stability of JAZs, likely because it 
prevented JA-Ile induced binding of JAZs with COI1. Via this mechanism, HARP1 reduced 
wound-induced defense signaling and increased plant susceptibility to the insect (Chen et 
al., 2019). HopX1, an effector from the hemi-biotrophic bacterial pathogen Pseudomonas 
syringae pv. tabaci 11528, was also found to interact with JAZs but in contrast this led to 
a decrease (rather than an increase) in their stability, in a COI1-independent manner. The 
resulting activation of the JA pathway in turn leads to repression of the SA pathway and 
thus increased susceptibility to this pathogen (Gimenez-Ibanez et al., 2014). Similarly, 
the effector HopZ1a from P. syringae pv. syringae A2 causes degradation of JAZs and 
consequent activation of the JA pathway and repression of SA signaling. However, in 
contrast to the effect of HopX1, the JAZ degradation by HopZ1a depends on COI1, and 
likely involves acetylation of JAZs (Jiang et al., 2013). The most studied example of an 
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effector that causes degradation of JAZs, the JA-Ile mimic coronatine, is discussed in the 
section ‘Crosstalk at the hormone homeostasis level’.

Degradation of JAZ proteins is essential for synergistic effects between the JA 
pathway and the ET, ABA, SA and BR pathways, as we will outline in this paragraph. 
Synergism between the JA and ET pathways drives activation of the ERF branch of 
defense. JAZ proteins can physically interact with and repress the ET response TFs EIN3 
and EIL1 by recruitment of the chromatin modifier HDA6 as a co-repressor (Zhu et al., 
2011). In the presence of JA, the JAZs are degraded and thereby the interaction between 
HDA6 and EIN3/EIL1 is reduced and thus EIN3/EIL1 transcriptional activity enhanced. 
In combination with ET’s activity to stimulate EIN3/EIL1 protein accumulation, the de-
repression of EIN3/EIL1 by JA enhances transcription of ERF1 and ORA59 (Zhu et al., 2011; 
Figure 2), which are key TFs in the ERF branch of the JA pathway (Pré et al., 2008, Pieterse 
et al., 2012). ABA/JA synergistic crosstalk is also partly regulated through stability of a 
JAZ protein. This is mediated by the RING E3 ligase KEG, which is promoted for self-
ubiquitination and subsequent degradation by ABA. KEG normally decreases the COI1-
mediated degradation of JAZ12, but this is prevented under high ABA conditions due 
to degradation of KEG, leading to reduced JAZ12 levels (Pauwels et al., 2015). This was 
associated with an enhanced expression level of the MYC branch marker gene VSP2 under 
basal conditions in a keg knockdown line (Pauwels et al., 2015). No evidence was found 
for a role of JAZ (de)stabilization in antagonistic SA/JA crosstalk on JA-responsive gene 
expression when plants were exogenously treated with SA and/or MeJA (Van der Does et 
al., 2013, Liu et al., 2016). However, a role for SA-mediated JAZ degradation was reported 
in synergistic SA/JA crosstalk occurring during ETI triggered by P. syringae pv. maculicola 
(Psm) ES4326 carrying the effector AvrRpt2 (Liu et al., 2016). JAZ proteins were shown to 
bind to the SA response regulators NPR3 and NPR4, and this binding was enhanced by 
SA. Being substrate adaptors for Cullin 3 (Cul3) ubiquitin E3 ligases, NPR3 and NPR4 target 
the JAZs for degradation (Liu et al., 2016; Figure 2). This results in increased JA signaling, 
which is necessary for a full HR response. It is unclear why SA-mediated breakdown of 
JAZ proteins would occur only during ETI triggered by Psm ES4326 AvrRpt2 but not 
after exogenous SA application. In rice, BR/JA crosstalk is regulated through modulation 
of OsJAZ4 stability (He et al., 2020). This is mediated by OsGSK2, a kinase that itself is 
negatively regulated by BR in Arabidopsis through dephosphorylation and degradation 
(Peng et al., 2008, Kim et al., 2009, He et al., 2020). OsGSK2 was shown to interact with and 
phosphorylate OsJAZ4, which subsequently leads to disruption of the OsJAZ4-OsNINJA 
and OsJAZ4-OsJAZ11 interaction and to degradation of OsJAZ4 in an OsCOI1-dependent 
manner (He et al., 2020). In accordance, high BR levels lead to reduced OsGSK2 levels and 
activity, which in turn leads to higher OsJAZ4 levels and thus decreased JA signaling, 
resulting in enhanced susceptibility to the Rice black-streaked dwarf virus (He et al., 2017). 
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SA/JA antagonistic crosstalk is partly regulated through modulation of stability of 
the ERF branch master regulator TF ORA59, a master regulator in the ERF branch of the 
JA pathway (Pré et al., 2008). SA treatment leads to breakdown of ORA59 (Van der Does 
et al., 2013, He et al., 2017), but not in an ein3 eil1 mutant (He et al., 2017). Furthermore, 
SA increases EIN3 protein abundance and co-transfection of EIN3 and ORA59 in Nicotiana 
benthamiana leads to degradation of ORA59, unless a proteasome inhibitor is added (He 
et al., 2017). Also, EIN3 interacts with ORA59 (He et al., 2017). Hence, the SA-mediated 
degradation of ORA59 depends on the interaction of ORA59 with EIN3 and likely also its 
homolog EIL1 (Figure 2B). However, the underlying molecular mechanism by which SA can 
induce EIN3-mediated breakdown of ORA59 is not completely clear. It is unlikely that the 
SA-increased protein abundance of EIN3 can explain SA-mediated ORA59 degradation, 
since ET also increases EIN3 protein abundance (Dolgikh et al., 2019), but has a positive 
effect on ORA59 functioning in the ERF branch of defense (Pré et al., 2008). We propose 
that SA modulates the activity of EIN3 such that it specifically causes degradation of 
ORA59 (Figure 2B, dotted line). Recently, it was found that the SA master transcriptional 
regulator NPR1 can bind to EIN3 and repress its transcriptional activity in regulation 
of apical hook formation (Huang et al., 2020; Figure 2B). Hypothetically, an NPR1-EIN3 
interaction may also be required for EIN3-mediated breakdown of ORA59 during SA/
JA crosstalk. In contrast, under high ET conditions, which would increase EIN3 levels, 
the SA/JA crosstalk was shown to be independent of NPR1 (Leon-Reyes et al., 2009), 
making this hypothesis very unlikely. This suggests that another protein that functions 
in the SA pathway must be the missing link for SA/JA crosstalk via EIN3-mediated ORA59 
degradation. 

Crosstalk by competitive binding of proteins to multiple other proteins

A regulatory protein can be held inactive if binding to its downstream target protein is 
prevented due to its bound status to another protein. An example of such a crosstalk 
mechanism that is based on competitive binding to multiple proteins is provided by 
the interaction between JAZs and DELLAs, which are repressors of the JA response and 
the GA response, respectively (Hou et al., 2010). When they are bound to each other, 
JAZs compete for binding of DELLAs to growth-promoting PIF TFs, and DELLAs compete 
for binding of JAZs to the JA master regulator MYC2 (Hou et al., 2010, Hou et al., 2013; 
Figure 2). When plants are attacked by an insect the JA levels rise, causing degradation 
of JAZs, and thus release of MYC2, so that JA-responsive transcription is initiated. At the 
same time, more DELLAs can bind to PIFs, and elongation growth is inhibited. Other 
JA-pathway-regulating TFs that physically associate with JAZs, such as EIN3 and EIL1, 
are likely also indirectly affected by DELLAs, which may impact transcription of ORA59 
(Hou et al., 2013; Figure 2). In contrast, if GA levels are high, such as under far-red light 
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conditions (Franklin, 2008), DELLAs are degraded, thereby releasing PIFs and thus leading 
to elongation growth, while the JAZs can now bind more MYC2, leading to repression 
of JA-mediated defense responses (Hou et al., 2013; Figure 2). This crosstalk mechanism 
between JA and GA signaling is traditionally viewed as important for regulation of the 
defense-growth trade-off (Hou et al., 2013). However, recently, conflicting results on the 
role of the JAZ-DELLA interaction in the JA-mediated growth effects were reported, and 
other interaction points of the JA pathway with growth signaling have been pinpointed 
(Chakraborty et al., 2019, Liu et al., 2019, Major et al., 2020, Ortigosa et al., 2020). 

Crosstalk by redox regulation and ROXY glutaredoxins

Redox status is an important determinant of protein functioning and as such plays a 
role in plant defense hormone signaling, among which hormone crosstalk. The defense 
hormone SA itself induces cycles of oxidation and reduction in the cell, leading to an 
increase in the amount of the antioxidant glutathione and changing the ratio between 
the oxidized and reduced state of glutathione (Spoel and Loake, 2011). The changes 
in redox potential and the change in glutathione state as a result of SA elevation has 
consequences for oxidation or reduction of cellular proteins, and thereby modulates their 
function. The increase in glutathione levels was found to coincide with the time frame in 
which SA could suppress JA signaling. That is, SA treatment prior to MeJA treatment led 
to a reduction of MeJA-induced PDF1.2 expression only if MeJA was applied in the time 
frame when glutathione levels were increased by SA. Additionally, chemical inhibition of 
glutatione biosynthesis severely diminished the ability of SA to suppress MeJA-induced 
PDF1.2 expression (Koornneef et al., 2008). This suggests that the SA-induced shift in 
redox potential is involved in SA/JA antagonistic crosstalk. 

 Glutaredoxins are small oxidoreductases that are involved in reduction of 
oxidative modifications using glutathione (Ströher and Millar, 2012). Four of the CC-type 
glutaredoxins, which are also known as ROXYs and include GRX480, are induced by SA 
and can suppress induction of ORA59 by EIN3, making them potential candidates for 
SA-mediated crosstalk on the ERF branch (Zander et al., 2012; Figure 2B). Several lines of 
evidence indicate that under high ET levels group II TGA TFs regulate ORA59 induction, 
but that the TGAs recruit ROXYs under high SA levels (Ndamukong et al., 2007, Zander et 
al., 2010, Zander et al., 2012, Zander et al., 2014). It was believed that this would lead to 
redox modification of the TGAs, which would cause a decrease of their transcriptional 
activity. However, the ROXYs were recently shown to recruit the co-repressor TPL through 
the same motif that was shown to be essential for repression of ORA59 transcription 
(Uhrig et al., 2017). This suggests that the effect of GRX480 and other ROXYs on SA/ERF 
branch crosstalk via suppression of TGA-mediated transcription of ORA59 is caused by 
recruitment of a transcriptional co-repressor rather than by redox modification.
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CROSSTALK AT THE GENE EXPRESSION LEVEL

Regulation of gene expression is a major mechanism of hormone crosstalk. In fact, most 
of the regulation at the protein level that is discussed above eventually leads to altered 
transcription of downstream target genes. In this section we discuss that crosstalk can 
act across multiple regulatory scales of gene expression, from binding of a TF to the 
promoter of a gene to translation of mRNA to protein.

Crosstalk by binding of TFs to promoters

Most TFs have affinity for binding to a specific DNA motif (Franco-Zorrilla et al., 2014, 
Weirauch et al., 2014, O’Malley et al., 2016). TF-DNA binding in the promoter region of 
a gene largely determines activation or repression of transcription. A gene may be 
subjected to crosstalk if, for example, TFs from different hormone pathways compete 
for binding to the same DNA motif in the promoter of a gene. Also, binding of different 
TFs to different DNA motifs or cooperative binding of different TFs to the promoter of a 
gene may modulate the expression of that gene by multiple hormones. The increasing 
amount of available ChIP-seq and DAP-seq data (of currently >500 Arabidopsis TFs) 
greatly facilitates the identification of DNA motifs and their trans-acting TFs (O’Malley 
et al., 2016, Zander et al., 2020). Besides DNA sequence, many other factors determine 
where a TF binds to DNA, as demonstrated by the fact that TFs from the same family often 
bind to very similar motifs, but regulate divergent genes (O’Malley et al., 2016). This can 
for example be determined by the chromatin structure, which can be more compact or 
relaxed, depending on acetylation/methylation/ubiquitination of the histones. This local 
chromatin status of genomic DNA influences the exposure of cis-regulatory DNA elements 
for proteins and consequently transcription. Additional important factors that determine 
transcriptional activity are the 3D structure of the DNA (Muiño et al., 2014, Mathelier et 
al., 2016), methylation of the DNA (O’Malley et al., 2016), and spacing between adjacent 
DNA motifs (Krawczyk et al., 2002, O’Malley et al., 2016). Although to our knowledge 
these types of information have not been implicated in hormone crosstalk research yet, 
they provide an enormous potential to uncover cross-regulatory mechanisms based on 
differential TF-DNA binding.

Investigations with overexpression and/or knockout lines implied a role for several 
SA-activated WRKY TFs in SA/JA crosstalk (reviewed by Caarls et al. (2015)). The role of the 
WRKY-bound W-box motif in SA/JA crosstalk was investigated using RNA-seq data derived 
from time course experiments with MeJA, SA and MeJA+SA combination treatments (See 
also section ‘Network modeling using time series of hormone treatments of wild-type 
plants’). The W-box was, as expected, significantly enriched in SA-upregulated genes 
as well as in MeJA-downregulated genes (Hickman et al., 2017, Hickman et al., 2019). 
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However, there was no enrichment of the W-box in MeJA-upregulated genes that were 
antagonized by SA in the combination treatment (Hickman et al., 2019). This is in contrast 
with a previously reported microarray-based study of a single, relatively late time point 
(28 h), in which the W-box was enriched in a small number of ERF branch response genes 
that were upregulated by MeJA, but antagonized by the combination with SA (Van der 
Does et al., 2013). This difference may be explained by the fact that compared to the 
above-mentioned RNA-seq study the ERF branch was activated to a higher extent by the 
MeJA treatment in the latter experiment. Thus, WRKY TFs may regulate SA/JA crosstalk 
through binding to a subset of promoters of MeJA-inducible genes in the ERF branch 
to repress their expression under certain conditions, but likely do not play such a role in 
the entire JA pathway, which is in line with the finding that in contrast to the ERF branch 
response genes, the MYC branch response genes that were antagonized by SA were not 
enriched in the W-box (Van der Does et al., 2013). 

 Two other motifs, the GCC-box and the G-box, which are mostly known for their 
role in JA and ET signaling, may also be important in SA-mediated crosstalk. These 
motifs are bound by ERF TFs, among which ORA59, and bHLH TFs, among which MYC2, 
respectively. Both motifs are enriched in MeJA-induced genes that are suppressed by 
SA (Van der Does et al., 2013, Hickman et al., 2019). Moreover, a synthetic promoter only 
containing four repeats of the GCC-box was demonstrated to be inducible by a single 
MeJA treatment but repressed by a combination treatment of MeJA and SA (Van der Does 
et al., 2013). A study by Caarls et al. (2017) investigated if this was caused by repressive 
SA-induced ERFs or EAR-domain containing ERFs that may compete with JA-induced 
ERF activators for binding to target genes in the ERF branch. Gene expression analyses 
of 16 erf mutants learned that the tested ERFs are not required for SA/JA crosstalk. To 
the best of our knowledge there are also no potential JA-pathway-repressing bHLH TFs 
from the SA pathway known. It is worth noting that there is a clade of bHLH TFs that 
repress the JA pathway, consisting of JAM1, JAM2 and JAM3, but they are described as 
JA-responsive rather than SA-responsive (Sasaki-Sekimoto et al., 2013). Together, these 
results suggest that it is unlikely that the JA pathway is antagonized through large-scale 
binding of SA-responsive TFs directly to the promoters of JA-activated genes. Instead 
SA may antagonize the JA pathway by inhibiting the transcriptional activity of certain 
key activator TFs of the JA pathway such as ORA59 and MYC2. In agreement with this 
hypothesis, SA treatment is known to cause reduced transcription of the ORA59 gene 
and degradation of the ORA59 protein (see sections ‘Crosstalk by modulation of protein 
stability’ and ‘Crosstalk by redox regulation and ROXY glutaredoxins’, and Figure 2B).

There is ample evidence for extensive regulation of ORA59 and MYC2 by several 
proteins that are involved in hormone crosstalk (previous and subsequent sections, Figure 
2), but the exact underlying mechanisms have not always been elucidated. For example, 
Verhage et al. (2011) showed that basal and caterpillar-induced ORA59 mRNA levels were 
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higher in a myc2 mutant and caterpillar-induced MYC2 levels were higher in an ORA59 
RNAi-line. This suggests that MYC2 and ORA59 directly or indirectly repress each other’s 
transcription (Figure 2), in addition to the reciprocal inhibitory effects of binding between 
MYC2 and EIN3, the upstream regulator of ORA59 (Figure 2 and section ‘Crosstalk by 
protein-protein interactions’). Later, it was shown that repression of ORA59 by MYC2 
was mediated by direct binding of MYC2 to a G-box in the ORA59 promoter (Zhai et al., 
2013), but to the best of our knowledge the mechanism underlying the repressive effect 
of ORA59 on transcription of MYC2 has not been elucidated yet. Another example is the 
finding that MYC2 is transcriptionally upregulated by both JA and ABA and can itself 
regulate genes in both JA and ABA signaling (Abe et al., 1997, Abe et al., 2003, Hickman 
et al., 2017; Figure 2). As such, MYC2 is both an integrator and regulator of JA and ABA 
signaling. Possibly, the enhanced MYC2 expression by ABA treatment is related to ABA-
enhanced JA biosynthesis (see section ‘Crosstalk at the hormone homeostasis level’), 
which not only activates MYC2 transcriptional activity but also enhances transcription 
of MYC2 through auto-regulation (Wang et al., 2019; Figure 2). 

Crosstalk by the Mediator complex

The multiprotein Mediator complex forms the molecular bridge that relays signals from 
DNA-binding TFs to the transcription machinery (Zhai and Li, 2019). It plays an important 
role in hormone signaling pathways, including in hormone crosstalk. MED25 is the most 
studied Mediator subunit in defense hormone signaling. It interacts with the TFs MYC2, 
MYC3, MYC4, ORA59 and ERF1, as well as with the JA receptor component COI1. In doing 
so, MED25 is involved in the transcriptional activity of these TFs in both the MYC and ERF 
branch (Çevik et al., 2012, Chen et al., 2012, An et al., 2017). Additionally, MED25 promotes 
JAZ breakdown by recruiting COI1 to target promoters (An et al., 2017). Vice versa, JAZ 
proteins inhibit the MED25-MYC interaction (Zhang et al., 2015; Figure 2A) 

MED25 promotes transcription in the JA pathway via various mechanisms such as 
recruitment of RNA polymerase II, histone acyltransferase HAC1 and JA-related enhancers 
to promoters that are targeted by for example MYC2 and ORA59 (Çevik et al., 2012, Chen et 
al., 2012, An et al., 2017, Wang et al., 2019, You et al., 2019; Figure 2). Moreover, MED25 has a 
role in alternative splicing of JAZ proteins, which determines their sensitivity to JA (Wu et 
al., 2020; Figure 2A). This multifaceted role makes MED25 an obvious candidate player in 
crosstalk regulation. Indeed, med25 mutant studies and interaction studies of MED25 with 
MYC2 and ABI5 (key regulators of JA and ABA signaling, respectively) suggest that it plays 
a positive role in JA signaling but has a negative role in ABA signaling (Chen et al., 2012). 

Other Mediator subunits have also been implicated in defense hormone crosstalk. 
This was mostly based on mutant studies. MED14, MED15 and MED16 were found to be 
involved in suppression of MYC branch marker genes by SA and ET (Wang et al., 2015, 
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Wang et al., 2016). This suggests that these three Mediator subunits are required for SA/JA 
and ERF branch/MYC branch crosstalk. In another study, MED18 and MED20 were found to 
be involved in activation of transcription of MYC2 and the MYC branch marker gene VSP1 
by Fusarium oxysporum, and in repression of SA pathway marker genes (Fallath et al., 2017; 
Figure 2A). It is important to note that in all experiments the Mediator subunits were not 
only found to suppress a certain pathway, but also to activate another pathway that is 
known to antagonize the suppressed pathway. Therefore, it is possible that the repression 
by Mediator subunits is not a direct effect on that pathway, but rather an indirect effect 
resulting from activation of a repressor derived from the antagonizing pathway. For 
example, MED16 was found to suppress MYC branch marker gene expression, but also 
to activate ORA59 expression (Wang et al., 2015; Figure 2B). ORA59 represses MYC2 
expression (see section ‘Crosstalk by binding of TFs to promoters’ and Figure 2A), which 
may explain how MED16 causes suppression of MYC branch response genes.

Crosstalk affecting mRNA maturation and translation to protein

Above we described the different steps in initiation of transcription. The subsequent 
steps in gene expression are also potential points of crosstalk. For example, crosstalk may 
act through modulation of alternative splicing, stability of mRNA, retention of mRNA in 
the nucleus or translation efficiency of mRNA into protein in the cytosol. In ET and JA 
signaling extensive regulation of these regulatory steps is suggested by the findings that 
only a subset of genes that are bound by key TFs show alterations in mRNA levels (Chang 
et al., 2013, Zander et al., 2020) and that transcript and protein abundance do not match 
up after MeJA treatment (Zander et al., 2020).

 Some JAZ proteins undergo alternative splicing, potentially making them insensitive 
to JA-Ile-induced breakdown mediated by COI1 (Chung et al., 2010). So far, no evidence 
for selective favoring of undegradable JAZ isoforms during SA/JA crosstalk has been 
found (Van der Does et al., 2013). The myc2 mutant was shown to affect phosphorylation 
of proteins that act in the spliceosome (Zander et al., 2020). In agreement with this, the 
isoforms of 151 transcripts were switched after MeJA treatment (Zander et al., 2020). Only 
two of these genes were related to JA, while the rest was related to other processes, 
including ABA signaling. This suggests that MYC2 can influence other signaling pathways 
by modulation of transcript splicing. However, the importance of this observed alternative 
splicing by JA and the role of MYC2 in this mechanism needs further investigation. 

Besides stability of proteins, also stability of mRNA molecules themselves may 
potentially serve as a way for hormones to influence each other’s pathway activities. A 
role for RNA-binding proteins and small RNAs (Narsai et al., 2007) in determining mRNA 
stability during plant immune responses and root nodule symbiosis has been indicated 
(Staiger et al., 2013, Zanetti et al., 2020). For proper responsiveness to the hormone ET, the 
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mRNA of the F-box protein-coding gene EBF2 is targeted to decay in P-bodies (Merchante 
et al., 2015). However, to the best of our knowledge the role of mRNA stability in hormone 
crosstalk has not been explored yet.

 Mature mRNAs can be temporarily disengaged from the translation process by 
retaining them in the nucleus. There is recent evidence for a role of nuclear retention of 
selective mRNAs in the control of gene expression activity during adaptation to hypoxia, 
an abiotic stress. After reaeration the mRNAs are quickly released to the cytosol to be 
translated into protein (Lee and Bailey-Serres, 2019). However, there is no evidence yet 
that regulation of plant immunity or hormone crosstalk acts on temporary retention of 
mRNAs in the nucleus in order to divert all the plant’s molecular attention to the most 
critical response.

The final step in gene expression is that from translation of mRNA into protein. 
Translation efficiency is influenced by different features of the mRNA (Merchante et al., 
2017). The literature on translational regulation of plant immunity, although scarce, 
points to translational control of specific mRNAs via upstream, short open reading 
frames (uORFs) during defense activation by the pathogen elicitors AvrRpm1 and 
elf18 in Arabidopsis (Pajerowska-Mukhtar et al., 2012, Meteignier et al., 2017, Xu et al., 
2017). The elicitor treatments transiently alleviate the repressive effect of the uORFs on 
expression of the main ORF, heat shock factor gene TBF1, so that ribosomes can engage 
in its translation, leading to activation of the immune system. Furthermore, it has been 
shown that in establishment of root nodule symbiosis small RNAs are crucial, because 
they determine stability and translatability of mRNAs (Zanetti et al., 2020). If and how 
control at the translation level can affect crosstalk between different hormone pathways 
in defense is not known yet. 

CROSSTALK AT THE HORMONE HOMEOSTASIS LEVEL

The previous sections focused on crosstalk by hormones via their interference with 
responsiveness to other hormones, namely downstream of these other hormones. Here, 
we describe effects that hormones have on the levels of other hormones. For example, 
ABA is known to enhance the biosynthesis of JA (Adie et al., 2007, Fan et al., 2009, Wang 
et al., 2018). This is correlated with the ABA-induced expression of PLIP2 and PLIP3, which 
encode lipases that catalyze the release of polyunsaturated fatty acids (PUFAs) (Wang et 
al., 2018), which can be further metabolized to form JA (Wasternack and Hause, 2013). In 
accordance, overexpression lines of PLIP2 and PLIP3 show enhanced JA signaling (Wang 
et al., 2018). The ERF TF gene ORA47 is upregulated via MYC2 by JA treatment (Zander et 
al., 2020) and directly targets promoters of JA and ABA biosynthesis genes, which leads 
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to enhanced JA levels, and upon wounding also to enhanced ABA levels (Pauwels et al., 
2008, Chen et al., 2016, Hickman et al., 2017, Zander et al., 2020). Hence, the canonical JA 
pathway regulator MYC2 acts at multiple levels as an integrator of JA and ABA signaling: 
MYC2 is itself positively regulated by JA and ABA at the protein and gene expression 
level (see sections ‘Crosstalk by protein-protein interactions’ and ‘Crosstalk by binding 
of TFs to promoters’) and subsequently, MYC2 regulates JA and ABA levels. Apart from 
activating JA biosynthesis genes, MYC2 also activates transcription of JAZ repressors, 
whose protein products in the long term attenuate the JA response via repression of 
MYC2 and other JA master regulators (Chini et al., 2007). This form of short-term self-
activation and long-term self-inhibition of MYC2 is reinforced by MED25. This mediator 
subunit promotes looping of a MYC2 enhancer, which is also bound by MYC2 itself, to the 
MYC2 promoter. For unknown reasons this leads to self-activation of the MYC2 promoter 
during short-term JA responses but inhibition of the MYC2 promoter during long-term 
JA responses (Wang et al., 2019). Besides JA, other hormones also activate or repress 
transcription of different JAZ genes, which potentially modulates JA responsiveness, 
resulting in synergism, antagonism, or reestablishment of the basal situation when both 
pathways are elicited in the same cell (Hickman et al., 2019).

SA and JA can also influence each other’s levels. RNA-seq analyses of MeJA treatment 
pointed to repression of JA and SA biosynthesis genes by the respective reciprocal 
treatments with SA and MeJA (Hickman et al., 2017, Hickman et al., 2019). Several 
underlying mechanisms for this antagonism in transcriptional activity and the resultant 
decrease in hormone levels have been elucidated. For example, SA inhibits activity of 
the catalase CAT2, which leads to reduced activity of the acyl-CoA oxidases ACX2 and 
ACX3, which are enzymes involved in JA biosynthesis. This effect of SA leads to lower 
JA levels and reduced defense against Botrytis cinerea (Yuan et al., 2017). Additionally, 
WRKY51, which is transcriptionally activated by SA, inhibits JA biosynthesis by repressing 
transcription of the JA biosynthesis gene AOS (Yan et al., 2018). This repression is mediated 
by a complex containing WRKY51, JAV1 and JAZ8. However, during wounding JAV1 is 
degraded, leading to de-repression of AOS and increased JA biosynthesis (Yan et al., 2018). 
Vice versa, JA also has the potential to reduce free SA levels. This is exploited by biotrophic 
pathogens to reduce effective plant defense responses. For example, Pseudomonas 
syringae pv. tomato (Pst) DC3000 produces the JA-Ile mimic coronatine (COR), which, 
via MYC2, MYC3 and MYC4, activates transcription of three NAC transcription factors, 
ANAC019, ANAC055 and ANAC072 (Zheng et al., 2012, Gimenez-Ibanez et al., 2017). These 
NAC TFs repress expression of the SA biosynthesis gene ICS1 and activate expression 
of the SA methyltransferase gene BSMT1 (Zheng et al., 2012). This leads to lower levels 
of free SA and reduced defense against Pst DC3000. The bacterial effectors HopX1 and 
HopZ1a (see section ‘Crosstalk by modulation of protein stability’) are likely to have the 
same effect on free SA levels as COR has. This was investigated for HopZ1a, which reduces 
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the transcription level of ICS1 (Jiang et al., 2013). Another study found that the negative 
effect of MYC2 on SA accumulation is antagonized by EDS1 during ETI that is triggered 
by the pathogen effector AvrRps4 (Cui et al., 2018; Figure 2A). This antagonism by EDS1 
involves the competitive binding of EDS1 to PAD4, which otherwise binds to MYC2. This 
results in reduced binding of MYC2 to the ANAC019 promoter and less BSMT1 expression, 
thus enhancing SA levels (Cui et al., 2018, Bhandari et al., 2019).

Research on the effect of crosstalk on hormone levels has been restricted mostly 
to measurements of the (proven) active compound, like JA or JA-Ile. However, the 
concentrations of hormone derivates, resulting from effects on biosynthesis or catabolism, 
will also change and these may also modulate plant responses. For example, a mutation 
in the JA biosynthesis gene OPR3 that completely blocked the canonical JA biosynthesis 
pathway and led to accumulation of the JA precursors OPDA and dn-ODPDA enabled 
research on the role of these compounds in the absence of JA (Chini et al., 2018). It was 
demonstrated that these JA precursors promote thermotolerance through a mechanism 
independent of COI1 in Arabidopsis as well as in a bryophyte and a charophyte alga (Monte 
et al., 2020). Whether hormone derivates are targeted by other hormones and whether the 
derivates themselves could affect other hormone pathways remains to be investigated. 

PERSPECTIVES

This review reports on several molecular components in hormone crosstalk that regulate 
plant defense responses. In most cases their regulation at the transcriptional or protein 
level has been demonstrated, but the exact mechanisms underlying their role in hormone 
crosstalk have often not been fully elucidated yet. The integration of data derived from 
different technologies aiming to address different regulation levels have the potential to 
unveil these crosstalk mechanisms in different internal and external contexts of the plant. 

The network-level understanding of defense hormone crosstalk as a whole is still 
rudimentary. Until now, most research has been restricted to the use of hormone mutants, 
single hormone applications, or TF-DNA binding studies under control conditions. These 
systems approaches gave us a little glimpse of regulatory nodes in hormone signaling 
networks and their possible role in hormone crosstalk. However, addition of multiple 
hormones and the integration of multiple data types regarding different levels of 
regulation are crucial to unveil new crosstalk mechanisms. Such multi-omics research is 
now possible thanks to modern wet-lab technologies as well as advanced data analysis 
and modeling tools (Zander et al., 2020). A network-level understanding of crosstalk 
is also necessary to ultimately grasp the impact of hormone signal integration under 
different conditions for the plant. Therefore, we need to learn not only the ‘how’, but also 
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the ‘when’ and ‘where’ of hormone crosstalk. In addition to interactions with microbes 
and insects, other environmental conditions of the plant and the internal context in the 
plant determine its hormone balance and hormone responsiveness (Figure 1). Indeed, 
the extent of crosstalk between hormone pathways during immune responses has been 
shown to be influenced by additional stresses, location of the stimulus, and plant age. 
Likely, different crosstalk mechanisms, such as described above and below in this review, 
are engaged in different situations and are regulated in a spatiotemporal manner. 

The order in which sequential stresses occur and the nature of the stresses 
determine whether hormone crosstalk is effective. For example, for primed expression 
of JA-mediated defenses in systemic tissue that expresses MYC2 after local herbivory 
by caterpillars of Pieris rapae, the ABA pathway needs to be activated by a secondary 
infestation (Vos et al., 2013b). In contrast, ABA can inhibit the JA pathway in tissue that is 
primed for dehydration stress: a first experience of dehydration stress leads to induction 
of the JA pathway, but this does not occur during a second dehydration stress (Ding 
et al., 2013), which is likely due to a lack of MYC2 activation during the second stress if 
ABA levels had already increased previously (Liu et al., 2016, Avramova, 2019). An RNA-
seq experiment studying responsiveness to the sequential stresses drought, herbivory 
and necrotrophic pathogen infection showed that the transcriptome profiles during the 
sequential stresses rapidly change to largely resemble those of the last stress (Coolen et 
al., 2016). This shows that many crosstalk mechanisms can be overridden by a second, 
dominating stress. Nevertheless, it was also found that the first stress leaves a relatively 
small expression signature, which is enriched for hormone signaling genes, suggesting 
a lasting effect of induced hormone signaling by the first stress. 

A spatial separation between SA and JA signaling has been demonstrated when a 
local HR is activated during ETI as a result of infection with the avirulent pathogen Pst 
DC3000 carrying AvrRpt2. The zone around the HR-induced cell death is surrounded by a 
small layer where the SA marker gene PR1 is highly expressed, followed by a region where 
the JA marker gene VSP1 is highly expressed. This demands differential prioritization of 
SA versus JA antagonism mechanisms. In the SA-zone SA-mediated defenses against Pst 
DC3000 AvrRpt2 can be activated, while in the JA-zone runaway cell death and secondary 
infections by necrotrophic pathogens are limited, which could otherwise take advantage 
of the dead tissue generated by the HR response (Betsuyaku et al., 2018).

Leaf age is another factor that can influence hormone crosstalk. Biotic and abiotic 
stress responses are differently balanced in older leaves compared to younger leaves 
(Berens et al., 2019). Abiotic stress suppresses immune responses in older leaves through 
ABA. This antagonistic effect on immunity is blocked in young leaves, which is dependent 
on NPR1 as well as on the SA biosynthesis component PBS3, but independent of ICS1. This 
suggests an SA-independent function of NPR1 and PBS3 in regulating leaf-age dependent 
crosstalk (Berens et al., 2019).
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Above examples illustrate that knowing the ‘when’ and ‘where’ of hormone pathway 
integration in immune networks is important to predict the outcome of immune 
signaling. To advance our knowledge, future research should focus on the different levels 
of hormone network regulation under different internal and external conditions. For such 
biological experimental systems, it would be even more meaningful to use single-cell 
methods instead of bulk analyses. This will provide a better spatiotemporal resolution, 
which is particularly powerful when studying plant-microbe interactions, where relevant 
molecular events are often restricted to localized cell populations (of specific cell types), 
ranging from being infected themselves, to residing in the same leaf or in distant tissue 
and not (yet) being infected. Together, this molecular and systems level knowledge is 
crucial to design crops with a strengthened immune response without undesired side-
effects like enhanced sensitivity to other stresses or decreased plant growth and yield.

OUTLINE OF THE THESIS

Plant hormones control plant immunity and other essential plant processes via elaborate, 
interconnected GRNs. In the past decades, scientists have gained substantial knowledge 
on the architecture of hormone-driven GRNs regulating plant defense, and have found 
numerous examples of crosstalk between these GRNs. However, several major questions 
remain within this scientific field. For example, while SA/JA crosstalk has received 
considerable scientific attention, mechanisms that govern ABA/JA crosstalk have not 
been so well studied. Also, the dynamics of immune-related GRNs and crosstalk between 
these GRNs have not been well studied, except for our earlier studies on the JA and SA 
GRNs (Hickman et al., 2017, Hickman et al., 2019). Finally, while many mechanisms involved 
in SA/JA crosstalk have been found, some details hereof are still unclear, and additional 
mechanisms may still be undiscovered. 

 In this thesis, we investigate the architecture and dynamics of hormone-driven GRNs 
in plant immunity. More specifically, we focus on the modulation of the JA GRN by the ABA 
GRN and specific components of the SA GRN. In earlier work we already investigated the 
(single) JA and SA GRNs (Hickman et al., 2017, Hickman et al., 2019), therefore in Chapter 2 
of this thesis we describe our analysis of the architecture and dynamics of the ABA GRN. 
We analyzed a high-density time series experiment of ABA-treated Arabidopsis rosettes. 
We show that the ABA GRN consists of several dozens of co-expressed gene modules 
with partly unique and partly overlapping functions. We then integrated our data with 
publicly available DAP-seq data and data of ABA-treated Arabidopsis seedlings inhibited 
in translation to predict important TFs regulating the ABA GRN, and infer a model of 
the ABA GRN, consisting of three regulatory hierarchical levels. The predicted TFs came 
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from a diverse set of TF families, with the bZIP family being the most prominent. Finally, 
we validated the biological importance of newly predicted TFs in the ABA GRN, and this 
showed that the trihelix TF GT3a is an ABA-activated regulator of drought tolerance. 

 In Chapter 3 we describe our analysis of how the ABA GRN modulates the JA GRN. 
For this, we analyzed the ABA time series data, as well as time series data of MeJA-treated 
Arabidopsis rosettes (described by Hickman et al. (2017)) and of ABA + MeJA-treated 
Arabidopsis rosettes, all derived from the same experiment. We show that ABA modulates 
expression of around 2/3rd of all MeJA-responsive genes. We also show that the ABA and 
JA GRNs have substantial similarities, and that their combined effect on gene expression 
is often not additive. We also show that ABA has a large effect on the expression of 
JA metabolism genes, thus likely affecting JA levels. We also investigated mechanisms 
controlling ABA/JA crosstalk, which resulted in the prediction of ABA-regulated TFs that 
affect transcription of MeJA-induced genes, and the discovery that ABA represses the ERF 
branch of the JA GRN partially by affecting ORA59 protein accumulation independent of 
its transcription, and by targeting ERF1 at an unknown level. Together, this shows that 
ABA targets the JA GRN at multiple levels of regulation. 

 In Chapter 4 we dive deeper into mechanisms that govern SA/JA crosstalk. We 
show that NPR1 has a nuclear role in regulating SA/JA crosstalk. We found that when SA 
activates NPR1, partly by causing its nuclear localization, the transcription of several WRKY 
TFs is increased. Some of these WRKY TFs repress PDF1.2 expression, partly by reducing 
accumulation of ORA59 protein independent of its transcription. Together, this shows 
that SA affects the JA network via diverse mechanisms, involving nuclear-localized NPR1 
and several WRKY TFs with various modes of action. 

 Chapters 2-4 mostly focus on transcriptional regulation of hormone networks 
regulating plant immunity. In these chapters we analyzed steady-state mRNA levels 
(measured via RNA-seq) and TF-target predictions based on in vitro experiments. 
However, many factors determine where and when a TF binds on the DNA and what the 
fate of the resulting transcribed mRNA is. To better understand (hormone-driven) GRNs 
in the future it is important that these factors are also investigated in detail. Therefore, 
in Chapter 5 we review the state-of-the-art concerning the transcriptional regulation of 
plant immunity, including many  regulatory mechanisms that generally get overlooked. 
We end this chapter with a look into the future. 

 Finally, in Chapter 6 I further discuss the findings of this thesis and put them in 
a broader perspective. Also, I describe my vision on how research on hormone-driven 
GRNs in plant immunity should progress in the future. 
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ABSTRACT

Abscisic acid (ABA) is a plant hormone that regulates essential plant processes in 
development and responsiveness to abiotic and biotic stresses. ABA perception triggers 
a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), 
encompassing hundreds of transcription factors (TFs) and thousands of transcribed 
genes. To further our knowledge of the architecture and dynamics of the ABA GRN, 
we performed an RNA-seq time series experiment consisting of 14 time points in the 
16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During 
this time course, ABA rapidly changed transcription levels of 7151 genes, which were 
partitioned into 44 coexpressed modules that carry out diverse biological functions. 
We then integrated our time-series data with publicly available TF binding site data, 
motif data, and RNA-seq data of plants treated with ABA and the translation inhibitor 
cycloheximide, and predicted (i) which TFs regulate the different coexpression clusters, 
(ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement 
of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in 
the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and 
regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP 
family was the most prominent. We biologically validated the importance of TFs with 
a newly predicted role in the ABA GRN and found that the trihelix TF GT3a is likely an 
ABA-induced positive regulator of drought tolerance. 
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INTRODUCTION

During its lifetime, a plant constantly modulates its physiology to optimize development 
and adaption to its environment. To regulate these processes on a molecular level, plants 
possess elaborate gene regulatory networks (GRNs). Large parts of these networks are 
regulated by plant hormones. One of the best studied plant hormones is abscisic acid 
(ABA). This hormone is involved in different phases of plant development and controls 
responses against many different stresses (reviewed by Chen et al., 2020). In seeds, ABA 
promotes desiccation tolerance, de-greening, and accumulation of reserve products; ABA 
also prevents premature germination. In seedlings, ABA can induce post-germination 
growth arrest, a process in which growth of a newly germinated embryo is temporarily 
arrested when exposed to unfavorable conditions, such as drought and high salinity 
(Lopez-Molina et al., 2001, Chen et al., 2020). In the adult stage, ABA protects the plant 
against dehydration and (associated) osmotic stress by, among other things, increasing 
transcription of wax synthesis genes and promoting closure of stomata (Chen et al., 
2020). It is also involved in plant immunity, by interacting with jasmonic acid (JA) and 
salicylic acid (SA) signaling to promote resistance against chewing insects but repress 
resistance against various pathogens (Pieterse et al., 2012). Furthermore, ABA co-regulates 
the transport of nutrients from source to sink, promotes senescence and recycling of 
nutrients for future generations, and influences reproduction by coordinating fruit 
growth and ripening (Chen et al., 2020).

 In the last two decades, molecular studies, mostly using Arabidopsis thaliana 
(hereafter named Arabidopsis), elucidated how ABA is perceived and how this leads to 
alterations in transcriptional activity. ABA binds to receptors of the PYR/PYL/RCAR family 
(Fujii et al., 2009, Ma et al., 2009, Park et al., 2009, Santiago et al., 2009). This stimulates their 
interaction with PP2C and likely also PP2A and TOPP phosphatases, thereby inactivating 
the phosphatases (Yang et al., 2017). Under low ABA levels, active PP2Cs, PP2As and TOPPs 
inactivate SnRK2 kinases by dephosphorylation (Fujii et al., 2009, Umezawa et al., 2009, 
Vlad et al., 2009, Waadt et al., 2015, Hou et al., 2016). When high ABA levels trigger the 
inactivation of the phosphatases, SnRK2 kinases are no longer repressed so that they can 
then be activated through autophosphorylation, phosphorylation by other kinases and, 
in the case of SnRK2.6, persulfidation of cysteine residues by ABA-induced H2S (Hou et al., 
2016, Yang et al., 2017, Chen et al., 2020). Activated SnRK2 kinases can then phosphorylate 
and thereby activate different transcription factors (TFs) that act as master regulators 
in the ABA network by subsequently inducing different downstream subnetworks 
(Umezawa et al., 2010, Song et al., 2016). The networks are regulated both transcriptionally 
and post-translationally. For example, key components of the network, including ABA 
receptors, PP2Cs and TFs, can be regulated through ABA-dependent ubiquitination (Yang 
et al., 2017). The ABA transcriptional gene regulatory network is highly interconnected, 
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with many genes being regulated by multiple TFs, and TFs facilitating binding of other TFs 
to neighboring binding sites. The network is built up hierarchically, with some TFs acting 
higher up in the network and regulating TFs and other genes lower in the network (Song 
et al., 2016). In summary, the ABA network is activated through post-translational events 
that induce an elaborate transcriptional cascade, and is further modulated through post-
translational regulation.

 Many key TFs of the ABA network have been identified. Most belong to the basic 
leucine zipper (bZIP) family of TFs. For example, the bZIP TFs AREB1, AREB2, ABF1 and 
ABF3 are activated by ABA treatment, causing them to bind to hundreds of genes with a 
so-called ABA responsive element (ABRE) in their promoter (Choi et al., 2000, Uno et al., 
2000, Yoshida et al., 2010, Yoshida et al., 2015, Sun et al., 2022). Many of these target genes 
are related to ABA signaling and many are conserved between Brassicaceae species (Sun 
et al., 2022). Also, the areb1 areb2 abf1 triple mutant was reported to be more susceptible 
to drought stress and less sensitive to ABA with respect to primary root growth, thus 
showing the importance of these TFs in ABA-related abiotic stress responses (Yoshida et 
al., 2010, Yoshida et al., 2015). AREB3 was also characterized as an ABRE-binding TF, but 
its role in ABA signaling has not been shown as convincingly as the other AREBs/ABFs 
(Uno et al., 2000, Bensmihen et al., 2005, Qian et al., 2019). The bZIP TF ABI5 is another 
well-described master regulator of ABA-related responses, acting downstream of SnRK2 
kinases in both seeds and vegetative tissue (Finkelstein and Lynch, 2000, Skubacz et al., 
2016). This TF is extensively regulated, both at the transcriptional and post-translational 
level, and in turn it regulates many responses, which besides ABA signaling also involve 
crosstalk with other hormone pathways (Skubacz et al., 2016). More recent research 
has implicated other bZIP TFs in the ABA pathway, such as GBF3, which improves plant 
tolerance to drought, high salinity and osmotic stress (Ramegowda et al., 2017), although 
a further characterization of this TF is still needed to better understand the underlying 
mechanisms. In addition, several members of other TF families such as NF-YB, NF-YC, 
NAC, MYB, HD-ZIP, C2H2, bHLH, ERF, HSF, WRKY and CAMTA have been associated with 
ABA-inducible responses (Wu et al., 2009, Rushton et al., 2012, Pandey et al., 2013, Song 
et al., 2016).

 Despite many advances in our understanding of the ABA network, there is still a 
lot unknown about its overall architecture and dynamics. The most extensive effort to 
elucidate the ABA GRN was published by Song et al. (2016). The authors performed an 
RNA-seq time series experiment with ABA-treated Arabidopsis seedlings and selected 
21 TFs for ChIP-seq with and without ABA treatment based on the criteria that they 
were transcriptionally responsive to ABA in this time series, had high overall expression 
levels and came from a wide range of TF families. They then used this ChIP-seq and 
RNA-seq data to reconstruct an ABA-dependent hierarchical GRN. This work provided a 
considerable improvement in our knowledge of the ABA network in seedlings, but also 
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had some limitations. For example, their work could limitedly reveal the dynamics of 
the network because the seedlings were kept continuously in a medium with ABA, and 
the time series had a relatively low time resolution, namely 4, 8, 12, 24, 36, and 60 h after 
the start of the treatment. Also, by focusing on TFs that were themselves differentially 
expressed at the mRNA level, TFs in the ABA signaling network that are regulated by 
post-translational mechanisms only, were omitted. Finally, it is unclear whether the ABA 
pathway in seedlings and mature plants is similar.

 To further investigate the ABA network, we performed a high-resolution RNA-
seq time series experiment, consisting of 14 time points of one-time treated mature 
Arabidopsis leaves. We integrated our dataset with publicly available microarray data 
of an ABA treatment in the presence of a translation inhibitor, and with TF-DNA binding 
data. This generated a three-level hierarchical ABA network, starting with TFs that are 
predicted to be post-translationally activated or repressed, and ending with clusters of 
coexpressed genes, which are regulated by the first or second level of TFs. This network 
contains TFs with a known function in ABA signaling, as well as TFs with a previously 
unidentified function. We validated a selection of these unknown TFs and found that the 
Trihelix TF GT3a is a novel ABA-induced regulator of drought tolerance in Arabidopsis.

RESULTS

A high-density time course of ABA-induced transcriptional programming

We profiled the temporal transcriptome changes of Arabidopsis leaves induced by ABA. 
To this end, the full rosette of a 5-week-old plant was dipped into an ABA (50 μM) or 
mock solution. The 6th true leaf of the rosette was harvested at 14 time points, consisting 
of 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 12 and 16 h after treatment (Table S1). The RNA of 
three replicates (ABA) or four replicates (mock) per treatment/time point combination 
was sequenced. The mock time series consisted of more replicates because it had been 
sequenced in our previous studies analyzing methyl jasmonate (MeJA, a form of JA that 
is rapidly converted to free JA in the plant) and SA treatments (Hickman et al., 2017, 
Hickman et al., 2019), which were part of a larger experiment that also contained the ABA 
treatment (analyzed in the current study). From the Hickman et al. studies (2017; 2019) we 
deduced that three replicates were likely enough for microarray analyses of the remaining 
hormone samples, thus saving overall costs. 

 We first inspected the normalized count data (Table S2) by plotting a principal 
component analysis (PCA). This showed that time after treatment and time-specific 
treatment effects were the main factors that separated the samples along the first and 
second principal components, respectively (Figure S1). This demonstrates that circadian 
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regulation is important for gene expression and suggests that the effect of treatment 
on gene expression was different at different time points, meaning that we chose an 
appropriate range of time points to study the transcriptional dynamics of the ABA 
network. In general, samples from the same time and treatment clustered together, 
demonstrating that biological variation was limited. Nevertheless, not all time points 
were separated, especially in the mock treatment and at later stages of the ABA treatment, 
likely because there the differences between the dense time points were relatively small. 
For the later-sequenced ABA time series a different library preparation and sequencing 
method was used than for the mock time series. To verify that these differences in sample 
processing did not introduce large differences in the data we also sequenced 12 untreated 
control samples, of which eight were taken along in the processing of the mock time 
series in the Hickman et al. studies and four in the ABA time series analyzed here. These 
control samples clustered together in the PCA plot regardless of their processing method 
(Figure S1, see also Methods), indicating that cross-comparisons between the two time 
series can be safely made. 

Clustering analysis identified modules of coexpressed genes associated with 
specific biological processes

Analysis of differentially expressed genes (DEGs) upon ABA treatment compared to mock 
treatment over time was done using the same generalized linear model (GLM)-based 
method as described earlier in our JA network paper (Hickman et al., 2017). A total of 7151 
genes were indicated as differentially expressed (Table S3). Of these, 3487 genes were 
on average upregulated, and 3664 genes were on average downregulated. DEGs were 
clustered based on their expression profile over time to identify gene sets that potentially 
have a similar function and are regulated through similar mechanisms. Clustering of 
coexpressed genes was done on the log2-fold change of ABA/mock treatment using 
SplineCluster (Heard et al., 2006). This resulted in 17 clusters of predominantly upregulated 
genes and 27 clusters of predominantly downregulated genes (Figure 1A; Figure S2; Table 
S4). Most of the upregulated clusters displayed a single peak in expression, after which 
expression levels declined again. The peak timing varied across the clusters, with one 
cluster already reaching its peak at 15 min (c11), most clusters peaking between 2-3 h 
(including c2, c10 and c16 from Figure 1B), and some peaking only after 4 h (e.g., c5 and 
c6). After the peak, expression generally declined to basal levels (e.g., c3, c4, c10 and c16), 
or slightly above basal levels (e.g., c1-3). In some cases, the initial drop in expression was 
followed by a slight, steady increase in expression (c9 and c12). A similar trend of peaks 
at different times could be observed for the downregulated clusters, many of which had 
a pattern that resembled a mirrored version of some of the upregulated clusters (e.g., 
c18, c22-24, c26, c34 and c39-c44; Figure 1 and Figure S2). Clusters with more complex 
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patterns showing multiple peaks were more prevalent in the downregulated clusters 
(e.g., c20, c21, c29, c30, c33, c35; Figure 1 and Figure S2), but it should be noted that these 
clusters typically had a lower expression amplitude and/or represented fewer genes.

Figure 1: Clustering of coexpressed genes after ABA treatment. 
(A) The 7151 DEGs over the time course of 16 h after ABA treatment were clustered according to their expression 
pattern (log2 of ABA/mock) using SplineCluster, resulting in 44 distinct clusters (c1-c44). Each row of the heatmap 
represents an individual gene and indicates the log2 of read counts of ABA/mock treatment.
(B) Representative clusters with distinct functional enrichment. Shown is the mean log2-fold change of ABA/
mock over all measured time points (in h) of all genes in a cluster (black line), with grey error bars indicating 
the standard deviation. Cluster number (c) and cluster size (n, number of genes) are denoted above each plot. 
Selected enriched biological process GO terms (BP) and representative genes (G) are indicated below each panel. 
Full results depicting all 44 clusters are available in Figures S2 and full GO term enrichment analysis can be found 
in Figure 2 and Table S5.
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Gene ontology (GO) term enrichment analysis was conducted to identify the biological 
processes that are regulated by the genes in the different clusters. Multiple clusters 
of upregulated genes were enriched in GO terms associated with well-known ABA 
responses, such as ‘response to ABA’, ‘response to water deprivation’ and ‘response to 
salt stress’ (Figure 1B; Figure 2; Table S5). Clusters of downregulated genes were generally 
enriched in GO terms related to primary plant functions, such as ‘RNA processing’, 
‘ribosome biogenesis’, ‘translation’, ‘amide biosynthesis process’ and ‘photosynthesis’ 
(Figure 1B; Figure 2). This may indicate that the plant attenuates certain general processes 
to focus on ABA-upregulated responses. Several GO terms were specifically enriched 
in only one of the clusters, such as ‘carbohydrate metabolic process’ and ‘vacuolar 
transport’ in upregulated clusters c16 and c17, respectively, and ‘response to auxin’ in 
the big downregulated cluster c22 (Figure 1B; Figure 2). Some clusters were enriched in 
GO terms that do not represent core ABA functions. Clusters c2, c4 and c10 for example 
were enriched in GO terms related to the JA pathway, such as ‘response to wounding’, 
‘response to JA’ and ‘defense response to insect’ (Figure 1B; Figure 2). Indeed, these 
clusters contain known JA-related genes such as VSP1, VSP2 (c2), JAZ10 and JOX4 (c4), 
and JAZ1 and AOS (c10). This suggests that these ABA-activated gene modules are 
possibly either involved in the interplay between the ABA and JA pathways or engaged 
downstream of the integration point between these pathways. Indeed, ABA is known to 
co-activate the anti-herbivory MYC branch of the JA pathway (Pieterse et al., 2012, Aerts 
et al., 2021). On the other hand, the downregulated cluster c43 was enriched in the GO 
term ‘defense response to other organism’, containing genes like RBOHD, SD1-29/LORE and 
PBL1 (Figure 1B; Figure 2; Table S5). These genes are known to act in immune responses 
to microbe-associated molecular patterns (MAMPs) and pathogen effectors (Kadota et 
al., 2015, Qi et al., 2017, Luo et al., 2020). Cluster c43 thus likely mediates the suppressive 
action of ABA on defense against biotrophic pathogens (Pieterse et al., 2012, Aerts et al., 
2021). Interestingly, multiple clusters with seemingly erratic patterns, such as c33, c35 
and c36, were enriched for specific GO terms (Figure 2), suggesting that the fluctuations 
in expression of these ABA-responsive genes can be biologically meaningful. 

In summary, the analysis of our data pinpointed many clusters of genes with distinct 
expression patterns, enriched for both general and specific processes. This shows that 
our data cover the resolution (14 time points) and dynamics to pick up coherent gene 
modules that regulate diverse processes within the ABA network. 
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Figure 2: GO term enrichment of different ABA clusters. 
GO term enrichment was performed on each of 44 clusters of coexpressed genes after ABA treatment using 
clusterProfiler. Redundant GO terms were removed and only the clusters containing significant GO terms were 
included (see Methods). Dot size represents the number of genes in a cluster with the GO term and color represents 
the -log10 of the P value based on the hypergeometric distribution.

Prediction of TFs regulating different gene clusters

TFs are key regulators of transcriptional reprogramming in GRNs. Their coordinated action 
results in distinct expression patterns of their target genes, enabling tight regulation of 
specific processes by coexpressed gene modules. To identify TFs that control different 
modules in the ABA GRN we analyzed enrichment of DNA sequences in the promoter 
region of genes in the different ABA clusters to which TFs can potentially bind. For 
this analysis we integrated our cluster data with publicly available datasets on TF-DNA 
interactions. One is the DAP-seq dataset of O’Malley et al. (2016), in which TF binding sites 
(TFBSs) were experimentally determined by in-vitro binding assays of 349 TFs to isolated 
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genomic DNA. The other two datasets we used contain 438 TF-DNA sequence motifs 
derived from (TF) protein-(DNA) binding microarrays (PBMs; Franco-Zorrilla et al., 2014, 
Weirauch et al., 2014). These two types of data provide similar, yet distinct and additional 
information. TFs usually bind to a specific DNA motif, so the enrichment of motifs in a 
cluster gives an indication about which TFs can regulate the cluster. However, for several 
reasons motif information is not always accurate in predicting which TF binds where. 
Firstly, some TFs can bind a variety of DNA sequences. Secondly, multiple TFs from the 
same TF family usually bind similar motifs. Thirdly, the presence of a motif does not always 
mean that a TF binds there, as this can depend on e.g. the context of the motif, which 
includes nearby DNA sequences. Therefore, the enrichment analysis of DAP-seq-derived 
TFBSs likely gives a more accurate prediction on which exact TFs regulate which clusters. 
This is complemented by motif information derived from the PBM studies with other TFs. 

Our integrated analyses showed that many different TFBSs and motifs were enriched 
in the different clusters of ABA-coregulated genes (Figure 3A; Figure S3). In general, 
enrichment of TFBSs and motifs was higher and more diverse in upregulated clusters than in 
downregulated clusters (Figure 3A; Figure S3). This suggests that upregulation is regulated 
by more TFs than downregulation, possibly allowing tighter or more specific regulation. 

The most represented family of enriched TFs in both analyses were the bZIP TFs. 
All the upregulated clusters except clusters c5, c14 and c15 were enriched in bZIP TFBSs 
and/or motifs, whereas in the downregulated clusters only clusters c28 and c42 were 
enriched in bZIP TFBSs and none in bZIP motifs (Figure 3A and 3B; Figure S3). The bZIP 
TF family consists of different groups (Dröge-Laser et al., 2018). Most bind to a motif 
that includes the ACGT core sequence, such as the G-box (CACGTG; Jakoby et al., 2002). 
Group A contains ABA responsive element binding factors (ABFs), the best-known bZIP 
TFs that regulate ABA signaling. ABFs bind to a G-box-related motif known as the ABA 
responsive element (ABRE), with the consensus sequence ACGTG/TC (Dröge-Laser et al., 
2018). Indeed, TFBSs from this group were highly enriched in clusters of upregulated 
genes (c1-4, c6-8, c10-12, and c16-17; Figure 3B) and the enriched motifs within the bZIP 
family were almost exclusively variants of the G-box, including the ABRE (Figure S3). TFBSs 
from multiple other bZIP groups were also enriched (Figure 3B). One of these is group D, 
which consists of TGA TFs, which bind to variants of the TGA motif with the consensus 
sequence TGACG. Interestingly, while TFBSs of some TGA TFs were enriched in multiple 
upregulated clusters (c1-4, c7, c9, c12 and c13) and one downregulated cluster (c42) (Figure 
3B), motifs of this group were not enriched in any of the clusters, even though the TGAs 
were represented on the PBMs (Figure S3; Table S6). TGA TFs have generally not been 
associated with ABA signaling (Dröge-Laser et al., 2018). However, our TFBS analysis 
suggests that some TGA TFs may have a role in ABA signaling, possibly by binding to 
TGA motifs in a specific genomic context that cannot be found using motif analysis. This 
also demonstrates the added value of analyzing TFBSs besides motifs. 
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Figure 3: Enrichment of TF-DNA binding sites in clusters of coexpressed genes after ABA treatment. 
(A) Fold enrichment of TFBSs in clusters of coexpressed genes after ABA treatment. TFBSs were inferred from 
the filtered DAP-seq dataset (Methods). Color within heatmap represents fold enrichment, which was calculated 
by dividing the number of genes with at least one occurrence of the TFBS by the expected number. Colored bar 
above the heatmap indicates if genes in the cluster are on average upregulated or downregulated after ABA 
treatment. Only the highly significant TFBSs are depicted (Methods). TFs within each family were ordered in 
the figure based on presence/absence of binding sites in the clusters using the hclust function with the ward.D 
method, except in the ‘other’ category. 
(B) Close-up of enrichment of binding sites of bZIP TFs. Letter in front of each TF indicates to which group of 
bZIP TFs it belongs, according to Dröge-Laser et al. (2018). Colors of heatmap and bar below are the same as in 
(A). Ordering of TFs in the figure was done similarly as in (A), and the corresponding dendrogram is shown on the 
right. The clusters are aligned in both panels.
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TFBSs from other TF families were also enriched in different clusters. In general, there 
was a higher diversity and number of enriched TFBSs than motifs, which supports the 
added value of TFBS enrichment analysis compared to motifs (Figure 3A; Figure S3). One 
of the most noticeable families with many enriched TFBSs was the ERF family (Figure 
3A): of the 47 ERF TFBSs in the dataset, 22 were enriched in upregulated clusters and 
11 in downregulated clusters (among which 9 in both up- and downregulated clusters). 
Of the 22 enriched ERF TFBSs in the upregulated clusters, 16 belong to the group of 
dehydration responsive element binding (DREB) ERF TFs (Table S7). These TFs have been 
reported to regulate responses to various stresses including drought and high salinity, 
but the functioning of the majority of DREBs is considered as ABA-independent (Lata and 
Prasad, 2011). Nevertheless, transcription of 10 out of the 16 DREBs with enriched TFBSs 
in upregulated clusters was altered by the ABA treatment (see also Table S7; Table S3). 
These results could point to a role for ABA in regulation of DREB target genes directly 
via a (post-)transcriptional effect on DREBs. Motifs of DREB TFs, as for example the 
transcriptionally induced DEAR2, CBF1 and CBF3, were also enriched, albeit to a much 
lesser extent than TFBSs (Figure S3; Table S6). This again underlines the added value of 
analyzing TFBSs rather than just motifs.

 Other families with enriched TFBSs included MYB-related, NAC and WRKY TFs 
(Figure 3A) and motifs of these TFs were also enriched (Figure S3). Several NAC and WRKY 
TFs are indeed known to function in ABA signaling (Nakashima et al., 2012, Rushton et 
al., 2012), but MYB-related TFs have generally not been associated with ABA signaling 
(Dubos et al., 2010). In addition, TFBSs of some C2H2, Dof, G2-like, HD-ZIP, MYB, Trihelix, 
and CAMTA TFs were enriched (Figure 3A) even though none had enriched motifs, or at 
least not in the same clusters (Figure S3).

The bHLH TF family was an exception to the observation that TFBSs of a TF family were 
generally more often enriched than motifs. In this family, TFBSs of only a few members 
were enriched (Figure 3A), but the motifs from almost all members were enriched in at 
least one of the upregulated clusters (Figure S3). This may be caused by the fact that there 
are fewer bHLH TFs included in the DAP-seq dataset. Moreover, the enriched motifs bound 
by bHLH family TFs are very similar to the G-box-related sequences bound by bZIP TFs 
(Figure S3; Table S6), and may therefore mostly represent functional binding sites for bZIP 
TFs rather than for bHLH TFs. Nevertheless, the enrichment of some bHLH TFBSs may point 
to a contribution of at least some bHLH TFs to ABA signaling (Figure 3A).

Taken together, upregulated clusters are generally targeted by more TFs than 
downregulated clusters. The enrichment analyses suggest that bZIP TFs are the main 
regulators of the transcriptionally coexpressed genes upon ABA treatment, but TFs from 
other families additionally provide regulation. Also, the specificity of this regulation is 
likely determined by more than just a DNA motif.
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Regression-based analysis reveals key TFs in ABA responsiveness

Motif or TFBS enrichment analyses in clusters can identify key regulator TFs, but provide 
no information about the quantitative effects of a TF on transcription of target genes. 
To overcome this, we employed a regression-based method to associate TFBSs with 
amplitude of target mRNAs. The principle of this regression analysis is as follows. First, we 
defined the response variable as the maximum log2-fold expression difference per gene 
(either up- or downregulated) during our time series between ABA and mock treatment 
(i.e., the amplitude of the response). We used the TFs from the filtered DAP-seq data 
(Methods) as potential regressors, considering only presence/absence of the binding site. 
We then performed bidirectional stepwise regression to come to a model containing the 
TFs that are most significantly associated to transcriptional amplitude. The regression 
coefficient of each TF in this model represents the mean log2-fold difference in amplitude 
after ABA treatment between genes containing the TFBS for that TF and genes without 
the TFBS. The P value for each TF depicts the significance of the TF in the regression 
model. The final model contained a variety of TFs from different TF families, which were 
associated with relatively strong up- or downregulation of target genes (Figure 4). The 
list included known regulators of ABA-associated responses, such as ANAC055 (Takasaki 
et al., 2015), CAMTA1 (Pandey et al., 2013) and the less-well described AREB3/DPBF3 (Uno 
et al., 2000, Bensmihen et al., 2005, Qian et al., 2019; see also Introduction), but also TFs 
that have not yet been characterized as part of the ABA network, such as bZIP68 and 
GT3a. Interestingly, bZIP68 had the highest P value of all TFs in the model, meaning 
that is was very significantly linked to target gene expression, and GT3a had the second 
highest regression coefficient, meaning it was linked to a large difference in target gene 
amplitude after ABA treatment. This makes them good candidates for inclusion in the ABA 
network. A relatively low number of TFBSs were associated with downregulation of genes 
in the model (Figure 4). The TF with the largest and most significant negative regression 
coefficient was bHLH122, a known positive regulator of resistance to drought, osmotic 
stresses and NaCl, and a negative regulator of ABA catabolism (Liu et al., 2014). Although 
it was originally reported as unresponsive to ABA, we found that its transcription was 
significantly enhanced upon ABA treatment (Table S3), suggesting it may act within the 
ABA GRN, mostly as a repressor of transcription.
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Figure 4: Linear regression model of the contribution of TFBSs to target gene amplitude after ABA treatment. 
Bidirectional stepwise linear regression was used to associate presence/absence of TFBSs with amplitude of target 
mRNAs, measured as the log2-fold change of ABA/mock. TFBSs were taken from the filtered DAP-seq dataset (see 
Methods). Individual TFs are plotted according to their regression coefficient (the mean log2-fold difference in 
amplitude after ABA compared to mock treatment between genes containing the TFBS for that TF and genes 
without the TFBS) and the log10 of their P value (the significance of this association). TFs are colored according to 
their predicted contribution to ABA-induced transcription (positive in red, negative in blue).

Predicting time-dependent roles for TFs in the ABA GRN 

GRNs often consist of multiple steps of regulation. TFs are activated at different times 
after stimulation of a cell and can activate each other in a signaling cascade. To determine 
which TFs are important at which time after activation of the ABA network we used 
Dynamic Regulatory Events Miner 2.0 (DREM 2.0; Schulz et al., 2012). This algorithm 
builds a temporal GRN model by combining time series RNA-seq data with static TF-TFBS 
data. DREM2.0 divides genes in temporal groups based on the premise that the genes 
in a group may have a similar expression pattern until a certain time point (e.g., they 
are upregulated) but follow different patterns at a later time point (e.g., one subgroup 
gets more upregulated whereas another subgroup remains at the same level or is more 
downregulated). The algorithm then looks for enrichment of TFBSs in each subgroup of 
genes after this split (referred to here as a path: a section stretching from one split to the 
next, or to the end of the time series), hypothesizing that the differential behavior of the 
subgroup is caused by TFs for which TFBSs are enriched. 
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 We performed this analysis using the log2-fold change of ABA/mock expression 
data combined with the filtered DAP-seq data (Methods). The resulting GRN consisted 
of a large number of unique trajectories (a sequence of paths) with multiple splits and 
many TFs assigned to the various paths, suggesting a high level of complexity of the ABA 
GRN (Figure 5). Strikingly, genes that were upregulated at the earliest time point (15 min) 
were enriched for dozens of different binding sites, whereas strongly downregulated 
genes at that time point were only enriched for the binding site of bHLH122 (Figure 5), 
which is the TF that we also identified in our regression analysis due to its association 
with strong downregulation of genes (Figure 4). The fact that in general, over the whole 
time course, more enriched TFBSs were apparent in upregulated versus downregulated 
paths is consistent with our previous analyses. This suggests that activating TFs are 
more prevalent in the ABA network than repressing TFs. The trajectory of the highest 
upregulated genes (consisting of paths P1, P4 and P6 in Figure S4) was enriched for 
binding sites of TFs such as BIM2, AREB3, ABI5 and bZIP68, of which AREB3 and ABI5 
were associated with the split at 30 min leading to the highest amplitude of induction 
(Figure 5; Table S8). These TFs were also strongly enriched in upregulated clusters of the 
SplineCluster analysis (Figure 3) and most also occur in the regression analysis (Figure 4), 
which reinforces their predicted importance in the ABA GRN. 

One of the interesting observations was that some TFBSs were enriched in both 
upregulated and downregulated paths. For example, GT3a TFBSs were enriched from 
the earliest time point on in a trajectory peaking at around the 3 h time point, but also 
in a path that split from that trajectory and strongly declined in expression towards 
basal levels from 3 h onwards, which was reached at about 8 h (Figure 5; paths P1 and 
P4 (up) and P20 (down) in Figure S4; Table S8). This suggests that the GT3a binding 
site is associated with downregulation after the 3 h time point, even though the early 
time points in the DREM analysis and the regression analysis (Figure 4) suggested that 
it was associated with upregulated genes. Possibly, GT3a acts as both an upregulator 
and downregulator of expression of different genes depending on, e.g., the presence 
of certain co-factors at later time points. An alternative explanation may come from 
the fact that the GT3a gene itself is rapidly upregulated at early time points, but its 
expression level sharply declines after its peak at 1 h after ABA treatment, returning to 
basal levels at about 7 h (Figure S5). This may consequently lead to initial upregulation 
of target genes by GT3a, followed by a drop in their expression after 3 h due to reduced 
levels of GT3a protein. The fact that our analysis can pick up such complex behavior of 
the GRN demonstrates the advantage of doing a single pulse treatment at the start of 
the time series over a continuous treatment. It enables not only to see how the network 
is initially activated, but also how it is shut off, which is biologically relevant as well, thus 
revealing a more complete picture of the complex temporal transcriptional regulation 
of the network.
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Figure 5: Temporal role of TFs in the ABA GRN. 
Dynamic Regulatory Event Miner 2.0 (DREM 2.0) analysis was performed using the log2-fold change of ABA/mock 
expression data (DEGs only) and the TFBS data from the filtered DAP-seq data (Methods). Lines represent clusters 
of genes with a similar expression pattern. Expression is indicated as the log2-fold change between ABA and mock 
treatment over the entire time series (in h). The most significantly associated TFs for each path are denoted if their 
‘Score split’ was < 0.001. In the case of multiple significant TFs, the three most significant ones are denoted, and 
the rest are summarized by family (number of TFs indicated between parentheses). If more than three families are 
present, the less prevalent families are summarized as ‘Other’ (number of TFs indicated between parentheses). 
Enriched TFs that are described throughout the Results section but are not in the top three most enriched TFs are 
indicated at the bottom of the box between parentheses for reference. A red line indicates an association with 
upregulation of expression and a blue line indicates an association with downregulation of expression. The full list 
of enriched TFs per path can be found in Table S8 (supported by the corresponding path numbers in Figure S4).

Predicting the earliest regulators (first level) of the ABA response

The DREM model predicted that more than a hundred TFs regulate the ABA response 
within 15 min. However, this may be an overestimation of the number of TFs that act at 
the first level of the ABA GRN, since plant GRNs are typically activated by only a relatively 
small number of master regulators that activate other TFs lower in the hierarchy (Song et 
al., 2016). In the ABA GRN, a number of these master regulators that act at the first level 
have been identified and were found to be activated mostly by phosphorylation (Sah
et al., 2016, Yang et al., 2017). Here, we aimed to discover additional master regulator 
TFs that act immediately, at the first level of the ABA GRN. Hereto, we integrated our 
microarray time series dataset with the aforementioned filtered DAP-seq dataset and a 
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previously published microarray dataset in which translation was inhibited. In the latter 
dataset, which was generated by Lumba et al. (2014), Arabidopsis mutant seedlings 
defective in ABA biosynthesis (aba2) were treated with a combination of ABA and the 
translation inhibitor cycloheximide (CHX). Since translation is blocked by CHX, the DEGs 
in the ABA+CHX treatment are regulated by TFs that are themselves modulated through 
post-translational changes mediated by ABA rather than changes in transcription and/
or translation. Therefore, these regulating TFs seemingly act as a first level of TFs in the 
ABA GRN. 

 To identify putative first regulators of the ABA GRN we investigated enrichment 
of TFBSs in the promoters of DEGs in the Lumba et al. (2014) dataset that also were 
DEGs in our dataset. Of the 282 genes in the Lumba et al. (2014) dataset, 229 were also 
differentially expressed in our time series dataset. TFs for which enriched TFBSs in these 
229 genes were detected were considered putative first level TFs of the ABA GRN. These 
TFs do not need to be differentially transcribed themselves in our dataset, because they 
are predicted to regulate their target genes independent of translation, as suggested 
by the CHX-insensitive expression behavior of genes that contain a TFBS for them. We 
predicted 21 TFs as first regulators in the ABA GRN, each regulating between 6 and 116 
of the 229 DEGs (Figure 6). All except DDF2 were also part of the regulators assigned to 
the first upregulated path in the DREM model (Table S8, path P1 in Figure S4), which is in 
line with them being regulators at the first level. Among them are well-known TFs that 
are activated post-translationally and can start the ABA transcriptional cascade, such as 
AREB1/ABF2 (Choi et al., 2000, Uno et al., 2000) and ABI5 (Skubacz et al., 2016). We also 
found again the TFs bZIP68 and GT3a that have not been characterized as part of the ABA 
network yet, but were also picked up with our regression and DREM analyses. In these 
analyses, they were both predicted to (generally) upregulate their target genes and to 
be active at several stages in the ABA response, including at the initial time point (Figure 
5). In summary, we picked up known first level TFs, predicted novel TFs with a potential 
role in the initiation of ABA signaling, which confirmed the correct positioning of some 
TFs in the DREM model, and condensed the information on first level TFs derived from 
the DREM model. 
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Figure 6: Predicted earliest regulators (first level) of the ABA response.
(A) Heatmap showing TFBSs for TFs from filtered DAP-seq data (Methods) in the promoters of DEGs in our dataset 
that were also differentially expressed after ABA + CHX treatment according to Lumba et al. (2014) and have an 
enriched TFBS for at least one of the TFs. TFs and target genes were ordered using the heatmap.2 function from 
the gplots package (v3.0.1.1) in R. 
(B) Expression of target genes depicted as log2-fold change between ABA and mock treatment throughout the 14 
time points after ABA treatment. Each row represents one gene, and the rows correspond to the rows in panel (A). 
(C) Expression of the genes encoding the TFs predicted as first level TFs in this analysis depicted as log2-fold 
change between ABA and mock treatment throughout the 14 time points after ABA treatment. Each column 
represents one gene, and the columns correspond to the columns in panel (A). 
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To better understand the relationship between the different TFs at the first level we 
assessed their similarity in binding to their predicted 229 target genes. This revealed that 
the majority of genes are targeted by multiple TFs. Moreover, there is a group of seven 
(bZIP and bHLH) TFs (BIM2, bZIP3, bZIP68, GBF3, ABI5, GBF6 and bZIP53) with a particularly 
large overlap in their targets, and a second group of seven ERFs with overlapping targets 
(Figure 6A). Such an overlap may contribute to robustness of (part of) the network and/
or ensure that target genes can be activated under different conditions by these different 
TFs. Less than half of the genes encoding the predicted TFs at the first level were highly 
responsive to ABA (Figure 6C), which is consistent with the hypothesis that they can initiate 
the transcriptional cascade after being post-translationally activated. Generally, the target 
genes of the predicted first level TFs were upregulated (Figure 6B), suggesting that these 
TFs are mainly involved in transcriptional activation. Nevertheless, downregulation of 
genes by the same TFs was also predicted to occur (Figure 6B). There was no apparent 
relationship between TFBSs and the expression pattern of the target genes and the 
TF-encoding genes (Figure 6A, B, C), suggesting that additional features that were not 
included in our analysis are at play e.g., regulation by other TFs at later stages.

Predicting a core hierarchical ABA GRN

After initiation of a GRN, several TFs at the second level usually relay the signal from the 
first level TFs to target genes at the third level. Some of these third level target genes 
may also be regulated directly by first level TFs. To get a more complete overview of 
such a hierarchical architecture of the ABA GRN we expanded our analysis of the first 
level TFs to create a three-level hierarchical ABA GRN (Figure 7; Table S9). The first level 
consisted of TFs that we previously predicted to regulate the first transcription step in 
the ABA GRN. Next, we used the filtered DAP-seq data to select all the targets of these 
TFs that were differentially expressed in our ABA time series dataset. We filtered this DEG 
list for TF-encoding genes, and when the TFBSs for these TFs were enriched in at least 
one of the clusters from our expression-profile-based clustering analysis we designated 
these TFs as the second level of the GRN, and the clusters as the final level. We assigned 
an edge between TFs in the GRN if any of the TFs in the GRN regulated any of the other 
TFs according to the filtered DAP-seq data. Additionally, we added edges from TFs at the 
first and second levels to a cluster if the binding sites for these TFs were enriched in this 
cluster. The reconstructed hierarchical GRN was highly interconnected (Figure 7), similar 
to what was observed for TFs at the first level and their targets (Figure 6). This again 
suggests that the ABA GRN is either very precisely regulated by specific combinations of 
TFs, or that there is much redundancy within the network. Considering that only 349 of 
about 2000 TFs in the Arabidopsis genome are present in the DAP-seq dataset that was 
used to construct our current GRN, the number of regulating TFs in the ABA GRN is even 
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larger in reality. Several TFs seem to act as hubs in the network, which can be quantified 
by measures such as a TF’s betweenness centrality (Figure 7; Table S9). This is based on 
the amount of information that passes through a node (here: a TF) in a network, reflected 
by how often a TF is part of the shortest regulatory path between two genes. Different 
TFs such as BIM2, ANAC083 and WRKY28 seem to be important hubs in the network. 

It is worth noting that the network is not so strictly layered as how we arranged 
it, which is also why we refer to the layers as ‘levels’. For example, many TF-encoding 
genes at the first level were predicted to be regulated by other TFs that act at the first 
level or by themselves (autoregulation; Figure 7, upper double row), which correlated 
with a higher degree of differential expression compared to the TF-encoding genes that 
were not regulated by TFs from the first level. These first-level TF genes that are both 
post-translationally and transcriptionally regulated could thus have a greater effect on 
the ABA GRN. 

Figure 7: Three-level hierarchical ABA GRN. 
The first level consists of the TFs that we predicted to constitute the initial response regulators, because they are 
post-translationally regulated by ABA and their TFBSs show enrichment in the DEGs of our ABA time series. The 
second level consists of differentially expressed TF-encoding genes that are transcriptional targets of the first 
level and for which TFBSs are enriched in at least one of the clusters of DEGs after ABA treatment. The third level 
is represented by the clusters that are targeted by the TFs at the first and/or second levels. ‘ABA’ is used as the 
root of the network. The edges go from ABA to the TFs at the first level and from TFs at the first and second levels 
to target genes at the first, second and third levels. Node border thickness and color (gray to black) correlates 
with betweenness centrality, which was calculated using all the genes in the clusters with TFBSs for the TFs in 
the GRN. Color represents the maximum log2-fold difference between ABA and mock treatment of a gene or a 
cluster (average of all genes) in our ABA RNA-seq time series. 



53

2

Architecture and dynamics of the abscisic acid gene regulatory network 

Biological validation of GT3a as a novel regulator of drought tolerance

We next set out to validate the biological importance of different novel candidate TFs in 
the ABA GRN. These TFs were selected based on the analyses described above, showing 
e.g. highly enriched TFBSs in clusters, significant association with target gene amplitude, 
and/or presence in the DREM and/or hierarchical GRN models. Mutants of the candidate 
TFs were tested for drought tolerance. For one of our favorite candidates, the TF GT3a, 
we also designed overexpression lines, because high levels of redundancy with the 
homologous TF GT3b were expected. We included the ABA-deficient mutant line aba2 
as a positive control. For the drought assay, plants were grown for 25 days, after which 
water was withheld for 12 days. Then, water was supplied for 7 days, and recovery was 
scored in three categories: fully recovered, partially recovered, and dead (Figure 8A). 
About 60% of Col-0 plants recovered fully and about 25% recovered partially (Figure 8B). 
In contrast, only one third of the aba2 mutants recovered to some extent, demonstrating 
that the assay was able to pick up differences in recovery ability between different lines. 
None of the tested mutants showed a significantly different recovery compared to Col-0 
in this experiment (Figure 8B). However, all plants of the 35Spro:GT3a line (#4) recovered 
fully, suggesting that GT3a is important for tolerance to drought stress and/or recovery 
after drought (Figure 8B). We repeated the assay with three 35Spro:GT3a overexpression 
lines that express various levels of GT3a (Figure S6), two mutant alleles of gt3a and its 
closest homologue gt3b, and the double gt3a gt3b mutants (all four combinations of the 
gt3a and gt3b mutant alleles). Figure 8C shows that the 35Spro:GT3a line #4 again recovered 
significantly better than Col-0, but this was not the case for the other two overexpression 
lines, which had lower GT3a overexpression levels (Figure S6), although a trend for higher 
recovery was visible. In this experiment, the gt3a-1 single mutant recovered significantly 
worse than Col-0, although surprisingly none of the double mutants carrying this allele 
had a significantly worse recovery, nor did the other double mutants. Together, this 
suggests that GT3a is likely involved in drought tolerance in a possibly redundant way, 
but not redundantly with GT3b.
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Figure 8: Recovery after drought stress in different Arabidopsis lines. 
(A) Representative examples of the scoring system used for recovery after a temporary period of drought. Plants 
without any new green leaves were scored as dead, plants with some fresh green leaves as partially recovered 
(‘Partial’), and plants with a completely green rosette as fully recovered (‘Full’). 
(B) Experiment using different mutant lines and 35Spro:GT3a overexpression line #4. n=33. 
(C) Experiment using different gt3a and gt3b single and double mutant lines and three 35Spro:GT3a overexpression 
lines. Data were pooled from two independent experiments. n=56. 
Plants that had grown under regular cultivation conditions for 25 days were not watered for the following 12 days 
(Methods). Thereafter, water was added, and a regular watering regime was continued for a total of 7 days, after which 
recovery was scored. Colors represent state after recovery. In both experiments significant differences compared to 
Col-0 were determined using Fisher’s exact test with Benjamini-Hochberg P value correction, *P < 0.05, **P < 0.001.

DISCUSSION

A time-resolved analysis of the ABA GRN

We profiled gene expression changes induced by ABA treatment in Arabidopsis in a high-
density time-course experiment, and integrated this with publicly available DAP-seq data 
and RNA-seq data to get a detailed overview of the architecture and dynamics of the 
ABA GRN. This provided four types of network information: (i) coexpression of genes in 
functionally diverse modules, which are steered by predicted TFs; (ii) contribution of TFs 
to amplitude of gene expression levels; (iii) time-resolved engagement of TFs regulating 
certain target genes; (iv) hierarchical position of TFs at different levels of the ABA GRN. 

Our pulse treatment revealed ‘on’ and ‘off’ network dynamics

Our time series data showed a rich diversity in expression dynamics (Figure 1; Figure 
5; Figure S2), forming a good basis for most of our network analyses. For our pulse 
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treatment with ABA, we dipped the rosette in an ABA (or mock) solution for 3 s after 
which the plants continued to grow under regular conditions. This revealed various 
time- and amplitude-related variations in gene transcription, representing the ‘on’ status 
(activation/repression) and the ‘off’ status (return to basal level). This pulse treatment 
therefore allowed, for example, for more precise clustering of genes. We showed that 
many clusters were enriched for specific functions (Figure 2), suggesting that the precise 
clustering was biologically relevant. Moreover, we could relate the role of TFs to the 
timing in expression of their target genes. For example, in the DREM analysis, TFs were 
implicated in different paths, both in ‘on’ and ‘off’ directions, and starting at different 
times after the ABA treatment (Figure 5). The large-scale off-switching of transcription 
to return to basal levels was not observed in another RNA-seq time series study where 
Arabidopsis seedlings were kept constantly in an ABA solution (Song et al., 2016). Our 
approach thus demonstrates the value of a pulse treatment for elucidating different 
modes of a GRN.
  

Activating TFs are more prevalent in the ABA GRN than repressing TFs

Even though the total number of up- and downregulated genes after ABA treatment was 
similar, our analyses showed that the number of TFs associated with upregulation was 
larger than that with downregulation. This was apparent in all our network analyses: more 
motifs and TFBSs were enriched in upregulated than downregulated coexpressed gene 
clusters (Figure 3), TFs associated with upregulation of target genes were overrepresented 
in our regression model (Figure 4), more TFs were associated with DREM paths going up 
(increased expression of target genes) than going down (reduced expression of target 
genes; Figure 5), the differentially expressed target genes of the earliest acting (first level) 
TFs in our ABA network were more often upregulated than downregulated (Figure 6), and 
our ABA hierarchical GRN contained 13 of the 17 upregulated clusters, but only 5 of the 27 
downregulated clusters (Figure 7). This seems to suggest that downregulation requires 
fewer TFs than upregulation, but alternative explanations, which are related to the (DAP-
seq and motif) methods that we used, are also possible. For example, silencers that are 
located further away from the promoter may play a relatively large role in repression, 
many TFs that control downregulation could be absent in the used motif and DAP-seq 
datasets, or specific combinations of TFs may be required for repression.

Immediate early TFs regulating a hierarchical ABA GRN

We inferred the temporal role of TFs in the ABA GRN using DREM2.0 and found that at the 
earliest time point more than 100 TFs were predicted to be involved in upregulation of 
genes (Figure 5). Similarly, dozens of TFs were predicted to regulate DEGs in a comparable 
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study after 1 h of ABA treatment of seedlings, based on integration of RNA-seq data 
with ChIP-seq and the same DAP-seq data (Song et al., 2016). We expected this to be an 
overestimation of the number of TFs that act at the first level of the ABA GRN, because 
networks of other hormones like that of SA, JA and ethylene are regulated by only a 
handful of master regulator TFs (Howe et al., 2018, Binder, 2020, Aerts et al., 2021, Peng et al., 
2021). ABA signaling is known to be initiated by post-translationally modified TFs and we 
thus designed a method to predict which TFs might initiate the ABA GRN independent of 
their own transcription. For this, we combined our RNA-seq data with a publicly available 
dataset of ABA + CHX-treated aba2 plants (Lumba et al., 2014). This significantly reduced 
the number of candidate first-level regulators of the ABA GRN to only 21 TFs (Figure 6). 
Consequently, while the DREM2.0 analysis suggested the importance of, for example, 
many NAC TFs in the regulation of the earliest responding genes, they were now placed 
at the second level of the hierarchical network. The use of a CHX-based dataset combined 
with TFBS data to determine the earliest, post-translationally activated TFs is to our 
knowledge novel and likely provides a better prediction of first-level regulation of a GRN 
than the DREM2.0 method. The identified TFs acting the earliest in the ABA hierarchical 
GRN included TFs that are known to be activated post-translationally and functioning as 
master regulators of the ABA response, such as ABI5 and AREB1/ABF2 (Choi et al., 2000, Uno 
et al., 2000, Skubacz et al., 2016). Future studies may focus on the importance of the yet 
unknown first-level TFs. Interestingly, bZIP68, one of these TFs, was found to be regulated 
by redox status, where oxidation of a cysteine residue causes bZIP68 to shuttle from the 
nucleus to the cytosol, relieving its repressive effect on stress-tolerance-related genes, 
including genes related to ABA signaling (Li et al., 2019). It is tempting to speculate that 
ABA may have the same effect, since it also causes an increase in ROS in, e.g., guard cells 
(Postiglione and Muday, 2020) and was found to induce oxidation of the bZIP68 protein, 
albeit to a lesser extent than direct H2O2 treatment (Li et al., 2019). 

 We next extended the analysis of the first level to second and third levels in a 
hierarchical GRN, where the first level of TFs initiates the GRN, the second level transmits 
the signal, and the third level directly regulates the responding genes (Figure 7). Extensive 
cross-regulation was found both within and between levels, indicating high complexity of 
the ABA GRN. It is apparent that several clusters are missing at the third level, suggesting 
that the model is incomplete, which may be related to certain limitations of the used 
DAP-seq data (discussed in “The use of DAP-seq data for GRN inference”). 

Key TFs in the ABA GRN

Many of the analyses that we conducted were aimed at finding key transcriptional 
regulators in the ABA GRN. In agreement with the existing literature (Banerjee and 
Roychoudhury, 2017), the most prominent TFs with a predicted function in the ABA GRN 
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were members of the bZIP family of TFs, such as ABI5, AREB3, AREB1/ABF2, bZIP68, bZIP3, 
GBF3, GBF6 and bZIP53. However, all analyses also identified TFs from many other families. 
For example, ERF TFs were prevalent at the first level of the hierarchical GRN, NAC TFs 
were prevalent throughout the DREM model, the trihelix TF GT3a was amongst the most 
significant TFs in several analyses, and the WRKY TF WKRY28 and the bHLH TF BIM2 were 
hubs in the hierarchical ABA GRN analysis. This shows that the ABA response involves a 
diverse set of TFs that together fine-tune downstream responses.

 We took two approaches to assess how biologically accurate our network predictions 
were. First, we verified whether characterized TFs with a known role in ABA signaling 
were present in our different analyses. Indeed, several of these TFs were identified, 
such as AREB1/ABF2 (Choi et al., 2000, Uno et al., 2000), ABI5 (Skubacz et al., 2016) and 
ANAC055 (Takasaki et al., 2015). Moreover, TFs that have not been so well characterized as 
important ABA regulators but have been linked to ABA-related processes, such as GBF3 
(Ramegowda et al., 2017) and WRKY28 (Babitha et al., 2013), were unveiled as players in 
the ABA GRN. Second, we validated the role of TFs that have not yet been linked to ABA 
signaling. For this, we used mostly single mutant lines of TFs and overexpression lines 
of our favorite candidate, GT3a. In a drought recovery assay, we found that GT3a is likely 
a positive regulator of drought tolerance. This was based on higher drought recovery of 
an overexpression line with high GT3a mRNA levels, and a trend in the same direction 
of two overexpression lines with lower expression (Figure 8). The gt3a-1 mutant showed 
increased susceptibility to drought in one of two experiments, but none of the double 
mutants with gt3b-1 or gt3b-2 did, suggesting that this phenotype of gt3a-1 may not be 
biologically meaningful. In general, none of the tested single mutants of TFs showed a 
drought-related phenotype. This could be due to high levels of redundancy between 
different TFs in the network. This hypothesis is supported by multiple lines of evidence. 
First, there is much overlap in TFs that regulate targets in the different network models, 
both in our own study and in a previous study in seedlings (Song et al., 2016). Second, 
previous studies showed that phenotypes of single mutants of certain ABA-related TFs 
were absent or only weak, and instead higher-order mutants or overexpression lines 
were required to get a distinct phenotype (Wu et al., 2009, Yoshida et al., 2010, Yoshida 
et al., 2015, Qian et al., 2019). In line with this, even though there is some evidence for 
involvement of AREB3 in ABA-regulated control of stomatal movement, the (single) areb3-
1 mutant is not impaired in stomatal movement (Qian et al., 2019), and our study shows 
that the areb3-2 mutant is also not affected in drought tolerance (Figure 8B). 

The use of DAP-seq data for GRN inference

DAP-seq data reveal TFBSs in (target) genes. We integrated publicly available DAP-seq data 
with our high-density time series RNA-seq data for diverse analyses regarding the role 
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of TFs in the ABA GRN: cluster enrichment analysis (Figure 3), regression-based analysis 
(Figure 4), DREM2.0 network analysis (Figure 5), and hierarchical GRN analysis (Figure 6 
and Figure 7). One possible weakness of these analyses is that they all rely on a DAP-seq 
dataset. DAP-seq can be regarded as an in vitro version of the better-known method 
ChIP-seq, and has many of the same drawbacks, such as the fact that a binding event does 
not necessarily mean that the TF regulates the associated target gene (Heyndrickx et al., 
2014) and that TFs sometimes regulate genes by binding enhancers or silencers that are 
far away from their target gene, making it impossible to predict the target (Weber et al., 
2016). Also, the TF-DNA binding events that require interactions with co-factors or other 
TFs are not considered. Such interactions may alter the DNA binding specificity of a TF 
and can thus be essential for the ability to bind certain binding sites (Jolma et al., 2015, Li 
et al., 2023), which recently has been addressed by a novel DAP-seq method that enables 
studying TF heterodimers (Li et al., 2023). Finally, another potential drawback of DAP-seq 
is that chromatin context is absent. However, this may be at our advantage because the 
TFs in the DAP-seq experiment were not hindered by e.g. heterochromatin to bind to all 
of their potential target DNA, as would be the case for (in vivo) ChIP-seq. Another major 
advantage of DAP-seq is its relatively high throughput: in the dataset we used, 349 TFs 
were tested (O’Malley et al., 2016). However, this is still only about one fifth of all TFs in 
Arabidopsis, and more TF binding data are needed in the future to fully elucidate GRNs 
using methods such as those described here. 

A possible high-throughput alternative to using genomic TFBSs derived from DAP-
seq data is using motifs, derived from, e.g., PBMs or indirectly derived from DAP-seq 
data by analyzing motifs under DAP-seq peaks and searching matches to those motifs 
in the genome (Franco-Zorrilla et al., 2014, Weirauch et al., 2014, De Clercq et al., 2021). We 
integrated PBM-derived motifs with cluster data (Figure S3), but found a much less diverse 
set of enriched TFs compared to our analysis based on TFBSs derived from DAP-seq data. 
This is likely because motifs can be very similar for different TFs and do not consider 
the entire genomic context, which is important for TF binding (e.g., Gordân et al., 2013, 
Mathelier et al., 2016). Thus, the motif-based analysis included more false positive targets, 
making this information relatively unreliable (see also De Clercq et al., 2021). Therefore, 
we proceeded to use only DAP-seq data in subsequent analyses, as it represents a good 
middle ground between ChIP-seq and motifs, balancing specificity with high throughput. 

Outlook

Our study provided a comprehensive look of the architecture and dynamics of the ABA 
GRN in mature plants and the position of several key TFs in the network was predicted. 
In the future, our information-rich data can be combined with new publicly available 
datasets and analyzed using the latest of the ever-evolving network inference tools 
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to get even more accurate network predictions. Also, it can be combined with other 
perturbation time series data to elucidate the overall stress network of Arabidopsis. 
We are planning some of these approaches ourselves, but also highly encourage other 
scientists to make the most of our unique dataset.

METHODS

Plant materials 

The Arabidopsis wild type for all experiments was the Columbia (Col-0) accession. All 
mutants were in the Col-0 background. The T-DNA insertion lines were genotyped, and 
homozygous mutant plants were selected for production of seeds, which were used for 
all experiments. An overview of all genotyped lines and the primers used for detection 
of the expected mutations is depicted in Table S10. The aba2-1 mutant that was used 
was described by González-Guzmán et al. (2002).

For the generation of 35Spro:GT3a overexpression lines the following steps were taken. 
The coding sequence (CDS) of GT3a (AT5G01380) was cloned into the binary expression 
vector pFAST-R02 as follows. First, cDNA was made using RevertAid H Minus Reverse 
Transcriptase (Thermo Fisher Scientific, Waltham MA, USA) from total RNA isolated from 
10-day-old Arabidopsis Col-0 seedlings. Next, the GT3a CDS, including the stop codon 
(1033 bp in total), was PCR-amplified with primers containing Gateway-compatible 
overhangs (Table S11) using Phusion High-Fidelity DNA Polymerase (Thermo Fisher 
Scientific). The PCR product was purified after gel electrophoresis using the Illustra GFX 
PCR DNA and Gel Band Purification Kit (Merck, Darmstadt, Germany). This DNA fragment 
was cloned into the pDONR221 vector by Gateway BP reaction (Thermo Fisher Scientific), 
resulting in pDONR221_GT3a-CDSstop. The coding sequence was Sanger sequenced to 
verify that no mutations were introduced during the PCR amplification. A Gateway LR 
reaction was used to generate the final pFAST-R02_GT3a-CDSstop construct, which was 
subsequently transformed into Agrobacterium tumefaciens EHA105 via electroporation 
and thereafter transfected to Arabidopsis accession Col-0 using the floral dip method 
(Harrison et al., 2006). Twenty-nine individual transgenic lines (i.e., originating from a 
separate seed after floral dip) were selected and analysed by qPCR for expression levels 
of GT3a. Based on segregation on herbicide resistance in the subsequent generation (3:1 
resistant:sensitive segregation on Basta) and GT3a expression level (high, average, low) 
three representative transgenic lines were selected for bioassays and thereto further 
propagated and selected to form a homozygous seed batch (Table S11; Figure S6).
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Plant growth conditions for time series experiment

For the RNA-seq ABA time series experiment seeds were stratified in 0.1% agar at 4°C 
for 48 h, and then sown on river sand in closed trays with transparent lids to ensure 
100% humidity, under the light regime described below. After two weeks the germinated 
seedlings were transferred to 60-ml pots that contained a river sand:soil mixture (5:12) 
that had been autoclaved twice for 1 h. The pots containing single plants were placed 
in open trays at 21°C and 70% humidity under a 10-h day (75 µmol/m2/s1) and 14-h night 
cycle. Watering was done three times per week. Once a week, instead of water, the plants 
received a modified half-strength Hoagland solution that contained 10 μM sequestrene 
(Fe-EDDHA, Royal Brinkman, ‘s-Gravenzande, the Netherlands). 

Drought stress assay: growth conditions, watering regime and scoring

Seeds were stratified in 0.1% agar at 4°C for 48 h, and sown immediately on sterilized 
sand:soil mixture (5:12) in 60-ml pots (soil was prepared the same as for the time series). 
Each pot was weighed to ensure an equal amount of wetted soil in each pot (less than 1 g 
difference was allowed). The first two weeks the plants were grown under 100% humidity 
by closing the trays with transparent lids, after which the lids were removed. Plants were 
cultivated in a growth chamber set at 21°C and 70% humidity under a 10-h day (200 µmol/
m2/s1) and 14-h night cycle, receiving the same watering/Hoagland regime as described 
for the time series, until the plants were three weeks old. Then, each pot was placed on 
a 60-mm petri dish, which functioned as a saucer, so that water could be supplied to the 
plants individually. The pots were weighed, and water was supplied until a weight of 
87 g was reached, which was the same weight as during sowing. This was repeated two 
and four days later, where the fourth day marked the start of the drought period, during 
which water was withheld. At the fifth day of the drought period, all pots were weighed 
again and watered, so that each pot weighed the same and the plants thus received a 
similar drought stress intensity. The weight was set at about 70 g, which was around 2 g 
more than the heaviest pot in the experiment at that time. When about 50% of the Col-0 
plants seemed unable to recover (purple coloring, curling (especially at the center) and 
apparent loss of turgor of the leaves), which was at about 12-13 days after the start of 
the drought period, the pots were rewatered to the same weight as before the drought 
period (87 g). Watering was resumed normally for one week, after which plant survival 
was scored into three categories as follows. Plants having a completely green rosette 
were scored as ‘fully recovered’, plants with only some new green leaves were scored 
as ‘partially recovered’ and plants that had no new green leaves were scored as ‘dead’. 
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RNA-seq time series experimental setup

The RNA-seq experiment of the ABA time series was part of a larger experiment including 
other defense-related hormone treatments, such as MeJA, of which the results were 
published by Hickman et al. (2017). Rosettes of 5-week-old Arabidopsis Col-0 plants were 
dipped into an ABA (50 μM; Duchefa Biochemie, Haarlem, the Netherlands) or mock 
solution for 3 s. The solutions were tap-water based and also contained 0.015% (v/v) Silwet 
L77 (Van Meeuwen Chemicals BV, Weesp, the Netherlands; nowadays this compound is 
known as CoatOSil 77 (Momentive, New York, NY, USA)) and 0.1% (v/v) ethanol because 
this was the stock solvent for ABA. The sixth true leaf (counted from the oldest) was 
harvested from each rosette, representing one replicate, at 15 min, 30 min, and 1, 1.5, 2, 
3, 4, 5, 6, 7, 8, 10, 12 and 16 h after treatment (Table S1). For the mock series four replicates 
were sequenced and for the ABA series three. The mock time series had more replicates 
because it was sequenced together with a MeJA, SA, and SA + MeJA time series in two 
previous studies (Hickman et al., 2017, Hickman et al., 2019), and these data showed that 
three replicates were likely sufficient for the intended analyses of the other hormone 
treatments, thus lowering overall costs.

RNA extraction and sequencing 

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Venlo, the Netherlands), 
according to the manufacturer’s instructions. The optional on-column DNase treatment 
step was included. RNA for the mock time series was extracted and sequenced as part of 
a previous study on the JA and SA networks (Hickman et al., 2017, Hickman et al., 2019), 
whereas RNA for the ABA time series was extracted later from leaf material that had 
been stored at -80°C. RNA quality was assessed on the 2100 Bioanalyzer (Agilent, Santa 
Clara, CA, USA) using the RNA 6000 Nano Labchip Kit (Agilent) and in case of insufficient 
quality (RIN < 8.0) additional samples harvested from the same experiment were used 
for a new RNA isolation. The mock time series libraries were prepared using the TruSeq 
mRNA Sample Prep Kit (Illumina, San Diego, CA, USA) and they were sequenced on the 
HiSeq 2000 platform (Illumina) with read lengths of 50 bases (see also Hickman et al., 
2017; Hickman et al., 2019). For the ABA time series, the TruSeq mRNA Stranded Sample 
Prep Kit (Illumina) was used for library preparation and the sequencing was done on 
the NextSeq 500 platform (Illumina) with read lengths of 75 bases. To verify that both 
sequencing methods were sufficiently concordant, the RNA-seq data of eight untreated 
samples that had been processed along with the mock samples in the study of Hickman 
et al. (2017) were compared to four untreated samples (replicates of the same experiment) 
that were processed along with the ABA samples in the current study.
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RNA-seq data processing

All reads of the mock and ABA treatments, which originated from two different library 
preparations and sequencing methods (see above), were counted as unstranded reads. 
The reads were aligned to the Arabidopsis genome (TAIR v10) using TOPHAT v2.0.4 
(Trapnell et al., 2009) with the settings ‘transcriptome-mismatches 3’, ‘N 3’, ‘bowtie1’, 
‘no-novel-juncs’, ‘genome-read-mismatches 3’, ‘p 6’, ‘read-mismatches 3’, ‘G’, ‘min-intron-
length 40’, ‘max-intron-length 2000’. Next, reads were assigned to annotated gene models 
of TAIR v10 using HTSeq-count v0.6.1 (Anders et al., 2015) with default settings except 
‘-s no’. Normalization was done using the medium count ratio, following the principle 
applied in the DESeq2 R package (Anders and Huber, 2010). We verified that the two 
different library prep and sequencing methods of the mock and ABA time series did not 
lead to biases in the data by plotting all samples, including the untreated control samples 
(t0), in a PCA plot. The PCA was done on the log2 of the read counts using the prcomp 
function from the stats package in R (version 4.1.2) with default settings. Irrespective of 
the library prep and sequencing method, all control samples clustered together (Figure 
S1). The mock and ABA samples were distributed separately from the control samples 
along the first two principal components. This demonstrates that the different library 
preps and sequencing methods did not influence the comparative analysis of the ABA 
and mock treatments.

Differential expression analysis

Differential expression analysis was done according to the same strategy outlined in 
Hickman et al. (2017). Briefly, normalized counts over time were modeled using a GLM with 
a log link function and a negative binomial distribution. A full model that incorporated 
treatment and time was compared to a reduced model with only time as an independent 
variable using an ANOVA with a χ2 test. The resulting P values were adjusted using the 
Bonferroni correction. Genes with an adjusted P value < 0.05 were considered for further 
analysis, using a slightly different version of the GLM that modeled counts as dependent 
only on time and the time*treatment interaction parameter, where this interaction 
parameter for each time point represents the treatment effect at that time point. From the 
significant genes according to the initial ANOVA and χ2 test, those that in the second GLM 
version had at least at one time point a P value for the time*treatment parameter < 0.01, 
an absolute fold change > 2 at that time point, and on average at least 10 counts in one 
of the treatments at that time point were considered differentially expressed. Because 
GLMs do not always work when there are too many 0 counts, the same analysis was also 
run after all genes in all samples were assigned a pseudocount of 1. DEGs according 
to this pseudocount-based analysis were added to those of the first analysis (without 
pseudocount) only if it had been impossible to run the GLM on these genes in the first 
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analysis (but not if the genes were first calculated to be non-DEGs and after addition of 
a pseudocount they were DEGs). 

Clustering analysis

Clustering was done on the log2-fold change of all DEGs between ABA and mock 
treatment using SplineCluster (Heard et al., 2006), with a prior precision value set to 10-5. 
An additional reallocation function (Heard, 2011) that redistributes cluster outliers into 
more appropriate clusters was also performed. 

GO term enrichment analysis 

GO term enrichment analysis was done using the enrichGO function in clusterProfiler 
v4.2.1 (Yu et al., 2012, Wu et al., 2021a) with the following parameter changes. The OrgDb 
used was org.At.tair.db with 2021-09-01 as the GO source date, ‘ont’ was set to ‘BP’, 
the pAdjustMethod was set to ‘BH’, and the qvalueCutoff and pvalueCutoff were set to 
0.01. Finally, minGSSize was set to 10 to not include extremely rare GO terms, and the 
maxGSSize was set to 1093 (5% of the total number of annotated genes in the dataset) 
to exclude generic GO terms. The enrichment analysis was executed for each cluster 
separately. Potentially redundant GO terms were identified by investigating the overlap of 
genes belonging to different GO terms in each cluster. If there were three or more unique 
genes, the GO term was listed as enriched. If a GO term had no more than two unique 
genes compared to another GO term, the GO term with the highest P value was marked 
as potentially redundant. If the potentially redundant GO term was marked as such in 
all the clusters where it was enriched, it was considered as fully redundant, and thus not 
considered for visualization in Figure 2. Otherwise, the enrichment of the potentially 
redundant GO term was considered discriminative, and its enrichment was visualized in 
all clusters where it was enriched.

Promoter motif and TFBS enrichment analysis

Enrichment analysis of experimentally derived TFBSs to the genome was done based 
on a published DAP-seq dataset, which contains in vitro binding data of TFs to isolated 
genomic Arabidopsis DNA (O’Malley et al., 2016). DAP-seq peaks were downloaded from 
Plant Cistrome DB (O’Malley et al., 2016), omitting ampDAP data. To increase the chance 
that a DAP-seq peak was meaningful for gene regulation, the dataset was filtered based 
on a method that we adapted from Narsai et al. (2017). Whereas they took the top 25% 
strongest peaks per TF dataset for analysis, we calculated the 25th percentile q value of the 
total dataset and applied it to each individual TF-target dataset as a cutoff. This method 
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ensured that each TF-target dataset was reduced based on the same significance cutoff, 
rather than on the same proportion. Subsequently, a possible target gene was assigned 
to each peak based on two criteria, using ChIPpeakAnno (Zhu et al., 2010). First, the peak 
had to fall within 3000 bp upstream or 5000 bp downstream of the transcription start 
site (TSS). Second, only the closest gene was chosen as the possible target gene. TFs in 
the final dataset were only retained if they were sufficiently expressed in our dataset 
(not necessarily differentially expressed), meaning that they had at least 97 reads in all 
samples combined (i.e., 1 read per sample on average) and had 1 or more reads in at least 
15 samples. Fold enrichment of the binding sites for a TF was determined for each TF/
cluster combination by dividing the number of genes assigned as a target of the TF in a 
cluster by the expected number. The expected number was calculated based on the total 
number of genes in the genome, the number of genes in the genome assigned as a target 
of the TF, and the number of genes in the cluster. The P value for the enrichment was 
calculated based on the hypergeometric distribution. For visualization of the enriched 
TFBS analysis (Figure 3) the fold enrichment was set to 1 if the corresponding P value of 
the enrichment was higher than 0.001, to ensure that only highly significant TFBSs (fold 
enrichments >2 and P value <0.001) were depicted.

For the motif enrichment analysis, TF-DNA sequence motifs that were derived from 
two PBM-based studies were retrieved in the form of position weight matrices (Franco-
Zorrilla et al., 2014, Weirauch et al., 2014). Promoter sequences, which in this analysis were 
defined as the 500 bp upstream of TSSs, were download from TAIR v10. Occurrence of 
each motif in the promoter sequences of each gene in the genome was determined 
using FIMO (Grant et al., 2011) with a P value cutoff of 10-4. Fold enrichment of a motif was 
determined for each motif/cluster combination, similarly to the TFBS analysis, by dividing 
the number of genes with at least one motif in a cluster by the expected number. The 
P value for the enrichment was calculated based on the hypergeometric distribution. 
Motifs were visualized using WebLogo version 3.5.0 (Crooks et al., 2004). Similar to the 
visualization of TFBS enrichment, the motif enrichment (visualized in Figure S3) was set 
to 1 if the corresponding P value of the enrichment was higher than 0.001, to ensure that 
only highly significant motifs (fold enrichments >2 and P value <0.001) were depicted.

Prediction of potential regulatory TFs by stepwise regression

A stepwise regression approach was taken to identify TFBSs associated with up/
downregulation of target genes after ABA treatment. The maximum or minimum 
(depending on which was the largest) log2-fold difference of ABA/mock out of the 14 
time points was determined per gene for all genes in the genome and used as dependent 
variable. TFs from the filtered DAP-seq data (see “Promoter motif and TFBS enrichment 
analyses”) were used as potential regressors, based on presence/absence of their binding 
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sites in each gene. Bidirectional stepwise regression was used to come to a final model 
with only the most significant TFs. This was done using the stepAIC function from the 
MASS package (v7.3-55) in R (version 4.1.2). 

DREM analysis

DREM analysis (Schulz et al., 2012) was done with DREM v.2.0.3 on the log2-fold change 
of DEGs after ABA treatment compared to mock treatment using default settings. No 
(further) normalization was done on the data. The filtered DAP-seq dataset described 
above (“Promoter motif and TFBS enrichment analysis”) was used as the TF-gene 
interaction file. TFs were considered significant for a path if ‘Score Split’ of that path 
in the path table was < 0.001. The ‘Score Split’ of a TF in a path is the probability of 
seeing a greater number of genes with a binding site for the TF in that path based on the 
hypergeometric distribution, given the number of genes with and without the binding 
site in the path before the split and the number of genes in the path itself. Note that 
because the split is calculated using the TFBS data the ‘Score Split’ is not a true P value. 

Prediction of the earliest regulatory TFs (first level) of the ABA response

DEGs from aba2 mutant plants, which were treated with ABA and the translation inhibitor 
CHX, were downloaded from Lumba et al. (2014). Subsequently, the DEGs that were 
common with the DEGs in our ABA time series were selected, forming a list of ‘first DEGs’. 
Next, enrichment of TFBSs from the filtered DAP-seq dataset (see "Promoter motif and 
TFBS enrichment analyses"; O’Malley et al., 2016) was determined in this set of first DEGs. 
This was done by comparing the observed number of first DEGs with a certain TFBS to 
the number expected by chance. The P value for this enrichment was determined based 
on the hypergeometric distribution. From this, TFs with significantly enriched binding 
sites (>2-fold enrichment, P < 0.01) were selected as putative first regulators (first level 
of the ABA network) that are post-translationally activated by ABA. 

Hierarchical network analysis

For the hierarchical network analysis, the first level of candidates was determined 
according to the analysis outlined above (“Prediction of the earliest regulatory TFs (first 
level) of the ABA response”). The second and third levels were determined as follows. As 
a start, TFs with enriched DAP-seq binding sites in the genes forming the expression-
profile-based clusters (see “Clustering analysis”) were considered as candidate TFs for 
the second level. Candidate TFs were then definitively assigned to the second level if 
their encoding genes were differentially expressed after ABA treatment and if they were 



66

CHAPTER 2

targets of TFs from the first level according to the filtered DAP-seq data (see “Promoter 
motif and TFBS enrichment analyses”). The third level consisted of the clusters themselves, 
but only those clusters that had enriched binding sites for TFs from the first or second 
level of the network were incorporated in the final network. TFs at the first level were 
removed if they did not regulate any genes encoding TFs at the second level and if their 
binding sites were not enriched in any of the clusters. Edges were assigned between TFs 
in the network if one TF regulated the transcription of another TF according to the filtered 
DAP-seq data and our expression data. Additionally, edges were added from TFs at the 
first level and second level to a cluster if the binding sites of these TFs were enriched 
in the promoters of genes in the cluster. The network was visualized using Cytoscape 
v3.7.2. The betweenness centrality of each node in the network was calculated using the 
Network Analyzer tool in Cytoscape. For this analysis, the clusters at the third level were 
replaced with the actual genes at that level, and edges were drawn from a TF to a gene 
if the TF regulated that gene according to the filtered DAP-seq data. 
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Figure S1: PCA of all samples from the ABA RNA-seq time series. 
PCA was performed based on the log2 of the normalized read counts of all genes that were considered expressed 
(see Methods). Sample names reflect their treatment (M for mock and A for ABA), time (h) after treatment and 
replicate number (after the dash). “t0” represents control samples taken just before treatment; “old” or “new” 
reflects time of sequencing, where “old” samples were sequenced together with the mock time series using an 
unstranded library prep, and “new” samples were sequenced together with the ABA samples using a stranded 
library prep. Samples are colored according to their treatment. PC: principal component.



68

CHAPTER 2

2
4
6
8

 

c1 (n = 39)

0
2
4
6

c2 (n = 204)

0
1
2
3
4

c3 (n = 255)

−1
0
1
2
3
4

c4 (n = 218)

−1
0
1
2
3

c5 (n = 241)

0

1

2

3
c6 (n = 264)

0

1

2

c7 (n = 274)

0

1

2

c8 (n = 200)

−1

0

1

2
c9 (n = 171)

−1

0

1

2

c10 (n = 258)

−1

0

1

2
c11 (n = 150)

−1

0

1

c12 (n = 170)

−1

0

1

c13 (n = 141)

−1

0

1

2
c14 (n = 156)

−1

0

1

2
c15 (n = 163)

−1

0

1

2
c16 (n = 317)

−1

0

1

2
c17 (n = 285)

−6

−4

−2

0
c18 (n = 49)

−6
−3

0
3
6

c19 (n = 6)

−5
−4
−3
−2

c20 (n = 17)

−3

−2

−1

c21 (n = 21)

−3
−2
−1

0
1

c22 (n = 375)

−3

−2

−1

0
c23 (n = 139)

−3

−2

−1

0

c24 (n = 271)

−2

−1

0

c25 (n = 155)

−2

−1

0

c26 (n = 197)

−2

−1

0

1
c27 (n = 219)

−2
−1

0
1

c28 (n = 206)

−2

−1

0

1 c29 (n = 70)

−2

−1

0

1
c30 (n = 173)

−2

−1

0

1

 

c31 (n = 33)

−2

−1

0

1
c32 (n = 34)

−2

−1

0

1
c33 (n = 43)

−2

−1

0

1
c34 (n = 111)

−2

−1

0

c35 (n = 75)

−2

−1

0

c36 (n = 91)

−2

−1

0

1

 

c37 (n = 159)

−2

−1

0

1
c38 (n = 76)

−2

−1

0

1

2 4 6 8 1012 16
Time (h)

c39 (n = 157)

−2

−1

0

1

2 4 6 8 1012 16
Time (h)

c40 (n = 175)

−2

−1

0

1

2 4 6 8 1012 16
Time (h)

c41 (n = 166)

−2

−1

0

1

2 4 6 8 1012 16
Time (h)

c42 (n = 208)

−2
−1

0
1

2 4 6 8 10 12 16
Time (h)

lo
g 2-f

ol
d 

ch
an

ge
 

 

c43 (n = 71)

−2

−1

0

2 4 6 8 1012 16
Time (h)

c44 (n = 348)

lo
g 2-f

ol
d 

ch
an

ge
 

lo
g 2-f

ol
d 

ch
an

ge
 

lo
g 2-f

ol
d 

ch
an

ge
 

lo
g 2-f

ol
d 

ch
an

ge
 

lo
g 2-f

ol
d 

ch
an

ge
 

lo
g 2-f

ol
d 

ch
an

ge
 

lo
g 2-f

ol
d 

ch
an

ge
 

Figure S2: Expression profiles of clusters of coexpressed genes after ABA treatment. 
The set of 7151 DEGs over the time course of 16 h after ABA treatment was clustered according to their expression 
pattern (log2 of ABA/mock) using SplineCluster, resulting in 44 distinct clusters (c1-c44). The black line represents 
the mean log2-fold change (ABA/mock) of all genes in a cluster and the grey ribbon represents the standard 
deviation. The number of genes (n) in each cluster is indicated above each corresponding plot. 
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Figure S3: Fold enrichment of TF-DNA binding motifs in clusters of coexpressed genes after ABA treatment. 
Occurrences of TF-DNA binding motifs from PBM data (Franco-Zorrilla et al., 2014, Weirauch et al., 2014) was 
determined in the 500 bp upstream of the TSS of all genes in the genome using FIMO (Grant et al., 2011). Fold 
enrichment of each motif in each cluster compared to the whole genome was determined. Color in the heatmap 
represents fold enrichment. Color above the heatmap indicates if genes in the cluster are on average upregulated 
or downregulated. Only the highly significant motifs are depicted (see Methods). Motifs within each family were 
ordered in the figure based on presence/absence of binding sites in the clusters using the hclust function with the 
ward.D method. Representative motif logos of enriched motifs are shown on the right. In cases where multiple 
types of motifs are enriched in one family, a representative motif of each type is shown separately. In the case of 
the bZIP family, the not-enriched TGA motif is shown semi-transparently besides the much-enriched G-box-like 
motif (the upper motif) to demonstrate that although motifs of many bZIP family members are enriched, these 
are specifically not TGA motifs. The full set of motifs is shown in Table S6. 
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Figure S4: Numbered DREM paths from DREM analysis. 
Figure acts as a supplement of Figure 5 and full explanation of the figure can be found there. This figure displays 
a number (P1-31) for each path with significantly enriched TFs in the DREM analysis (Figure 5), and this number is 
used in Table S8, where all significantly enriched TFs in the numbered paths can be found. 
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Figure S5: Expression profile of GT3a in a 16-h time course after ABA or mock treatment.
Mean and SE of the log2 of the read counts is plotted for each time point (in h). Colors indicate treatments. 
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Figure S6: Relative expression levels of 35S:proGT3a overexpression lines. 
Expression was measured by qPCR in one mature leaf of a four-week-old plant under basal conditions. The 
expression levels were calculated per sample as the difference in the Ct value (ΔCt) between GT3a and the 
reference gene AT1G13320. This ΔCt value was multiplied by -1 and normalized with the mean -ΔCt value of Col-0 
to determine the -ΔCt relative to Col-0. Significant differences were calculated using one-way ANOVA followed 
by a Dunnett’s test (*P > 0.05, **P > 0.01, *P > 0.001; n=5).
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SUPPLEMENTARY TABLES

Supplementary tables S1-S9
Supplementary tables S1-S9, including full legends, are available upon request. Below, 
short legends for each of these supplementary tables are listed. 

Table S1: Time series experimental set-up and mRNA sequencing details. 
Table S2: Normalized read counts of all genes and biological replicates over a 16-h 

period after ABA or mock treatment.
Table S3: Z scores and fold change of DEGs after ABA treatment.
Table S4: Cluster membership of all DEGs after ABA treatment.
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Table S11: Supplementary information on generation of GT3a overexpression lines. 
(A) Primers used for amplification of the GT3a CDS with Gateway-compatible overhangs. The sequence overlapping 
the GT3a sequence is denoted in upper case letters and the Gateway-specific sequence is denoted in lower case 
letters. The TA sequence denoted in italic uppercase letters in the forward primer was added to allow cloning of 
an N-terminal tag in a possible future project. 
(B) Line number, line name and relative overexpression (OX) levels of three different GT3a overexpression lines 
used for bioassays. The first number denotes a T1 plant with a unique insert and the second number denotes a 
unique T2 offspring plant, which was later verified to be homozygous for the insert. Relative GT3a expression 
levels were determined in 4-week-old plants under basal conditions and are shown in Figure S6.

A: Primers used

Primer name Primer sequence

GT3a_attB1_F ggggacaagtttgtacaaaaaagcaggctTAATGGACCGACGTAACCCT

GT3a_attB2_R-stop ggggaccactttgtacaagaaagctgggtaTTAGAAACCTTGATTATGATGATCA

B: Lines used in this study

Line number Line name Relative OX level

#4-3 35Spro:GT3a#4 High

#19-5 35Spro:GT3a#19 Middle

#20-1 35Spro:GT3a#20 Low
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ABSTRACT

The plant hormone jasmonic acid (JA) is a crucial regulator of defense against pathogens 
and pests. Crosstalk with other hormones shapes the final outcome of the JA-mediated 
response. Abscisic acid (ABA) acts as a coregulator of the JA response as it potentiates 
the JA-regulated anti-insect defense sector in the JA-dependent immune network, while 
it attenuates the JA-regulated defense sector directed against necrotrophic pathogens. 
To investigate how ABA modulates the JA gene regulatory network (GRN), we generated 
RNA-seq time series data consisting of 14 time points after treatment of Arabidopsis 
thaliana rosettes with methyl jasmonate (MeJA), ABA, or the combination of the two 
hormones. We found that MeJA and ABA regulate, and partly co-regulate, expression of 
thousands of genes. Of the MeJA-responsive genes, 2/3rd changed their expression level 
in a combined treatment with ABA, suggesting extensive modulation of the JA network 
by ABA. Notably, ABA accelerated the induction of MeJA-responsive JA biosynthesis 
and catabolism genes, indicating that ABA can affect the JA response at the level of 
JA production and turn over. We predicted 20 different transcription factors as ABA-
regulated modulators of the JA network. Also, using a Botrytis cinerea infection assay with 
mutants of JA master regulators we found that ORA59 and ERF1 are themselves targeted 
by ABA to regulate repression of JA signaling. Based on our RNA-seq data we found that 
this occurs at least at the transcription level, but likely also at other levels. Indeed, using 
a transient protoplast expression assay we found that ABA reduces expression of the JA 
marker PDF1.2 by reducing ORA59 protein stability. Our study gives unique insights into 
the effects of ABA on the dynamics of the JA GRN and provides new insights into how 
the ABA GRN and different sections of the JA GRN are integrated. 
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INTRODUCTION

Plant hormones are crucial in the interaction between plants and their often-hostile 
environment. They regulate responses to abiotic stresses, such as heat and drought, as 
well as biotic stresses, such as pathogen infection and insect infestation. Among the 
hormones that contribute to plant immunity, jasmonic acid (JA), salicylic acid (SA), abscisic 
acid (ABA) and ethylene (ET) are the most significant (Pieterse et al., 2012, Aerts et al., 
2021). Since different kinds of attackers have different strategies to derive nutrients from 
the plant, the plant needs to activate a specific immune response that is tailored to the 
attacker that it encounters. This specificity is achieved in part by producing a specific 
blend of interacting immunity-related hormones dependent on the type of attacker. 
These hormones subsequently activate a complex and highly integrated immune 
network that eventually regulates the tailored immune response (Aerts et al., 2021). 

Within the integrated plant immune network, the individual hormone (sub)networks 
have specific but also overlapping functions (Tsuda et al., 2009, Pieterse et al., 2012). The 
SA pathway is generally associated with defense against pathogens with a biotrophic 
lifestyle. The JA pathway works in concerted action with ABA to regulate defense against 
insects, while coregulation of the JA pathway by ET leads to enhanced defense against 
pathogens with a necrotrophic lifestyle (Glazebrook, 2005, Pieterse et al., 2012). ABA 
on the other hand represses defense against necrotrophic pathogens (Audenaert et al., 
2002, Anderson et al., 2004, Sánchez-Vallet et al., 2012). The branch of the JA pathway 
co-regulated by ABA is referred to as the MYC branch, after the central role of MYC 
transcription factors (TFs), namely MYC2, MYC3 and MYC4. The branch co-regulated by ET 
is referred to as the ERF branch, after the central role of ERF TFs, namely ERF1 and ORA59 
(Pieterse et al., 2012). Integration of these hormone-induced pathways occurs at various 
levels of molecular regulation, ensuring a robust defense response optimized for the 
attacker at hand (Aerts et al., 2021). These interactions are referred to as crosstalk between 
hormone pathways. This study focuses on the modulation of the JA gene regulatory 
network (GRN) by ABA, which we will refer to as ABA/JA crosstalk. 

 JA signaling is initiated by a release-from-repression mechanism. Under basal 
conditions JASMONATE ZIM-domain (JAZ) proteins bind to and repress JA-related TFs such 
as the MYC branch regulators MYC2, MYC3 and MYC4 (Chini et al., 2007, Fernández-Calvo 
et al., 2011) and the ERF branch regulators EIN3 and EIL1 (Zhu et al., 2011). However, when 
JA levels are high, the bioactive form of JA, JA-Ile (JA conjugated to isoleucine), mediates 
degradation of JAZs by facilitating their interaction with the E3 ubiquitin ligase complex 
SCFCOI1. This interaction targets the JAZs for degradation by the 26S proteasome (Thines 
et al., 2007, Sheard et al., 2010), leading to the release of TFs previously bound by the JAZs. 
This initiates a transcriptional cascade that involves thousands of genes (Hickman et al., 
2017). Characterization of this transcriptional cascade showed that it consists of multiple 
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phases of up- and downregulation of genes and includes the coordinated expression of 
clusters of genes that perform specific functions in the JA response (Hickman et al., 2017).

 Many studies have investigated the integration of the MYC and ERF branch in the 
JA GRN. In these studies, MYC and ERF branch activity is generally quantified based on 
marker gene expression. VSP1 and VSP2 are the most frequently used marker genes of the 
MYC branch and are activated by MYC2, MYC3 and MYC4, either directly or via ANAC019 
and ANAC055 (Bu et al., 2008, Fernández-Calvo et al., 2011, Pieterse et al., 2012). PDF1.2 
is the most frequently used marker gene of the ERF branch (Pieterse et al., 2012). It is 
induced by both the ERF TFs ORA59 (Pré et al., 2008, Zarei et al., 2011) and ERF1 (Solano 
et al., 1998, Berrocal-Lobo et al., 2002, Lorenzo et al., 2003, Zarei et al., 2011). ORA59 and 
ERF1 are believed to positively affect each other’s transcription (Çevik et al., 2012, Van der 
Does et al., 2013, Zander et al., 2014, Yang et al., 2021), but conflicting results suggesting 
no effects on each other have also been found (Pré et al., 2008). Together, this suggests 
that ERF1 and ORA59 play a partly interdependent and partly overlapping role within 
the ERF branch of defense. Transcription of ORA59 and ERF1 is regulated by the TFs EIN3 
and EIL1, although direct TF-target regulation has only been convincingly shown for 
EIN3-ERF1 (Solano et al., 1998, Pré et al., 2008, Zhu et al., 2011, Chang et al., 2013, Zander 
et al., 2014). EIN3 and EIL1 are unique TF proteins because they are not only activated by 
JA signaling through degradation of JAZ proteins, but also by ET signaling through the 
activity of the ET signal transducer EIN2 (An et al., 2010, Li et al., 2015, Merchante et al., 
2015). As such, EIN3 and EIL1 act as master regulators of both the ERF branch of defense 
and ET signaling in general (Broekgaarden et al., 2015, Dolgikh et al., 2019). 

 ABA signaling is highly integrated with JA signaling. It has long been known that 
ABA generally enhances the MYC branch and suppresses the ERF branch of the JA pathway 
(Pieterse et al., 2012). In Arabidopsis thaliana (hereafter: Arabidopsis), some of the details 
of how this works have been elucidated. For example, ABA causes upregulation of MYC2, 
and in turn MYC2 can regulate genes relevant for ABA signaling (Abe et al., 1997, Abe et al., 
2003). ABA can also promote the biosynthesis of JA (Adie et al., 2007, Fan et al., 2009, Wang 
et al., 2018), which may at least partly be attributed to ABA’s effect on MYC2 described 
above, since MYC2 is known to upregulate genes involved in JA biosynthesis genes either 
directly or via upregulation of ORA47, which in turn induces JA (and ABA) biosynthesis 
genes (Pauwels et al., 2008, Chen et al., 2016, Hickman et al., 2017, Zander et al., 2020). Next 
to this, ABA causes upregulation of PLIP2 and PLIP3, two genes that encode lipases that 
catalyze the release of polyunsaturated fatty acids that form the precursors for JA (Wang 
et al., 2018). Overexpression lines of these genes display enhanced JA signaling, indicating 
the functional importance of these genes in ABA/JA crosstalk. ABA/JA crosstalk also occurs 
at other regulatory levels. For example, the ABA receptor PYL6 interacts with MYC2 in an 
ABA-dependent way, altering the DNA binding specificity of MYC2 such that its activation 
of JAZ6 transcription is enhanced and of JAZ8 transcription is reduced (Aleman et al., 2016). 
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However, the genome-wide implications hereof are not yet clear. ABA can also enhance 
JA signaling by promoting degradation of JAZ12, a protein that inhibits JA signaling. 
This degradation is achieved by ABA-promoted self-ubiquitination of KEG, a RING E3 
ligase that in the absence of ABA decreases COI1-mediated JAZ12 degradation (Pauwels 
et al., 2015). In summary, ABA enhances JA signaling in general (e.g., by promoting JA 
biosynthesis) and the MYC branch specifically.

 While multiple effects of ABA on the MYC branch have been found, research on the 
mechanisms by which ABA suppresses the ERF branch has been lagging. Most papers 
only note that ABA suppresses ERF branch marker gene expression and defense against 
necrotrophic pathogens (Audenaert et al., 2002, Anderson et al., 2004, Sánchez-Vallet et 
al., 2012). Some mechanistic insights were given by a preprint by Vos et al. (2019), who 
used a myc2 mutant and myc2,3,4 triple mutant to show that ABA-induced suppression 
of the ERF branch is likely not dependent on these MYC TFs. The researchers also found 
that ABA can still suppress PDF1.2 expression in a 35Spro:ORA59 overexpression line after 
herbivory by Pieris rapae (hereafter: Pieris), suggesting that ABA acts downstream of 
transcription of ORA59. Using a transgenic line ectopically expressing a tandem of four 
copies of the GCC box, which is the DNA binding site for ERF TFs such as ORA59 (Zarei 
et al., 2011), they found that ABA was also able to suppress the GCC box. These results 
suggest that ABA targets GCC-box-binding ERF TFs, although the level at which this 
occurs is still to be elucidated. 

 In addition to direct effects of ABA on the MYC and ERF branch, research has also 
discovered ABA-independent mechanisms of MYC/ERF branch antagonism. For instance, 
MYC2 and EIN3 were found to interact at the protein level, leading to reciprocal inhibition 
of each other’s transcription activation activity (Song et al., 2014, Zhang et al., 2014). 
Similarly, MYC2 and ORA59 can repress each other’s expression (Verhage et al., 2011, Zhai 
et al., 2013). However, only in the case of ORA59 suppression it was shown that this is the 
result of direct binding of MYC2 to the ORA59 promoter (Zhai et al., 2013).

 Despite all the advances in our understanding of the integrated JA and ABA network, 
there is still much information missing. In this study we investigated how ABA affects the 
temporal dynamics and architecture of the JA GRN at the whole genome transcriptome 
level. This led to the prediction of novel players in the ABA/JA crosstalk and revealed 
how key JA master regulators are targeted by ABA, leading to rewiring of the JA GRN. 
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RESULTS

High-density time series of the ABA and JA GRNs and their interaction

To obtain detailed insight into the modulating effect of ABA on the JA GRN, we profiled 
the transcriptome of a just-matured leaf from 5-week-old Arabidopsis rosettes treated 
with either 50 μM ABA, 100 μM MeJA (a methylated form of JA that is converted to free JA 
in the plant), a combination of the two, or a mock solution. Plant material was harvested 
at 14 time points after treatment: 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 12 and 16 h (Table 
S1). Data for the MeJA time series were described previously (Hickman et al., 2017). In the 
present study, we compared the ABA time series to the MeJA time series and assessed 
the modulation of the JA network by ABA in the combined time series. 

 We used a generalized linear model (GLM) to identify differentially expressed genes 
(DEGs) in the three time series: ABA, MeJA and ABA + MeJA. This resulted in 7151, 3529 and 
9829 DEGs respectively, with roughly equal numbers of upregulated and downregulated 
genes (Figure 1A, E). We observed a high overlap between the three time series, with 2194 
genes being differentially expressed in all treatments, representing more than 60% of all 
genes that were differentially expressed after MeJA treatment and more than 30% after 
ABA treatment (Figure 1C). Additionally, almost 2/3rd of the genes that were differentially 
expressed after MeJA treatment (2292/3529) were significantly differentially expressed 
after ABA + MeJA treatment compared to the MeJA treatment alone (Figure 1B). In the 
majority of the cases (1398/2292 genes) ABA reinforced the effect that MeJA already 
had (e.g., genes that were upregulated or downregulated after MeJA treatment were 
even higher upregulated or downregulated, respectively, after ABA + MeJA treatment), 
but there was also a considerable portion of genes (894/2292 genes) where the effect 
of MeJA was counteracted by ABA in the double treatment (Figure 1B). Only 73 genes 
were differentially expressed after both ABA and MeJA single treatments, but not the 
ABA + MeJA double treatment (Figure 1C). Of these 73 genes, 56 were regulated in the 
opposite direction by ABA and MeJA, so in the double treatment the two hormones 
likely canceled each other’s effect. In contrast, 2470 genes (around 25%) were uniquely 
differentially expressed after the double treatment (Figure 1C), although the amplitude 
of their expression was generally low (Figure S1A). These genes could require input from 
both hormones for differentially expression (e.g., requiring two TFs), or their expression 
after each single treatment fell below the threshold to be considered differentially 
expressed, but did make the threshold after the combined treatment.  
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Figure 1: Analysis of DEGs in the ABA, MeJA and ABA + MeJA time series. 
Differential expression was determined compared to mock treatment using a GLM approach (Methods). 
(A) Overview of DEGs in the entire time series. Genes are categorized as upregulated or downregulated based on 
the mean log2-fold change compared to mock for significant time points (|Z-score| > 2.5758).
(B) Overview of the number of genes that are up- or downregulated after MeJA treatment and are differentially 
expressed after ABA + MeJA treatment compared to MeJA treatment alone. The direction of differential expression 
(up/down) is based on the mean log2-fold change compared to MeJA for significant time points (|Z-score| > 2.5758). 
(C) Venn diagram showing overlap in DEGs between the three different time series. 
(D) Venn diagram showing overlap between DEGs from the ABA + MeJA time series and time series data of 
leaves attacked by Pieris rapae (Coolen et al., 2016), Botrytis cinerea (Windram et al., 2012) or Western flower thrips 
(Steenbergen, 2022). Number between parentheses indicates total number of DEGs. 
(E) Number of DEGs at each time point in the ABA, MeJA and ABA + MeJA time series. A DEG at a time point was 
defined as a DEG for the overall time series according to the GLM and a |Z-score| > 2.5758 at that time point 
according to the GLM (Methods). 
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To investigate to what extent the ABA and MeJA response reflect responses to pests 
and pathogens we assessed the overlap between the ABA + MeJA time series with time 
series data of leaves attacked by the chewing caterpillar Pieris (Coolen et al., 2016), the 
necrotrophic pathogen Botrytis cinerea (hereafter: Botrytis) (Windram et al., 2012) and 
the cell-sucking insect Western flower thrips (Frankliniella occidentalis; hereafter: thrips) 
(Steenbergen, 2022). Of the 9829 genes affected by ABA + MeJA treatment, 6375 (64.9%) 
were affected in at least one of the pest/pathogen time series (Figure 1D), illustrating the 
important role of JA and ABA in defense against these attackers. Overlapping genes were 
more often regulated in the same direction between the ABA + MeJA time series and the 
pest/pathogen time series (e.g., up/up) than in opposite directions (e.g., up/down; Figure 
S1B-E), suggesting a positive contribution of these hormones to the defense response. 
The overlap with the Pieris dataset was particularly large, indicating the important role 
of ABA in defense against this chewing insect.

We next investigated the transcriptional dynamics over time after ABA, MeJA and 
double treatment. First, we plotted the number of DEGs at each time point. Differential 
expression of genes already occurred at 15 min after treatment, particularly in the ABA 
and ABA + MeJA time series, with more than 2000 DEGs each (Figure 1E). The total number 
of DEGs peaked between about 1.5 and 3 h after each hormone treatment and gradually 
decreased thereafter (Figure 1E), suggesting that this is the period of maximum activation 
of the networks. Also, the number of DEGs in the ABA and double treatment time series 
was larger than in the MeJA time series, suggesting that the ABA GRN encompasses 
more genes than the JA GRN. The general trend in number of DEGs per time point 
was similar for the different time series, except for the fact that in the MeJA time series 
downregulation generally occurred later and affected relatively fewer genes than in the 
other time series. This suggest that the quickest responses in the JA network mostly 
involve upregulation of target genes. 

Next, to better assess similarities and differences in transcriptional dynamics over 
time we performed a principal component analysis (PCA) on all samples based on the 
union of all genes that were differentially expressed in at least one time series. The first 
principal component (PC1) mostly captured the variation caused by the treatment, while 
PC2 seemed to capture mostly the circadian rhythm (Figure 2). The larger spreading of 
ABA than MeJA samples on PC1 and moderately also PC2 confirmed that ABA alone had 
a larger effect on the transcriptome than MeJA alone. Also, the samples from between 1.5 
and 3 h after treatment with either hormone deviated mostly from the first and final time 
points on PC1, confirming that at these time points the JA and ABA networks are the most 
activated. Based on this plot the ABA + MeJA time series seems to be an exaggerated 
response of the single ABA and MeJA time series, resulting in larger transcriptional 
programming than each of the single treatments. This confirms our analysis as presented 
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in Figure 1B and 1C that the two hormones generally have a similar effect on target gene 
expression instead of cancelling out each other’s effect. 
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Figure 2: Principal Component Analysis (PCA) of the ABA, MeJA and ABA + MeJA RNA-seq time series.
PCA was conducted on the log2-transformed read counts of the union of genes that were differentially expressed 
after ABA, MeJA and/or ABA + MeJA treatment compared to mock. For each timepoint the centroid is displayed 
in color and the corresponding samples in gray (n=3 for ABA and ABA + MeJA and n=4 for mock and MeJA). For 
clarity purposes the different treatments are plotted in their own panel, but each panel represents the same 
space. Colors represent time after treatment (in hours). PC: principal component.

Because we were mostly interested in the effect of ABA on the JA network we also 
performed a PCA on all samples based on only the genes that were differentially expressed 
after MeJA treatment. Similarly to the PCA based on DEGs in any treatment (Figure 2), 
PC1 and PC2 seemed associated with the treatment and circadian effect, respectively 
(Figure S2). To better visualize how treatment and circadian effects progressed over 
time, we plotted each of the PCs against the time after treatment (Figure 3). This PCA 
verified that what we found for the union of DEGs in all of the time series, also held true 
for just the DEGs after the single MeJA treatment: ABA has a similar effect as MeJA on 
genes that respond to MeJA and it seems to generally reinforce the effect of MeJA in the 
combined treatment (Figure 3A). This reinforcing effect was especially clear during the 
peak of expression (1.5-3 h after treatment), but is evident throughout the entire time 
series. Figure 3B also shows that in the timing-dominated PC2 the samples of the MeJA 
treatment are slightly higher than the mock samples at the earliest time points and the 
ABA samples are slightly lower than the mock samples from 4 h on; the MeJA + ABA 
samples generally follow the pattern of the most influential single treatment. This analysis 
suggests that first MeJA and then ABA exaggerates the timing/circadian effect, but PC2 
may as well capture treatment effects that are independent of the circadian rhythm. 
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Figure 3: PCA on expression levels of all MeJA-responsive genes in the ABA, MeJA and ABA + MeJA time 
series, plotted against time after treatment. 
Principal component analysis was applied to log2-transformed reads of genes that were differentially expressed 
upon the single MeJA treatment. X-axis represents time after treatment, Y-axis represents the position on (A) the 
first or (B) the second principal component (PC) from this MeJA-based PCA. Samples were colored according to 
their treatment. Dots represent individual samples, the line represents the mean per timepoint, and the ribbon 
represents the standard error. A plot of the first against the second PC, on which this figure is based, is presented 
in Figure S2.

To investigate if the observed high overlap between the single ABA and MeJA reponse 
held true over all time points we compared the Z-scores that were produced by the GLM 
between the two time series for each gene that was differentially expressed in the ABA 
and/or the MeJA time series at each time point (union of DEGs). A Z-score in this context 
is the estimated effect of the treatment at that time point divided by the standard error. 
The analysis showed a clear correlation between Z-scores of genes for both time series, 
especially between 1.5 and 4 h after treatment (Figure 4A), suggesting that the response 
to ABA and MeJA is – to some extent – qualitatively comparable. We also considered the 
possibility that the two responses may be even more similar, but with different timing. 
For example, the ABA response may be similar to a delayed JA response because ABA 
promotes JA biosynthesis (Adie et al., 2007, Fan et al., 2009, Wang et al., 2018) (Aerts et al., 
2021). To analyze this, we calculated the correlation coefficient of the Z-scores of the two 
time series for every possible combination of time points. However, this analysis showed 
that the highest correlation was between the 4-h time points of both time series and 
that generally the highest correlations were between the same time points (although 
with some exceptions, Figure 4B), suggesting the timing of the responses is in general 
quite similar. 
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Figure 4: Correlation between ABA- and MeJA-responsive gene expression profiles. 
Z-scores per gene per timepoint were calculated for the ABA and the MeJA time series vs. mock using a GLM 
(Methods). The union of genes that were differentially expressed after single ABA or MeJA treatment were 
considered for the analysis (n=8413). 
(A) Scatter plot per time point, where each dot represents one gene. h = hours after treatment. 
(B) The Spearman correlation coefficient was calculated for each treatment/time point combination and plotted 
in a dot plot. Dot color reflects the Spearman correlation coefficient and dot size reflects the absolute Spearman 
correlation coefficient.

Combined activation of the JA and ABA networks generally has non-additive 
effects on gene expression

To better understand how the ABA and JA network are integrated we turned our focus 
to the double treatment time series. We were first interested to see if expression in 
the double time series differed from a simple addition of the single treatments, since 
this would point towards extensive crosstalk between the two pathways. We thus 
plotted the expression of each gene that was differentially expressed in at least one 
of the treatments and determined how much the double treatment differed from the 
sum of the single treatments (assuming addition on a log2 scale). This showed that the 
double treatment was generally not a simple addition of the single treatments for the 
majority of genes at more than one time point (Figure 5), suggesting extensive crosstalk 
between the two pathways. One of the major patterns was that genes that were strongly 
upregulated or downregulated by both single treatments were usually lower upregulated 
or downregulated than expected after the double treatment, respectively. This is well 
illustrated by the expression profiles of VSP2 and ORA59. VSP2 was strongly upregulated 
by both ABA and MeJA, which was slightly enhanced by the double treatment, being less 
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Figure 5: Relative expression of the union of genes that were differentially expressed after ABA, MeJA 
and/or ABA + MeJA treatment.
Log2-fold change is depicted for ABA vs. mock, MeJA vs. mock, and ABA + MeJA vs. mock. For all these comparisons, 
log2-fold change of genes that were not significantly different at a specific time point according to the GLM 
described in the ‘Methods’ section |Z-score| < 2.5758) was set to 0 at that time point. In the fourth panel, the 
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difference between the ABA + MeJA vs. mock comparison and the sum of the ABA vs. mock and MeJA vs. mock 
comparisons was depicted, to assess if the expression after ABA + MeJA treatment was more, less or no different 
from an additive effect of the two single treatments. Genes were ordered based on their expression patterns in 
all four panels using the hcluster function with the ward.D method in R.

than the sum of the single treatments (Figure 6A). Similarly, ORA59, which was mostly 
downregulated by the single treatments, was less downregulated than expected by the 
double treatment, except for some time points (Figure 6B). The downregulation of ORA59 
after single MeJA treatment is somewhat counterintuitive, since it is known as a positive 
regulator of JA signaling. It may possibly be explained by relatively high endogenous 
levels of ABA and low levels of ET in plants used in our experiment, causing mostly 
activation of the MYC branch by MeJA (with the marker gene VSP2) and repression of 
the ERF branch (which includes ORA59). The observed non-additive effects in the double 
treatment suggest some level of interaction between the two pathways, for example 
competition for the same TF binding sites in the promoter of target genes. 
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Figure 6: Expression profiles of JA marker genes. 
Expression profiles of (A) VSP2 and (B) ORA59 in a time course of 14 time points after treatment of 5-week-old 
rosettes with ABA, MeJA, ABA + MeJA or mock. Expression profiles were plotted based on mean and standard 
deviation of log2-transformed read counts. 

ABA has a large effect on expression of JA metabolism genes

One possible explanation for the overlap between the MeJA and ABA response is that 
ABA may influence JA biosynthesis. Indeed, previous studies showed that ABA promotes 
JA biosynthesis (partly) via regulation of the JA master regulator MYC2 and the TF ORA47, 
which is also a transcriptional target of MYC2 (Adie et al., 2007, Fan et al., 2009, Chen et al., 
2016, Wang et al., 2018). Our data confirmed that ABA upregulates MYC2 and ORA47 (Figure 
S3A, B), especially at earlier time points. To further investigate the effect of ABA on JA 
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metabolism we plotted the expression of JA biosynthesis genes, ranging from the lipases 
that start the pathway to JAR1 that converts JA to bioactive JA-Ile (Figure 7A), and of JA 
catabolism genes (Figure 7B). Most JA biosynthesis genes were upregulated by ABA in at 
least one time point, and only OPR1 was downregulated (Figure 7A). This again confirms 
that ABA can induce JA biosynthesis (Adie et al., 2007, Fan et al., 2009, Wang et al., 2018) 
and shows that this is likely achieved via upregulation of many different JA biosynthesis 
genes. Similarly, MeJA treatment also caused upregulation of many JA biosynthesis genes 
(Figure 7A), as described in e.g., our earlier report on the single MeJA time series (Hickman 
et al., 2017). Although there was much overlap with ABA with respect to which genes were 
upregulated, MeJA treatment generally caused a longer lasting change in expression. 
Genes exclusively upregulated by ABA were the lipases PLIP2 and PLIP3 (Wang et al., 2018), 
and KAT2, which is involved in the β-oxidation rounds in the final steps of JA biosynthesis 
(Cruz Castillo et al., 2004). Interestingly, combined ABA and MeJA treatment seemed to 
cause a shift in timing of upregulation of JA biosynthesis genes compared to JA treatment 
alone: genes generally had an earlier peak in expression, but expression also decreased 
faster. This suggests that ABA may speed up the positive feedback of JA on its own levels, 
possibly providing a faster and stronger defense response against certain attackers. 

Interestingly, JA catabolism genes were also highly induced by both ABA and MeJA 
treatment (Figure 7B). This suggests that there is also strong negative feedback of JA on 
its own levels, and of ABA on JA levels. Combined ABA and MeJA treatment caused the 
highest and longest upregulation of JA catabolism genes. The peak of expression seems 
to be slightly later than that of JA biosynthesis genes, possibly causing a short peak of 
enhanced JA levels that declines later in our experiment, which could be a mechanism 
to quickly return JA to basal levels. 
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Figure 7: Expression of JA biosynthesis and catabolism genes after ABA, MeJA or combined ABA + MeJA 
treatment. 
Log2-transformed read counts of treatment vs. mock are displayed. At time points where the change was not 
significantly different according to a GLM, the log2-fold change was set to 0. If a gene was not differentially 
expressed in the time series, all time points were set to 0. 
(A) Relative expression of JA biosynthesis genes.
(B) Relative expression of JA catabolism genes.
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Transcriptional regulation of ABA/JA crosstalk

The effect of ABA on the JA pathway cannot be explained solely by its effect on JA 
biosynthesis, since it is known to affect different sectors of the JA GRN differently, and 
our previous analysis showed that it reinforced the effect of MeJA for some genes, but it 
also counteracted MeJA action on other genes (Figure 1B). Transcriptional regulation is 
a major mechanism for hormone crosstalk (Chapter 1), and therefore we first focused on 
finding TF binding sites (TFBSs) that may explain why different genes respond differently 
in the combination treatment. As a first step to understand how TFBSs affect hormone 
responsiveness, we investigated if there was an association between the number of TFs 
that can potentially regulate transcription of a certain gene and the ability of that gene 
to respond specifically to ABA or MeJA, or to both. For this analysis, we initially used 
TFBSs inferred from DAP-seq data filtered for the top 25% strongest peaks (Methods, 
"Use of other datasets"; O’Malley et al., 2016). Genes that responded to either hormone 
treatment generally had clearly more TFBSs than genes that did not (Figure S4A). 
Moreover, genes that responded to both ABA and MeJA generally had more TFBSs than 
genes that responded to only one of the two hormones (Figure S4A). Unexpectedly, 
genes that responded to MeJA generally had more TFBSs than genes that responded 
to ABA (Figure S4A). To verify whether this is a real biological feature or a bias that was 
introduced by the selection of specific TFs used for the DAP-seq dataset, we performed a 
similar analysis using another TFBS dataset. This dataset, called iGRN, was created using 
a machine learning model that combined data on DNA motifs, chromatin accessibility, 
conservation, co-expression and in vivo DNA binding to predict new TFBSs (De Clercq et 
al., 2021). While the filtered DAP-dataset includes 347 TFs, the iGRN dataset contains 1491 
TFs and comprises 1.7 million TFBSs. Comparison of two analyzed datasets shows that the 
general pattern of TFBS distribution over the different hormone treatments is similar for 
both datasets (Figure S4B), suggesting that the conclusions we drew from the DAP-seq 
dataset are robust. In summary, there seems to be an association between the number 
of TFBSs in the promoter of a gene and its responsiveness to ABA and MeJA, where genes 
that respond to MeJA usually have more binding sites than genes that respond to ABA, 
and genes that respond to the combined treatment contain even more binding sites.

 Next, we set out to find TFBSs that were associated with the differential expression 
in the ABA + MeJA combination treatment compared to MeJA single treatment (Figure 
1B). We reasoned that the corresponding TFs would be good candidate regulators of ABA/
JA crosstalk. We focused on modulation of MeJA-activated rather than MeJA-repressed 
genes, since GO-terms of upregulated genes are much more related to the JA response 
than that of downregulated genes (Hickman et al., 2017), suggesting that the core JA 
response takes place via upregulation of certain genes. Of the 1694 MeJA-upregulated 
genes, 678 (40%) were even more upregulated by the combined treatment, 487 (28.7%) 
were relatively lower expressed, and 529 (31.2%) responded the same regardless of ABA 
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co-application (Figure 1B). We next searched for TFs associated with the different effects 
of ABA on expression of the MeJA-activated genes using a stepwise regression approach. 
Briefly, we took the maximum log2-fold difference of ABA + MeJA treatment compared to 
MeJA treatment alone as a response variable, and presence/absence of either DAP-seq- or 
iGRN-inferred TFBSs as independent variables. We then carried out bidirectional stepwise 
regression to come to a final model, where the differential expression of genes after 
ABA + MeJA treatment compared to MeJA treatment alone is modeled as dependent on 
the presence/absence of binding sites of certain TFs. The stepwise regression approach 
using the DAP-seq data yielded four significant TFs in the final model: ANAC055, bZIP68 
and BIM2 binding sites were associated with upregulated genes after double treatment 
compared to MeJA treatment alone, whereas HSF6 binding sites were associated with 
downregulated genes (Figure 8A). The approach using the iGRN data resulted in the 
identification of 16 TFs, of which 10 were associated with upregulated genes and 6 with 
downregulated genes (Figure 8B). The reason for the higher number of significant TFs from 
the iGRN analysis and for identifying other TFs compared to the DAP-seq analysis could 
be that the iGRN dataset contains information on TFBSs of more TFs than the DAP-seq 
dataset (1491 vs. 347). Moreover, the iGRN data were derived from combined information 
of different experiments, meaning that there are fewer wrongly predicted target genes 
and the dataset may thus be more accurate than the DAP-seq data (De Clercq et al., 2021). 
To estimate the importance of the predicted TFs for ABA/JA crosstalk, we looked at their 
expression profile after ABA, MeJA and the combined treatment. ABA-regulated TFs that 
modulate the JA pathway would be expected to be differentially expressed after ABA 
and/or ABA + MeJA treatment, but not necessarily after MeJA treatment alone. This holds 
true for ANAC055, BIM2, HSF6 (from the DAP-seq analysis) and ATC3H3, AT1G17520, MYB78, 
DREB2, ANAC072, ATHB12, AT5G08750, GBF3, BIM3, ASG4, MYB8 and HSFA1D (from the iGRN 
analysis; Figure 8C). For the other TFs it cannot be excluded that they are activated by 
ABA at the post-transcriptional level and thus also contribute to ABA/JA crosstalk (see also 
Chapter 2). ANAC055 and likely also ANAC072 have been reported to be ABA-mediated 
regulators of the MYC branch, and are also known to be regulated by MYC2 itself (Tran 
et al., 2004, Bu et al., 2008, Zheng et al., 2012, Schweizer et al., 2013).
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Figure 8: Linear regression model of the contribution of TFBSs to expression amplitude after ABA + MeJA 
treatment compared to MeJA treatment alone for genes that were upregulated by MeJA. 
(A) DAP-seq data from O’Malley et al. (2016) were analyzed (Methods). 
(B) The iGRN data from De Clercq et al. (2021) were analyzed. 
For A and B bidirectional stepwise regression was done using only TFs that were expressed after ABA treatment 
as potential independent variables. The maximum log2-fold difference after ABA + MeJA treatment compared 
to MeJA treatment for each gene was taken as dependent variable. Individual TFs are plotted according to their 
regression coefficient and the log10 of their P value. For visualization purposes TFs predicted to positively or 
negatively contribute to target gene expression are colored red or blue, respectively. 
(C) Relative expression levels of significant TFs from both models depicted as log2-counts of ABA/mock, MeJA/
mock, and (ABA + MeJA)/mock.
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The ERF branch marker regulator ORA59 is targeted by ABA at the transcrip-
tional and protein level

In the previous analyses we focused on transcriptional regulation of JA target genes 
by ABA-regulated TFs and predicted the importance of several TFs, including a known 
regulator of the MYC branch. We likely did not pick up ERF branch master regulators 
because the single MeJA treatment mostly activated the MYC branch in our experiment, 
as shown by, e.g., the lack of upregulation of the ERF branch master regulator ORA59 by 
MeJA. We therefore used a slightly different approach to study the effect of ABA on the 
ERF branch master regulator ORA59. We already established that ORA59 was repressed 
by ABA at the transcriptional level (Figure 6B) and we observed a similar effect of ABA on 
ERF1 expression, except at the earliest time points (Figure S3C). While this is one possible 
mechanism by which ABA represses the ERF branch, crosstalk can occur at many different 
levels of regulation (Aerts et al., 2021). ORA59 is known to be targeted at the protein level 
by SA, reducing ORA59 stability and causing repression of the ERF branch (Van der Does et 
al., 2013, He et al., 2017). Because ABA also suppresses the ERF branch, we were interested 
to see if this also involves degradation of ORA59. We tested this in a transient protoplast 
expression system using a single plasmid that expressed different gene modules (Figure 
9A). Firstly, the plasmid contained the PDF1.2 promoter fused to the β-glucuronidase 
(GUS) gene to serve as a readout for ERF branch activity. Secondly, it contained ORA59 
expressed from the 35S promoter and fused to the luciferase gene from Renilla reniformis 
(hereafter: LucR). With this element we could both measure relative ORA59 protein levels 
based on the LucR fusion protein and we could assess if ABA-mediated suppression of 
PDF1.2 expression is dependent on ORA59 transcription (since ORA59 was expressed from 
the 35S promoter). The construct also contained luciferase from firefly (hereafter: LucF), 
expressed from the 35S promoter, to normalize for the number of transfected protoplasts. 
Finally, the construct contained Enhanced Yellow Fluorescent Protein (EYFP) expressed from 
the 35S promoter to visualize transfection efficiency under the microscope. 

 Treatment of protoplasts with ABA significantly decreased constitutive ORA59-
induced PDF1.2 expression (Figure 9B), suggesting that the involved mechanism acts 
downstream of ORA59 transcription. Indeed, ABA induced a small but significant 
reduction in relative ORA59 protein levels (Figure 9C). Because ORA59 was transcribed 
from a constitutively activate promoter this suggests that ABA reduces ORA59 protein 
stability, which leads to decreased PDF1.2 expression. Together with the expression profile 
of ORA59 in the time series, this suggests that ABA can suppress the ERF branch of the JA 
pathway by targeting both ORA59 transcription and ORA59 protein stability. 
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Figure 9: ABA-mediated reduction of ORA59-induced PDF1.2 expression and ORA59 protein levels in 
protoplast. 
(A) Overview of the plasmid used in the experiment. The single plasmid had four modules: the PDF1.2pro :GUS 
module served as a readout for ERF branch activity, the 35Spro:LucF module served for signal normalization, the 
35Spro:ORA59-LucR module served both to activate the ERF branch and to read out relative ORA59 protein levels, 
and the 35Spro:EYFP module served to visualize transfection efficiency under the microscope. 
(B) Relative PDF1.2 expression in Arabidopsis protoplasts transfected with the plasmid in (A) and treated with 
ABA or mock for 20 h. PDF1.2 expression was determined by taking the log2 of the GUS signal divided by the LucF 
signal. The displayed statistics were calculated using Student’s t-test (n=4).
(C) Relative ORA59 protein levels from the same experiment. Relative ORA59 protein levels were determined 
by taking the log2 of LucR divided by LucF. The displayed statistics were calculated using Student’s t-test (n=4).
The experiment was repeated an additional four times, all with the same results (not shown). 

Both ORA59 and ERF1 are likely targeted by ABA to suppress the ERF branch in 
planta

After our finding that targeting of ORA59 protein levels is likely important for suppression 
of the ERF branch of the JA pathway by ABA in protoplasts, we wanted to determine 
if this also held true in planta under biotic stress and if other master regulators of the 
ERF and/or MYC branch may also be involved. To this end, we pre-treated 5-week-old 
Arabidopsis plants with a root drench of 10 μM ABA or a mock solution at 3 and 0 days 
before inoculation with 5*105 spores/ml of Botrytis or a mock solution. We sampled one 
leaf of the rosette (the 8th developmental leaf) and subjected it to qRT-PCR to assess 
PDF1.2 expression. We did this for Col-0 and for mutants and overexpressors of the ERF 
branch of defense (ein3 eil1, ora59, erf1, 35Spro:EIN3, and 35Spro:ORA59  ), and a mutant line of 
the MYC branch master regulator myc2. In Col-0, Botrytis inoculation caused strong, highly 
significant upregulation of PDF1.2 (Figure 10A). In line with the protoplast assay, treatment 



97

3

Dynamic modulation of the jasmonic acid gene regulatory network by abscisic acid 

with ABA suppressed PDF1.2 expression, which occurred in both the Botrytis-challenged 
plants and in the mock-treated plants (as shown by the non-significant interaction term 
in the 2-way ANOVA; Figure 10A). In the ein3 eil1 mutant Botrytis inoculation did not lead 
to upregulation of PDF1.2 (Figure 10B). EIN3 and EIL1 form the convergence point for 
both JA and ET signaling, (Zhu et al., 2011), meaning that PDF1.2 cannot be induced by 
either hormone in the double mutant, and our data corroborate that EIN3 and EIL1 are 
essential for ERF branch induction during Botrytis attack. ABA was still able to suppress 
PDF1.2 expression in both the ein3 eil1 mutant and the 35Spro:EIN3 overexpression line, 
suggesting that suppression of the ERF branch of defense occurs downstream of EIN3 and 
EIL1 (Figure 10B, C). In the erf1 mutant, Botrytis inoculation caused similar upregulation 
of PDF1.2 expression as in Col-0, but ABA was unable to suppress it (Figure 10D). This 
suggests that ERF1 is not essential for PDF1.2 induction, but that it does play a role in 
ABA-mediated suppression of PDF1.2 expression. In accordance, ERF1 expression was 
suppressed at most time points by ABA in our time series, although at the earliest time 
points it was slightly upregulated by ABA (Figure S3C). This suggests that ABA targets 
the ERF branch partly by targeting ERF1 transcription, although the somewhat erratic 
expression pattern of ERF1 after ABA treatment suggests that this is unlikely the only 
mechanism. In the ora59 mutant PDF1.2 expression was at lower basal levels than in 
Col-0, but could still be induced after Botrytis inoculation, albeit it to a relatively low 
level (Figure 10E). This confirms that ORA59 is important but not exclusively needed 
for basal PDF1.2 expression and induction after Botrytis infection. ABA could suppress 
PDF1.2 expression after Botrytis inoculation, but could not further suppress the already 
very low PDF1.2 level after mock inoculation. Conversely, in the 35Spro:ORA59 line ABA was 
unable to suppress PDF1.2 expression, although there was a statistical trend (Figure 10G). 
These results contradict the results in protoplasts, where ABA treatment did suppress 
ORA59-induced PDF1.2 expression (Figure 9). Together this suggests that the mechanisms 
by which ABA suppressed PDF1.2 expression are context-dependent and may involve 
suppression of both ERF1 and ORA59 at different levels of regulation (transcription and 
protein level). Since the ERF branch of defense is suppressed by the MYC branch, we 
tested also a mutant in MYC2, the most prominent master regulator of this branch (Kazan 
and Manners, 2013). Interestingly, the myc2 mutant showed more or less the same pattern 
of Botrytis induction and ABA-mediated suppression as Col-0 (Figure 10G). This suggests 
that even though ABA upregulates the MYC branch and downregulates the ERF branch, 
its downregulation of the ERF branch does not require MYC2.
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Figure 10: Relative PDF1.2 expression in different JA-related mutants after Botrytis inoculation and/or 
ABA treatment. 
Five-week-old plants were pre-treated with a 20-ml root drench of 10 μM ABA or a mock solution at 3 and 0 days 
before Botrytis or mock inoculation. One inoculated leaf (the 8th leaf, which had just matured) was harvested for 
qRT-PCR analysis. Relative PDF1.2 expression was determined by subtracting the Ct value of PDF1.2 from that 
of the reference gene AT1G13320, and then subtracting a fixed number such that the mock-pre-treated, mock-
treated Col-0 samples had a mean -ΔCt of 0. Panels indicate different mutants. Below the panel the results of 
a 2-way ANOVA (n=5) are indicated, where ‘Botrytis effect’ refers to the Treatment parameter and ‘ABA effect’ 
refers to the Pretreatment parameter. The ‘Interaction’ term indicates if the Treatment*Pretreatment interaction 
from the 2-way ANOVA is significant. The tested lines were (A) Col-0, (B) ein3 eil1, (C) 35Spro:EIN3-GFP (referred to 
as 35Spro:EIN3), (D) erf1, (E) ora59, (F) 35Spro:ORA59, and (G) myc2. 
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DISCUSSION

The ABA and JA GRNs are highly interconnected

JA has an essential role in Arabidopsis as a regulator of defense against necrotrophic 
pathogens and insects. ABA modulates the JA pathway, reinforcing the MYC branch, 
which is directed against insects, and repressing the ERF branch, which is directed 
against necrotrophic pathogens (Pieterse et al., 2012). To study this modulation more 
in-depth we conducted and analyzed a high-density time series of Arabidopsis rosettes 
treated with MeJA, ABA, or the combination. ABA was found to induce more than two 
times the number of DEGs as MeJA (Figure 1). One possible interpretation is that this 
hormone regulates a broader response in terms of functions, or a response that requires 
the collaborative action of more genes than JA does. An alternative explanation is that 
we applied a more effective dose of ABA than of MeJA, leading to the induction of more 
genes. Furthermore, ABA single treatment modulated expression of about 2/3rd of all 
MeJA-responsive genes, and also modulated the expression a similar number of genes 
in the ABA + MeJA double treatment compared to MeJA treatment alone (Figure 1B, C). 
This shows that the ABA GRN overlaps with a large part of the JA GRN and confirms that 
ABA is an important modulator of the JA pathway (Pieterse et al., 2012).

We found that the transcriptional responses to ABA and MeJA have many similarities, 
especially between 1.5 and 4 h after treatment (Figure 4). Not only were many of the 
same genes regulated by the two hormones, but also the direction of regulation (up/
down) and the timing was similar. One possible explanation may be that the hormones 
stimulate each other’s biosynthesis, as we showed for the expression of JA biosynthesis 
genes, which was induced by both MeJA and ABA (Figure 7). However, compared to 
exogenous application of MeJA, this transcriptional activation by ABA would likely lead to 
activation of the JA GRN at a much later time point because it takes time to produce the 
enzymes and catalyze the production of more hormone. We did not find such a difference 
in timing, so while effects on biosynthesis, possibly also regulated post-transcriptionally, 
could still explain some of the overlap between the two GRNs, it is unlikely the only 
explanation. Alternatively, both hormones may (partly) activate or repress the same 
master regulator genes, as is known for e.g., MYC2 (Abe et al., 1997, Abe et al., 2003) and 
also apparent in our data, which showed that both hormones quickly upregulated MYC2 
expression (Figure S3A). 

The large overlap in target genes of ABA and JA is reminiscent of the overlap 
between plant immunity network sectors regulated by the hormones SA, JA and ET and 
the crucial immunity gene PAD4, which were studied in the context of AvrRpt2-mediated 
effector-triggered immunity (ETI) against Pseudomonas syringae pv. tomato DC3000 
(Tsuda et al., 2009). All four sectors were found to contribute to ETI against the pathogen, 
but the combined contribution of the network sectors was lower than the sum of each 
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sector. This suggested that the different sectors of the immune network negatively affect 
each other during AvrRpt2-triggered ETI. The advantage of such a network architecture 
is that the loss of one sector can be compensated by another sector, which is no longer 
repressed. These compensatory interactions provide robustness to the network when one 
of the sectors is disrupted by e.g., the actions of a pathogen. Similarly, the large overlap in 
output of the ABA and JA network and the fact that the combined effect is usually lower 
than the sum of the single effects (if the single effects are in the same direction; Figure 
5) suggests that the two hormones also have compensatory effects and provide the 
plant with a robust immune network against JA/ABA-related attackers such as chewing 
insects. Future studies may investigate the biological relevance of these compensatory 
actions by investigating if they can also be measured after attack by an insect (e.g., 
by measuring resistance in wild type and single and double ABA and JA biosynthesis 
knockout lines) and how these compensatory actions are achieved mechanistically. One 
possible mechanism would be the competition for the same binding sites by JA- and 
ABA-activated TFs. For example, bHLH TFs acting in the JA pathway and bHLH and bZIP 
TFs acting in the ABA pathway bind very similar motifs (Hickman et al., 2017; Chapter 2). 
It is thus well possible that they regulate their overlapping targets by targeting the exact 
same motifs, hindering binding of the other TF, resulting in less-than-additive regulation 
of target genes. This can be especially important if it happens at the promoters of master 
regulators that are targeted by both ABA and JA. These TF genes then act as ‘bottleneck 
genes’: they are important regulators for the expression of many overlapping ABA and JA 
targets, but their own expression after combined activation of the ABA and JA pathway 
is never the sum of that after ABA and JA treatment because the TFs competing for 
promoter binding hinder each other. The early expression profile of MYC2 after ABA, MeJA 
and the combination treatment fits such a bottleneck effect (Figure S3A).

The different PCA analyses in this chapter (Figure 2 and Figure 3) suggested that 
time after treatment (PC1) and the treatment itself (PC2) are the largest contributors 
to global gene expression patterns after the different treatments. The importance of 
time after treatment is likely mostly related to circadian regulation, since variation on 
PC1 was also observed in the mock treatment and it is known that about one-third 
of all genes are circadian regulated (Covington et al., 2008), so these are expected to 
significantly contribute to the global expression pattern in our different treatments. 
The fact that the first PC captured variation that was also seen in the mock treatment 
corroborates the importance of the mock time series to control for, e.g., circadian effects. 
As expected, treatment was the other major contributor to global expression patterns. 
We found that the global effect of combined treatment was usually bigger than that of 
the single treatments (Figure 2) and that when only genes that were affected by MeJA 
were considered the combination effect on global expression patterns peaked higher 
and earlier than the effect of the single treatments (Figure 3). This included higher and 
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faster upregulation of genes involved in JA biosynthesis (Figure 7). The earlier peak of the 
molecular response could be important to ward off a feeding insect as fast as possible 
before it can do any damage. In general the expression of many genes in the double 
treatment also rapidly returned to levels similar to those after single MeJA treatment 
in our experiment (Figure 3A), which suggests an attenuation of the defense response. 
Such negative feedback on the JA pathway could partly result from the upregulation 
of JA catabolism genes that we observed (Figure 7). Since we only did a single (“pulse”) 
treatment with the hormones at time point zero of the experiment we cannot predict if 
these negative feedback mechanisms are also dominant during an insect attack when 
ABA and JA signaling is continuously stimulated. 

Regulation of the JA GRN by ABA-induced/suppressed TFs

We used a bidirectional stepwise regression approach to find TFs that are associated 
with the differential effect of ABA on MeJA-upregulated genes (Figure 8). This resulted 
in the discovery of 20 such TFs. If these are indeed ABA-activated modulators of the JA 
pathway it would be expected that they are transcriptionally regulated by ABA or at least 
differentially regulated in the ABA + MeJA treatment compared to the MeJA treatment 
alone. Indeed, this was the case for 14/20 TFs (Figure 8), which supports the idea that this 
analysis can pick up relevant TFs. Alternatively, TFs may be activated post-transcriptionally 
by ABA (Yang et al., 2017; Chapter 2). The analysis also identified ANAC055 and ANAC072 
as putative regulators of ABA/JA crosstalk. Expression of both encoding genes was 
induced by ABA (Figure 8C) and the presence of ANAC055 and ANAC072 binding sites was 
associated with genes that were higher expressed after ABA + MeJA treatment compared 
to MeJA treatment alone (Figure 8A, B). ANAC055 is a known activator of MYC-branch-
related transcription and a suppressor of the ERF branch, confirming that the approach is 
suitable for finding modulators of the JA pathway (Bu et al., 2008, Schweizer et al., 2013). 
ANAC072 has high sequence similarity to ANAC055 and has a similar function in, e.g., ABA 
signaling (Tran et al., 2004) and JA-induced repression of SA signaling (Zheng et al., 2012), 
but has not been well studied regarding its effect on JA-responsive gene expression. Our 
analysis suggests they both have a role in ABA-mediated MYC branch activation.

It is to be noted that all these predictions rely on information on TFBSs derived 
from databases that are not perfect: DAP-seq involves in vitro experiments with a non-
complete set of TFs, and, for example, does not take the chromatin context into account. 
Similarly, the iGRN network relies on machine-learning-inferred TFBS predictions. It is 
therefore important in the future to experimentally validate the importance of the 
identified TFs, for example by doing chemical crosstalk assays or bioassays with insects/
necrotrophic pathogens using mutant and/or overexpression lines of the TFs. 
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ABA suppresses the ERF branch by targeting ORA59 and possibly ERF1

Besides our interest in which TFs actively regulate ABA/JA crosstalk, we also wanted 
to learn which JA master regulators are themselves targeted by ABA. We investigated 
this using a different experimental approach, for which we decided to focus on ERF 
branch master regulators. We chose these because induction of the ERF branch was not 
so clear in our RNA-seq time series experiment, which was possibly due to a relatively 
high ratio of endogenous ABA over ET. Therefore, our experiments to study the effects 
of ERF branch overexpression or mutation nicely complement the other findings in the 
manuscript. First, we used a protoplast system to assess the negative effect of ABA on 
the ERF branch, and found that ABA reduced PDF1.2 expression and ORA59 protein levels 
(Figure 9). Because we used a constitutively active promoter this likely means that ABA 
reduces ERF-branch-related transcription by reducing ORA59 protein stability, although 
effects on any of the steps between transcription and completion of translation cannot 
be ruled out (see also Aerts et al., 2022). Additionally, in our time series ABA also reduced 
ORA59 transcription (Figure 6B). This suggests that ABA targets the ERF branch via ORA59 
via at least two levels of regulation. Surprisingly, in whole plants we found that ABA was 
unable to suppress PDF1.2 expression in a 35Spro:ORA59 line, even though such a line is 
comparable to our protoplast setup where we transiently expressed ORA59 from the 
35S promoter. It could be that in stable lines there is so much ORA59 protein that ABA 
is unable to break down enough protein to cause any changes in PDF1.2 expression. In 
line with our observation, while SA is generally accepted to repress PDF1.2 expression at 
least partly by reducing ORA59 protein levels (Van der Does et al., 2013, He et al., 2017), 
the PDF1.2 expression level was not reduced by SA in the 35Spro:ORA59-GFP line (Van der 
Does et al., 2013). This indicates that our observed targeting of ORA59 protein levels by 
ABA in the protoplast system can still point to this being an important mechanism for 
our observed suppression of the ERF branch marker gene PDF1.2 in other backgrounds 
than 35Spro:ORA59-GFP. Notably, in earlier work we also found that ABA could not suppress 
PDF1.2 expression in the 35Spro:ORA59 line under basal conditions; however, when these 
plants were fed on by Pieris, the resultant high PDF1.2 induction could be repressed by 
ABA (Vos et al., 2019). Overall, the role of degradation of ORA59 mediated by hormones 
such as ABA and SA may thus be context-dependent. 

We also determined whether more ERF branch regulators are involved in ABA-
mediated suppression of the ERF branch. For example, in the case of SA-mediated 
suppression of the ERF branch, it was found that EIN3 and EIL1 are involved in 
degradation of ORA59 (He et al., 2017). We were unfortunately unable to test if this was 
also the case for ABA-mediated degradation of ORA59 due to inconsistent results of 
and technical difficulties with the required protoplast assays. The fact that suppression 
of PDF1.2 expression by ABA is unaffected in the ein3 eil1 mutant and the 35Spro:EIN3-
GFP overexpression line in our Botrytis experiment (Figure 10) suggests that the two 
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proteins are likely not involved in this. We found that ABA was unable to suppress PDF1.2 
expression in an erf1 mutant (Figure 10). This is unlikely due to an upstream effect of 
ERF1 on ORA59 as we observed that PDF1.2 induction by Botrytis was not affected in 
erf1, suggesting ORA59 functioned normally (Figure 8). Thus, our results suggest that 
targeting of ERF1 by ABA is also important for suppression of PDF1.2 and that perhaps 
intact ERF1 is required for the effect of ABA on ORA59. We also tested if the MYC branch 
master regulator MYC2 was involved in the suppression of the ERF branch, since MYC2 is 
known to suppress the ERF branch and ABA upregulates the MYC branch (Pieterse et al., 
2012, Aerts et al., 2021). We found that MYC2 was not required for suppression of PDF1.2 
by ABA (Figure 10), suggesting this takes place via a MYC2-independent pathway. This 
confirmed our earlier findings in the context of Pieris feeding (Vos et al., 2019).

Concluding remarks

We investigated crosstalk between the ABA and JA pathway by analyzing RNA-seq time 
series data of ABA-, MeJA- and double-treated Arabidopsis leaves. We found that the 
two pathways alone have a significant level of similarity and when activated together 
generally reinforce each other, although often less than additive. We also found that ABA 
modulates the JA pathway by altering transcription of MeJA-responsive genes, among 
which genes involved in JA biosynthesis and catabolism, through a set of TFs, which we 
predicted through statistical analyses. Also the JA master regulators ORA59 and ERF1 are 
downregulated by ABA at the transcriptional level and ORA59 likely also at the protein 
level, which affects expression of the target maker gene PDF1.2. Our work represents a 
starting point for research into the integration of ABA and JA signaling, which is essential 
for understanding how defense against insects and necrotrophic pathogens is regulated.

METHODS

Plant material and growth conditions

In all experiments, Arabidopsis accession Col-0 was used as wild type. The mutants and 
overexpression lines used were all in the Col-0 background: ein3 eil1 (Alonso et al., 2003; 
both are mutant allele 1 from this paper), 35Spro:EIN3-GFP ein3 eil1 (He et al., 2011), erf1 
(Caarls et al., 2017), ora59 (Zander et al., 2014), 35Spro:ORA59 (Pré et al., 2008), and myc2 
(Lorenzo et al., 2004; described there as jin1-7). For soil-grown plant cultivation, the seeds 
were stratified in 0.1% plant agar (Duchefa Biochemie, Haarlem, the Netherlands) at 4°C 
for 48 h and then sown on two-times autoclaved river sand, which filled an open box. 
The box was placed in a tray, which was closed with a transparent lid and had a layer of 
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water on the bottom to increase humidity to about 100%. The plants were grown for 2 
weeks at 21°C with a light/dark cycle of 10 h light (75 µmol/m2/s for the RNA-seq time 
series experiment, 200 µmol/m2/s for the Botrytis experiment) and 14 h of darkness. 
Subsequently, the plants were transferred to 60-ml pots filled with a mixture of river 
sand and potting soil in a 5:12 ratio, which had been autoclaved twice. The pots were 
kept in a tray under the same conditions, but after 2 days the lid was first opened slightly 
and after 2 more days completely removed, decreasing the humidity to 70%. The plants 
were watered three times per week, with one watering per week being a modified half-
strength Hoagland solution containing 10 μM sequestreen ((Fe-EDDHA), Royal Brinkman, 
‘s-Gravenzande, the Netherlands), instead of water.

For protoplast experiments, a volume of approximately 50 μl of Arabidopsis Col-0 
seeds were surface-sterilized by putting them in an open 1.5-ml tube (Greiner Bio-One, 
Kremsmünster, Austria), which was placed in a glass desiccator that also contained 
a beaker with a mixture of 100 ml of commercial bleach (Manutan B.V., Den Dolder, 
the Netherlands) and 3.2 ml of 37% HCl. The desiccator was immediately closed after 
preparation of the gaseous sterilization mixture and the seeds were incubated in the 
desiccator for 4 h. Afterwards, the sterile seeds were sown on a 120x120 square Petri dish 
containing 70 ml of ½ Murashige and Skoog (MS) medium with 2% sucrose, buffered 
with MES (pH = 5.7) and solidified with 1% plant agar (Duchefa Biochemie). Seeds were 
stratified on the plates in the dark at 4°C and then incubated lying down in a growth 
chamber at 21°C with a 10-h light/14-h dark cycle at a light intensity of 75 μmol/m2/s. 

RNA-seq time series experimental setup

RNA-seq time series were generated largely as described previously (Hickman et al., 2017, 
Hickman et al., 2019; Chapter 2). In brief, rosettes of 5-week-old plants were dipped for 3 
s in a tap-water-based solution containing either 50 μM ABA (Duchefa Biochemie), 100 
μM MeJA (Duchefa Biochemie), 50 μM ABA and 100 μM MeJA, or a mock solution, which 
contained 0.1% ethanol, the solvent for ABA and MeJA. The solutions also contained 
0.015% (v/v) Silwet L77 (Van Meeuwen Chemicals BV, Weesp, the Netherlands; nowadays 
this compound is known as CoatOSil 77 (Momentive, New York, NY, USA)). The sixth 
true leaf (counted from the oldest) from each rosette was harvested, representing one 
replicate, at 15 min, 30 min, and 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 12 and 16 h after treatment. For 
the mock and MeJA time series four replicates were sequenced, while for the ABA and 
ABA + MeJA time series three replicates were sequenced, as was explained in Chapter 2.
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RNA extraction, sequencing and data processing

RNA extraction, library preparation and data processing was done as described in Chapter 
2. Notably, the mock and MeJA time series were processed in a different study than the 
ABA and ABA + MeJA time series and thus library prep and sequencing was done slightly 
differently between those groups of samples, as described in Chapter 2 for the mock 
and ABA time series. The mock and MeJA time series sequencing libraries were prepared 
using the Illumina TruSeq mRNA Sample Prep Kit and libraries for the ABA and ABA + 
MeJA time series were prepared using the Illumina TruSeq mRNA Stranded Sample Prep 
Kit. Sequencing was done on the Illumina HiSeq 2000 platform with read lengths of 50 
bases (mock and MeJA; see also Hickman et al., 2017 and Hickman et al., 2019) or the 
Illumina NextSeq 500 platform with read lengths of 75 bases (ABA and ABA + MeJA). Read 
alignment, annotation and normalization were done as described in Chapter 2. During 
data processing all reads were regarded as coming from an unstranded library prep and 
sequencing platform (see also Chapter 2). Verification that the differences in sample 
processing did not lead to large biases in the data was described in Chapter 2. Analysis 
of DEGs was done using a generalized linear model (GLM), as described in Chapter 2.

Data analysis tools

Unless stated otherwise, data analysis was done using R version 4.1.2. Visualization was 
done using the ggplot2 v3.3.5 and gplots v3.3.1 packages. Colors were picked using the 
RColorBrewer v1.1-2 package and via http://www.ColorBrewer.org (Cynthia A. Brewer, 
accessed December 2022/January 2023). 

Principal component analysis

A PCA was done on the log2 of read counts using the prcomp function from the stats 
package in R with default settings. The exact set of genes and samples used for PCA 
differed per analysis, as explained in the Results section and figure legends.

Use of publicly available datasets

MeJA-responsive clusters of coexpressed genes were downloaded from Hickman et al. 
(2017). Notice that this clustering comes from the same data as presented in this chapter, 
but the read counts in that paper were only normalized on mock and MeJA samples, so 
they differ slightly from the normalized counts presented in the current study. Expression 
of genes in each of the clusters was based on the data presented in this manuscript. 

Time series data of Arabidopsis infested by Pieris were downloaded from Coolen 
et al. (2016). Genes that were differentially expressed in at least one of the time points 
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were considered DEGs in that time series and they were divided into upregulated and 
downregulated genes based on their mean log2-fold change of Pieris/mock over all 
time points. DEGs and coexpression clusters derived from Botrytis-infected Arabidopsis 
were downloaded from Windram et al. (2012). In accordance with that paper, genes 
from clusters 1-22 were considered downregulated and genes from clusters 23-44 were 
considered upregulated. Thrips data were obtained in-house and are not yet publicly 
available. The data are described in the PhD dissertation of Steenbergen (2022). DEGs 
were divided into upregulated and downregulated DEGs based on their mean log2-fold 
difference of thrips/mock over all time points. 

DAP-seq data used in this study came from the work of O’Malley et al. (2016). DAP-
seq peaks were downloaded from Plant Cistrome DB, excluding the ampDAP data. The 
dataset was reduced to contain only the TFBS based on the 25% most significant peaks 
in the whole dataset, as described in Chapter 2.

iGRN data, described by De Clercq et al. (2021), were obtained from http://
bioinformatics.psb.ugent.be/webtools/iGRN/pages/download. No further filtering of the 
dataset was done. Gene codes were converted to common names using a curated version 
of the file gene_aliases_20130831.txt, which was downloaded from ftp.arabidopsis.org. 
To ensure accurate gene names, the file was manually curated for genes incorporated in 
this manuscript’s figures, as the downloaded file is outdated and lacks certain common 
names. These new common names were retrieved from the gene’s page at www.
arabidopsis.org. In cases where a gene had multiple common names, the most frequently 
used common name in publications mentioning the gene was used.

Correlation analysis of ABA with MeJA time series

The union of DEGs from the ABA and MeJA time series was taken for this analysis. For 
each gene and for each time point combination of the two time series the Z-scores of 
the time*treatment interaction parameter outputted by the GLM (see “RNA extraction, 
sequencing and data processing” and Chapter 2”) were correlated with Spearman’s rank 
correlation. 

Analysis of additive/synergistic expression of time series

The union of DEGs of the MeJA vs. mock, ABA vs. mock and ABA + MeJA vs. mock time 
series was taken. The log2-fold change was calculated for each comparison, and was 
set to 0 at timepoints where the difference was not significant according to the GLM 
(see “RNA extraction, sequencing and data processing” and Chapter 2). For each gene 
and timepoint the difference was calculated between the expression after ABA + MeJA 
and the expected expression based on the single time series. This was done by adding 
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the log2-fold change of ABA vs. mock to the log2-fold change of MeJA vs. mock and 
subtracting the resulting number from the log2-fold change of ABA + MeJA vs. mock. 
For heatmap visualization, the four dataframes were concatenated by column and the 
rows were clustered and ordered based on the first three dataframes using the hclust 
function in R with the ward.D agglomeration method. 

Predicting TFs associated with ABA/JA crosstalk

A stepwise regression approach was used to predict TFs associated with ABA/JA crosstalk. 
First, all upregulated DEGs after MeJA treatment were taken (n=1694). Next, the maximum 
absolute log2-fold difference between ABA + MeJA and MeJA treatment for each gene 
out of the 14 time points was determined. This was used as dependent variable in a 
linear regression model where each TF from the filtered DAP-seq dataset or (in a different 
analysis) from the iGRN dataset (see “Use of publicly available datasets”) were used as 
independent variables, using only presence/absence of TFBSs per gene. Only TFs with 
binding sites in at least 16 MeJA DEGs (about 1% of total number of upregulated MeJA 
DEGs) were considered for the analysis. Bidirectional stepwise regression was used to 
come to a final model, using the stepAIC function from the MASS package (v7.3-55) in R. 

Transient expression assay in protoplasts

Transient expression assays in protoplasts were conducted using a custom protocol based 
on protocols by Yoo et al. (2007) and Mathur and Koncz (1998). Details of our protocol 
are described in Chapter 4. The protoplasts were isolated from rosettes of 3-to-4-wk-
old Arabidopsis plants grown on plate (see ‘Plant material and growth conditions’). The 
construction of the level 0 and level 1 plasmids and the procedure for creating the level 2 
plasmid are described in Chapter 4. Table S2 lists the level 1 plasmids that were combined 
into the final level 2 plasmid for the current study. Hormone treatment (1 µM ABA or 
mock) was done by adding 1.2 μl of 1 mM ABA solution (1000x stock in 96% ethanol) or 
0.096% ethanol (for the mock treatment) to 500 μl WI right before adding 700 μl of just-
transfected protoplast suspension in 6-well plates used for overnight incubation (see 
Chapter 4 for details on the procedure). The plates were incubated at 21°C in the dark for 
approximately 20 h. Measurements of GUS, LucR and LucF were performed as described 
in Chapter 4. One biological replicate in the experiment originated from a single well of 
protoplasts transfected in that well.
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Botrytis infection assays and qRT-PCR analysis

Plants grown for 33 days under conditions as described in “Plant material and growth 
conditions” were subjected to Botrytis infection. Three days prior to inoculation, pots 
were placed on 60-mm petri dishes, which served as saucers, and supplied with 20 
ml of 100 µM ABA (dissolved from a 1000x stock in 96% ethanol) in tap water, or the 
corresponding amount of ethanol in tap water as a mock pretreatment. This pretreatment 
was repeated at approximately one hour before Botrytis inoculation. Botrytis inoculation 
was performed as described previously (Van Wees et al., 2013) using strain B05.10. The 
eighth developmental leaf of each plant was inoculated with one 5-µl droplet containing 
spores at a density of 5*105 spores/ml or with 5 µl of half-strength potato dextrose broth 
as a mock treatment. Trays were watered well and shut-closed with transparent lids using 
tape. After 48 h the 8th developmental leaf (which was inoculated) was harvested and 
snap-frozen in liquid nitrogen in a 2-ml tube containing two 3-mm glass beads. 

 RNA for qRT-PCR analysis was extracted as described by Oñate-Sánchez and 
Vicente-Carbajosa (2008). Genomic DNA was removed using DNAse I (Fermentas, 
St. Leon-Rot, Germany). DNA-free total RNA was converted to cDNA using RevertAid 
H minus Reverse Transcriptase (Fermentas). PCR reactions were performed in optical 
384-well plates with a ViiA 7 realtime PCR system (Applied Biosystems, Carlsbad, CA, 
USA), using SYBR® Green to monitor the synthesis of double-stranded DNA. Primers 
used were TAACGTGGCCAAAATGATGC and GTTCTCCACAACCGCTTGGT for the 
reference gene AT1G13320 (Czechowski et al., 2005), and TTTGCTGCTTTCGACGCAC and 
CGCAAACCCCTGACCATG for PDF1.2. A standard thermal profile was used: 50°C for 2 min, 
95°C for 10 min, 40 cycles of 95°C for 15 s and 60°C for 1 min. Amplicon dissociation curves 
were recorded after cycle 40 by heating from 60 to 95° C with a ramp speed of 1.0°C/min. 
Expression of PDF1.2 was calculated as -ΔCt relative to the reference gene. 
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SUPPLEMENTARY MATERIAL

Supplementary figures

Figure S1: Expression of unique ABA + MeJA DEGs and overlap between all DEGs from the ABA + MeJA 
time series and public pest/pathogen datasets. 
(A) DEGs after ABA + MeJA treatment but not after single ABA and MeJA treatment were clustered based on the 
log2-fold change between ABA + MeJA and mock treatment using SplineCluster (Heard et al., 2006), and the mean 
of each cluster per time point is plotted here.
(B-E) Overlap is shown between ABA + MeJA DEGs and DEGs after inoculation with Pieris (Coolen et al., 2016), 
Botrytis (Windram et al., 2012) or thrips (Steenbergen, 2022). Numbers between parentheses indicate total number 
of DEGs. Venn diagrams were made using (B) only upregulated genes from each dataset; (C) only downregulated 
genes from each dataset; (D) upregulated genes from the ABA + MeJA dataset and downregulated genes from 
the pest/pathogen datasets; (E) downregulated genes from the ABA + MeJA dataset and upregulated genes from 
the pest/pathogen datasets. A gene was considered up or downregulated when the mean over the time series 
was more than 0 or less, respectively. 
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Figure S2: PCA of all samples from the ABA, MeJA and ABA + MeJA time series based on all genes that are 
differentially expressed after single MeJA treatment. 
PCA was performed based on the log2 of all genes that are differentially expressed after MeJA treatment. Sample 
names reflect their treatment (M for mock, A for ABA, J for MeJA and D for double treatment), time (h) after 
treatment and replicate number (after the dash). Samples are colored according to their treatment. PC: principal 
component.
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Figure S3: Expression of selected JA-related TF genes. 
Expression profiles were plotted based on mean and standard deviation of log2-transformed read counts. 
Expression profiles were plotted for (A) MYC2, (B) ORA47 (B), (C) and ERF1.
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Figure S4: Density of TFBSs for genes that respond to ABA, MeJA, both or neither. 
Genes were assigned as responsive to one, both or none of the hormones using the GLM described in the Methods 
section (“RNA-seq data processing and differential expression analysis”). Mitochondrial or chloroplast genes were 
not considered for this analysis, as DAP-seq is done with nuclear-extracted DNA. Number of genes was 24974 for 
‘None’, 4820 for ‘Only ABA’, 1262 for ‘Only MeJA’ and 2267 for ‘Both ABA and MeJA’. Densities of TF binding sites 
are plotted for each of these categories. TFBSs sites were taken (A) from the filtered DAP-seq data (Methods, 
“Use of publicly available datasets”) and (B) the iGRN network (Methods, “Use of publicly available datasets”). 
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Supplementary tables

Table S1: Time series experimental set-up and mRNA sequencing details. 
Available upon request.

Table S2: DNA components for assembly of a level 2 vector for a transient protoplast expression assay. 
Plasmids were derived from the MoClo plant parts toolkit (Weber et al., 2011, Werner et al., 2012) or from level 1 
reactions described in Chapter 4, where also the content of each numbered plasmid is described (Table S4 of 
Chapter 4). NB: a dummy was used at the fourth position because we already cloned EYFP into the fifth position 
for another project (Chapter 4) and without a dummy on position 4, there can be no connection between position 
3 and position 5. 

Component Component description Vector used

Backbone vector Backbone pAGM4673

First gene construct PDF1.2pro:GUS 1.1.2

Second gene construct 35Spro:LucF 1.2.2

Third gene construct 35Spro:ORA59-LucR 1.3.3

Fourth gene construct Dummy position 4 pICH54044

Fifth gene construct 35Spro:EYFP 1.5.1

End-linker 5 End-linker to link position 5 to 
the backbone vector

pICH41800
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ABSTRACT

The plant immune signaling network is controlled by different hormone-regulated 
pathways that exhibit extensive interplay. The key plant defense-related hormones 
salicylic acid (SA) and jasmonic acid (JA) are known to antagonize each other’s activity. 
NPR1, the master transcriptional regulator of the SA pathway, is also functioning in the 
antagonistic action of SA on JA signaling (known as SA/JA crosstalk), but the molecular 
mechanism of NPR1-mediated SA/JA crosstalk is largely unclear. Here, we assayed SA/
JA crosstalk in several Arabidopsis npr1 mutant variants with altered nucleo-cytosolic 
localization or mutations in specific cysteine residues. Assays with the NPR1-HBD and 
npr1-nls lines revealed a nuclear role of NPR1 in the suppression of JA-responsive gene 
expression. Interestingly, mutation of two cysteine residues in NPR1 (Cys82 or Cys216), which 
changes the conformation of NPR1 and possibly affects multimerization of NPR1 and 
interactions of NPR1 with other proteins, disrupted the suppression of the JA marker 
genes PDF1.2 and VSP2 by SA, while SA-induced expression of the SA marker gene PR1 
was intact. This allowed us to distinguish the function of NPR1 in activation of the core 
SA pathway from its function in SA/JA crosstalk. RNA-seq analysis identified 32 SA-
responsive genes that were significantly lower expressed in the Cys82-mutated NPR1 
line than in Col-0, and thus may be involved in NPR1-mediated SA/JA crosstalk. This 
included four genes encoding WRKY transcription factors (WRKY18, WRKY38, WRKY53 
and WRKY70). Of these, WRKY53, and to a lesser extend WRKY70, were able to suppress 
PDF1.2 expression induced by the JA master regulator ORA59 in an Arabidopsis protoplast 
expression system. Other tested SA-inducible WRKYs (WRKY50, WRKY54, WRKY63, and 
WRKY67) also suppressed ORA59-induced PDF1.2 expression. Then, the stability of the 
ORA59 protein was determined in the protoplast system, and WRKY53 and WRKY67 were 
demonstrated to likely contribute to the SA- or SA/NPR1-mediated suppression of PDF1.2 
by causing degradation of the ORA59 protein.
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INTRODUCTION

The plant immune system is activated upon recognition of pathogen- or insect-derived 
molecules or altered self-molecules of the attacked host (Dodds and Rathjen, 2010). 
Recognition leads to the activation of defenses that, when successful, stop infection 
and signal systemic tissue to become primed for enhanced defense against future attacks 
(Gao et al., 2015). Downstream of recognition, plant hormones play vital roles in triggering 
the plant immune signaling network (Pieterse et al., 2012, Aerts et al., 2021). Salicylic acid 
(SA) and jasmonic acid (JA) are major defense hormones important for shaping both the 
locally induced defense response to the attacker at hand and in the establishment of 
systemic resistance in distal, still healthy tissues. In general, SA is essential in the defense 
response against biotrophic pathogens, which feed on living host cells. Conversely, the JA 
pathway is generally effective against herbivorous insects and necrotrophic pathogens, 
which kill host tissue and feed on the contents (Glazebrook, 2005). 

Activation of the SA or JA pathway triggers massive transcriptional reprogramming, 
which includes activation of a distinct set of pathogenesis-related (PR) genes by both 
hormones (Van Loon et al., 2006, Hickman et al., 2017, Hickman et al., 2019). Signaling 
downstream of SA is largely regulated by the transcriptional regulator NPR1, which is 
required for the activation of many SA-responsive genes, including the SA marker gene 
PR1, and for SA-dependent disease resistance (Cao et al., 1994, Delaney et al., 1995, Vlot 
et al., 2009). NPR1 interacts with TGA transcription factors (TFs) to activate downstream 
gene expression, including the marker gene PR1 and many WRKY TF genes, which fine-
tune and amplify downstream responses (Wang et al., 2006, Blanco et al., 2009, Pandey 
and Somssich, 2009). 

Activation of JA-responsive genes relies on JA-induced degradation of JASMONATE 
ZIM-domain (JAZ) repressor proteins, which under basal conditions suppress the activity 
of JA-responsive TFs (Chini et al., 2007, Thines et al., 2007). COI1 is the F-box protein in the 
SCFCOI1 complex that targets JAZs for degradation when binding JA-Ile, the biologically 
active form of JA (Pauwels and Goossens, 2011). Two branches are distinguished in JA-
dependent defense signaling. The first is co-regulated by ethylene and controlled by ERF 
TFs, such as ORA59, which activates the expression of many genes, including the marker 
gene PDF1.2 (Pré et al., 2008, Zarei et al., 2011). The other branch is co-regulated by ABA 
and controlled by MYC TFs, which activate another large set of genes, including the JA 
marker gene VSP2 (Fernández-Calvo et al., 2011). These branches are referred to as the 
ERF branch and MYC branch, respectively. In general, the ERF branch is effective against 
necrotrophic pathogens whereas the MYC branch is mostly directed against herbivorous 
insects and is also activated upon wounding (Pieterse et al., 2012).

The hormonal signaling pathways involved in plant defense are interconnected in an 
intricate signaling network, acting at multiple levels of regulation (Aerts et al., 2021). This 
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complex network involves many antagonistic and synergistic interactions between the 
pathways, a phenomenon that is referred to as hormonal crosstalk (Robert-Seilaniantz et 
al., 2011, Pieterse et al., 2012). Well-known examples of hormonal crosstalk in plant defense 
are antagonism between the SA and JA pathway and between the MYC and ERF branch of 
the JA pathway (Pieterse et al., 2012). Several studies have contributed to the elucidation 
of the molecular mechanism underlying SA-mediated suppression of the JA response 
(from hereon: SA/JA crosstalk). In the model plant Arabidopsis thaliana (from hereon: 
Arabidopsis), SA was shown to significantly affect the expression pattern of 69% of >3500 
MeJA-responsive genes (Hickman et al., 2019), highlighting the magnitude of the effect 
of SA on JA signaling. SA was further shown to target the JA pathway downstream of JA 
biosynthesis and of COI1 via multiple mechanisms, such as direct repression of JA-induced 
transcription and degradation of the positive ERF branch regulator ORA59 (Leon-Reyes et 
al., 2010b, Van der Does et al., 2013, He et al., 2017). Several SA-controlled transcriptional 
(co)regulators that can suppress JA-dependent gene expression have been identified 
(Caarls et al., 2015). The TFs TGA2, TGA5 and TGA6 (Leon-Reyes et al., 2010a, Zander et al., 
2014) and WRKY41, WRKY46, WRKY50, WRKY51, WRKY53, WRKY62 and WRKY70 have all 
been shown to be involved in suppression of JA-responsive genes (Li et al., 2004, Mao et 
al., 2007, Higashi et al., 2008, Gao et al., 2011, Hu et al., 2012, Yan et al., 2018). In contrast, 
SA-induced EAR-motif containing transcriptional repressors from the ERF family were 
shown not to play a role in SA/JA crosstalk (Caarls et al., 2017).

NPR1 emerged as an important transcriptional co-regulator of SA/JA crosstalk. It is 
required for SA-mediated suppression of JA marker genes VSP2, PDF1.2 and LOX2 (Spoel 
et al., 2003, Nomoto et al., 2021) and controls the SA-mediated suppression of JA-induced 
resistance against herbivorous insects and necrotrophic pathogens in Arabidopsis (Spoel 
et al., 2007, Leon-Reyes et al., 2009). Also in tomato, rice and Nicotiana attenuata, NPR1 
is important for the interaction between the SA and JA signaling pathways (Rayapuram 
and Baldwin, 2007, Yuan et al., 2007, El Oirdi et al., 2011), suggesting a conserved role for 
NPR1 as an SA-activated modulator of the JA pathway. Recently, it was shown that NPR1 
can suppress the MYC branch by interacting with MYC2 at the same position as the 
mediator subunit MED25 (Nomoto et al., 2021). Thereby, NPR1 prevents the MYC2-MED25 
interaction, which is otherwise necessary for full MYC branch activation (Çevik et al., 
2012, Chen et al., 2012). For the ERF branch of the JA pathway, however, the mechanism 
by which NPR1 affects ERF branch target genes is not yet known. 

SA-mediated regulation of the NPR1 protein and subsequent activation of SA-
responsive gene expression have been extensively studied (Chen et al., 2021) and recently 
the crystal structure of NPR1 was solved (Kumar et al., 2022). The NPR1 protein contains 
several conserved domains that enable it to act as a transcriptional co-activator. The 
ankyrin repeat domain mediates the interaction of NPR1 with TGA TFs, which is required 
for PR gene activation (Zhang et al., 1999, Zhou et al., 2000, Després et al., 2003, Kumar et 
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al., 2022). Secondly, NPR1 contains a BTB domain, which mediates NPR1 oligomerization 
(Kumar et al., 2022) and interacts with TGA2 to counteract the effects of TGA2’s N-terminal 
repression domain, thereby promoting downstream transcription (Boyle et al., 2009). 
Moreover, under non-inducing conditions the BTB domain acts as an auto-inhibitory 
domain that masks the C-terminal transactivation domain (Wu et al., 2012). This C-terminal 
transactivation domain is also where SA binds to NPR1, which disrupts the interaction 
between the C-terminal domain and the BTB domain and induces docking of the 
C-terminal domain onto the ankyrin repeats 3 and 4, converting NPR1 into an activated 
transcriptional co-activator (Rochon et al., 2006, Wu et al., 2012, Manohar et al., 2015, 
Kumar et al., 2022). While the role of different NPR1 domains in SA-induced PR gene 
expression starts to be resolved, which NPR1 domains are important for SA/JA crosstalk 
is still largely unknown. 

NPR1 can reside in the cytoplasm and in the nucleus. Under non-inducing conditions, 
intramolecular disulfide bonds are formed between certain cysteine residues of NPR1 
monomers, resulting in the formation of oligomers, which are sequestered in the 
cytosol due to their large size. Meanwhile, any of the few monomers that still enter the 
nucleus are subjected to proteasomal degradation (Spoel et al., 2009). Changing either 
Cys82 or Cys216 to an alanine results in decreased oligomerization and increased nuclear 
localization of NPR1, showing the importance of the cysteine residues in regulating the 
oligomer/monomer status of NPR1 (Mou et al., 2003, Kumar et al., 2022). The Cys82 residue 
is also important for the formation of dimeric NPR1 in the nucleus (Kumar et al., 2022). In 
addition, S-nitrosylation of Cys156 of NPR1 increases oligomerization (Tada et al., 2008). 
Accumulation of SA causes a redox change in the cell after which thioredoxins (TRX) 
TRX-h3 and TRX-h5 reduce the cysteine residues, breaking the intramolecular disulfide 
bonds, and thus releasing NPR1 monomers that can move to the nucleus via nuclear pore 
proteins (Mou et al., 2003, Tada et al., 2008, Cheng et al., 2009). Our earlier work showed 
that single mutants of these thioredoxins are not affected in crosstalk, suggesting that 
they either play no role or a redundant role in SA/JA crosstalk (Caarls, 2016).

In the nucleus, NPR1 is further modified by sumoylation of serine residues, which 
enhances the interaction of NPR1 with TGA3 and promotes expression of PR1 (Saleh et al., 
2015). The stability and activity of NPR1 is tightly regulated via various phosphorylation 
and ubiquitination processes (Spoel et al., 2009, Skelly et al., 2019, Shen et al., 2020, Wang 
et al., 2022b). Also, the closely related NPR1 proteins NPR3 and NPR4 were proposed to 
act on the stability of NPR1 by acting as CUL3 ligase adapter proteins in an SA-dependent 
manner, regulating proteasome-mediated degradation of NPR1 (Fu et al., 2012). This was 
initially proposed as the main mechanism by which SA activates NPR1, where NPR3 and 
NPR4, but not NPR1, are SA receptors (Fu et al., 2012). Later research however pointed 
towards a different mechanism: NPR1, NPR3 and NPR4 can all bind SA and regulate a similar 
set of SA-responsive genes (Ding et al., 2018, Kumar et al., 2022). NPR1 however acts as a 
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co-activator, and this is increased by SA, whereas NPR3 and NPR4 act as co-repressors and 
this is suppressed by SA (Ding et al., 2018). Despite their important role in SA signaling, we 
found in earlier work that mutants npr3 and/or npr4 were not affected in SA/JA crosstalk 
(Caarls, 2016), suggesting that they mostly contribute to the core SA response.

Redox-based protein modifications regulate NPR1 activity and are likely also 
important for the establishment of SA/JA crosstalk. SA treatment increases the total 
glutathione levels and results in a higher ratio of reduced (GSH) to oxidized glutathione 
(GSSG). Interestingly, JA treatment decreases the total amount of glutathione, and 
increases the amount of GSSG relative to GSH (Spoel and Loake, 2011). The timeframe 
in which SA was able to suppress PDF1.2 coincided with the cellular redox change. In 
addition, treatment with glutathione biosynthesis inhibitor BSO prevented SA-mediated 
suppression of PDF1.2 (Koornneef et al., 2008). These results suggested a role for redox 
regulation in prioritization of the SA pathway over the JA pathway. Glutaredoxins (GRXs) 
are small ubiquitous enzymes that use glutathione to reduce disulfides and have also 
been implicated in suppression of JA-responsive gene expression. Several members of 
the group III class of GRXs in Arabidopsis interact with TGA TFs and suppress expression of 
ORA59 and PDF1.2 (Ndamukong et al., 2007, Zander et al., 2012). Redox-induced activation 
of NPR1 might play a role in the suppression of JA responses, but our earlier work with 
redox-related mutants suggested that it is not a major mechanism, or at least it was not 
apparent in mature plants under our experimental conditions (Caarls, 2016).

Many questions remain on the mechanism of SA- and SA/NPR1-mediated suppression 
of JA responses, especially for the ERF branch of the JA pathway. For example, it is not 
yet clear if NPR1 can regulate SA/JA crosstalk in the nucleus or the cytosol, or both. In 
Arabidopsis, a fusion protein of NPR1 and the hormone binding domain (HBD), which was 
retained in the cytosol, was shown to suppress PDF1.2 expression in seedlings treated 
with a combination of SA and methyl JA (MeJA). This suggested that a function of NPR1 in 
suppression of JA-induced gene expression takes place in the cytosol (Spoel et al., 2003). 
Moreover, in rice, overexpression of OsNPR1 resulted in suppression of JA-responsive 
gene expression and reduced defense against an insect herbivore, but overexpression 
of a form of NPR1 that was constitutively localized in the nucleus due to mutation of two 
cysteines (Cys76 and Cys216) impaired suppression of JA-responsive genes under basal 
conditions and reduced the resistance level against insects (Yuan et al., 2007). These 
results suggested that the suppression of JA responses by NPR1 can occur via a function 
of NPR1 in the cytosol, and that cysteine residues in NPR1 that influence multimerization 
are involved in JA-mediated defense suppression. Moreover, it was discovered that NPR1 
can form SA-induced condensates in the cytosol that contain stress- and immunity-
related proteins, which are ubiquitinated and degraded (Zavaliev et al., 2020). However, 
these bodies were not enriched for components related to JA signaling (Zavaliev et al., 
2020), so this does not directly provide a lead towards a cytosolic mechanism that governs 
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SA/JA crosstalk. In line with a role for NPR1 in the nucleus during SA/JA crosstalk, our 
earlier work with mature plants using the same NPR1-HBD line as Spoel et al. (2003) and an 
npr1-nls line, containing NPR1 without its NLS, showed that SA/JA crosstalk was impaired 
in these npr1 mutants where NPR1 was located in the cytosol (Caarls, 2016). Together, 
this suggests that nuclear NPR1 can play an essential role in SA/JA crosstalk, depending 
on the (experimental) conditions.   

In this study, we followed a genetic, transcriptomic, and molecular approach to 
further investigate the nuclear role of NPR1 in SA-mediated suppression of JA-induced 
gene expression. In agreement with our earlier findings in mature plants (Caarls, 
2016), we found that SA/JA crosstalk is impaired in mutants carrying variants of NPR1 
that are retained in the cytosol in our experimental setup in in-vitro-grown seedlings. 
Furthermore, we found that two lines overexpressing NPR1 protein of which either 
Cys82 or Cys216 was mutated were impaired in SA-mediated suppression of JA marker 
genes PDF1.2 and VSP2, but were not affected in SA-induced PR1 expression, therewith 
separating the transcriptional activator role of NPR1 from its transcriptional repressor role. 
Subsequent analyses uncovered several WRKY TFs as novel players in NPR1-regulated 
SA/JA crosstalk, acting downstream of the ORA59 TF protein, partly via degradation of 
the protein, resulting in reduced PDF1.2 expression. 

RESULTS

Nuclear NPR1 functions in the suppression of PDF1.2 

In a previous study we investigated the effect of mutations that alter localization, redox 
regulation and stability of NPR1 in mature plants on SA/JA crosstalk (Caarls, 2016). We 
demonstrated that only variants of NPR1 that affect its nuclear localization were affected 
in SA/JA crosstalk, acting on both the ERF branch marker gene PDF1.2 and the MYC branch 
marker gene VSP2. However, these experiments were executed with mature plants, and 
because these findings contradict seminal work done in seedlings (Spoel et al., 2003) we 
decided to repeat our experiments in seedlings to assess if the plant development stage 
influences the effect of intracellular localization of NPR1 on SA/JA crosstalk. We grew 
plants for 12 days on ½ MS agar plates and transferred them to new ½ MS agar plates 
containing MeJA or SA + MeJA, and incubated them for 48 h. To assess the importance 
of nuclear localization of NPR1 we used a fusion protein of NPR1 that was retained in the 
cytosol (NPR1-HBD). This line was also used by Spoel et al. (2003), who showed that in this 
line SA could still suppress PDF1.2 expression. In addition, we used the npr1-nls mutant, in 
which five amino acids in the nuclear localization signal are mutated, resulting in exclusive 
cytosolic localization of NPR1 (Kinkema et al., 2000). As a positive control we used npr1-1,  
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which has a non-functional version of NPR1. As expected, when plants were treated 
with SA + MeJA the SA marker gene PR1 was induced in the wild type Col-0, but not in 
npr1-1 or the two lines with cytosolic NPR1 (Figure 1A). PDF1.2 expression was significantly 
reduced by SA + MeJA compared to MeJA alone in Col-0, but SA in the double treatment 
did not affect PDF1.2 expression in npr1-1 or the two mutants with cytosolic NPR1 (Figure 
1B). These results in seedlings confirm our earlier findings with mature plants (Caarls, 
2016) and reinforce that under our experimental conditions nuclear localization of NPR1 
is required for SA/JA crosstalk, regardless of the plant’s developmental stage. Notably, 
suppression of VSP2 was relatively less affected by these variants of NPR1 as well as in the 
positive control npr1-1 (Figure S1A), suggesting that  under our experimental conditions 
NPR1 was mostly required for SA/JA crosstalk acting on the ERF branch of the JA pathway.
 

Two different cysteine mutations in NPR1 affect SA/JA crosstalk, but not the 
core SA pathway

Cysteine-based modifications of the NPR1 protein are important for its functioning (Spoel 
and Loake, 2011, Kumar et al., 2022). When either one of two specific cysteine residues 
in NPR1, Cys82 or Cys216, are mutated to alanine in the transgenic lines 35S:NPR1C82A-GFP 
npr1-1 (from hereon: C82A) or 35S:NPR1C216A-GFP npr1-1 (from hereon: C216A), the protein 
displays reduced oligomerization and increased nuclear localization (Mou et al., 2003, 
Kumar et al., 2022). Based on our results presented above we hypothesized that reduced 
oligomerization and thus also increased nuclear localization of NPR1 in these lines would 
result in a greater repression of JA-responsive transcription by NPR1. To address this, 
we performed several experiments with these lines. Please note that the results of our 
experiments with C82A and C216A described below (qRT-PCR and RNA-seq) were already 
described by Caarls (2016), but because they are essential to this work we present them 
again here. We performed hormone dip experiments in 5-week-old plants and found 
that PR1 induction after 24 h of SA + MeJA treatment was not significantly altered in 
any of the cysteine mutant NPR1 lines (Figure 1C), suggesting that induction of the core 
SA pathway was not affected by these NPR1 cysteine mutations. Surprisingly, in both 
mutants, treatment with SA + MeJA did not suppress MeJA-induced expression of PDF1.2 
(Figure 1D) or VSP2 (Figure S1B). This shows that while expression of NPR1C82A or NPR1C216A 
complemented the PR1 activation of the npr1-1 mutant background, it did not restore 
suppression of JA-responsive genes by SA. This suggests that the mutation of Cys82 and 
Cys216 disrupts the function of NPR1 in SA/JA crosstalk while leaving the function of NPR1 
on SA-responsive gene expression intact. 
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Figure 1: Effects of mutations in NPR1 on SA/JA crosstalk. 
qRT-PCR expression analysis of (A, C) SA marker gene PR1 and (B, D) JA marker gene PDF1.2 after hormone 
treatments. 
(A, B) Gene expression measured in 12-day-old seedlings on plates. Plants were treated for 48 h with MeJA (0.02 
mM) and SA (0.5 mM). 
(C, D) Gene expression measured in 5-week-old plants in pots. Plants were dipped in hormone solution (0.1 mM 
MeJA and/or 1 mM SA or mock) and harvested after 24 h. 
For relative expression levels the ΔCt values per gene/sample were determined relative to AT1G13320. The plot 
shows -ΔCt values that are normalized so that the mean -ΔCt value of mock-treated Col-0 is 0. Letters indicate 
significance levels according to a Tukey’s HSD test; n=5 (for A and B) or n=3 (for C and D). Experiments were 
repeated with similar results (not shown). See Figure S1 for expression of VSP2. 

RNA-seq of mutants in NPR1 revealed WRKY TFs as potential SA/JA crosstalk 
regulators

To gain more knowledge on the mechanism of nuclear NPR1-mediated suppression of 
JA responses, we next investigated which processes are impaired in the C82A and C216A 
mutants that may cause the detected defect in SA/JA crosstalk. We hypothesized that 
the cysteine mutations alter the properties of NPR1 such that it can no longer interact 
with certain TFs that activate regulatory genes that repress JA signaling, while it can still 
interact with TFs that regulate the core SA response. To investigate the hypothesis that 
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NPR1 regulates crosstalk as a co-regulator of genes encoding JA signaling suppressors, 
we performed RNA-seq analysis on the mutants npr1-1, C82A, and C216A after the 
combination treatment of SA + MeJA, mimicking a situation where SA/JA crosstalk is active 
in Col-0, but not in npr1-1, C82A and C216A. For each of the three biological replicates, 
developmental leaf number 8 of one plant was harvested at 5 h after treatment, because 
at this time SA-responsive genes such as PR1 are induced by SA and early JA-responsive 
genes such as VSP2 are suppressed by SA (Hickman et al., 2019). First, we analyzed the 
expression level of the NPR1 gene itself. As shown in Figure 2A, the expression of wild-
type NPR1 was 2.5 times upregulated in Col-0 after SA + MeJA treatment and, as expected, 
not detectable in npr1-1, C82A, and C216A. In all biological replicates of the C82A and 
C216A lines, in which C>A mutant versions of NPR1 are overexpressed in the npr1-1 
background, the C>A variants of NPR1 were indeed higher expressed compared to the 
wild-type NPR1 version in Col-0. In three replicates (i.e., individual plants), namely C82A 
replicate 2 (C82A-2), C82A replicate 3 (C82A-3) and C216A replicate 3 (C216A-3), the C>A 
NPR1 transcript levels were around 15- to 25-fold induced, whereas in the other three 
replicates the induction was around 5-fold (Figure 2A). The RNA-seq data enabled us to 
verify the presence of the expected mutations in NPR1 in all tested lines. In the npr1-1 
mutant, as well as in the C82A and C216A mutants (in the npr1-1 background), mutant 
npr1-1 mRNA levels were detected at low levels (Figure 2A), confirming that the lines 
behaved as expected.

We then determined if the different expression levels of C>A NPR1 in the three 
replicates of C82A and C216A influenced NPR1-mediated transcriptional activity. Two 
distinct transcriptome patterns after SA + MeJA treatment could be distinguished in the 
replicates. One was comparable to that of expression in npr1-1 plants treated with SA + 
MeJA, and the other to that of Col-0 plants treated with SA + MeJA. For example, the SA 
marker gene PR1 was lowly expressed in the three replicates that also expressed relatively 
low levels of the C>A-mutated NPR1 allele, but highly expressed in the three replicates 
that also have relatively high expression of the C>A-mutated NPR1 allele (Figure 2). We 
thus speculate that expression of C>A-mutated NPR1 in C82A-1, C216A-1 and C216-2 was 
too low to result in complementation of core SA signaling in the npr1-1 mutant. We thus 
disregarded the transcript profiles of these replicates in the follow-up analyses. 
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Figure 2: Expression levels of NPR1 and PR1 in Col-0, npr1-1 and two NPR1 cysteine mutants revealed by 
RNA-seq. 
(A) Expression levels of NPR1 (normalized RNA-seq read counts). Expression of the npr1-1 allele was estimated 
by multiplying the total number of NPR1 counts with the ratio of counts containing the C1000T point mutation 
of the npr1-1 allele. The rest of the counts were assigned to the wild-type NPR1 allele (for Col-0) or the C>A NPR1 
allele (for C82A and C216A). 
(B) Expression levels of PR1 (normalized RNA-seq read counts).
Expression was measured in mock-treated Col-0 plants or SA + MeJA-treated Col-0, npr1-1 (average of three 
replicates), and C82A and C216A mutants (three separate replicates) with RNA-seq.

We analyzed in closer detail the two replicates of the C82A line that showed enhanced PR1 
expression after SA + MeJA treatment. The differentially expressed genes in SA + MeJA-
treated Col-0 plants relative to SA + MeJA-treated npr1-1 or SA + MeJA-treated C82A-2 
and C82A-3 mutants (C82A-2/3) were compared. We first investigated which section of 
the NPR1-affected transcriptome was also affected in C82A-2/3. In SA + MeJA-treated 
npr1-1, 5499 genes were significantly differentially expressed compared to SA + MeJA-
treated Col-0 (P ≤ 0.05; Table S1), highlighting the major role of NPR1 in the SA GRN. Of 
these genes, 2480 were higher expressed in Col-0 than in npr1-1. This group included 
many known genes that are inducible by SA in an NPR1-dependent manner. The other 
3019 genes were significantly lower expressed in Col-0 than in npr1-1. In contrast, in SA + 
MeJA-treated C82A-2/3 plants, only 97 genes were significantly differentially expressed 
compared to SA + MeJA-treated Col-0 (P ≤ 0.05; Table S1). This shows that only a small part 
of the transcriptome is affected by the mutation in Cys82. Of these genes, 46 were lower 
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expressed in C82A-2/3 than in Col-0, and 51 were higher expressed in C82A-2/3 compared 
to Col-0. The majority of the genes that were lower expressed in C82A-2/3, namely 40 of 
the 46 genes, were also lower expressed in SA + MeJA-treated npr1-1 compared to SA + 
MeJA-treated Col-0, suggesting that the C>A mutation in Cys82 of NPR1 results in reduced 
expression of a subset of genes whose expression is dependent on NPR1, while leaving 
the NPR1 dependency of the majority of the NPR1-dependent genes intact. 

Genes that are upregulated by SA + MeJA in Col-0 but significantly less in both C82A-
2/3 and npr1-1 are potential candidates with a role in NPR1-regulated SA/JA crosstalk. 
In Col-0, SA + MeJA treatment induced the expression of 33 of the 46 genes that were 
lower expressed in SA + MeJA-treated C82A-2/3 than in SA + MeJA-treated Col-0. The 
expression of 32 of these genes (all genes except ARACNIN1) was also significantly lower 
in the npr1-1 mutant compared to Col-0, confirming their NPR1 dependency. Figure 3 
shows a heat map of the log2-fold changes of these 33 genes in Col-0, C82A-2/3 and 
npr1-1 treated with SA + MeJA, relative to mock-treated Col-0. For many of these genes 
the function is still unknown. Interestingly, four genes affected in C82A-2/3 encode TFs 
that have been described to be direct transcriptional targets of NPR1 (Wang et al., 2006). 
These are WRKY18, WRKY38, WRKY53, and WRKY70, indicated with a red dot in Figure 
3. This suggests that the C82A mutation in NPR1 leads to reduced activation of these 
genes by NPR1. 

WRKY53 represses PDF1.2 expression downstream of ORA59 transcription

Reduced expression of WKRY18, WRKY38, WRKY53 and WRKY70 is a plausible explanation 
for the lack of SA/JA crosstalk in the C82A mutant, since WRKY53 and WKRY70 were 
previously implicated in the regulation of SA/JA crosstalk (Caarls et al., 2015). We set 
up a transient protoplast assay to test whether any of these WRKY TFs can suppress 
JA signaling. We chose to focus on the effect of these WRKY TFs on the ERF branch 
(measured by the marker gene PDF1.2), since the effect of NPR1 on the MYC branch was 
already found to be dependent on the NPR1-MYC2 interaction (Nomoto et al., 2021). We 
made a single plasmid expressing multiple genes (Figure 4A). Firstly, it contained the 
PDF1.2 promoter fused to the β-glucuronidase (GUS) gene as a readout for JA pathway 
activity. Additionally, it had the ORA59 gene expressed from the constitutively active 35S 
promoter to activate transcriptional activity of the ERF branch. With this setup, crosstalk 
mechanisms acting downstream of ORA59 transcription can be investigated, which is 
the level at which SA can suppress PDF1.2 induction in whole plants (Van der Does et al., 
2013). We also added the luciferase gene from firefly (LucF) expressed from the 35S 
promoter to the construct to normalize the GUS signal for the number of transfected 
protoplasts. Additionally, the construct contained a candidate WRKY TF expressed from 
the 35S promoter, or an empty module as a control. We also added Enhanced Yellow 
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Fluorescent Protein (EYFP) expressed from the 35S promoter to the construct to verify 
transfection of the protoplasts during our experimental procedure. As expected, ORA59 
overexpression strongly induced PDF1.2 expression in comparison to a control where an 
empty module was put in the place of 35S:ORA59 (Figure 4B). Interestingly, overexpression 
of WRKY53 together with ORA59 significantly suppressed PDF1.2 expression compared to 
ORA59 overexpression alone. Also, overexpression of WKRY70 significantly reduced PDF1.2 
expression, albeit to a weaker level than WRKY53. In three independent experiments only 
the strong suppression by WRKY53 was consistent (Figure S2). In contrast to WRKY53 and 
WRKY70, overexpression of WRKY18 or WKRY38 did not affect PDF1.2 expression (Figure 
4B; Figure S2), except for a small effect of WRKY18 in one experiment (Figure S2A), which 
is likely not biologically meaningful. Altogether, this suggests that WRKY53 and possibly 
WRKY70 regulate SA/JA crosstalk downstream of ORA59 transcription.

Figure 3: Reduced SA + MeJA-induced expression of WRKY genes in NPR1 cysteine mutant C82A.
Heat map representation of gene expression in Col-0, C82A and npr1-1 plants measured with RNA-seq. Shown is 
the log2-fold change in expression of genes in SA + MeJA-treated plants (Col-0, C82A or npr1-1) relative to mock-
treated Col-0 plants. The 33 genes depicted here were significantly lower expressed in C82A-2/3 compared to 
Col-0 (adjusted P ≤ 0.05) and induced by SA + MeJA in Col-0 (log2-fold change (SA + MeJA)/mock Col-0 ≥ 0.6). 
Genes are identified with AGI and (if available) TAIR annotation. A red dot indicates that the gene is a direct 
NPR1 target (Wang et al., 2006). See Table S1 for all differentially expressed genes between Col-0 and npr1-1 and 
between Col-0 and C82A-2/3.
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Figure 4: Suppression of ORA59-induced PDF1.2 expression by WRKY TFs in Arabidopsis protoplasts. 
(A) Schematic representation of the plasmid used in the experimental setup. Protoplasts isolated from 3-week-old 
plants were transfected with a single plasmid containing the GUS gene expressed from the PDF1.2 promoter, the 
LucF gene expressed from the 35S promoter and the EYFP gene expressed from the 35S promoter. Additionally, 
constructs contained either the ORA59 gene expressed from the 35S promoter (‘ORA59 +’ in panel B) or only the 
35S promoter and terminator (‘ORA59 –‘ in panel B), and they contained one of four WRKY TFs (‘WRKY 18, 38, 53 
or 70’ in panel B) expressed from the 35S promoter, or only the 35S promoter and terminator (‘WRKY –’ in panel B). 
(B) Relative PDF1.2 expression was determined as the log2 of relative GUS levels divided by relative LucF levels, as 
quantified using the substrates MUG and luciferin, respectively. Letters indicate significant differences according 
to Tukey’s HSD test (n=4). See Supplemental Figure S2 for two other repeats of the same experiment.

Four additional WRKY TFs can suppress ORA59-induced PDF1.2 expression

Regulation of plant processes is often carried out by redundantly functioning proteins. 
For example, it was already shown that WRKY53 operates redundantly with WRKY46 and 
WRKY70 in basal resistance against Pseudomonas syringae and likely also in suppression 
of PDF1.2 (Hu et al., 2012). We therefore considered the possibility that other WRKY TFs 
related to WRKY53 are also involved in suppression of ORA59-induced PDF1.2 expression. 
WRKY53 is part of a clade of WRKY TFs known as group III (Kalde et al., 2003; Figure S3). 
The majority of TFs in this group are induced by SA (Hickman et al., 2019) and a number 
of TFs were already implicated in SA/JA crosstalk (Kalde et al., 2003, Caarls et al., 2015). We 
therefore decided to analyze all TFs in this clade that were induced by SA according to 
Hickman et al. (2019), as well as other WRKY TFs known to suppress JA signaling according 
to Caarls et al. (2015). We tested this in the same protoplast system as before so that we 
could assess which of these WKRY TFs suppress PDF1.2 expression downstream of ORA59 
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transcription, and what the relative suppression strength of each WRKY TF is. We did 
not include WRKY55 and WRKY64 in this experiment because we were unable to clone 
it. In this experiment, ORA59 again strongly induced PDF1.2 expression and WRKY53 
suppressed it, as expected (Figure 5). Four other WRKY TFs were also able to suppress 
ORA59-induced PDF1.2 expression: WRKY50, WRKY54, WRKY63 and most notably WRKY67. 
Of these TFs, WRKY50 (Gao et al., 2011) and WRKY54 (Li et al., 2017) were previously 
associated with suppression of JA signaling, but to the best of our knowledge WRKY63 
and WRKY67 were not. In our RNA-seq dataset of SA + MeJA-treated Col-0 and npr1-1 
plants (Table S1) WRKY50, WRKY53 and WRKY54 were differentially expressed, suggesting 
they act in NPR1-dependent SA/JA crosstalk. In contrast, WKRY63 and WRKY67 were not 
differentially expressed, suggesting that their role in SA/JA crosstalk may be independent 
of NPR1. There was no clear phylogenetic relationship between the suppressing WRKY 
TFs within group III of the WKRY TF family (Figure S3). 
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Figure 5: Suppression of ORA59-induced PDF1.2 expression by selected WRKY TFs in Arabidopsis 
protoplasts.
Protoplasts isolated from 3-week-old plants were transfected with a single plasmid, depicted and described in 
(the legend of) Figure 4A. Relative PDF1.2 expression was determined as the log2 of relative GUS levels divided by 
relative LucF levels, as quantified using the substrates MUG and luciferin, respectively. Letters indicate significant 
differences according to Tukey’s HSD test (n=4).

WRKY53 and WRKY67 regulate SA/JA crosstalk by reducing ORA59 protein levels

SA is known to suppress ORA59-induced PDF1.2 expression by inducing degradation 
of ORA59 protein (Van der Does et al., 2013, He et al., 2017). We hypothesized that our 
identified suppressive WRKY TFs may (indirectly) affect ORA59 protein stability. To test 
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this, we used the same protoplast system as in the previous section. However, we now 
coupled ORA59 to the gene for luciferase derived from Renilla reniformis (LucR; Figure 
6A). This allowed us to use the ratio LucR to LucF as a proxy for ORA59 protein levels. 
Because the addition of LucR made the already large plasmid that we used even larger, 
we decided to express the WRKY TFs from a separate plasmid and transfect protoplasts 
with both plasmids at once (Figure 6A). As found previously (Figure 5), overexpression 
of all five tested WRKY TFs (WRKY50, WRKY53, WRKY54, WRKY63 and WRKY67) reduced 
relative PDF1.2 expression, showing that transfection of the protoplasts with the two 
plasmids was similarly effective as with one plasmid (Figure 6B). Notably, overexpression 
of WRKY53 and WRKY67 led to a small but significant reduction of relative ORA59 protein 
levels, while ORA59 was expressed from a constitutively active promoter (Figure 6C). 
This suggests that these two WRKY TFs suppress PDF1.2 expression - at least partly - by 
targeting ORA59 protein levels.  
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Figure 6: Suppression of PDF1.2 expression and relative ORA59 protein levels by selected WRKY TFs. 
(A) Protoplasts isolated from 3-week-old plants were transfected with two plasmids. The first contained the GUS 
gene expressed from the PDF1.2 promoter, the LucF gene expressed from the 35S promoter, the ORA59 gene 
fused to the LucR gene expressed from the 35S promoter, and the EYFP gene expressed from the 35S promoter. 
The second plasmid contained a WRKY TF (indicated with its number in panels B and C) expressed from the 35S 
promoter, or only the 35S promoter and terminator (‘WRKY –‘ in panels B and C). Protoplasts were harvested 
approximately 20 h after transfection.
(B) Relative PDF1.2 expression was determined as the log2 of relative GUS levels divided by relative LucF levels, 
as quantified using the substrates MUG and luciferin, respectively. 
(C) Relative ORA59 levels were determined as the log2 of relative LucR levels divided by relative LucF levels, as 
quantified using the substrates coelenterazine and luciferin, respectively. 
Letters in (B) and (C) indicate significant differences according to Tukey’s HSD test (n=4).
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DISCUSSION

NPR1 is an important regulator of SA-induced gene expression and defense, and 
of SA/JA crosstalk. While regulation of the NPR1 protein in response to SA has been 
studied extensively, the mechanism of NPR1-mediated SA/JA crosstalk is less clear, 
especially concerning the ERF branch of the JA pathway. This study investigated the 
function of NPR1 in SA/JA crosstalk, focusing on the role of its localization and the 
effect on downstream transcription. In our experimental setup, cytosolic NPR1 did not 
contribute to the suppression of JA marker genes in both seedlings and mature plants 
(Caarls, 2016; Figure 1). As this contradicts findings of a seminal study by Spoel et al. 
(2003), the role of nuclear/cytosolic NPR1 in regulating SA/JA crosstalk is likely context-
dependent, modulated by factors that are currently unknown. We further tested two lines 
overexpressing cysteine>alanine-mutated versions of the NPR1 protein, C82A and C216A, 
which were impaired in SA-mediated suppression of JA marker genes PDF1.2 and VSP2, 
but displayed normal levels of SA-induced PR1 expression. This allowed us to distinguish 
the function of NPR1 in SA-mediated activation of PR1 from its function in repression of 
PDF1.2 and VSP2, and to pinpoint five SA- or SA/NPR1-regulated WRKY TFs that suppressed 
ORA59-induced PDF1.2 expression in a protoplast expression system. Of these TFs, 
WRKY53 and WRKY67 reduced the accumulation of ORA59 protein, independent of ORA59 
transcription. Together, this points to a model where SA induces expression of specific 
crosstalk-regulating WRKY TF genes, for which Cys82 and Cys216 of NPR1 are important. 
Other SA-inducible crosstalk-regulating WRKY TFs can be transcriptionally activated in 
an NPR1-independent pathway, but may still need NPR1 for their crosstalk effect. The 
encoded WRKY TFs can suppress JA-activated PDF1.2 expression partly via regulating 
degradation of ORA59 (Figure 7).

Cytosolic NPR1 did not suppress JA marker genes in this study 

In seedlings that express a mutated NPR1 protein that is localized to the cytosol (NPR1-
HBD), MeJA-induced PDF1.2 expression was reported to be suppressed after SA treatment 
(Spoel et al., 2003). In addition, the npr1-3 mutant, which lacks the C-terminal part of 
the NPR1 protein that contains the nuclear localization signal, was demonstrated to still 
exhibit SA-mediated suppression of PDF1.2, albeit to a lower extent as wild-type plants 
(Leon-Reyes et al., 2009). This suggested that a cytoplasmic function of NPR1 plays a role 
in SA/JA crosstalk. However, under the experimental conditions of the current study, 
the MeJA-induced expression of VSP2 (in adult plants) and PDF1.2 (in adult plants and 
seedlings) was not suppressed by SA treatment in two different genotypes that express 
a cytosolic version of NPR1, i.e., NPR1-HBD and npr1-nls (Figure 1; Figure S1; Caarls, 2016). 
These results point to a nuclear function of NPR1 in SA/JA crosstalk in our study, and 
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suggest that the cytoplasmic function of NPR1 in SA/JA crosstalk is context dependent. 
Notwithstanding, the experimental conditions of the present study allowed us to 
mechanistically investigate the nuclear function of NPR1 in SA/JA crosstalk.
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Figure 7: Schematic model of NPR1’s and WRKYs’ role in repression of the ERF branch of the JA pathway. 
NPR1 resides in the cytosol as an oligomer held together by disulfide bridges between cysteine residues such as 
Cys82 and Cys216. SA triggers a redox change, which causes reduction of these cysteine residues, leading to reduced 
oligomerization and increased nuclear localization of NPR1. In the nucleus, NPR1 forms a homodimer and acts 
as a transcriptional co-factor and, together with specific TFs, activates core SA genes, such as PR1, and SA/JA 
crosstalk regulatory genes, including specific WRKY TF genes. In the C82A and C216A mutants NPR1 is only able 
to activate core SA genes such as PR1, but not crosstalk-specific WRKY TF genes. SA can also induce expression 
of specific WRKY TF genes independently of NPR1. When ET and JA levels are high, they activate ORA59 together, 
which causes upregulation of JA/ET-responsive genes such as PDF1.2. WRKY53 and WRKY67 cause degradation 
of the ORA59 protein, leading to reduced PDF1.2 expression. WRKY50, WRKY54, WRKY63 and possibly WRKY70 
repress PDF1.2 through a different, unknown mechanism. 

Cysteine>alanine mutations in NPR1 disrupt suppression of JA marker genes 
by SA

The mutation of one of two cysteines in NPR1 (Cys82 and Cys216) into alanines caused 
the transgenic C82A and C216A lines that overexpress these mutated versions of the 
NPR1 protein in the npr1-1 background to lose suppression of MeJA-induced PDF1.2 and 
VSP2 by SA (Figure 1D; Figure S1B). Interestingly, similar mutations in rice NPR1 (Cys76 and 
Cys216 changed to alanine) were previously tested and also shown to result in a loss of 
suppression of JA-dependent genes and defense (Yuan et al., 2007). As the Cys-mutated 
NPR1 in rice was constitutively localized to the nucleus, these results were interpreted 
as evidence for a cytosolic role of NPR1 in suppression of JA responses. Mutation of 
Cys82 or Cys216 in the Arabidopsis C82A and C216A lines caused the Cys-mutated NPR1 
protein to localize in both the nucleus and the cytosol (Mou et al., 2003). Therefore, the 
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impairment in SA/JA crosstalk in both Cys-mutated NPR1-overexpressing Arabidopsis 
and rice is unlikely due to exclusion of NPR1 from the cytosol but rather caused by other 
effects of the mutations in the Cys residues. For example, the mutation may lead to loss 
of interaction with other proteins, such as specific TFs, causing reduced activation of 
particular NPR1 target genes. Unfortunately, we were unable to execute interaction assays 
with the different NPR1 variants to test this hypothesis. 

While SA/JA crosstalk was impaired in the C82A and C216A mutants, PR1 expression 
was the same as in Col-0, under basal and SA-treated conditions (Figure 1C). Another 
study found that the C82A and C216A mutant lines had higher basal PR1 expression than 
their reference, 35Spro:NPR1-GFP (Mou et al., 2003). A recent study also found that the C82A 
mutant exhibited higher basal resistance against Pseudomonas syringae pv. maculicola 
ES4326 than 35Spro:NPR1-GFP, which was not further enhanced by SA pretreatment, even 
though C82A exhibited relatively high SA-induced PR1 expression (although lower than 
35Spro:NPR1-GFP) (Kumar et al., 2022). While these studies by the Dong lab do not 100% 
match our findings, it can still be concluded that the C82A and C216A mutants are able 
to activate core SA responses, albeit not to a completely similar extent as overexpressed 
wild-type NPR1. 

In their study, Kumar et al. (2022) found that the C82A mutant was still able to 
homodimerize, while a fully dimerization-defective mutant was defective in PR1 induction 
and resistance. Therefore, they concluded that the NPR1 homodimer is the functional 
unit in activating core SA-dependent defense gene expression. Our finding that the 
C82A line was impaired in SA/JA crosstalk suggests that the NPR1 homodimer is not 
per se functional in regulating suppression of the JA pathway. Whether this is due to its 
oligomerization status or to other structural changes that, e.g., make it unable to interact 
with certain crosstalk-regulating TFs is unknown.

Identification of WRKY TF genes that may have a role in SA/JA crosstalk

The fact that PR1 expression was intact in C82A and C216A whereas suppression of the 
JA pathway was impaired, gave us a unique opportunity to find potential suppressors 
of the JA pathway acting downstream of NPR1. To test the hypothesis that the cysteine 
mutations affected part of the SA-responsive, NPR1-dependent transcriptome involved 
in suppression of the JA pathway, the C82A mutant was subjected to RNA-seq after SA + 
MeJA treatment. In the treated C82A mutant, 32 genes that were induced by SA in Col-0 
in an NPR1-dependent manner were considered interesting candidates for a role in SA/
JA crosstalk. Many of the identified genes have no known function in defense (Figure 
3; Table S1) and are interesting candidates for crosstalk regulation that require further 
investigation. This set of 32 genes also contained four known TF-encoding genes that are 
direct targets of NPR1, namely WRKY18, WRKY38, WRKY53 and WRKY70 (Wang et al., 2006). 
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WRKY TFs are suppressors of ORA59-induced PDF1.2 expression 

To expand our knowledge on SA- and SA/NPR1-mediated suppression of JA signaling by 
WRKY TFs we employed a protoplast system to initially investigate if WRKY18, WRKY38, 
WRKY53 and WKRY70 suppress PDF1.2 expression downstream of ORA59 transcription. 
We found that this was the case for WRKY53 and possibly WRKY70 (Figure 4; Figure 
S2), confirming earlier reports (Li et al., 2004, Hu et al., 2012). We next investigated the 
suppression of ORA59-induced PDF1.2 expression by other WRKY TFs of group III (where 
WRKY53 and WRKY70 also belong to) and by other WRKY TFs that have been reported 
to suppress JA signaling according to Caarls et al. (2015). We found that this was the 
case for WRKY50, WRKY54, WRKY63 and WRKY67 (Figure 5). Of the five WRKY TFs that 
consistently repressed ORA59-induced PDF1.2 expression, WRKY50, WRKY53 and WRKY54 
had been linked to suppression of JA signaling before, and our RNA-seq data indicated 
that they likely act in NPR1-dependent crosstalk (Table S1). WRKY50 can suppress PDF1.2 
expression together with WRKY51 (Gao et al., 2011), and WRKY53 suppresses PDF1.2 
expression redundantly with WRKY46 and WRKY70 (Hu et al., 2012). Additionally, a recent 
report suggested that WRKY53 negatively regulates resistance against insects by directly 
binding to and repressing the promoters of the JA biosynthesis genes LOX3 and LOX4 
(Jiao et al., 2022), which corroborates that repression of JA signaling is important for 
plants and regulated by different mechanisms. Because in our system we overexpressed 
ORA59 to activate the JA pathway rather than treating with JA, a possible decrease in JA 
levels cannot explain our results. Indeed, we found that WRKY53 caused a reduction in 
ORA59 levels (Figure 6), providing a possible mechanism. WRKY54 has also been linked 
to suppression of the JA pathway, as the wrky54 wrky70 double mutant has increased 
resistance against necrotrophic pathogens and elevated PDF1.2 expression, as well as 
higher SA levels (Li et al., 2017). The mechanism hereof was not elucidated. The finding 
that WKR63 and WRKY67 can suppress ORA59-induced PDF1.2 expression is, to the best 
of our knowledge, novel, and our RNA-seq data indicated that they likely act in NPR1-
independent crosstalk (Table S1). Especially WRKY67 is an interesting new candidate 
regulator of SA/JA crosstalk, as it was found to cause the strongest reduction in ORA59-
induced PDF1.2 expression in protoplasts (Figure 5) and a reduction in ORA59 protein 
levels (Figure 6). We found that the group III WRKY TFs that suppressed ORA59-induced 
PDF1.2 expression were not phylogenetically related within group III of the WRKY family 
(Figure S3). This supports the notion discussed above that the different WRKY TFs likely 
have various modes of action. 

Interestingly, we did not observe suppression of ORA59-induced PDF1.2 expression 
by WRKY41, WRKY46, WRKY51 and WRKY62, and inconsistent suppression of ORA59-
induced PDF1.2 expression by WRKY70 between experiments, even though all of these 
WKRY TFs have been implicated in suppression of JA signaling (Caarls et al., 2015). This 



135

4

Nuclear NPR1 modulates salicylic acid/jasmonic acid crosstalk via transcriptional control of WRKY transcription factors 

could indicate that these WRKY TFs act upstream of ORA59 transcription or require certain 
cofactors that were not present under our experimental conditions.

WRKY53 and WKRY67 affect ORA59 protein accumulation

SA is known to repress the ERF branch by destabilizing ORA59 (Van der Does et al., 2013, 
He et al., 2017). Using our protoplast system, we found that WRKY53 and WRKY67 reduce 
ORA59 accumulation and thus may affect ORA59 stability, e.g., by increasing ORA59 
protein turnover, or by influencing ORA59 transcript stability or translation efficiency. 
Future research may be focused on finding downstream targets of these WRKY TFs to see 
if this includes, for example, certain ubiquitin ligases that may reduce ORA59 stability. 
Also, future research can investigate the targets of the other WRKY TFs to elucidate how 
they regulate suppression of ORA59-induced PDF1.2 expression. 

In conclusion, this study identified a nuclear function of NPR1 in SA/JA crosstalk. SA 
activates NPR1 and induces its nuclear localization. In the nucleus, NPR1 can promote 
transcription of specific SA/JA crosstalk-regulating WRKY TF genes, for which it requires 
Cys82 and Cys216. Some other WRKY TF genes can also be transcriptionally activated by 
SA independently of NPR1. The encoded WRKY TFs in turn regulate suppression of JA-
responsive gene expression by diverse mechanisms, including decreasing the protein 
level of the ERF branch TF ORA59 (Figure 7). 

METHODS

Plant material and growth conditions 

In all experiments, Col-0 was used as wild type and was the background accession for all 
mutant and transgenic lines studied. The mutants and overexpression lines used were 
generated by previous studies and are: 35S:NPR1-HBD npr1-1 (NPR1-HBD), 35S:npr1-nls-GFP 
npr1-1 (npr1-nls) (Kinkema et al., 2000), npr1-1 (Cao et al., 1994), 35S:NPR1C82A-GFP npr1-1 
(C82A), 35S:NPR1C216A-GFP npr1-1 (C216A) (Mou et al., 2003).

For experiments with mature plants, sowing and plant growth was done as 
described in Chapters 2 and 3. Briefly, stratified Arabidopsis seeds were sown on river 
sand. Two weeks after germination, seedlings were transferred to 60-ml pots containing 
a sand/potting soil mixture (5:12 v/v) that had been autoclaved twice for 45 min with 
a 24-h interval. Plants were cultivated in a growth chamber with a 10-h day and 14-h 
night cycle at 70% relative humidity and 21°C. For experiments with seedlings, seeds 
were first surface sterilized by mixing 100 ml of commercial bleach (Manutan B.V., Den 
Dolder, the Netherlands) with 3.2 ml 37% HCl in a beaker in a desiccator, after which the 
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desiccator was closed immediately and seeds were incubated in the desiccator for 4 h. 
For protoplast experiments, 50 µl of sterilized seeds were sown directly onto 120x120 mm 
square Petri dishes that contained 70 ml of ½ Murashige and Skoog (MS) medium with 
2% sucrose, buffered with MES (pH=5.7) and solidified with 1% plant agar. For hormone 
treatment experiments, sterilized seeds were sown in 120x120 mm square Petri dishes 
on an autoclaved, fluid-permeable nylon membrane that lay on top of 50 ml of solidified 
½ MS medium (same as for protoplasts except 0.8% agar). Seeds were sown in two rows 
on the plates, making sure that all plates had five seeds of each line. For both types of 
experiments, the seeds were stratified on the plates in the dark at 4°C for three days and 
then incubated lying down (protoplast experiments) or upright (hormone experiments) 
in a growth chamber at 21°C with a 10-h light/14-h dark cycle at a light intensity of 75 
(protoplast experiments) or 100 (hormone experiments) μmol/m2/s.  

Chemical treatments 

For hormone treatment of mature plants, 5-week-old plants were treated with SA and/
or MeJA by dipping the leaves into a solution containing 0.015% (v/v) Silwet L77 (Van 
Meeuwen Chemicals BV, Weesp, the Netherlands; nowadays this compound is known as 
CoatOSil 77 (Momentive, New York, NY, USA)) and either 0.1 mM MeJA (Serva, Brunschwig 
Chemie, Amsterdam, the Netherlands), or 1 mM SA (Mallinckrodt Baker, Deventer, the 
Netherlands) and 0.1 mM MeJA. For mock treatments, plants were dipped into a solution 
containing 0.015% (v/v) Silwet L77 and 0.1% ethanol, as ethanol was the solvent for the 
1000x MeJA stock. Leaves were harvested for RNA isolation 5 and 24 h after treatment. 

For hormone treatments of seedlings, nylon membranes with 12-day-old seedlings 
previously grown on ½ MS agar plates were transferred to new plates containing the same 
½ MS agar medium, but with 0.02 mM MeJA, 0.5 mM SA + 0.02 mM MeJA (diluted from 
a 5000x stock in ethanol) or a mock treatment (½ MS agar medium with 0.02% ethanol). 
Plants were incubated upright in the growth chamber for 48 h under the conditions 
described above. Harvesting was done by putting one seedling of a genotype from each 
of five plates in a 2-ml tube (Greiner Bio-One, Kremsmünster, Austria) containing two glass 
beads, and immediately snap-freezing it in liquid nitrogen. As each plate contained five 
plants, a total of five replicates were harvested. 

RNA extraction and qRT-PCR analysis

For qRT-PCR analysis, RNA was extracted as described for vegetative tissues by Oñate-
Sánchez and Vicente-Carbajosa (2008). RNA was pretreated with DNAse I (Thermo Fischer 
Scientific, Waltham, MA, USA) to remove genomic DNA. RevertAid H minus Reverse 
Transcriptase (Thermo Fisher Scientific) was used to convert DNA-free total RNA into 
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cDNA. PCR reactions were performed in optical 384-well plates with a ViiA 7 realtime 
PCR system (Applied Biosystems, Carlsbad, CA, USA), using SYBR® Green to monitor the 
synthesis of double-stranded DNA. The primers used to analyze expression by qRT-PCR 
are described in Table S2. A standard thermal profile was used: 50°C for 2 min, 95°C for 
10 min, 40 cycles of 95°C for 15 s and 60°C for 1 min. Amplicon dissociation curves were 
recorded after cycle 40 by heating from 60 to 95°C with a ramp speed of 1.0°C/min. 
Expression was calculated as -ΔCt relative to the reference gene At1g13320 (Czechowski 
et al., 2005) and normalized to the mean -ΔCt value of mock-treated Col-0. 

Analysis of RNA-seq results

For RNA-seq, developmental leaf 8 was harvested from three individual mock-treated 
wild-type Col-0 plants or SA + MeJA-treated Col-0, npr1-1, C82A, and C216A plants, 5 h 
after treatment. RNA extraction and alignment to the genome was done as described 
in Chapter 2 for the ABA samples. Aligned reads were summarized over annotated gene 
models (TAIR version 10) using HTseq-count version 0.5.3p9 (http://www-huber.embl.
de/users/anders/HTSeq/) with parameters: 'stranded no', '-i gene_id'. Sample counts 
were depth-adjusted and differential expression was determined using the DESeq 
package with default settings (Anders and Huber, 2010). Genes with a corrected P value 
(P adjusted) of ≤ 0.05 were called as differentially expressed. All statistics associated 
with testing for differential gene expression were performed with R (www.r-project.org). 
Expression of the npr1-1 allele was estimated by multiplying the total number of NPR1 
counts with the ratio of counts containing the C1000T point mutation of the npr1-1 allele. 
The rest of the counts were assigned to the wild-type NPR1 allele (for Col-0) or the C>A 
NPR1 allele (for C82A and C216A). 

Creating the plasmid for the protoplast expression assays

The plasmid used for transfection into protoplasts for a transient expression assay was 
assembled with Golden Gate cloning using the Moclo kit (Weber et al., 2011, Werner et 
al., 2012). For creation of level 0 plasmids, a 1.2 kb fragment of the PDF1.2 promoter was 
amplified from gDNA, the CDSs of ORA59 and of several WRKY TF genes were amplified 
from cDNA, and the LucR CDS was amplified from the pBS-35S-Rluc plasmid. Primers 
used are listed in Table S3. The primers were designed to add a restriction site for BbsI 
and a specific sequence of 4 bp that would become the overhang needed to clone 
the product into the correct vector. For some constructs, an internal restriction site 
needed to be removed from the CDS. This was done by PCR-amplifying two fragments 
around the restriction site with primers that introduced a nucleotide change so that 
the restriction site was removed and that added an external BbsI restriction site to re-
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assemble the fragments in the level 0 reaction (Table S3). The PCR product was purified 
after gel electrophoresis using the Illustra GFX PCR DNA and Gel Band Purification Kit 
(Merck, Darmstadt, Germany). Some very small DNA fragments for the construct were not 
created by PCR, but by annealing two custom-designed single stranded oligonucleotides 
(ordered from Integrated DNA Technologies, Coralville, IA, USA), such that on each side an 
overhang of 4 bp was created that could be used for ligation in a level-0 reaction (Table 
S3). The two oligonucleotides were annealed by combining 25 μl of each (100 μM) in a 
1.5-ml tube, heating at 95°C and slowly cooling to room temperature in (initially) hot 
tap water. 

The different PCR products and annealed fragments were cloned into the 
appropriate vector (Table S3) using a standard Golden Gate reaction. For this, 2 μl of 10x 
buffer G, 0.2 μl of 100 mM ATP, 1 μl of 10U/μl BbsI (Thermo Fisher Scientific), 0.4 μl of 5U/
μl T4 DNA ligase (Thermo Fisher Scientific), 100 ng of vector DNA, and PCR/annealing 
product in an approximate molar ratio of 1:2 were mixed in a total of 20 μl. The mix was 
then incubated for 3 cycles of 10 min at 37°C and 10 min at 22°C, which after the final cycle 
was followed by 10 min at 37°C and 20 min at 65°C. The product was transformed into 
Escherichia coli DH5α, after which the amplified plasmid was isolated using the GenEluteTM 
Plasmid Miniprep Kit (Sigma Aldrich, St. Louis, MO, USA) and the correct insertion of the 
PCR fragment(s) was verified using Sanger sequencing. 

 The level 1 reactions followed a similar procedure to the level 0 reactions, with 
the exception of using different vectors (Table S4) and the restriction enzyme BsaI. The 
correctness of the assembly was evaluated through a restriction reaction. Subsequently, 
various combinations of level 1 vectors were cloned into distinct level 2 vectors (Table 
S5) using a Golden Gate reaction, which was similar to the reactions performed for level 
0 and level 1, employing the restriction enzyme BbsI. However, in this particular reaction, 
instead of 3 cycles, 12 cycles were conducted, consisting of 10 minutes at 37°C followed 
by 10 minutes at 22°C. The final construct was confirmed by a restriction reaction.

Preparation of protoplasts for transient expression assays

Transient expression assays in protoplasts were conducted using a custom protocol 
based on protocols by Yoo et al. (2007) and Mathur and Koncz (1998). Rosettes of 3-to-4-
wk-old Arabidopsis plants grown on plate (see ‘Plant material and growth conditions’) 
were cut off from their roots using a razor blade and immediately submerged in 12.5 
ml of protoplasting enzyme solution consisting of Cellulase R10 (1.5% (w/v); Duchefa 
Biochemie, Haarlem, the Netherlands), 0.4% (w/v) Macerozyme R10 (Duchefa Biochemie), 
0.4 M Mannitol, 20 mM KCl, 20 mM MES (pH=5.7), 10 mM CaCl2 and 0.1% BSA in a 60-mm 
Petri dish. The enzyme solution was prepared by heating everything except CaCl2 and BSA 
to 55°C for 10 min and adding the last two components after cooling the solution to room 
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temperature. After the rosettes were submerged, they were cut further into fine strips (±1 
mm) using a razor blade. Next, they were put under vacuum for 2x 5 min using the Savant 
DNA 110 SpeedVac Concentrator with drying rate set to ‘low’. The suspension was briefly 
swirled in between. From this point onward the protoplast suspension was handled with 
extreme care, avoiding excessive movement. After the vacuum infiltration, the plate was 
wrapped in aluminum foil and incubated at 28°C for 3.5 h, with gentle swirling every 
30 min. Subsequently, the protoplast suspension was gently pipetted through a 70-μm 
filter into a 50-ml tube (Greiner Bio-One). The tube and filter were previously prepared by 
pipetting 5 ml of W5 solution (0.2 mM MES (pH=5.7), 154 mM NaCl, 125 mM CaCl2, and 5 
mM KCl) through the filter into the tube. After filtering the protoplast suspension, another 
5 ml of W5 was added to the plate, the plate was gently swirled and the suspension 
was pipetted through the filter into the tube. Next, the tube was centrifuged at 200 
g for 2 min in the swing out Multifuge X3R Refrigerated Centrifuge (Thermo Fischer 
Scientific). Acceleration was set at 5 (out of 9) and brake at 3 to minimize mechanical 
stress. The supernatant was removed, and the protoplasts were resuspended in 10 ml 
of W5 and incubated on ice for 30 min. The suspension was centrifuged at the same 
settings and in case the supernatant was not clear, the addition of W5, incubation on ice 
and centrifugation was repeated. After removal of clear supernatant the protoplasts were 
resuspended in 5 ml of MMG solution (4 mM MES (pH=5.7), 0.4 M Mannitol, 15 mM MgCl2). 
The protoplast density was determined in a hemocytometer, and after centrifuging at the 
same settings and removing the supernatant the protoplasts were resuspended in MMG 
to a density of 1*106 cells/ml, after which they were immediately transfected.

Transfection of protoplasts with a plasmid

Protoplast transfection was done in 12-well cell culture plates with relatively high 
hydrophobicity (Greiner Bio-One, Item No. 665102). Per transfection a protoplast 
suspension droplet of 100 μl was pipetted in the middle of each well and 110 μl of PEG 
solution (40% (w/v) PEG4000 (Fluka; Sigma-Aldrich, St. Louis, MO, USA), 100 mM CaCl2, 
200 mM mannitol) was added around the edge of the well, avoiding mixing with the 
protoplasts. Approximately 20 μg of plasmid DNA (concentration range 4-12 μg/μl) was 
added to the protoplast suspension in the well and gently mixed while pipetting. After 
5 min of incubation, the plate was swirled, allowing mixing between the PEG solution 
and the protoplast suspension. After 10 min of incubation in a tilted position, 440 μl of 
W5 was added to stop transfection and the content of each well was transferred to a 
2-ml tube (Greiner Bio-One). The tubes were centrifuged for 2 min at 1000 g at the ‘soft’ 
setting in the fixed-rotor 5424 R centrifuge (Eppendorf, Hamburg, Germany). After careful 
removal of the supernatant, the protoplasts were resuspended in 700 μl of WI solution 
(4 mM MES (pH=5.7), 20 mM KCl, 0.5 M Mannitol) and immediately transferred to 6-well 
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cell culture plates (Greiner Bio-One) that already contained 500 μl of WI solution. The 
plates were incubated at 21°C in the dark for approximately 20 h. 

 Before harvesting, transfection efficiency was estimated under the microscope 
based on EYFP fluorescence in transfected protoplasts. When the efficiency was at least 
20% the protoplasts were harvested. Experiments where multiple samples had less than 
20% transfection efficiency were discarded. For harvesting, the protoplast suspension 
was transferred to 2-ml tubes and centrifuged at maximum speed for approximately 10 
s in the 5424 R centrifuge at the ‘soft’ setting. Supernatant was removed and the tubes 
with the protoplast pellet were snap-frozen in liquid nitrogen and then stored at -80°C 
until further processing. 

Measuring transient expression in transfected protoplasts 

For GUS, LucR and LucF measurements the protoplast pellet was resuspended in 50 
μl of lysis buffer (2.5 mM Tris-phosphate (pH=7.8), 1 mM DTT (1,4-dithiotreitol), 2 mM 
DACTAA (trans-1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid), 10% (v/v) glycerol, 
1% (v/v) Triton X-100). Protoplasts were ruptured by vortexing for 2 s, briefly spinning in 
a tabletop centrifuge at 2000 g, and vortexing again for 1 s, after which the suspension 
was incubated on ice for 30 min. After warming up to room temperature the suspension 
was centrifuged at 1000 g for 2 min in the 5424 R centrifuge. 

 For the GUS assay, 10 μl of supernatant of the centrifuged protoplast lysate (from 
one well of transfected protoplasts per biological replicate) was mixed with 100 μl of 
freshly prepared MUG substrate (10 mM Tris-HCl (pH=8.0), 2 mM MgCl2, 1 mM 4-MUG 
(4-Methylumbelliferyl-β-D-glucuronide)) and incubated at room temperature for 90 min. 
Next, 990 µl of 0.2 M Na2CO3 was added and mixed by pipetting up and down three times 
to stop the reaction. The solution was then divided into 5x 200 μl in a clear F-bottom 
96-well plate (Greiner Bio-One), serving as five technical replicates. Fluorescence of the 
solution was then determined on the Synergy™ HTX Multi-Mode Microplate Reader 
(Agilent, Santa Clara, CA, USA), with excitation at 360 nm and emission at 460 nm. 
Measurements were done three times to minimize technical variation. Therefore, the 
GUS measurement for one sample was the mean of three measurements of five wells. 

 For the LucF and LucR measurements the remaining lysate (from one well of 
transfected protoplasts per biological replicate, corresponding to the GUS measurements) 
was divided into 3x 10 μl in non-transparent, white F-bottom 96-well plates (Greiner Bio-
One). Luciferase measurements were done on the PromegaTM GloMax® Plate Reader. For 
experiments where only LucF was measured the Luciferase Assay System kit (Promega, 
Madison, WI, USA) was used, and for dual luciferase measurements the Dual-Luciferase® 
Reporter Assay System kit (Promega) was used. First, the luciferin (single luciferase) or 
the LARII and Stop&Glo solutions (dual luciferase) were prepared from the kits according 
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to the manufacturer’s instructions. Next, one (single luciferase) or two (dual luciferase) 
injectors of the machine were primed with the appropriate solutions, after which LucF 
or LucF and LucR measurements were done per well with delay set at 2 s and integration 
time at 10 s. The measurements consisted of injection of 25 μl of luciferin followed by 
measurement of LucF (single luciferase), or sequential injection of 50 μl of the LARII 
solution followed by measurement of LucF, and then injection of 50 μl of the Stop&Glo 
solution followed by measurement of LucR (dual luciferase). The measurement of one 
sample for both LucF and LucR was the mean of the measurements of three wells in which 
the lysate of one sample was divided. 
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SUPPLEMENTARY MATERIAL

Supplementary figures

Treatment
Mock

MeJA

SA + MeJA

A B

g

ab

f

g

bcd

def

g

abc

ef

g

a

cde

0

4

8

Col−0 npr1−1 npr1−nls NPR1−HBD
Genotype

−Δ
C

t c
om

pa
re

d 
to

 C
ol

−0
 m

oc
k

VSP2

ab

a

ab

ab

a

a

b

a a

−2

0

2

4

Col−0 C82A C216A
Genotype

−Δ
C

t c
om

pa
re

d 
to

 C
ol

−0
 m

oc
k

VSP2

Figure S1: effect of mutations in NPR1 on SA/JA crosstalk. 
qRT-PCR analysis of VSP2 expression in (A) 12-day-old or (B) 5-week-old plants treated with water (Mock), 0.1 mM 
MeJA or 1 mM SA and 0.1 mM MeJA, and harvested at (A) 48 h or (B) 5 h after treatment. The ΔCt values per gene/
sample were determined relative to AT1G13320. The plot shows -ΔCt values that are normalized so that the mean 
-ΔCt value of mock-treated Col-0 is 0. Letters indicate significance levels according to a Tukey HSD test (n=5 (A) 
or n=3 (B)). Experiments were repeated with similar results (not shown).

Figure S2: Suppression of ORA59-induced PDF1.2 expression by four candidate WRKY TFs in Arabidopsis 
protoplasts.
Panels A and B are two repeats of the same experiment. The third repeat is included as Figure 4. For more 
information, see the legend of Figure 4. 



143

4

Nuclear NPR1 modulates salicylic acid/jasmonic acid crosstalk via transcriptional control of WRKY transcription factors 

0.1
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WRKY38

WRKY55

IIIa
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Figure S3: Phylogenetic analysis of the WKRY group III. 
Figure was adapted from Kalde et al. (2003). Phylogeny is based on the WRKY domain of each TF. The diagram 
shows an unrooted tree constructed by Kalde et al. (2003) using TREEVIEW (Page, 1996). All WKRY TFs shown 
were tested for suppression of ORA59-induced PDF1.2 expression in our protoplast expression assays, except 
WRKY55 and WRKY64 (indicated in gray), which we were unable to clone. WRKY TFs that were consistently found 
to suppress ORA59-induced PDF1.2 expression in our experiments are indicated in green (note that for WRKY70 the 
results were variable between experiments (Figures 4, 5, S2)). WRKY TFs that have been linked to SA/JA crosstalk 
in other papers, but were not (consistently) found to suppress ORA59-induced PDF1.2 expression in our setup 
are indicated in blue. WRKY50, which we found suppressed ORA59-induced PDF1.2 expression, is not included 
here because it does not belong to group III.
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Supplementary tables

Table S1: Genes differentially expressed between SA + MeJA-treated Col-0 and SA + MeJA-treated npr1-1 
plants (sheet ‘Col-0’ vs. npr1-1’), and SA + MeJA-treated Col-0 and SA + MeJA-treated C82A plants (sheet 
‘Col-0 vs. C82A’). 
Available upon request.

Table S2: List of all primers used for qRT-PCR in this study.

Name Sequence (5’-> 3’)

AT1G13320_fw TAACGTGGCCAAAATGATGC

AT1G13320_rv GTTCTCCACAACCGCTTGGT

PR1_fw CTCGGAGCTACGCAGAACAACT

PR1_rv TTCTCGCTAACCCACATGTTCA

PDF1.2_fw TTTGCTGCTTTCGACGCAC

PDF1.2_rv CGCAAACCCCTGACCATG

VSP2_fw ACGGAACAGAGAAGACCGAC

VSP2_rv TCTTCCACAACTTCCAACGG
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Table S4: DNA components for assembly of level 1 plasmids for transient protoplast assays. 
Components were assembled using Golden Gate cloning with BsaI. Plasmids were derived from level 0 reactions 
(Table S3) or the MoClo plant parts toolkit (Weber et al., 2011, Werner et al., 2012). Name codes represent level, 
intended position in the level 2 vector and a unique number, all separated by dots. NB: the unique number does 
not always start with 1 because the plasmids were part of a series of experiments with different plasmids. 

Description Backbone 
vector

Promoter + 
5’UTR 

CDS 3’ tag 3’ UTR + 
terminator

New 
vector 
name

PDF1.2pro:GUS pICH47732 pICH41295_
PDF1.2

pICH75111 - pICH41414 1.1.2

35Spro:LucF pICH47742 pICH51277 pICSL80001 - pICH41414 1.2.2

35Spro:ORA59 pICH47751 pICH51277 pICH41308_ORA59 - pICH41414 1.3.1

Empty module 
position 3

pICH47751 pICH51277 pICH41308_EM - pICH41414 1.3.2

35Spro:ORA59-
LucR

pICH47751 pICH51277 pAGM1287_ORA59 pAGM1301_
LucR

pICH41414 1.3.3

35Spro:WRKYxx1 pICH47751 pICH51277 pICH41308_WRKYxx1 - pICH41414 1.4.x1

Empty module 
position 4

pICH47751 pICH51277 pICH41308_EM - pICH41414 1.4.5

35Spro:EYFP pICH47772 pICH51277 pICSL80014 - pICH41414 1.5.1

1xx refers to a unique WRKY TF number.
2x refers to a unique number for each WRKY TF level 1 construct (except 5 which refers to the construct with an 
empty module instead of a WRKY TF).
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Table S5: DNA components for assembly of level 2 plasmids for a transient protoplast assay. 
Plasmids were derived from level 1 reactions (Table S4) or the MoClo plant parts toolkit (Weber et al., 2011, Werner 
et al., 2012). All constructs had pAGM4673 as acceptor vector and used end-linker 5 to link the fragment of position 
5 to the backbone vector.

Construct description Position 
1

Position 
2

Position 
3

Position 
4

Position 
5

Control plasmid for PDF1.2 induction 1.1.2 1.2.2 1.3.2 1.4.5 1.5.1

Control plasmid for WRKY repression 1.1.2 1.2.2 1.3.1 1.4.5 1.5.1

Plasmid including WRKY TF 1.1.2 1.2.2 1.3.1 1.4.x1 1.5.1

Readout plasmid for ORA59 degradation 
(transfected together with level 1 WRKY-
containing plasmid)

1.1.2 1.2.2 1.3.3 pICH54044 1.5.1

Plasmid for ORA59 degradation 
including WRKY TF

1.1.2 1.2.2 1.3.3 1.4.x1 1.5.1

1x refers to any number of a construct that contains a WRKY TF. 
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ABSTRACT

Transcriptional reprogramming is an integral part of plant immunity. Tight regulation of 
the immune transcriptome is essential for a proper response of plants to different types 
of pathogens. Consequently, transcriptional regulators are proven targets of pathogens 
to enhance their virulence. The plant immune transcriptome is regulated by many 
different, interconnected mechanisms that can determine the rate at which genes are 
transcribed. These include intracellular calcium signaling, modulation of the redox state, 
post-translational modifications of transcriptional regulators, histone modifications, DNA 
methylation, modulation of the Mediator complex and RNA polymerases, and regulation 
by non-coding RNAs. In addition, on their journey from transcription to translation, mRNAs 
are further modulated through mechanisms such as RNA retention, storage of mRNA in 
stress granules and P-bodies, and post-transcriptional gene silencing. In this review, we 
highlight the latest insights into these mechanisms in the context of plant immunity. 
Furthermore, we discuss some emerging technologies that promise to greatly enhance 
our understanding of the regulation of the plant immune transcriptome in the future.
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INTRODUCTION

Plant diseases caused by different pathogens pose a major threat to crop productivity. 
However, plants do respond to pathogens by activating their robust yet specialized innate 
immune system. General pathogen-associated molecular patterns (PAMPs) and specific 
apoplastic pathogen effectors are perceived by the plants’ surface-localized pattern-
recognition receptors (PRRs), leading to activation or prevention of pattern-triggered 
immunity (PTI), respectively. In addition, specific pathogen effector molecules that are 
secreted into plant cells are recognized by intracellular nucleotide-binding leucine-
rich repeat receptors (NLRs), activating effector-triggered immunity (ETI) (Ngou et al., 
2022). Depending on the pathogen, a mix of PTI, ETI and other immune responses are 
induced, which are largely mediated by differential accumulation of phytohormones 
like salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET) (Bürger 
and Chory, 2019). The different hormones act together in synergistic, antagonistic 
and additive manners, a phenomenon known as crosstalk (Aerts et al., 2021). Diverse 
regulators, interacting with each other in gene regulatory networks (GRNs), orchestrate 
the transcriptional reprogramming that results from pathogen recognition. In this review, 
we refer to all the different immune-related transcriptional reprogramming as the plant 
immune transcriptome. Mechanistically, the plant immune transcriptome is determined 
by the coherent control of multiple transcriptional regulatory machineries including 
transcription factors (TFs), Mediator, co-regulators, DNA and RNA modifiers, chromatin 
remodelers, etc. (Garner et al., 2016, Li et al., 2016). These molecular components can 
be directly or indirectly post-transcriptionally modified by kinases/proteases, SUMO/
ubiquitin, and second messengers like reactive oxygen species (ROS) and calcium ions 
(Ca2+) (Tsuda and Somssich, 2015, Andersen et al., 2018). The plant immune network is 
robust enough to resist a pathogen as long as the recognition and immune activation are 
timely, despite some of the transcriptional machineries being hijacked by the pathogen 
(Ngou et al., 2022). Here, we briefly summarize the transcriptional plant targets of 
pathogen virulence factors, which facilitate our understanding of the plant immune 
transcriptome. We highlight how multi-scale regulations of transcription and mRNA 
modulation are accomplished by different proteinaceous components, which determine 
induction of different sectors in the immune gene regulatory network. Moreover, we 
highlight the future multi-omics directions to achieve a systems level comprehension 
of regulation of the plant immune transcriptome.
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THE PLANT IMMUNE TRANSCRIPTOME IS TARGETED BY 
PATHOGENS

The timing and efficiency of elicitation of the immune transcriptome is essential for plants 
to halt pathogens. Of all the cellular components that are involved in transcriptional 
reprogramming, the role of transcription factors (TFs) in regulating crucial defense 
responses is best studied. Mutations in TFs including WRKYs, TGAs, NACs, CBP60s/
SARD1, ERFs, bZIPs, bHLHs, MYBs, CAMTAs, and TCPs alter plant disease resistance against 
different pathogens (Zhang et al., 2010, Fernández-Calvo et al., 2011, Li, 2015, Tsuda and 
Somssich, 2015, Akio Amorim et al., 2017, Yuan et al., 2019, Kim et al., 2020). Some of 
these plant TFs are popular targets of pathogens to arrest induced immune responses 
in plants (reviewed by Ding and Redkar, 2018, Han and Kahmann, 2019, Wang et al., 
2022a), underpinning their importance for defense. We refer to Table 1 for a summary 
of effector molecules of different pathogens that target transcriptional regulators, like 
TFs, transcriptional (co-)activators or repressors, or Mediator subunits. Many of these 
effectors modulate SA signaling (Chen et al., 2017, Li et al., 2019a), JA signaling (Plett et 
al., 2014) or SA-JA crosstalk (Caillaud et al., 2013, Jiang et al., 2013, Gimenez-Ibanez et 
al., 2014, Raffeiner et al., 2022), leading to enhanced susceptibility to the biotrophic or 
necrotrophic pathogen at hand. 

Another well studied example of direct interference with plant immune transcription 
is that of transcription activator-like effectors (TALEs), which are deployed by many 
plant-pathogenic xanthomonads. TALEs bind to effector binding elements (EBEs) in the 
promoters of host susceptibility (S) genes that contribute to disease (Boch et al., 2014, 
Wang et al., 2017). Recently, TALEs Tal2b and Tal2c from Xanthomonas oryzae pv. oryzicola 
(Xoc) were shown to activate expression of OsF3H03g, encoding a 2-oxoglutarate-
dependent dioxygenase that negatively regulates SA-related defense and promotes 
susceptibility against Xoc in Oryza sativa (Wu et al., 2021b). Moreover, several TALEs from 
Xanthomonas spp. induce SWEET sugar transporter genes, resulting in an increased 
availability of sugar for the pathogen, thereby promoting pathogenesis (Doyle et al., 
2013, Cox et al., 2017).
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Table 1. Pathogen effectors and their host targets that are involved in transcriptional regulation during 
plant immunity. 
This table summarizes some well-studied effectors secreted by different pathogens that hijack diverse 
transcriptional regulators of the host plant, including transcription factors, and transcriptional (co-) activators 
and repressors, to facilitate infection.

 
 

Pathogen Pathogen 
effector  

Function of host 
target 

Name of 
host target 

 Host species References  

Ralstonia solanacearum RipAB Transcription factor  TGAs Arabidopsis thaliana (Qi et al., 
2022) 

Xanthomonas 
campestris pv vesicatoria 

XopD Transcription factor  MYB30 Arabidopsis thaliana (Canonne et 
al., 2011) 

Xanthomonas 
campestris pv vesicatoria 

XopS Transcription factor  WRKY40 Capsicum annuum (Raffeiner et 
al., 2022) 

Ralstonia solanacearum PopP2  Transcription factor  WRKY  Arabidopsis thaliana (Roux et al., 
2011) 

Pseudomonas syringae AvrRps4 Transcription factor WRKY Arabidopsis thaliana (Sarris et al., 
2015) 

Verticillium dahliae VdSCP41 Transcription factor CBP60g, 
SARD1 

Arabidopsis thaliana (Qin et al., 
2018) 

Pseudomonas syringae HopBB1 Transcription factor TCP14 Arabidopsis thaliana (Yang et al., 
2017a) 

Phytoplasma Phyllogen Transcription factor  MADS-box  Arabidopsis thaliana, 
Oryza sativa 

(Kitazawa et 
al., 2022) 

Hyaloperonospora 
arabidopsidis 

HaRxL44 Mediator complex MED19a Arabidopsis thaliana (Caillaud et 
al., 2013) 

Hyaloperonospora 
arabidopsidis 

HaRxL21  Transcriptional Co-
repressor 

TPL Arabidopsis thaliana (Harvey et 
al., 2020) 

Pseudomonas syringae HopZ1, 
HopX1  

Transcriptional 
repressor 

JAZ Arabidopsis thaliana (Jiang et al., 
2013, 
Gimenez-
Ibanez et al., 
2014) 

Laccaria bicolor MiSSP7 Transcriptional 
repressor 

JAZ Populus trichocarpa (Plett et al., 
2014) 

Pseudomonas syringae AvrPtoB  Transcriptional Co-
activator 

NPR1 Arabidopsis thaliana (Chen et al., 
2017) 

Phytophthora capsici RxLR48 Transcriptional Co-
activator 

NPR1 Arabidopsis thaliana (Li et al., 
2019a) 

REGULATION OF THE PLANT IMMUNE TRANSCRIPTOME 
OCCURS AT MULTIPLE SCALES

The plant immune transcriptome encompasses both activation and repression of genes 
with diverse molecular functions, ranging from the control of general metabolic processes 
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to highly specific responses that are directed towards a particular organism (Windram et al., 
2012, Lewis et al., 2015, Hickman et al., 2017, Hickman et al., 2019, Zander et al., 2020, Bjornson 
et al., 2021, Maier et al., 2021, Tang et al., 2021, Winkelmüller et al., 2021). The relatively early 
response to attackers is usually a ‘general stress response’ (GSR) to danger, which is similarly 
activated after both biotic and abiotic stresses (Walley et al., 2007, Benn et al., 2014, Bjornson 
et al., 2021, Maier et al., 2021), and was demonstrated to be important for defense against 
P. syringae pv. tomato DC3000 (Pto) (Bjornson et al., 2021, Maier et al., 2021). Furthermore, 
for  both pathogenic and non-pathogenic bacteria, it was found that the strength of this 
early response is correlated positively with the number of differentially expressed genes, 
although it is not clear whether this is based on a causal relationship (Maier et al., 2021). 
The later responses are more specific, depending on the eliciting organism or its derived 
molecular patterns, and show a high degree of plasticity, which ensures a tailored response 
to the perceived signal. The transcriptional changes result from multi-scale regulations, 
including post-translational modifications of TFs, association of TFs with co-regulators 
and their target DNA sequences, regulation of stability and turnover of TFs, chromatin 
remodeling, DNA methylation, association of TFs with the Mediator complex, regulation 
of the RNA polymerases, and post-transcriptional regulation of mRNAs (Figure 1). Below, 
we highlight some of these mechanisms. We also recommend the recently published 
focused reviews on TFs functioning in different molecular contexts (Strader et al., 2022) 
and epigenetics in plant immunity (Hannan Parker et al., 2022).

Transcription-related physiological homeostasis

A rapid influx of calcium and a change in redox status are vital parts of the plant immune 
response and they play intertwined roles in PTI and ETI (Xu et al., 2022). Calcium influx 
is induced immediately upon perception of PAMPs and effectors, which has been 
coupled to classical calcium channels, but also to recently identified noncanonical 
calcium channels formed by NLR-based resistosomes (Bi et al., 2021, Jacob et al., 2021) 
(Figure 1A). Intracellularly, the calcium signal is decoded by calcium binding proteins 
like calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs). These can directly 
activate TFs, such as those of the defense-regulating CaM-binding TF family CAMTA, the 
CaM-binding protein CBP60g, and the WRKY TFs WRKY33, WRKY28 and WRKY48, which 
are phosphorylated by CPK5 and CPK6 (Figure 1E). This leads to altered defense-related 
transcription by these TFs, which influences resistance to diverse pathogens (Wang et al., 
2011, Gao and He, 2013, Kim et al., 2013, Zhou et al., 2020). Although in general positive 
effects of calcium signaling on immunity have been reported, this is not always the case. 
For example, the Ca2+-activated CAMTA3 (or AtSR1) TF represses expression of the SA 
regulator NPR1 and the SA biosynthesis gene ICS1 (Yuan et al., 2021b). However, since NPR1 
is a negative regulator of HR (Rate and Greenberg, 2001, Yuan et al., 2022), its repressed 
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expression by CAMTA3 positively affects ETI-mediated HR (Yuan et al., 2021). Several 
other CaM-regulated and CaM-like proteins like CBP60a, CML46 and CML47 negatively 
impact SA-related gene expression and accordingly, mutant lines are enhanced resistant 
to virulent P. syringae (Lu et al., 2018).

Figure 1: Mechanisms involved in the regulation of immune-related transcription. 
(A) Regulation of calcium (Ca2+) influx, which may lead to post-translational modifications of TFs (see also Figure 
1E); (B) generation of ROS by RbohD, which may lead to post-translational modifications of TFs (see also Figure 
1E); (C) co-factors that may contribute to regulation of transcription; (D) TFs regulate transcription by binding to a 
motif; (E) post-translational modifications of TFs, such as phosphorylation (P), sumoylation (SUMO), ubiquitination 
(Ub) and forming of oligomers through S-S bridges depending on the redox state; (F) modifications of histones 
(methylation (Me) or acetylation (Ac)) to regulate the chromatin state; (G) methylation of DNA; (H) Phosphorylation 
of the C-terminal domain of RNA-polymerase II (PolII) promotes transcription; (I) PolII may initiate transcription 
at alternative transcription start sites; (J) the Mediator complex forms the bridge between specific TFs, general 
TFs (GTF) and PolII; (K) selective import of TFs or other proteins; (L) alternative splicing; (M) selective retention of 
mRNAs in the nucleus; (N) temporary storage of mRNAs in stress granules or P-bodies; (O) degradation of mRNAs 
from P-bodies; (P) release of mRNAs from stress granules or P-bodies into the cytosol, followed by translation; 
(Q) post-transcriptional gene silencing by small RNAs. (R) Long non-coding RNAs can regulate transcription in 
different ways. Depicted here is modulation of MED19a by ELENA1.
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The production and signaling of reactive oxygen species (ROS) is tightly connected 
to that of calcium, as these molecules can (in)directly regulate each other’s cellular 
concentrations (Xu et al., 2022). Both PTI and ETI trigger a burst of ROS, which is mainly 
caused by activation of the NADPH oxidase RbohD (Torres et al., 2002) (Figure 1B). The 
changed redox state impacts many aspects of a plant’s physiology, including transcription 
(Mittler, 2017). In plant immunity, NPR1 is the best-known converter of the redox state 
to transcriptional reprogramming. Under oxidizing conditions, NPR1 resides in the 
cytosol. According to the classical view it mostly forms oligomers in the cytosol that are 
held together by disulfide bridges formed between cysteine residues (Mou et al., 2003), 
which break under more reduced redox conditions, such as occur during a prolonged 
defense response, resulting in monomeric NPR1 that relocates to the nucleus (Mou et al., 
2003) (Figure 1E, K). In the nucleus, NPR1 acts as a transcriptional co-activator together 
with TGA TFs to activate many genes involved in defense (Zhang et al., 1999, Zhou et 
al., 2000) (Figure 1C, D). The NPR1-TGA1 interaction itself is also affected by the redox 
status (Després et al., 2003). Interestingly, recent research has challenged the classical 
literature on the multimerization of NPR1. The oligomeric form of NPR1 in the cytosol 
that was observed by Mou et al. (2003) was found to be likely formed in vitro only 
(Ishihama et al., 2021). However, recently, the cryo-EM structure of NPR1 showed that its 
predominant functional form is a dimer, which forms oligomers in the quiescent state, 
but also can interact with two TGA3 dimers to form a TGA32-NPR12-TGA32 complex, and 
possibly also form complexes with other transcription regulators, to regulate the immune 
transcriptome (Kumar et al., 2022).

Post-translational modifications of TFs

Post-translational regulation of TFs can alter their activities (Figure 1E). This is well-studied 
for the WRKY33 TF that promotes resistance to the necrotrophic pathogen Botrytis 
cinerea by regulating crucial defense-related responses such as camalexin production 
in Arabidopsis thaliana (hereafter: Arabidopsis) (Zheng et al., 2006, Mao et al., 2011). The 
WRKY33 protein is activated by phosphorylation through at least two pathways: one 
involves the calcium-dependent kinases CPK5 and CPK6 that phosphorylate the Thr-
229 residue of WRKY33 (Zhou et al., 2020), and the other one involves a MAPK cascade 
consisting of YDA (a MAPKKK), MKK4 and MKK5 (MAPKKs), and MPK3 and MPK6 (MPKs) 
that eventually phosphorylate five Ser residues in the N terminus of WRKY33 (Bergmann 
et al., 2004, Lukowitz et al., 2004, Meng et al., 2012, Zhou et al., 2020, Cai et al., 2021). 
Moreover, SUMOylation of WRKY33 increases its interaction with MPK3 and MPK6, 
thereby further enhancing WRKY33 phosphorylation via this pathway (Verma et al., 
2021). The phosphorylation of WRKY33 by the calcium pathway increases its binding 
to DNA, whereas phosphorylation by the MAPK pathway increases its transactivation 



161

5

Transcriptional regulation of plant innate immunity 

activity (Yang et al., 2020, Zhou et al., 2020). Genetic studies implied that the same two 
phosphorylation pathways may also activate MYB51 to regulate indole glucosinolate 
biosynthesis, but it is not known whether these pathways also play distinct roles in MYB51 
functioning (Yang et al., 2020).

Phosphorylation has also been shown to be important for the transactivation 
activity and binding specificity to DNA motifs of the ERF TF ORA59, which is required for 
defense induction in Arabidopsis against B. cinerea (Pré et al., 2008). The hormones JA and 
ET can induce phosphorylation of ORA59, which increases ORA59´s binding specificity 
towards the canonical GCC box or a newly identified motif named ERELEE4, respectively, 
depending on the corresponding hormone stimulus (Yang et al., 2021). This can explain 
partly that the ERELEE4 motif is enriched in genes that are induced by ET treatment in an 
ORA59-dependent manner, while JA treatment is associated with an ORA59-dependent 
induction of GCC-box containing genes (Yang et al., 2021). 

Ubiquitination also regulates TF activities via protein turnover. For instance, SA 
induces ORA59 ubiquitination and degradation via the 26S proteasome pathway (Van 
der Does et al., 2013, He et al., 2017). The transcriptional co-regulator NPR1 of SA-induced 
transcription, and the JAZ repressor proteins and MYC TFs that function in JA-induced 
transcription, are also regulated by phosphorylation-mediated proteasomal degradation 
via covalent addition of small ubiquitin proteins (Furniss and Spoel, 2015, Chico et al., 
2020, Ban and Estelle, 2021). Their turnover provides a mechanism to control timing of 
activation and repression of the plant immune transcriptome. Additionally, SA induces 
cytoplasmic condensates containing NPR1 and many stress proteins, including specific 
WRKY TFs and proteins involved in programmed cell death (PCD). NPR1 recruits ubiquitin 
ligases to these condensates, leading to ubiquitination and subsequent degradation of 
the proteins and enhanced cell survival during ETI (Zavaliev et al., 2020).

Chromatin context

Chromatin context is a major determinant for transcriptional activities in all eukaryotic 
cells. The accessibility of chromatin can influence when and where TFs, other regulators, 
and RNA polymerases find their targets to activate transcription. The chromatin 
state can be altered through modification of histone tails and deposition of histone 
variants (Figure 1F). Recently, Ding et al. (2021) used the method Assay for Transposase-
Accessible Chromatin followed by sequencing (ATAC-seq) to profile the genome-wide 
chromatin landscape of Arabidopsis after infection with an engineered non-pathogenic 
Pseudomonas fluorescens strain either expressing the effector AvrRps4 (thus causing 
both PTI and ETI) or a non-recognized effector mutant (thus causing PTI only), and this 
was compared with RNA-seq data. Over one third of all upregulated genes in both PTI 
and PTI+ETI also contained more open chromatin compared to the control. Moreover, 
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integration of RNA-seq, ATAC-seq and TF-DNA-binding motif information helped to 
decipher GRNs mediating PTI, ETI and ‘PTI+ETI’ (Ding et al., 2021). In another study, Pardal 
et al. (2021) used Micrococcal Nuclease digestion followed by sequencing (MNase-seq) 
to investigate how treatment with the PAMP flg22 affects genome-wide nucleosome 
occupancy. They found that flg22 causes genome-wide repositioning of nucleosomes, 
partly coinciding with the promoters of differentially expressed genes. Repositioning 
of nucleosomes is mediated by chromatin ATPases (Han et al., 2015). Notably, whereas 
some chromatin remodeling ATPases like PKR2 and RAD54 promote immunity, others, 
like EDA16 and SWP73A attenuate it (Huang et al., 2021, Pardal et al., 2021), indicating 
a complex relationship between chromatin remodeling and immunity. These studies 
suggest that chromatin remodeling is an important mechanism by which gene 
transcription is regulated during immune responses mediated by both cell-surface and 
intracellular receptors. 

It is still unclear whether the accessibility of the regulatory DNA regions precedes 
transcription or vice versa. For example, it was found that WRKY33 enhances accessibility 
of genes to reinforce gene transcription. The chromatin remodeling complex SWR1 and 
the MAPK-WRKY33 module promote deposition of H2A.Z (Cai et al., 2021), a variant of the 
canonical H2A histone subunit that can activate or repress transcription depending on 
the context (Hannan Parker et al., 2022), and increased H3K4me3 (Cai et al., 2021), a histone 
mark generally associated with active transcription (Zhang et al., 2009). This happens 
around WRKY33 target genes, leading to more WRKY33-mediated H2A.Z deposition and 
H3K4me3 modification (Cai et al., 2021). 

Chromatin remodeling also plays a role during ETI-triggered PCD. During this process 
chromocenters (regions with heterochromatin) get less dense and different chromatin 
marks get redistributed, such as the repressive marks H3K9me2 and H3K27me3, leading to 
altered transcription (Dvořák Tomaštíková et al., 2021). Studies with chromatin remodeling 
mutants suggest that this remodeling mostly attenuates PCD, possibly to prevent it from 
happening too rapidly or at the wrong time (Dvořák Tomaštíková et al., 2021). 

Chromatin remodeling can also lead to altered transcription via a non-canonical 
function of the gene-silencing-related component ARGONAUTE1 (AGO1). AGO1 binds 
to chromatin around specific genes, likely dependent on its association with specific 
small RNAs and through interaction with several subunits of the SWI/SNF chromatin-
remodeling complex (Liu et al., 2018). There, it promotes PolII occupancy around these 
genes. Notably, treatment with immune-related compounds such as JA, BTH (an SA 
analog) and flg22 caused AGO1 to bind to genes that are enriched in GO-terms related 
to the response to the corresponding ligand, suggesting that AGO1 contributes to 
these responses. In accordance, a mutation in AGO1 results in reduced JA-induced gene 
expression (Liu et al., 2018).
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DNA methylation

DNA methylation is generally associated with suppression of activity of transposable 
elements and with transcriptional repression (Figure 1G). DNA methylation in plants can 
be regulated through RNA-directed DNA methylation (RdDM), which involves small RNAs 
derived from transcripts resulting from RNA polymerases PolII, PolIV and PolV activity 
(Erdmann and Picard, 2020). For examples of regulatory components in RdDM, which 
shape the immune transcriptome, see also ‘Modulation of RNA polymerase’ and ‘The 
Mediator complex’. 

Demethylation of DNA occurs either passively during replication or actively by 
different demethylases under specific conditions. The DNA methylome is altered upon 
pathogen attack, which modulates the immune response (Dowen et al., 2012, Halter et al., 
2021). The demethylase ROS1 was found to reduce methylation of regulatory regions in or 
close to flg22-induced defense-related genes, facilitating binding of TFs and subsequent 
activation of plant immunity (Halter et al., 2021). 

Another example is the demethylase DEMETER (DME). Loss-of-function mutants of 
this enzyme are lethal, but recent studies using plant lines with a weak allele generated 
by CRISPR-CAS9 or silencing of dme revealed that DME alters methylation of hundreds of 
genomic regions and is affected in defense against bacterial and fungal pathogens (Zeng 
et al., 2021). Moreover, results obtained with the mutant line in which dme was silenced 
in the background of a triple mutant of the DNA methylases ros1, dml2 and dlm3 (rdd) 
suggest that DME acts redundantly with other demethylases to regulate expression of 
defense genes via demethylation (Schumann et al., 2019). 

In addition, the demethylation-deficient mutant rdd is impaired in resistance against 
Pto induced by the immune-stimulating molecular patterns flg22, elf18 and Pep2 (Huang 
et al., 2022). The flg22 treatment induces hypomethylation of specific regions in the 
wild-type plant but not in the rdd mutant, which is associated with a higher number of 
differentially methylated promoter regions of defense-related genes and their higher 
expression level in wild type compared to mutant. Altogether, the studies discussed 
here show that DNA demethylation of specific regions is important for a proper immune 
transcriptome. It has not been explored how the four demethylases change their activity 
during an immune response, so the spatiotemporal relevance of each enzyme in the 
regulation of the immune transcriptome remains to be determined.

Modulation of RNA polymerase

During immune activation PolII is phosphorylated (Figure 1H). For example, flg22 induces 
phosphorylation of the C-terminal domain (CTD) of PolII by the two cyclin-dependent 
kinase Cs CDKC;1 and CDKC;2, which in turn are phosphorylated by flg22-triggered 
MPK3 and MPK6 (Li et al., 2014). The phosphatase CTD PHOSPHATASE-LIKE3 (CPL3) can 
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dephosphorylate the CTD and thereby act as a negative regulator of plant immune 
transcription. Mutants in CDKC and CPL3 were found to be more susceptible to Pto, 
demonstrating the essential role of phosphorylation of the CTD of PolII in regulation of 
immunity against this pathogen (Li et al., 2014). Another CPL, namely CPL1 of tomato, can 
reduce defenses against various but not all of the tested pathogens and insects (Thatcher 
et al., 2018). Additionally, CPL1 negatively regulates defense-related transcription 
(Thatcher et al., 2018). However, the effect of CPL1 on PolII was not studied, and it even 
seems likely that other mechanisms are involved, since the Arabidopsis homologue of 
CPL1 has previously been associated with miRNA processing (Manavella et al., 2012) and 
RdDM (Jeong et al., 2013).

Alternative transcription initiation

Alternative transcription initiation can expand the regulatory repertoire of the genome, 
since it may involve alternative promoters that are differentially induced upon different 
stimuli, or result in different transcripts and proteins (Figure 1I). Recently, more than 15% 
of the 3374 transcripts that were induced by flg22 treatment after 30 min were found 
to be derived from alternative transcription events (Thieffry et al., 2022). The alternative 
transcripts for example lacked upstream open reading frames (uORFs), which may affect 
translation efficiency of the transcript, or their encoded proteins lacked a predicted 
domain or signal peptide, which could potentially alter their function. These predictions 
were validated for a small set of transcripts, but the overall implications of alternative 
transcription initiation during PTI remain to be elucidated. 

The Mediator complex

TFs recruit PolII through interactions with the multi-subunit Mediator complex (Zhai and 
Li, 2019) (Figure 1J). Recently, substantial molecular evidence has been provided for a 
role of the Mediator subunit MED25 in hormone crosstalk. The JA specific TF MYC2 was 
shown to interact at its same position with the SA regulator NPR1 as well as with MED25 
(Nomoto et al., 2021). Consequently, NPR1 reduces the recruitment of MED25 by MYC2 to 
target promoters of MYC2. This dampens the positive effect of MED25 on MYC2-induced 
transcription. Interestingly, in the absence of JA, JAZ proteins also repress MYC2-induced 
transcription in part by preventing the MYC2-MED25 interaction (Zhang et al., 2015), but 
JAZs are degraded at high JA levels (Chini et al., 2007, Thines et al., 2007). NPR1 therefore 
mechanistically takes over (part of) the function of the degraded JAZ proteins at high 
JA and SA levels.

Although Mediator usually connects TFs to PolII, it can also recruit other RNA 
polymerases that are relevant for defense. The Mediator subunit MED18 interacts with 
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NUCLEAR RNA POLYMERASE D2a (NRPD2a), a subunit of PolIV and PolV (Zhang et al., 
2021). MED18 and NRPD2a are highly expressed after B. cinerea infection, and mutants 
and overexpressors of these genes corroborate their importance for a part of B. cinerea-
induced gene expression and for resistance against B. cinerea (Lai et al., 2014, Zhang et al., 
2021). PolIV and PolV are involved in RdDM and other non-coding RNA-mediated gene 
silencing processes (Haag and Pikaard, 2011), suggesting that impairment of one of these 
processes may underly the altered gene expression and resistance of the nrpd2a mutant 
and possibly also of the med18 mutant. However, this still needs to be investigated. 

Selective nuclear transport of transcriptional components 

Nuclear im/export of transcriptional components is a selective mechanism to control 
the plant immune transcriptome (Figure 1K). This was already described for NPR1 in 
‘Transcription-related physiological homeostasis’. CONSTITUTIVE EXPRESSER OF 
PATHOGENESIS-RELATED GENES 5 (CPR5) is a component of the nuclear pore complex 
that regulates PCD during ETI (Wang et al., 2014, Gu et al., 2016). This protein has three 
modes of action. Firstly, the conformational change that CPR5 undergoes upon ETI 
alters the permeability of the nuclear pore and thereby allows influx of several stress-
related cargos (such as NPR1 and ABI5) to the nucleus, resulting in massive transcriptional 
reprogramming (Gu et al., 2016). Secondly, CPR5 is a negative regulator of PCD by binding 
to the cyclin-dependent kinase inhibitors SIAMESE (SIM) and SIAMESE-RELATED1 (SMR1). 
Upon ETI, CPR5 releases SIM and SMR1, which activate E2F TFs to induce PCD (Wang et 
al., 2014). Finally, CPR5 regulates alternative splicing (AS; Figure 1L) via its RNA-binding 
activity (Peng et al., 2022). Interestingly, the mRNA of the gene-silencing-related AGO1 
and several AS regulators are among its targets, suggesting that apart from its own 
role in AS, it also indirectly affects gene silencing and AS (Peng et al., 2022). In addition, 
Exportin-4 (XPO4) mediates nuclear export of TOPLESS-RELATED1 (TPR1), counteracting 
the translocation of TPR1 into the nucleus during ETI in the presence of high SA levels, 
as was studied in the cpr5 background (Xu et al., 2021). This way, XPO4 prevents the 
repression of negative immune regulators by TPR1 in the nucleus, and likely impedes a 
runaway immune response during ETI.

RNA processing, storage and degradation

Regulation of messenger RNA (mRNA) largely impacts the formation of proteins. For 
example, AS of NLR genes and JAZ genes generates isoforms with diverse activities 
or subcellular localizations, by which plants can control immunity activation (Wu et 
al., 2020) (Figure 1L). Treatment with flg22 induces MPK4-mediated phosphorylation 
of splicing factors, leading to AS of genes encoding NLRs, TFs, CDPKs and splicing 
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factors (Wu et al., 2020). MED25 recruits the splicing factors PRE-mRNA-PROCESSING 
PROTEIN 39a (PRP39a) and PRP40a to promote the full spicing of JAZ genes, in order 
to prevent excessive desensitization of JA signaling mediated by JAZ alternative splice 
variants (Chini et al., 2007, Thines et al., 2007, Chung and Howe, 2009, Wu et al., 2020). 
Moreover, RNA can be (temporarily) stored in the nucleus, or in special aggregations 
that are involved in temporary storage and/or degradation, which decreases the pool of 
translating RNAs (Figure 1M-P). For example, core hypoxia genes in Lupinus luteus and 
Arabidopsis are retained in the nucleus during hypoxia, and released in the cytosol upon 
reaeration (Niedojadło et al., 2016). It is uncertain if such nuclear retention regulation 
applies during immune activation. Non-translating mRNAs can also be stored in stress 
granules or P-bodies, which are both quickly disassembled and re-assembled after 
stress. Stress granules contain mRNAs and translation machinery, and contribute to 
mRNA storage, whereas P-bodies contain mRNAs and mRNA degrading enzymes, and 
contribute to mRNA degradation (Decker and Parker, 2012, Mitchell and Parker, 2014). 
The importance of P-bodies and mRNA decay in PTI was recently reported (Yu et al., 
2019). It was shown that the P-body component DECAPPING1 (DCP1), a co-activator of 
the decapping enzyme DCP2, is phosphorylated by MPK3 and MPK6 within minutes of 
treatment with several PAMPs. This phosphorylation of DCP1 decreases its binding to 
DCP2, but increases its binding to XRN4, an exoribonuclease that can degrade decapped 
mRNA (mRNA decay) (Souret et al., 2004). This leads to degradation of a subset of mRNAs 
that are downregulated during PTI, to prevent their negative impact on the plant immune 
response (Yu et al., 2019). 

Regulation by non-coding RNAs

Different non-coding RNAs, like small RNAs and long non-coding RNAs (lncRNAs) regulate 
different steps in gene expression. For a comprehensive overview on non-coding RNAs 
in plant immunity we refer to a recent review (Song et al., 2021). Small RNAs can interfere 
with mRNA stability or regulate transcription or translation through mechanisms such as 
RdDM (see also ‘DNA methylation’). MicroRNAs (miRNAs) are small RNAs that are involved 
in post-transcriptional gene silencing (PTGS) and can thus potentially affect the immune 
transcriptome (Figure 1Q). A recent study explored the role of miRNAs during infection 
of soybean with the soybean cyst nematode Heterodera glycines (Rambani et al., 2020). 
They found that differential DNA methylation of miRNA genes influences expression of 
the miRNAs in resistant and susceptible soybean lines. Overexpression studies show that 
four miRNAs that are regulated during infection and that are expressed at higher basal 
levels in a resistant soybean line cause degradation of their target mRNA and accomplish 
increased resistance of the susceptible line to the nematode. This study shows that 
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different epigenetic mechanisms (methylation and subsequent miRNA-directed PTGS) 
interact to finetune the immune response. 

A recent study reported that the lncRNA ELENA1 is induced by treatment with the 
PAMPs flg22 and elf18 (Seo et al., 2017). Overexpression and knockdown studies with 
ELENA1 show that it promotes PR1 and PR2 expression and resistance to Pto. RNA-seq 
revealed that a subset of elf18-induced defense genes overlaps with ELENA1-induced 
genes. Upon elf18 treatment, ELENA1 interacts with MED19a in vivo, which promotes 
binding of MED19a to the promoter of PR1 and possibly other genes (Seo et al., 2017) 
(Figure 1R). In a follow-up, it was shown that ELENA1 also mediates the dissociation of 
immune suppressor FIBRILLARIN2 from MED19a, providing an additional mechanism by 
which it can promote target gene transcription (Seo et al., 2019). 

MULTI-OMICS: CHALLENGES AND OPPORTUNITIES IN STUDYING 
TRANSCRIPTIONAL REGULATION IN PLANT IMMUNITY

A balanced regulation of gene expression is required to maintain robustness and 
efficiency of the triggered immune responses. As outlined in this review, different 
regulatory components should act in conjunction to control the plant immune 
transcriptome. How different sectors within the immune network are integrated via 
these different regulatory players, and under which circumstances, remains largely 
unknown. A network level understanding could provide leads to these answers. For 
this, different immune-stimulatory treatments should be compared and different whole-
genome, multi-omics datasets should be combined, followed by advanced integrated 
data analysis including the use of mathematical modeling tools (Figure 2). Examples of 
these omics assays are profiling of chromatin accessibility, RNA variants (mRNA, miRNA, 
lncRNA, etc.), DNA and histone modifications, etc. (Ko and Brandizzi, 2020, Dorrity et al., 
2021, Li et al., 2021). Moreover, the declining costs of nucleotide sequencing, increasing 
data storage capacities and computer processing power sparks advances in bioinformatic 
analysis methods and mathematical modeling tools. A systems biology approach will aid 
in elucidating GRNs and may provide predictive capability on how and when different 
regulatory components are involved in orchestrating the plant immune network. 
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Figure 2: Next-generation toolkit for elucidating immune-responsive GRNs. 
Integration of data on TF-DNA binding, chromatin accessibility, and gene expression can be employed as a 
powerful tool to elucidate the highly interconnected gene GRNs that determine the plant immune transcriptome, 
even at single cell resolution. For instance, information related to TF binding sites can be obtained from chromatin-
immunoprecipitation followed by sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq). 
Information about chromatin status can be derived from methods such as ATAC-seq, MNase-seq, or DNase-I 
hypersensitive sites sequencing (DNase-seq). Different variants of RNA (e.g. mRNA, miRNA, lncRNA) can be 
measured by RNA-seq. These data can be integrated to reveal GRNs that shape the plant immune transcriptome. 
The functionality of these GRNs can be tested and validated by mutant analysis under different conditions or in 
different tissues or cell types.

At a finer resolution, namely the cell level, other critical questions need attention. Which of 
the immune responses are cell-type specific? And does that determine whether the initial 
infection of a certain cell type propagates further to adjacent cells or is halted? Furthermore, 
how does cell homeostasis, related to different internal and external conditions, such 
as plant age, time of day, abiotic stress, and spatiotemporal distance from the infection 
site, influence the plant immune transcriptome? To answer these questions, single-cell 
methods instead of bulk analyses using the omics assays and molecular tools mentioned 
in this review would be extremely meaningful (reviewed by Swift et al., 2022), especially for 
identifying GRNs in a heterogenous population from infected to non-infected plant cells. 
Moreover, analogous profiling of cells of the pathogen will provide insight into the intimate 
communication between the host and the pathogen (Nobori et al., 2020). Approaches such 
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as laser microdissection, which have been used widely in clinical biology for studying 
cell-specific responses (Bevilacqua and Ducos, 2018), can also be used in plant research 
for molecular profiling of desired cells. With such knowledge collectively, our chances to 
succeed in intelligently designing crops with a strengthened immune response under 
diverse conditions will increase. 

Summary points

• The plant immune transcriptome is induced upon pathogen perception and required 
for disease resistance.

• Many pathogens use effectors to tweak the plant immune transcriptome to their 
own advantage.

• Plants regulate their immune transcriptome at multiple scales, e.g. post-transcriptional 
regulation of TFs, modulation of DNA accessibility, and modulation of mRNAs during 
their journey from transcription to translation.

• A combination of multi-omics datasets can provide new insights into immune-related 
GRNs.

ACKNOWLEDGEMENTS

N.A. was supported by the Netherlands Organization for Scientific Research (grant 
number ALWGS.2016.005). P.D. acknowledges the support from European Union 
Framework Programme for Research and Innovation, Horizon Europe, European Research 
Council Starting Grant ‘R-ELEVATION’ (grant number 101039824).



 



CHAPTER 6
General discussion



172

CHAPTER 6

The current state of the plant immunity field

One of the greatest challenges of this era is feeding the growing world population 
(Misselhorn et al., 2012). Food production is inevitably limited by the amount of arable 
land, which calls for an increase in yield per unit of surface area. Scientists and especially 
plant scientists play an essential role in this. In the past, increases in yield were achieved 
by scientific developments such as the development of synthetic fertilizer and crop 
varieties that prioritize yield over growth, which led to the so-called ‘green revolution’ 
in the second half of the 20th century (Evenson and Gollin, 2003). Other scientific efforts 
are directed at reducing crop loss caused by pests and pathogens, as these losses are 
estimated to range between 8% to over 40%, depending on the crop and location 
(Savary et al., 2019). One strategy to reduce crop loss is to apply chemicals that protect 
plants against various attackers, but these chemicals have a detrimental effect on the 
environment (Baweja et al., 2020). Therefore, research on the plant immune system is 
essential for developing resistant crop varieties that do not require excessive use of 
chemicals to withstand pests and pathogens. 

Contemporary research on the plant immune system can roughly be divided into 
three partly overlapping fields. The first field primarily focuses on early events in immune 
signaling. Two important events are: the perception of pathogen/insect- and host-
derived molecules by specialized receptors, and the signaling cascade that is triggered 
by this perception. The molecules that are perceived by the host can be divided into two 
groups: (i) general molecules known as microbe/pathogen/herbivore/damage-associated 
molecular patterns (M/P/H/DAMPS), which trigger pattern-triggered immunity (PTI) when 
they are recognized by so-called pattern recognition receptors, and (ii) specific attacker-
produced effectors that are aimed at suppressing PTI, but may lead to effector-triggered 
immunity (ETI) if recognized by specialized NLR receptors (Jones and Dangl, 2006). Recent 
developments in this field have provided exciting new insights. For example, recent 
research on the integration of PTI and ETI signaling (Yuan et al., 2021a) challenged the 
classic model that postulated PTI and ETI as separate pathways (Jones and Dangl, 2006). 
Additionally, discoveries of molecular mechanisms that link the reception of pathogen-
specific molecules to downstream defense signaling highlighted the importance of non-
protein molecules, such as Ca2+ signaling and hydrolysis of NAD+ (Essuman et al., 2022, 
Lapin et al., 2022). These discoveries could in the long term help in breeding crops that 
exhibit a stronger defense response against a larger range of pathogens and pests.

Another research field focuses on the influence of the plant microbiome on plant 
immunity and growth. In the past decades it has become apparent that plant microbiomes 
have a large impact on plant health (Pieterse et al., 2014), resulting in great interest for 
agricultural use of specific microbes. Unfortunately, such initiatives have had limited 
success, despite successful laboratory trials, emphasizing the need for more research 
in this field (French et al., 2021). Recent exciting developments in this field include the 
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discovery that diseased plants can recruit certain beneficial bacteria that can protect a 
second generation against pathogens (Bakker and Berendsen, 2022), and several studies 
that map plant genetic traits that select for certain beneficial bacteria and/or their traits 
(Escudero-Martinez and Bulgarelli, 2023), as well as new insights into bacterial traits that 
determine how well they can survive and thrive when interacting with a plant (Poppeliers 
et al., 2023). 

The third field focuses on the contribution of plant hormones to plant immunity. 
Hormones play an important role in the regulation of a large variety of plant immune 
responses, including those activated in response to beneficial microbes, herbivorous 
insects, and plant pathogens (Pieterse et al., 2012). Several hormones act downstream 
of microbe/insect/pathogen recognition and change the expression of thousands of 
genes to fine-tune plant immunity (Pieterse et al., 2012, Hickman et al., 2017, Hickman et 
al., 2019). The most important hormones that modulate plant immunity are salicylic acid 
(SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) (Aerts et al., 2021). Exciting 
new developments in this field include a series of studies that show the importance of 
rapidly induced electric signals after wounding (e.g., by insect herbivory) in triggering 
biosynthesis of JA (Farmer et al., 2020), the discovery of key steps in SA biosynthesis 
(Rekhter et al., 2019, Torrens-Spence et al., 2019), the solving of the crystal structure of 
the SA master regulator NPR1 (Kumar et al., 2022), and the discovery of a mechanism that 
explains how NPR1 is involved in the SA-mediated suppression of part of the JA pathway 
(Nomoto et al., 2021). Interactions between different hormone-driven gene regulatory 
networks (GRNs), such as SA/NPR1-mediated suppression of the JA GRN, are referred to 
as hormone crosstalk, and are an important topic within the plant hormone field. This 
is because hormone crosstalk optimizes (defense) responses given the environmental 
conditions and developmental stage, and is thus vital for plant health under different 
environmental conditions (Aerts et al., 2021). For plant breeders optimizing hormone 
crosstalk could mean optimizing resistance without sacrificing growth and yield. 

Many questions remain within the field of hormones and hormone crosstalk. For 
example, while the influence of SA on the JA GRN (SA/JA crosstalk) has been relatively 
well studied (Caarls et al., 2015), the effect of ABA on the JA GRN (ABA/JA crosstalk) is 
less well described. Also, while some mechanisms governing crosstalk have been found, 
many details are unknown and additional mechanisms likely remain to be uncovered. 

Highlights of this thesis

In this thesis we carried out various lines of research to further knowledge of immunity-
related hormone crosstalk, with a focus on how the JA GRN is modulated by the ABA 
GRN and by specific components of the SA GRN. Because we already analyzed the JA 
and SA GRNs in earlier work (Hickman et al., 2017, Hickman et al., 2019), we also analyzed 
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the ABA GRN by itself. In Chapter 1 we reviewed that crosstalk can take place at many 
levels of regulation: the network level, the protein level, the gene expression level and 
the hormone homeostasis level (see also Figure 1A). In Chapter 2 and Chapter 3 we dove 
deeper into the ABA GRN (Chapter 2) and ABA/JA crosstalk (Chapter 3) by analyzing 
high-density time series RNA-seq data of plants treated with ABA, methyl JA (MeJA; a JA 
variant that is converted to free JA in the plant) and the combination, and integrating it 
with publicly available transcription factor binding site (TFBS) data and microarray data 
of ABA-treated plants that were inhibited in translation. We found that the ABA GRN 
was highly connected through a variety of transcription factors (TFs), of which the bZIP 
family was the most prominent (Chapter 2), and during some stages of its activation 
had significant similarities to the JA GRN (Chapter 3). We also found that ABA modulates 
the JA GRN at many of the levels described in Chapter 1: it affects the transcription of 
2/3rd of all MeJA-responsive genes, including JA biosynthesis and catabolism genes, and 
affects protein accumulation of the JA master regulator ORA59 in protoplasts (Chapter 
3). In Chapter 4 we investigated mechanisms of NPR1-mediated SA/JA crosstalk and 
found a function for nuclear localized NPR1. We found that two npr1 mutant lines that 
expressed NPR1 with altered cysteine residues (NPR1C82A and NPR1C82A) were disrupted in 
SA/JA crosstalk, but not in core SA responses. Further analysis of these lines led to the 
identification of SA- or SA/NPR1-responsive WRKY TFs that repress expression of the JA 
marker gene PDF1.2. We found that some of these WRKY TFs achieve this by reducing 
protein accumulation of the JA master regulator ORA59, independent of its transcription.

Overall, I investigated hormone crosstalk at all of the levels described in Chapter 1 
(Figure 1B). Nevertheless, the major focus of my research was on transcriptional regulation 
of GRNs and crosstalk between GRNs, often measured by mRNA levels, as this is the 
current gold standard for approximation of (changes in) protein levels. However, many 
steps of regulation determine which gene is described and which mRNAs are translated 
to protein. These steps are often overlooked in research, including in Chapters 2-4. 
Therefore, in Chapter 5 we summarized current knowledge on transcriptional regulation 
of plant innate immunity and gave an outlook to research in the future, where novel 
technologies can be used to investigate these overlooked levels in more detail.

 In this general discussion, I will discuss the important findings of this thesis and put 
them into a broader perspective. I will also discuss limitations of our current work and give 
my view on how research on GRNs governing plant immunity can improve in the future. 
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Figure 1: multiple levels of crosstalk in hormone networks regulating defense, with examples from this 
thesis. 
(A) Conceptual framework of the levels at which crosstalk can take place: 

a. the network level;
b. the protein level;
c. the hormone homeostasis level. 
d. the gene expression level;

In this figure, genes and proteins are colored according to the hormone (in c) that controls them in these 
hypothetical examples. 
(B) Examples of crosstalk at the indicated levels from this thesis:

a. ABA affects expression of around 2/3rd of all MeJA-responsive genes (Chapter 3); 
b. WRKY53 and WRKY67 are SA-induced WRKY TFs that reduce accumulation of ORA59 protein (Chapter 

4);
c. ABA affects the expression of many JA biosynthesis and catabolism genes, both in the single treatment 

and ABA + MeJA double treatment (Chapter 3);
d. Several TFBSs are associated with differential expression of MeJA responsive genes after ABA + MeJA 

treatment compared to MeJA treatment alone, suggesting that the corresponding TFs regulate ABA/JA 
crosstalk at the transcriptional level (Chapter 3).

Panel A was created using Biorender.com with subscription and used as graphical abstract for Aerts et al., 2021 on 
the website of The Plant Journal. Full legends of the figures shown in (B) can be found in the indicated chapters. 
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Novel insights into the ABA GRN

ABA is an important regulator of plant responses to many stresses and of several stages 
of plant development (Chen et al., 2020). Although ABA is mostly known for its role in 
abiotic stress responses and development, it also plays an important role as a modulator 
of SA- and JA-regulated defenses, potentiating defense against herbivorous insects and 
attenuating defense against necrotrophic pathogens (Pieterse et al., 2012). ABA signaling 
is initiated through a phosphorylation cascade: when PYR/PYL/RCAR receptors bind ABA, 
they interact with PP2C and likely also PP2A and TOPP phosphatases, preventing them 
from dephosphorylating SnRK2 kinases (Hou et al., 2016, Yang et al., 2017). Phosphorylated 
SnRK2 kinases phosphorylate and thereby activate TFs that act as master regulators of the 
ABA pathway (Umezawa et al., 2010). Several important players in the ABA GRN have been 
revealed over the years. Most notably, one study combined ChIP-seq and RNA-seq data of 
mock- or ABA-treated seedlings to reveal the importance of 21 ABA-related TFs in the ABA 
GRN in seedlings, providing a significant advancement in our understanding of the ABA 
GRN (Song et al., 2016). However, the study had some limitations. For example, ChIP-seq 
is inevitably limited in throughput and the researchers used a continuous ABA treatment 
for their RNA-seq time series (based on seedlings in hydroponics), which only allowed 
them to look at activation of the network but not the return to basal levels. Therefore, 
several details of the ABA GRN remained unexplored, especially in mature plants. 

In Chapter 2 we analyzed our high-density RNA-seq time series dataset of ABA-
treated Arabidopsis thaliana (hereafter: Arabidopsis) rosettes to get more insight into the 
architecture and dynamics of the ABA GRN in mature plants. We used a pulse treatment 
(3 s dipping of rosettes into an ABA solution), which allowed us to look at both activation 
of the network at early time points and the return to basal levels at later time points. The 
wide variety in expression patterns that we found likely reflects the various needs of a 
plant in its response to stress: some processes need to be activated or repressed quickly, 
whereas other processes may be activated or repressed at later time points. Also, when a 
stimulus (such as high ABA levels) is gone, some genes need to return to basal level more 
quickly than others. Genes that return to basal levels quickly would logically be related to 
processes that cost much energy, however we did not investigate this. The differentially 
expressed genes we found could be clustered based on their diverse expression patterns 
into 44 clusters, which were enriched in partly overlapping, partly unique gene ontology 
terms, suggesting that the modules were indeed biologically functional.

One of our main aims of Chapter 2 was to find important TFs that regulate (part of) 
the ABA GRN. We predicted these TFs using publicly available DAP-seq data (O’Malley et 
al., 2016) and data of ABA-treated plants inhibited in translation (Lumba et al., 2014). This 
allowed us to not only predict these important TFs but also to predict which TFs act at 
the very earliest stage of activation of the ABA GRN, for example directly downstream of 
SnRK2 kinases. It is important to note that our predictions were only based on enrichment 



177

6

General discussion

analyses: TFs with enriched binding sites in genes that were differentially expressed after 
ABA treatment when translation was blocked were deemed candidate regulators of the 
start of the ABA transcriptional cascade. A more thorough study would investigate if 
these TFs are indeed modulated at the post-translational level after ABA treatment. A 
logical first step would be to look at phosphorylation, since that is the most well-known 
way in which the ABA pathway is activated and phosphoproteomics has been used in the 
past to find regulators of the ABA pathway (Chong et al., 2022). However, other processes 
that modulate protein functioning and structure should also be investigated, and novel 
technologies such as limited proteolysis-mass spectrometry (LiP-MS) may allow this in 
the future (reviewed by Chong et al., 2022).

Strategies to optimize prediction and validation of novel transcriptional 
regulators of GRNs

The prediction and validation of (transcriptional) regulators of GRNs is an important 
topic within the field of molecular biology and bioinformatics. The increasing availability 
of large datasets on e.g., transcription, TFBSs and open chromatin have prompted 
bioinformaticians to develop numerous tools that use these data to infer GRNs (Mercatelli 
et al., 2020). Furthermore, the availability of T-DNA insertion lines of almost any gene 
and (inducible) overexpression lines for many genes in Arabidopsis makes biological 
validations of these predictions in this model species relatively easy. Nevertheless, most 
studies that predict novel regulators in GRNs – including our own – only manage to 
validate a handful of these TFs, or do not do any validation at all (Krouk et al., 2010, 
Windram et al., 2012, Lewis et al., 2015, Song et al., 2016, Hickman et al., 2017, Hickman et 
al., 2019, Chapters 2 and 3). I will here discuss possible reasons for this, illustrated by our 
own work, and discuss strategies to efficiently predict and validate important TFs in a 
GRN of choice.

In Chapter 2 we generated RNA-seq time series data of ABA treated Arabidopsis 
rosettes and used bioinformatics tools and custom scripts to predict transcriptional 
regulators within the ABA GRN. We then set out to validate these in a biological context, 
namely by testing mutants or overexpressors of these TFs during drought stress followed 
by recovery. The results were less than satisfying: out of the eight TFs tested only one, 
GT3a, showed a phenotype. Moreover, this was only in an overexpression line for this 
gene. Even more TF mutants were tested in a germination assay without success, although 
technical problems could not be excluded, which is why we did not present these data 
in this thesis. While this low validation rate seemed to suggest that our bioinformatics 
prediction were not good, the presence of many known TFs in our predicted network 
does suggest that the methods we used worked. It could simply be that most of the 
important regulator TFs of the ABA network are already known. Alternatively, there may 



178

CHAPTER 6

be so much redundancy in the ABA network that higher-order mutants or overexpression 
lines are needed to get a clear phenotype and thus validate the TFs, as also discussed 
in Chapter 2. This redundancy was actually predicted by our network models, because 
they predicted that the same genes were often regulated by multiple, similar TFs. Given 
that fact, the low success rate of our validations using single mutant lines can be seen as 
a validation of the complexity and redundancy of the ABA GRN that we predicted. High 
redundancy of network components may also be the reason why other studies have 
limited success in large-scale validation of network components.

The success rate of our validations was as low - if not lower - than in our two previous 
studies on the SA and JA GRNs. In these studies, as candidates for validation, we simply 
picked TFs from clusters of DEGs that also contained known important TFs in the JA and 
SA GRN, respectively – a ‘guilt-by-association’ approach (Hickman et al., 2017, Hickman 
et al., 2019). The success rate of lines with a phenotype compared to TFs tested was 5/13 
for the JA study (of which one only in a double mutant) (Hickman et al., 2017) and 2/18 
for the SA study (of which one only in a double mutant) (Hickman et al., 2019). This is 
higher or about as high as the success rate of the current study. The added value of our 
current network inference methods vs. just doing the quick ‘guilt-by-association’ method 
for simply detecting novel regulator TFs is thus doubtful, but our current methods do 
provide more precise predictions of the position of novel TFs in the network. Therefore, if 
researchers are mostly interested in finding new important TFs in their process of interest 
without analyzing the position of these TFs in the regulating network, a simple guilt-
by-association approach may be more efficient than extensive bioinformatics analyses 
of the data. For both approaches, a high-density time course is required. Moreover, it 
is essential that the bioinformatic analyses are combined with efficient phenotyping of 
higher-order mutants and/or overexpression lines to overcome possible redundancy. 

The ’guilt-by-association’ approach predicts if a TF is involved in a certain process, 
but not what its position in the regulating GRN is. Uncovering the position of a TF 
in the network can provide information on the function of the TF and the potential 
consequences of altering a TFs function, which can be both biologically relevant as well 
as relevant for breeders who want to optimize defense without affecting other processes. 
First, large-scale data needs to be analyzed with bioinformatics pipelines that result in a 
predicted network. For example, in Chapter 2 we used DREM2.0 to predict regulators of 
certain gene clusters, as well as custom scripts to create a hierarchical ABA network. Many 
other bioinformatics methods are available and can be chosen depending on the type of 
data that is analyzed and the desired output (Mercatelli et al., 2020). These data can for 
example be gene expression data under multiple conditions or at multiple time points 
after a stimulus (like in Chapter 2 and 3 of this thesis), or genome-wide transcription factor 
binding site (TFBS) data for a large number of TFs. The generation of these data is usually 
time-consuming and costly. Therefore, to better predict networks it is important that 
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these methods are optimized. Validation of the position of a TF in a network is also costly, 
since specific methods need to be combined to confidently state that a TF regulates 
certain targets. Such methods include ChIP-seq or DAP-seq combined with RNA-seq, 
or the protoplast-based method TARGET (Bargmann et al., 2013). To better validate the 
position of TFs in a network the costs of these methods need to be reduced, or cheaper 
and more efficient methods need to be developed. 

Reliable inference of GRNs currently also has several challenge. For example, since 
many methods are based on whole-tissue information, regulation at the single-cell level 
is ‘averaged’, causing loss of information. The advancement of single-cell technologies 
may solve this in the future. Furthermore, almost all current GRN inference methods suffer 
from lack of information on levels of regulation that determine where a TF binds and if 
an mRNA is eventually translated to protein (see also Chapter 5). Many of these levels 
can currently not be measured on a genomic scale for a large number of samples. This 
is problematic because, for example, if a gene is subjected to heavy post-transcriptional 
regulation, it will no longer be coexpressed with genes encoding its regulator(s) and 
the TF-target relationship will not be predicted by coexpression-based GRN inference 
algorithms. Also, if binding of a TF to a promoter of a certain target gene is heavily 
regulated under certain conditions, this is completely missed by DAP-seq experiments, 
or ChIP-seq experiments if they are done under other conditions. In Chapter 5 we review 
the many levels of regulation that determine which genes are regulated by a TF and which 
transcripts eventually get translated. Novel technologies aimed at measuring these types 
of regulation may in the long run lead to much more accurate predictions of TF-target 
relations, and therefore the inference of GRNs. Also, integration of different data types 
by newly developed algorithms, e.g., based on machine learning, can greatly enhance 
the accuracy of network inference algorithms (see for example De Clercq et al., 2021). 

In summary, to quickly find new regulators of a process of interest, a ‘guilt-
by-association’ bioinformatics approach followed by phenotypic validation using 
overexpression lines or double mutants of candidates is recommended. More accurate 
predictions and validation of GRN components is possible, but to do this on a large 
scale significant improvements in both in silico methods for GRN inference and wet-lab 
validation pipelines are needed.

The ratio between activating and repressing TFs differs between stress-
responsive GRNs

Correct functioning of GRNs requires not only upregulation but also downregulation 
of genes. For example, during pathogen infection or pest infestation growth is often 
suppressed, so that resources, which are often limited, can be allocated to defense 
compounds, and pests find less unprotected nutritious tissue to feed on (He et al., 2022).  
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It would be expected that downregulation is as tightly regulated as upregulation. 
However, in Chapter 2 we noticed that TFs in the ABA GRN were more often predicted 
to contribute to upregulation of target genes than downregulation, even though a similar 
number of genes was upregulated and downregulated after ABA treatment. Also, in 
Chapter 3 we used stepwise regression to predict TFs associated with the differential 
expression of MeJA-upregulated genes after ABA + MeJA treatment compared MeJA 
treatment alone, and found that the majority of TFs was predicted to further activate 
MeJA-activated genes. Similarly, in a study of the ABA GRN in seedlings upregulating 
TFs were also more common than downregulating TFs, based on ChIP-seq of 21 TFs 
and RNA-seq after ABA treatment (Song et al., 2016). As discussed in Chapter 2, this 
together suggests that there are more activating than repressing TFs in the ABA GRN. 
In our previous study on the JA GRN, we also found that enrichment of motifs was more 
diverse in upregulated compared to downregulated coexpression clusters (Windram 
et al., 2012). This suggests that the JA GRN also encompasses more upregulating than 
downregulating TFs, and reinforces our findings from Chapter 3 that the ABA and JA GRNs 
show significant similarities, in this case qualitatively. 

The prediction that there are more activating than repressing TFs in the ABA and 
JA GRNs is not a general rule for stress-responsive networks. For example, in earlier 
work we found similar enrichment of motifs in upregulated and downregulated clusters 
of coexpressed genes after SA treatment (Hickman et al., 2019) and other researchers 
also found a similar degree of enrichment of motifs in clusters of upregulated vs. 
downregulated genes after inoculation with Botrytis cinerea (Windram et al., 2012) or 
Pseudomonas syringae (Lewis et al., 2015). Together, this suggests that the ratio between 
activating and repressing TFs differs between specific stress-responsive GRNs. To 
strengthen above conclusions, data on TFBSs of all Arabidopsis TFs needs to be obtained 
and compared for different stress- and hormone-related time series experiments. 

The reason for the higher number of activating compared to repressing TFs in the 
ABA and JA GRNs is unclear, especially since in both GRNs there is a similar number of 
upregulated and downregulated genes. It could be that upregulation is more important 
for functioning of these GRNs than downregulation, so activation happens via multiple 
redundantly operating TFs, making the regulation more robust against loss of one of 
the TFs. It could also point towards higher integration of upregulated genes in the JA 
and ABA GRNs with other GRNs, as one study found that genes that are targeted by 
more TFs (which would be the case for upregulated genes in the ABA and JA GRNs) are 
generally expressed in more conditions (Heyndrickx et al., 2014) and thus likely part of 
several overlapping GRNs.
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New insights into modulation of the JA GRN by ABA

The JA pathway consists of two mutually antagonistic branches. The MYC branch is 
regulated by MYC TFs such as MYC2, and mostly directed against herbivorous insects, 
whereas the ERF branch is regulated by ERF TFs such as ORA59 and is mostly directed 
against necrotrophic pathogens (Pieterse et al., 2012, Aerts et al., 2021). It has long been 
recognized that ABA modulates the JA GRN. For example, it is known that ABA generally 
enhances JA biosynthesis (Adie et al., 2007, Fan et al., 2009, Wang et al., 2018), promotes 
defense against insects and associated marker gene expression (Anderson et al., 2004, 
Bodenhausen and Reymond, 2007, Dinh et al., 2013, Vos et al., 2013b), and represses 
defense against necrotrophic pathogens and associated marker gene expression 
(Audenaert et al., 2002, Anderson et al., 2004, Sánchez-Vallet et al., 2012). Furthermore, it 
was found that ABA modulates MYC2 transcription (Abe et al., 1997, Abe et al., 2003) and 
that an ABA-enhanced interaction between the ABA receptor PYL6 and MYC2 changes 
the transcriptional activity of MYC2 (Aleman et al., 2016). Therefore, ABA is generally seen 
as a co-activator of the MYC branch and a repressor of the ERF branch. However, the 
extent to which ABA modulates both branches and the underlying mechanisms were 
poorly understood. 

In Chapter 3 we investigated crosstalk between the ABA and JA GRNs by analyzing 
the single and combined treatment RNA-seq time series data. We noticed that the two 
networks already had significant overlap when only the single treatment time series data 
were considered. This was especially a large portion of MeJA-responsive genes (±2/3rd), 
since MeJA affects expression of less than half the number of genes compared to ABA. 
Similarly, in the double treatment around 2/3rd of MeJA responsive genes had a different 
expression pattern compared to MeJA treatment alone, often reinforcing the effect that 
MeJA already had. In these cases, the expression levels were often less than the sum of 
the effects of ABA and MeJA, which could point to redundancy of part of the two GRNs, 
or saturation of the response (e.g., an upregulated gene already reached its expression 
ceiling after single treatments). 

While we found that ABA both activated and repressed MeJA-responsive genes, 
closer inspection of the data showed that this did not necessarily reflect MYC/ERF 
antagonism. ERF branch marker genes such as ERF1, ORA59 and PDF1.2 were little induced 
by MeJA in our time series setup, suggesting that MeJA treatment mostly activated the 
MYC branch, and that the repressed MeJA-responsive genes that we observed may well 
be enriched for MYC branch genes. The lack of activation of the ERF branch could be 
due to relatively low levels of ET compared to ABA in our experimental setup, as ET is a 
co-regulator of the ERF branch and repressor of the MYC branch (Pieterse et al., 2012). 
The differential effect of ABA on MeJA-responsive genes thus suggests that ABA not only 
mediates differentiation between the MYC branch and the ERF branch of the JA pathway, 
but also between other groups of genes that are not yet properly defined as a JA pathway 
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branch. Future work may look further into these gene sets to investigate to what extend 
they belong to one of the classic branches of the JA pathway or are distinct groups that 
should be newly classified as an ABA-modulated sector of the JA GRN.

The MYC and ERF branch are antagonistic, which is mediated, for example, by direct 
interaction between MYC2 and the ERF branch master regulator EIN3 (Song et al., 2014, 
Zhang et al., 2014). Because ABA activates the MYC branch it is tempting to speculate that 
ABA represses the ERF branch simply by activating the MYC branch. However, both in 
earlier work and in Chapter 3 we found that transcriptional repression of PDF1.2 by ABA is 
independent of MYC2 (Vos et al., 2019; Chapter 3). We also found in Chapter 3 that under 
certain conditions ABA represses the ERF branch by inducing the degradation of ORA59 
protein, or possibly post-transcriptionally repressing ORA59 protein accumulation. This 
is consistent with the finding that suppression of the ERF branch by ABA is independent 
of MYC2, since MYC2 has not been implicated in degradation of ORA59. In the future, 
dependency of ABA-mediated ORA59 degradation on MYC2 could be tested by analyzing 
ABA-mediated ORA59 protein accumulation in myc2-derived protoplasts. 

In summary, we found that ABA modulates large parts of the JA GRN, that it indeed 
differentially modulates different parts of the JA GRN, but that this difference is not fully 
consistent with the model that ABA activates the MYC branch and represses the ERF 
branch. Also, we found that ABA’s repressive effect on the ERF branch is likely partly 
mediated by ORA59 degradation and independent of ABA’s activating effect on the MYC 
branch. 

The WRKY TF family harbors many regulators of SA/JA crosstalk

The WKRY TF family is a relatively large TF family with 74 members in Arabidopsis (Pandey 
and Somssich, 2009). Many members are important regulators of plant immunity and 
especially many SA-induced immunity-regulating WRKY TFs are recognized (Wang et al., 
2006, Pandey and Somssich, 2009, Hickman et al., 2019). Apart from their role in core SA 
signaling, many different WRKY TFs have also been implicated in SA/JA crosstalk (Caarls 
et al., 2015). In Chapter 4 we used a protoplast system to confirm that WRKY50, WRKY53 
and WRKY54 are involved in SA/JA crosstalk and also found for the first time that WRKY63 
and WRKY67 are likely also involved in SA/JA crosstalk, extending the repertoire of SA/
JA crosstalk regulating WRKY TFs.

With our experimental setup we found that the identified WKRY TFs repress PDF1.2 
expression downstream of ORA59 transcription and that WRKY53 and WKRY67 cause 
destabilization of the ORA59 protein, although the exact mechanisms are still to be 
uncovered. Destabilization of ORA59 was already recognized as important for SA/JA 
crosstalk (Van der Does et al., 2013, He et al., 2017), but it was not yet linked to WRKY-
mediated SA signaling. The fact that the other WRKY TFs did not cause reduced ORA59 
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accumulation suggests that WRKY TFs regulate SA/JA crosstalk via multiple mechanisms. 
Interestingly, we found that ABA also caused ORA59 degradation, suggesting 
mechanistical overlap between SA/JA and ABA/JA crosstalk. 

In their study on SA-mediated degradation of ORA59, He et al. (2017) found that 
EIN3 and EIL1 contributed to ORA59 degradation. To investigate if EIN3 and EIL1 are also 
involved in degradation of ORA59 protein mediated by ABA or WRKY TFs we performed 
protoplast assays in ein3 eil1-derived protoplasts. We separately investigated the effect of 
ABA treatment and of WRKY67 overexpression on both ORA59 protein levels and PDF1.2 
expression in this mutant. Unfortunately, we were unable to obtain consistent results. 
We also assessed the combined effect of ABA treatment and WRKY67 overexpression on 
ORA59 protein levels and PDF1.2 expression to investigate if they act in parallel (likely 
resulting in additive effects) or via the same mechanism (likely non-additive effects). 
However, we did not obtain consistent results in these experiments either, and therefore, 
these results are not included in this thesis. In summary, the question how ABA, WRKY53 
and WRKY67 cause degradation of ORA59 remains to be answered. 

 The fact that so many WRKY TFs have an effect on SA/JA crosstalk could also 
potentially be related to their regulation. WRKY TFs are known to affect each other’s 
expression by directly binding to promoters of target WRKY TFs. Together, this forms 
a complex transcriptional network (Birkenbihl et al., 2018). It is well possible that 
overexpression of a WRKY TF in our protoplast setup activates this WRKY network, 
which then leads to repression of the JA pathway through effects of (a) member(s) of 
this network. It is therefore not easy to determine which WRKY TF(s) is/are the WRKY TF(s) 
with a direct effect on the JA pathway. However, the fact that some WRKY TFs regulate SA/
JA crosstalk via degradation of ORA59 and others do not suggests that at least multiple 
networks are involved or that some WKRY TFs have unique effects. 

It is unclear if the different mechanisms for SA/JA crosstalk discovered by us and 
other researchers always work redundantly at the same time/condition, or are more 
condition specific. The latter seems likely given the fact that many studies reveal crosstalk 
mechanisms via mutations of key regulators (Caarls et al., 2015), something that would 
not be possible if the mechanisms always worked redundantly. Also, it is substantiated by 
findings such as that NPR1 is not needed for crosstalk under high ethylene levels (Leon-
Reyes et al., 2009) and that cytosolic localization of NPR1 was sufficient for SA/JA crosstalk 
under the conditions of Spoel et al. (2003), whereas we found that nuclear localization is 
required. The many mechanisms for SA/JA crosstalk may thus exist to optimally balance 
the two pathways under different conditions. 
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CONCLUDING REMARKS

Crosstalk between hormone GRNs ensures an optimal balance between processes such 
as plant defense and external and internal conditions (see also Figure 1 of Chapter 
1). Understanding the extent to which hormone networks are integrated and the 
mechanisms by which they are integrated can thus help breeders to develop crops with 
an optimal defense/growth/yield balance. In this thesis I presented a detailed overview of 
the extent to which ABA modulates the JA GRN, predicted which TFs are involved in this, 
and showed that ABA-induced degradation of ORA59 likely is one of the mechanisms. 
I also provided new insights into the dynamics of the ABA GRN, predicted (part of) its 
complex architecture and validated the importance of a novel TF in the GRN, namely 
GT3a. Finally, I showed that NPR1 can have a nuclear-localized role in regulating SA/JA 
crosstalk, where it activates WRKY TFs that repress the ERF branch, partly by causing 
degradation of ORA59 protein. Together, this provided novel insights into crosstalk acting 
at many levels of regulation (Figure 1). Information on the architecture of GRNs and how 
they are integrated, such as presented in this thesis, is vital for crop breeding. Especially 
TFs that mostly regulate the desired process and do not affect many other processes 
are potential prime targets for future breeding of elite crops with optimized defense 
GRNs that provide immunity against pests and pathogens. However, to find such TFs 
for improvement of crop health, more detailed information on the GRN architecture is 
needed. Ideally, breeders would be able to predict how the manipulation of expression of 
one gene in a network affects global gene expression, so that it can be predicted which 
manipulation can be done to optimally improve the desired process (e.g., resistance to 
insects) with minimal impact on other processes (e.g., reduced growth). This will require 
detailed insights into the architecture and integration of a wide range of GRNs. More 
importantly, these insights should not only be qualitative (e.g., which TF regulates what 
target), but also quantitative (e.g., to what extent does a specific TF regulate a specific 
target), so they can be used in an overarching model that combines all this information. 
Currently, we are far from these comprehensive insights, but as the technique advances 
both in the laboratory and in bioinformatics this may well be possible in the future. 
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Een van de grootste uitdagingen van deze tijd is het voeden van de groeiende 
wereldbevolking. Omdat er maar een beperkte hoeveelheid vruchtbaar land 
beschikbaar is voor landbouw, is het noodzakelijk de opbrengst per hectare te verhogen. 
Een belangrijke methode is het verminderen van oogstverlies veroorzaakt door 
ziekteverwekkers en insecten. Wereldwijd gaat hier namelijk tussen de 8% en 40% van de 
oogst aan verloren. Alhoewel sommige chemische bestrijdingsmiddelen een goed wapen 
zijn tegen dit verlies, hebben deze middelen vaak negatieve effecten op het milieu. Het 
is daarom essentieel om gewassen te creëren die zich beter kunnen verdedigen tegen 
ziekteverwekkers en insecten. Om deze ontwikkeling te versnellen is vergroting van de 
kennis van het immuunsysteem van planten essentieel. 

 In het verleden is er al veel kennis vergaard over het plantenimmuunsysteem. De 
plant herkent ziekteverwekkers en insecten doordat speciale plantreceptoren in staat zijn 
specifieke moleculen van de aanvaller te binden. Bovendien kan de plant plantmoleculen 
die vrijkomen wanneer bijvoorbeeld een insect schade berokkend herkennen via 
andere gespecialiseerde receptoren. Deze herkenning van ziekteverwekkers, insecten 
en/of schade zorgt voor een hele cascade aan reacties, die uiteindelijk leiden tot het 
doden of verjagen van de aanvaller, mits de plant in staat is een voldoende sterke 
reactie in gang te zetten. Planthormonen vormen een belangrijk onderdeel van deze 
cascade. Afhankelijk van de aanvaller wordt een specifieke combinatie van hormonen 
aangemaakt. Deze hormonen activeren op hun beurt weer een specifiek netwerk van 
genen. Elk hormoongestuurd netwerk activeert en onderdrukt processen die belangrijk 
zijn voor verweer tegen de ziekteverwekker die de aanmaak van de hormonen heeft 
veroorzaakt. Bovendien beïnvloeden de verschillende netwerken elkaar, zodat de respons 
optimaal kan worden afgestemd op de specifieke ziekteverwekker en de specifieke 
omstandigheden waarin de plant leeft. In dit proefschrift hebben we een aantal van 
deze netwerken en de interacties tussen deze netwerken onderzocht. Dit onderzoek 
vond plaats in de modelplant Arabidopsis thaliana (zandraket), een plantensoort die veel 
wordt gebruikt bij fundamenteel onderzoek vanwege zijn relatief korte levenscyclus, 
eenvoudige genetica, en kleine formaat. 

 In Hoofdstuk 1 hebben we de huidige kennis op het gebied van interacties tussen 
hormoonnetwerken samengevat. We hebben hierbij vooral gefocust op het feit dat 
deze interacties op meerdere regulatieniveaus kunnen plaatsvinden, bijvoorbeeld 
door beïnvloeding van genexpressie of door interacties tussen eiwitten die onderdeel 
uitmaken van verschillende hormoonnetwerken. Voor afweer zijn vier specifieke 
hormonen het belangrijkst. Twee hormonen, jasmonzuur (JA) en salicylzuur (SA) 
worden beschouwd als centrale regulatoren van afweer, terwijl twee andere hormonen, 
abscisinezuur (ABA) en ethyleen (ET) meer worden gezien als modulatoren van het JA- en 
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SA-netwerk, en bovendien nog functies in andere processen hebben. In het algemeen 
heeft SA vooral een rol in afweer tegen ziekteverwekkers die voedsel onttrekken aan 
levende plantencellen (biotrofe pathogenen), terwijl JA vooral een rol heeft in afweer 
tegen ziekteverwekkers die plantencellen doden en uit het dode weefsel nutriënten halen 
(necrotrofe pathogenen), en tegen kauwende insecten. Over het algemeen remmen het 
SA- en JA-netwerk elkaar. ABA versterkt het gedeelte van het JA-signaleringsnetwerk 
dat specifiek gericht is tegen insecten (de zogenaamde MYC-tak), terwijl ABA het 
gedeelte van het JA-signaleringsnetwerk dat gericht is tegen necrotrofe pathogenen 
(de zogenaamde ERF-tak) onderdrukt. Voor ET geldt dit andersom. In dit proefschrift 
hebben we onderzocht hoe het ABA-netwerk is opgebouwd, hoe het ABA-netwerk het 
JA-netwerk beïnvloedt, en hoe SA via specifieke eiwitten het JA-netwerk beïnvloedt.

 In Hoofdstuk 2 hebben we het ABA-netwerk onderzocht. Naast de rol van ABA in 
afweer speelt het ook een belangrijke rol in het remmen van (ongewenste) zaadkieming 
en in het weerstaan van droogte. Om beter te begrijpen hoe het ABA-netwerk is 
opgebouwd hebben we gekeken naar de veranderingen in expressie van alle genen van 
Arabidopsis thaliana op 14 verschillende tijdstippen in de 16 uur volgend na toediening 
van ABA. We zagen dat meer dan zevenduizend genen hun expressie veranderden, 
waarbij er ongeveer evenveel genen hoger en lager tot expressie kwamen vergeleken 
met onbehandelde planten. De meeste veranderingen vonden plaats binnen vier uur. 
Wij konden de genen op basis van de gelijkenissen in expressiepatroon in de tijd indelen 
in verschillende clusters. Zulke clusters bevatten vaak genen met een gelijke functie, 
die we met behulp van publiek toegankelijke data over genfuncties in kaart hebben 
gebracht. De mate van genexpressie wordt voor een groot gedeelte gereguleerd door 
een specifieke klasse eiwitten die transcriptiefactoren worden genoemd. Deze reguleren 
namelijk de mate van transcriptie, oftewel de mate waarin DNA wordt overgeschreven 
naar RNA. Wanneer een groep genen een vergelijkbaar expressiepatroon heeft, is het 
waarschijnlijk dat ze door een grotendeels gelijke groep van transcriptiefactoren worden 
gereguleerd. Door onze expressiedata te combineren met publiek toegankelijke DNA-
bindingsdata van transcriptiefactoren, hebben wij voorspellingen gedaan over welke 
transcriptiefactoren waarschijnlijk specifieke genclusters reguleren. Verder hebben we 
nog een aantal andere bioinformatische analyses gedaan om te voorspellen op welk 
tijdstip welke transcriptiefactoren het belangrijkst zijn, en hoe ze elkaar reguleren 
in een hiërarchisch genregulatienetwerk. Bij de groep van voorspelde belangrijke 
transcriptiefactoren zat een aantal transcriptiefactoren waarvan al bekend was dat 
ze een functie hebben in het ABA-netwerk, wat bevestigde dat ons experiment en 
onze gebruikte methodes relevante transcriptiefactoren in het ABA-netwerk konden 
identificeren. Verder hebben we de vatbaarheid voor droogte onderzocht van planten die 
gemuteerd zijn in een transcriptiefactor die volgens onze voorspellingen een (tot dan toe) 
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onbekende functie heeft in het ABA-netwerk. Eén van de geteste transcriptiefactoren, 
GT3a, leek de weerstand tegen droogte positief te beïnvloeden. 

 Het is al langer bekend dat ABA het JA-netwerk beïnvloedt, maar de schaal, timing 
en exacte mechanismes van deze invloed zijn in grote mate onbekend. Ons onderzoek 
hiernaar is beschreven in Hoofstuk 3. In dit hoofdstuk analyseerden wij dezelfde ABA-
tijdseriedata als in Hoofdstuk 2, en vergeleken we dat met eenzelfde soort tijdserie-
experiment dat wij hadden uitgevoerd na behandeling met MeJA (een variant van 
JA) en de combinatie van ABA en MeJA. Wij ontdekten dat er veel overeenkomsten 
waren in de genen die door ABA en MeJA werden beïnvloed. Ongeveer 2/3e van alle 
genen die op MeJA reageerden had bovendien een andere mate van expressie in de 
combinatiebehandeling van ABA en MeJA vergeleken met alleen MeJA-behandeling. 
Dit laat zien dat de twee netwerken nauw verbonden zijn met elkaar. Verder zagen wij 
dat ABA veel invloed had op de expressie van JA-biosynthese- en JA-catabolismegenen, 
wat suggereert dat ABA ook effect heeft op de hoeveelheid geproduceerde JA. Ook 
voorspelden wij het belang van een aantal ABA-geactiveerde transcriptiefactoren in 
het moduleren van de transcriptie van JA-gevoelige genen. Tot slot vonden wij dat de 
JA-masterregulatoren ORA59 en ERF1 de belangrijkste eiwitten zijn binnen de ERF-tak 
van het JA-netwerk die worden beïnvloed door ABA. Wij vonden bovendien dat ABA 
waarschijnlijk zorgt voor afbraak van ORA59, waardoor de ERF-tak kan worden geremd. 

 In Hoofdstuk 4 onderzochten wij een aantal details van hoe SA het JA-netwerk 
beïnvloedt. Wij ontdekten dat de SA-masterregulator NPR1 functioneert in de celkern bij 
het remmen van het JA-netwerk. Verder onderzoek suggereerde dat SA, deels via NPR1, 
de expressie activeert van specifieke genen die coderen voor transcriptiefactoren van 
de WRKY-familie. Deze transcriptiefactoren zijn op hun beurt in staat de transcriptie te 
remmen van PDF1.2, een merkergen van de ERF-tak. Verder onderzoek wees uit dat twee 
van deze transcriptiefactoren, WRKY53 en WRKY67, dit waarschijnlijk doen door afbraak 
van ORA59 te bevorderen – een effect dat we ook vonden voor ABA in Hoofdstuk 3. 

 In de drie experimentele hoofdstukken heb ik vooral gekeken naar hoe transcriptie 
van genen binnen de verschillende hormoonnetwerken wordt beïnvloed, waarbij ik heb 
gefocust op de rol van transcriptiefactoren. Alhoewel transcriptiefactoren veel invloed 
hebben op de mate van transcriptie en de uiteindelijke hoeveelheid van het eiwit waar 
het gen voor codeert, zijn er nog veel andere stappen in genexpressieregulatie die dit 
bepalen. Deze stappen zijn echter lastiger te onderzoeken en daarom loopt de kennis 
hierover achter. Wij denken dat het belangrijk is om hier in de toekomst meer op te 
focussen. Als een soort voorschot hierop hebben we daarom de huidige kennis over 
alle stappen die belangrijk zijn in de transcriptionele regulatie van plantenimmuniteit 
samengevat in Hoofdstuk 5. 

 Dit proefschrift biedt verschillende nieuwe inzichten in hormoongestuurde 
genregulatienetwerken in de modelplant Arabidopsis thaliana. Het geeft bovendien 
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meerdere aanknopingspunten voor vervolgonderzoek. Het belang van verschillende 
transcriptiefactoren kan bijvoorbeeld in meer detail worden geanalyseerd, en er kan 
worden onderzocht hoe de verschillende niveaus van regulatie die beschreven worden 
in Hoofdstuk 5 aan hormoongestuurde genregulatienetwerken bijdragen. Bovendien kan 
worden uitgezocht hoe de verschillende netwerken worden geactiveerd en interacteren 
wanneer een plant door een insect of pathogeen wordt aangevallen. Dit levert kennis 
op rondom afweermechanismen van de plant, maar ook over onderdrukking van 
afweermechanismen door een insect of pathogeen. Dit soort kennis is essentieel om 
gewassen te kunnen kweken die resistenter zijn tegen ziekteverwekkers en plagen. 
Hiervoor is het nog wel noodzakelijk om de vertaalslag te maken van de kennis in deze 
modelplant naar kennis over afweer van verschillende gewassen, omdat verschillende 
plantensoorten moleculair gezien niet precies hetzelfde in elkaar zitten. De in deze 
modelplant verkregen kennis en ontwikkelde analytische methoden vormen een 
belangrijke basis van waaruit verder kan worden gegaan met onderzoek in gewassen. 
Uiteindelijk kan dit leiden tot de ontwikkeling van gewassen die minder vatbaar zijn voor 
ziekteverwekkers en plagen, en dus een hogere, betrouwbaardere opbrengst leveren 
dan de huidige gewassen.
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Het is eindelijk zover: mijn proefschrift is af! Ik begon er vol goede moed aan in februari 
2017 en heb het (pas) op 22 augustus 2023 voltooid, heel wat illusies armer, maar wonder 
boven wonder met nog veel enthousiasme voor wetenschap, plantenbiologie en het 
onderzoek in de groep Plant-Microbe Interacties. Dat ik dit enthousiasme heb kunnen 
behouden heeft veel te maken met de mensen om mij heen, en die wil ik hier dan ook 
graag bedanken.

Als allereerste wil ik mijn promotor Saskia bedanken. Je zit altijd vol ideeën en het 
is inspirerend om met jou over wetenschap te praten. Daarnaast geef jij duidelijk ook 
persoonlijk om mensen en sta jij bovendien open voor feedback wanneer iets in de 
samenwerking verbeterd kan worden. Ik denk dat we tijdens al deze jaren steeds beter 
hebben ontdekt hoe we het beste uit elkaar kunnen halen, en ik zie uit in de toekomst 
nog veel meer op wetenschappelijk gebied te ontdekken! Ook heel veel dank aan mijn 
andere promotor, Corné. Net als Saskia heb jij een enorme passie voor wetenschap en ik 
zit na overleg met jou vaak vol nieuwe inspiratie. Je hebt net weer een andere kijk op het 
werk dan Saskia en zo vullen jullie elkaar aan. Ik voel me vereerd om op basis van jouw 
Spinoza verder te mogen werken in dit lab, en ik zie uit naar vele mooie ontdekkingen! 
Ook veel dank aan de andere PI’s die ik heb meegemaakt in dit lab: Guido, Peter, Ronnie 
en Roeland. Ik heb misschien minder vaak direct met jullie te maken gehad, maar heb 
alsnog bij gelegenheden als half-year reports nuttige ideeën van jullie gekregen. 
Bovendien waren en zijn jullie erg prettige collega’s!

De afgelopen jaren heb ik ook met veel andere ontzettend fijne collega’s 
samengewerkt, die ik hier ook graag voor wil bedanken. De eerste van die lijst moet 
toch wel Tessa zijn. Heeeeeeeyyyyyy Teeessssaaaa! Je bent hier gekomen als ‘mijn’ 
masterstudent, en daarna ‘gepromoveerd’ tot collega. Het is bepaald niet overdreven als 
ik zou zeggen dat zonder jou met name hoodfstuk 4 van dit proefschrift een stuk minder 
kwaliteit zou hebben; ik ben blij dat jij (in tegenstelling tot ikzelf) protoplasten wel in 
significante aantallen kan laten overleven! Maar het belangrijkste is natuurlijk dat jij een 
ontzettend gezellige collega en kantoorgenoot bent, waar ik altijd lol mee kan maken! 

Then to my other long-term office mate: Dharani. It was really nice getting to know 
you better and having fun about all kinds of things. I’m always very much in awe about 
all your large-scale experiments with ten million different treatments, pretreatments, 
and what not. Also, it was a lot of fun exploring the (cultural) differences between India 
and The Netherlands with you. For example, I’ve found out that what I consider pretty 
spicy food is not even worth a rating on the spiciness-scale for you, and together we 
discovered that you are surprisingly good at guessing someone’s nationality from their 
driving style. I wish you good luck with finishing your thesis and working at your new job!
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Then there is my final current long-term office mate: Run. You are an interesting 
combination of being very serious at work, and a lot of fun outside of it. Probably the best 
way to work actually, but sometimes the contrast still surprises me! I really admire your 
quick, creative mind, and I’m looking forward to working more with you in the future!

Apart from my current office mates, I also have multiple great ex-office mates. Marrit, 
je bent helaas met TPB naar een andere gang verhuisd. Ik vond het erg leuk om jou als 
kantoorgenoot te hebben. Je bent een vrolijke, positieve persoon en het is altijd leuk om 
met je te kletsen, wat we dan ook vaak hebben gedaan. Gelukkig is de TPB-gang (mag 
zowel Nederlands als Engels worden gelezen) niet zo ver weg, dus dat gezellig kletsen 
komt vast nog goed! Ook bedankt aan Kim voor de gezelligheid als kantoorgenoot. 
Het was leuk om jou naast mij te hebben in het kantoor en we hebben volgens mij veel 
gelachen over van alles. Also thanks to Richard for being a nice office mate, and of course 
helping me with many of the RNA-seq analyses!

Of course, outside of the office I have/had many other nice colleagues as well. I 
should probably write something for all of you individually, but given the limited space I 
suggest you can come and collect kind words about yourself with me in person, haha! So 
thank you for all the good times we had together, in no particular order, Sietske, Sanne, 
Sophie, Robin, Pim, Melissa, Marciel, Vinicius, JJ, Hangyu, Brandon, Shu-Hua, Valerian, 
Alberto, Dario, Yang, Kumar, Manon, Marjolein, Joel, Claudia, Ke, Pauline, Tom, Alexandra, 
Colette, Marco, Eline, Jelle, Max, Gijs, Hao, Merel, Tijmen, Dima, Melanie, Iñigo, Joyce, 
Miek, Ray, Sebastian, Savani, Nicole, Giannis, Changfeng, Sarah, Xintong, Lotje, Erqin, 
Gilles, Hans, Anja, Jolanda, and Aster. 

And then my former students – no less than 15 of them! Similarly to above, I would 
have loved to write something personal for all of you, but there is so much to say to 
each of you that I cannot fit it in this book. Above all, I want to give a big thank you to 
all of you: Renée, Folkert, Ellinor, Raquel, Berend, Tessa, Gian, Aurelio, Priya, Jannes, Eva, 
Hannah, Leroy, Maroje and Michael. You did great work and I admire the persistence 
you showed while working on often difficult projects. I thoroughly enjoyed seeing how 
you progressed and became more comfortable working as a scientist. I wish you all the 
best in the future!

Buiten mijn werk om heb ik natuurlijk ook veel steun gehad. Ten eerste van mijn 
ouders, die mij altijd steunen en een ander perspectief kunnen geven, waardoor ik denk 
ik een gezonde kijk op mijn werk en het leven in het algemeen houd. Natuurlijk ook van 
mijn broer David, die mij al voor ging als PhD en daarmee een voorbeeld voor mij was. 
Ook heel erg bedankt aan mijn vrienden van het enige echte A.M. voor een hele hoop 
gezelligheid, muziek (van metal tot ‘Italia’) en gesprekken die uiteenlopen van serieus 
tot absurdistisch (“Loopt een man het ziekenhuis in…”). Ten slotte ook veel dank aan 
iedereen met wie ik de eer heb om muziek te maken. Muziek is enorm belangrijk in mijn 
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leven en een goede afleiding van mijn werk, dus het is heel fijn en bijzonder om dit samen 
met zoveel getalenteerde mensen te mogen doen!

En tot slot de belangrijkste persoon van iedereen. Lieve Bregje, vier dagen na het 
afronden van dit proefschrift zijn wij getrouwd. Ik denk dat ik op die dag veel beter heb 
verwoord wat jij voor mij betekent dan dat ik hier kan doen. Ik zal het hier houden bij 
zeggen dat je een enorme bron van steun en fijnheid bent, en ervoor zorgt dat ik mijn 
werk makkelijker in perspectief kan plaatsen. Heel van dank daarvoor, en veel liefs van 
mezelf ;).
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