
Neural networks for stochastic control and
decision making in mathematical finance

 (met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht

op gezag van de
rector magnificus, prof. dr. H.R.B.M. Kummeling,

 ingevolge het besluit van het college voor promoDes
in het openbaar te verdedigen op

maandag 18 december 2023 des middags te 4.15 uur

door

Kristoffer	Herbert	Andersson	

geboren op 26 maart 1989
te Gothenburg, Zweden

Promotor:	

Copromotor:	

Beoordelingscommissie:	

Prof. dr. ir. C.W. Oosterlee

Dr. Ir. L.A. Grzelak

Prof. dr. ir. J.E. Frank

Prof. dr. P.A. Forsyth

Prof. dr. R.J.A. Laeven

Prof. dr. A. Papapantoleon

Prof. dr. C. Reisinger

Summary

As the title suggests, this thesis is devoted to machine learning algorithms for stochastic control
with applications in mathematical finance. More specifically, three classes of stochastic control
problems are considered. Namely, problems in which:

1. The dynamic programming principle (DPP) holds and the state process is decoupled.
With a decoupled state process, we mean a state process that can be sampled from
independently of the control process, i.e., the dynamics (or update rules) do not take
the control process as an input. Chapters 2 and 3 treat problems from this class;

2. The DPP holds and the state process is coupled. Contrary to decoupled state processes,
a coupled state process depends on the control process and we cannot sample from it
without access to the control of the system. In Chapter 4, problems from this class are
considered;

3. The DPP does not hold and the state process is coupled. This is the most general problem
class in this thesis and Chapter 5 is devoted to these kinds of problems.

In this thesis, we propose neural network-based approximation methods for each of the classes
introduced above. Although, each strategy needs to be adjusted to the specific problem at
hand, our main belief is to use as much mathematical structure as possible. For instance,
when the DPP holds, we aim to incorporate this structural knowledge in order to increase
explainability as well as to construct efficient and accurate approximation methods. This opens
up for problem-specific algorithms, constructed to take advantage of much of the available
mathematical structure, see Chapters 2-3. In Chapter 4, we have the DPP satisfied but lose
the advantage of having a decoupled state process. However, we can still benefit from the
DPP and several possible mathematical reformulations of the problem to end up with an
algorithm that is appropriate for the specific problem considered. Finally, in Chapter 5, most
of the structure, and also theoretical results (existence and uniqueness of a solution) are at
best hard to verify and at worst do not hold. Therefore, we take on a more pragmatic strategy
and present data-driven methods which approximate the relevant problem in a more direct
way, without much mathematical manipulation.

Chapters 2 and 3: (based on [1, 2])
In these two chapters, we consider some risk management aspects of high-dimensional
options with early-exercise features, more precisely Bermudan (and American) options. The
proposed algorithm is divided into two phases. In the first phase, we use neural networks to
approximate the optimal exercise strategy and in the second phase we employ neural networks

to approximate pathwise option values. By focusing directly on the exercise strategy, instead
of the option (or continuation) values, we achieve a high accuracy. This accuracy is then
carried on to the second phase in which the pathwise option values are approximated, based
on the (close to) optimal exercise strategy. It is shown that this method is highly accurate in
comparison to classical methods, especially in high dimensions when the latter often run into
difficulties.

In Chapter 3, the algorithm is extended to a portfolio of high-dimensional options with early-
exercise features, which implies high-dimensional problems, both in the sense of the number of
underlying assets and in the sense of the number financial products in the portfolio. Moreover,
we introduce counterparty credit risk (CCR) and approximate the credit valuation adjustment
(CVA). An important conclusion made in Chapter 3 is that in the presence of default risk of the
counterparty, the optimal exercise strategy should be decided at the level of the entire portfolio.
This implies that the market practice of valuating options one by one, independent of the
counterparty as well as the entire outstanding portfolio, leads to a sub-optimal exercise strategy.

Chapter 4: (based on [3])
In Chapter 4, we consider a standard stochastic optimal control problem with the state process
given by a controlled diffusion-type SDE and a cost functional satisfying the DPP. We use the
well-known connection between a stochastic control problem and a forward backward stochastic
differential equation (FBSDE) to formulate the associate FBSDE. To find an approximate
solution to the FBSDE, we propose a neural network-based approximation method, in which
the loss function is constructed such that properties from both the stochastic control problem
and the FBSDE are incorporated. In this way, we include more mathematical structure into
the methodology than similar FBSDE solution methods such as the deep BSDE method
proposed in [4]. The price we have to pay is that the usage of our method is limited to FBSDEs
stemming from stochastic control, whereas the deep BSDE method, at least conceptually, is
applicable to general FBSDEs. On the other hand, we show by a numerical example that a
direct extension of the classical deep BSDE method to coupled FBSDEs, fails for a simple
linear-quadratic control problem, and we motivate why our method converges, both with
mathematical insights and numerical experiments.

Chapter 5: (based on [5])
As already stated, in the final research chapter, we consider a general type of stochastic
control problems in which the DPP does not hold. More specifically, we are concerned with
time-inconsistent portfolio optimization problems in which the investor is allowed to trade in a
bond, stocks and options. The motivation for going beyond the classical portfolio optimization
theory and allowing for trades also in options is twofold: i) with options in the portfolio we add
flexibility in shaping a desirable terminal wealth distribution since options offer a significantly
less symmetrical terminal wealth distribution than stocks. ii) many funds are prohibited from
using leverage in their portfolios and trading in options can be seen as a way to achieve a
leveraged position. The price to pay for the leverage here is only the option premium and,
hence, the large downside risk connected to a leveraged position can be avoided.

iv

With higher flexibility to shape the terminal wealth distribution, it is rational to consider
a less symmetrical objective function than the classical mean-variance optimization target. We
formulate the problem with a general objective function, taking the probability law of the
terminal wealth as input. More specifically, we explore some objectives which aim to control
the tail distribution of the terminal wealth.

With the general setting as described above, most mathematical properties of classical
portfolio optimization or stochastic control theory are no longer available. For instance,
uniqueness of an optimal allocation strategy is not guaranteed, and, in some special cases, we
can even show that there are infinitely many optimal allocation strategies. With this in mind,
our neural network-based approximation method, named Deep Time-Inconsistent Portfolio
optimization with stocks and Options (D-TIPO), uses a direct, data-driven approach in which
the loss function coincides with an empirical version of the objective function.

With the resulting novel algorithms in this thesis, we aim to demonstrate the applicability
of neural networks as function approximators for challenging problems in mathematical
finance. In particular, the additional value of the machine learning methodologies is found
for high-dimension problems with a complicated structure. Moreover, we wish to show that
it is worth striving for a high level of mathematical structure in the algorithms, in order
to enhance explainability, not only explaining how an algorithm works, but also for the
purpose of constructing better algorithms when one analyzes the details of the underlying
components. With this said, it should be pointed out that the usage of machine learning in
applied mathematics is still in its early stages. In order to reach the level of full explainability,
as it is available for the more mature classical approximation methods, much more research
needs to be conducted.

v

Samenvatting

Zoals de titel vam dit proefschrift al suggereert, is deze scriptie gewijd aan machine learning
algoritmen voor stochastische regeltechniekproblemen met toepassingen in de financiële
wiskunde. Meer specifiek worden drie klassen van stochastische regeltechniekproblemen
bestudeerd. Namelijk, problemen waarin:

1. Het dynamisch programmeer principe (DPP) geldt en de stochastische processen
ontkoppeld zijn. Met een ontkoppeld proces bedoelen we een proces dat onafhankelijk
van het controleproces kan worden gesimuleerd, d.w.z. de dynamiek (of update-regels)
heeft het controleproces niet als input. Hoofdstukken 2 en 3 behandelen problemen uit
deze klasse;

2. Het DPP geldt en de stochastische processen zijn gekoppeld. In tegenstelling tot
ontkoppelde processen, hangt een gekoppeld stochastisch proces af van het controleproces
en kunnen we het proces niet simuleren zonder de controleparameters van het systeem.
In Hoofdstuk 4 wordt een probleem uit deze klasse bestudeerd;

3. Het DPP geldt niet en de stochastische processen zijn gekoppeld. Dit is de meest algemene
probleemklasse, en in dit proefschrift is Hoofdstuk 5 gewijd aan dit soort problemen.

In dit proefschrift introduceren we neurale netwerk gebaseerde benaderingsmethoden, voor
elk van de hierboven geïntroduceerde klassen. Hoewel elke methode moet worden aangepast
aan het specifieke probleem, is onze insteek om zoveel mogelijk wiskundige structuur te
gebruiken bij het oplossen van een probleem. Bijvoorbeeld, wanneer het DPP geldt, streven
we ernaar deze kennis te gebruiken om de uitlegbaarheid van het algoritme te verbeteren,
en ook om efficiënte en nauwkeurige oplosmethoden te ontwikkelen. Dit opent de deur naar
meer probleemspecifieke algoritmen, geconstrueerd om optimaal gebruik te maken van de
beschikbare structuur, zie de Hoofdstukken 2-3. In Hoofdstuk 4 behouden we het DPP, maar
verliezen we het aspect van een ontkoppeld stochastisch proces. We kunnen echter nog steeds
profiteren van het DPP en van een wiskundige formulering om een algoritme te ontwikkelen
dat bijzonder geschikt is voor deze specifieke probleemklasse. Ten slotte, in Hoofdstuk 5,
zijn de structuur, en ook theoretische resultaten (existentie en uniciteit van een oplossing),
op zijn best moeilijk te verifiëren en soms zijn ze niet van toepassing. Daarom hanteren we
een pragmatische strategie en presenteren we op data gebaseerde methoden die de relevante
problemen op een directe manier benaderen, zonder veel wiskundige manipulatie.

Hoofdstukken 2 en 3: (gebaseerd op [1, 2])
In deze twee hoofdstukken bestuderen we aspecten van risicobeheer van hoog-dimensionale

financiële opties met vroegtijdige uitoefeningsmogelijkheden, meer specifiek Bermuda (en
Amerikaanse) opties. Het voorgestelde algoritme bestaat in twee fasen. In de eerste fase
gebruiken we neurale netwerken om de optimale uitoefeningsstrategie te benaderen en in de
tweede fase gebruiken we neurale netwerken om de optiewaarden op basis van de gesimuleerde
paden te benaderen. Door ons te richten op de uitoefeningsstrategie, in plaats van de optie-
(of continuerings-) waarden, bereiken we een hoge nauwkeurigheid. Van deze nauwkeurigheid
profiteren we in de tweede fase, waarin de optiewaarden op basis van de (bijna) optimale
uitoefeningsstrategie worden berekend. We tonen aan dat deze methode zeer nauwkeurig is in
vergelijking met klassieke methoden, vooral in hoge dimensies.

In Hoofdstuk 3 wordt het algoritme uitgebreid naar een portefeuille met hoogdimensionale
Bermuda (en Amerikaanse) opties, wat leidt tot problemen met een hoge dimensie, zowel
in termen van het aantal onderliggende activa als het aantal producten in de portefeuille.
Bovendien introduceren we tegenpartij kredietrisico (CCR) en benaderen we de kredietwaarde
aanpassing (CVA). Een belangrijke conclusie in Hoofdstuk 3 is dat bij het risico op faillissement
van de tegenpartij, de optimale uitoefeningsstrategie op het niveau van de hele portefeuille
moet worden gemaakt. Dit impliceert dat de marktpraktijk om opties afzonderlijk van elkaar
te waarderen, onafhankelijk van de kredietwaardigheid van de tegenpartij en de resterende
portefeuille, leidt tot een suboptimale uitoefeningsstrategie.

Hoofdstuk 4: (gebaseerd op [3])
In Hoofdstuk 4 bestuderen we een stochastisch optimaal regeltechniekprobleem met
een stochastisch proces dat beschreven wordt door een gecontroleerde stochastische
differentiaalvergelijking en een kostenfunctionaal die aan het DPP voldoet. We gebruiken
de connectie tussen een stochastisch regeltechniekprobleem en een voorwaarts terugwaartse
stochastische differentiaalvergelijking (FBSDE) om het bijbehorende FBSDE wiskundig
te formuleren. Om een numerieke oplossing voor de FBSDE te vinden, definiëren we een
neurale netwerk-gebaseerde benaderingsmethode, waarbij de verliesfunctie is geconstrueerd
zodat de belangrijke eigenschappen van zowel het regelprobleem als van de FBSDE worden
meegenomen. Op deze manier introduceren we meer wiskundige structuur dan vergelijkbare
FBSDE-methoden zoals de deep BSDE method in [6]. De prijs die we moeten betalen, is dat
de voorgestelde methode beperkt blijft tot FBSDEs die gerelateerd zijn aan stochastische
regeltechniek, terwijl de deep BSDE-methode, conceptueel, gebruikt kan worden voor algemene
FBSDEs. Tegelijkertijd laten we zien, aan de hand van een numeriek voorbeeld, dat de
“klassieke” deep BSDE-methode divergeert voor eenvoudige gekoppelde lineair-kwadratische
regelproblemen, en we motiveren waarom onze methode werkt, zowel met wiskundige inzichten
als met numerieke experimenten.

Hoofdstuk 5: (gebaseerd op [5])
Zoals eerder vermeld, behandelen we in het laatste hoofdstuk een algemene vorm van
stochastische regelproblemen waarvoor het DPP niet geldt. Meer specifiek gaan we in
op tijd-inconsistente portefeuille-optimalisatieproblemen waarin de belegger in obligaties,
aandelen en opties mag handelen. De motivatie om verder te gaan dan de klassieke portefeuille-
optimalisatietheorie en ook handel in opties toe te staan, is tweeledig: i) met opties in de

viii

portefeuille voegen we flexibiliteit toe bij het vormgeven van een gewenste verdeling van het
eindvermogen, aangezien opties aanzienlijk minder symmetrische eindvermogensverdelingen
bieden dan aandelen. ii) Voor veel fondsen is het verboden om de hefboomwerking van opties
te gebruiken in hun portefeuilles om te speculeren. De prijs voor de hefboomwerking is hier
echter slechts de optiepremie, en dus wordt het grote neerwaartse risico van hefboomwerking
vermeden.

Met de flexibiliteit om de eindvermogensverdeling vorm te geven, is het zinvol om een
minder symmetrische doelfunctie dan de klassieke gemiddelde-variantie doelfunctie te kiezen.
We formuleren het probleem met een algemene doelfunctie, gebaseerd op de distributie van
het eindvermogen, en onderzoeken enkele doelfuncties die gericht zijn op het beheersen van de
staartverdeling van het eindvermogen.

In de hierboven beschreven setting zijn de meeste wiskundige eigenschappen van klassieke
portefeuille-optimalisatie of stochastische regeltheorie niet langer van toepassing. Bijvoorbeeld,
de uniciteit van een optimale strategie is niet gegarandeerd en in sommige gevallen kunnen
we zelfs aantonen dat er oneindig veel optimale strategieën zijn. Om die reden gebruikt onze
neurale netwerk-gebaseerde benaderingsmethode een directe, op data gebaseerde, aanpak
waarbij de doelfunctie samenvalt met een empirische versie van de doelfunctie.

Met de resulterende nieuwe algoritmen in dit proefschrift willen we de toepasbaarheid
van neurale netwerken als functiebenadering voor uitdagende problemen in de financiële
wiskunde aantonen. In het bijzonder is er toegevoegde waarde van de machine learning-
methodieken voor hoogdimensionale problemen met een gecompliceerde structuur. Bovendien
willen we aantonen dat het streven naar een hoge mate van wiskundige structuur in de
algoritmen belangrijk is, om de werking van de algoritmen te verklaren, niet alleen om uit te
leggen hoe een algoritme werkt, maar ook om betere algoritmen te construeren wanneer men
de details van de onderliggende componenten analyseert. Echter, het gebruik van machinaal
leren in de toegepaste wiskunde bevindt zich nog in de beginfase. Om het niveau van volledige
verklaarbaarheid te bereiken, zoals met klassieke benaderingsmethoden, moet nog veel meer
onderzoek worden uitgevoerd.

ix

Table of Contents

Title Page i

Summary iii

Samenvatting vii

1 Introduction 1
1.1 Stochastic control . 1

1.1.1 Bellman’s principle of dynamic programming and time consistency . . . 3
1.1.2 Forward and backward algorithms with local or global optimization . . 4

1.2 Mathematical finance . 8
1.2.1 Financial options . 9
1.2.2 Risk management . 10
1.2.3 Portfolio optimization . 11

1.3 Structure of the thesis . 12

2 A deep learning approach for computations of exposure profiles for high-
dimensional Bermudan options 15
2.1 Introduction . 16
2.2 Problem formulation . 19

2.2.1 Bermudan options, stopping decisions and exercise regions 19
2.2.2 Exposure profiles . 21

2.3 Learning stopping decisions . 24
2.3.1 The Deep Optimal Stopping algorithm 24

2.3.1.1 Specification of the neural networks used 25
2.3.1.2 Training and valuation . 27

2.3.2 Proposed adjustments to the algorithm 29
2.3.2.1 Reuse of neural network parameters 29
2.3.2.2 Use simple stopping decisions when possible 29

2.4 Learning pathwise option values . 31
2.4.1 Formulation of regression problem . 32
2.4.2 Ordinary least squares regression . 34
2.4.3 Neural network regression . 36

2.5 Approximation algorithms for exposure profiles 37
2.6 Numerical results . 40

xi

TABLE OF CONTENTS

2.6.1 Black–Scholes dynamics . 40
2.6.1.1 Bermudan max-call option . 40
2.6.1.2 Approximation of the option value at initial time 41
2.6.1.3 Comparison with Monte-Carlo-based algorithms 42
2.6.1.4 Exposure profiles under different measures 43
2.6.1.5 Comparison of the OLS-regression and the NN-regression for

approximation of pathwise option values 46
2.6.2 Heston model dynamics . 47

2.6.2.1 Comparison with Monte-Carlo-based algorithms 48

3 Deep learning for CVA computations of large portfolios of financial
derivatives 51
3.1 Introduction . 52

3.1.1 Risk-free valuation . 52
3.1.2 Risky valuation and CVA . 53
3.1.3 Structure of the chapter . 54

3.2 Problem formulation . 55
3.2.1 A portfolio of derivatives . 55
3.2.2 Risk-free and risky portfolio valuation without netting 56
3.2.3 Risky portfolio valuation with netting 59
3.2.4 Credit valuation adjustment of a derivative portfolio 61
3.2.5 Exposure profiles . 63

3.3 Algorithms . 64
3.3.1 Phase I: Learning exercise strategy . 64
3.3.2 Phase II: Learning pathwise derivative values and portfolio exposures . 67

3.3.2.1 Regression problems . 68
3.3.3 Neural network-based regression algorithm 69
3.3.4 Combining Phase I and Phase II . 70

3.4 Numerical experiments . 70
3.4.1 Risk-factor model . 71
3.4.2 Default model . 71
3.4.3 Experiments . 72

3.4.3.1 Risk-free valuation . 72
3.4.3.2 Risky valuation . 74

3.5 Appendix - Neural network details . 76
3.5.1 Specification of the neural networks used 76
3.5.2 Training and valuation . 77

4 Convergence of a robust deep FBSDE method for stochastic control 81
4.1 Introduction . 82
4.2 The deep FBSDE method and an improved family of methods 84

4.2.1 Stochastic control and FBSDEs . 84
4.2.2 Alternative formulations of FBSDEs . 85
4.2.3 A direct extension of the deep BSDE method and why it fails 87

xii

TABLE OF CONTENTS

4.2.4 A robust deep FBSDE method . 91
4.2.5 Related methods and comparison . 91
4.2.6 Decoupled FBSDEs and why coupled FBSDEs are important 92

4.3 Fully implementable scheme and neural network regression 92
4.3.1 Fully implementable algorithms . 93
4.3.2 Specification of the neural networks . 95

4.4 Convergence analysis . 95
4.4.1 Notation and spaces . 95
4.4.2 Setting and spaces of Markov maps . 96
4.4.3 Auxiliary lemmata on strong and weak convergence for SDEs 97
4.4.4 Time discretization error of the initial and terminal values 101
4.4.5 Time discretization error of the FBSDE 103
4.4.6 A discussion on the full error analysis of the robust deep FBSDE method105

4.5 Numerical experiments . 105
4.5.1 Linear quadratic control problems . 106

4.5.1.1 Example with state and control of the same dimension 107
4.5.1.2 Example with control in lower dimensions than the state . . . 108

4.5.2 Non-linear quadratic control problems 111

5 D-TIPO: Deep time-inconsistent portfolio optimization with stocks and
options 115
5.1 Introduction . 116
5.2 Problem formulation . 119

5.2.1 Market frictions . 121
5.2.2 Objective functions . 122
5.2.3 Full optimization problem . 124

5.3 Methodology . 126
5.3.1 Discretized asset process and empirical distribution 126
5.3.2 Neural network approximation . 127

5.3.2.1 General notation for a neural network 127
5.3.2.2 Neural networks representing the trading strategy 128
5.3.2.3 Optimization problem with neural networks 130
5.3.2.4 Pseudo-code . 131
5.3.2.5 Pre-commitment strategy . 131

5.4 Numerical experiments . 131
5.4.1 Classical continuous mean-variance optimization 134
5.4.2 Beyond MV, with market frictions and jumps 135

5.4.2.1 Evaluation of the results . 138
5.4.2.2 Testing for robustness . 142

5.5 Conclusions . 142

6 Conclusions and outlook 145

References 149

xiii

TABLE OF CONTENTS

Acknowledgements 161

Curriculum Vitae 163

List of publications 165

List of presentations 167

xiv

1
Introduction

The introduction is divided into three parts. Firstly, significant ideas from stochastic optimal
control theory are presented. These concepts are then connected to financial mathematics in the
following section. Here, the focus is on specific topics such as option valuation, risk management,
and portfolio optimization. Lastly, the structure of the thesis is explained, highlighting how it
is organized and what each section covers.

1.1 Stochastic control

Stochastic control is a central topic in all chapters in this thesis. More precisely, we are
concerned with control problems on a finite time horizon, usually from t = 0 until t = T ∈ R+.
In general, a stochastic control problem consists of three components, the state process, the
control process and the cost functional. Below, these three components are described one by
one in the context of this thesis:

• State process
The state of the system evolves over time in an uncertain environment, described
on a filtered probability space (Ω,F ,P). Given ω ∈ Ω, the state process, denoted
X = (Xt)t∈[0,T] is a mapping t ↦→ Xt(ω). For simplicity, we assume that X is a Markov
process.

• Control process
The state process t ↦→ Xt, or an associated process (t,Xt) ↦→ Vt is typically controlled
by some α = (αt)t∈[0,T]. To emphasise that X is controlled by α, a superscript Xα =
(Xα

t)t∈[0,T] is sometimes used. The set of admissible, or allowed controls, is denoted by A.
From a practical perspective, A can be interpreted as physical constraints on the control,
for instance, the kind of trading strategies an investor is allowed to implement. These
restrictions could be motivated from a regulatory viewpoint and/or trading directives
from an investor’s client. Beyond this, A has a more involved mathematical definition
which is important for the framework to be well defined. The mathematical details are
outlined in the chapters to follow.

1

1. Introduction

• Cost/objective functional
The cost functional or, equivalently, the objective function, denoted by J , aims to measure
the performance of the control process when acting on the state process. The first type of
cost functional assumes a control in the form of a stopping time which yields an optimal
stopping problem. The cost functional is then given by

J(τ ; t, x) = E
[︃ ∫︂ τ

t
L(s,Xs)ds+ g(Xτ)

]︃
. (1.1)

Here τ is an X-stopping time, which essentially means that the information required
to determine whether or not to stop at some time t is completely contained in Xt. We
denote the set of X-stopping times by T , and the set of X-stopping times, greater than
or equal to t, by Tt. A typical example of a problem of this form is to find a fair value of
an American option.

The second kind of cost functional considered is perhaps the most common in stochastic
optimal control and takes the form

J(α; t, x) = E
[︃ ∫︂ T

t
L(s,Xα

s , αs)ds+ g(Xα
T)
⃓⃓
Xα
t = x

]︃
. (1.2)

Here L is referred to as the running cost and aims to penalize deviation from an optimal
state on the time interval [t, T] and similarly, g is referred to as the terminal cost and
aims to penalize deviation from the preferred state at the terminal time.

The final cost functional considered in this thesis takes a more general form. Instead of
an expected value as in (1.2) and (1.1), it is expressed as a function of the probability
law L of the state process

J(α) = U
(︁
L[Xα]

)︁
. (1.3)

Note that while the cost functionals in (1.2) and (1.1) are parametrized with t, x,
indicating that the cost is conditioned on Xt = x and computed on the interval [t, T],
(1.3) is not. The reason for this is that the control problems which use this more general
form of the cost functional are often only considered from the perspective of t = 0. Under
which assumptions a time-dependent cost functional is used and what impact this has
on the choice of approximation algorithm, are some of the main topics in this thesis. A
typical problem of the form (1.3) is the classical mean variance optimization problem.

Regardless of whether (1.1)-(1.2) or (1.3) is considered, the aim is to find an admissible
control such that the cost functional is minimized, which in each case is formulated as

τ∗ ∈ inf
τ∈T

J(τ ; 0, x0), α∗ ∈ inf
α∈A

J(α; 0, x0), and α∗ ∈ inf
α∈A

J(α). (1.4)

The above raises some important question about the strategy α∗ (and τ∗). Is the infimum
attainable? Is it unique? What properties can we expect from J , evaluated at α∗ (or τ∗)?
The answer to all these questions is that it depends on i) the underlying model, ii) the set of
admissible strategies, and iii) the regularity of the functions L and g when (1.2) or (1.1) is
considered and U when (1.3) is considered. In this thesis, we mostly assume that i) and ii) are

2

1.1 Stochastic control

nice enough to satisfy the necessary relevant conditions, while iii) is explored in some more
detail.

Assuming the infimums in (1.4) exist, the optimal costs at (t = 0, x = x0) are given by

J(τ∗; 0, x0), J(α∗; 0, x0), and J(α∗). (1.5)

In the next section, we discuss whether or not a strategy α∗ (or τ∗) is optimal at any (t,Xα∗
t)

or whether it is optimal to update the strategy along the random trajectory. Or, equivalently,
for α1, α2 ∈ A, with α1 ∈ infα∈A J(α; 0, x0) and α2 ∈ infα∈A J(α; t,Xα1

t), does it hold that
J(α1; t,Xα1

t) = J(α2; t,Xα1
t). This is related to Bellman’s principle of dynamic programming,

which is treated in the section below.

1.1.1 Bellman’s principle of dynamic programming and time consistency

In this section, we consider stochastic control problems without a stopping time component to
keep the notation simple. The extension to include stopping times is straight forward and in
the chapters to follow, this is outlined in detail when needed. Bellman’s principle of dynamic
programming states that for h ∈ [0, T − t]

J(α∗; t, x) = inf
α∈A

E
[︃ ∫︂ T

t
L(s,Xα

s , αs)ds+ J(α; t+ h,Xα
t+h)

⃓⃓
Xt = x

]︃
. (1.6)

In words, this means that finding an optimal strategy on [t, T] is equivalent to first finding
an optimal strategy on [t, t + h] and then determine a new optimal strategy on [t + h, T].
Iteratively, this implies that the strategy which is optimal on [t, T] is also optimal on each
subinterval of [t, T]. This principle is used in many classical algorithms since one large global
optimization problem can be transformed into multiple smaller local optimization problems.
Under realistic standard assumptions, (1.6) holds for problems with cost functionals (1.1) and
(1.2), however, in general, there is no version which holds for (1.3). To better understand why
the dynamic programming principle (DPP) fails to hold for many cost functionals, we resort to
a special form of (1.3) in which the cost functional is a function of the expected terminal state

J(α) =
N∑︂
i=1

Ui(E[ui(Xα
T)]), (1.7)

where Ui and ui are some suitable functions. A typical example which belongs to this class
of cost functionals is the classical mean-variance optimization problem. To see this, consider
XT ∈ R and λ > 0. The cost functional can then be rewritten as −E[Xα

T] + λVar[Xα
T] =

−E[Xα
T] + λ ·

(︂
E
[︁
(Xα

T)2]︁− E[Xα
T]2
)︂
. Since the law of iterated expectations then does not hold

for all terms in (1.7), i.e.,

E
[︂
Ui
(︁
E[ui(Xα

T) |Xα
t+h]

)︁ ⃓⃓
Xα
t

]︂
̸= Ui

(︁
E[ui(Xα

T) |Xα
t = x]

)︁
,

neither does the dynamic programming principle. The class of problems, for which the DPP
does not hold is often referred to as time-inconsistent problems. As a consequence, for these
problems the optimization procedure cannot be divided into multiple subproblems and a whole

3

1. Introduction

different class of approximation algorithms needs to used. It should however be pointed out
that in some special cases it is still possible to transform a time-inconsistent problem into a
time-consistent problem, see e.g., [7].

1.1.2 Forward and backward algorithms with local or global optimization

As mentioned in the previous sections, the DPP holds for problems with cost functionals of the
form (1.1) and (1.2). This has a major impact in the choice of algorithm. Another important
aspect when deciding between algorithms is the way the control is incorporated in the state
process X. For the problems with cost functionals (1.2) and (1.3), the control component
affects the dynamics of the state process, which is indicated by superscript α. This implies
that the state process cannot be sampled independently of the control process. For optimal
stopping problems, on the other hand, the control of the system is given by a stopping time,
which does not affect the evolution in time of the state process. This opens up for algorithms
in which the state process is sampled independently of the rest of the problem. In this thesis,
we refer to the former as problems with coupled state process and the latter as problems with
decoupled state process.

Another distinction made in this thesis is between forward and backward type algorithms.
This refers to the temporal order in which a problem is solved. The temporal order often
affects whether we consider a local or global optimization algorithm. This refers to whether the
optimization is performed for one time step at a time or for multiple time steps simultaneously.
Often, but not always, a forward algorithm uses global optimization and a backward algorithm
resorts to local optimization. For instance, if an optimization problem is solved by dynamic
programming in a backward induction scheme, starting from right before the terminal time and
working its way back, step by step, to the initial time, then we are dealing with a backward
type algorithm with local optimization.

Below, an example aiming to demonstrate the difference between local and global
optimization is given.

Example 1.1.1. Assume a time discretization, 0 = t0 < t1 < · · · < tN = T , with a control
at tn denoted by θn. The entire control process, prior to the control at tn, is denoted by
θn = {θ0, θ1, . . . , θn−1}. The control, which can be in the form of a regular control of the state
process or in the form of a stopping time, is here given by the feedback map taking the current
state as input, i.e., θn(Xθn

tn). the superscript θn indicates that the state process is influenced
by the historical control. We assume that the state process is stochastic by some influence of
an Fn-measurable random variable ξn and the update rule for the state is given by

Xθn
tn = Fx

(︁
tn, X

θn
tn , θn, ξn

)︁
.

The aim is then to find θN , such that some cost functional is minimized.
Global optimization:
Here, the optimization is performed only once

min
θN

J(θN), yielding θ∗
N = arg min

θN

J(θN).

4

1.1 Stochastic control

Most algorithms that resort to global optimization are of forward type.
Local optimization:
Here, the optimization is performed N times, one per time step tn

inf
θn

Jn(θn) yielding θ∗
N =

{︁
arg min

θ0

J0(θ0), . . . , arg min
θN−1

JN−1(θN−1)
}︁
.

The algorithms with local optimization considered in this thesis are all of backward type,
however, there are also many examples of forward algorithms with local optimization, e.g.,
greedy reinforcement learning methods.

Below, we introduce the three main types of problems that are considered in this thesis.

Decoupled state equation with the DPP satisfied:
Arguably, the most common problem in this category is valuation of options with an
early-exercise feature, in particular, American and Bermudan options. These problems are
highly suitable for dynamic programming, since the entire state process is decoupled and
can therefore be sampled without any insight into the behaviour of the control process. This
procedure breaks the problem down into approximations of appearing conditional expectations,
one time point at the time. If the conditional expectation of future ”cost” (or usually reward
in the shape of future cash-flows) is higher than the cost achieved by stopping at the current
time point, then it is optimal to stop. In this way, the problem is approximated, step by
step, backwards in time, all the way back to t = 0. There are several ways to approximate
these conditional expectations. A few alternatives are Monte-Carlo methods, Fourier-based
methods or by a reformulation to a PDE or a reflected BSDE. The associate PDE or BSDE
can, in turn, be approximated with finite difference/element methods or by Monte–Carlo or
Fourier-based methods, respectively. More recently, researchers have turned their attention to
machine learning-based methods to solve PDEs and (reflected) BSDEs. This is explained in
more detail with several sources in Chapter 2 and 3.

Instead of the approximation of conditional expectations, the algorithm used in this thesis
relies on a direct approximation of binary stopping decisions. We resort to the Deep Optimal
Stopping algorithm (DOS), in which neural networks are used to learn the optimal stopping
rule directly from Monte-Carlo samples of the underlying asset process.

Problems in this category are treated in Chapters 2 and 3.

Coupled state equation with the DPP satisfied:
Compared to the previous problem class, the seemingly minor change with a coupled state
process actually completely changes the conditions for a well-functioning approximation
strategy. A common approach to solving problems in this class is to formulate a value function,
which, assuming that the infimum in (1.4) exists, is defined as

V (t, x) = J(α∗ ; t, x).

If we assume that the state process is modelled by a controlled diffusion type SDE, with
sufficiently nice drift- and diffusion-coefficients as well as sufficiently nice running- and terminal-
cost functions in the cost functional. Then, the value function is a so-called viscosity solution

5

1. Introduction

to a parabolic PDE. Moreover, the control of the system is a function of the gradient of V as
well as of time and state. In turn, this implies that by solving the PDE, we have access to
the optimal control. In practice, the PDE is solved on a space-time grid, e.g., with a finite
difference/element method. Before the equation can be approximated, we need to determine
a domain and appropriate boundary conditions. Once the optimal control is available in
the entire domain, paths of the asset process can be dynamically controlled based on some
interpolation procedure between grid points. In some instances, the domain and boundary
conditions are clearly prescribed by the problem but in many practically relevant examples
the real domain is unbounded and the best we can do is to come up with an artificial domain
and corresponding boundary conditions. This implies that we have to approximate the PDE
solution on a grid which is large to guarantee that all the controlled paths stay within the
domain. For low-dimensional problems, this is usually not a problem since we may have a
rough idea of where in the space-time grid the controlled paths tend to end up and choose
the domain large enough so that we are almost certain that all samples stay within. This is
visualized for two different asset dynamics, one with low volatility and one with large volatility,
in Figure 1.1. It is clear that the chosen domain is not large enough for the process with higher
volatility (blue) since some of the paths leave the domain. In turn, this means that we do not
have access to an optimal control on the entire [0, T] for some of the paths. On the other hand,
for the process with lower volatility (red), we have access to the control for all samples in [0, T].
Note that this is by no means equivalent to stating that the probability of the controlled state
process with lower volatility will stay in the domain with probability 1.

Figure 1.1: An example of a domain in which we have an optimal control and three representative
sample paths of one controlled SDE, with low volatility (red) and high volatility (blue).

6

1.1 Stochastic control

For higher-dimensional problems, and in particular when the dynamics are more complex
than in the toy example from Figure 1.1, the task of choosing a domain can easily become
intractable which makes the PDE approach infeasible (to approximate a PDE on a large
domain in high dimensions is usually not possible with classical grid-based methods) from a
practical perspective.

Another approach is to consider a grid-free approximation in the sense that the control is
approximated on stochastic paths of the asset process. For ω ∈ Ω

(︁
V
(︁
t,Xα

t (ω)
)︁)︁
t∈[0,T], and

(︁
∇xV

(︁
t,Xα

t (ω)
)︁)︁
t∈[0,T],

where the second term is the gradient of the value function, are required to obtain the optimal
control. This would lower the computational burden since we would only have to approximate
the control in the relevant domain. A natural way to achieve this is to reformulate the PDE (or
directly the stochastic control problem) to a forward backward stochastic differential equation
(FBSDE). More specifically, we would obtain a coupled FBSDE, meaning that the primary
stochastic variables in the backward SDE (BSDE) impact the forward SDE and vice versa.
To approximate decoupled FBSDEs, i.e., when the forward SDE does not take the backward
component as input, backward numerical schemes are natural. Assume that the terminal
condition of the BSDE is of the form YT = g(XT), where XT and YT are the terminal values
of the forward SDE and BSDE, respectively. Then, it is clear that we have full access to
the terminal value of the BSDE, if we are able to sample from XT . In the decoupled case, a
backward scheme can be employed, in which we start from YT , and recursively work our way
backwards in time to obtain an approximation of (Yt)t∈[0,T].

When there is a coupling, on the other hand, backward schemes run into problems because
it is not clear in which spatial area the terminal value of the BSDE lies. The reason for this is
that it is not possible to sample from XT before we have access to a solution to the BSDE.
Therefore, to approximate coupled FBSDEs is an inherently difficult task with classical and in
particular backward methods.

In Chapter 4, a novel neural network-based method is proposed which combines the
structure from both the original stochastic control problem and the associate FBSDE, to
obtain an accurate approximation to a wide range of high-dimensional stochastic control
problems. This method circumvents the problems faced by backward methods by considering
an approximation forward in time and conducting the optimization globally.

Coupled state equation where the DPP is not satisfied:
The final class of problems considered in this thesis is based on cost functionals of the more
general form (1.3), in which the cost is determined from a function which takes the probability
law of the controlled state process as input. If one considers the state equation to be a
controlled diffusion type SDE, possibly with a mean-field interaction (a McKean–Vlasov SDE),
we are in the framework of mean-field control or control of McKean–Vlasov SDEs. Even though
there are special cases that have been considered for many years, such as the mean-variance
portfolio optimization problem, research into more general problems is relatively new with
[8] as the corner stone reference works. One way to approach these kinds of problems is to
use the stochastic maximum principle to reformulate a McKean–Vlasov type control problem

7

1. Introduction

into a McKean–Vlasov type FBSDE. As the name suggests, this is an FBSDE in which the
parameters take the probability law of the solutions to the forward SDE and the BSDE as
inputs. A different approach to solving this problem is to transform it into a PDE, which
is often referred to as the master equation of the McKean–Vlasov control problem. Both
these approaches require restrictive assumptions on all parameters to guarantee existence of a
solution and uniqueness requires an even more restrictive formulation. To approximately solve
these equations is a highly nontrivial task for which most classical methods break down.

We therefore take on a strictly data-driven approach with the algorithms proposed in
Chapter 5 in this thesis. We consider practical problems and take on a relaxed approach
regarding mathematical technicalities such as existence and uniqueness of the sought solution.
If the problem is to optimize the performance of an investment portfolio, we do not worry
about whether or not an optimal strategy exists from a mathematical perspective. Also the
uniqueness of such a strategy is of minor importance to an investor. As already pointed out,
the algorithm is purely data-driven, and the probability law is approximated by its empirical
counterpart. The control process is represented by a sequence of neural networks and the loss
function of the neural networks is simply given by an empirical version of the cost functional.
The algorithm operates forward in time and the optimization is carried out globally.

In Chapter 5, this algorithm is applied to a portfolio optimization problem in which
allocation into a bond, stocks and options is allowed. To this, we consider a general form of
objective function which aims to control the tail distribution of the terminal wealth. From a
financial perspective, this could be seen as a way to mitigate rare events of large losses.

1.2 Mathematical finance

Financial mathematics encompasses various mathematical tools applied to understand and
manage financial aspects. This thesis concentrates on three key domains: option valuation, risk
management, and portfolio optimization, acknowledging their significance within the broader
field of financial mathematics.

1. Financial options:
This segment delves into determining the fair value of financial derivatives known as
options. Mathematical models like the Black–Scholes model are utilized to estimate these
values. However, it is essential to note that option valuation represents just one facet of
financial mathematics.

2. Risk Management:
Addressing uncertainties prevalent in financial markets, this section explores methodolo-
gies to measure and mitigate risks. Quantitative tools such as Value at Risk (VaR) and
various mathematical approaches aid in managing risks. Nonetheless, this constitutes only
a segment within the wider scope of risk management strategies. This area of financial
mathematics has seen a drastic increase in attention from scientists and practitioners in
the aftermath of the financial crisis in 2007-2008.

3. Portfolio Optimization:
Focused on constructing investment portfolios, this thesis examines strategies for

8

1.2 Mathematical finance

optimizing returns while minimizing risks. It draws from Harry Markowitz’s modern
portfolio theory (MPT) to illustrate the balancing act between risk and return. However,
this approach forms a part of the diverse landscape of portfolio optimization techniques
within financial mathematics.

It is pivotal to recognize that financial mathematics extends beyond these specific areas,
encompassing a rich array of mathematical methodologies and analytical tools employed to
comprehend multifaceted financial phenomena. While this thesis delves deeply into these
specific segments, it acknowledges the intricate and expansive nature of financial mathematics,
which continually evolves and offers multifarious avenues for exploration and analysis.

By focusing on these specific domains, this thesis aims to contribute nuanced insights and
in-depth analyses. Yet, it also underscores the vastness and continual evolution of financial
mathematics, endeavoring to explore a few segments while acknowledging the broader expanse
of this complex and dynamic field.

Below, these three concepts are presented in the context of this thesis.

1.2.1 Financial options

An option is a financial contract between two parties (holder and writer), which gives the
holder the right (option), but not the obligation, to trade an asset in the future, according
to predefined rules. The writer, on the other hand, is obliged to offer the holder to trade the
asset, if such a trade is called for by the holder. There are many different types of options
but in this chapter, we restrict the presentation to the contracts relevant for this thesis. The
motivation to invest in an option can be to leverage a speculative position in the stock market,
but more commonly it is meant to hedge an interest rate/FX risk.

The main mathematical problem with options is to find the fair value, which in short is
given by the discounted expected future cash-flows of the contract. For instance, assuming the
underlying asset is modeled by (Xt)t∈[0,T] and a contract pays g(XT), with a risk-free interest
rate r, then the fair value at t ∈ [0, T] is given by

e−r(T−t)E
[︁
g(XT) |Xt

]︁
.

At first glance, the above valuation equation is straight forward and easy to understand, but
one important question needs to be answered - how should the asset process be modelled and
what conditions should such model satisfy? The discussion on which model to use for the asset
process goes well beyond the scope of this thesis and we restrict our attention to Itô processes
and, in some special cases, the more general Lévy processes.

A fundamental condition for the valuation model is that it should be free of arbitrage,
meaning that it is not possible to have a positive probability of making a return higher than
the risk-free rate without taking on any risk (zero probability of a return below the risk-free
rate). In the world of option pricing, we assume that the entire market is free of arbitrage,
implying that it is not possible to create a portfolio with arbitrage, or simply, that there are
no arbitrage opportunities in the market. In practice, it is well known that opportunities of
arbitrage exist but the assumption is that these only exist for a very limited time period
(until someone takes advantage of the opportunity), implying that the arbitrage disappears.

9

1. Introduction

Despite this, the assumption of an arbitrage-free market is central for mathematical finance in
general and for option valuation in particular. From a mathematical perspective, this means
that discounted tradable assets are martingales and the probability measure, under which this
holds, is referred to as the risk-neutral measure and denoted by Q. The expectation under the
risk-neutral measure is then denoted by EQ and the fair value of an option, terminating at T ,
with a pay-off function g (assuming deterministic interest rates) is given by

V (t, x) = e−r(T−t)EQ
[︁
g(XT) |Xt = x

]︁
.

In this thesis, we are particularly interested in options with early-exercise features

V (t, x) = sup
τ∈Tt

EQ
[︁
e−r(τ−t)g(Xτ) |Xt = x

]︁
, (1.8)

where Tt is the set of all X−stopping times greater than or equal to t. The latter valuation
problem is in fact a stochastic control problem and falls into the category of decoupled state
equation, with the DPP satisfied, as described in the previous section.

1.2.2 Risk management

The attention for risk management in mathematical finance has increased significantly since
the global financial crisis in 2007-2008. The third Basel accord, with the title Basel III: A
global regulatory framework for more resilient banks and banking systems, but usually referred
to as just Basel III, was in large motivated by this crisis. Both the financial crisis and the Basel
accords are broad topics which both go way beyond the scope of this thesis and we limit our
motivation to the so-called option valuation adjustments (xVA). The ”x” in xVA, represents a
specific risk factor, for instance, credit valuation adjustment (CVA), is the valuation adjustment
one should make for the risk of a possible default of the counterparty.

Historically, the valuation of an option has been performed independently of the
counterparty, i.e., without considering the credit quality of the counterparty. Clearly, there is
a difference between having a financial exposure against a stable government versus a highly
leveraged real estate company. Despite the fact that this was a concern already before the
2008 financial crisis, especially among researchers, it is in the recent 15 years that this has
received full attention from practitioners.

As an illustrative example, the CVA is computed as the difference between the risk-free
value and the risky value. The risk-free value is the classical value of the option as described
above in, for instance, (1.8), i.e., the discounted expected future cash-flow. The corresponding
risky value also takes the probability of default, as well as the recovery rate (estimated return
in the event of a default of the counterparty), into account. The risky value of the option could
be given by

V risky(t, x) = EQ
[︂(︁

1− LGD× IτD<τ∗(τ∗)
)︁
× e−r(τ−t)g(τ∗, Xτ∗)

⃓⃓
Xt = x

]︂
, (1.9)

where τ∗ is the optimal exercise strategy for the risk-free problem, τD is the time for the
default event (τD > T implies that no default takes place before time T) and LGD is the loss
given default which takes on values in [0, 1). The expression for the risk-free value could be

10

1.2 Mathematical finance

made more complicated by also taking into account that the optimal exercise strategy may
change due to the credit quality of the counterparty. On the other hand, it could be made less
complicated by the simplification of considering the LGD, τD and X as independent entities.
Finally, if the risk-free and risky values are given as above, then the corresponding CVA is
given by

CVA(t, x) = V (t, x)− V risky(t, x). (1.10)

In most computations of the CVA, as well as many of the other xVAs, the financial exposure,
or simply exposure, is of central importance. The exposure is given by the positive part of the
outstanding value of an option. From a risk management point of view, it is reasonable to only
consider the positive part of the value since the negative will remain even in the event of the
counterparts default. However, computing the exposure of an option is nothing but computing
values and then truncating at zero. The difference from the valuation in Section 1.2.1 is that
while classical option valuation requires the value at one point in time and space, to compute
the exposure requires the option value along stochastic trajectories of the underlying asset.
This becomes challenging for high-dimensional problems, e.g., for basket options, especially in
the presence of early-exercise features.

1.2.3 Portfolio optimization

In the world of portfolio optimization, contrary to option valuation, the market is not considered
to be free of arbitrage. If this would be the case, then the most sensible trading decision
would be to invest only in bonds bearing the risk-free interest rate, since that strategy would
minimize the risk. In portfolio optimization problems, the real-world measure, denoted by P is
used. This causes the delicate question how one should model a problem in which the portfolio
consists of a bond (deterministic), stocks (modeled under P) and options which should be
valued under Q. The approach followed in this thesis is to follow the convention and perform
option valuation under Q and then let the performance be measured under P. In fact, this is
also consistent with the current value of the stocks. This can be seen by constructing a dummy
option, written on the asset X and terminating at T , with a pay-off function g(XT) = XT .
The fair value of this option at t is given by

V (t,Xt) = e−rTEQ[XT |Xt] = Xt,

which is clearly consistent with the value at t of the asset X.
As mentioned, we consider portfolio optimization problems where the investor is allowed

to trade a bond, stocks and options written on the same stocks. The motivation for this,
somewhat unusual, portfolio decomposition is that the terminal wealth distribution is very
different when comparing a stock and an option written on this stock. This implies that in a
portfolio which allows for trading also in options, the flexibility in controlling the distribution
of the portfolio’s terminal wealth is considerably higher. Another advantage is that many funds
are prohibited from using leverage in their portfolios and trading in options could be seen as a
way to achieve a leveraged position without the downside risk by paying the option premium.

With the increased flexibility in shaping the portfolio’s terminal wealth distribution, it
is reasonable to consider objective functions beyond the classical expected utility and mean-

11

1. Introduction

variance functions. Expected utility functions are usually constructed so that the DPP holds.
We could then either end up in the first (decoupled state equation) or second category (coupled)
from the section above, depending on how the problem is formulated. The mean-variance asset
allocation problem, on the other hand, leads to a problem of the third category, since the DPP
is not satisfied due to the non-linearity in the conditional expectations in the variance term.
However, for many standard formulations of the mean-variance problem, there are closed-form
solutions to the optimization problem, which makes this a popular formulation. Another
advantage of this formulation is the clear intuitive formulation of one reward term (expected
terminal wealth), which we want to maximize, and one risk term (variance of terminal wealth),
which we want to minimize. In addition, if the distribution of the terminal wealth could be
well approximated with a normal distribution, then the mean-variance objective is optimal
since the normal distribution is completely described by its first two moments. In a situation
with only stocks, the normal distribution is a reasonable, although not perfect, approximation
of the terminal wealth distribution. With options added to the portfolio, this does no longer
hold true and another objective function should be used. To connect this problem to stochastic
control, we are in the framework of control of mean-field type. In general, it is possible to
use the stochastic maximum principle to transform this problem into a mean-field FBSDE
of the appearing PDE. The problem is then that with such a complicated formulation with
a non-standard objective function for a portfolio consisting of a bond, stocks and options,
it is not even clear whether or not the solution (optimal allocation strategy) is unique and
therefore the properties of the transformed problem are challenging to control. With a setting
like this, most classical optimization methods break down and one has to rely on, for example,
a data-driven approach.

1.3 Structure of the thesis

Chapters 2-3, which are based on [1] and [2], treat pricing of high-dimensional Bermudan
options. The valuation problems belong to the category of decoupled state equation with the
DPP satisfied and a neural network-based approximation algorithm is proposed. Moreover, the
financial exposures are computed for a single option and for a portfolio of options in Chapters
2 and 3, respectively. This is also done with a neural network-based regression algorithm which
approximates conditional expectations.

In Chapter 4, a neural network-based algorithm for approximating FBSDEs stemming from
stochastic control is proposed, which is based on [3]. The algorithm uses both the stochastic
control formulation and the FBSDE formulation in the loss function. This chapter treats
problems from the category in which the DPP is satisfied with a coupled state process.

Finally, Chapter 5 treats stochastic control problems where the DPP does not hold with a
coupled state process. In particular, the focus is on time-inconsistent portfolio optimization
problems, which are approximated with neural networks in a data-driven fashion. The chapter
is based on [5].

The notation used in this thesis may differ between chapters. Therefore, in each chapter,
the current notation is clearly defined. The reason for this is that we want to, as far as possible,
stick to standard notation in each area of mathematical finance. Due to the broad scope of

12

1.3 Structure of the thesis

the thesis, this would cause notational conflicts if we would have used a coherent notation
throughout the entire thesis.

13

2
A deep learning approach for

computations of exposure profiles for
high-dimensional Bermudan options

In this chapter, we propose a neural network-based method for approximating expected
exposures and potential future exposures of Bermudan options. In a first phase, the method
relies on the Deep Optimal Stopping algorithm (DOS) proposed in [9], which learns the optimal
stopping rule from Monte-Carlo samples of the underlying risk factors. cash-flow paths are
then created by applying the learned stopping strategy on a new set of realizations of the
risk factors. Furthermore, in a second phase the cash-flow paths are projected onto the risk
factors to obtain approximations of pathwise option values. The regression step is carried out
by ordinary least squares as well as neural networks, and it is shown that the latter produces
more accurate approximations.

The expected exposure is formulated, both in terms of the cash-flow paths and in terms of
the pathwise option values and it is shown that a simple Monte-Carlo average yields accurate
approximations in both cases. The potential future exposure is estimated by the empirical
α-percentile.

Finally, it is shown that the expected exposures, as well as the potential future exposures
can be computed under either, the risk-neutral measure, or the real-world measure, without
having to re-train the neural networks.

Keywords - Bermudan options, risk management, financial exposure, neural networks

This chapter is based on the paper with the same title, which is published in Applied Mathematics and
Computation 408 (2021): 126332

15

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

2.1 Introduction

The exposure of a financial contract is the maximum amount that an investor stands to lose if
the counterparty is unable to fulfill its obligations, for instance, due to a default. This means
that, in addition to the market risk, a so-called counterparty credit risk (CCR) needs to be
accounted for. Furthermore, the liquidity risk, which is the risk arising from potential costs
of unwinding a position, is also closely related to the financial exposure. Over the counter
(OTC) derivatives, i.e., contracts written directly between counterparties, instead of through
a central clearing party (CCP), are today mainly subject to so-called valuation adjustments
(XVA1). These valuation adjustments aim to adjust the value of an OTC derivative for certain
risk factors, e.g., credit valuation adjustment (CVA), adjusting the value for CCR, funding
valuation adjustment (FVA), adjusting for funding cost of an uncollateralized derivative or
capital valuation adjustment (KVA), adjusting for future capital costs. The financial exposure
is central in calculations of many of the XVAs (for an in-depth overview of XVAs, we refer to
[10] and [11]). In this chapter, we therefore focus on computations of financial exposures of
options.

For a European style option, the exposure is simply the option value at some future
time, given all the financial information available today. If t0 is the time today and Xt the
d-dimensional vector of underlying risk factors of an option, we define the exposure of the
option, at time t > t0, as the random variable2

EEur
t = Vt(Xt).

However, for derivatives with early-exercise features, we also need to take into account the
possibility that the option has been exercised prior to t, sending the exposure to zero. The
most well-known of such options is arguably the American option, which gives the holder (or
buyer) the right to exercise the option at any time between t0 and maturity T . In this chapter,
the focus is on the Bermudan option which gives the holder the right to exercise at finitely
many, predefined exercise dates between t0 and maturity T . For early-exercise options, the
exposure needs to be adjusted for the possibility that the stopping time τ , representing the
instance of time at which the option is exercised, is smaller than or equal to t. This leads to
the following definition of the exposure

EBer
t = Vt(Xt)I{τ>t},

where I{·} is the indicator function. Two of the most common ways to measure the exposure
are the expected exposure (EE), which is the expected future value of the exposure, and the
potential future exposure (PFE), which is some α−percentile of the future exposure (usually
α = 97.5% for the upper, and α = 2.5% for the lower tails of the distribution). To accurately
compute EE and PFE of a Bermudan option, it is crucial to use an algorithm which is able to
accurately approximate, not only Vt(Xt), but also I{τ>t}.

1X represents arbitrary letters, e.g., ”C” for credit valuation adjustment, ”F” for funding valuation adjustment,
etc.

2Usually, the exposure is defined as max{Vt(Xt), 0}, but since we only consider options with non-negative
values, the max operator is omitted.

16

2.1 Introduction

It is common to compute the EE and the PFE with simulation-based methods, usually
from realizations of approximate exposures, from which the distribution of Et is approximated
by its empirical counterpart. A generic scheme for approximation of exposure profiles is given
below:

1. At each exercise date, find a representation, vt : Rd → R, of the true value function Vt(·);

2. Generate trajectories of the underlying risk factors, and at each exercise date, evaluate3

vt(Xt(ω));

3. At the earliest exercise date where vt(Xt(ω)) ≤ g(Xt(ω)), where g is the pay-off function,
set τ(ω) = t;

4. The distribution of EBer
t , is then approximated by the empirical distribution created by

many trajectories of the form vt(Xt(ω))I{τ(ω)>t}. For instance, if the target statistic is
the EE, the estimation is the sample mean of the exposure paths.

Step 1 above corresponds to the option valuation problem, which can be tackled by several
different methods, all with their own advantages and disadvantages. For instance, the value
function can be approximated by solving an associated partial differential equation (PDE),
which is done in e.g., [12],[13],[14],[15] and [16], or the value function can be approximated by a
Fourier transform methodology, which is done in e.g., [17], [18] and [19]. Furthermore, classical
tree-based methods such as [20], [21] and [22], can be used. These types of methods are, in
general, highly accurate but they suffer severely from the curse of dimensionality, meaning
that they are computationally feasible only in low dimensions (say up to d = 4), see [23].
In higher dimensions, Monte-Carlo-based methods are often used, see e.g., [24],[25],[26],[27]
and [28]. Monte-Carlo-based methods can generate highly accurate option values at t0, i.e.,
vt0(Xt0 = xt0), given that all trajectories of the underlying risk factors are initiated at
some deterministic xt0 . However, at intermediate exercise dates, vt(Xt(ω)) might not be an
equally good approximation, due to the need of cross sectional regression. We show with
numerical examples that, even though the approximation is good on average, the option
value is underestimated in certain regions, which is compensated by overestimated values in
other regions. For European options, this seems to have minor effect on EE and PFE, but for
Bermudan options the effect can be significant due to step 3 above. To provide an intuitive
understanding of the problem, we give an illustrative example. Assume that vt underestimates
the option value in some region A, which is close to the exercise boundary, and overestimates
the option value in some region B, where it is clearly optimal to exercise the option. The
effect on the exposure would be an overestimation in region A, since underestimated option
values would lead to fewer exercised options. In region B, the exposure would be zero in both
cases since all options in that region would be exercised immediately. In total, this would lead
to overestimated exposure. In numerical examples this is, of course, more involved and we
see typically several regions with different levels of under/overestimated values. This makes
the phenomenon difficult to analyze since the effect may lead to underestimated exposure,
unchanged exposure (from offsetting effects), or overestimated exposure. In addition to the

3We define a filtered probability space in the next section from which ω is an element. In this section, ω
should be viewed as an outcome of a random experiment.

17

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

classical regression methods, with e.g., polynomial basis functions, which are cited above, there
are several papers in which a neural network plays the role of the basis functions, see e.g.,
[29],[30], [31] and [32].

In this chapter we suggest the use of the Deep Optimal Stopping (DOS) algorithm, proposed
in [9], to approximate the optimal stopping strategy. The DOS algorithm approximates the
optimal stopping strategy by expressing the stopping time in terms of binary decision functions,
which are approximated by deep neural networks. The DOS algorithm is very suitable for
exposure computations, since the stopping strategy is computed directly, not as a consequence
of the approximate value function, as is the case with most other algorithms. This procedure
leads to highly accurate approximations of the exercise boundaries. Furthermore, we propose a
neural network-based regression method (NN-regression) to approximate Vt(·), which relies on
the stopping strategy, approximated by the DOS algorithm. Although NN-regression is needed
in order to fully approximate the distributions of future exposures, it turns out that for some
target statistics, it is in fact sufficient to approximate the optimal stopping strategy. This is,
for instance, the case for some estimates of the EE.

Another advantage of the method is that the EE and the PFE easily can be computed
under the risk-neutral measure, as well as the real-world measure. When the EE is used to
compute CVA, the calculations should be done under the risk-neutral measure, since CVA is
a tradable asset and any other measure4 would create opportunities of arbitrage. For other
applications, such as for computations of KVA (valuation adjustment to account for future
capital costs associated to a derivative), the EE should be calculated under the real-world
measure5. The reason for this is that the KVA, among other things, depends on the required
CCR capital which is a function of the EE, which in this case, ideally, should be calculated
under the real-world measure. For an explanation of KVA in general, see e.g., [33] and for a
discussion about the effect of different measures in KVA computations see [34].

Finally, we emphasize that, even though the focus of this chapter is to compute exposure
profiles, the algorithms proposed are flexible and with small adjustments other kind of risk
measures could be computed. The first reason for only studying exposure profiles is, as
mentioned above, that it is an important building block in computations (or approximations)
of many XVAs as well as expected shortfall. Another reason is that there are a number of
similar studies in the existing literature (see e.g., [35], [36], [37]). However, it should be pointed
out that the algorithms proposed in this chapter are not limited to computations of exposures.
As an example, consider the CVA of a Bermudan option, expressed as the difference between
the risky (including CCR) and the risk-free (excluding CCR) option values. To accurately
compute the risky option value, one needs to adjust the exercise strategy for the risk of a
default of the counterparty. Therefore, it is not sufficient to compute the exposure of the option
when computing the CVA (for a discussion see e.g., [38], [39]). With minor adjustments to
the proposed algorithm, one could compute this kind of advanced CVA (as opposed to the
approximation, which is based on the exposure).

This chapter is structured as follows: In Section 2.2, the mathematical formulation of a
Bermudan option and its exposure profiles are given. Furthermore, the Bermudan option, as

4For fixed numéraire.
5In this setting, the EE is an expectation under the real-world measure, which is conditioned on a filtration

generated by the underlying risk factors.

18

2.2 Problem formulation

well as the exposure profiles are reformulated to fit the algorithms introduced in later sections.
The DOS algorithm is described in Section 2.3, and we propose some adjustments to make
the training procedure more efficient. In Section 2.4, we present a classical ordinary least
squares regression-based method (OLS-regression), as well as the NN-regression to approximate
pathwise option values. In Section 2.5, the EE and PFE formulas are reformulated in a way
such that they can easily be estimated by a combination of the algorithms presented in Sections
2.3 and 2.4, and a simple Monte-Carlo sampling. Finally, in Section 2.6, numerical results
of the different algorithms, are presented for Bermudan options following the Black–Scholes
dynamics as well as the Heston model dynamics.

2.2 Problem formulation

For d,N ∈ N \ {0}, let X = (Xtn)Nn=0 be an Rd−valued discrete-time Markov process on a
complete probability space (Ω, F , A). The outcome set Ω is the set of all possible realizations
of the stochastic economy, F is a σ−algebra on Ω and we define Fn as the sub-σ-algebra
generated by (Xtm)nm=0. With little loss of generality, we restrict ourselves to the case when
X is constructed from time snap shots of a continuous-time Markov process at monitoring
dates {t0, t1, . . . , tN}. The probability measure A is a generic notation, representing either
the real-world measure, or the risk-neutral measure, denoted P and Q, respectively.

If not specifically stated otherwise, equalities and inequalities of random variables should
be interpreted in an ω-wise sense.

2.2.1 Bermudan options, stopping decisions and exercise regions

A Bermudan option is an exotic derivative that gives the holder the opportunity to exercise the
option at a finite number of exercise dates, typically one per month. We define the exercise dates
as T = {t0, t1, . . . , tN}, which for simplicity coincide with the monitoring dates. Furthermore,
for tn ∈ T, we let the remaining exercise dates be defined as Tn = {tn, tn+1 . . . , tN}. Let τ
be an X−stopping time, i.e., a random variable defined on (Ω, F , A), taking on values in T
such that for all tn ∈ T, it holds that the event {τ = tn} ∈ Fn. Assume a risk-free rate r ∈ R
and let the risk-less savings account process, M(t) = er(t−t0), be our numéraire. For all t ∈ T,
let6 gt : Rd → R be a measurable function which returns the immediate pay-off of the option,
if exercised at market state (t,Xt = x ∈ Rd). The initial value of a Bermudan option, i.e., the
value at market state (t0, Xt0 = xt0 ∈ Rd), is given by

Vt0(xt0) = sup
τ∈T

EQ
[︂
e−r(τ−t0)gτ (Xτ) |Xt0 = xt0

]︂
, (2.1)

where T is the set of all X−stopping times. Assuming the option has not been exercised prior
to some tn ∈ T, the option value at tn is given by

Vtn(Xtn) = sup
τ∈Tn

EnQ
[︂
e−r(τ−tn)gτ (Xτ)

]︂
, (2.2)

6Allowing for different pay-off functions at different exercise dates makes the framework more flexible. We
can e.g., let gt be the pay-off function for an entire netting set of derivatives with different maturities.

19

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

where Tn is the set of all X−stopping times greater than or equal to tn and we define
EnA[·] = EA[· |Fn]. To guarantee that (2.1) and (2.2) are well-posed, we assume that for all
t ∈ T it holds that

EQ [|gt(Xt)|] <∞.

To concretize (2.1) and (2.2), we view the problem from the holder’s perspective. At each
exercise date, tn ∈ T, the holder of the option is facing the decision whether or not to exercise
the option, and receive the immediate pay-off. Due to the Markovian nature of X, the decisions
are of Markov-type (Markov decision process (MDP)), meaning that all the information needed
to make an optimal decision7 is contained in the current market state, (tn, Xtn). With this in
mind, we define for each tn ∈ T, the exercise region, En, in which it is optimal to exercise, and
the continuation region, Cn, in which it is optimal to hold on, by

En =
{︂
x ∈ Rd |Vtn(x) = gtn(x)

}︂
, Cn =

{︂
x ∈ Rd |Vtn(x) > gtn(x)

}︂
.

Note that En ∪ Cn = Rd and En ∩ Cn = ∅.
Below, we give a short motivation for how these decisions can be expressed mathematically

and how we can formulate a stopping time in terms of (stopping) decisions at each exercise
date. For a more detailed motivation we refer to [9]. We introduce the following notation for
measurable functions8

D(A1;A2) = { f : A1 → A2 | f measurable}.

Furthermore, for P ∈ N, let D(A1;A2)P denote the P :th Cartesian product of the set
D(A1;A2). Define the decision functions f0, f1, . . . , fN ∈ D(Rd; {0, 1}), with fN ≡ 1, and
denote fn = (fn, fn+1, . . . , fN) with f = f0. An X−stopping time can then be defined as

τn(fn) =
N∑︂

m=n
tmfm(Xtm)

m−1∏︂
j=n

(1− fj(Xtj)), (2.3)

where the empty product is defined as 1. We emphasize that
τn(fn) = τn

(︁
fn(Xtn), fn+1(Xtn+1) . . . , fN (XtN)

)︁
but to make the notation cleaner, we do not

specify this dependency explicitly. When it is not clear from the context which process the
decision function fn is acting on, we will denote the stopping time by τn (fn(X)), where we
recall that X = (Xtm)Nm=n. As a candidate for optimal stopping decisions, we define

f∗ ∈ arg max
f∈D(Rd; {0,1})N+1

EQ
[︂
e−r(τ(f)−t0)gτ(f)

(︂
Xτ(f)

)︂
|Xt0 = x0

]︂
. (2.4)

We define the fair price of an option that follows the strategy constructed by combining (2.3)
and (2.4) as

V ∗
tn(Xtn) = EnQ

[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)
(︂
Xτn(f∗

n)
)︂]︂
. (2.5)

7In the sense of using a decision policy such that the supremum in (2.1) or (2.2) is attained.
8We assume measurable spaces (A1, A1) and (A2, A2) and measurable functions with respect to σ-algebras

A1 and A2. This assumption holds in all cases in this chapter.

20

2.2 Problem formulation

The following theorem states that (2.5), in fact, coincides with the fair price of the option as
defined in (2.2).

Theorem 1. For all tn ∈ T, and V and V ∗ as defined in (2.2) and (2.5), respectively, it holds
that9

Vtn(Xtn) = V ∗
tn(Xtn).

Proof. Note that VtN (XtN) = V ∗
tN

(XtN) = gtN (XtN). The proof is carried out by induction
and we assume that for some tn+1 ∈ T it holds that

Vtn+1(Xtn+1) = V ∗
tn+1(Xtn+1). (2.6)

We can rewrite V ∗
tn(Xtn) as

V ∗
tn(Xtn) =EnQ

[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n))
]︂

=gtn(Xtn)f∗
n(Xtn) + (1− f∗

n(Xtn))e−r(tn+1−tn)

× EnQ
[︂
e−r(τn+1(f∗

n+1)−tn+1)gτn+1(f∗
n+1)(Xτn+1(f∗

n+1))
]︂
. (2.7)

By the law of total expectation and the assumption (2.6), the last conditional expectation
satisfies

EnQ
[︂
e−r(τn+1(f∗

n+1)−tn+1)gτn+1(f∗
n+1)(Xτn+1(f∗

n+1))
]︂

= EnQ
[︂
V ∗
tn+1(Xtn+1)

]︂
= EnQ

[︁
Vtn+1(Xtn+1)

]︁
.

(2.8)
We insert the rightmost part of (2.8) in (2.7) and note that I{ · ∈En} ∈ D(Rd; {0, 1}), which
implies that

V ∗
tn(Xtn) ≥I{Xtn ∈En}gtn(Xtn) + I{Xtn ∈Cn}e−r(tn+1−tn)EnQ

[︁
Vtn+1(Xtn+1)

]︁
=Vtn(Xtn).

Moreover, V ∗
tn(Xtn) ≤ Vtn(Xtn) and therefore we conclude that V ∗

tn(Xtn) = Vtn(Xtn).

Although not completely straight-forward, the result above can actually be inferred from
[9, Theorem 1].

2.2.2 Exposure profiles

For tn ∈ T and α ∈ (0, 1), we define the expected exposure (EE) and the potential future
exposure (PFE) under the generic probability measure A as

EEA(tn) = EA
[︂
Vtn(Xtn)I{τ(f∗)>tn} |Xt0 = xt0

]︂
, (2.9)

PFEαA(tn) = inf
{︂
a ∈ R |A

(︂
Vtn(Xtn)I{τ(f∗)>tn} ≤ a |Xt0 = xt0

)︂
≥ α

}︂
. (2.10)

Note that the option value, given by (2.2), is a conditional expectation of future cash-flows,
which is by definition measured with Q. The exposure profiles under the P−measure, on the

9We recall that equalities and inequalities are in an A−almost sure sense.

21

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

other hand, are statistics of the option value at some future time, tn, under the assumption that
the conditional distribution Xtm conditional on Xt0 = xt0 is considered under the P−measure.

In the theorem below, the expected exposures are reformulated in terms of discounted
cash-flows and the decision functions introduced in Subsection 2.2.1. It will become clear in
later sections that this is a more tractable form for the algorithms used in this chapter.

Theorem 2. Let Q and P be probability measures on the measurable space (Ω, F) and assume
that the laws of X under Q and P are absolutely continuous with respect to the Lebesgue
measure. Then, the expected exposure, (2.9) under the Q− and P−measures, satisfies

EEQ(tn) =EQ
[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n))I{τ(f∗)>tn} |Xt0 = xt0

]︂
, (2.11)

EEP(tn) =EQ
[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n))I{τ(f∗)>tn}l(Xtn , Xtn−1 , . . . , Xt0) |Xt0 = xt0

]︂
,

(2.12)

where l(yn, yn−1, . . . , y0) = ∏︁n
k=1

pXtk
|Xtk−1

(yk|yk−1)
qXtk

|Xtk−1
(yk|yk−1) , with qXtk

|Xtk−1
(yk|yk−1) and

pXtk
|Xtk−1

(yk|yk−1) being transition densities for X under the measures Q and P, respectively.
Note that l(yn, yn−1, . . . , y0) is the Radon–Nikodym derivative of P with respect to Q evaluated
at (yn, yn−1, . . . , y0).

Proof. We begin by proving (2.11). By combining (2.5) and (2.9) and setting A = Q we obtain

EEQ(tn) = EQ
[︂
EnQ[e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n))]I{τ(f∗)>tn} |Xt0 = xt0

]︂
= EQ

[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n))I{τ(f∗)>tn} |Xt0 = xt0

]︂
,

where the final step is justified by law of total expectation. The expected exposure under the
P−measure can be rewritten in the following way

EEP(tn) =EP
[︂
EnQ[e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n))]I{τ(f∗)>tn} |Xt0 = xt0

]︂
=
∫︂

(yn,...,y1)∈Rd×···×Rd
EQ

[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n)) |Xtn = yn
]︂

× I{τ(f∗)>tn}pXt1 ,..., Xtn
(yn, . . . , y1)dyn · · · dy1

=
∫︂

(yn,...,y1)∈Rd×···×Rd
EQ

[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)(Xτn(f∗

n)) |Xtn = yn
]︂

× I{τ(f∗)>tn}
pXtn ,..., Xt1

(yn, . . . , y1)
qXtn ,..., Xt1

(yn, . . . , y1) qXtn ,..., Xt1
(yn, . . . , y1)dyn · · · dy1, (2.13)

where qXtn ,..., Xt1
(yn, . . . , y1) and pXtn ,..., Xt1

(yn, . . . , y1) are joint densities of
Xtn , . . . , Xt1 (conditioned on Xt0 = x) under the measures P and Q, respectively. The fact that
P and Q are equivalent, guarantees that the quotient in (2.13) is well defined. Furthermore,
due to the Markov property of X, we have

pXtn ,..., Xt1
(yn, . . . , y1) = pXtn |Xtn−1

(yn|yn−1)× · · · × pXt1 |Xt0
(y1|y0). (2.14)

22

2.2 Problem formulation

The same argumentation holds for qXtn ,..., Xt1
(yn, . . . , y1). The proof is finalized by inserting

the product of density functions (2.14) in (2.13) and writing the expression as a Q expectation,
and again, use the law of total expectation.

Theorem 2 opens up for approximations of the expected exposure directly from the
discounted cash-flows. We now consider the special case, when X is described by a diffusion-type
stochastic differential equation (SDE). Let µQ : [t0, tN]×Rd → Rd and σ : [t0, tN]×Rd → Rd×Rd

be the drift and diffusion coefficients, respectively, and let (WQ
t)t∈[t0,tN] be a d-dimensional

standard Brownian motion under the measure Q. We assume that µQ and σ satisfy the usual
conditions (see e.g., [40]) for existence of a unique, strong solution X to

dXt = µQ(t, Xt)dt+ σ(t, Xt)dWQ
t , t ∈ [t0, tN]; Xt0 = xt0 .

Let µP : [t0, tN]× Rd → Rd and assume that σ(t, Xt) is invertible and that for t ∈ [t0, tN]10

∥σ−1(t, Xt)∥max is bounded almost surely. Then, (W P
t)t∈[t0,tN] given by

dW P
t = −σ−1(t, Xt)

(︂
µP(t, Xt)− µQ(t, Xt)

)︂
dt+ dWQ

t

is a Brownian motion under the measure P. Furthermore, under the measure P it holds almost
surely that X is described by

dXt = µP(t, Xt)dt+ σ(t, Xt)dW P
t , t ∈ [t0, tN]; Xt0 = xt0 . (2.15)

As a way to rewrite EEP(t) as a conditional expectation under the measure Q, we define a
process U = (Ut)t∈[t0,tN], which follows the SDE

dUt = µP(t, Ut)dt+ σ(t, Ut)dWQ
t , t ∈ [t0, tN]; Ut0 = xt0 . (2.16)

The reason for introducing this process is that U has the same distribution under the measure
Q as X has under the measure P. We can then express EEP(tn) with only Q−expectations in
the following way

EEP(tn) (2.17)

= EP
[︁
Vtn(Xtn)I{τ(f∗(X))>tn} |Xt0 = xt0

]︁
= EQ

[︁
Vtn(Utn)I{τ(f∗(U))>tn} |Ut0 = xt0

]︁
= EQ

[︃
EQ

[︂
e−r(τn(f∗

n(X))−tn)gτn(f∗
n(X))

(︂
Xτn(f∗

n(X))
)︂
|Xtn = Utn

]︂
× I{τ(f∗(U))>tn} |Ut0 = xt0

]︃
.

(2.18)

Remark 2.2.1. Regarding the equality between the right hand side of the first line and the
second line, we want to emphasize that X under the measure P, and U under the measure
Q do not represent the same stochastic process (as they would have done after a change of
measure). If they were, then the conditional expectation would change, and the equality would
not hold. To enforce the equality to hold we could have corrected with the Radon–Nikodym
derivative, and obtained (2.12). However, to find a way to write EEP(tn) without having to

10For a matrix A ∈ Rd×d, ∥A∥max = maxij |Aij |.

23

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

include the Radon–Nikodym derivative, we introduce another process U, which is distributed
in such a way that the equality holds, i.e., the conditional expectation under P, when using
X, should equal the conditional expectation under Q, when using U . For this to hold, it is
sufficient that the distribution of X under the measure P equals the distribution of U under
the measure Q, which is satisfied when X follows (2.15) and U follows (2.16).

Remark 2.2.2. The final equality is obtained by the fact that Vtn(Utn) is the option value at
the (random) state (tn, Utn), given by (2.5).

Before we get rid of the inner expectation in (2.18), we need to define a process following
(2.16) on [t0, tn], and the dynamics of (2.15) on [tn, tN] with (stochastic) initial condition
Xtn = Utn . We denote such a process by X̃tn = (X̃tn

t)t∈[t0,tN], and conclude that X̃tn should
satisfy the following SDE

dX̃tn
t = µP,Q,tn(t, X̃tn

t)dt+ σ(t, X̃tn
t)dWQ

t , t ∈ [t0, tN]; X̃
tn
t0 = xt0 , (2.19)

where µP,Q,tn(t, ·) = µP(t, ·)I{t≤tn} + µQ(t, ·)I{t>tn}. Note that we have implicitly assumed that
also µP satisfies the usual conditions for existence of a unique strong solution, U , to (2.16). As
a consequence of this assumption we are also guaranteed that there exists a unique strong
solution, X̃tn , to (2.19). We can then use the law of total expectation to obtain

EEP(tn) = EQ
[︂
Vtn(X̃tn

tn)I{τ(f∗)>tn} | X̃
tn
t0 = xt0

]︂
= EQ

[︂
e−r(τn(f∗

n)−tn)gτn(f∗
n)
(︂
X̃
tn
τn(f∗

n)

)︂
I{τ(f∗)>tn} | X̃

tn
t0 = xt0

]︂
, (2.20)

where we remind ourselves that τ(f∗) = τ(f∗(X̃tn)) and τn(f∗
n) = τn(f∗

n(X̃tn)).
In the next sections we describe a method to approximate f∗(·). It is then straight forward

to estimate (2.11), (2.12) and (2.20) by Monte-Carlo sampling. Furthermore, in Section 2.4, we
introduce a method to approximate the price function Vtn(·), which makes it straight forward
to also approximate the potential future exposure (2.10).

2.3 Learning stopping decisions

In the first part of this section, we present the DOS algorithm, which was proposed in [9].
The idea is to use fully connected neural networks to approximate the decision functions
introduced in the previous section. The neural networks are optimized backwards in time with
the objective to maximize the expected discounted cash-flow at each exercise date. In the
second part of this section, we suggest some adjustments that can be done in order to make
the optimization more efficient.

2.3.1 The Deep Optimal Stopping algorithm

As indicated above, the core of the algorithm is to approximate decision functions. To be more
precise, for n ∈ {0, 1, . . . , N}, the decision function fn is approximated by a fully connected
neural network of the form fθn

n : Rd → {0, 1}, where θn ∈ Rqn is a vector containing all
the qn ∈ N trainable11 parameters in network n. We assume that the initial state, x0 ∈ Rd,

11Parameters that are subject to optimization.

24

2.3 Learning stopping decisions

is such that it is sub-optimal to exercise the option at t0, and therefore set θ0 such that
fθ0

0 (x0) = 0 (for a further discussion, see Remark 6 in [9]). Since binary decision functions are
discontinuous, and therefore unsuitable for gradient-type optimization algorithms, we use as
an intermediate step, the neural network F θn

n : Rd → (0, 1). Instead of a binary decision, the
output of the neural network F θn

n can be viewed as the probability12 for exercise to be optimal.
This output is then mapped to 1 for values above (or equal to) 0.5, and to 0 otherwise, by
defining fθn

n (·) = a ◦ F θn
n (·), where a(x) = I{x≥1/2}. Our objective is to find θn such that

EnQ
[︂
fθn
n (Xtn)gtn(Xtn) + (1− fθn

n (Xtn))e−r(τn+1(f∗
n+1)−tn)gτn+1(f∗

n+1)
(︂
Xτn+1(f∗

n+1)
)︂]︂
, (2.21)

is as close as possible to Vtn(Xtn) (in mean squared sense), where f∗
n+1 is the vector of

optimal decision functions, defined in (2.4). Although (2.21) is an accurate representation of
the optimization problem, it gives us some practical problems. In general, we have no access
to either f∗

n+1 or the distribution of Vtn(Xtn) and in most cases the expectation needs to be
approximated. We however notice that at maturity, the option value is equal to its intrinsic
value, i.e., VtN (·) ≡ gtN (·), which implies that f∗

N ≡ 1 and τN (f∗
N) = tN . With this insight, we

can write (2.21) with n = N − 1 in the form

EN−1
Q

[︂
f
θN−1
N−1 (XtN−1)gtN−1(XtN−1) + (1− fθN−1

N−1 (XtN−1))e−r(tN −tN−1)gtN (XtN)
]︂
, (2.22)

which can be approximated by Monte-Carlo sampling. Given M ∈ N samples, distributed as
X, which for m ∈ {1, 2, . . . ,M} is denoted by x = (xtn(m))Nn=0, we can approximate (2.22) by

1
M

M∑︂
m=1

(︂
f
θN−1
N−1 (xtN−1(m))gtN−1(xtN−1(m))

+ (1− fθN−1
N−1 (xtN−1(m)))e−r(tN −tN−1)gtN

(︁
xtN (m)

)︁)︂
. (2.23)

Note that the only unknown entity in (2.23) is the parameter θN−1 in the decision function
f
θN−1
N−1 . Furthermore, we note that we want to find θN−1 such that (2.23) is maximized, since it

represents the average cash-flow in [tN−1, tN]. Once θN−1 is optimized, we use this parameter
and find θN−2 such that the average cash-flow on [tN−2, tN] is maximized.

In the next section, we explain the parameters θn and present the structure for the neural
networks used in this chapter.

2.3.1.1 Specification of the neural networks used

For completeness, we introduce all the trainable parameters that are contained in each of the
parameters θ1, θ2, . . . , θN−1, and present the structure of the networks.

• We denote the dimension of the input layers by Dinput ∈ N, and we assume the same
input dimension for all n ∈ {1, 2, . . . , N − 1} networks. The input is assumed to be
the market state xtrain

tn ∈ Rd, and hence Dinput = d. However, we can add additional
12However the interpretation as a probability may be helpful, one should be careful since it is not a rigorous

mathematical statement. It should be clear that there is nothing random about the stopping decisions, since
the stopping time is Ft−measurable. It can also be interpreted as a measure on how certain we can be that
exercise is optimal.

25

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

information to the input that is mathematically redundant but helps the training, e.g.,
the immediate pay-off, to obtain as input

(︁
vec(xtrain

tn (m)), gtn
(︁
xtrain
tn (m)

)︁)︁
∈ Rd+1, which

would give Dinput = d+ 1. In [9], the authors claim that by adding the immediate pay-off
to the input, the efficiency of the algorithm was improved;

• For network n ∈ {1, 2, . . . , N − 1}, we denote the number of layers13 by Ln ∈ N, and for
layer ℓ ∈ {1, 2, . . . ,Ln}, the number of nodes by Nn,ℓ ∈ N. Note that Nn,1 = Dinput;

• For network n ∈ {1, 2, . . . , N}, and layer ℓ ∈ {2, 3, . . . ,Ln} we denote the weight matrix,
acting between layers ℓ−1 and ℓ, by wn,ℓ ∈ RNn,ℓ−1×Nn,ℓ , and the bias vector by bn,ℓ ∈ Rℓ;

• For network n ∈ {1, 2, . . . , N}, and layer ℓ ∈ {2, 3, . . . ,Ln} we denote the (scalar)
activation function by an,ℓ : R→ R and the vector activation function by an,ℓ : RNn,ℓ →
RNn,ℓ , which for x = (x1, x2, . . . , xNn,ℓ

) is defined by

an,ℓ(x) =

an,ℓ(x1)

...
an,ℓ(xNn,ℓ

)

 ;

• The output of our network should belong to (0, 1) ⊂ R, meaning that the output
dimension of our neural network, denoted by Doutput should equal 1. To enforce the
output to only take on values in (0, 1), we restrict ourselves to activation functions of
the form an,Ln : R→ (0, 1).

Network n ∈ {1, 2, . . . N − 1} is then defined by

F θn
n (·) = Ln,Ln ◦ Ln,Ln−1 ◦ · · · ◦ Ln,1(·), (2.24)

where for n ∈ {1, 2, . . . , N − 1} and for x ∈ RLn,ℓ−1 , the layers are defined as

Ln,ℓ(x) =

 x, for ℓ = 1,

an,ℓ(wTn,ℓx+ bn,ℓ), for ℓ ≥ 2,

where wTn,ℓ is the matrix transpose of wn,ℓ. The trainable parameters of network n ∈
{1, 2, . . . , N − 1} are then given by the list

θn = {wn,2, bn,2, wn,3, bn,3, . . . , wn,Ln , bn,Ln} .

Furthermore, since we have N − 1 neural networks, we denote by

θn = {θn, θn+1, . . . , θN−1}

the trainable parameters in the neural networks at exercise dates Tn and by θ = θ1.
13Input and output layers included.

26

2.3 Learning stopping decisions

2.3.1.2 Training and valuation

The main idea of the training and valuation procedure is to fit the parameters to some training
data, and then use the fitted parameters to make informed decisions with respect to some
unseen, so-called, valuation data.

The training part of the algorithm is summarized below in pseudo code.

Training phase:
Sample Mtrain ∈ N independent realizations of X, which for m ∈ {1, 2, . . . , Mtrain} are
denoted (xtrain

tn (m))Nn=0. At maturity, define the cash-flow as CFN (m) = gtN (xtrain
tN

(m)).
For n = N − 1, N − 2, . . . , 1, do the following:

1. Find a θ̂n ∈ Rqn which approximates

θ̂
∗
n ∈ arg max

θ∈Rqn

(︃ 1
Mtrain

Mtrain∑︂
m=1

F θn
(︁
xtrain
tn (m)

)︁
gtn
(︁
xtrain
tn (m)

)︁
+
(︂
1− F θn

(︁
xtrain
tn (m)

)︁)︂
e−r(tn+1−tn)CFn+1(m)

)︃
.

In machine learning terminology, this would give an (empirical) loss-function of the form

L(θ;xtrain) =− 1
Mtrain

Mtrain∑︂
m=1

F θn

(︂
xtrain
tn (m)

)︂
gtn

(︂
xtrain
tn (m)

)︂
+
(︂
1− F θn

(︂
xtrain
tn (m)

)︂)︂
e−r(tn+1−tn)CFn+1(m).

The minus sign in the loss-function transforms the problem from a maximization to
minimization, which is the standard formulation in the machine learning community. Note
the straight forward relationship between the loss function and the average cash-flows
in (2.23). The only difference is that we use continuous stopping decisions here, which
can be viewed as stopping probabilities. In practice, this implies that during training, it
is possible to exercise a fraction of an option since the output is any number between
zero and one. On the other hand, we expect a converged output to take on values very
close to either one or zero. The reason for this setup is that a discontinuous output
would cause difficulties for the optimization scheme, which is of gradient decent type.
In practice, the data is often divided into mini-batches, for which the loss-function is
minimized consecutively.

2. For m = 1, 2, . . . , Mtrain, update the discounted cash-flow according to:

CFn(m)

=f θ̂n
n

(︁
xtrain
tn (m)

)︁
gtn
(︁
xtrain
tn (m)

)︁
+
(︂
1− f θ̂n

n

(︁
xtrain
tn (m)

)︁)︂
e−r(tn+1−tn)CFn+1(m).

The performance of the algorithm is not particularly sensitive to the specific choice of the
number of hidden layers, number of nodes, optimization algorithm, etc. Below is a list of the
most relevant parameters/structural choices:

27

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

• Initialization of the trainable parameters, where a typical procedure is to initialize the
biases to 0, and sample the weights independently from a normal distribution;

• The activation functions aℓ,n, which are used to add a non-linear structure to the neural
networks. In our case we have the strict requirement that the activation function of the
output layer maps R to (0, 1). This could, however, be relaxed as long as the activation
function is both upper and lower bounded, since we can always scale and shift such
output to take on values only in (0, 1). For a discussion of different activation functions,
see e.g., [41].;

• The batch size, Bn ∈ {1, 2, . . . ,Mtrain}, is the number of training samples used for each
update of θn, i.e., with Bn = Mtrain, the loss function is of the form defined in step 1
above. Note that if we want all batches to be of equal size, we need to choose Bn to be a
multiplier of Mtrain;

• For each update of θn, we use an optimization algorithm, for which a common choice is
the Adam optimizer, proposed in [42]. Depending on the choice of optimization algorithm,
there are different parameters related to the specific algorithm to be chosen. One example
is the so-called learning rate which decides how much the parameter, θn is adjusted after
each batch.

Once the parameters, {θ1, θ2, . . . , θN−1}, have been optimized we can use the algorithm for
valuation.

Valuation phase:
Sample Mval ∈ N independent realizations of X, denoted

(︂
xval
tn (m)

)︂N
n=0

. We emphasize that
the valuation data should be independent from the training data. Denote the vector of decision
functions by

f θ̂
n =

(︃
f θ̂n
n , f

θ̂n+1
n+1 , . . . , f

θ̂N−1
N−1

)︃
,

and f θ̂ = f θ̂
0 . We then obtain for sample m, i.e., xval(m), the following stopping rule at time

tn

τn
(︂
f θ̂
n

(︂
xval(m)

)︂)︂
=

N∑︂
m=n

tmf
θ̂m
m

(︂
xval
tm (m)

)︂m−1∏︂
j=0

(︃
1− f θ̂j

j

(︂
xval
tj (m)

)︂)︃
.

The estimated option value at t0 is then given by

V̂ t0(x0) = 1
Mval

Mval∑︂
m=1

e
−r
(︂
τ

(︂
f θ̂

)︂
−t0
)︂
g
τ

(︂
f θ̂

)︂ (︃xval
τ(f θ̂)

(m)
)︃
, (2.25)

where we recall that τ(f θ̂) = τ0
(︂
f θ̂

0

(︂
xval(m)

)︂)︂
. Note that, by construction, any stopping

strategy is sub-optimal, implying that the estimate (2.25) is biased low. It should be pointed
out that it is possible to derive a biased high estimate of (2.1) from a dual formulation of
the optimal stopping problem, which is described in [9]. In addition, numerical results in [9]
show a tight interval for the biased low and biased high estimates for a wide range of different
problems.

28

2.3 Learning stopping decisions

2.3.2 Proposed adjustments to the algorithm

The presentation of the DOS algorithm in [9] is in a general form. In addition to the pricing of
Bermudan options, the authors considered the non-Markovian problem to optimally stop a
fractional Brownian motion (this is done by including also the historical states in the current
state of the system). Since the aim of this chapter is more specific (to approximate exposure
profiles of Bermudan options), it is natural to use more of the known underlying structure
of this specific problem. In this section we use some properties of the specific problems, and
propose some adjustments to the DOS-algorithm, which make the training procedure more
efficient.

2.3.2.1 Reuse of neural network parameters

The first proposed adjustment is to reuse parameters of neural networks that have already
been optimized. We note that for a single Bermudan option (possibly with a high-dimensional
underlying asset) the pay-off functions are identical at all exercise dates, i.e., gtn = gtm for all
tn, tm ∈ T. In this case the stopping rules at adjacent exercise dates are similar, especially
when tn+1 − tn is small. We therefore use the stopping strategy at tn+1 as an ”initial guess”
for the stopping strategy at tn. This is done by initializing the trainable parameters in network
n by the already optimized parameters in network n+ 1, i.e., at tn, initialize θn by θ̂n+1. This
allows us to use smaller learning rates leading to a more efficient algorithm.

This technique can be viewed as a form of transfer learning, in which a pre-trained model
is used on a new problem. However, it is important to bear in mind that, given the high
non-linearity of a neural network structure, it is not clear that two similar problems have
similar optimal parameters. This may cause the optimization procedure to end up in a bad
local minima.

2.3.2.2 Use simple stopping decisions when possible

The term simple stopping decisions is loosely defined as stopping decisions that follow directly
without any sophisticated optimization algorithm. The most obvious example is when the
contract is out-of-the-money, in which case it is never optimal to exercise. For tn ∈ T, we
define the set of in-the-money points and out-of-the-money points as

ITMn = {x ∈ Rd | gtn(x) > 0}, OTMn = {x ∈ Rd | gtn(x) = 0},

respectively. Another, less obvious insight is that, given a single Bermudan option with identical
pay-off functions at all exercise dates, if it is optimal to exercise at (tn, x), then it is also
optimal to exercise at (tn+1, x). Or in other words, the exercise region is non-decreasing with
time. This statement is formulated as a theorem below.

Theorem 3. Define the set of exercise dates by {t0, . . . , tn, tn+1, . . . , tN , tN + ∆}, and let
∆ = tn+1 − tn = tN+1 − tN ≥ 0. Note that an equidistant time grid is sufficient, but not
necessary for the above to be satisfied. Moreover, assume that

Vtn(· ; tN) = Vtn+1(· ; tN + ∆),

29

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

where tN and tN + ∆ indicate the maturity of otherwise identical contracts of the form (2.2),
with g = gtn for all exercise dates tn. Then, for any x̄ ∈ En, it holds that x̄ ∈ En+1.

Proof. Since x̄ ∈ En, Vtn(x̄ ; tN) = g(x̄) and Vtn(x̄ ; tN) = Vtn+1(x̄ ; tN + ∆) we have that
Vtn+1(x̄ ; tN + ∆) = g(x̄). From (2.2) we also see that Vtn+1(x̄ ; tN) ≤ Vtn+1(x̄ ; tN + ∆) and
Vtn+1(x̄ ; tN) ≥ g(x̄). Therefore Vtn+1(x̄ ; tN) = g(x̄) and x̄ ∈ En+1.

The condition Vtn(·; tN) = Vtn+1(·; tN+∆) requires that the market states are time-invariant.
This is easily satisfied if the contractual details (pay-off structure) as well as the drift and
diffusion coefficients are time-invariant. Theorem 3 shows that the exercise region is non-
decreasing with time, but since the optimization of the neural network parameters is carried
out backwards in time we instead use the fact that the continuation region is non-increasing
with time. In practice, this leads to the following three alternatives:

A1. Use all training data in the optimization algorithm (as the algorithm is described in
Subsection 2.3.1);

A2. At tn ∈ T, use the subset of the training data satisfying xval
tn (m) ∈ ITMn in the

optimization algorithm. Define the decision functions as

f θ̂n
n (·) = I{gtn (·)>0}(a ◦ F θ̂n

n (·)).

To only use ”in the money paths” is also employed in the Least Squares Method (LSM),
proposed in [25];

A3. At tn use the subset of the training data xtrain
tn (m) ∈ En+1 in the optimization algorithm.

Define the decision functions as

f θ̂n
n (·) = f

θ̂n+1
n+1 (·)(a ◦ F θ̂n

n (·)).

In Figure 2.1 the three cases above are visualized for a two-dimensional max call option at
one of the exercise dates. To the left we have the blue points belonging to En+1 (used for
optimization in A3), the blue and red points belong to ITMn (used for optimization in A2)
and the blue, red and yellow points are all the available data (used for optimization in A1). To
the right, we see the fraction of the total data used in each case at each exercise date.

In general, much can be gained from carefully analysing the structure of the exercise region.
Some examples of problem-specific structures are high-dimensional (d ≥ 2) geometric and
arithmetic average options. In these problems, the making exercise decisions can be reduced to
one-dimensional problems, i.e., the exercise decisions can be made with a one-dimensional,
instead of a d−dimensional input. This is possible since the geometric (or arithmetic) average
is a significant statistic for the exercise decision for this specific option. This means that it is
sufficient to have access to the geometric (or arithmetic) average in order to make optimal
exercise decisions, reducing the problem from d-dimensional to one-dimensional. The question
is then whether or not this is possible for any option. The answer is, to the best of our
knowledge, unfortunately, no. For instance, as noted in [43], for the two-dimensional Bermudan
max-call option, it is never optimal to exercise the option prior to maturity if both assets

30

2.4 Learning pathwise option values

Figure 2.1: Left: Blue points in En+1 (used for optimization in A3), blue and red points in ITMn

(used for optimization in A2) and the blue, red and yellow points are all the available data (used
for optimization in A1). Right: The fraction of the total data used in each case at each exercise
date.

have the same value. As strange as this may seem, this holds true no matter how deep in the
money the option is. A direct consequence of this is that the maximum of the two assets is
not a sufficient statistic for the exercise decision. However, by dividing the exercise region of
the two-dimensional problem into two subregions, E1 in which the first asset is largest, and
E2 in which the second asset is largest, certain interesting properties, that are present for
one-dimensional problems appear. For one-dimensional Bermudan options, the exercise region
can be expressed by a graph of a function in which the epigraph is the exercise region. For the
two-dimensional Bermudan max-call option, the exercise region can be expressed with two
epigraphs and exercise decisions can be made by simple and/or statements connecting these two
graphs. This implies that, instead of searching for a complex exercise surface in two dimensions,
one can base the exercise decisions on combining information from two simple epigraphs,
similar to the ones present in one-dimensional problems. For a more detailed discussion, see
[43], in which the properties of the sub-regions for two-dimensional the max-call option are
discussed, or in [44], in which the proposed numerical method builds upon sub-regions and
graphs of functions of the exercise region.

2.4 Learning pathwise option values

In Section 2.3 an algorithm to learn stopping decisions was described and (2.25) gives an
approximation of the option value at time t0, given some deterministic initial state Xt0 =
xt0 ∈ Rd. As described in Subsection 2.2.2, to compute exposure profiles we sometimes need
additional information about the future distribution of the option values. In this section, we
present two methods to approximate the pathwise option values at all exercise dates. The
first method is the well-established Ordinary Least Squares (OLS) regression and the second
method is a neural network-based least squares regression. Both methods rely on projections
of conditional expectations on a finite-dimensional function space.

31

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

2.4.1 Formulation of regression problem

Central for the regression algorithms presented in this section is the cash-flow process, Y =
(Ytn)Nn=0, defined as14

Ytn = e−r(τn(f∗
n)−tn)gτn(f∗

n)
(︂
Xτn(f∗

n)
)︂
, (2.26)

where τn(·) and f∗ are defined in (2.3) and (2.4), respectively. We assume that for tn ∈ T it
holds that

EQ[gtn(Xtn)2] <∞,

which also implies that EQ[Y 2
tn] <∞. The following theorem states that the option value, at

some tn ∈ T, is equivalent (in L2 sense) to the so-called regression function. Furthermore, we
see that the regression function can be obtained by solving a minimization problem.

Theorem 4. Let Ytn be as defined in (2.26) and for hn ∈ D(Rd; R), define the so-called
L2-risk as

EQ
[︂
|hn(Xtn)− Ytn |2

]︂
.

It then holds that

EQ
[︂
|Vtn(Xtn)− Ytn |2

]︂
= min

hn∈D(Rd;R)
EQ

[︂
|hn(Xtn)− Ytn |2

]︂
,

or equivalently
Vtn(·) ∈ arg min

hn∈D(Rd;R)
EQ

[︂
|hn(Xtn)− Ytn |2

]︂
.

The above is a standard result and is proved by noting that the conditional expectation is
the (least-squares) projection onto the Markov states, hn(Xtn).

In practice, the distribution of (X,Y) is usually unknown. On the other hand, we are often
able to generate samples distributed as15 (X,Y). We consider some tn ∈ T, and generate
Mreg ∈ N independent realizations of the regression pair (Xtn , Ytn), which we denote by(︁
xreg
tn (m), yreg

tn (m)
)︁Mreg
m=1. Similarly, we define the empirical L2-risk by

1
Mreg

Mreg∑︂
m=1
|hn(xreg

tn (m))− yreg
tn (m)|2.

With a fixed sample of regression pairs it is possible to find a function h ∈ D(Rd; R) such that
the empirical L2-risk equals zero. However, such a function is not a consistent estimator in
general. Therefore, we want to use a smaller class of more regular functions. When choosing
the function class, which we denote by AM , we need to keep two aspects in mind;

P1. It should be ”rich enough” to be able to approximate Vtn(·) sufficiently accurately,
14Note that Y is the discounted cash-flow process, which in the training phase was denoted by CFn. The

reason for using Ytn instead in this section is that we want to emphasize that the pathwise valuation problem is,
in fact, a standard regression problem in which X and Y usually are used to represent the observation vector,
and the response variable, respectively.

15In fact, we can only generate samples distributed as (X, Ŷ), where Ŷ is the approximate discounted
cash-flow process obtained by using the neural network-based decision functions instead of the optimal decision
functions in (2.26). We give a short explanation of how this affects the regression in the end of this section.

32

2.4 Learning pathwise option values

P2. It should not be ”too rich” since that may cause the empirical L2-risk being an inaccurate
approximation of the L2-risk. Since this problem is more severe for smaller Mreg, it
is reasonable to have the sample size in mind when choosing the function class, and
hence the subscript M on AM , where ”reg” is dropped for notational convenience. A
too rich function class may lead to what is known as overfitting in the machine learning
community.

Given a sample and a function class AM , we define the empirical regression function as

mM (·) ∈ arg min
h∈AM

1
Mreg

Mreg∑︂
m=1

⃓⃓
h
(︁
xreg
tn (m)

)︁
− yreg

tn (m)
⃓⃓2
.

From standard properties of conditional expectations, we can write the L2-risk of the empirical
regression function and the option value as

EQ
[︂
|mM (Xtn)− Vtn(Xtn)|2

]︂
= EQ

[︂
|mM (Xtn)− Ytn |2

]︂
− EQ

[︂
|Vtn(Xtn)− Ytn |2

]︂
.

This in turn can be written in terms of the so-called estimation error (first term) and the
approximation error (second term), i.e.,

EQ[|mM (Xtn)−Vtn(Xtn)|2]

=
(︃
EQ

[︂
|mM (Xtn)− Ytn |2

]︂
− min
h∈AM

EQ[|hn(Xtn)− Ytn |2]
)︃

+
(︃

min
h∈AM

EQ[|hn(Xtn)− Ytn |2]− EQ
[︂
|Vtn(Xtn)− Ytn |2

]︂)︃ (2.27)

The approximation error measures how well the option value can be estimated by functions
in AM , which corresponds to (P1) above. The estimation error is the difference between the
L2-risk of the estimator mM and the optimal h in AM , which corresponds to (P2) above.

There is however, one problem with the approximation error above; we have assumed that
we can sample realizations of (X,Y), while we in practice only are able to sample from (X, Ŷ),
with Ŷ = (Ŷ t)t∈[t0,tN] given by

Ŷ tn = e
−r
(︂
τn

(︂
f θ̂

n

)︂
−tn
)︂
g
τn

(︂
f θ̂

n

)︂ X
τn

(︂
f θ̂

n

)︂ .
By also taking into account that the regression is carried out against an approximation of Y ,
(2.27) becomes instead

EQ[|mM (Xtn)−Vtn(Xtn)|2]

≤
(︃
EQ

[︂
|mM (Xtn)− Ŷ tn |2

]︂
− min
h∈AM

EQ[|hn(Xtn)− Ŷ tn |2]
)︃

+
(︃

min
h∈AM

EQ[|hn(Xtn)− Ytn |2]− EQ
[︂
|Vtn(Xtn)− Ytn |2

]︂)︃
+
(︃

min
h∈AM

EQ[|hn(Xtn)− Ŷ tn |2]− min
h∈AM

EQ[|hn(Xtn)− Ytn |2]
)︃

+ EQ[|Ŷ tn − Ytn |2].

(2.28)

33

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

The first two lines in (2.28) are, again, the estimation error and the approximation error,
respectively. The third line represents the difference between how well a function in AM
can approximate Ŷ tn and Ytn and the final row is the L2-risk of our approximation of the
discounted cash-flow and the true discounted cash-flow. Furthermore, note that the equality in
(2.27) has changed to an inequality in (2.28).

In the next section, we introduce the two different types of function classes that are used
in this chapter.

2.4.2 Ordinary least squares regression

At tn ∈ T, we assume that Vtn(Xtn) can be represented by a linear combination of a countable
set of Fn-measurable basis functions. We denote by {ϕb}∞b=0 the basis functions and given
optimal parameters α(1)

tn , α
(2)
tn , . . . (in the sense that the L2-risk against Vtn(Xtn) is minimized)

and define
v(tn, Xtn) =

∞∑︂
b=1

α
(b)
tn ϕb(Xtn).

For practical purposes we use the first B ∈ N basis functions, so that

vB(tn, Xtn) =
B∑︂
b=1

α
(b)
tn ϕb(Xtn). (2.29)

We now want to estimate (2.29) by projecting a sample of realizations of (Xtn , Ytn) onto the
B first basis functions. This procedure is similar to LSM, [25]. In the LSM, only ITM samples
are used, which is motivated by the fact that it is never optimal to exercise an option that is
OTM and the objective is to find the optimal exercise strategy. Furthermore, the authors claim
that the number of basis functions needed to obtain an accurate approximation is significantly
reduced since the approximation region is reduced by only considering ITM paths. However,
this is not possible in our case since we need to approximate the option everywhere16. On the
other hand, the exercise region, En, has already been approximated (as described in Subsection
2.3.1) and the option value in the exercise region is always known. This means that, similar
to the LSM, the approximation region can be reduced (in many cases significantly) by only
considering samples belonging to the continuation region, Cn.

Given a sample of regression pairs
(︁
xreg
tn (m), yreg

tn (m)
)︁Mreg
m=1, we let MCn

reg denote the number
of samples belonging to Cn and let

(︁
xreg
tn (m), yreg

tn (m)
)︁MCn

reg
m=1 be our new samples of regression

pairs (where the indexation has been appropriately changed). Assuming MCn
reg ≥ 1, we want to

find a set of regression coefficients α̂tn = (α̂(1)
tn , . . . , α̂

(B)
tn) such that the following empirical

L2-risk is minimized
1

MCnreg

MCn
reg∑︂

m=1

⃓⃓⃓⃓
⃓
B∑︂
b=1

α
(b)
tn ϕb

(︁
xreg
tn (m)

)︁
− yreg

tn (m)
⃓⃓⃓⃓
⃓
2

. (2.30)

16By ”everywhere” we mean the region in which the distribution of Xtn has positive density. Of course, this
is in many cases Rd, so in practice by ”everywhere” we mean the region in which the density is significantly
positive.

34

2.4 Learning pathwise option values

For notational convenience, we introduce the compact notation xtn =
(︂
xreg
tn (1), . . . , xreg

tn (MCn
reg)

)︂
,

ytn =
(︂
yreg
tn (1), . . . , yreg

tn (MCn
reg)

)︂
and

ϕ(xtn) =

ϕ1
(︁
xreg
tn (1)

)︁
ϕ2
(︁
xreg
tn (1)

)︁
· · · ϕB

(︁
xreg
tn (1)

)︁
ϕ1
(︁
xreg
tn (2)

)︁
ϕ2
(︁
xreg
tn (2)

)︁
· · · ϕB

(︁
xreg
tn (2)

)︁
...

...
ϕ1
(︂
xreg
tn (MCn

reg)
)︂

ϕ2
(︂
xreg
tn (MCn

reg)
)︂
· · · ϕB

(︂
xreg
tn (MCn

reg)
)︂

 .

It is a well-known fact (see e.g., [45]) that α̂tn is given by

α̂tn =
(︂
ϕ(xtn)Tϕ(xtn)

)︂−1
ϕ(xtn)Tytn , (2.31)

where we note that, if we choose linearly independent basis functions, matrix inversion in
(2.31) exists almost surely since Xtn has a density17. We define the estimator

v̂B,K(tn, ·) =
B∑︂
b=0

α̂
(b)
tn ϕb(·). (2.32)

If MCn
reg = 0 we know that all samples are in the exercise region and we simply set v̂B,K(·) ≡

gtn(·). Since the LSM is one of the most established algorithms for valuation of Bermudan
options, the theoretical properties are extensively studied and many of the results can also be
applied to the algorithm above. However, we first need to make an assumption regarding MCn

reg.
Assume that there exists c > 0 such that Q{Xtn ∈ Cn} ≥ c. It then holds for any C ∈ R that

Q

 lim
Mreg→∞

Mreg∑︂
m=1

I{Xreg
tn

(m)∈Cn} ≥ C

 = 1,

which implies that MCn
reg approaches infinity when Mreg approaches infinity almost surely. Since

the regression pairs are independently and identically distributed, it holds that v̂B,K(tn, Xtn)
converges both in mean square and in probability to vB(tn, Xtn) as Mreg approaches infinity
(see e.g., [46]). To make it more clear when comparing the OLS-approximator of the option
value to the neural network approximator (to be defined in the next section), we use the
following notation

v̂OLS
tn (·) = v̂B,M (tn, ·), (2.33)

where we assume that B and M are chosen such that both accuracy and time complexity are
taken into account.

A nice property of OLS regression is that, given B and a sample of regression pairs, we have
a closed-form expression for the optimal parameters and thus also the regression function (2.32).
On the other hand, we may face memory or runtime issues for large B and MCn

reg due to (2.31).
This is a problem, especially when we want to approximate a complicated function surface
over a large approximation region. For example, consider an option based on 50 correlated
assets. If we want to use the first and second-order polynomials as basis functions (including

17In practice we run into troubles if we choose B too high since the approximation of the matrix inverse may
be unstable.

35

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

cross-terms) we have B = 50(50+3)
2 = 1325, which is often too large for practical purposes. We

should also have in mind that this corresponds to an approximation with polynomials of degree
2, which is usually not sufficient for complicated problems. There are however methods to get
around this problem, see e.g., [28] in which the state space is divided into several bundles and
regression is carried out locally at each bundle. Another suitable method to overcome these
difficulties is neural network regression, which is presented in the next section.

2.4.3 Neural network regression

In this section we present, a simple neural network approximation of Vtn(·). The neural network
is a mapping, vφn : Rd → R, parametrized by the ptn ∈ N trainable parameters φn ∈ Rptn . The
objective is to find φn such that the empirical L2-risk

1
MCnreg

MCn
reg∑︂

m=1

⃓⃓
vφn(xreg

tn (m))− yreg
tn (m)

⃓⃓2 (2.34)

is minimized. We denote by φ̂n an optimized version of φn and define our neural network
approximator of the option price at tn by

v̂NN
tn (·) = vφ̂n

(·).

To avoid repetition, the description of the neural networks in Subsection 2.3.1.1 is also valid
for the neural network used here. However, one important difference is the output, which in
this section is an approximation of the option value, and should hence take on values in (0,∞).
A natural choice as activation function in the output layer is therefore ReLU(·) = max{0, ·}.
Furthermore, by shifting the output with −gtn(·), i.e., designing the neural network to
output vφ̂n

(·) − gtn(·) and defining v̂NN
tn (·) = vφ̂n

(·) + gtn(·) we can, for all x ∈ Rd, enforce
v̂NN(x) ≥ gtn(x) by using ReLU as activation function in the output layer. In many cases it
seems to be beneficial to use the identity as the activation function in the output layer. This
could possibly be explained by the fact that when using the ReLU as activation function, the
gradient of the loss function, (2.34) (with respect to the input) may vanish during training.
This, in turn leads to an inefficient use of a gradient descent type algorithm in the optimization
problem.

Another difference, which has to do with the training phase, is that the optimization of
the parameters φn does not have to be carried out recursively. This opens up the possibility
for parallelization of the code.

By comparing (2.34) to (2.30) we see that the optimization problems are similar. There
are, however, some major differences. In Subsection 2.4.2, we have a closed-form expression for
the optimal parameters resulting in the final regression function (2.32). This is not the case
for the neural network regression and we therefore need to use an optimization algorithm to
approximate the optimal parameters. On the other hand, as mentioned in Subsection 2.4.2
it is sometimes hard to find basis functions that are flexible enough. This problem can be
overcome with neural networks, which are known to be good global approximators.

36

2.5 Approximation algorithms for exposure profiles

2.5 Approximation algorithms for exposure profiles

In this section, we introduce different ways to estimate (2.9) and (2.10) relying on Monte-Carlo
sampling and the approximation algorithms described in Sections 2.3 and 2.4. Furthermore, a
simple example is presented and visualized, which aims to provide an intuitive understanding of
the different methods. Finally, the advantages and disadvantages of each method are presented
in a table.

In this section, the neural network-based approximation of the value function of the option,
introduced in Subsection 2.4.3 is used. However, it would have been possible to use the
OLS-based approximation from Subsection 2.4.2, instead.

We use M ∈ N independent realizations of X, which for m ∈ {1, 2, . . . ,M} are denoted
by x(m) = (xt(m))Nn=0 for t ∈ T. When X is given by (2.19), realization m is denoted by
x̃tn(m) =

(︁
x̃tnt (m)

)︁
t∈[t0,tN], where we recall that superscript tn refers to the point in time

where the discontinuity of the drift coefficient is located. We introduce the following two
approximations of the expected exposure under the risk-neutral measure

EÊ1
Q(tn) = 1

M

M∑︂
m=1

v̂NN
tn (xtn(m))I{︂

τ

(︂
f θ̂

)︂
>tn

}︂, (2.35)

EÊ2
Q(tn) = 1

M

M∑︂
m=1

e
−r
(︂
τn

(︂
f θ̂

n

)︂
−tn
)︂
g
τn

(︂
f θ̂

n

)︂ x
τn

(︂
f θ̂

n

)︂(m)

 I{︂
τ

(︂
f θ̂

)︂
>tn

}︂. (2.36)

For the expected exposure under the real-world measure, we have the following three
approximations

EÊ1
P(tn) = 1

M

M∑︂
m=1

v̂NN
tn

(︂
x̃tntn(m)

)︂
I{︂
τ

(︂
f θ̂

)︂
>tn

}︂, (2.37)

EÊ2
P(tn) = 1

M

M∑︂
m=1

e
−r
(︂
τn

(︂
f θ̂

n

)︂
−tn
)︂
g
τn

(︂
f θ̂

n

)︂ x̃tn
τn

(︂
f θ̂

n

)︂(m)

 I{︂
τ

(︂
f θ̂

)︂
>tn

}︂, (2.38)

EÊ3
P(tn) = 1

M

M∑︂
m=1

e
−r
(︂
τn

(︂
f θ̂

n

)︂
−tn
)︂
g
τn

(︂
f θ̂

n

)︂ x
τn

(︂
f θ̂

n

)︂(m)

 I{︂
τ

(︂
f θ̂

)︂
>tn

}︂l (xtn(m), . . . , xt0(m)) ,

(2.39)

where l is the likelihood ratio function defined in Theorem 2. We note that (2.35) and (2.37)
are the only approximations that require a calculation of the option value. On the other
hand, we need X to be described by a diffusion-type SDE in (2.38) and we need to know the
density functions to calculate (2.39). To define the approximations of the potential future

exposure, we start by defining the order statistic of

v̂NN
tn (xtn(m))I{︂

τ

(︂
f θ̂

)︂
>tn

}︂M
m=1

, i.e.,

the vector given by

v̂NN
tn (xtn(m̃1))I{︂

τ

(︂
f θ̂

)︂
>tn

}︂, . . . , v̂NN
tn (xtn(m̃M))I{︂

τ

(︂
f θ̂

)︂
>tn

}︂ satisfying

37

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

Specification of requirements for each approximation
Approx-
imation
of the
functional
form Vtn(·)

Sampling
from X̃

tn
Known
density
functions

X given
must be by
diffusion-
type SDE

EÊ1
Q Ë é é é

EÊ2
Q é é é é

EÊ1
P Ë Ë é é

EÊ2
P é Ë é Ë

EÊ3
P é é Ë é

PFEˆ Q Ë é é é

PFEˆ P Ë Ë é é

Table 2.1: A specification of which approximations/entities that are required in order to carry
out the different calculations. If required Ë, otherwise é.

v̂NN
tn (xtn(m̃i)) ≤ v̂NN

tn (xtn(m̃j)) whenever i ≤ j. Furthermore, we define

iα =

 ⌈αM⌉, for α ≥ 0.5,

⌊αM⌋, for α < 0.5.

The approximations of the potential future exposure are then defined as

PFEˆ α
Q(tn) = v̂NN

tn (xtn(m̃iα))I{︂
τ

(︂
f θ̂

)︂
>tn

}︂,
PFEˆ α

P(tn) = v̂NN
tn (x̃tntn(m̃iα))I{︂

τ

(︂
f θ̂

)︂
>tn

}︂.
In Table 2.1, some characteristics of the calculations needed for each approximation are given.

To explain the different approximations in a concrete setting we turn to a simple example.

Example 2.5.1. Consider a one-dimensional American put option, where we for simplicity
assume that r = 0. We are interested in the expected exposure and the potential future exposure
at time tn ∈ (t0, tN) given that we have full knowledge of the market at time t0. We give a
short explanation of the intuition behind the different methods by referring to Figure 2.2, where
the problem is visualized.

We start by EÊ1
Q(tn) and EÊ1

P(tn) for which we only use the figure to the left. For EÊ1
Q(tn)

we follow the blue samples and note that samples 2 and 3 are not exercised prior to, or at
tn, which means that the indicator function in (2.35) equals 1. Sample 1, on the other hand,
touches the exercise region prior to tn and has therefore already been exercised, which means
that

EÊ1
Q(tn) = 1

3
(︂
v̂NN(xtn(1))I{τ(f θ̂)>tn} + v̂NN(xtn(2))I{τ(f θ̂)>tn} + v̂NN(xtn(3))I{τ(f θ̂)>tn}

)︂
= 1

3
(︂
v̂NN(xtn(2)) + v̂NN(xtn(3))

)︂
.

38

2.5 Approximation algorithms for exposure profiles

When focusing on the red samples instead, we see that no sample touches the exercise region
prior to tn and we obtain

EÊ1
P(tn) = 1

3
(︂
v̂NN(x̃tntn(1)) + v̂NN(x̃tntn(2)) + v̂NN(x̃tntn(3))

)︂
.

Similarly, we can e.g., state that PFEˆ 2.5
Q = 0 and PFEˆ 97.5

P = v̂NN(x̃tntn(2)).
Moving on to EÊ2

P(tn) and EÊ3
P(tn), we shift focus to the figure to the right. For EÊ2

P(tn)
we want to use the red samples and notice that samples 2 and 3 end up out of the money. We
therefore obtain

EÊ2
P(tn) = 1

3gτn(fθ
n)
(︃
x̃tn
τn(fθ

n)(1)
)︃
.

For EÊ3
P(tn), we instead consider the blue samples and see that sample 1 is exercised prior to

tn and samples 2 and 3 end up in the money. However, we also need to adjust the estimate
for using the wrong state process18. This is done by multiplying each term with the likelihood
ratios l(x(2)) and l(x(3)) to finally obtain

EÊ3
P(tn) = 1

3
(︂
gτn(fθ

n)
(︂
xτn(fθ

n)(2)
)︂
l (x(2)) + gτn(fθ

n)
(︂
xτn(fθ

n)(3)
)︂
l (x(3))

)︂
.

The last estimate, EÊ2
Q(tn), is obtained by removing the likelihood ratios from the estimate for

EÊ3
P(tn).

Figure 2.2: Blue trajectories are distributed as X and red trajectories are distributed as X̃tn . The
boundary for immediate exercise is pointed out and should be interpreted as, as soon a trajectory
touches the boundary, the option is exercised and the holder receives the immediate pay-off. Recall
that the exercise boundaries are calculated in order to be optimal under the Q-measure.

To conclude, we note that Figure 2.2 displays, to the left, the cases where functional form
approximations of the option values are used and to the right the cases where cash-flow paths
are used (this can be read in Table 2.1). Furthermore, blue and red trajectories are distributed
according to X and X̃

tn , respectively (this can also be read in Table 2.1).
18The samples are generated from the state process under the Q−measure between t0 and tn which, if not

corrected, would be in conflict with the definition of EEP(tn).

39

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

2.6 Numerical results

This section is divided into two parts: in the first part we use the Black–Scholes dynamics for the
underlying assets. The proposed algorithm is compared with two different Monte-Carlo-based
algorithms for a two-dimensional case. We focus on both the accuracy of the computed exercise
boundaries and the exposure profiles. Furthermore, the exercise boundary is compared with
the exercise boundary for the corresponding American option, computed by a finite element
method, from the PDE-formulation of the problem. Exposure profiles are then computed
both under the risk-neutral and the real-world measures for problems in 2 and 30 dimensions.
Finally, we compare the OLS-regression with the NN-regression.

In the second part we consider stochastic volatility and compute exposure profiles under
the Heston model.

2.6.1 Black–Scholes dynamics

In the Black–Scholes setting the only risk factors are the d ∈ N, underlying assets, denoted
by S. We assume a constant risk-free interest rate r ∈ R, and for each asset i ∈ {1, 2, . . . , d},
volatility σi ∈ (0,∞), and constant dividend rate qi ∈ (0,∞). The state process X is then
given by the asset process S = (St)t∈[t0,tN], i.e., X = S, following the SDE

d(St)i
(St)i

= (Ai − qi)dt+ σid(WA
t)i, (St0)i = (st0)i; t ∈ [t0, tN], (2.40)

with initial state (st0)i ∈ (0,∞), and where A is either the real-world measure P or the
risk-neutral measure Q. In the real-world setting Ai = µi ∈ R and in the risk-neutral setting
Ai = r. The process WA = (WA

t)t∈[t0,tn] is a d-dimensional Brownian motion under the
measure A. Furthermore, WA is correlated with correlation parameters ρij ∈ [−1, 1], i.e.,
for i, j ∈ {1, 2, . . . , d}, we have that EA[d(WA

t)id(WA
t)j] = ρijdt, with ρii = 1. Moreover, for

t0 ≤ u ≤ t ≤ tN a closed-form solution to (2.40) is given by

(St)i = (Su)iexp
(︃

(Ai − qi −
1
2σ

2
i)(t− u) + σi

(︂
(WA

t)i − (WA
u)i
)︂)︃

. (2.41)

We note that logS has Gaussian increments under both the P− and the Q−measures which
implies that we have access to a closed-form expressions for the transition densities of S, and
in turn also to the likelihood ratio in (2.39).

2.6.1.1 Bermudan max-call option

At exercise, a Bermudan max-call option pays the positive part of the maximum of the
underlying assets after subtraction of a fixed amount K ∈ R. This implies an identical pay-off
function at all exercise dates, given by

g(s) = (max {s1, s2 . . . , sd} −K)+ ,

where s = (s1, s2, . . . , sd) ∈ (0,∞)d and for c ∈ R, (c)+ = max{c, 0}.

40

2.6 Numerical results

We choose to focus on Bermudan max-call options for two reasons: first, there exist
plenty of comparable results in the literature (see e.g., [9], [27], [28]); second, and more
importantly, the exercise region is nontrivial with several interesting features. For example,
max{s1, s2, . . . , sd} is not a sufficient statistic for making optimal exercise decisions, meaning
that we cannot easily reduce the dimensionality (all dimensions are needed in order to price the
option). This is not the case with, e.g., the geometric-average call option with pay-off function
g(s) =

(︂
1
d

∏︁d
i=1 si −K

)︂+
, since 1

d

∏︁d
i=1 si is a sufficient statistic for optimal exercise decisions

(only the geometric average is needed to price the option, meaning that the problem can be
reduced to 1 dimension, see e.g., [47]). Another example is the arithmetic-average call option
with pay-off function g(s) =

(︂
1
d

∑︁d
i=1 si −K

)︂+
. Similar to the max-call option, 1

d

∑︁d
i=1 si is

not a sufficient statistic for optimal exercise decisions, but on the other hand the exercise
region is convex19,20 (see [43, Proposition 6.1]). Convexity of the exercise region does not hold
for the max-call option, making it hard to capture the exercise region when global polynomials
are used as basis functions in e.g., the LSM. Methods which instead rely on local regression
can, to some extent, overcome this problem but it is difficult to decide how the localization
(usually localization of the state space) should be done, especially in high dimensions.

In the numerical experiments we use the following parameters r = 0.05 and for i, j ∈
{1, 2, . . . , d}, qi = 0.1, σi = 0.2, for i ̸= j, ρij = 0, N = 9, t0 = 0, tN = 3, (st0)i = 100 and
K = 100. We want to emphasize that the choice of having no correlation between assets is
due to the fact that this case has been studied thoroughly in the literature (see e.g., [9], [27],
[28], [43]). To verify that the algorithm is also able to tackle problems with correlated assets,
we replicated an experiment in [32], of pricing a put option on the arithmetic average of 5
correlated assets and obtained the same price21.

2.6.1.2 Approximation of the option value at initial time

The performance of the DOS algorithm is thoroughly explored for a wide range of different
examples in [9]. However, the convergence with respect to the amount of training data used,
Mtrain was not given. We therefore present, in Figure 2.3, an example of how the option
price at t0 is converging to a reference value in terms of the amount of training data. In the
considered example, we use the parameter values given at the end of Subsection 2.6.1.1 with
d = 2, i.e., a two-dimensional Bermudan max-call option. The reference value (13.902) for
Vt0(xt0) is computed by a binomial lattice model in [24]. The DOS approximation, denoted by
V̂ t0(xt0), is computed according to (2.25). To be more specific, one neural network is trained
for each Mtrain ∈ {212, 214, 216, 218, 220, 222, 225}, as described in Subsection 2.3.1.2. For each
Mtrain, the option value, Vt0(xt0) is computed 20 times (with 20 independent realizations of
X) with Mval = 220 and the average of these 20 values is showed in Figure 2.3. Furthermore,
the figure to the right displays empirical 95%-confidence intervals of the sample mean, which
is computed by adding and subtracting 1.96√

19 times the sample standard deviation.

19In this section we have assumed that results for exercise regions for American options also hold for their
Bermudan counterparts.

20Convex in the underlying assets for fixed t.
21We obtained the price 0.1804, which is the same price up to the given accuracy of 4 digits, presented in

[32, Parameters as in Set II, results in Table 3 on p. 22].

41

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

Figure 2.3: Convergence of approximate option values in the amount of training data. Reference
value 13.902, computed by a binomial lattice model in [24]. Left: With different levels of deviation
from the reference value. Right: With empirical 95%-confidence intervals of sample mean.

2.6.1.3 Comparison with Monte-Carlo-based algorithms

We start with a short introduction of the two Monte-Carlo-based algorithms with which we
compare results for the two-dimensional max-call option.

The least squares method (LSM) proposed in [25], is one of the most used methods for
pricing American/Bermudan options. The method approximates exercise boundaries and
computes the option value from discounted cash-flows. The regression is carried out globally,
i.e., with the same regression function over the entire state space. However, if one is only
interested in the option value at t0, it is beneficial to only consider ITM-samples in the
regression state. This is done when the exercise boundary, and PFE97.5 are approximated.
For approximating EE and PFE2.5 we need the entire distribution of future option values
forcing us to also include OTM-samples in the regression. We use as basis functions the first 6
Laguerre polynomials Ln(x) = e−x/2 ex

n!
dn

dxn (xne−x) of (Stn)1 and (Stn)2 and the first 4 powers
of max{log((Stn)1), log((Stn)2)} for all tn ∈ T. Note that since we have no correlation between
(S)1 and (S)2, we do not include cross-terms in the basis.

The second algorithm is the stochastic grid bundling method (SGBM) proposed in [28], in
which regression is carried out locally in so-called bundles. In the SGBM the target function in
the regression phase is the option value which makes it suitable for approximations of exposure
profiles. There are several papers on computations of exposure profiles with the SGBM, see
e.g., [35]. At each exercise date tn ∈ T, we use as basis functions: a constant, the first 4 powers
of (Stn)1 and (Stn)2, and the first 2 powers of max{log((Stn)1), log((Stn)2)}. Furthermore, the
state space is divided into 32 equally-sized bundles based on max{(Stn)1, (Stn)2}.

Before presenting any results, we recall from equations (2.9) and (2.10) that the expected
exposure and the potential future exposure are two statistics of

Vtn(Stn)I{τ>tn}, (2.42)

where τ is an S−stopping time. This means that approximations of the exposure profiles
are sensitive to, not only the option value itself, but also the exercise strategy. The SGBM
and LSM only compute the exercise strategy implicitly, i.e., by comparing the approximate
option value and the immediate pay-off. Therefore small errors of the approximate option

42

2.6 Numerical results

value close to the exercise boundary can lead to significant errors in the exercise strategy22.
We therefore start by presenting a comparison of the exercise boundaries. As a reference, we
use the exercise boundary for the corresponding American option, which is computed from the
PDE-formulation with the finite element method used in [48]. We note that since the PDE
formulation refers to the American option, the exercise boundary differs slightly23 from the
exercise boundary of the Bermudan counterpart, which we are interested in.

In Figure 2.4, a comparison of the exercise boundaries at t8 ≈ 2.67 for the different
algorithms is presented. As we can see, the DOS algorithm captures the shape of the exercise
regions while both the SGBM and the LSM seem to struggle, especially with the part of the
continuation region along (and around) the line (Stn)1 = (Stn)2, in particular for high values
of (Stn)1 and (Stn)2. The irregular shaped features in the continuation region for the SGBM
are a consequence of the local regression. In particular, the triangular shapes come from the
specific choice of bundling rule (bundling based on max{(Stn)1, (Stn)2}).

Moving on to the exposure profiles, we see in Figure 2.5, that even though the DOS
algorithm and the SGBM seem to agree on the exposure profile in general, we notice a
difference in the PFE97.5. This is a consequence of the slight bias towards classifying samples
as belonging to the continuation region, which is shown in Figure 2.5, to the right.

The LSM is performing worse, both in terms of accuracy of exposure profiles and bias
towards miss-classification. This is however not a surprise, since the LSM is tailored to calculate
the option value at t0.

Finally, it should be pointed out that for both the SGBM and LSM, it could very well be
the case that another set of basis functions would better capture the shape of the exercise
boundaries. In this two-dimensional example one could probably use geometric intuition to
come up with a better set of basis functions, but in higher dimensions, and for more complicated
pay-off functions, this becomes difficult.

2.6.1.4 Exposure profiles under different measures

In this section we compare exposure profiles under different measures for the max-call option,
in 2 and 30 dimensions. In Case I we set d = 2 and P1 and P2 such that for i ∈ {1, 2}, we
have drifts (µ1)i = 15% and (µ2)i = −5%. In Case II we set d = 30 and P1 and P2 such that
such that for i ∈ {1, . . . , 30}, we have drifts (µ1)i = 7.5% and (µ2)i = 2.5%.

Figure 2.6 shows exposure profiles in 2 and 30 dimensions on the left side. On the right,
we see a comparison of the different ways to compute expected exposures which all agree to
high accuracy. Furthermore, Figure 2.7, displays that the fraction of exercised options over
time is highly dependent on the choice of measure.

22In our experiments the errors of the approximate option values seem be of the same sign locally i.e., the
polynomial basis function underestimates the option value in some regions and overestimates the option value
in other regions.

23In fact, the continuation region for an American option is a subset of the continuation region for the
Bermudan counterpart.

43

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

Figure 2.4: Approximate exercise boundaries for a two-dimensional max-call option at t8 ≈ 2.67.
From top left to bottom right: FEM (American option), DOS, SGBM and LSM respectively.

Figure 2.5: Comparison of DOS, SGBM and LSM for a two-dimensional max-call option. Left:
Expected exposure and potential future exposures at 97.5%- and 2.5%-levels. Right: Proportion
of options exercised at different exercise dates.

44

2.6 Numerical results

Figure 2.6: Approximate exposures, at the exercise dates over the life time of the contract. Top:
Case I. Bottom: Case II. Left: For i = 1 and i = 2, PFEˆ 97.5

Pi , PFEˆ 97.5
Q , EÊ1

Pi , EÊ1
Q PFEˆ 2.5

Pi and
PFEˆ 2.5

Q . Right: For i = 1 and i = 2, EÊ1
Q, EÊ2

Q, EÊ1
Pi , EÊ2

Pi and EÊ3
Pi .

Figure 2.7: Proportion of samples exercised at different exercise dates under measures Q, P1 and
P2 for Case I.

45

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

2.6.1.5 Comparison of the OLS-regression and the NN-regression for approxima-
tion of pathwise option values

Finally, we compare the performance of the OLS-regression, with the NN-regression, introduced
in Subsections 2.4.2 and 2.4.3. We emphasise that both OLS-regression and NN-regression are
regressing the current state on discounted cash-flow paths approximated by the DOS algorithm
(described in Section 2.3). They can therefore be seen as phase 2 of an algorithm producing
pathwise option values.

After conducting numerical experiments on a variety of different examples we conclude
that the expected exposures are very similar for the two regression methods. However, the
potential future exposure is not always captured by the OLS-regression. The difficulty lies
in finding a set of computationally feasible basis functions, flexible enough to accurately
capture a complicated function surface on a large domain (similar problem as for the LSM in
Subsection 2.6.1.3). To overcome this problem, we also implement a slightly different version
of the algorithm, where we instead carry out local regression in the continuation regions. To
be able to differentiate between the local and global OLS-regressions, we denote the regression
functions by vOLSloc and vOLSglob , respectively. The localization procedure is done similarly
as in the SGBM, i.e., at each t ∈ T, the state space is divided into bundles of equal size
(in terms of the number of samples in each bundle), based on max{(St)1, (St)2}. With local
OLS-regression we obtain almost identical exposure profiles as with NN-regression. In Figure
2.8, on top to the left, the exposure profiles computed with the three different algorithms are
displayed. Furthermore, from top right to bottom right, we compare the approximate risk
premia for holding instead of immediately exercising the option at t2 ≈ 0.667 and some x ∈ R2,
i.e., vZt2(x) − gt2(x), with Z representing, in order NN, OLSglob and OLSloc. We know that
for all x ∈ R2, it holds that V Z

t2 (x) − gt2(x) ≥ 0. We see in Figure 2.8, top right, that this
is captured by the NN-regression, since the values range from 0 to just above 12. When we
carefully evaluate the values of the risk premia computed with local and global OLS-regression
(Figure 2.8 bottom left and bottom right) we see that negative values exist in both plots. We
see similar phenomena for high values, i.e., the range is stretched upwards in comparison to
the values obtained with NN-regression. The reason for the negative values is that vOLSloc and
vOLSglob underestimate the option values close to the boundary (which in this case coincides
with the exercise boundary since the regression is carried out only in the continuation region).
To compensate for this, we see a tendency of higher values in the center (not close to the
exercise boundaries) of the continuation regions. As a final remark, we note that this behaviour
is reduced by using local regression instead of global regression (the range of values in Figure
2.8 is tighter for local than global regression). On the other hand, we note discontinuities in
Figure 2.8 bottom, left, stemming from the localized regression, of the risk premium computed
with the local OLS-regression. The discontinuity in Figure 2.8, bottom right, is a boundary
issue of the OLS-regression (regression is only carried out in the continuation region since we
set the value equal to the immediate pay-off in the exercise region).

Even though, the local OLS-regression is less accurate when it comes to computations of
exposure profiles than the other two algorithms in this section, it is clear by comparing Figures
2.5 and 2.8, that it outperforms the LSM. This is not a surprise since:

46

2.6 Numerical results

1. The accumulated error in the LSM (because of recursive dependency of the regression
functions) is significantly reduced since the regression functions are not sequentially
dependent. The discounted cash-flows are projected onto the risk factors directly. This
implies that the only error accumulation (over time), in the OLS-regression originates
from the DOS algorithm, which computes the exercise boundaries with high accuracy;

2. By recalling equation (2.42), we note that a less accurate stopping strategy may cause a
less accurate exposure.

Figure 2.8: Comparison of NN-regression, local OLS-regression and global OLS-regression for a
two-dimensional max-call option. For all three regression techniques, the DOS is used to approximate
the optimal stopping strategy. Top left: Exposure profiles. From top right to bottom left:
Approximate risk premium for holding option instead of immediate exercise at t2 ≈ 0.667, i.e.,
vZ

t2
(·)− gt2(·), with Z representing NN, OLSloc and OLSglob, respectively.

2.6.2 Heston model dynamics

In this section we assume a one-dimensional underlying asset following the Heston stochastic
volatility model [49], which is considered only under the risk-neutral measure. We therefore
omit the explicit notation of the probability measure used in this section. In this setting, the
market is described by, not only the underlying asset price process S = (St)t∈[t0,tN] itself ,
but also by the instantaneous variance process ν = (νt)t∈[t0,tN]. The state process is then the

47

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

two-dimensional process X = (ν, S) which satisfies the system of SDEs

dSt = (r − q)Stdt+√νtStdWS
t , St0 = st0 ; t ∈ [t0, tN], (2.43)

dνt = κ(θ − νt)dt+ ξ
√
νtdW ν

t , νt0 = ν0; t ∈ [t0, tN], (2.44)

with risk-free interest rate r ∈ R, dividend rate q ∈ (0,∞), initial conditions st0 , ν0 ∈ (0,∞),
speed of mean reversion κ ∈ (0,∞), long term mean of the variance process θ ∈ (0,∞),
and volatility coefficient of the variance process ξ ∈ (0,∞). Furthermore, (WS

t)t∈[t0,tN] and
(W ν

t)t∈[t0,tN] are two one-dimensional, standard Brownian motions satisfying E[dWS
t dW ν

t] =
ρν,Sdt for some correlation parameter ρν,S ∈ (−1, 1). We, however notice that it is important
to be careful when using the Heston model, since for some parameters, moments of higher
order than 1 can become infinite in finite time (see [50, Proposition 3.1]). Equation (2.44) is
the SDE for the well-established Cox–Ingersoll–Ross (CIR) process, introduced in [51]. When
the so-called Feller condition

2κθ ≥ ξ2,

is satisfied, it holds that 0 is an unattaiable boundary for ν. If the Feller condition is not
satisfied, then 0 is an attainable, but strongly reflective24 boundary, see e.g., [52]. This leads
to an accumulation of probability mass around zero, which makes it more challenging to
approximate ν accurately. Unfortunately, the Feller condition is rarely satisfied for parameters
calibrated to the market.

In this chapter, the QE-scheme, proposed in [53] is used to approximate25 (ν, S). If necessary,
we choose a finer time grid for the approximation of (S, ν) than the exercise dates, T.

We consider a standard Bermudan put option, i.e., identical pay-off functions at all exercise
dates, only depending on the underlying asset. Furthermore, the pay-off function for the
Bermudan put option is given by

g(s) = (K − s)+,

for s ∈ (0,∞), and strike K ∈ R.

2.6.2.1 Comparison with Monte-Carlo-based algorithms

In this section, we again compare the DOS algorithm with the two Monte-Carlo-based
algorithms, SGBM and LSM. We use the following set of model parameters: r = 0.04,
q = 0, st0 = 100, κ = 1.15, θ = 0.0348, ξ = 0.459, ν0 = 0.0348 and ρν,S = −0.64, and the
contract parameters: T = 0.25, N = 10, K = 100. The parameters coincide with Set B in [54],
in which the valuation is carried out with the so-called 2D-COS method. The 2D-COS method
is a Fourier-based method and is assumed to yield highly accurate valuation of the option.

For the LSM, we use as basis functions, for tn ∈ T, Laguerre polynomials of degree 3 of
Stn , Laguerre polynomials of degree 3 of νtn and νtnStn (only on constant basis function is
used). For the SGBM, we use 32 equally-sized bundles based on Stn and for tn ∈ T, we use
as basis functions a constant, Stn , Stnνtn and the first 3 powers of νtn . These parameters are

24Strongly reflective in the sense that the time spent at 0 is of Lebesgue measure zero, see e.g., [50].
25For notational convenience, the state process is denoted by X, which falsely indicates that we have an

exact form for X. This is because our focus is on approximating option values, not the underlying state process.
It should however be mentioned that X needs to be approximated in this section.

48

2.6 Numerical results

chosen such that the approximate option value at t0 are as close as possible to the (almost)
exact value of 3.198944, for a Bermudan option with 10 exercise dates, retrieved from [54].
The obtained option values (for each algorithm, average value of 10 runs) at t0 were 3.1792,
3.2033, and 3.1222 for the DOS algorithm, the SGBM and the LSM, respectively.

It should be stressed that the numerical results for the LSM and the SGBM in this
section should not be seen as state of the art performance of the algorithms. For example,
in [35], a bundling scheme based on recursive bifurcation and rotation of the state space
to match the correlation between S and ν gave accurate results. Furthermore, they use as
basis functions only monomials of log (Stn) and letting the stochastic variance νtn enter only
through conditional expectations of the form E[(log(Stn))k |Stn−1 , νtn−1]. These conditional
expectations are computed from the characteristic function of the Stn |Stn−1 , νtn−1 which was
presented in [49]. Similar improvements could also be done for the LSM. The reason for this
comparison to still be relevant is to demonstrate the flexibility of DOS and the NN-regression,
in which nothing has been changed (from the examples with Black–Scholes dynamics) except
the dynamics of the stochastic process from which we generate training data.

In Figure 2.9, the exercise boundaries are presented in the state space. Worth noticing
is that for tn ∈ T, both the option value and the pay-off functions are increasing in νtn

and decreasing in Stn . An immediate consequence of this is that we can have at most one
exercise boundary along the lines with constant Stn or constant νtn . We can therefore conclude
inconsistencies in the exercise boundaries for both the LSM and the SGBM. In Figure 2.9, on
the bottom line to the right, the empirical probability density functions (pdf) of the exposures
at the exercise dates are plotted. Figure 2.10 shows the exposure profiles and the exercise
frequency computed with the three algorithms. We note that the DOS and the SGBM seem to
agree fairly well on the EE and the lower percentile of the PFE but differ significantly on the
upper PFE.

49

2. A deep learning approach for computations of exposure profiles for high-dimensional
Bermudan options

Figure 2.9: Approximate exercise boundaries for a Bermudan put option under the Heston model
at t9 = 0.225 and the empirical density for the exposure at all exercise dates. From top left to
bottom right: DOS, SGBM, LSM and the empirical density of the exposure.

Figure 2.10: Comparison of the DOS algorithm, the SGBM and the LSM for a Bermudan put
option under the Heston model. Left: Expected exposure and potential future exposures at 97.5%-
and 2.5%-levels. Right: Proportion of options exercised at different exercise dates.

50

3
Deep learning for CVA computations of
large portfolios of financial derivatives

In this chapter, we propose a neural network-based method for CVA computations of a portfolio
of derivatives. In particular, we focus on portfolios consisting of a combination of derivatives,
with and without true optionality, e.g., a portfolio of a mix of European- and Bermudan-type
derivatives. CVA is computed, with and without netting, for different levels of WWR and for
different levels of credit quality of the counterparty. We show that the CVA is overestimated
with up to 25% by using the standard procedure of not adjusting the exercise strategy for
the default-risk of the counterparty. For the Expected Shortfall of the CVA dynamics, the
overestimation was found to be more than 100% in some non-extreme cases.

Keywords - Bermudan options, option portfolios, risk management, CVA, neural networks

This chapter is based on the paper with the same title which is published in Applied Mathematics and
Computation 409 (2021): 126399

51

3. Deep learning for CVA computations of large portfolios of financial derivatives

3.1 Introduction

In this chapter, we consider a set of financial contracts, which we refer to as the portfolio
of derivatives, or just the portfolio, written between two parties. The first party is referred
to as the bank and is considered to be default-free. The second party, which may default, is
referred to as the counterparty. We take the perspective of the default-free bank in order to
investigate some of the risks associated with a defaultable counterparty. It is straight-forward
to extend the methodologies used in this chapter to a defaultable bank as well as to multiple
counterparties.

3.1.1 Risk-free valuation

We consider the problem of finding the value of a portfolio of derivatives with early-exercise
features. In particular, we are focusing on portfolios with multiple derivatives with true
optionality, e.g., American or Bermudan derivatives. We construct a portfolio of J derivatives,
where the individual derivatives depend on d1, d2, . . . , dJ risk factors. This means that we
could face high-dimensionality in two ways:

1. Derivative j could depend on a large number of risk factors, i.e., dj could be large;

2. We could have many derivatives in the portfolio, i.e., J could be large.

In [9], a neural network-based method for valuation of a single Bermudan derivative was
proposed and proved to be highly accurate for derivatives with up to 100 risk factors. Later,
the algorithm was extended in the work presented in Chapter 2 to also include pathwise
valuations of the derivative (in contrast to only finding the value at the initial time). In this
chapter, we extend [9] and the material from Chapter 2 to the portfolio case, i.e., finding
the value of a large portfolio of, possibly high-dimensional, derivatives with true optionality,
without having to compute the value of each individual derivative.

In a traditional setting, the so-called continuation value is computed, and subsequently, the
value of the derivative is given by the maximum of the continuation value and the immediate
pay-off. For a single derivative, this is straight-forward. For instance, the continuation value
can be computed by solving an associated PDE, which is done in e.g., [12], [13], [14], [15] and
[16], or the continuation value can be approximated by a Fourier transform methodology, which
is done in e.g., [17], [18] and [19]. Furthermore, classical tree-based methods such as [20], [21]
and [22], can be used. These types of methods are, in general, highly accurate but they suffer
severely from the curse of dimensionality, meaning that they are computationally feasible only
in low dimensions (say up to 4 risk factors), see [23]. In higher dimensions, Monte-Carlo-based
methods are often used, see e.g., [24], [25], [26], [27] and [28]. Monte-Carlo-based methods can
generate highly accurate derivative values at the initial time, but often less accurate values
between the initial time and maturity of the contract.

In contrast to the single derivative case, it is not enough to know the continuation value
of a portfolio (with more than one derivative) in order to decide optimally which derivatives
should be exercised. Therefore, it is common to do the valuation at the level of each derivative,
and then add the individual values of each derivative to obtain the portfolio value. This
becomes cumbersome for large portfolios. As mentioned above, the methodology used in this

52

3.1 Introduction

chapter, generalizes [9] and Chapter 2, in which the optimal exercise policy is approximated
by maximizing expected discounted cash-flows, i.e., the continuation value is not computed.
By not relying on computations of the continuation value, the algorithm is able to compute
the portfolio value without having to compute the individual values for each derivative.

3.1.2 Risky valuation and CVA

The Credit Valuation Adjustment (CVA) is the difference between the risk-free portfolio value
and the risky portfolio value, where the risky portfolio value is defined as the portfolio value
when taking default risk of the counterparty into account. While there is no ambiguity of
the risk-free portfolio value, it is not completely clear how the risky portfolio value should be
computed. The question is whether the exercise policy should be adjusted for the fact that the
counterparty may default. For instance, if the counterparty ends up in financial distress, it is
reasonable to assume that the bank (which in this chapter is assumed to be the risk-free party)
would be more willing to exercise the callable derivatives, in order to lower its exposure to the
counterparty. Even though it seems common to ignore the effect of a defaultable counterparty
when computing risky derivative values, it has been discussed in the literature, see e.g., [55],
[38], [39] and [56]. In the case of a single derivative [55] states that the exercise region for a
risk-free derivative is always a subset of the exercise region for a risky counterpart. However,
in the case of a portfolio, the situation is more complex, and depends on contractual details
such as the close-out and netting agreements. One consequence is that, in the presence of a
netting agreement, the exercise decisions can no longer be made individually. To explain this,
we give a simple example.

Example 3.1.1. Assume that we have a portfolio, consisting of three derivatives, one European
future and two American options. All contracts are initialized at time 0, mature at time T and
depend on the same risk-factor (Xt)t∈[0,T]. Assume that, at time t ∈ (0, T), and given Xt = x,
the intrinsic values are

V future(t, x) = −10, V Am
1 (t, x) = 10, V Am

2 (t, x) = 10,

and the immediate pay-off for the American options satisfy

gAm
1 (t, x) < 10, gAm

2 (t, x) < 10.

In a risk-free environment (no-defaultable counterparty), it is sub-optimal to exercise the
American options. However, in case of a defaultable counterparty, the situation is less trivial.
In Table 3.1, the exposure to the counterparty, given different exercise decisions at t, is given
with and without a netting agreement. If the counterparty is in severe financial distress, then

Without netting With netting
Exposure - no exercise 20 10
Exposure - exercise one of the American options 10 0
Exposure - exercise both American options 0 0

Table 3.1: Exposure given different exercise decisions at t, with and without a netting agreement.

it is likely optimal for the bank to exercise both American options in the case of no netting

53

3. Deep learning for CVA computations of large portfolios of financial derivatives

agreement, and one of them in the case of a netting agreement. From this simple example,
two things become clear; 1) The exercise decisions for the American options are affected not
only by a risky counterparty, but also by whether or not a netting agreement exists. 2) in the
presence of netting, exercise decisions cannot be made for one derivative in isolation, but only
for all the American options simultaneously.

In general, for a risky portfolio, it is not possible to describe the value of a single derivative,
but only the value of the entire portfolio. This is an interesting problem since almost all
existing algorithms rely on exercise decisions made in isolation and risky derivative values that
can be added up to obtain the risky portfolio value.

If this is not taken into account we would obtain a biased low valuation for the risky
portfolio by using a sub-optimal exercise strategy. Since the CVA is the difference between the
risk-free and risky portfolio values, we would obtain an overestimation of the CVA. Furthermore,
this effect is likely to increase with decreasing credit quality of the counterparty. In practice,
this means that the counterparty is paying a CVA which is based on a sub-optimal exercise
strategy used by the bank, which is out of control for the counterparty. Even more problematic
is that the overestimation of the CVA is higher for counterparties that already are under
financial distress.

One could argue that it is reasonable for the bank to charge the counterparty the higher
CVA, since the bank will probably not follow the theoretically optimal risky exercise strategy.
However, there is another level of complexity not yet discussed. When the mark-to-market
(MtM) CVA moves in time against the bank, the bank could face losses, not because the
counterparty actually defaults, but because disadvantageous changes in the MtM CVA. For
instance, in Basel III [57] the following is stated:

Under Basel II, the risk of counterparty default and credit mitigation risk were addressed but
mark-to-market losses due to credit valuation adjustments (CVA) were not. During the global
financial crisis, however, roughly two-thirds of losses attributed to counterparty credit risk were
due to CVA losses and only about one-third were due to actual defaults.

This is further discussed in [58], in which the authors also recommend computations of different
risk measures for the future distribution of CVA. Two examples of such measures are the
Value at Risk of the CVA (VaR-CVA) and the Expected Shortfall of the CVA (ES-CVA). The
advantage of the ES-CVA is that it is a coherent risk-measure, and we therefore focus on
ES-CVA in this chapter.

3.1.3 Structure of the chapter

In Section 3.2 the mathematical problem formulation is given. We define the risk-free and risky
portfolios, close-out agreements both with and without netting agreements and the associate
CVA. Furthermore, the problems are formulated in terms of so-called decision functions, which
control the exercise strategies. In Section 3.3, the algorithms are presented. In the first part, the
algorithm for learning optimal exercise strategies is given and in the second part, an algorithm
for learning pathwise entities such as the pathwise portfolio exposure is presented. Finally, in
Section 3.4 numerical experiments are presented. The experiments include a first part, in which
risk-free values are computed and compared to a well-established regression-based method. In

54

3.2 Problem formulation

the second part we compare CVA computed with the risk-free and the risky exercise strategy
to verify that, indeed, the CVA is often overestimated with algorithms in use today. We present
comparisons with and without netting, for different levels of Wrong Way Risk (WWR), and
for different credit quality of the counterparty. As a final example, we analyse the effect of the
different exercise strategies on ES-CVA. In the Appendix, we provide some additional details
on the algorithms and the specific choice of neural networks.

3.2 Problem formulation

Let (Ω,F ,Q) be a probability space completed with the Q−null-sets of F . For T ∈ (0,∞), and1

d ∈ N, let X : [0, T]×Ω→ Rd and r : [0, T]×Ω→ R represent the (market) risk-factors of the
portfolio and the short rate, respectively. Furthermore, we denote by τD the default event of the
counterparty, which is a stopping time defined on (Ω,F ,Q) and we let 1D : [0, T]×Ω→ {0, 1},
be the jump-to-default process given by

1
D
t := I{t<τD}. (3.1)

The information structure is given by the sub−σ−algebras generated by X, r and 1D, i.e.,
HXt = σ (Xs : s ∈ [0, t]), Hrt = σ (rs : s ∈ [0, t]) and Gt = σ (1D

s : s ∈ [0, t]) and we define the
enlarged filtrations Ht = HXt ∧Hrt and Ft = Ht ∧ Gt. In this chapter, we use either a constant
short rate (risk-free rate), or we view the short rate as one of the risk factors. In the latter
case, we model the short rate as one of the d component processes of X, which implies
that, Ht = HXt . The motivation for introducing a separate notation for the short rate is to
simplify the notation when the short rate is used to discount cash-flows. For commonly used
conditional expectations, we introduce the short-hand notations Et,x [·] := EQ [· |Xt = x],
Et,x,ν [·] := EQ [· |Xt = x,1D

t = ν] and Et [·] := EQ [· |Ht].
We use a numéraire, which, for t ∈ [0, T], is defined by Bt := exp

(︂∫︁ t
0 rsds

)︂
, which should

be interpreted as the value at time t of a savings-account, which was worth 1 at time 0. For
t, u ∈ [0, T] with t ≤ u, we use Dt,u := Bt

Bu
to discount a cash-flow obtained at time u back to

time t. The measure Q is the risk-free measure, under which all tradeable assets are martingales
relative to the numéraire, e.g., if component i ∈ {1, 2, . . . , d} of X is tradeable, then (Xt)i

Bt
is a

Q−martingale.
If not specifically stated otherwise, equalities and inequalities of random variables should

be interpreted in a Q−almost sure sense.

3.2.1 A portfolio of derivatives

We assume a portfolio of J ∈ N derivatives. For t ∈ [0, T], and for derivative j ∈ {1, 2, . . . , J},
we denote the set of exercise dates greater than or equal to t by Tj(t) ⊆ [0, T], and set
T(t) = {T1(t), T2(t), . . . ,TJ(t)}. Note that for a European-type contract, the only exercise
date is at the maturity, for a Bermudan-type contract there are multiple exercise dates, and
for an American-type contract, there are infinitely many exercise dates. We emphasize that
the exercise dates are simply subsets of the time interval [0, T], and provide no information

1We use N = {1, 2, 3 . . .} and N0 = N ∪ {0}, and R+ = (0, ∞).

55

3. Deep learning for CVA computations of large portfolios of financial derivatives

on which exercise policy to follow, except in some trivial cases e.g., when there is only one
exercise date.

Since we want to be able to treat derivatives with early-exercise features, we need to
introduce a framework for stopping times. For j ∈ {1, 2, . . . , J}, an X−stopping time with
respect to Tj(0), is a random variable, τj , defined on (Ω, F , Q), taking on values in Tj(0),
such that for all s ∈ Tj(t), it holds that the event {τj = s} ∈ Hs. Furthermore, we define an
Xt,x−stopping time as an X−stopping time, conditional on Xt = x, and τ ≥ t.

For each derivative, j ∈ {1, 2, . . . , J} we use individual pay-off functions, gj : [0, T]×Rd → R,
which, for t, s ∈ [0, T], with s ≥ t, are assumed to satisfy

E0[|Dt,sgj(s,Xs)|2] <∞. (3.2)

Since we are treating portfolios where the individual derivatives may have different maturities,
we set each pay-off function to zero for all times larger than its maturity, i.e., for j ∈
{1, 2, . . . , J}, x ∈ Rd and for t > max{Tj(0)}, we set gj(t, x) ≡ 0, where max{Tj(0)}
represents the largest element belonging to the set Tj(0).

3.2.2 Risk-free and risky portfolio valuation without netting

The value of a derivative (not) taking default risk of the counterparty into account is referred
to as the risky (risk-free) value. We define the risk-free and the risky values of derivative
j ∈ {1, 2, . . . , J}, at market state (t ∈ [0, T], Xt = x ∈ Rd), and default state 1D

t = ν ∈ {0, 1},
by

Vj(t, x) := sup
τ∈Tj(t)

Et,x [Dt,τgj(τ,Xτ)] , (risk-free value), (3.3)

Uj(t, x, ν) :=ν sup
τ∈Tj(t)

Et,x,1
[︁
1

D
τDt,τgj(τ,Xτ)

+ (1− 1D
τ)Dt,τD

(︂
RVj(τD, XτD)+ + Vj(τD, XτD)−

)︂]︁
, (risky value),

(3.4)

where Tj(t) is the set of all X−stopping times taking on values in Tj(t) and for x ∈ R,
(x)+ = max{0, x} and (x)− = min{0, x}. In the above, we assume a close-out agreement which
uses the risk-free derivative values as reference valuation. At default of the counterparty, the
bank receives only a fraction, R ∈ [0, 1), referred to as the recovery-rate, of the positive part of
each derivative. On the other hand, each derivative with a negative risk-free value at default
needs to be added entirely to the portfolio.

Note that for the risky value we need additional information of prior defaults of the
counterparty, which is captured in the realization, ν ∈ {0, 1}, of the jump-to-default process,
i.e., ν = 1 if no default has occurred prior to, or at t, and ν = 0 otherwise. The notation
above trivially holds for European-type derivatives since the only exercise date is at maturity
of the contract. Furthermore, a barrier-type feature could be added by also including a spatial
dimension to Tj(0). The value of a portfolio, consisting of J derivatives, at market state
(t,Xt = x) and default state 1D

t = ν, without netting, is given by

ΠV(t, x) :=
J∑︂
j=1

Vj(t, x), ΠU(t, x, ν) :=
J∑︂
j=1

Uj(t, x, ν) = ν
J∑︂
j=1

Uj(t, x, 1).

56

3.2 Problem formulation

Using (3.3) and (3.4), the above can be written as

ΠV(t, x) =
J∑︂
j=1

sup
τj∈Tj(t)

Et,x
[︁
Dt,τjgj(τj , Xτj)

]︁
(3.5)

ΠU(t, x, ν) =ν
J∑︂
j=1

sup
τj∈Tj(t)

Et,x,1
[︂
1

D
τj
Dt,τjgj(τj , Xτj)

+ (1− 1D
τj

)Dt,τD
(︁
RVj(τD, XτD)+ + Vj(τD, XτD)−)︁]︂.

(3.6)

Since the aim is to approximate the optimal exercise policy with neural networks, we wish
to re-formulate the problem into an optimization problem, in which the target function can
be represented by a neural network. Following [9] and Chapter 2 we use so-called decision
functions, to determine for each derivative and given a market state, whether or not to
exercise the derivative. For j ∈ {1, 2, . . . , J}, decision function j denoted by fj , is of the form
fj : [0, T]× Rd → {0, 1}. In order to guarantee that an exercise decision can only occur at an
exercise date, we require for s /∈ Tj(0), that fj(s, ·) ≡ 0.

We now restrict our attention to the case when there, for each derivative, is a finite number
of exercise dates, i.e., for j ∈ {1, 2, . . . , J}, it holds that |Tj(0)| ∈ N. From a theoretical
perspective, this excludes American-type derivatives, but from a practical perspective, an
infinite number of exercise dates is often approximated by a large, but finite, number of
exercise dates. This implies that we can still consider American-type derivatives by increasing
the number of exercise dates until the derivative value converges (until the value does not
increase with additional exercise dates). We denote by TΠ(t) the set of dates which represent
an exercise date for at least one of the J derivatives. Mathematically, we define the exercise
dates of the portfolio as

T
Π(t) :=

J⋃︂
j=1

Tj(t), (3.7)

and the number of unique exercise dates in the portfolio is given by N = |TΠ(0)|. We assume
that the initial time T0 = 0 is not an exercise date for any of the derivatives.

To simplify, we use the following notation for the N exercise dates, the risk-factors evaluated
at the N exercise dates, and the discounting between exercise dates

T
Π(0) = {T1, T2, . . . , TN = T}, (3.8)

Xk := XTk
, and Dk,ℓ := DTk,Tℓ

for k, ℓ = 1, 2, . . . , N. (3.9)

Furthermore, for t ∈ [0, T], the risk-factor process on [t, T], conditional on Xt = x, is denoted
by Xt,x = (Xs)s∈[t,T], where we also note that X0,x0 = X. The above notation allows us to
express an Xt,x−stopping time in terms of decision functions2

τnj [fj](Xt,x) :=
N∑︂
k=n

Tkfj(Tk, Xk)
k−1∏︂
m=n

(1− fj(Tm, Xm)). (3.10)

The notation above is used to emphasize that, the decision function fj , controls the exercise
strategy, given the stochastic process Xt,x. Moreover, Xt,x is not just a random value at a

2The empty product is defined as 1.

57

3. Deep learning for CVA computations of large portfolios of financial derivatives

specific time, but the entire process, starting at Xt = x and until stopping occurs. In later
sections the valuation of a derivative or a portfolio is formulated as an optimization problem,
which is optimized by varying fj . Although the notation is practical when optimization is
discussed, it is cumbersome to use when we define the value of a derivative. We therefore use
the following short-hand notation

τ̄n,j := τnj [fj](Xt,x), (3.11)

and keep in mind, that the strategy is controlled by a decision function, fj , and for u ≥ t, the
event I{τ̄n,j≤u} is σ(Xt,x)−measurable. We can now define the value of the risk-free and risky
derivatives, given an exercise strategy expressed in terms of decision functions. For derivative
j ∈ {1, 2, . . . , J}, market state (t, x) ∈ (Tn−1, Tn]× Rd, we define the parametrized valuation
functions

Vj(t, x | fj) :=Et,x
[︂
Dt,τ̄n,j gj

(︂
τ̄n,j , Xτ̄n,j

)︂]︂
, (3.12)

Uj(t, x | fj) :=Et,x,1
[︁
1

D
τ̄n,j

Dt,τ̄n,jgj
(︁
τ̄n,j , Xτ̄n,j

)︁
+
(︁
1− 1D

τ̄n,j

)︁
Dt,τD

(︁
RVj(τD, XτD)+

+ Vj(τD, XτD)−)︁]︁. (3.13)

Similarly, we define the portfolio values with respect to the exercise strategy given by f , as
the parametrized functions

ΥV (t, x |f) :=
J∑︂
j=1
Vj(t, x | fj), ΥU (t, x, ν |f) := ν

J∑︂
j=1
Uj(t, x | fj), (3.14)

where the value of the risky portfolio also depends on the default state of the counterparty,
1D
t = ν ∈ {0, 1}. We now want to find decision functions such that, when inserted in (3.12)

and (3.13), we obtain (3.3) and (3.4). With this in mind, we define for j ∈ {1, 2, . . . , J}, at
t ∈ [0, T], the (optimal) exercise regions, EZ

j (t), in which it is optimal to exercise, and the
(optimal) continuation regions, CZ

j (t), in which it is optimal to hold on, by

EZ
j (t) :=

{︂
x ∈ Rd |Zj(t, x) = gj(t, x) and t ∈ Tj(0)

}︂
,

CZ
j (t) :=

{︂
x ∈ Rd |Zj(t, x) > gj(t, x) or t /∈ Tj(0)

}︂
, for Z ∈ {V,U}.

The above states that the derivative should be exercised if its value equals the immediate
exercise value, and we are at an exercise date and the derivative should not be exercised if its
value is greater than the immediate exercise value or if we are not at an exercise date. Note that
EZ
j (t) ∪ CZ

j (t) = Rd and EZ
j (t) ∩ CZ

j (t) = ∅. For t ∈ [0, T], a decision function, j ∈ {1, 2, . . . , J},
can then be defined as

fZ
j (t, x) := I{x∈EZ

j (t)}, for Z ∈ {V,U}. (3.15)

Furthermore, we denote by f Z, the vector consisting of the individual decision functions

f Z(t, x) := (fZ
1 (t, x), fZ

2 (t, x), . . . , fZ
J (t, x))T , for Z ∈ {V,U}. (3.16)

58

3.2 Problem formulation

For market states (t, x) ∈ [0, T]× Rd and for a derivative j ∈ {1, 2, . . . , J}, it holds that

Vj
(︁
t, x | fDj , fD

j

)︁
= Vj(t, x), Uj

(︁
t, x | fU

j

)︁
= Uj(t, x, 1).

The validity of the above is a direct consequence of Proposition 4 in [9]. In turn, this implies
that by inserting the optimal decision functions in the functionals in equations (3.14), we
obtain the risky and risk-free portfolio values, i.e.,

ΥV (︁t, x |f V)︁ = ΠV(t, x), ΥU(︁t, x, ν |f U)︁ = ΠU(t, x, ν).

In subsequent sections the optimal decision function f Z, for Z ∈ {V,U}, is approximated
with a series of neural networks. The reason for using the rather complicated notation, (3.10),
is that this structure allows us to view the valuation of the derivatives as an optimization
problem over the set of decision functions, which we approximate on some finite-dimensional
function space. One example of such function space is the functions generated by a series of
neural networks with a fixed number of parameters. When we use a specific strategy, e.g.,
f V or f U, this is specified by adding a superscript referring to the particular strategy. For
Z ∈ {V,U}, we define the short-hand notation

τ̄Z
n,j := τnj [fZ

j](Xt,x), (3.17)

where it is assumed that t ∈ (Tn−1, Tn].

3.2.3 Risky portfolio valuation with netting

When considering the risky portfolio value with netting, the problem becomes nonlinear in the
sense that the risky portfolio value is no longer the sum of the individual risky derivative values.
In fact, there no longer exists ”a risky value for a single derivative”, since the valuation needs
to be carried out on a portfolio level. Before we define the risky value of a netted portfolio, we
need to define the process3 A : [0, T]× Ω→ {0, 1}J , which for t ∈ [0, T] and j ∈ {1, 2, . . . , J}
satisfies

(At)j =

 0, if derivative j has been exercised prior to t,

1, else.

Similar to (3.9), we use the short-hand notation for A at initial date, T0, the exercise dates,
T1, . . . , TN ,

Ak := ATk
, for k = 0, 1, . . . , N. (3.18)

The process A is Ht−measurable but it is not enough to know Xt = x in order to determine At.
The reason for defining A is that the exercise decisions for the netted risky portfolio are defined
by a J−dimensional (Xt,x, At,α)−stopping times vector, where At,α = (As)s∈[t,T] conditional on
At = α. This means that, at each exercise date, in addition to the current market state, we need
to know which derivatives in the portfolio have been exercised prior to the current time, in order
to make optimal exercise decisions. We denote, by T ′(t), the space of (Xt,x, At,α)−stopping
times vectors, taking on values in {T1(t),T2(t), . . . ,TJ(t)}. Furthermore, for t ∈ (Tn−1, Tn],

3{0, 1}J is the Cartesian product of {0, 1} × {0, 1} × · · · × {0, 1}, J times.

59

3. Deep learning for CVA computations of large portfolios of financial derivatives

we denote by τnj element j of a stopping times vector τn ∈ T ′(t). The netted portfolio value
with a risky counterparty, given market state Xt = x, default state of the counterparty 1D

t = ν

and portfolio state (exercise state of the derivatives in the portfolio) At = α, is given by

ΠA(t,x, ν, α)

:=ν sup
τ∈T ′(t)

Et,x,1,a

[︄
J∑︂
j=1

αj1
D
τj
Dt,τjgj(τj , Xτj) +Dt,τD

(︄
R

(︄
J∑︂
k=1

αk(1− 1D
τk

)Vk(τD, XτD)
)︄+

+
(︄

J∑︂
ℓ=1

αℓ(1− 1D
τℓ

)Vℓ(τD, XτD)
)︄−)︄]︄

,

(3.19)

where Et,x,ν,α[·] = EQ[· |Xt = x,1D
t = ν,At = α]. To emphasize the importance, we put the

following observations about (3.19) into two remarks.

Remark 3.2.1. The optimal stopping strategies of the individual derivatives in the portfolio
are no longer independent of each other, as in (3.5) and (3.6). Furthermore, the optimal
strategy depends on earlier exercise decisions, meaning that in order to make the exercise
decisions Markovian, we need to include information about earlier decisions. The reason for
this is the non-linearity in the two sums inside the expectation in (3.19). Therefore, the optimal
stopping strategies need to be computed for the entire portfolio simultaneously. To the best of
our knowledge, this has not been done in an ordinary least squares setting before. However, it
is discussed in a PDE framwork in the case of a portfolio of American swaptions in [56].

Remark 3.2.2. The value of the risky portfolio with netting, depends on the J risk-free
derivative values and we are therefore required to approximate the risk-free derivative values.
The reason for this is that, at default, the risk-free value of the portfolio is used as reference
value in the close-out agreement (see Equation (3.19)). If we restrict our portfolio to derivatives
with positive pay-off functions, then Vj can be replaced by gj (by the definition of Vj and the law
of iterated expectations). Furthermore, in the restricted portfolio, the values with and without
netting coincide.

An (Xt,x, At,α)−stopping times vector can be defined by

τn[f](Xt,x, At,x) :=
N∑︂
k=n

Tkf(Tk, Xk, Ak)⊙
k−1∏︂
M=n

(1J − f(Tm, Xm, Am)), (3.20)

where ⊙ is element-wise multiplication and 1J is the J−dimensional vector with only ones,
(1, 1, . . . , 1)T . We denote element j of the stopping times vector by τnj [f](Xt,x, At,α) =(︁
τn[f](Xt,x, At,x)

)︁
j . We emphasize that each element of the stopping time vector depends on

f and not only an element j which is the case without netting. Similar to (3.11), we introduce
a short-hand notation, which simplifies the valuation function

τ̂n := τn[f](Xt,x, At,x), τ̂n,j := (τ̂n)j . (3.21)

We here use ”τ̂ ”, instead of ”τ̄” as in (3.11), to emphasize that the stopping time also takes
At,α as an argument. The netted risky portfolio value, given the exercise strategy obtained by

60

3.2 Problem formulation

decision function f , is then given by

ΥA(︁t, x,ν, α |f)︁ := νEt,x,1,α

[︄
J∑︂
j=1

αj1
D
τ̂n,j

Dt,τ̂n,jgj
(︁
τ̂n,j , Xτ̂n,j

)︁

+Dt,τD

(︄
R

(︄
J∑︂
j=1

αj(1− 1D
τ̂n,j

)Vj(τD, XτD)
)︄+

+
(︄

J∑︂
j=1

αj(1− 1D
τ̂n,j

)Vj(τD, XτD)
)︄−)︄]︄

,

(3.22)

where we, again, remind ourselves that the exercise strategy is controlled by f , and for u ≥ t,
the event I{τ̂ t,j≤u} is σ(Xt,x, At,α)−measurable.

For a netted portfolio, the optimal exercise regions, described in Section 3.2.2, are less trivial.
Firstly, they become dependent on the state of earlier exercise decisions, At = αt ∈ {0, 1}J .
Secondly, the exercise region for derivative j ∈ {1, 2, . . . , J} is expressed under the condition
that an optimal exercise strategy for the other J − 1 derivatives is applied. Therefore, we only
describe the optimal decision function as belonging to the supremum over the space, D, of all
measurable functions, f : [0, T]× Rd × {0, 1}J → {0, 1}J ,

f A ∈ arg max
f∈D

ΥA(︁0, x0, ν0, α0 |f
)︁
, (3.23)

where ν0 = 1 (no default prior to or at t = 0) and a0 = (1, 1, . . . , 1)T (no derivatives have been
exercised prior to t = 0). We then assume that, given the state (t,Xt = x,1D

t = ν,At = α),
the following holds

ΥA(t, x, ν, α |f A) = ΠA(t, x, ν, α). (3.24)

Similar to (3.17), when we want to emphasize the particular choice of decision function, f A,
we use the short-hand notation

τ̂ A
n = τn[f A](Xt,x, At,α) and τ̂A

n,j =
(︂
τn[f A](Xt,x, At,α)

)︂
j
, (3.25)

where it is assumed that t ∈ (Tn−1, Tn].

3.2.4 Credit valuation adjustment of a derivative portfolio

The formal definition of CVA is the difference between the risk-free and the risky portfolio
value. Given models of the underlying market and default events of our counterparty, the
above definition of CVA is straight-forward for a portfolio consisting of derivatives without
optionality e.g., European options, barrier options etc. When it comes to portfolios consisting
of derivatives with true optionality, e.g., the Bermudan options, American options etc. the
standard procedure is not clear. In this section, we define the CVA for portfolios of derivatives
with true optionality as well as some approximations, which simplify the computations. In
the definitions of CVA, we use the portfolio valuations in terms of optimally chosen decision
functions given in equations (3.14) and (3.24). The CVA at (t = 0, X0 = x0), with and without

61

3. Deep learning for CVA computations of large portfolios of financial derivatives

netting, respectively, are given by

CVA := ΥV(︁0, x0 |f V)︁−ΥU(︁0, x0, 1 |f U)︁, (without netting), (3.26)

CVANet := ΥV(︁0, x0 |f V)︁−ΥA(︁0, x0, 1,1J |f A)︁, (with netting). (3.27)

A commonly used approximation is to apply the same exercise strategy to the risk-free and
risky portfolios. One such approximation is defined as

CVA := ΥV(︁0, x0 |f V)︁−ΥU(︁0, x0, 1 |f V)︁, (Risk-free strategy, without netting), (3.28)

CVANet := ΥV(︁0, x0 |f V)︁−ΥA(︁0, x0, 1,1J |f V)︁, (Risk-free strategy, with netting). (3.29)

The only difference between (3.26)-(3.27) and (3.28)-(3.29) is that in the latter the risk-free
strategy is used also for the risky portfolios. One could also think of other definitions, e.g., using
the risky strategies for both portfolios. This particular choice is motivated by the fact that f U

and f A are, in general, dependent on f V through the close-out agreements in (3.13) and (3.22).
Moreover, f V is a sub-optimal strategy for both risky portfolios leading to CVA ≤ CVA, and
CVANet ≤ CVANet, which is beneficial for the bank (but certainly not for the counterparty).
If we instead use only the risky descision functions, i.e., replacing f V with f U in (3.28) and
f A in (3.29), we would obtain an underestimation of the CVAs, which would be unacceptable
for the bank.

As mentioned in the Introduction, the bank is exposed to the risk of CVA losses, as a
consequence of the MtM value of the CVA moving against the bank. We therefore want to
follow the evolution of the CVA over time, to gain insights in its distribution. Of particular
interest is the tail distribution of the CVA, for times between initial time and the maturity
of the portfolio. To explore this, we define the dynamic versions of (3.26)-(3.29), which are
stochastic processes depending on the market and portfolio state processes X and A. For
t ∈ [0, T], the dynamic versions of the CVAs (and their approximations) are given by the
following random variables

CVA(t,Xt, At) :=
J∑︂
j=1

(︁
Vj
(︁
t,Xt | fV

j

)︁
− Uj

(︁
t,Xt | fU

j

)︁)︁
(At)j ,

CVAnet(︁t,Xt, At) :=
J∑︂
j=1
Vj(t,Xt | fV

j

)︁
(At)j −ΥA(︁t,Xt, 1, At |f A)︁,

CVA(t,Xt, At) :=
J∑︂
j=1

(︁
Vj
(︁
t,Xt | fV

j

)︁
− Uj

(︁
t,Xt | fV

j

)︁)︁
(At)j ,

CVAnet(t,Xt, At) :=
J∑︂
j=1
Vj(t,Xt | fV

j

)︁
(At)j −ΥA(︁t,Xt, 1, At |f V)︁.

In the above, the CVA is conditional on that the counterparty has not defaulted prior to, or
at, t (it does not make sense to calculate the CVA if the counterparty has already defaulted).
From the above we can define the Expected value of the CVA (E-CVA), and for α ∈ (0, 1),
the α−level of Value at Risk of the CVA (VaR-CVA) and Expected Shortfall of the CVA

62

3.2 Problem formulation

(ES-CVA),

E-CVA(t) := E [CVA(t,Xt, At) |1t = 1] , (3.30)

VaR-CVAα(t) := inf
{︂
P ∈ R

⃓⃓
Q
(︁
CVA(t,Xt, At) ≤ P

)︁
≥ α

}︂
, (3.31)

ES-CVAα(t) := E
[︁
CVA(t,Xt, At)

⃓⃓
1t = 1 , CVA(t,Xt, At) ≥ VaR-CVAα(t)

]︁
. (3.32)

In a similar way E-CVA(t), ES-CVAα(t), E-CVAnet(t), ES-CVAnet
α (t), E-CVAnet(t) and

ES-CVAnet
α (t) are defined. The expression for the ES-CVA looks complicated but is basically

just the expected value of the α−tail of the CVA distribution. We focus on ES-CVA instead of
VaR-CVA because it is a coherent risk measure and VaR-CVA is not.

Remark 3.2.3. Since ES-CVA is a non-traded risk measure, it should ideally be computed
under the real world measure P, see e.g., [58] for a detailed discussion. To be precise, (Xt, At)
should be generated under the P−measure and, the CVA, which is a tradeable asset, should be
computed under the Q−measure. It is straight-forward to adjust the algorithms in this chapter
be able to compute ES-CVA under the P−measure, see Chapter 2 for details in the special case
J = 1.

3.2.5 Exposure profiles

In this subsection we discuss the concept of exposure profiles for a portfolio of derivatives. The
financial exposure (of the bank) is defined as the maximum amount the bank stands to loose
if the counterparty defaults. The exposure profile is loosely defined as the distribution of the
exposure over time. The exposures, with and without netting, are defined as

ENet
t := max

{︃ J∑︂
j=1

Vj(t,Xt)(At)j , 0
}︃
, Et :=

J∑︂
j=1

max
{︁
Vj(t,Xt)(At)j , 0

}︁
,

where we recall that (At)j = I{τj>t} with τj being the exercise date for derivative j. Furthermore,
for a portfolio without netting, the expected exposure (EE), and for α ∈ (0, 1), the potential
future exposure (PFE) are defined as

EE(t) := E0
[︁
D0,t Et

]︁
, (3.33)

PFEα(t) := inf
{︁
P ∈ R

⃓⃓
Q
(︁
D0,t Et ≤ P

)︁
≥ α

}︁
. (3.34)

Both the expectation and the probability in (3.33) and (3.34) should be interpreted as
conditional on X0 = x0 ∈ Rd. The EE and PFE in the presence of netting, denoted by EENet(·)
and PFENet

α (·), and are obtained by instead using the netted exposure in (3.33) and (3.34).
If we assume a constant recovery rate R ∈ [0, 1), and that X and 1D are independent, i.e.,

the default event of the counterparty is independent of the risk factors, then (3.28) and (3.29)
can be written as

CVA = (1−R)
∫︂ T

0
EE(t)Q (τD ∈ [t+ dt)) , CVANet = (1−R)

∫︂ T

0
EENet(t)Q (τD ∈ [t+ dt)) ,

63

3. Deep learning for CVA computations of large portfolios of financial derivatives

which can be approximated by

CVA ≈ (1−R)
M∑︂
m=1

EE(tm)Q (τD ∈ (tm−1, tm]) , CVANet

≈ (1−R)
M∑︂
m=1

EENet(tm)Q (τD ∈ (tm−1, tm]) ,

for some partition of [0, T], with t0 = 0 and tM = T . The above formulations require access to
the density of default events, but may be more accurate, especially for large M and a small
probability of default (with a simulation-based approach, problems with a low probability of
default can often be tackled with variance reduction techniques).

3.3 Algorithms

In the first part of this section, we present a neural network-based method to approximate the
decision functions introduced in the previous section. The method generalizes the Deep Optimal
Stopping proposed in [9] and extended in Chapter 2, which approximates stopping decisions
for a single derivative, to be applicable also for portfolios of derivatives with early-exercise
features. Furthermore, for the risky portfolios, the algorithm is extended to be able to deal
with default risk of the counterparty. The algorithm is based on a series of neural networks,
which are optimized backwards in time with the objective to maximize the expected discounted
cash-flows.

In the second part of this section, the exercise policy obtained from the approximate
decision functions is applied pathwise on realizations of the risk factors of each derivative in the
portfolio to generate pathwise cash-flows. These cash-flows are used in a neural network-based
regression algorithm to approximate pathwise derivative values. These pathwise derivative
values can then be used to compute important risk management measures.

3.3.1 Phase I: Learning exercise strategy

As indicated above, the core of the algorithm is to approximate decision functions, in order
to obtain good approximations of the value of a portfolio of derivatives. We approximate the
decision functions f V, f U and f A, with fully connected neural networks. To be more precise,
let N = |TΠ(0)|, for n ∈ {1, 2, . . . , N} and for Z ∈ {V,U}, the decision function f Z(Tn, ·),
is approximated by a fully connected neural network of the form f θn : Rd → {0, 1}J , where
θn ∈ Rqn is a vector containing all the qn ∈ N trainable parameters in network n. The decision
function f A(Tn, ·, ·) is approximated by similar neural networks, with the only difference that
the input also includes information of which derivatives in the portfolio have been exercised
prior to Tn, i.e., f θn : Rd × {0, 1}J → {0, 1}J .

Since binary decision functions are discontinuous, and therefore unsuitable for gradient-type
optimization algorithms, we use as an intermediate step, the neural network F θn : Rd → (0, 1)J .
Instead of a binary decision, the output of the neural network F θn can be viewed as the
probability4 for exercise to be optimal. This output is then mapped to 1 for values above (or

4However the interpretation as a probability may be helpful, one should be careful since it is not a rigorous
mathematical statement. It should be clear that there is nothing random about the stopping decisions, since

64

3.3 Algorithms

equal to) 0.5, and to 0 otherwise, by defining f θn(·) = a ◦F θn(·), where a is a component-wise
round-off function, i.e., for j ∈ {1, 2, . . . , J}, and x ∈ Rd, the j:th component of a(x) is given
by (a(x))j = I{xj≥1/2}. For each Z ∈ {V,U}, our aim is to adjust the parameters θ1, θ2, . . . , θN

such that

(f Z(T1, ·),f Z(T2, ·), . . . ,f Z(TN , ·))T ≈ (f θ1 ,f θ2 , . . . ,f θN)T =: fΘ, (3.35)

(f A(T1, ·, ·),f A(T2, ·, ·), . . . ,f A(TN , ·, ·)),T ≈ (f θ1 ,f θ2 , . . . ,f θN)T =: fΘ, (3.36)

where we recall that Θ = {θ1, θ2, . . . , θN}. For n ∈ {1, 2, . . . , N}, we define the sequence of
neural networks, approximating the decision functions at exercise dates Tn, Tn+1, . . . TN , by
f

Θ
n := (f θn ,f θn+1 , . . . ,f θN)T . Note that the input dimension for the neural networks is different

when we want to approximate f V and f U compared to when we want to approximate f A.
To avoid having to introduce an extra layer of notation, we use for all networks Θ to denote
the set of parameters, and keep in mind that the dimension depends on the specific problem
considered. Although the above provides a good intuition for what we want to accomplish, it is
not clear in which sense we want the functions to be similar, or how to adjust the parameters
to achieve this. To approach a more tractable form, from a computational perspective, for
t ∈ (Tn−1, Tn], we insert (3.35) in (3.10) and (3.36) in (3.20) to obtain

τ [fΘ
n](Xt,x) =

N∑︂
k=n

Tkf
θk(Xk)⊙

N∏︂
m=k

(︂
1J − f θm(Xm)

)︂
, (3.37)

τ [fΘ
n](Xt,x, At,α) =

N∑︂
k=n

Tkf
θk(Xk, Ak)⊙

N∏︂
m=k

(︂
1J − f θm(Xm, Am)

)︂
. (3.38)

Note that (3.37) is a J−dimensional vector of X−stopping times and (3.38) is a J−dimensional
(X,A)−stopping times vector, which depends on f

Θ
n on a structural level but also on the

randomness of the stochastic process Xt,x (and At,α for (3.38)). For notational convenience, we
use the short hand notation τ̄ Θ

n = τ [fΘ
n](Xt,x) (or τ̂ Θ

n = τ [fΘ
n](Xt,x, At,α), when approximating

f A), and for element j ∈ {1, 2, . . . , J}, τ̄Θ
n,j =

(︁
τ̄ Θ
n

)︁
j

(or τ̂Θ
n,j =

(︁
τ̂ Θ
n

)︁
j
). We are now ready

to define our objective, which, for Tn ∈ TΠ(0), is to find θn such that the expected future
cash-flows are maximized. The cash-flows can be divided into three categories:

1. The cash-flows obtained by the derivatives exercised at the present time Tn;

2. The cash-flows obtained at later exercise dates prior to default of the counterparty;

3. The cash-flows obtained at default of the counterparty, according to the close-out
agreement.

For n ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J}, we denote dimension j of decision function f θn by

(︁
f θn

)︁
j

= fθn
j , and

(︁
F θn

)︁
j

= F θn
j

the stopping time is Ht−measurable. It can also be interpreted as a measure on how certain we can be that
exercise is optimal.

65

3. Deep learning for CVA computations of large portfolios of financial derivatives

Given that no default has occurred prior to Tn, (and the exercise state An = α for the risky
portfolio with netting) the expected cash-flows, that we want to maximize, are given below.

Risk-free portfolio:

ETn

[︄
J∑︂
j=1

fθn
j (Xn) gj(Tn, Xn) +

(︁
1− fθn

j (Xn)
)︁
DTn,τ̄V

n+1,j
gj
(︂
τ̄V
n+1,j , Xτ̄V

n+1,j

)︂]︄
,

(3.39)

Risky portfolio without netting:

ETn

[︄
J∑︂
j=1

fθn
j (Xn) gj(Tn, Xn) +

(︁
1− fθn(Xn)

)︁(︂
1

D
τ̄U

n+1,j
DTn,τ̄U

n+1,j
gj
(︂
τ̄Un+1,j , Xτ̄U

n+1,j

)︂

+
(︂
1− 1D

τ̄U
n+1,j

)︂
Dt,τD

(︁
RVj(τD, XτD)+ + Vj(τD, XτD)−)︁)︂]︄,

(3.40)

Risky portfolio with netting:

ETn

[︄
J∑︂
j=1

αjf
θn
j (Xn, α) gj(Tn, Xn) + αj

(︁
1− fθn

j (Xn, α)
)︁
1

D
τ̂U

n+1,j
DTn,τ̂

U
n+1,j

gj
(︂
τ̂Un+1,j , Xτ̂U

n+1,j

)︂

+R

(︃ J∑︂
k=1

αk
(︁
1− fθn

k (Xn, α)
)︁(︂

1− 1D
τ̂U

n+1,k

)︁
Dt,τDVk(τD, XτD)

)︃+

+
(︃ J∑︂
ℓ=1

αℓ
(︁
1− fθn

ℓ (Xn, α)
)︁(︂

1− 1D
τ̂U

n+1,ℓ

)︂
Dt,τDVℓ(τD, XτD)

)︃−]︄
.

(3.41)

We want to optimize θn, such that the above are as close as possible (in mean squared sense)
to ΠV(Tn, Xn), ΠU(Tn, Xn, 1) and ΠA(Tn, Xn, 1, α), respectively.

Remark 3.3.1. The objectives for the risky portfolios, in (3.40) and (3.41), both depend
on the risk-free valuation of the derivatives. Therefore, in order to approximate the risky
decision functions, we first need to approximate the risk-free exercise strategy, and the risk-free
derivative values. In the next subsection, we explain how Vj can be approximated.

Although (3.39)-(3.41) are accurate representations of the optimization problems, they
give us some practical problems. In general, we have no access to f V, f U and f A which control
τ̄ V
n+1, τ̄ U

n+1 and τ̂ A
n+1. Another problem is that, in general, we have no access to the true

distributions of the portfolio values for comparison. However, if TÑ is the maturity of derivative
j ∈ {1, 2, . . . , J}, it is optimal to exercise as long as the pay-off value is positive, by the
definition of the decision functions. We can therefore set

f
θÑ
j (·) := I{gj(TÑ , ·)>0}, and fθk

j (·) := 0, for k > Ñ.

Furthermore, at TN , the maturity of the portfolio, the positive part of the pay-off value equals
the derivative value (if no default in (TN−1, TN], in the risky cases). At TN−1, Equation (3.39)

66

3.3 Algorithms

then becomes

ETN−1

[︂ J∑︂
j=1

f
θN−1
j (XN) gj(TN−1, XN−1) +DN−1,N

(︁
1− fθN−1

j (XN−1)
)︁
gj(TN , XN)

]︂
. (3.42)

Recall that if TN is greater than the maturity of contract j, we have gj(TN , ·) ≡ 0. Since
all components in (3.42) are known except for the decision function f θN−1 , we want to find
θN−1, such that a Monte-Carlo approximations of (3.42) is maximized. Given M ∈ N samples,
distributed as X, which for m ∈ {1, 2, . . . ,M} is denoted by x = (xt(m))t∈[0,T], we approximate
(3.42) by

1
M

M∑︂
m=1

J∑︂
j=1

f
θN−1
j (xN−1(m)), gj(TN−1, xN−1(m))

+DN−1,N
(︁
1− fθN−1

j (xN−1(m))
)︁
gj
(︁
TN , xN (m)

)︁
. (3.43)

The only unknown entity in (3.43) is the parameter θN−1 in the decision function
f θN−1 = (fθN−1

1 , . . . , f
θN−1
j)T . Furthermore, we wish to find θN−1 such that (3.43) is maximized,

since it represents the average cash-flow in [tN−1, tN]. Once θN−1 is optimized, we use this
parameter to set up a similar expression for the expected cash-flow on [tN−2, tN], which is
maximized by finding an optimal θN−2. This procedure is then iteratively continued until also
θN−3, θN−4, . . . , θ1 are optimized. The procedure is similar for the risky portfolios, but based
on (3.40) or (3.41) instead. This implies that we also need to sample default events of the
counterparty. We denote by θ∗

n the optimized version of parameter θn and the sequence of
optimized parameters for the networks at exercise dates Tn, Tn+1, . . . , TN are defined as

Θ∗
n := {θ∗

n, θ
∗
n+1, . . . , θ

∗
N},

and for notational convenience, we define the complete sequence of parameters as Θ∗ := Θ∗
1.

Remark 3.3.2. Since we are considering a portfolio in which all the derivatives may have
a different set of exercise dates, we have that for Tn ∈ TΠ(0), there are JEx

n ∈ {1, 2, . . . , J}
derivatives that may be exercised. Therefore, we only need to compute JEx

n of the J dimensions
of f θn and can by default set the remaining J − JEx

n dimensions of f θn to 0. This can be done
by appropriately adjusting some weights and biases.

To keep the flow of the chapter, the details of the algorithms and the parameters θn are
given in the Appendix.

3.3.2 Phase II: Learning pathwise derivative values and portfolio exposures

As mentioned in Remark 3.3.1, the risk-free derivative values need to be approximated pathwise
in order to approximate the risky decision functions. Moreover, the pathwise derivative values
are required to approximate the exposure profiles for the risk-free, as well as the risky portfolios.
In this subsection, we focus on the risk-free portfolios, but the extension to risky portfolios is
straight-forward.

We use the risk-free, stopping strategy from subsection 3.3.1 to generate pathwise cash-flows,
which are in turn used to approximate the pathwise derivative values. Let Tn−1, Tn ∈ TΠ(0),

67

3. Deep learning for CVA computations of large portfolios of financial derivatives

for t ∈ (Tn−1, Tn], we denote the vector-valued discounting process and pay-off function,
respectively, by

D(t, τ V
n) :=

D(t, τV

n,1)
...

D(t, τV
n,J)

 and, g(τ V
n, X

t,x) :=

g1(τV

n,1, XτV
n,1

)
...

gJ(τV
n,J , XτV

n,J
)

 . (3.44)

Using the notation above, we define the vector-valued cash-flow process as

Y t := Dt,τ V
n
⊙ g(τ V

n, Xτ V
n

), (3.45)

and for j ∈ {1, 2, . . . , J}, we denote the j:th element of Y t by Yt,j , and we emphasize that Y t

is not Ht−measurable.

3.3.2.1 Regression problems

In this subsection we use standard regression theory, see e.g., [45], to show that derivative
values, exposures, and other entities of interest, can be formulated as the solution to certain
minimization problems. We introduce the following notation for measurable functions5

D(C1;C2) := { f : C1 → C2 | f measurable}. (3.46)

First, we recall a basic property of the regression function. Let X : [0, T] × Ω → C1 and
Y : [0, T] × Ω → C2 be a stochastic process, which for t, u ∈ [0, T], with t ≤ u, satisfies
E0[|Yt|2] <∞. We define the regression function, which satisfies

m(t, ·) ∈ arg min
h∈D(C1;C2)

Et [∥h(Xt)− Yu]∥22], (3.47)

where ∥ · ∥2 is the Euclidean norm. It then holds, for x ∈ Ra, that the regression function is
given by the conditional expectation

m(t, χ) = EQ[︁Yu ⃓⃓Xt = χ
]︁
. (3.48)

Using the notation from above, and by choosing C1, C2, X and Y in (3.47) and (3.48) wisely,
we can approximate different entities related to e.g., the exposure profiles or the pathwise
CVA. For instance the exposures, both with and without netting, can be approximated from
the solution of a minimization problem of the form in (3.47). For Tn−1, Tn ∈ TΠ(0), let
t ∈ (Tn−1, Tn] and denote V (t, ·) = (V1(t, ·), . . . VJ(t, ·))T , it then holds that

V (t, ·) ∈ arg min
h∈D(Rd;RJ)

Et
[︂
∥h(Xt)− Y t∥22

]︂
, (3.49)

J∑︂
j=1

Vj(t, ·)(At)j ∈ arg min
h∈D(Rd×{0,1}J ;R)

Et
[︃⃓⃓⃓
h(Xt, At)−

J∑︂
j=1

Yt,j(At)j
⃓⃓⃓2]︃
. (3.50)

5We assume measurable spaces (C1, C1) and (C2, C2) and measurable functions with respect to σ-algebras
C1 and C2. This assumption holds for all cases in this chapter.

68

3.3 Algorithms

In (3.49), we have C1 = Rd, C2 = RJ , X = X and Y = Y and in (3.50), we have C1 = Rd ×
{0, 1}J , C2 = R, X = (X,A) and Y = ∑︁J

j=1 Y·,j(A)j . For s ∈ [0, T] and for j ∈ {1, 2, . . . , J},
by (3.2), it holds that E0

[︁
|Ys,j |2

]︁
<∞, and therefore also E0

[︁
∥Y s∥22

]︁
<∞. Now, (3.49) holds

trivially since by definition V (t, x) = Et,x
[︂
Dt,τ V

n
⊙ g(τ V

n, Xτ V
n

)
]︂

= Et,x [Y t]. For (3.50), it
follows that

J∑︂
j=1

Vj(t, x)(At)j =
J∑︂
j=1

Et,x
[︂
Dt,τV

n,j
gj(τV

n,j , XτV
n,j

)
]︂

(At)j (3.51)

= Et,x

 J∑︂
j=1

Dt,τV
n,j
gj(τV

n,j , XτV
n,j

)(At)j

 = Et,x

 J∑︂
j=1

Yt,j(At)j

 , (3.52)

where we have used linearity of expectations and the fact that At is Ht−measurable.

3.3.3 Neural network-based regression algorithm

Since the specific details of the neural networks are transferable from Appendix 3.5.1 and
3.5.2, this subsection is less detailed. The main idea is to represent D(RA;Rb) (measurable
functions from RA to Rb, defined in (3.46)) by a parametrized neural network. A minimization
problem of the form (3.47) can then be used as a loss function, which should be minimized
by adjusting some set of trainable parameters. However, in general we have no access to τ V

n

for n < N , where N = |TΠ(0)|. On the other hand, we can use the exercise strategy from
Subsection 3.3.1, i.e., approximate τ V

n by τ̄ Θ∗
n =

(︁
τ̄Θ∗
n,1, . . . , τ̄

Θ∗
n,J

)︁T . Furthermore, Et[·] in (3.48)
needs to be approximated by Monte-Carlo samples. We use Mreg ∈ N samples, distributed
as X and Y , which for m ∈ {1, 2, . . . ,Mreg} are denoted by6 xreg(m) = (xreg

t (m))t∈[0,T] and
y(m) = (yt(m))t∈[0,T]. Furthermore, we use

At(m) ≈ AΘ∗
n

t (m) =

I{︁
τ̄Θ∗

n,1(m)>t
}︁,

...
I{︁
τ̄Θ∗

n,J (m)>t
}︁

 ,

where for j ∈ {1, 2, . . . , J}, τ̄Θ∗
n,j(m) =

(︂
τ [fΘ∗

n](xt,x
reg
t (m)(m))

)︂
j
.

We define for n ∈ {1, 2, . . . , N}, the neural networks hΦn : Rd → RJ and hΦn : Rd ×
{0, 1}J → R, which are parametrized by ΦIR

n ∈ RuIR
n and ΦPR

n ∈ RuPR
n where uIR

n , u
PR
n ∈ N are

the number of trainable parameters in each network. We use as loss functions, the empirical
counterparts of (3.49) and (3.50), which are given by

DOS-IR: 1
Mreg

Mreg∑︂
m=1
∥hΦ1

n(xreg
t (m))− yt(m)∥22, (3.53)

DOS-PR: 1
Mreg

Mreg∑︂
m=1

⃓⃓⃓
hΦ2

n
(︁
xreg
t (m), AΘ∗

n
t (m)

)︁
−

J∑︂
j=1

yt,j(m)
(︁
A

Θ∗
n

t (m)
)︁
j

⃓⃓⃓2
. (3.54)

”DOS” in DOS-IR and DOS-PR refers to the fact that the deep stopping strategy used to obtain
y(m) is generated by the DOS-algorithm. ’IR’ and ’PR’ are abbreviations for ”individual

6In practice we set xreg = xval, where xval is defined in Phase I.

69

3. Deep learning for CVA computations of large portfolios of financial derivatives

regression” and ”portfolio regression”, and refer to the regression at the level of each individual
derivative, and the regression at portfolio level given in (3.53) and in (3.54), respectively.

The exact algorithm for computations of pathwise CVA in order to obtain ES-CVA is
not presented in details here. However, it is straight-forward to adjust (3.53) and (3.54), to
approximate pathwise CVA instead.

The only important adjustment to the structure of the neural networks (details in Appendix
3.5.1) is that we want the output to be unbounded and therefore use the identity as scalar
activation function in the output layers.

3.3.4 Combining Phase I and Phase II

Recall that the purpose for using regression at the level of each derivative was to be able to
approximate the exposure of a portfolio of derivatives without netting agreement. If we consider
derivatives with non-negative value, the definitions of exposures with and without netting
agreements coincide. Therefore, only derivatives with non-negative values are considered in this
chapter, to be able to compare regression on derivative level with the regression on portfolio
level. For Tn−1, Tn ∈ TΠ(0), let t ∈ (Tn−1, Tn], we define the following approximators

V DOS-IR (︁t, · ⃓⃓ΦIR
n ,Θ∗)︁ := hΦIR

n (·), (individual derivative values), (3.55)

EDOS-IR (︁t, · ⃓⃓ΦIR
n ,Θ∗)︁ := hΦIR

n (·)⊙AΘ∗
t , (derivative exposures), (3.56)

EDOS-IR (︁t, · ⃓⃓ΦIR
n ,Θ∗)︁ :=

J∑︂
j=1

(︁
hΦIR

n (·)
)︁
j
(AΘ∗

t)j , (portfolio exposure), (3.57)

EDOS-PR (︁t, · ⃓⃓ΦPR
n ,Θ∗)︁ := hΦPR

n (·, AΘ∗
t), (portfolio exposure), (3.58)

where ΦIR
n , and ΦPR

n are parameters optimized by minimizing (3.53) and (3.54), respectively, and
Θ∗ are parameters optimized according to the procedure described in the training procedure,
described in Phase I, and It ∈ {0, 1}J represents the exercise history of each derivative in the
portfolio. Note that, even though Θ∗ does not appear explicitly in the right hand side of (3.55),
it is crucial since the cash-flow vector y, used in (3.53) and (3.54), is created by applying
an exercise strategy controlled by Θ∗. The approximations of EE and PFE are constructed
from Mtrain ∈ N independent realizations of X, which for m ∈ {1, 2, . . . , M} are denoted by
(xtrain
t (m))t∈[0,T]. For z ∈ {IR,PR}, the approximators are given by

ˆ︃EEDOS-z(t) :=
M∑︂
m=1

ΠDOS-z (︁t, x(m)
⃓⃓
Φz
n,Θ∗)︁ , (3.59)

ˆ︁PFE
DOS-z
α (t) := ΠDOS-z (︁t, x(iα)

⃓⃓
Φz
n,Θ∗)︁ , (3.60)

where iα is the index of the empirical α−percentile of the vector(︂
ΠDOS-z (︁t, x(1)

⃓⃓
Φz
n,Θ∗)︁ , . . . ,ΠDOS-z (︁t, x(M)

⃓⃓
Φz
n,Θ∗)︁)︂.

3.4 Numerical experiments

In the numerical experiments we use a Geometric Brownian Motion (GBM) to model the
asset processes and an intensity model for default events of the counterparty. To be able to

70

3.4 Numerical experiments

incorporate WWR, the default intensity is linked to the market state of the asset processes.
The default event is triggered by an exogenous component, independent of observable market
information. On the other hand, the intensity depends on the credit spread of the counterparty
(observable from zero-coupon bonds) as well as a WWR-parameter. Our model choices are not
necessarily used in practice but they serve the purpose of being easy to analyse. Especially
the default model makes it straight-forward to analyze the effects of the credit spread of the
counterparty and the WWR-parmeter. It should be pointed out that the algorithms described
in this chapter are model independent in the sense that they are fully data-driven. This means
that as long as we can sample (or in any other way obtain) market data and default events,
we can train the neural networks and the computations below can be performed.

In addition, the algorithms have also been implemented for a portfolio of Bermudan
swaptions with dynamics following the one-factor Hull–White model. The results are similar,
and are therefore not included in this section.

3.4.1 Risk-factor model

In the Black–Scholes framework, the assets are described by a N+ ∋ d−dimensional Geometric
Brownian. For t ∈ [0, T], with constant risk-free rate r ∈ R, initial state s0,∈ (0,∞)d, constant
dividend q ∈ (0,∞)d and volatility σ ∈ (0,∞)d, component i ∈ {1, 2, . . . , d} of the asset
process S = (St)t∈[0,T] is given by

(St)i = (s0)i exp
(︂(︂
r − qi −

σ2
i

2
)︂
t+ σi(Wt)i

)︂
, (3.61)

where W = (Wt)t∈[0,T] is a correlated standard Brownian motion, satisfying for i, j ∈
{1, 2, . . . , d},
E0[d(Wt)id(Wt)j] = ρijdt, with ρij ∈ [−1, 1].

3.4.2 Default model

Following [59], we model a default event of the counterparty as

τD = inf
t∈[0,T]

{︂
t :
∫︂ t

0
h̃(u, S̃u)du ≥ E1

}︂
,

where E1 is a random variable, uniformely distributed on [0, 1]. Furthermore, the process
(S̃t)t∈[0,T] is the geometric average of the d component of the dividend-free version of S, given
by

S̃t =
d∏︂
i=1

(︃
(s0)i exp

(︂(︂
r − σ2

i

2
)︂
t+ σi(Wt)i

)︂)︃1/d
.

For simplicity, without loss of generality, from now on, we assume no correlation between the
components of the Brownian motions, i.e., ρij = 0 for i ̸= j. The above is a one-dimensional
GBM, which can be written as

S̃t = s̃0 exp
(︃(︂
µ̃− σ̃2

2
)︂
t+ σ̃W̃ t

)︃
,

71

3. Deep learning for CVA computations of large portfolios of financial derivatives

where s̃0 =
(︂∏︁d

i=1(s0)i
)︂1/d

, σ̃ = 1
d

(︂∑︁d
i=1 σ

2
i

)︂1/2
, µ̃ = r − 1

2d
(︁
1 − 1

d

)︁∑︁d
i=1 σ

2
i and W̃ t =

1
dσ̃

∑︁d
i=1 σi(Wt)i. For (t, x) ∈ [0, T] × R+, h̃ is of the form h̃(t, x) = c(t) + b log x. It can be

checked that W̃ = (W̃ t)t∈[0,T], is a 1-dimensional standard Brownian motion. By setting

c(t) = h̄+ b log S̃0 −
(︁
r − σ̃2

2
)︁
bt+ 1

2b
2σ̃2t2,

we obtain
h̃t = h̃(t, S̃t) = h̄+ 1

2 σ̃
2t2b2 + bσ̃W̃ t.

The economic interpretation of the above is that h̄ is the credit spread for the counterparty
and b controls the wrong way risk (WWR).

Recall that the jump-to-default process, 1D, is given by 1D
t = I{t<τD} which gives a survival

probability Gt = EQ[1D
t |Ht] = exp

(︂
−
∫︁ t

0 h̃sds
)︂

(for details, see [59]).

3.4.3 Experiments

Contract details:
We consider a portfolio of J = 8 derivatives, depending on an asset process in d = 2
dimensions. We set T = 3 and use for each derivative, j ∈ {1, 2, . . . , 8}, the set of exercise
dates Tj(t) = Tj =

{︂
0, 1

3 ,
2
3 , 1,

4
3 ,

5
3 , 2,

7
3 ,

8
3 , 3
}︂

, and the pay–off functions given in Table 3.2.

Contract number Contract name Pay-off function
j=1 Max-call option (max{x1, x2} − 100)+

j=2 Max-put option (100−max{x1, x2})+

j=3 Geometric-average-call option
(︁√
x1x2 − 100

)︁+
j=4 Geometric-average-put option

(︁
100−√x1x2

)︁+
j=5 Arithmetic-average-call option

(︂
1
2(x1 + x2)− 100

)︂+

j=6 Arithmetic-average-put option
(︂
100− 1

2(x1 + x2)
)︂+

j=7 1d-call option (x1 − 100)+

j=8 1d-put option (100− x1)+

Table 3.2: The two components of the asset process, S, are represented by x1, x2 ∈ R and
(·)+ = max{ · , 0}.

Dynamics details:
For i ∈ {1, 2}, we set (s0)i = 100, qi = 0.1, r = 0.05, σi = 0.2, ρii = 1 and ρ12 = ρ21 = 0.
Neural network details:
We use Mtrain = Mreg = Mreg = M = 220, and for simplicity, the same structure and
hyperparameter-settings are used in all networks, i.e., all the networks in Phase I, and Phase
II. We use training batches of size 5000, 3 hidden layers and 30 nodes in each hidden layer.
Furthermore, the learning rate decreases step-wise, with equally sized steps after 100 training
batches from 10−2 to 10−6.

3.4.3.1 Risk-free valuation

The purpose of the risk-free valuation is two-fold. Firstly, since the risky derivative values
are used as an input in the risky-valuations, they need to be accurate. To ensure accuracy,

72

3.4 Numerical experiments

the risk-free values are compared to a well-established existing valuation method, namely the
Stochastic Grid Bundling Method (SGBM), see [28] for details. Secondly, it is in its own, an
interesting and challenging problem to compute the value of a portfolio of complex derivatives
with early-exercise features, without having to do one computation per derivative.

As mentioned above, we compare the algorithms introduced in earlier sections with the
SGBM. We emphasize that the values for each derivative needs to be approximated individually
when using SGBM, i.e., we perform 8 regressions, one for each derivative. In Table 3.3, we
compare the value at t = 0 for each derivative approximated with the portfolio version of the
DOS-algorithm and the SGBM. In Table 3.3, we compare our values for each derivative at
the initial time with the values obtained by SGBM. For the DOS-values, the neural network
is trained five times, and evaluated on new, independent, samples and the average values
are reported. For the SGBM, the regression is performed five times for each derivative, and
the average values of the direct estimators are reported. It should be mentioned that, for
j ∈ {3, 4, 5, 6, 7, 8}, the SGBM-values are biased high7 and, for all j, the DOS-values are
biased low. In Figure 3.1 to the left we compare EE, PFE97.5 and PFE2.5 approximated

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 Π(0, s0)
Ref. 13.902 NA NA NA NA NA NA NA NA
DOS 13.902 9.520 4.363 16.770 4.919 15.313 7.965 18.021 90.773
SGBM 13.899 9.780 4.366 16.770 4.971 15.327 7.963 18.033 91.108

Table 3.3: Valuation at the level of each derivative with the portfolio version of DOS, and the
SGBM. The reference solution is computed by a binomial lattice model in [24].

with SGBM and according to (3.59) and (3.60). To the right, we compare the derivative-
wise EE approximated with SGBM and the DOS-IR based algorithm. In the DOS-IR based
algorithm, the EE is approximated by evaluating (3.56) at x(1), . . . , x(M) and computing the
component-wise sample mean.

Figure 3.1: Left: EE, PFE97.5 and PFE2.5 at portfolio level computed with DOS-PR, DOS-IR and
SGBM respectively. Right: EE at derivative level computed with DOS-IR and SGBM, respectively.

We conclude that, although very different in nature, the SGBM and the two methods
presented in this chapter, agree on the values at time 0, the tail-distribution of the portfolio
exposure over time (at least at the 97.5 and 2.5 percentiles), and the average values of each
derivative over time. We emphasize, that we do not claim that one of the methods perform

7The reason that the SGBM-values are not biased high for j ∈ {1, 2} can be explained by the non-linearity
of the max-operator in the pay-off functions. For more details we refer to [28].

73

3. Deep learning for CVA computations of large portfolios of financial derivatives

better than the others. For an analysis of the difference in performance between the methods
(in the special case J = 1), we refer to Chapter2.

3.4.3.2 Risky valuation

In this subsection we focus on the impact of the exercise policy for CVA computations. To be
more precise, we investigate to what extent the CVA is overestimated when using the risk-free
exercise policy, with and without netting, for different levels of WWR and credit quality of
the counterparty. The contracts described in Table 3.2 all have positive pay-offs meaning that
the corresponding derivative values are also positive. This eliminates the netting effect, and
therefore, we add a derivative to the portfolio, which may take on negative values. The 9:th
derivative is a European-type future with pay-off g9(t, St) = 2 ×

(︁
80 − (St)1

)︁
I{t=T}. By the

martingale property we have that

V9(t, St) = Et
[︁
e−r(T−t)g9(T, ST)

]︁
= 160e−r(T−t) − 2(St)1e−q1(T−t).

Furthermore, in the netted portfolio, we include an interest rate-free collateral, C = 35. The
collateral is such that, at a default, the banks exposure is lowered by 35, and added to the
close-out amount. If no default occurs before maturity, then the collateral plays no role.

h̄ ΥV
[︁
f V]︁ ΥU

[︁
f U]︁ ΥU

[︁
f V]︁ ΥA

[︁
f A]︁ ΥA

[︁
f V]︁

0 78.62 77.47 77.41 77.86 77.84
b = −0.2 0.1 78.62 59.07 57.22 69.20 67.72

0.2 78.62 47.58 42.99 64.17 60.82
0 78.62 78.62 78.62 78.62 78.62

b = 0 0.1 78.62 59.50 58.00 69.55 68.39
0.2 78.62 47.83 43.58 64.37 61.32
0 78.62 78.28 78.27 78.59 78.58

b = 0.2 0.1 78.62 59.65 58.31 69.78 68.75
0.2 78.62 47.89 43.78 64.51 61.55

Table 3.4: Portfolio valuation with and without netting for different early-exercise policies.
We use the short hand notations ΥV

[︁
f
]︁

= ΥV
(︁
0, s0 |f

)︁
, ΥU

[︁
f
]︁

= ΥU
(︁
0, s0, 1 |f

)︁
and

ΥA
[︁
f
]︁

= ΥA
(︁
0, s0, 1,19 |f

)︁
. Furthermore, in this table fV, fU and fA represent our neural

network approximations of the optimal decision functions.

h̄ CVA CVA Rel. ov.est.
0 1.15 1.21 5.2%

b = −0.2 0.1 19.55 21.40 9.5%
0.2 31.04 35.63 14.8%
0 0 0 0%

b = 0 0.1 19.2 20.62 7.4%
0.2 30.79 35.04 13.8%
0 0.34 0.35 2.9%

b = 0.2 0.1 18.97 20.31 7.1%
0.2 30.73 34.84 13.4%

Table 3.5: CVA for a portfolio without netting. The relative error in the column to the right
represents, in percentage, the overestimation of the CVA by using only the risk-free policy for
early-exercise. ’Rel. ov.est.’ is short for ’Relative overestimation’.

74

3.4 Numerical experiments

h̄ CVAnet CVAnet Rel. ov.est.
0 0.78 0.834 6.4%

b = −0.2 0.1 9.42 10.90 15.7%
0.2 14.45 17.80 23.2%
0 0 0 0%

b = 0 0.1 9.07 10.23 11.4%
0.2 14.25 17.30 21.4%
0 0.0364 0.0374 5.6%

b = 0.2 0.1 8.83 9.87 11.7%
0.2 14.11 17.07 21.0%

Table 3.6: CVA for a portfolio with netting. The relative error in the column to the right represents,
in percentage, the overestimation of the CVA by using only the risk-free policy for early-exercise.
’Rel. ov.est.’ is short for ’Relative overestimation’.

Figure 3.2: Time 0 expectation and expected shortfall at level 97.5% of CVA for the risky-free
and the risky exercise policies. Left: Without netting. Right: With netting.

75

3. Deep learning for CVA computations of large portfolios of financial derivatives

In Table 3.4, the portfolio values with and without netting are displayed for different
exercise policies and for different credit qualities and WWR-parameters. We see that for
low values of h̄ (credit spread), i.e., for high credit quality of the counterparty, the risk-free
exercise policy is a relatively good approximation also for the risky portfolios. However, when
the credit quality decreases, the importance of the correct exercise policy increases. This is
also reflected in Tables 3.5 and 3.6 in which the corresponding CVA-values are displayed. In
practice, a counterparty with a bad credit quality is penalized twice; first by paying a larger
CVA (justified), and secondly for paying a CVA which is more overestimated (not justified).
The effect is even more significant when we look at expected shortfalls. In Figure 3.2, we see
that the ES-CVA, at 97.5% level, is overestimated by between 19% and 67% for portfolio
without netting and 27% to 103% for the portfolio with netting. Bare in mind that for this
particular choice of parameters, the overestimation of the CVAs are only 7.4% and 11.4%.
All values reported in this the section on risky-valuation are results of only one experiment
(no Monte-Carlo averages are used). The reason for this is that we are using many samples,
and the variance of the results are therefore low. In addition, we have no reference values to
compare with and the main point is that we obtain different values depending on what exercise
strategy is used, not high accuracy of the estimated entities.

The WWR-parameter b has a relatively small impact. This is not surprising since a positive
b gives WWR for call options and Right Way Risk (RWR) for put options and a the other
way around with a negative b. Since we have a portfolio consisting of a combination of puts
and calls, we have a significant off-setting effect.

3.5 Appendix - Neural network details

In this Appendix, we briefly explain the structure of the neural networks used in this chapter.
We present pseudo code for the algorithm used to find the exercise strategy for the risk-
free portfolio (the extensions to the risky-portfolios are straight-forward). Furthermore, it is
described how the time 0 value for a risk-free portfolio is computed.

3.5.1 Specification of the neural networks used

For completeness, we introduce all the trainable parameters that are contained in each of the
parameters θ1, θ2, . . . , θN−1, and present the structure of the networks.

In this section, the following notation is used:

• We denote the dimension of the input layers by Dinput ∈ N, and we assume the same input
dimension for all n ∈ {1, 2, . . . , N − 1} networks. The input is assumed to be the market
state xtrain

n ∈ Rd, and hence Dinput = d. However, we can add additional information to the
input that is mathematically redundant but helps the training, e.g., the immediate pay-off,
to obtain as input8 concat

(︂
xtrain
n (m),

(︂
g1
(︁
Tn, x

train
n (m)

)︁
, . . . , gJ

(︁
Tn, x

train
n (m)

)︁T)︂)︂T ∈
Rd+J , which would give Dinput = d+ J ;

• For network n ∈ {1, 2, . . . , N − 1}, we denote the number of layers9 by Ln ∈ N, and for
layer ℓ ∈ {1, 2, . . . ,Ln}, the number of nodes by Nℓ,n ∈ N. Note that Nn,1 = Dinput;

8concat denotes a concatenation of vectors.
9Input and output layers included.

76

3.5 Appendix - Neural network details

• For network n ∈ {1, 2, . . . , N}, and layer ℓ ∈ {2, 3, . . . ,Ln} we denote the weight matrix,
acting between layers ℓ−1 and ℓ, by wn,ℓ ∈ RNn,ℓ−1×Nn,ℓ , and the bias vector by bn,ℓ ∈ Rℓ;

• For network n ∈ {1, 2, . . . , N}, and layer ℓ ∈ {2, 3, . . . ,Ln} we denote the (scalar)
activation function by an,ℓ : R→ R and the vector activation function by an,ℓ : RNn,ℓ →
RNn,ℓ , which, for x = (x1, x2, . . . , xNn,ℓ

), is defined by

an,ℓ(x) =

an,ℓ(x1)

...
an,ℓ(xNn,ℓ

)

 ;

• The output of the network should belong to (0, 1)J ⊂ RJ , meaning that the dimension
of the output, denoted by Doutput should equal J . To enforce the output to only take
on values in (0, 1), we restrict ourselves to scalar-activation functions of the form
an,Ln : R→ (0, 1).

Network n ∈ {1, 2, . . . N − 1} is then defined by

F θn(·) = Ln,Ln ◦ Ln,Ln−1 ◦ · · · ◦ Ln,1(·), (3.62)

where, for n ∈ {1, 2, . . . , N − 1} and for x ∈ RLn,ℓ−1 , the layers are defined as

Ln,ℓ(x) =

 x, for ℓ = 1,

an,ℓ(wTn,ℓx+ bn,ℓ), for ℓ ≥ 2,

with wTn,ℓ the matrix transpose of wn,ℓ. The trainable parameters of network n ∈ {1, 2, . . . , N−1}
are then given by the list

θn = {wn,2, bn,2, wn,3, bn,3, . . . , wn,Ln , bn,Ln} ,

and as already stated, Θn = {θn, θn+1, . . . , θN−1} and Θ = Θ1.

3.5.2 Training and valuation

The main idea of the training and valuation procedure is to fit the parameters to some
training data, and then use the fitted parameters to make informed decisions with respect to
some unseen, valuation data independent of the training data. The training and valuation is
described for the risk-free problem, but the procedure is similar for the risky portfolios.

Training:
Sample Mtrain ∈ N independent realizations of X, which for m ∈ {1, 2, . . . , Mtrain} are
denoted by xtrain(m). In practice, we often need to approximate X, e.g., if X satisfies a
stochastic differential equation (SDE) we may have to use a temporal discretization scheme.
Since this is not the focus of this chapter, we assume that X can be approximated pathwise
arbitrarily well.

77

3. Deep learning for CVA computations of large portfolios of financial derivatives

At maturity of the portfolio, we define the cash-flow corresponding to the j:th contract and
the m:th realization of X as CFN,j(m) = DN−1,Ngj(TN , xtrain

N (m)) (recall that gj(tN , ·) ≡ 0 if
TN is larger than the date of maturity for contract j).
For n = N − 1, N − 2, . . . , 1, do the following:

1. Approximate the optimal parameter θ∗∗
n ∈ Rqn , given by

θ∗∗
n ∈ arg max

θ∈Rqn

(︃ 1
Mtrain

Mtrain∑︂
m=1

J∑︂
j=1

F θj (xtrain
n (m)) gj(Tn, xtrain

n (m))

+
(︁
1− F θj (xtrain

n (m))
)︁
CFn+1,j(m)

)︃
,

with F θ
n as in (3.62). The approximation of θ∗∗

n is denoted by θ∗
n. The above corresponds

to an (empirical) loss-function of the form

L(θ;xtrain) =− 1
Mtrain

Mtrain∑︂
m=1

J∑︂
j=1

F θj (xtrain
n (m)) gj

(︂
Tn, x

train
n (m)

)︂
+
(︁
1− F θj (xtrain

n (m)
)︁
CFn+1,j(m).

In the above we distinguish between the theoretically optimal parameter, θ∗∗
n (which we

rarely find), and the parameter obtained via an optimization algorithm θ∗
n. The minus

sign in the loss-function transforms the problem from a maximization to a minimization
problem, which is the standard formulation in the machine learning community. Note
the straight forward relationship between the loss function and the average cash-flows in
(3.43). In practice, the data is often divided into mini-batches, for which the loss-function
is minimized consecutively.

2. For m = 1, 2, . . . , Mtrain, and for j = 1, 2 . . . , J , update the discounted cash-flows
according to:

CFn,j(m)

=fθ
∗
n
j (xtrain

n (m)) g(Tn, xtrain
n (m)) +Dn,n+1

(︁
1− fθ

∗
n
j (xtrain

n (m))
)︁
CFn+1,j(m).

Note that we use the continuous versions, F θ
∗
n
j , in the optimization phase, and the discontinuous

versions fθ
∗
n
j when we update the cash-flows. The performance of the algorithm does not seem to

be sensitive to the specific choice of the number of hidden layers, number of nodes, optimization
algorithm, etc. Below is a list of the most relevant parameters/structural choices:

• Initialization of the trainable parameters, where a typical procedure is to initialize the
biases to 0, and sample the weights independently from a normal distribution;

• The activation functions aℓ,n, which are used to add a non-linear structure to the neural
networks. In our case we have the strict requirement that the activation function of the
output layer maps R to (0, 1). This could, however, be relaxed as long as the activation
function is both upper and lower bounded, since we can always scale and shift such
output to take on values only in (0, 1). For a discussion on different activation functions,
see e.g., [41];

78

3.5 Appendix - Neural network details

• The batch size, Bn ∈ {1, 2, . . . ,Mtrain}, is the number of training samples used for each
update of θn, i.e., with Bn = Mtrain, the loss function is of the form defined in step 1
above. If we want all batches to be of equal size, we need to choose Bn to be a multiplier
of Mtrain;

• For each update of θn, we use an optimization algorithm, for which a common choice is
the Adam optimizer, proposed in [42]. Depending on the choice of optimization algorithm,
there are different parameters related to the specific algorithm to be chosen. One example
is the so-called learning rate which decides how much the parameter, θn, is adjusted
after each batch.

Once the parameters have been optimized we define Θ∗ := {θ∗
1, θ

∗
2, . . . , θ

∗
N−1}, which contains

all the information needed in order to use the algorithm for valuation.

Remark 3.5.1. In the training for the risky portfolio with netting, the algorithm needs to
be adjusted since it depends on the exercise history. This cannot easily be included since the
algorithm is carried out backwards in time recursively and therefore, at exercise date Tn, we do
not yet know which derivatives have been exercised prior to Tn. This is resolved by, at each
exercise date Tn, randomly assigning a state for αn(m) ∈ {0, 1}J , representing An, for each
sample m. Since the future cash-flows depend on αn(m), they need to be re-iterated for each
m. This is done by iteratively, evaluating the already approximated decision functions at X for
each exercise date greater than Tn, until all the derivatives are exercised, or a default of the
counterparty occurs.

Valuation:
Sample Mtest ∈ N independent realizations of X, denoted

(︂
xval
t (m)

)︂
t∈[0,T]

. Denote the vector
of decision functions by

f
Θ∗
n =

(︂
f θ

∗
n , f θ

∗
n+1 , . . . ,f θ

∗
N−1

)︂
,

and f
Θ∗ := f

Θ∗
1 . We then obtain for sample m, i.e., xval(m), the following stopping rule

τ̄Θ∗
n,j =

(︂
τ
[︂
f

Θ∗
n

]︂ (︂
xval(m)

)︂)︂
j

=
N∑︂
k=n

Tk f
θ∗

k
j

(︁
xval
k (m)

)︁ k−1∏︂
ℓ=1

(︂
1− fθ

∗
ℓ
j

(︁
xval
ℓ (m)

)︁)︂
.

The estimated portfolio value at t = 0 is then given by

ΠV(0, x0) ≈ ΥV(︁0, x0 | fΘ∗)︁ ≈ 1
Mval

Mval∑︂
m=1

J∑︂
j=1

D0,τ̄Θ∗
0,j
gj
(︂
τ̄Θ∗

0,j , x
val
τ̄Θ∗

0,j
(m)

)︂
. (3.63)

By construction, any stopping strategy is sub-optimal, implying that the estimate (3.63) is
biased low. However, it should be pointed out that it is possible to derive a biased-high
estimation of ΠV(0, x0) from a dual formulation of the optimal stopping problem, which is
described in [9]. In addition, numerical results in [9] show a tight interval for the biased low
and biased high estimates for a wide range of problems.

79

4
Convergence of a robust deep FBSDE

method for stochastic control

In this chapter, we propose a deep learning-based numerical scheme for strongly coupled
FBSDEs, stemming from stochastic control. It is a modification of the deep BSDE method,
in which the initial value to the backward equation is not a free parameter, with a new loss
function being the weighted sum of the cost of the control problem and a variance term which
coincides with the mean squared error in the terminal condition. We show by a numerical
example that a direct extension of the classical deep BSDE method to FBSDEs, fails for a
simple linear-quadratic control problem, and motivate why the new method works. Under
regularity and boundedness assumptions on the exact controls of time continuous and time
discrete control problems, we provide an error analysis for our method. We show empirically
that the method converges for three different problems, including the one that failed for a
direct extension of the deep BSDE method.

Keywords - Stochastic control, FBSDE, neural networks, numerical analysis

This chapter is based on the paper with the same title, which is published in SIAM Journal on Scientific
Computing 45.1 (2023): A226-A255.

81

4. Convergence of a robust deep FBSDE method for stochastic control

4.1 Introduction

Forward backward stochastic differential equations (FBSDEs) constitute an important family of
models with many applications in a wide variety of fields such as finance, physics, chemistry and
engineering. As the name suggests, an FBSDE consists of two stochastic differential equations
(SDE), one forward SDE and one backward SDE, commonly referred to as the forward equation
and the backward equation, respectively. The forward equation is a classical SDE with a given
initial value, while the backward equation has a given stochastic terminal value and the initial
value is part of the solution. In this chapter, we are concerned with stochastic control problems,
which typically lead to coupled FBSDEs, meaning that the primary stochastic variables in
the backward SDE impact the forward SDE and vice versa. Since closed-form solutions to
FBSDEs are rare, one often has to rely on numerical approximations.

In this chapter, we propose a method which falls into the rapidly growing category of
neural network-based approximation schemes for FBSDEs and PDEs. Even though there are a
number of works in this direction, the methods stem from the pioneering work [4], and are
similar in spirit. In the present chapter, non-convergence of the method from [4], originally
proposed for non-coupled FBSDEs, is identified, when applied to strongly coupled FBSDEs.
We present a new family of methods and prove analytically and numerically that it overcomes
the convergence problem.

Prior to the recent surge in machine learning-based algorithms, the task of approximating
FBSDEs has been an active field of research for several decades. From a general perspective,
approximation schemes can be categorized into backward and forward numerical methods,
referring to the order in time in which the methods operate.

A backward numerical method usually relies on an initialization of the backward equation
at the known terminal value (or an approximation of the terminal value). The solution is
then approximated recursively, backwards in time, by approximating conditional expectations.
There are several different methods to approximate these conditional expectations such as e.g.,
tree-based methods, see [60, 61], Fourier-based methods, see e.g., [62, 63, 64] and least-squares
Monte Carlo (LSMC) methods, see e.g., [65, 66, 67, 68, 69, 70]. A general property of backward
methods is that the terminal condition of the backward equation depends on the realization of
the forward equation. This is not a problem for decoupled FBSDEs, but for coupled FBSDEs
the method becomes implicit and iterative schemes which may not always converge need to be
employed. A second class of algorithms, which is more suitable for coupled FBSDEs is the
class of forward methods such as PDE-based methods see e.g., [71, 72] and Picard linearization
schemes, see e.g., [73, 74, 75]. For a summary on forward and backward numerical methods for
FBSDEs, we refer to [76]. A typical drawback for the methods mentioned above is that they
suffer from the curse of dimensionality (some methods such as LSMC and Picard schemes may
overcome this problem to some extent), meaning that the time complexity and the memory
requirements increase exponentially with the dimensions of the problem.

In addition to the classical methods described above, a new branch of algorithms based on
neural networks has appeared in recent years. In [4], the authors present a method called the
Deep BSDE method, which relies on a neural network parametrization of the control process and
the initial condition of the backward equation. Both the forward and the backward equations

82

4.1 Introduction

are then treated as forward equations and are approximated with the Euler–Maruyama scheme.
To achieve an accurate approximation, the parameters of the neural networks are optimized
such that the terminal condition on the backward equation is (approximately) satisfied in mean
squared sense. The method has proven to be able to approximate a wide class of equations in
very high dimensions (at least 100). Since the original Deep BSDE method publication, several
papers with adjustments of the algorithm as in e.g., [77, 79, 80, 81, 82, 83, 84, 85, 86, 78]
and others with convergence analysis in e.g., [87, 88, 89, 90, 91, 92, 93], have been published.
In addition to being forward methods, these algorithms are global in their approximation,
meaning that the optimization of all involved neural networks is carried out simultaneously.
This implies that they are optimized subject to one single objective function, also called loss
function, as it is usually referred to in the machine learning literature. There also exists a
branch of neural network-based algorithms relying on local optimization techniques. Typically,
these methods are of backward type and of similar nature as the LSMC algorithms, but instead
of polynomials as their basis functions, neural networks are used. As for the LSMC method,
these kinds of algorithms are not easily applied to coupled FBSDEs. Algorithms of this type
can be found in e.g., [94, 95, 96] and with error analysis [97, 98]. For an overview of machine
learning algorithms for approximation of PDEs, we refer to [99].

As mentioned, we are interested in coupled FBSDEs and the focus is therefore on global
algorithms operating forward in time, with a structure similar to the Deep BSDE method.
We demonstrate that the approach taken in e.g., [100, 101, 102, 83, 103], where the deep
BSDE method is applied to the FBSDEs associated with the stochastic control problem, is
problematic. As we show in the present chapter, even though an accurate approximation of
the control problem can be achieved, this does not imply an approximation of the FBSDE in
general. Moreover, it is observed that the deep BSDE method does not converge for certain
problems and the convergence problem is prominent for the strongly coupled FBSDEs. Our
proposed method overcomes this problem by employing the equivalence between the stochastic
control problem and the FBSDE. To be more precise, we use the fact that the initial value
of the BSDE coincides with the value function of the control problem and hence, can be
expressed as a minimization problem. Moreover, we use the adaptivity property of the BSDE
to conclude that a stochastic version of the value function is F0−measurable and therefore
has zero variance. These two properties are then combined in the loss function to achieve
a robust approximation scheme for coupled FBSDEs. The effectiveness of our algorithm is
demonstrated empirically on a collection of problems with different characteristics. In addition,
a theoretical error analysis is carried out, in which we provide convergence rates for the initial
and terminal conditions of the FBSDE under a mild assumption and strong convergence of
the FBSDE under stronger assumptions. Our main result is similar to the aposteriori error
bound for the deep BSDE method which was established for weakly coupled FBSDEs in [87]
and later extended to non-Lipschitz coefficients (but for less general diffusion coefficients)
in [93]. However, these results are unlikely to be valid for strongly coupled FBSDEs and we
find several examples in which the discrete terminal condition converges while the FBSDE
approximation does not. Moreover, the authors in [104] provide posteriori error bounds on the
time discretization error for McKean–Vlasov FBSDEs. Under some conditions, this analysis is
applicable also for strongly coupled FBSDEs, for instance, when T is small. Finally, in [105,

83

4. Convergence of a robust deep FBSDE method for stochastic control

106, 107, 108], algorithms and convergence results for gradient methods for stochastic control
problems of McKean–Vlasov type are presented.

This chapter is structured as follows: In Section 4.2, we present the stochastic control
problem and explain the reformulations to a PDE as well as a FBSDE. Moreover, we introduce
reformulations of the FBSDE to different variational problems which are used for the algorithms
in later sections. The section concludes by introducing the time discrete counterparts of the
reformulations as well as a discussion on when and why the deep BSDE method fails to
converge. In Section 4.3, the fully implementable algorithms are presented together with
details on the neural networks used. Section 4.4 is devoted to error analysis of the proposed
algorithm. Classical Euler–Maruyama type discretization errors and errors stemming from
differences between time discrete and time continuous stochastic control are discussed. Finally,
in Section 4.5 numerical approximations are compared with their analytic counterparts when
we have such available.

4.2 The deep FBSDE method and an improved family of
methods

This section contains a formal introduction to our proposed method with motivation from
stochastic control and FBSDE theory. Section 4.2.1 introduces the stochastic control problem,
the related Hamilton-Jacobi-Bellman equation and FBSDE. Alternative formulations of the
FBSDE are presented in Section 4.2.2. In Section 4.2.3, we motivate by numerical examples
why a direct extension of the deep BSDE method to FBSDEs, as in [100, 101, 102], fails
for many problems. Finally, in Section 4.2.4, the proposed robust deep FBSDE method is
described. In this section, we present formally the method for the sake of clarity while in
Section 4.4, a more rigorous approach is taken.

4.2.1 Stochastic control and FBSDEs

Our starting point is a controlled SDE and its associated cost functional
Xu
t = x0 +

∫︂ t

0
b̄(s,Xu

s , us)ds+
∫︂ t

0
σ(s,Xu

s)dWs, (4.1)

Ju(t, x) = E
[︃ ∫︂ T

t
f̄(s,Xu

s , us)ds+ g(Xu
T)
⃓⃓⃓
Xu
t = x

]︃
, t ∈ [0, T]. (4.2)

Here T ∈ (0,∞), d, k, ℓ ∈ N, (Wt)t∈[0,T] is a k-dimensional standard Brownian motion, the
coefficients b̄ : [0, T]×Rd×Rℓ → Rd, σ : [0, T]×Rd×Rℓ → Rd×k, f̄ : [0, T]×Rd×Rℓ → R and
g : Rd → R satisfy some extra regularity conditions, and the control process, u = (ut)t∈[0,T],
belongs to a set U of admissible controls, taking values in a set U ⊂ Rℓ. The aim is to find a
control process, u∗ ∈ U , that minimizes Ju(0, x0).

Assuming the cost to be bounded from below, the value function of the control problem is
given by

V (t, x) = inf
u∈U

Ju(t, x). (4.3)

For the presentation, we assume uniqueness of the infimum. Under appropriate conditions,
the value function satisfies a Hamilton–Jacobi–Bellman (HJB) equation, which is a non-linear

84

4.2 The deep FBSDE method and an improved family of methods

parabolic PDE given by
∂V

∂t
(t, x) + 1

2Tr(σσ⊤D2
xV)(t, x) +H(t, x,DxV (t, x)) = 0, (t, x) ∈ [0, T)× Rd,

V (t, x) = g(x), (t, x) ∈ {T} × Rd.
(4.4)

Here Tr denotes the trace of a matrix and for (t, x) ∈ [0, T]× Rd, p ∈ Rd the Hamiltonian, H,
is given by

H(t, x, p) = inf
v∈U

[︁
b̄(t, x, v)⊤p+ f̄(t, x, v)

]︁
. (4.5)

Under conditions that guarantee a sufficiently regular solution to (4.4), and the infimum in
the Hamiltonian to be attained at v∗ = v∗(t, x, p), the optimal control is of the feedback
form u∗(t,Xt) = v∗(︁t,Xt,DxV (t,Xt)

)︁
, where we have written X := Xu∗ for the optimally

controlled Xu. The feedback map v∗ is for many interesting problems easy to derive. Again,
under sufficient regularity, Itô’s formula applied to V (t,Xt) yields

Xt = x0 +
∫︂ t

0
b(s,Xs, Zs)ds+

∫︂ t

0
σ(s,Xs)dWs,

Yt = g(XT) +
∫︂ T

t
f(s,Xs, Zs)ds−

∫︂ T

t
⟨Zs, dWs⟩, t ∈ [0, T],

(4.6)

where Yt = V (t,Xt), Zt = σT (t,Xt)DxV (t,Xt) and, for θ ∈ {b, f}, we have

θ(t,Xt, Zt) := θ̄(t,Xt, v
∗(t,Xt, (σ(t,Xt)σT (t,Xt))−1σ(t,Xt)Zt)).

In the rest of this section, we assume the existence of a unique solution (X,Y, Z) of (4.6)
in appropriate spaces. Given Z, or equivalently DxV , we thus have an optimal control
u∗
t = v∗(t,Xt, (σ(t,Xt)σT (t,Xt))−1σ(t,Xt)Zt). This would make efficient numerical FBSDEs

schemes very useful for solving the control problem. In the other direction, if we have an
optimal control u∗, then in general this does not give us Z, unless p ↦→ v∗(t, x, p) is invertible,
and only in this case the control problem naturally suggests numerical schemes for FBSDEs.
Below, we introduce a family of numerical schemes for FBSDEs that works regardless of
invertibility of the feedback map, but reduces to the control problem in the case of invertibility.

4.2.2 Alternative formulations of FBSDEs

The Deep BSDE method proposed in [4], relies on a reformulation of the FBSDE (4.6) into two
forward SDEs, one with apriori unknown initial value. It relies moreover on the Markov property
of the FBSDE, which guarantees that Zt = ζ∗(t,Xt), for some function ζ∗ : [0, T]× Rd → Rk,
that we refer to as Markov map, and optimization is done with respect to such functions and
initial values y0. More precisely, the FBSDE (4.6) is reformulated into the following variational

85

4. Convergence of a robust deep FBSDE method for stochastic control

problem

minimize
y0,ζ

E|Y y0,ζ
T − g(Xy0,ζ

T)|2, where

Xy0,ζ
t = x0 +

∫︂ t

0
b(s,Xy0,ζ

s , Zy0,ζ
s)ds+

∫︂ t

0
σ(s,Xy0,ζ

s)dWs,

Y y0,ζ
t = y0 −

∫︂ t

0
f(s,Xy0,ζ

s , Zy0,ζ
s)ds+

∫︂ t

0
⟨Zy0,ζ

s ,dWs⟩,

Zy0,ζ
t = ζ(t,Xy0,ζ

t), t ∈ [0, T],

(4.7)

where y0 and ζ are sought in appropriate spaces. From the theory outlined in Section 4.2.1, under
well-posedness and sufficient regularity of (4.6), it holds that Y0 = V (0, x0) and ζ∗ = σ⊤DxV ,
and thus we have well-posedness of (4.7). While it seems natural to propose a numerical
algorithm based on a discrete version of (4.7), we demonstrate below that such an optimization
problem, even for many simple problems, does not converge.

In order to introduce numerical schemes that do not suffer under the above problem, we
use the following two properties of the initial value Y0 of (4.6):

(i) Y0 coincides with the value function of the control problem (property from the control
problem);

(ii) Y0 is F0−measurable and therefore has zero variance (property from the FBSDE).

The two properties are both captured in the following variational problem:

minimize
ζ

Φλ(ζ) = E[Yζ0] + λVar[Yζ0], where

Yζ0 = g(Xζ
T) +

∫︂ T

0
f(t,Xζ

t , Z
ζ
t)dt−

∫︂ T

0
⟨Zζt ,dWt⟩,

Xζ
t = x0 +

∫︂ t

0
b(s,Xζ

s , Z
ζ
s)ds+

∫︂ t

0
σ(s,Xζ

s)dWs,

Y ζ
t = E[Yζ0]−

∫︂ t

0
f(s,Xζ

s , Z
ζ
s)ds+

∫︂ t

0
⟨Zζs ,dWs⟩,

Zζt = ζ(t,Xζ
t), t ∈ [0, T].

(4.8)

We refer to Yζ0 as the stochastic cost and notice that E[Yζ0] = Ju(ζ)(0, x0), where u(ζ) ∈ U is
the control generated by ζ. Thus, the first term of the objective function Φλ is the cost function
of the control problem. In the case of p ↦→ v∗(t, x, p) being invertible, this term alone, i.e.,
for λ = 0, offers an equivalent formulation to (4.7). In other cases, uniqueness of minimizers
of ζ ↦→ E[Yζ0] cannot be guaranteed, but among the minimizers, there is only one ζ∗ with
the property that the variance of the stochastic cost Yζ0 equals zero. The second term of Φλ

is introduced to penalize non-zero variance and the minimizer for λ > 0 is unique. Another
important feature of the formulation (4.8), is that Y ζ

0 is determined by ζ alone and (4.8) has
thus one degree of freedom less than (4.7). A final observation is that

Var[Yζ0] = E
[︁⃓⃓
E[Yζ0]− Yζ0

⃓⃓2]︁ = E
[︄⃓⃓⃓⃓
Y ζ

0 −
∫︂ t

0
f(s,Xζ

s , Z
ζ
s)ds+

∫︂ t

0
ZζsdWs − g(Xζ

T)
⃓⃓⃓⃓2]︄

= E
[︁
|Y ζ
T − g(Xζ

T)|2
]︁
. (4.9)

86

4.2 The deep FBSDE method and an improved family of methods

This implies that the second term of Φ is, up to the factor λ, the same as that of (4.7), but
with Y ζ

0 not being a variable to optimize. Thus, there are strong similarities between (4.7)
and (4.8), but in the time discrete setting the latter formulation is shown to be advantageous
sections below.

Remark 4.2.1. This remark aims to highlight the meaning of the two terms in the objective
function of (4.8). In the special case λ = 0, we have

Φ0(ζ) = E
[︂
g(Xζ

T) +
∫︂ T

0
f(t,Xζ

t , Z
ζ
t)dt−

∫︂ T

0
⟨Zζt , dWt⟩

]︂
= E

[︂
g(Xζ

T) +
∫︂ T

0
f(t,Xζ

t , Z
ζ
t)dt

]︂
.

The above coincides with the cost functional from the stochastic control problem in (4.2) (with
f , instead of f̄). Therefore, by finding the minimizer of Φ0(ζ), denoted by ζ∗, we have both a
minimizer of (4.2), as well as access to the optimal control process u∗. We here assume that it
is possible to express each u ∈ U , in terms of ζ through some mapping ζ ↦→ u (this condition is
usually satisfied by construction of the BSDE).

In summary, solving (4.8) with λ = 0, yields solutions to the forward SDE and the initial
condition of the BSDE in (4.6) i.e., X and Y0 respectively. In addition, we obtain the optimal
control process, u∗ of (4.2). Unfortunately, we do not have access to the full solution of (4.6),
since we do not, in general, have access to (Y)t∈(0,T] or Z. The exception is, as stated above,
when there is a one-to-one mapping between ut and Zt, which in general does not hold. In
this situation, it is crucial to use λ > 0, since, even though there are infinitely many ζ which
minimize Φ0(ζ), there is only one ζ∗ which makes Yζ

∗

0 deterministic, and hence Var
[︁
Yζ

∗

0
]︁

= 0
and Φλ(ζ∗) = Y0.

4.2.3 A direct extension of the deep BSDE method and why it fails

In this section, we present the time discrete counterpart of (4.7). We assume an equidistant
time grid, 0 = t0 < t1 < . . . < tN = T , with h = tn+1 − tn and denote the Brownian increment
∆Wn = Wn+1 −Wn. Throughout the chapter, we parameterize discretizations by h ∈ (0, 1)
and by this we mean all h ∈ (0, 1) ∩ {T/N : N ≥ 1}.

The time discrete version of (4.7) is given by

minimize
y0,ζ

E
[︂⃓⃓
Y h,y0,ζ
N − g(Xh,y0,ζ

N)
⃓⃓2]︂
, where

Xh,y0,ζ
n = x0 +

n−1∑︂
k=0

b
(︁
tk, X

h,y0,ζ
k , Zh,y0,ζ

k

)︁
h+

n−1∑︂
k=0

σ(tk, Xh,y0,ζ
k)∆Wk,

Y h,y0,ζ
n = y0 −

n−1∑︂
k=0

f
(︁
tk, X

h,y0,ζ
k , Zh,y0,ζ

k

)︁
h+

n−1∑︂
k=0

⟨︁
Zh,y0,ζ
k ,∆Wk

⟩︁
,

Zh,y0,ζ
k = ζk(Xh,y0,ζ

k).

(4.10)

It is a direct extension of the deep BSDE method from [4]. In the literature, it was first
applied experimentally to FBSDEs in the master thesis [100] and thereafter in [101], both for
inverted pendulums, in [102] for an application to attitude control of unmanned aerial vehicles.
More examples of implementations of the deep FBSDE method are found in [83, 103].

87

4. Convergence of a robust deep FBSDE method for stochastic control

In [87], the authors consider FBSDEs with coefficients b, σ and f that may take the
Y -component, but not the Z-component, as arguments. Under the relatively strict assumption
of weak coupling (also called monotonicity condition, see e.g., [109]), it is shown that for h
small enough there is a constant C, independent of h, such that

sup
t∈[0,T]

(︂
E
[︂⃓⃓
Xt − X̂

h,y0,ζ
t

⃓⃓2]︂+ E
[︂⃓⃓
Yt − Ŷ

h,y0,ζ
t

⃓⃓2]︂)︂+
∫︂ T

0
E
[︂⃓⃓
Zt − Ẑ

h,y0,ζ
t

⃓⃓2]︂dt
≤C

(︂
h+ E

[︂⃓⃓
Y h,y0,ζ
N − g(Xh,y0,ζ

N)
⃓⃓2]︂)︂

, (4.11)

where for t ∈ [tk, tk+1), X̂h,y0,ζ
t := Xh,y0,ζ

k , Ŷ h,y0,ζ
t := Y h,y0,ζ

k and Ẑ
h,y0,ζ
t = ζk(Xh,y0,ζ

k). Under
some additional assumptions on the coefficients b, f, σ and g (additional smoothness and
boundedness of the coefficients to guarantee a bounded and smooth solution of the associated
HJB equation), the results in [87] can be extended to the framework of interest in this chapter,
i.e., coefficients taking the Z-component as an argument. On the other hand, the weak coupling
condition is rarely satisfied for FBSDEs stemming from stochastic control problems, and to
the best of our knowledge, there is no known way to relax this condition.

To investigate convergence of (4.10) empirically, we first note that if we would know Y0

apriori, then the variational problem (4.7) would be reduced to finding ζ. We also know that
DxV

⊤σ is the minimizer, which would make the objective function identical to zero. In the
discrete counterpart, we would expect that, if (4.10) converges to (4.7), then for sufficiently
small h, the objective function would be close to zero if optimizing only ζ and setting y0 = Y0.
Moreover, for a robust algorithm to emerge from (4.10), it is important that y0 ̸= Y0 results in
a larger value of the optimal objective function, at least when y0 and the true initial value, Y0,
are ”far away” from each other. To formalize this, we introduce the mean squared error

MSE(y0) := inf
ζ

E
[︁⃓⃓
Y h,y0,ζ
N − g(Xh,y0,ζ

N)
⃓⃓2]︂
. (4.12)

The aim is to investigate whether or not MSE is minimized at, or close to, the true initial
condition Y0. Moreover, for each y0, we want to investigate the Markov map ζy0 that minimizes
ζ ↦→ E[|Y h,y0,ζ

N − g(Xh,y0,ζ
N)|2]. The discrete costs, associated with (y0, ζ

y0) and (y0, ζ), are
given by

Jh,y0
0 = Jh,y0,ζy0

0 and Jh,y0,ζ
0 = E

[︁
Yh,y0,ζ

0
]︁
.

Here, the discrete stochastic cost is given by

Yh,y0,ζ
0 = g

(︁
Xh,y0,ζ
N

)︁
+
N−1∑︂
k=0

f
(︁
tk, X

h,y0,ζ
k , Zh,y0,ζ

k

)︁
h−

N−1∑︂
k=0

⟨︁
Zh,y0,ζ
k ,∆Wk

⟩︁
. (4.13)

Using the stochastic cost, we have by a substitution that

MSE(y0) = inf
ζ

E
[︁⃓⃓
Yh,y0,ζ

0 − y0
⃓⃓2]︁
. (4.14)

Note that this minimization problem coincides with (4.10), with the only difference that here
we only search for ζ (and not for y0). The method used to solve this problem is the one

88

4.2 The deep FBSDE method and an improved family of methods

proposed in [4], but with a fixed y0, i.e., the discretized Z−process is parameterized with
neural networks and the mean-squared terminal condition is minimized.

Figure 4.1 shows y0 ↦→ MSE(y0) and y0 ↦→ Jh,y0
0 for two different Linear-Quadratic (LQ)

control problems respectively, a one-dimensional and a two-dimensional problem. The left
figure shows that there is a minimum of MSE at the correct Y0 and for this problem the
method converges. For the right figure, it is clear that there is no minimum of MSE around
Y0, or anywhere in the range. When y0 and ζ are jointly optimized, the method has no chance
to converge for this problem.

Both problems considered in this section are of the form (4.30) with parameters as in
Section 4.5.1.1 for the two-dimensional problem and A = B = C = Rx = Ru = G = 1 and
σ = 0.5 for the one-dimensional problem.

Figure 4.1: Demonstration of the performance of the direct extension of the deep BSDE method
to FBSDEs corresponding to two LQ control problems. Left: A one-dimensional problem with
N = 10 time steps. Right: A two-dimensional problem with N = 100 time steps.

We identify three distinct cases from Figure 4.1:

• y0 ≈ Y0: In this case, MSE is the mean squared error of the discretized FBSDE and it is
most reasonable that an approximation of (X,Y, Z) is obtained by optimizing over ζ.

• y0 > Y0: Under this assumption, any ζ attaining the infimum in (4.12) satisfies Jh,y0
0 = y0.

Thus minimizing (4.12) is the same as finding the ζ that generates discrete cost y0 and
that at the same time minimizes the mean squared error in the terminal condition. A ζ

with cost y0 > Y0 has the possibility to generate a lower MSE(y0) < MSE(Y0), depending
on y0 and the problem at hand. This is only possible if the coupling of Z in b is strong
enough, so that g(XT) can be efficiently controlled by Z. In the case with no coupling,
i.e., for a BSDE, y0 > Y0 leads to an MSE of the magnitude y0 − Y0, and thus MSE is
increasing in this regime. This is the reason why non-coupled BSDEs, as in [4], or weakly
coupled FBSDEs, as in [87], can be approximated with the deep BSDE method. The left
plot of Figure 4.1 shows this favorable behaviour, while the right plot has a decreasing
MSE and has no chance to converge. We also see that the cost increases linearly for
y0 > Y0 according to Jh,y0

0 = y0.

• y0 < Y0: Since Y0 is (approximately) a lower bound of (y0, ζ) ↦→ Jh,y0,ζ , it holds that
any ζ attaining the infimum in ζ ↦→ E[|Y h,y0,ζ

N − g(Xh,y0,ζ
N)|2] also minimizes the cost

functional ζ ↦→ Jh,y0,ζ
0 . But y0 does not enter Yh,y0,ζ

0 explicitly. Therefore, the minimizer of

89

4. Convergence of a robust deep FBSDE method for stochastic control

ζ ↦→ E[Yh,y0,ζ
0] does not depend on y0. Thus, fixing y0 < Y0 and optimizing ζ approximates

a solution to the control problem but not to the FBSDE. This can clearly be seen in
Figure 4.1 from the cost being constant for y0 < Y0 in both plots. It is also clear that
the MSE increases for decreasing y0 < Y0.

To further visualize the three cases, Figure 4.2 shows the empirical means and 90% credible
regions (defined as the area between the 5 :th and the 95 :th empirical percentiles at each time
point) for the true and approximated Y and Z processes of the two-dimensional LQ control
problem discussed above. In the top row, we see that, in the case y0 ≈ Y0, the two components
of the Z-process are very well approximated, but the time discretization error of Y is visible.
In the middle row, for y0 > Y0, we see what is expected based on the discussion above. The Y
process satisfies the terminal value but is otherwise fundamentally distinct from the true Y ,
and Z is different and oscillating (it is specified to have cost y0). In the bottom row, the case
y0 < Y0 is shown. Just as explained above, the control problem is solved and therefore the Z
process is well approximated. It should though be noted that this is only true since the map
p ↦→ v∗(t, x, p), for this specific problem, is invertible. Otherwise, one optimal ζ, in a set of
many optimal Markov maps, is approximated. Thus, the control problem is approximately
solved, however, the Z-component of the FBSDE is unlikely to be accurate. The Y process is
shifted by y0 − Y0 and the terminal value is naturally not satisfied.

Figure 4.2: Demonstration of the performance of the Deep FBSDE solver with fixed initial
condition for N = 100 time steps. The shaded areas represent the domain in which 90% of all
trajectories lie (the area is bounded by the 5:th and the 95:th empirical percentiles). Left to right:
Sample means of the approximate and the semi-analytic (Riccati solutions) Y−process and the first
and and second components of the Z−process (C1 and C2). Top to bottom: Initial conditions
ŷ0 = 0.612 ≈ Y0, ŷ0 = 1.5 > Y0 and ŷ0 = 0.0 < Y0.

90

4.2 The deep FBSDE method and an improved family of methods

When searching for interesting example problems, we learned that it is much easier to find
problems that do not converge than finding problems that do converge.

4.2.4 A robust deep FBSDE method

Having observed the problems with the direct extension of the deep BSDE method to FBSDEs,
we here discretize the alternative formulation (4.8) of the FBSDE to obtain an alternative
family of deep FBSDE methods. It reads:

minimize
ζ

Φλ,h(ζ) = E[Yh,ζ0] + λVar[Yh,ζ0], where,

Yh,ζ0 := g(Xh,ζ
N) +

N−1∑︂
k=0

f(tk, Xh,ζ
k , Zh,ζk)h−

N−1∑︂
k=0

⟨︁
Zh,ζk ,∆Wk

⟩︁
,

Xh,ζ
n = x0 +

n−1∑︂
k=0

b(tk, Xh,ζ
k , Zh,ζk)h+

n−1∑︂
k=0

σ(tk, Xh,ζ
k)∆Wk,

Y h,ζ
n = E[Yh,ζ0]−

n−1∑︂
k=0

f(tk, Xh,ζ
k , Zh,ζk)h+

n−1∑︂
k=0

⟨︁
Zh,ζk ,∆Wk

⟩︁
,

Zh,ζk = ζk(Xh,ζ
k).

(4.15)

The main purpose of the current chapter is the theoretical and numerical error analysis of
(4.15).

4.2.5 Related methods and comparison

In a comparison with the current literature we focus on methods for solving stochastic control
problem, or the associate FBSDE, by deep learning in a global way, in the sense that only one
global optimization problem is solved.

In the early paper [6], time discrete stochastic optimal control problems were solved with
deep learning. No explicit connections to FBSDEs, or even to stochastic control in continuous
time, were made. The feedback maps for the controls at all time steps were optimized over
a family of neural networks, to minimize the discrete cost functional. This methodology is
similar to our method when λ = 0. It only differs in its approximation of the feedback map
for u instead of the Markov map for Z. The connection between our proposed method and
the deep BSDE method, proposed in [4], is the second term in the loss function of (4.15),
corresponding to λ→∞. From (4.9) it becomes clear that, if the driver does not take Y as an
input, then this term coincides with the loss function used in the deep BSDE method.

The recent paper [86] is, to the best of our knowledge, the first to introduce the variance
penalty term in (4.15) for an FBSDE obtained from the dynamic programming principle.
The authors of [110] also use the variance penalty term, but for general decoupled FBSDEs,
i.e., not in the context of stochastic control. In [86], the problem is approached differently
in that they have one network for the Markov map for Z and one for the feedback map for
the control. In [86], the variance term in the loss function is presented as a measurability
loss. Their motivation is that if the BSDE is solved, then the initial state of the Y−process is
F0−measurable and hence the variance is zero. Although, one should bear in mind that this is
only true for the continuous BSDE. In the discretized version, the Y−process is not measurable

91

4. Convergence of a robust deep FBSDE method for stochastic control

and no arguments for convergence of the discretization are presented in [86]. However, their
numerical results are convincing and an error analysis similar to the one presented in Section
4.4 in the present chapter could possibly be carried out also in their setting.

Another method which also makes use of the connection to stochastic control (of
Hamiltonian systems) was proposed in [85]. In that paper, the stochastic maximum principle
approach to stochastic control was used, which results in a different type of FBSDEs, compared
to the one obtained with the dynamic programming principle, that we consider in this chapter.
More precisely, it is the Y−process instead of the Z−process which is connected to the control
of the SDE. A similarity is that, in both in the paper and in this chapter, the algorithms use a
method similar to that in [6], to include the cost in the objective function.

Summarizing, only the method in [86] is fully comparable to ours, as it is designed to
solve the same problem. It has the variance term but not the mean in its loss function. By
introducing a loss function that includes both we are able to prove convergence and obtain a
robust method.

4.2.6 Decoupled FBSDEs and why coupled FBSDEs are important

It is sometimes claimed in the literature that since coupled FBSDEs can be transformed
into decoupled BSDE, it is sufficient to have schemes for the latter, see e.g., [87]. Here, we
explain this claim and why we, from a practical and application viewpoint, do not agree.
If ψ : [0, T] × Rd × Rℓ → Rd is sufficiently regular, then it holds by the Itô formula for
Y ψ
t = V (t,Xψ

t) and Zψt = σT (t,Xψ
t)DxV (t,Xψ

t) that

Xψ
t = x0 +

∫︂ t

0

(︁
b(s,Xψ

s , Z
ψ
s)− ψ(s,Xψ

s , Z
ψ
s)
)︁
ds+

∫︂ t

0
σ(s,Xψ

s)dWs,

Y ψ
t = g(Xψ

T) +
∫︂ T

t

(︁
f(s,Xψ

s , Z
ψ
s)−

⟨︁
(σ(s,Xψ

s)σT (s,Xψ
s))−1σ(s,Xψ

s)Zs, ψ(s,Xψ
s , Z

ψ
s)
⟩︁)︁

ds

−
∫︂ T

t
⟨Zψs ,dWs⟩, t ∈ [0, T].

Thus taking ψ in such a way that b−ψ does not depend on Z, decouples the FBSDE resulting
in a BSDE, where the forward equation has no coupling with the backward equation. From this
observation, it might be tempting to approximate the optimal Markov map σT (t, x)DxV (t, x)
with the deep BSDE method. The problem with this approach is that the deep BSDE method
will learn σT (t, x)DxV (t, x) well only around typical trajectories of Xψ, but not around those
of X. While there is empirical evidence that the deep BSDE method overcomes the curse of
dimensionality, it does not at all approximate the solution everywhere, but only around the
typical solution trajectories of the forward equation. Since X is controlled, it has a different
dynamics than Xψ and this may ruin the applicability of the deep BSDE method for control
problems, if the feedback map is desired. If only an approximation of the solution to the HJB
equation (the value) is sought, as in [4], then decoupling is feasible.

4.3 Fully implementable scheme and neural network regression

In this section, we describe how the discrete variational problem (4.15) is approximated with
the help of neural network regression. In principle, other function approximators could be used,

92

4.3 Fully implementable scheme and neural network regression

but neural network regression is arguably one of the most suitable choices due to the ability to
approximate complicated high-dimensional functions. Although neural networks have shown
empirically high quality results in many different fields, there are still many open convergence
questions related to the optimization procedure of the loss function. On the other hand, the
Universal Approximation Theorem (UAT) [111] guarantees that under certain conditions, there
is a neural network, sufficiently deep and wide, such that it is possible to approximate a large
class of continuous functions to any, pre-specified degree of accuracy.

4.3.1 Fully implementable algorithms

Without further specifications, (4.15) assumes exact optimization over an unspecified set
of functions ζ and the exact computation of expectations. To define a fully implementable
scheme, the Markov maps ζ0, . . . , ζN−1 are approximated with neural networks ϕθ0

0 , . . . , ϕ
θN−1
N−1

with parameters θ = (θ0, . . . , θN−1) in some parameter space Θ. We specify them in further
detail below. Moreover, expectations are approximated with batch Monte-Carlo simulation.
Let Kepochs ≥ 1,Kbatch ≥ 1 be the number of epochs and the number of batches per epoch,
respectively. Let further Mtrain,Mbatch ≥ 1 be the size of the training data set and batch,
respectively. We assume that Mtrain/(2Mbatch) = Kbatch ∈ N. Training data are Mtrain

independent realizations of the Wiener increments ∆W0, . . . ,∆WN−1 ∼ N (0, h) and the
training data are reused in Kepoch epochs. The training is initialized by random sampling of
θ0 ∈ Θ. For each update step in an epoch of the training algorithm, we take 2Mbatch Wiener
increments ∆W0(m), . . . ,∆WN−1(m), m = 1, 2, . . . , 2Mbatch from the training data set that
were not previously used during the epoch and update θ by approximate optimization of the
following problem:

minimize
θ∈Θ

Lλ,h(θ) = 1
Mbatch

(︄
Mbatch∑︂
m=1

Yh,θ0 (m) + λ ·
2Mbatch∑︂

m=Mbatch+1
|g(Xh,θ

N (m))− Y h,θ
N (m)|2

)︄
,

Yh,θ0 (m) := g(Xh,θ
N (m)) +

N−1∑︂
k=0

f(tk, Xh,θ
k (m), Zh,θk (m))h−

N−1∑︂
k=0

⟨︁
Zh,θk (m),∆Wk(m)

⟩︁
,

Xh,θ
n (m) = x0 +

n−1∑︂
k=0

b(tk, Xh,θ
k (m), Zh,θk (m))h+

n−1∑︂
k=0

σ(tk, Xh,θ
k (m))∆Wk(m),

Y h,θ
n (m) = 1

Mbatch

Mbatch∑︂
r=1

Yh,θ0 (r)−
n−1∑︂
k=0

f(tk, Xh,θ
k (m), Zh,θk (m))h+

n−1∑︂
k=0

⟨︁
Zh,θk (m),∆Wk(m)

⟩︁
,

Zh,θk (m) = ϕθk
k (Xh,θ

k (m)).
(4.16)

When all training data has been used, a new epoch starts. When the Kepoch:th epoch is
finished, the algorithm terminates. The neural network parameters at termination are θ∗. It
is an approximation of the parameters θ∗∗ that optimize (4.16) in the limit Mbatch →∞. To
complement (4.16), Algorithm 1 details the training procedure.

It should be noted that the expected value of the stochastic sum in Yh,θ0 equals zero.
Therefore, the algorithm would also work without it, but a practical reason to keep it is that
it decreases the variance of Yh,θ0 significantly, and this requires fewer Monte-Carlo samples to
achieve the same accuracy.

93

4. Convergence of a robust deep FBSDE method for stochastic control

Input: Initialization of neural network parameters, {θ0(1), . . . , θN−1(1)}, and, for
0 ≤ k ≤ 2Mtrain and 0 ≤ n ≤ N − 1, Wiener increments ∆Wn(k).

Output: Approximation of the Markov map for (Zt)t∈[0,T] at the time discrete mesh
points.

for k = 1, 2, . . . ,Kbatch (Kbatch = Mtrain/(2Mbatch) is the number of batches.) (should
be carried out sequentially) do

for 1 ≤ m ≤Mbatch (may be carried out in parallel) do
Set Xh,θ

0 (m) = x0
for n = 0, . . . , N − 1 (should be done sequentially) do

Zh,θn (m) = ϕn
(︁
Xh,θ
n (m) | θn(k)

)︁
Xh,θ
n+1(m) = Xh,θ

n (m) + b
(︁
tn, X

h,θ
n (m), Zh,θn (m)

)︁
h+ σ(tn, Xh,θ

n (m))∆Wn(m)
end

end

for m ∈ {Mbatch + 1, . . . , 2Mbatch} (may be carried out in parallel) do

Set Xh,θ
0 (m) = x0 and Y h,θ

0 (m) = 1
Mbatch

2Mbatch∑︂
m=Mbatch+1

g(Xh,θ
N (m)) +

N−1∑︂
n=0

f
(︁
tn, X

h,θ
n (m), Zh,θn (m)

)︁
h−

N−1∑︂
n=0

⟨︁
Zh,θn (m),∆Wn(m)

⟩︁
for n = 0, . . . , N − 1 (should be carried out sequentially) do

Zh,θn (m) = ϕn
(︁
Xh,θ
n (m) | θn(k)

)︁
Xh,θ
n+1(m) = Xh,θ

n (m) + b
(︁
tn, X

h,θ
n (m), Zh,θn (m)

)︁
h+ σ(tn, Xh,θ

n (m))∆Wn(m)
Y h,θ
n+1(m) = Y h,θ

n (m)− f
(︁
tn, X

h,θ
n (m), Zh,θn (m)

)︁
h+

⟨︁
Zh,θn (m),∆Wn(m)

⟩︁
end

end

θ = {θ0, θ1, . . . , θN−1} (trainable parameters)

L(θ) = 1
Mbatch

(︃∑︁Mbatch
m=1 Y θ

0 (m) + λ
∑︁2Mbatch
m=Mbatch+1 |g(Xh,θ

N (m))− Y h,θ
N (m)|2

)︃
(Loss-function)
θ(k + 1)← arg minθ L(Θ) (some optimization algorithm, usually of gradient decent
type)

end
Algorithm 1: Pseudo-code of one epoch of the neural network training

94

4.4 Convergence analysis

4.3.2 Specification of the neural networks

Here, we introduce the neural networks that we use in our implementations in Section 4.5. The
generality is kept to a minimum and more general architectures are of course possible. For
each ϕθk

k : Rd → Rℓ, a fully connected neural network with two hidden layers with 20 nodes in
each layer and a ReLU activation function R(x) = max(0, x) acting element-wise is employed.
More precisely, the ϕθk is of the form

ϕθk
k (x) = W 3

kR(W 2
kR(W 1

kx+ b1
k) + b2

k) + b3
k,

with weight matrices W 1
k ∈ R20×d, W 2

k ∈ R20×20, W 3
k ∈ Rℓ×20 and bias vectors b1

k, b
2
k ∈ RN,

b3
k ∈ Rℓ, and θk = (W 1

k ,W
2
k ,W

3
k , b

1
k, b

2
k, b

3
k), where the matrices are considered vectorized before

concatenation.

4.4 Convergence analysis

In this section, we primarily provide an error analysis for (4.15), i.e., for the semidiscretization
in time. In Section 4.4.1, we introduce notation and spaces, and, in Section 4.4.2, we present
the setting and some further notation. Two technical results on strong and weak convergence
are stated and proved in Section 4.4.3. These two results are used in Section 4.4.4 to prove
the error in the objective function, in the initial and terminal value of Y and for the variance
of the stochastic cost. The results hold under an assumption on the regularity of the exact
continuous and discrete Markov maps. Convergence of the latter to the former is not assumed.
Section 4.4.5 contains strong convergence of the FBSDE under either the stronger assumption
of small time T or convergence of the discrete Markov maps. A discussion about a full error
analysis for the fully implementable scheme (4.16) is presented in Section 4.4.6.

4.4.1 Notation and spaces

For Euclidean spaces Rk, k ≥ 1, we denote by ∥·∥ the 2-norm without specifying the dimension.
Let S2(Rk) and H2(Rk) be the spaces of all progressively measurable stochastic processes
y, z : [0, T]× Ω→ Rk, for which

∥y∥S2(Rk) = sup
t∈[0,T]

(︂
E
[︁
∥yt∥2

]︁)︂ 1
2
<∞, and ∥z∥H2(Rk) =

(︄
E
[︃ ∫︂ T

0
∥zt∥2dt

]︃)︄ 1
2

<∞,

respectively. For a discretization, 0 = t0 < t1 < · · · < tN = T with tn+1 − tn = h, for all n, the
space Sh(Rk) is the space of all Fh-adapted, square integrable and discrete stochastic processes
y : {0, 1, . . . , N} × Ω → Rd, where Fhn = σ(∆Wm, m = 0, . . . , n − 1). For k1, k2, k3, k4 ≥ 1,
ℓ1, ℓ2, ℓ3 ≥ 0 and regular Si ⊆ Rki , i = 1, 2, 3, 4, by Cℓ1,ℓ2,ℓ3b (S1 × S2 × S3;S4), we denote the
space of all functions ϕ : S1 × S2 × S3 → S4, whose derivatives up to orders ℓ1, ℓ2, ℓ3 exist, are
continuous and bounded. We equip it with the semi-norms

|ϕ|γ = sup
x∈S1×S2×S3

∥∂γϕ(x)∥, i ∈ {1, . . . , ℓ},

95

4. Convergence of a robust deep FBSDE method for stochastic control

where γ = {(i1, i2, i3) : ij ∈ {0, , . . . , ℓj}, j = 1, 2, 3} are multi-indices and ∂γ = ∂i11 ∂
i2
2 ∂

i3
3 with

∂ij denoting i:th partial derivative in variable j. The set B(ℓ1, ℓ2, ℓ3) denotes all multi-indices
of length 3 that have exactly one non-zero index. We only use multi-indices in B(ℓ1, ℓ2, ℓ3)
and do therefore not impose restrictions on the cross derivatives, as is otherwise common.
For functions with fewer than three variables, we reduce the number of indices accordingly
and in the semi-norms we write |ϕ|i1,i2,i3 = |ϕ|(i1,i2,i3). For α ∈ (0, 1], k1, k2, k3 ≥ 1, ℓ1, ℓ2 ≥ 0
and regular Si ⊆ Rki , i = 1, 2, 3, by Cα,ℓ1,ℓ2H,b ([0, T]× S1 × S2;S3), we denote the space of all
functions ϕ : [0, T]× S1 × S2 → S3 that are α-Hölder continuous in time and whose derivatives
of order ℓ1, ℓ2 exist, are continuous and bounded and satisfy the property

|||ϕ|||α,ℓ1,ℓ2 = sup
t∈[0,T]

∥ϕ(t, 0, 0)∥+
∑︂
γ∈B

sup
t∈[0,T]

|ϕ(t, ·, ·)|γ

+ sup
(x1,x2)∈S1×S2

sup
t1,t2∈[0,T],t1 ̸=t2

1(0,1](α)∥ϕ(t1, x1, x2)− ϕ(t2, x1, x2)∥
(1 + ∥x1∥+ ∥x2∥)|t2 − t1|α

<∞.

Again, when there is only one space variable, we reduce the number of indices. When there is
no risk of confusion, we write | · |α,0,0 to denote the second term defining the ||| · |||α,ℓ1,ℓ2-norm,
and let | · |0,i,0 and | · |0,0,i coincide with the semi-norms on Cα,ℓ1,ℓ2b ([0, T]×S1×S2;S3) with the
same notation. For α = 0, we let C0,ℓ1,ℓ2

H,b ([0, T]× S1 × S2;S3) = C0,ℓ1,ℓ2
b ([0, T]× S1 × S2;S3).

For any function or process R defined on [0, T], we denote by Ř the discrete time function
or process defined by Řn = Rtn , n = 0, . . . , N . For any discrete function or process Rh defined
on 0, . . . , N , we write R̂h for the continuous time function or process defined by the piecewise
constant interpolation R̂h,t = Rh,n for t ∈ [tn, tn+1) and R̂h,T = Rh,N .

4.4.2 Setting and spaces of Markov maps

Let (Wt)t∈[0,T] be a k-dimensional Brownian motion on a filtered probability space
(Ω,F , (Ft)t∈[0,T],P), and (α, β) ∈ [0, 1

2] × {1} or (α, β) = (1, 2). The coefficients b : [0, T] ×
Rd × Rk → Rd, σ : [0, T] × Rd → Rd×k, f : [0, T] × Rd × Rk → R and g : Rd → R satisfy
b ∈ Cα,β,βH,b ([0, T]× Rd × Rk;Rd), σ ∈ Cα,βH,b([0, T]× Rd;Rd×k), f ∈ Cα,β,βH,b ([0, T]× Rd × Rk;R),
g ∈ C1

b(Rd;R). In the case α = 1, we assume that Dxσ = 0.
We next introduce families of Markov maps. Let Z = Z(b, σ, f, g) be the collection of all

measurable functions ζ : [0, T]× Rd → Rk with the property that the stochastic processes
(Xζ , Y ζ , Zζ)ζ∈Z ⊂ S2(Rd) × S2(R) × H2(Rd) satisfying for all t ∈ [0, T], P-almost surely
(4.8), are well defined. We write Zα,β = Z ∩ Cα,βH,b([0, T] × Rd;Rk). For the discrete
equations, we introduce for every h ∈ (0, 1) analogously Zh = Zh(b, σ, f, g) to be the
collection of all measurable functions ζ : {0, . . . , Nh − 1} × Rd → Rk, with the property that
(Xh,ζ , Y h,ζ , Zh,ζ)ζ∈Zh

⊂ S2
h(Rd)× S2

h(R)× S2
h(R) satisfying for all n ∈ {0, . . . , Nh}, P-almost

surely (4.15) are well-defined. We write Zβh = Zh ∩ (Cβb (Rd;Rk))N+1.
By introducing assumptions on the Markov maps we eliminate the need for assuming

smoothness, Lipschitz, polynomial growth, monotonicity, coercivity or other conditions on the
coefficients, for the existence and uniqueness of solutions for (4.8) and (4.15). For unfortunate
choices of b, σ, f, g, the spaces Z and Zh might be empty and results hold by default, but
given regular b, σ, f, g it is not hard, using available solution theory, to find ζ ∈ Z and ζh ∈ Zh.
Still, the entire spaces might be hard to represent but this is not of central importance.

96

4.4 Convergence analysis

In Assumption 3 below, the regularities of the optimal ζ∗ and ζ∗
h, solving (4.8) and (4.15)

are though of importance. Thus classical solution theory for SDE, FBSDE and regularity
theory for optimal Markov maps in discrete and continuous time are required for verifying our
assumptions for concrete examples. The latter is not well developed, see the discussion prior
to Assumption 3 below. Thus part of our assumptions require further theoretical development
to be verified, but our results show what is required.

4.4.3 Auxiliary lemmata on strong and weak convergence for SDEs

In the proof of our convergence results in Subsection 4.4.4, we rely on the strong convergence
result, stated next. It contains both classical strong convergence of the Euler-Maruyama
scheme for Hölder continuous coefficients, including strong order 1 for additive noise, but also
a non-standard type of strong convergence result for processes that have drift coefficients that
for each step size, agree between the grid points, but whose coefficients do not necessarily
converge as the step size tends to zero.

Lemma 1. Suppose the setting of Subsection 4.4.2 holds. Let a ∈ Cα,βH,b([0, T]× Rd;Rd) and
ah : [0, T] × Rd → Rd, h ∈ (0, 1) be a family of functions that are constant on each interval
[tn, tn+1), satisfy ah([0, T], ·) ⊂ Cβ(Rd;Rd) and suph∈(0,1) |||ah|||0,β <∞, let X ,X 1,h ∈ S2(Rd),
h ∈ (0, 1) be the unique solutions to

dXt = a(t,Xt)dt+ σ(t,Xt)dWt, t ∈ (0, T]; X0 = x0,

dX 1,h
t = ah(t,X 1,h

t)dt+ σ(t,X 1,h
t)dWt, t ∈ (0, T]; X 1,h

0 = x0, ,

and X 2,h,X 3,h ∈ S2
h(Rd), h ∈ (0, 1) be the unique solutions to

X 2,h
n+1 = X 2,h

n + a(tn,X 2,h
n)h+ σ(tn,X 2,h

n)∆Wn, n ∈ {0, . . . , N − 1}; X 2,h
0 = x0,

X 3,h
n+1 = X 3,h

n + ah(tn,X 3,h
n)h+ σ(tn,X 3,h

n)∆Wn, n ∈ {0, . . . , N − 1}; X 3,h
0 = x0.

It holds that

sup
h∈(0,1)

∥X 1,h∥S2(Rd) + sup
h∈(0,1)

∥X̂ 2,h∥S2(Rd) + sup
h∈(0,1)

∥X̂ 3,h∥S2(Rd) <∞, (4.17)

and there exists a constant C, such that

lim
h→0

h−α
(︂⃦⃦
X − X̂ 2,h⃦⃦

S2(Rd) +
⃦⃦
X 1,h − X̂ 3,h⃦⃦

S2(Rd)

)︂
=

 0 if α = 0,

C otherwise.

Proof. Due to the assumption on ah, there exists a finite constant C such that

∥ah(t, x)∥ ≤ sup
h∈(0,1)

sup
t∈[0,T]

(︁
∥ah(t, 0)∥+ |ah(t, ·)|1

)︁
∥x∥ ≤ C∥x∥.

This is enough to show the first assertion, the stability estimate, using a Gronwall argument. For
the convergence, we rely on [112], which covers both the cases α ∈ [0, 1

2] and α = 1. It is based
on the fact that bistability and consistency of order α, in the sense of [112], imply convergence
of order α. We start with X 1,h → X 3,h and the convergence X 2,h → X is immediate afterwards.

97

4. Convergence of a robust deep FBSDE method for stochastic control

Since the drift coefficients of X 1,h and X 3,h are both h-dependent, are not assumed to converge,
what we want to prove, i.e., limh→0 ∥X 1,h

t − X̂ 3,h
t ∥S2(Rd) = 0 does not say anything about

convergence of X 3,h and X 1,h. In particular, X 1,h1
t − X̂ 3,h2

t is in general not small for h1 ̸= h2.
Due to this special setting, we have to verify that the proofs of [112] are still valid.

We start with proving bistability. First, in [112, Lemma 4.1], it is proven that for small
enough h the numerical scheme is bijective. For our proof, it is important that the upper bound
for this property does not depend on h. From the proof, it is clear that this bound depends
on the reciprocal of suph∈(0,1) supt∈[0,T] |ah(t, ·)|1 and is therefore bounded away from zero by
assumption. By following the proof of [112, Lemma 4.2] line by line, the bistability constants
are bounded by suph∈(0,1) supt∈[0,T] |ah(t, ·)|1 and its reciprocal when Assumptions (S1) and
(S2) in [112] hold. It remains to prove (S1) and (S2) with uniform constants. First, (S1) is
trivially satisfied with L = 0 for any explicit scheme. By inspection of the proof of [112,
Theorem 3.3], we see that, for α ∈ [0, 1

2], corresponding to the stochastic θ-method with θ = 0,
(S2) is satisfied for all h with L = 3T suph∈(0,1) supt∈[0,T] |ah(t, ·)|21 + 12d|σ|21. For α = 1, (S2)
holds for the same L as the schemes are the same. This concludes the proof of bistability.

Consistency for α ∈ [0, 1
2] is obtained by observing that the proof in [112], referring for

details to [113], only relies on (4.17) and the 1
2 -Hölder continuity of ah between the grid

points, and this is clearly satisfied since ah is constant on [tn, tn+1). For consistency in case
α = 1, we rely on the proof of consistency for the Itô-Taylor scheme of order one, i.e.,
the Milstein scheme, coinciding with our scheme under the assumption of additive noise. It
suffices to note that the analysis is conducted per interval, and to check that fα is globally
Lipschitz continuous for α ∈ B(A1), in the notation of [112]. For this to hold, it suffices that
suph∈(0,1) supt∈[0,T] |ah(t, ·)|2 <∞. By assumption, this completes the proof for X 1,h and X 3,h.
For X 2,h and X , the convergence is included in [112], up to the order of consistency, which
in our setting is lower when α ∈ [0, 1

2). It is straight forward to use α-Hölder continuity for
α ∈ (0, 1

2), exactly as in the case α = 1
2 , and this way get consistency of order α. For α = 0,

one uses dominated convergence instead to obtain the convergence without order. This is valid
under our assumptions.

Our next Lemma is a weak convergence type result. With our assumption of low regularity
on the FBSDE coefficients, the weak rate does not exceed the strong rate and therefore the
proof relies on the strong convergence results of Lemma 1. Obtaining weak convergence order
α ∈ (1

2 , 1) for multiplicative noise, would otherwise require a Hölder condition on the third
derivative of b, σ, f, g and the case α = 1 requires four derivatives [114, 115].

Lemma 2. Suppose the setting of Subsection 4.4.2 holds. For all functions ζ ∈ Zα,β, collection
of functions ζh ∈ Zβh , h ∈ (0, 1), satisfying suph∈(0,1) |||ζ̂h|||0,β <∞, and λ ≥ 0, there exists a
constant C, such that

lim
h→0

h−α
(︂
|Φλ(ζ)− Φλ,h(ζ̌)|+ |Φλ(ζ̂h)− Φλ,h(ζh)|

)︂
=

0 if α = 0,

C otherwise.

Proof. We start with the first term and observe that

|Φλ(ζ)− Φλ,h(ζ̌)| ≤
⃓⃓
E
[︁
Yζ0 − Y

h,ζ̌
0
]︁⃓⃓

+ λ
⃓⃓
Var

(︁
Yζ0
)︁
−Var

(︁
Yh,ζ̌0

)︁⃓⃓
. (4.18)

98

4.4 Convergence analysis

For the proof of both terms of (4.18), we rely on convergence of (E
[︁
(Yζ0 −Y

h,ζ̌
0)2]︁) 1

2 , which we
next prove, beginning with α > 0. For t ∈ [tn, tn+1), denote t̄ = tn. We start by observing that
by the definition,

Yζ0 − Y
h,ζ̌
0 = g(Xζ

T)− g(Xh,ζ̌
T) +

∫︂ T

0

(︁
f
(︁
t,Xζ

t , ζ(t,X
ζ
t)
)︁
− f

(︁
t̄, X̂

h,ζ̌
t , ζ(t̄, X̂h,ζ̌

t)
)︁)︁

dt

+
∫︂ T

0

⟨︁
ζ(t,Xζ

t)− ζ(t̄, X̂h,ζ̌
t),dWt

⟩︁
= g(Xζ

T)− g(Xh,ζ̌
T) +

∫︂ T

0

(︁
f
(︁
t,Xζ

t , ζ(t,X
ζ
t)
)︁
− f

(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)
)︁)︁

dt

+
∫︂ T

0

(︁
f
(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)
)︁
− f

(︁
t̄, X̂

h,ζ̌
t , ζ(t̄, X̂h,ζ̌

t)
)︁)︁

dt

+
∫︂ T

0

⟨︁
ζ(t,Xζ

t)− ζ(t, X̂h,ζ̌
t),dWt

⟩︁
+
∫︂ T

0

⟨︁
ζ(t,Xζ

t)− ζ(t, X̂h,ζ̌
t),dWt

⟩︁
+
∫︂ T

0

⟨︁
ζ(t, X̂h,ζ̌

t)− ζ(t̄, X̂h,ζ̌
t),dWt

⟩︁
From the Itô Isometry and the triangle inequality, we have

(︁
E
[︁
(Yζ0 − Y

h,ζ̌
0)2]︁)︁ 1

2 ≤
(︁
E
[︁
(g(Xζ

T)− g(Xh,ζ̌
T))2]︁)︁ 1

2

+
∫︂ T

0

(︁
E
[︁(︁
f
(︁
t,Xζ

t , ζ(t,X
ζ
t)
)︁
− f

(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)
)︁)︁2]︁)︁ 1

2 dt

+
∫︂ T

0
E
[︁(︁
f
(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)
)︁
− f

(︁
t̄, X̂

h,ζ̌
t , ζ(t̄, X̂h,ζ̌

t)
)︁)︁2]︁)︁ 1

2 dt

+
(︂ ∫︂ T

0
E
[︁⃦⃦
ζ(t,Xζ

t)− ζ(t, X̂h,ζ̌
t)

⃦⃦2]︁dt)︂ 1
2

+
(︂ ∫︂ T

0
E
[︁⃦⃦
ζ(t, X̂h,ζ̌

t)− ζ(t̄, X̂h,ζ̌
t)

⃦⃦2]︁dt)︂ 1
2

= I1 + I2 + I3 + I4 + I5.

For I1, we use Lipschitz continuity of g and the Cauchy-Schwarz inequality, to get

I1 ≤ |g|1E
[︁
∥Xζ

T −X
h,ζ̌
T ∥

]︁
≤ |g|1

(︁
E
[︁
∥Xζ

T −X
h,ζ̌
T ∥

2]︁)︁ 1
2 ≤ |g|1

⃦⃦
Xζ − X̂h,ζ̌ ⃦⃦

S2(Rd). (4.19)

The function ϕ(t, x) = f(t, x, ζ(t, x)) is uniformly Lipschitz continuous in x with Lipschitz
constant Cϕ = |f |0,1,0 + |f |0,0,1|ζ|0,1. This implies, together with the Cauchy-Schwarz inequality,

I2 ≤ Cϕ
∫︂ T

0

(︁
E
[︁
∥Xζ

t − X̂
h,ζ̌
t ∥2

]︁)︁ 1
2 dt ≤ CϕT

⃦⃦
Xζ − X̂h,ζ̌ ⃦⃦

S2(Rd). (4.20)

Using the assumptions of b and ζ, it is easily verified that ϕ belongs to Cα,βH,b([0, T]× Rd;Rd)
and therefore, by (4.19), (4.20) and Lemma 1, we have I1 + I2 ≤ Chα. For the term I3, we see
that

I3 ≤
(︂
|f |α,0,0 + |f |0,0,1|ζ|α,0

)︂(︄
1 + sup

h∈(0,1)
∥X̂h,ζ̌∥S2(Rd)

)︄
N−1∑︂
n=0

∫︂ tn+1

tn
(t− tn)αdt

= |f |α,0,0 + |f |0,0,1|ζ|α,0
1 + α

(︄
1 + sup

h∈(0,1)
∥X̂h,ζ̌∥S2(Rd)

)︄
Nh1+α ≤ Chα.

99

4. Convergence of a robust deep FBSDE method for stochastic control

Similarly, for I4 and I5 we have

I4 ≤ |ζ|0,1
(︂ ∫︂ T

0
E
[︁
∥Xζ

t − X̂
h,ζ̌
t ∥2

]︁
dt
)︂ 1

2 ≤ |ζ|0,1T
1
2 ∥Xζ − X̂h,ζ̌∥S2(Rd) ≤ Chα,

and

I5 ≤ |ζ|α,0
(︂
1 + sup

h∈(0,1)
∥X̂h,ζ̌∥S2(Rd)

)︂(︄N−1∑︂
n=0

∫︂ tn+1

tn
|t− tn|2αdt

)︄ 1
2

= |ζ|α,0
1 + 2α

(︂
1 + sup

h∈(0,1)
∥X̂h,ζ̌∥S2(Rd)

)︂(︁
Nh1+2α)︁ 1

2 ≤ Chα.

For α = 0, the terms I1, I2, I4 need no special treatment. For I3, we notice that the function
ϕ is only continuous in t and convergence without rate holds by the Dominated Convergence
Theorem. This is verified by noting that

sup
t∈[0,T]

(︂
E
[︂(︂
f
(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)
)︁
− f

(︁
t̄, X̂

h,ζ̌
t , ζ(t̄, X̂h,ζ̌

t)
)︁)︂2]︂)︂ 1

2

≤ 2 sup
t∈[0,T]

(︂
E
[︂(︁
f
(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)
)︁2]︂)︂ 1

2

≤ 2 sup
t∈[0,T]

(︂
E
[︂(︁
f
(︁
t, X̂

h,ζ̌
t , ζ(t, X̂h,ζ̌

t)− f(t, 0, 0)
)︁2]︂)︂ 1

2 + 2 sup
t∈[0,T]

|f(t, 0, 0)|

≤ 2 sup
t∈[0,T]

(︁
|f(t, ·, ·)|1,0 + |f(t, ·, ·)|0,1

(︁
|ζ(t, ·)|1 + ∥ζ(t, 0)∥

)︁)︁
sup

h∈(0,1)
∥X̂h,ζ̌∥S2(Rd)

+ 2 sup
t∈[0,T]

⃓⃓
E
[︁
f
(︁
t, 0, 0

)︁⃓⃓
.

Due to the assumptions, the right-hand side is finite. The term I5 admits a similar treatment
and we refrain from giving details. This proves that

lim
h→0

(︁
E
[︁
(Yζ0 − Y

h,ζ̌
0)2]︁)︁ 1

2 =

0 if α = 0,

C otherwise.
(4.21)

For the first term in (4.18), this and the fact that
⃓⃓
E
[︁
Yζ0 − Y

h,ζ̌
0
]︁⃓⃓
≤
(︁
E
[︁
(Yζ0 − Y

h,ζ̌
0)2]︁)︁ 1

2 prove
the convergence.

For the second term in (4.18), we use the conjugate rule, Cauchy-Schwarz’ inequality, the
triangle inequality, to get

⃓⃓
Var(Yγ0)−Var(Yh,γ̌0)

⃓⃓
=
⃓⃓⃓
E
[︂⃓⃓
E[Yγ0]− Yγ0

⃓⃓2 − ⃓⃓E[︁Yh,γ̌0
]︁
− Yh,γ̌0

⃓⃓2]︂⃓⃓⃓
=
⃓⃓
E
[︁(︁
E[Yγ0 − Y

h,γ̌
0
]︁

+ Yh,γ̌0 − Yγ0
)︁(︁
E[Yγ0 + Yh,γ̌0

]︁
− Yh,γ̌0 − Yγ0

)︁]︁⃓⃓
≤
(︂
E
[︂(︁
E[Yγ0 − Y

h,γ̌
0
]︁

+ Yh,γ̌0 − Yγ0
)︁2]︂)︂ 1

2
(︂
E
[︂(︁
E
[︁
Yγ0 + Yh,γ̌0

]︁
− Yh,γ̌0 − Yγ0

)︁2]︂)︂ 1
2

≤
(︂⃓⃓
E[Yγ0 − Y

h,γ̌
0
]︁⃓⃓

+
(︁
E
[︁(︁
Yh,γ̌0 − Yγ0

)︁2]︁)︁ 1
2
)︂(︂⃓⃓

E[Yγ0 + Yh,γ̌0
]︁⃓⃓

+
(︁
E
[︁(︁
Yh,γ̌0 + Yγ0

)︁2]︁)︁ 1
2
)︂

≤ 4
(︂(︁
E
[︁(︁
Yζ0
)︁2]︁)︁ 1

2 + sup
h∈(0,1)

(︁
E
[︁(︁
Yh,ζ̌0

)︁2]︁)︁ 1
2
)︂(︁
E
[︁(︁
Yh,γ̌0 − Yγ0

)︁2]︁)︁ 1
2 .

100

4.4 Convergence analysis

Together with (4.21), this completes the proof for the term |Φλ(ζ)− Φλ,h(ζ̌)|.
For the second term, |Φλ(ζ̂h) − Φλ,h(ζh)|, we define the functions ah : [0, T] × Rd → Rd,

h ∈ (0, 1), by ah = ĉh, where ch : {0, . . . , N}×Rd → Rd are given by ch,n(x) = b(tn, x, ζh,n(x)).
By the assumptions on b and ζh, we have that ah satisfy the assumption of Lemma 1. This
implies that limh→0 ∥Xζh − X̂h,ζh∥S2(Rd) = 0 and ∥Xζh − X̂h,ζh∥S2(Rd) ≤ Chα for α > 0. This
fact, together with the same calculations as for I1, I2, I4, I5, and noting that the analogous for
I3 is zero, completes the proof.

4.4.4 Time discretization error of the initial and terminal values

This and the next section contain our main results. The results are based on an assumption of
regularity of the Markov maps ζ∗ ∈ Z and ζ∗

λ,h ∈ Zh, h ∈ (0, 1), λ ≥ 0, of the FBSDE and its
discretizations, respectively. The regularity has to be verified for specific problems and this, in
particular for the discrete problem, is a non-trivial and also not a well studied problem, see
[116, 117, 118]. For the continuous problem, it breaks down into existence and uniqueness of a
solution of the FBSDE and regularity of the solution to the HJB equation. In this chapter, we
provide only the abstract error analysis. Our assumption is next stated.

Assumption 3. There exists a unique minimizer ζ∗ ∈ Z of ζ ↦→ Φ1(ζ), it belongs to Zα,β and
satisfies Var(Yζ

∗

0) = 0. Moreover, for all λ ≥ 0, there exists a collection of minimizers ζ∗
λ,h ∈ Zh,

h ∈ (0, 1), of ζ ↦→ Φλ,h(ζ) that for each h belongs to Zβh and satisfies suph∈(0,1) |||ζ̂
∗
λ,h|||0,β <∞.

Our first result concerns the convergence of the objective function. The proof relies on a
split of the error into two error terms, one containing only ζ∗ and one containing only ζ∗

λ,h.
This way, we avoid getting an error bound containing the error between the continuous and
discrete Markov maps. The result is used throughout our proofs, except in Proposition 4,
where we have the error of the Markov map in the bound.

Theorem 5. Suppose the setting of Subsection 4.4.2, let Assumption 3 hold and λ ≥ 0. Then,
|Φ∗−Φ∗

λ,h| → 0 as h→ 0, and if α > 0, then there exists a constant C, independent of h, such
that

|Φ∗ − Φ∗
λ,h| ≤ Chα.

Proof. We start by noting that, since Var(Yζ
∗

0) = 0, it holds that ζ∗ is optimal for all Φλ,
λ ≥ 0, and Φ∗ = Φ∗

λ := Φλ(ζ∗). Because of optimality of ζ∗ ∈ Z and since ζ̂∗
h ∈ Z, it holds

that Φ∗ = Φ∗
λ ≤ Φλ(ζ̂∗

h). This implies

Φ∗ ≤ Φλ(ζ̂∗
λ,h) = Φ∗

λ,h + Φλ(ζ̂∗
λ,h)− Φ∗

λ,h ≤ Φ∗
λ,h + |Φλ(ζ̂∗

λ,h)− Φ∗
λ,h|.

Similarly, from the optimality of ζ∗
λ,h ∈ Zh and since ζ̌∗ ∈ Zh, it holds Φ∗

λ,h ≤ Φλ,h(ζ̌∗). We
have

Φ∗
λ,h ≤ Φλ,h(ζ̌∗) = Φ∗ + Φλ,h(ζ̌∗)− Φ∗ ≤ Φ∗ + |Φλ,h(ζ̌∗)− Φ∗|.

The two inequalities equivalently read Φ∗−Φ∗
λ,h ≤ |Φ(ζ̂∗

λ,h)−Φ∗
λ,h| and Φ∗

λ,h−Φ∗ ≤ |Φλ,h(ζ̌∗)−
Φ∗|, and thus

|Φ∗ − Φ∗
λ,h| ≤ max(|Φ(ζ̂∗

λ,h)− Φ∗
λ,h|, |Φλ,h(ζ̌∗)− Φ∗|) ≤ |Φ(ζ̂∗

λ,h)− Φ∗
λ,h|+ |Φλ,h(ζ̌∗)− Φ∗|.

101

4. Convergence of a robust deep FBSDE method for stochastic control

The convergence is given by our assumption and Lemma 2. This completes the proof.

A consequence of the convergence of the objective function is the convergence of the two
components of the objective, given that λ > 0. This is stated in our next theorem.

Theorem 6. Suppose the setting of Subsection 4.4.2, let Assumption 3 hold, λ > 0, Yh,λ0 :=
Y
h,ζ∗

h,λ

0 and Y h,λ
0 := E[Yh,λ0]. Then, |Y0 − Y h,λ

0 |+ Var(Yh,λ0)→ 0 as h→ 0, and if α > 0, there
exists a constant C, independent of h, such that

⃓⃓
Y0 − Y h,λ

0
⃓⃓
+ Var

(︁
Yh,λ0

)︁
≤ Chα.

Proof. We start with the proof for the variance and use both the sequences (ζ∗
0,h)h∈(0,1) and

(ζλ,h)h∈(0,1). The proof relies on a squeezing argument. Adding and subtracting terms and
using the triangle inequality, yields

λVar(Yh,λ0) ≤
⃓⃓
Y0 − Y h,λ

0 − λVar
(︁
Yh,λ0

)︁⃓⃓
+
⃓⃓
Y0 − Y h,0

0
⃓⃓
+
⃓⃓
Y h,0

0 − Y h,λ
0
⃓⃓
. (4.22)

From the assumption Var(Y0) = 0, it holds that Φ∗ = Y0 and Theorem 5 gives

⃓⃓
Y0 − Y h,λ

0 − λVar
(︁
Yh,λ0

)︁⃓⃓
+
⃓⃓
Y0 − Y h,0

0
⃓⃓

=
⃓⃓
Φ∗ − Φ∗

λ,h

⃓⃓
+
⃓⃓
Φ∗ − Φ∗

0,h
⃓⃓
≤ Chα. (4.23)

For the third term on the right-hand side of (4.22), we first notice that, since ζ0,h is a
minimizer of ζ ↦→ Y h,0

0 , it holds that Y h,λ
0 − Y h,0

0 ≥ 0. This fact, adding λVar(Yh,λ0), adding
and subtracting Y0, using the triangle inequality and using (4.23), gives us

⃓⃓
Y h,0

0 − Y h,λ
0
⃓⃓

= Y h,λ
0 − Y h,0

0 ≤ Y h,λ
0 + λVar

(︁
Yh,λ0

)︁
− Y0 − Y h,0

0 + Y0

≤
⃓⃓
Y0 − Y h,λ

0 − λVar
(︁
Yh,λ0

)︁⃓⃓
+
⃓⃓
Y0 − Y h,λ

0
⃓⃓
≤ Chα.

(4.24)

Now, (4.22)–(4.24) complete the proof for the variance. For the convergence of Y h,λ
0 , we

conclude

⃓⃓
Y0 − Y h,λ

0
⃓⃓
≤
⃓⃓
Y0 − Y h,λ

0 − λVar
(︁
Yh,λ0

)︁⃓⃓
+ λVar

(︁
Yh,λ0

)︁
≤ Chα.

From (4.9) and Theorem 6, we directly get convergence in the terminal value and we can
also conclude strong convergence of yh,λ0 . This is stated in the following two corollaries.

Corollary 4.4.1. Suppose the setting of Subsection 4.4.2, let Assumption 3 hold and λ > 0.
Then, E[(g(Xh,λ

N) − Y h,λ
N)2] → 0 as h → 0, and if α > 0, then there exists a constant C,

independent of h, such that

(︂
E
[︂(︁
g
(︁
Xh,λ
N

)︁
− Y h,λ

N

)︁2]︂)︂ 1
2 ≤ Ch

α
2 .

Corollary 4.4.2. Suppose the setting of Subsection 4.4.2, let Assumption 3 hold and λ > 0.
Then, (E[(Y0 − Yh,λ0)2]) 1

2 → 0 as h → 0, and if α > 0, then there exists a constant C,

102

4.4 Convergence analysis

independent of h, such that

(︂
E
[︂(︁
Y0 − Yh,λ0

)︁2]︂)︂ 1
2 ≤ Ch

α
2 .

Proof. From Theorem 6 and the triangle inequality, it holds

(︂
E
[︂(︁
Y0 − Yh,λ0

)︁2]︂)︂ 1
2 ≤

(︂
E
[︂(︁
Y0 − Y h,λ

0 + Y0 − Yh,λ0
)︁2]︂)︂ 1

2 +
⃓⃓
Y0 − Y h,λ

0
⃓⃓

=
(︂
Var

(︁
Yh,λ0

)︁)︂ 1
2 +

⃓⃓
Y0 − Y h,λ

0
⃓⃓
≤ Ch

α
2 .

This proves the corollary.

4.4.5 Time discretization error of the FBSDE

While the error analysis for the initial and terminal values in the previous subsection required
only Assumption 3, the strong error analysis of (X,Y, Z) requires more. In Theorem 7, we
prove strong convergence for small horizon T . This should be compared with the convergence
result in [87], that also has a very restrictive assumption on T . Compared to [87], whose bound
contains the error in the terminal value, we have no such term. In Proposition 4, we prove the
strong convergence without a restriction on T with the cost of having a bound containing the
error between the Markov maps ζ∗ and ζ∗

λ,h.

Theorem 7. Suppose the setting of Subsection 4.4.2, let Assumption 3 hold, α, λ > 0, and

max
(︄
T

1
2 |f |0,0,1,

5T (T |f |0,1,0 + |g|1)|b|20,0,1 exp(5T (|b|0,1,0T + |σ|0,1))
1− T 1

2 |f |0,0,1

)︄
< 1.

Then, there exists a constant C, independent of h, such that

⃦⃦
X − X̂h,λ⃦⃦

S2(Rd) +
⃦⃦
Y − Ŷ h,λ⃦⃦

S2(Rd) +
⃦⃦
Z − Ẑh,λ

⃦⃦
H2(Rk) ≤ Ch

α
2 .

Proof. We start by noting that for t ∈ [0, T], it holds

Yt − Y h,λ
t = Y0 − Y h,λ

0 −
∫︂ t

0

(︁
f(s,Xs, Zs)− f(s̄, X̂h,λ

s , Ẑ
h,λ
s)

)︁
ds+

∫︂ t

0

(︁
Zs − Ẑ

h,λ
s

)︁
dWs. (4.25)

By the Itô Isometry, substitution of (4.25) with t = T , and the triangle inequalities, we have

⃦⃦
Z − Ẑh,λ

⃦⃦
H2(Rk) =

(︂
E
[︂ ∫︂ T

0
∥Zt − Ẑ

h,λ
t ∥2dt

]︂)︂ 1
2 =

(︂
E
[︂(︂ ∫︂ T

0
(Zt − Ẑ

h,λ
t)dWt

)︂2]︂)︂ 1
2

=
(︄
E
[︄(︄
Y0 − Y h,λ

0 + g(XT)− Y h,λ
N −

∫︂ T

0

(︁
f(t,Xt, Zt)− f(t̄, X̂h,λ

t , Ẑ
h,λ
t)

)︁
dt
)︄2]︄)︄ 1

2

≤
⃓⃓
Y0 − Y h,λ

0
⃓⃓
+
(︁
E
[︁(︁
g(XT)− g(Xh,λ

N)
)︁2]︁)︁ 1

2 +
(︁
E
[︁(︁
g(Xh,λ

N)− Y h,λ
N

)︁2]︁)︁ 1
2

+
(︂
E
[︂(︂ ∫︂ T

0

(︁
f(t,Xt, Zt)− f(t̄, X̂h,λ

t , Ẑ
h,λ
t)

)︁
dt
)︂2]︂)︂ 1

2
.

The first three terms are by Theorem 6 and Corollary 4.4.1, bounded from below by Chα
2 +

|g|1∥X − X̂
h,λ∥S2(Rd). By similar arguments as those for I2, I3 in the proof of Lemma 2, it

103

4. Convergence of a robust deep FBSDE method for stochastic control

holds

(︂
E
[︂(︂ ∫︂ T

0

(︁
f(t,Xt, Zt)− f(t̄, X̂h,λ

t , Ẑ
h,λ
t)

)︁
dt
)︂2]︂)︂ 1

2

≤ T |f |α,0,0(1 + α)−1hα + T |f |0,1,0∥X − X̂
h,λ∥S2(Rd) + T

1
2 |f |0,0,1

⃦⃦
Ẑ
h,λ − Z

⃦⃦
H2(Rk).

(4.26)

By a kickback argument and by assumption, it holds

⃦⃦
Z − Ẑh,λ

⃦⃦
H2(Rk) ≤ Ch

α + T |f |0,1,0 + |g|1
1− T 1

2 |f |0,0,1
∥X − X̂h,λ∥S2(Rd). (4.27)

We next approach the error ∥X − X̂h,λ∥S2(Rd). Let Ξh,λ ∈ S2(Rd), h ∈ (0, 1), be the family
of stochastic processes that for all t ∈ [0, T], P-a.s., satisfy

Ξh,λt = x0 +
∫︂ t

0
b(s̄,Ξh,λs , Zh,λs)ds+

∫︂ t

0
σ(s̄,Ξh,λs)dWs.

Using the triangle inequality, we get

∥X −Xh,λ∥S2(Rd) ≤ ∥X − Ξh,λ∥S2(Rd) + ∥Ξh,λ − X̂h,λ∥S2(Rd).

By the arguments used repeatedly in the proof of Lemma 1 and by assumptions, it holds

E
[︁
∥Xt−Ξh,λt ∥2

]︁
≤ Chα + 5|b|20,0,1T∥Z − Zh,λ∥2H2(Rk) + 5

(︁
|b|0,1,0T + |σ|0,1

)︁ ∫︂ t

0
E
[︁
∥Xs − Ξh,λs ∥2

]︁
ds.

From this, it follows by the Gronwall lemma that

E
[︁
∥Xt − Ξh,λt ∥2

]︁
≤ exp

(︂
5T
(︁
|b|0,1,0T + |σ|0,1

)︁)︂(︂
Chα + 5|b|20,0,1T∥Z − Zh,λ∥2H2(Rk)

)︂
.

A use of Lemma 1 yields ∥Ξh,λ − X̂h,λ∥S2(Rd) ≤ Chα. We conclude that

∥X − X̂h,λ∥S2(Rd) ≤ Chα + 5T |b|20,0,1 exp(5T (|b|0,1,0T + |σ|0,1))∥Z − Ẑh,λ∥H2(Rk). (4.28)

Using (4.28) in (4.27) gives, after a kickback argument, the desired bound ∥Z − Ẑh,λ∥H2(Rk) ≤
Chα.

For ∥Y − Ŷ h,λ∥S2(Rd), we use (4.25) and the standard arguments to get

(︂
E
[︁⃦⃦
Yt − Y h,λ

t

⃦⃦2]︁)︂ 1
2

≤
⃓⃓
Y0 − Y h,λ

0
⃓⃓
+
(︄∫︂ T

0
E
[︂⃦⃦
f(s,Xs, Zs)− f(s̄, X̂h,λ

s , Ẑ
h,λ
s)

⃦⃦2]︂ds)︄
1
2

+
⃦⃦
Zs − Ẑ

h,λ
s

⃦⃦
H2(Rk).

Applying Theorem 5, (4.26) and the obtained results for ∥X−X̂h,λ∥S2(Rd) and ∥Z−Ẑh,λ∥H2(Rk)

complete the proof.

104

4.5 Numerical experiments

Proposition 4. Suppose the setting of Subsection 4.4.2, let Assumption 3 hold, α, λ > 0.
Then, there exists a constant C, independent of h, such that

⃦⃦
X − X̂h,λ⃦⃦

S2(Rd) +
⃦⃦
Y − Ŷ h,λ⃦⃦

S2(Rd) +
⃦⃦
Z − Ẑh,λ

⃦⃦
H2(Rk)

≤ C
(︄
h

α
2 + max

0,...,Nh

(︂
E
[︂⃦⃦
ζ∗(tn, Xλ,h

n)− ζ̂∗
h,λ(tn, Xλ,h

n)
⃦⃦2]︂)︂ 1

2

)︄
.

Proof. This is proved similarly to Theorem 7 without the kick-back argument and instead of
(4.26), using

(︂
E
[︂(︂ ∫︂ T

0

(︁
f(t,Xt, Zt)− f(t̄, X̂h

t , Ẑ
h
t)
)︁
dt
)︂2]︂)︂ 1

2

≤ C
(︂
h

α
2 + ∥X − X̂h,λ∥S2(Rd) + max

0,...,Nh

(︂
E
[︂⃦⃦
ζ∗(tn, Xλ,h

n)− ζ̂∗
h,λ(tn, Xλ,h

n)
⃦⃦2]︂)︂ 1

2
)︂
.

4.4.6 A discussion on the full error analysis of the robust deep FBSDE
method

In Subsections 4.4.4 and 4.4.5, only the time discretization error is considered, i.e., the error
between (4.8) and (4.15). For a full error analysis, the error between the fully implementable
scheme (4.16) and (4.8) must be considered. Besides the time discretization error, there are
three other sources of error: The first is the error induced by optimizing over the parameters of
a neural network, instead of over the vast set Zh. By the Universal Approximation Theorem
[111], this error can be made arbitrarily small, but this theorem gives no help with suggesting
the network architecture that can guarantee a maximal error of desired size. The second
error is the Monte-Carlo error induced from approximating the expectation in Y0 by a sample
mean. This error allows for a simple error analysis and the Monte Carlo error is of the order
O(M−1/2

batch). The final error is the error induced from the inexact optimization procedure of
(4.16).

4.5 Numerical experiments

In this section, we evaluate our algorithm on three different problems. The first two are of LQ
type, for which we have access to a semi-analytic solution for comparison. The third example
uses nonlinear terms, both in the drift and diffusion coefficients in the forward equation, and
we no longer have access to a reference solution. In the first example, there is a one-to-one map
between the feedback control and the Z−process, and we can set λ = 0 in the loss function. In
the second and third examples, this is not the case, and λ > 0 is necessary for uniqueness of
the minimizer to our discrete problem, and in turn convergence to the continuous FBSDE.

105

4. Convergence of a robust deep FBSDE method for stochastic control

In the experimental convergence studies, we approximate ∥ · ∥S(Rq) and ∥ · ∥H(Rq), with

∥A∥S2
h,M

(Rq) = max
n∈{0,1,...,N}

(︃ 1
M

M∑︂
m=1
∥An(m)∥2

)︃ 1
2
,

∥A∥H2
h,M

(Rq) = 1
N

N−1∑︂
N=0

(︃ 1
M

M∑︂
m=1
∥An(m)∥2

)︃ 1
2
.

Here, A(m) = {A1(m), A2(m), ·, AN (m)}, m = 1, 2, . . . ,M , are i.i.d. realizations of some
adapted stochastic processes A on the grid. The norm ∥ · ∥L2(Ω;Rq) is approximated with a
sample mean, denoted ∥ · ∥L2

h,M
(Rq). For the convergence study, the Experimental Order of

Convergence (EOC) is used. It is defined as

EOC(hi) = log (error(hi+1))− log (error(hi))
log (hi+1)− log (hi)

.

In all examples, we use the neural network architecture in Section 4.3.2. We use Mtrain = 222

training data points and batch size Mbatch = 29 with Kepoch = 15 epochs. This gives Kbatch =
212 = 4096 updates per epoch. For the optimization, the Adam optimizer [119] is used with
learning rate 0.1 for the first three epochs, which, after that, is multiplied by a factor of e−0.5

for each new epoch. For our use, it was important to choose Mtrain large, since in our empirical
convergence results we want to isolate the time discretization error. In practice, the method
generates acceptable solutions with significantly smaller Mtrain.

4.5.1 Linear quadratic control problems

Among all stochastic control problems, the LQ control problem is the most studied and that
with the most structure, see e.g., [120]. For our purposes, it has a closed-form analytic solution,
with which we can compare our numerical approximations.

Let k = d, x0 ∈ Rd, A, σ,∈ Rd×d, Rx, G ∈ Sd+, Ru ∈ Sℓ+ and B ∈ Rd×ℓ be of full rank and
C ∈ Rd. The state equation and cost functional of a linear-quadratic-Gaussian control problem
are given by

Xt = x0 +
∫︂ t

0

(︁
A(C −Xs) +Bus

)︁
ds+

∫︂ t

0
σdWs,

Ju(t, x) = Et,x
[︂ ∫︂ T

t
(⟨RxXs, Xs⟩+ ⟨Ruus, us⟩)ds+ ⟨GXT , XT ⟩

]︂
, t ∈ [0, T].

With the minimizer v∗ of the corresponding Hamiltonian, infu∈U{⟨DxV,Bu⟩+ ⟨Ruu, u⟩}, we
have the optimal feedback control

u∗
t = −1

2R
−1
u BTDxV (t,Xt). (4.29)

Here, we recall that V is the solution to the associated HJB-equation. Its solution is given by

V (t, x) = xTP (t)x+ xTQ(t) +R(t),

106

4.5 Numerical experiments

where (P,Q,R) solves the system of ordinary differential equations,

Ṗ (t)−ATP (t)− P (t)A− P (t)BR−1
u BTP (t) +Rx = 0d×d,

Q̇(t) + 2P (t)AC −ATQ(t)− P (t)BR−1
u BTQ(t) = 0d,

Ṙ(t) + Tr
{︁
σσTP (t)

}︁
+Q(t)TAC − 1

4Q(t)TBR−1
u BTQ(t) = 0, t ∈ [0, T],

P (T) = G; Q(T) = 0d; R(T) = 0.

The first equation is a matrix Riccati equation, and we refer to the whole system, slightly
inaccurately, as the Riccati equation. The gradient of V satisfies DxV (t, x) = 2P (t)x+Q(t).
The related FBSDE reads:
Xt = x0 +

∫︂ t

0

[︁
A(C −Xs)−

1
2BR

−1
u B⊤Zs

]︁
ds+

∫︂ t

0
σdWs,

Yt = ⟨GXT , XT ⟩ −
∫︂ T

t

(︁
⟨RxXs, Xs⟩ −

1
4⟨R

−1
u B⊤Zs, B

⊤Zs⟩
)︁
ds+

∫︂ T

t
⟨Zs, σdWs⟩, t ∈ [0, T].

(4.30)
The solution to (4.30) is then given by

Yt = XT
t P (t)Xt +XT

t Q(t) +R(t); Zt = 2P (t)Xt +Q(t). (4.31)

The Riccati equation has an analytic solution in closed-form, only in one dimension. As
benchmark solution in our experiments, we use the Euler approximation of the Riccati
equation with 160× 27 time steps and with 160 time steps for for X. The processes (Y,Z) are
approximated by (4.31).

4.5.1.1 Example with state and control of the same dimension

Our first example concerns a two-dimensional LQ control problem with two-dimensional control.
The matrices for the forward equation are given by

A =
(︄

1 0
0 2

)︄
, B =

(︄
1 0.5
−0.5 1

)︄
, C =

(︄
0.1
0.2

)︄
, σ =

(︄
0.05 0.25
0.05 0.25

)︄
, x0 =

(︄
0.1
0.1

)︄
, T = 0.5,

and the penalty matrices for the control problem by

Rx =
(︄

100 0
0 1

)︄
, Ru =

(︄
1 0
0 1

)︄
, G =

(︄
1 0
0 100

)︄
.

In Figure 4.3, the approximation of (X,Y, Z) is compared to the analytic solution in mean,
an empirical credible interval (again, defined as the area between the 5:th and 95:th percentiles
at each time point) as well as for a single path. We see that the largest error comes from the
approximation of Y . The reason for this is the error accumulation stemming from our time
discretization. It is not due to the neural network approximation. This can be verified by using
the baseline for Z, from the Riccati equation, and use an Euler-Maruyama scheme to generate
the same error. This suggests that a more suitable choice of numerical schemes for Y should
be used.

107

4. Convergence of a robust deep FBSDE method for stochastic control

In Table 4.1, we see the convergence rates from the experiment. The regime of the LQ
control problem, with, e.g., quadratic dependence in f does not satisfy the assumptions made
in Section 4.4 and a direct comparison cannot be made. Still, we see, for instance, that Y h

0
converges empirically with order 1, while the error in the terminal condition reaches 0.69 and
is likely to continue to decrease. In Theorem 6 and Corollary 4.4.1, there is a difference of
a factor two between these two errors, which roughly appears to be in line with the rates
obtained.

Figure 4.3: Average of solutions and a single solution path compared to their analytic counterparts
for the LQ control problem from Section 4.5.1.1. The shaded areas represent empirical credible
intervals, defined as the areas between the 5:th and the 95:th percentiles at each time point.

4.5.1.2 Example with control in lower dimensions than the state

Our second example concerns a six-dimensional problem with a two-dimensional control. The
matrices used for the state equation are given by

A = diag([1, 2, 3, 1, 2, 3]), B =

1 −1
1 1

0.5 1
1 −1
0 −1
0 1

, C = diag([−0.2,−0.1, 0, 0, 0.1, 0.2]),

σ = diag([0.05, 0.25, 0.05, 0.25, 0.05, 0.25]), x0 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)⊤, T = 0.5.

108

4.5 Numerical experiments

∥X −Xh∥S2
h

∥Y − Y h∥S2
h

∥Z − Zh∥H2
h

∥Y h
N − g(Xh

N)∥L2
h
|Y0 − Y h

0 | Y h
0

N Error EOC Error EOC Error EOC Error EOC Error EOC Value
Problem 1 with d = 2 and ℓ = 2 with analytic initial value Y0 = 0.6122 .

5 6.90e-2 1.28 1.22 1.03 5.66e-1 1.34 9.91e-1 0.98 7.10e-1 1.13 1.32
10 2.85e-2 1.11 6.02e-1 0.98 2.22e-1 1.16 5.04e-1 0.92 3.26e-1 1.16 0.937
20 1.32e-2 1.09 3.05e-1 0.86 1.00e-1 1.08 2.67e-1 0.80 1.47e-1 1.04 0.759
40 6.16e-3 1.00 1.68e-1 0.74 4.72e-2 0.98 1.53e-1 0.69 7.01e-2 1.01 0.683
80 3.07e-3 1.01e-1 2.39e-2 9.46e-3 3.47e-2 0.645

Problem 2 with d = 6 and ℓ = 2 with analytic initial value Y0 = 1.4599.
5 7.25e-2 1.23 5.65e-1 0.90 1.20 0.90 4.43e-1 0.80 3.51e-1 1.10 1.80
10 3.10e-2 1.10 3.02e-1 0.76 7.41e-1 0.49 2.54e-1 0.69 1.63e-1 0.94 1.55
20 1.45e-2 0.87 1.79e-1 0.63 5.26e-1 0.28 1.57e-1 0.60 8.51e-2 0.82 1.55
40 7.96e-3 0.35 1.15e-1 0.53 4.34e-1 0.18 1.04e-1 0.54 4.81e-2 0.69 1.51
80 6.24e-3 7.96e-2 3.84e-1 7.15e-2 3.00e-2 1.49

Problem 3 with d = 25 and ℓ = 1 with analytic initial value Y0 = 11.348.
5 2.25e-1 1.86 1.93 0.68 3.40 - 1.29 0.50 1.43 0.99 12.78
10 6.19e-2 0.97 1.21 0.42 2.54 - 9.15e-1 0.31 0.72 0.47 12.07
20 5.66e-2 0.57 9.00e-1 0.29 2.73 - 7.40e-1 0.19 0.52 0.53 11.87
40 2.48e-2 0.25 7.37e-1 0.069 2.72 - 6.47e-1 0.023 0.36 0.53 11.71
80 2.09e-2 7.03e-1 3.06 6.37e-1 0.25 11.60

Table 4.1: Errors and experimental order of convergence for LQ control problems described in
Sections 4.5.1.1 and 4.5.1.2.

The penalty matrices of the control problem are given by

Rx = diag([25, 1, 25, 1, 25, 1]), Ru = diag([1, 1]), G = diag([1, 25, 1, 25, 1, 25]).

Before we discuss our results, recall that the optimal feedback control at time t is given by
u∗
t = −1

2R
−1
u BTZt. Since u∗

t takes on values in Rℓ and R−1
u BT is of rank ℓ < d at most, we

can conclude that there exists infinitely many processes ζt, such that u∗
t = −1

2R
−1
u BT ζt. To

obtain uniqueness of the control component, we set λ = 1 > 0.
In Figure 4.4, the approximations are compared with semi-analytic solutions in empirical

mean, credible interval and for a representative path realization of X,Y and Z. Visually,
the approximations capture (X,Y, Z) well. The convergence is shown in the middle part of
Table 4.1 and we note that the experimental orders decrease below the orders of the previous
example (top part of Table 4.1). To investigate whether this is the true convergence order,
or if other errors are dominating for small time steps, we have done some hyperparameter
optimization with different training data and batch sizes, learning rates and neural network
architectures, without being able to improve these rates.

The third example aims to demonstrate our methods’ ability to deal with high-dimensional
problems. Most high-dimensional PDE and BSDE problems in the literature are symmetric
(solutions are permutation invariant), and in some cases the solutions can be represented by
a one-dimensional BSDE [121, Example 1]. From the parameters below, it becomes evident
that the 25-dimensional problem that we choose is highly non-symmetric and therefore very
challenging (arguably more challenging than a similar, but 100-dimensional symmetric problem).
Non-symmetric problems in the literature are [103, 83, 102, 101, 86], and the dimensions are 4,
5, 3, 4, and 2, respectively. A symmetric problem in 100-dimensions is found in [83].

109

4. Convergence of a robust deep FBSDE method for stochastic control

Figure 4.4: Average of solutions and a single solution path compared to their analytic counterparts
for the LQ control problem from Section 4.5.1.2. The shaded area represents an empirical credible
interval for Y , defined as the area between the 5:th and the 95:th percentiles at each time point.
We do not include credible intervals for X and Z in this figure to facilitate visualization. For X
and Z, we see one realization of each of the six components.

110

4.5 Numerical experiments

Despite the challenging nature of the problem and its relatively high-dimension, we
achieve acceptable results, which is displayed in the bottom third of Table 4.1. It should
however be pointed out that the error source induced by the time discretization is no longer
dominating. This means that we do not see a convergence with the number of time steps for
the approximation of the Z−process. All the other discretization errors decreases with the step
size, but it is clear that we have other significant error sources. Figure 4.5 shows that visually
the performance for 40 time steps is acceptable, even though some of the components of the Z
process oscillates close to the terminal time. The phenomena of accurate X and Y processes
and less accuracy in some of the components of the Z process could, at least heuristically, be
explained by the mapping R25 ∋ Zt ↦→ ut ∈ R. It is reasonable to assume that some of the
components of the Z process are more influential in the above mentioned mapping, which
is what we have seen empirically in our experiments. Moreover, we have noticed that the
components of the Z process with the lowest magnitudes are less accurately approximated
(relatively), which by the form of the feedback control, also justifies the above reasoning.

We use the following parameters:

T = 0.5, d = 25, l = 1, x0 = (0, 1, 0.1, . . . , 0.1), A = diag([1, 2, 3, . . . , 1, 2, 3, 1]),

B = (1, 1, 0.5, 1, 0, 0, 1, 1, 0.5, 1, 0, 0, 1, 1, 0.5, 1, 0, 0, 1, 1, 0.5, 1, 0, 0, 1)

C = (−0.2,−0.1, 0, 0, 0.1, 0.2,−0.2,−0.1, 0, 0, 0.1, 0.2,−0.2,−0.1, 0, 0, 0.1, 0.2,−0.2,−0.1, 0, 0,

0.1, 0.2,−0.2), σ = diag([0.15, 0.15, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,

0.15, 0.15, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]),

and

Rx = diag([25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25]), Ru = 1,

G = diag([25, 25, 25, 25, 25, 25, 1, 25, 1, 25, 1, 25, 25, 25, 25, 25, 25, 25, 1, 25, 1, 25, 1, 25, 1]).

4.5.2 Non-linear quadratic control problems

Finally, we consider a control problem with non-linear coefficients in the state equation and
quadratic coefficients in the cost functional. It has stable and unstable equilibrium points at
the odd and even integers, respectively. The problem has been chosen to mimic the unstable
problems that are commonly considered in control, such as inverted pendulums.

Let x0 ∈ Rd, A,Σ,∈ Rd×d, Rx, G ∈ Sd+, Ru ∈ Sℓ+ and B ∈ Rd×ℓ be of full rank and C ∈ Rd.
The state equation and cost functional of a non-linear quadratic control problem are given by

Xt = x0 +
∫︂ t

0

(︁
A sin(πCXs) +Bus

)︁
ds+

∫︂ t

0
Σ(1d +XsX

⊤
s)dWs,

Ju(t, x) = Et,x
[︂ ∫︂ T

t
(⟨RxXs, Xs⟩+ ⟨Ruus, us⟩)ds+ ⟨GXT , XT ⟩

]︂
.

(4.32)

111

4. Convergence of a robust deep FBSDE method for stochastic control

Figure 4.5: Average of solutions and a single solution path compared to their analytic counterparts
for the second LQ control problem from Section 4.5.1.2, i.e., the problem with d = 25 and ℓ = 1.
The shaded area represents an empirical credible interval for Y , defined as the area between the
5:th and the 95:th percentiles at each time point. We do not include credible intervals for X and
Z in this figure to facilitate visualization. For X and Z, we see one realization of each of the 25
components.

112

4.5 Numerical experiments

∥Y h
N − g(Xh

N)∥L2(Ω) |Y0 − Y h
0 | Y h

0
N Error EOC Error EOC Value
5 2.69e-2 0.59 9.80e-3 1.01 0.2297
10 1.79e-2 0.53 4.85e-3 1.03 0.2241
20 1.24e-2 0.50 2.38e-3 0.99 0.2219
40 8.76e-3 0.49 1.20e-3 0.98 0.2207
80 6.27e-3 6.07e-4 0.2200

Table 4.2: Errors and experimental order of convergence for the nonlinear control problem in
Section 4.5.2. A reference solution of Y0 = 0.2194 is computed with the same method on a fine
grid with N = 160 time points.

Due to the linear dependence of the control and the quadratic cost functional, the optimal
feedback control is again given by

u∗
t = −1

2R
−1
u BTDxV (t,Xt). (4.33)

Similar to above, V is the solution to the associated HJB-equation. Again, by setting Yt =
V (t,Xt) and Zt = DxV (t,Xt), we obtain the FBSDE

Xt = x0 +
∫︂ t

0

[︁
A sin(πCXs)−

1
2BR

−1
u R−1

u B⊤Zs
]︁
ds+

∫︂ t

0
Σ(1d +XsX

⊤
s)dWs,

Yt = g(XT)−
∫︂ T

t

(︁
⟨RxXs, Xs⟩ −

1
4⟨R

−1
u B⊤Zs, B

⊤Zs⟩
)︁
ds+

∫︂ t

0
Z⊤
s Σ(1d +XsX

⊤
s)dWs.

(4.34)
Particularly, we consider a three-dimensional problem with control in two dimensions, i.e.,

d = 3 and ℓ = 2 and use the following matrices for the state

A = diag([1, 1, 1]), B =

1 0
0 1
1 1

 , C = diag([1, 1, 1]),

Σ = diag([0.1, 0.1, 0.1]), x0 = (0.1, 0.1, 0.1)⊤, T = 0.25.

For the cost functional, we have the matrices

Rx = diag([5, 1, 1]), Ru = diag([1, 1]), G = diag([1, 5, 1]).

Table 4.2 shows the experimental order of convergence of the terminal condition and the initial
value of the BSDE. The factor two between them is again consistent with Theorem 6 and
Corollary 4.4.1, even though the problem does not fall under the assumptions of these results.

113

5
D-TIPO: Deep time-inconsistent

portfolio optimization with stocks and
options

In this chapter, we propose a machine learning algorithm for time-inconsistent portfolio
optimization. The proposed algorithm builds upon neural network-based trading schemes, in
which the asset allocation at each time point is determined by a neural network. The loss
function is given by an empirical version of the objective function of the portfolio optimization
problem. Moreover, various trading constraints are naturally fulfilled by choosing appropriate
activation functions in the output layers of the neural networks. Besides this, our main
contribution is to add options to the portfolio of risky assets and a risk-free bond and using
additional neural networks to determine the amount allocated into the options as well as their
strike prices.

We consider objective functions more in line with the rational preference of an investor
than the classical mean-variance, apply realistic trading constraints and model the assets with
a correlated jump-diffusion SDE. With an incomplete market and a more involved objective
function, we show that it is beneficial to add options to the portfolio. Moreover, it is shown
that adding options leads to a more constant stock allocation with less demand for drastic
re-allocations.

Keywords - Portfolio optimization, time-inconsistent, neural networks, options

This chapter is based on the paper with the same title, which is submitted for publication.

115

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

5.1 Introduction

Mean-variance (MV) portfolio optimization, originally proposed in [122], in 1955, has been a
cornerstone of modern portfolio selection. The popularity for practitioners as well as researchers
can on the one hand be explained by its simplicity with an intuitive trade-off between reward
(mean) and risk (variance) and, on the other hand, by some delicate mathematical and
philosophical properties. In the original version of MV optimization, the problem was static in
the sense that the allocation between a set of assets and a riskfree bond was determined at
t = 0 and held until terminal time T . Moreover, the assets were described by an arithmetic
Brownian motion and, all together, the problem offered a closed-form allocation which was
optimal with respect to the MV objective. Ever since, many extensions and generalizations
have been proposed under the MV umbrella, such as static multi-period trading with discrete
reallocation, see e.g., [123, 124, 125, 126] and continuous trading, see e.g.,. [127, 128, 128,
129]. In most of the later applications, the arithmetic Brownian motion has been replaced by
geometric Brownian motion or by more general processes describing the asset dynamics.

Time-inconsistency

Despite the straight forward formulation of the MV optimization, there are several difficulties
making standard approximation tools from stochastic optimal control theory intractable.
The main problem is that the MV objective function does not satisfy the law of iterated
expectations and hence, the dynamic programming principle (DPP) is not satisfied. From
an intuitive perspective, this means that a strategy which is optimal at time t is in general
not optimal at t+ h. From a practical perspective, this implies that the standard toolbox of
computational methods for problems satisfying the DPP (i.e., optimization and approximations
of conditional expectations backward in time) is not applicable. There are many attempts
to circumvent this issue and they can mainly be categorised into two classes; Despite the
straightforward formulation of the MV optimization, there are several difficulties making
standard approximation tools from stochastic optimal control theory intractable. The main
problem is that the MV objective function does not satisfy the law of iterated expectations
and hence, the dynamic programming principle (DPP) is not satisfied. From an intuitive
perspective, this means that a strategy which is optimal at time t is in general not optimal at
t+ h. These strategies are referred to as pre-commitment strategies, since an investor commits
to the strategy at t = 0, and follows this strategy until t = T . From a practical perspective,
this implies that the standard toolbox of computational methods for problems satisfying the
DPP (i.e., optimization and approximations of conditional expectations backward in time)
is not applicable. There are many attempts to circumvent this issue and they can mainly
be categorised into two classes; i) Induced time-consistent controls, in which an embedding
technique is used to transform the problem into an equivalent time-consistent problem. For
example, consider the mean-variance optimzation problem with objective function

−E[XT] + λVar[XT],

116

5.1 Introduction

for some risk parameter λ > 0. This objective function can be re-written in the time-consistent
form,

E[λX2
T − µXT],

with µ = 1 + 2λE[XT]. If we treat µ as a constant, the optimization problem is time-consistent
and can be solved by means of dynamic programming. The problem with this formulation is
that µ depends on the expected value of the terminal wealth, which is a priori, unknown. On
the other hand, we can solve the problem above for different values of µ and pick the unique µ
(under certain concavity conditions), which satisfies E[XT] = µ−1

2λ . For a detailed presentation,
see [7]. Similar reformulations can be used for the mean-expected shortfall objective functions,
see e.g., [130].

An alternative is using ii) Enforced time-consistent controls in which the optimization
is performed over the subset of time-consistent allocation strategies. This means that a
constraint is added, which forces the control to be time-consistent. However, this constraint
changes the problem formulation, and, as noted in [131, 132], the obtained strategy compares
unfavorably with the pure pre-commitment strategy. Both methods have their own advantages
and disadvantages and can both be motivated from different philosophical perspectives. For a
more detailed discussion, we refer to [133, 134, 135].

The two classes above have in common that they transform the problem into a time-
consistent problem, in which the DPP holds. In turn, this implies that the problem can be
solved recursively, backward in time, one sub-problem at the time. By solving many sub-
problems, classical methods to approximate conditional expectations can be used. Typically,
one can resort to Monte–Carlo methods or approximation methods for PDEs or FBSDEs, see
e.g., [123, 129, 83, 87, 3] and [136, 137], respectively.

It should also be noted that there are certain ways to reformulate a time-inconsistent
control problem either using a probabilistic approach, to obtain a McKean–Vlasov FBSDE
or a PDE approach to obtain a so-called master equation, see e.g., [8]. Even though these
reformulations are mathematically possible, the resulting problems are inherently difficult to
(numerically) solve, sometimes even harder than the original problem formulation.

In this chapter, instead of a problem specific embedding technique, we follow e.g., [138, 135,
139, 140] and employ a machine learning algorithm to approximate the allocation strategy. Our
approach is to take a step back and view the portfolio optimization problem as a stochastic
control problem. After a discretization in time, the optimization problem can be approximated
by representing the allocation strategy with a sequence of neural networks and letting the loss
function be an empirical version of the objective function. This was originally proposed in [6],
to approximate general stochastic control problems and in e.g., [135, 139, 127], specifically for
portfolio optimization. It should however be emphasized that these ideas were by no means
new in a broader context, for instance, [141, 143, 144, 145, 146, 147, 148, 149, 150, 142],
proposed machine learning methods for solving a wide variety of control problems. On the
other hand, the specific application to finite horizon problems in which it is the control policy,
and not the value function itself, should, to the best of our knowledge, largely be attributed to
the authors in [6]. These algorithms have a clear advantage for time-inconsistent problems
since the optimization is performed only once. Moreover, in contrast to the classical dynamic
programming approach, the problem is solved forward in time, and as a consequence, the

117

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

algorithm does not rely on the DPP and hence, time-consistent and time-inconsistent problems
are treated similarly.

Adding options and gain flexibility

Due to the ambiguity of measuring risk with variance of the terminal wealth, many alternative
ways to measure risk have been proposed. As the most common alternatives, we mention the
semi-variance and expected shortfall, which are explored in e.g., [151, 152, 153, 154]. As stated
above, it is clear that the MV objective function is not completely in line with the rational
preference of an investor, since it treats downside risk and upside potential equivalently. On
the other hand, it is not clear whether optimizing with respect to another objective function
will result in strategies that are more in line with the investors’ preferences. As an example,
assume that the asset returns are normally distributed, then the MV objective is, objectively,
the best objective function since the law of the normal distribution is completely determined
by its mean and variance. The question is then whether or not asset returns are normally
distributed, and the answer is, in general, a clear ”no”. On the other hand, asset returns
are usually close to symmetric and a symmetric distribution with reasonable tails can be
relatively well approximated by a normal distribution. Therefore, it is not clear that we can
create a terminal wealth with a distribution that is flexible enough to benefit from the more
complex objective functions. Fortunately, there are several financial products with asymmetric
returns, which can be added to a portfolio. For instance, a plain European option has a highly
asymmetric return and is a good candidate to add to the portfolio.

Another interesting aspect of adding options to the portfolio is the fact that many pension
funds are prohibited from using leverage in their portfolios. This can be circumvented by using
options, which offer a similar structure as a leveraged position, however, without the downside
risk. This comes at the price of the option premium.

Although a straight forward extension to a stock and bond portfolio, portfolio optimization
with equity options has not been a major topic in the scientific literature. Some attempts are
found in [155, 156, 157, 158, 159], but the focus was mainly on static portfolios consisting of only
options. The focus in this chapter is, instead, to combine the two approaches and trade in both
the assets themselves and European options written on the same assets, and have a machine
learning algorithm determine the optimal allocation. We name the proposed algorithm Deep
Time-Inconsistent Portfolio optimization with stocks and Options, with acronym ”D-TIPO”.
When the options are not included in the allocation learning, we use the abbreviation ”D-TIP”.

Structure of the chapter

This chapter is organized as follows. In Section 5.2, the framework is introduced. We outline
trading constraints, objective functions and aim to provide some heuristic motivation for
the objective functions used. In Section 5.3, the methodology including discretization of the
continuous optimization problem, as well as the neural networks used, are outlined. Moreover,
we explain how the trading constraints can be built into the neural network structure and
provide pseudo-code for the full algorithm. Section 5.4 contains numerical experiments in which
we first confirm the accuracy of the algorithm for an example with a reference solution and

118

5.2 Problem formulation

then the algorithm is validated and compared with some other allocation strategies. Finally, in
section 5.5, we conclude the findings of the chapter.

5.2 Problem formulation

In this chapter, we take the perspective of a trader, who is allowed to trade in one risk-free bond,
in N stocks ∈ N stocks, and Noptions ∈ N options. We let S = (St)t∈[0,T] be an RNstocks−valued
time-continuous Markov process on a complete probability space (Ω, F , A). We consider a
trading period T := [0, T], where T ∈ R+ is referred to as the terminal time. The outcome set
Ω is the set of all possible realizations of the stochastic economy, F is a σ−algebra on Ω and we
define Ft as the sub-σ-algebra generated by (Ss)s∈[0,t]. The probability measure A is a generic
notation, representing either the real world measure, or the risk-neutral measure, denoted P
and Q, respectively. The bond is denoted by B = (Bt)t∈[0,T] and for i ∈ {1, 2, . . . , Noptions},
an option with S as underlying asset (could be a single stock or a basket of stocks), at time
t ∈ [0, T] and terminating at T is denoted by V i(t, St ;K), respectively, where K ∈ R is the
strike price. Without loss of generality, we set the initial values of all stocks, options and
the bond to unity at t = 0, i.e., for j ∈ {1, 2, . . . , N stocks} and i ∈ {1, 2, . . . , Noptions}, we set
Sj0 = 1, V i(0, S0) = 1 and B0 = 1.

The trader is allowed to trade the stocks and the bond at a set of trading dates, denoted
by T ⊆ [0, T]. If T = [0, T], then trading is allowed continuously in the entire trading period
but a more realistic scenario is that trading is allowed only on a discrete set of dates within
the trading period. The options, on the other hand, can only be traded at initial time of the
trading period, i.e., at time 0 and are held until the terminal time. It should however be
pointed out that our framework would also allow for trading in the options during the entire
time period T , but since options are less liquid and transaction costs usually are significantly
higher than for stocks, we restrict ourselves to trade options only at t = 0.

Denote by αk = (αkt)t∈[0,T] the piecewise constant process describing the amount the trader
holds in stock k and for k = 0, the amount the trader holds in the bond. We can describe the
total wealth of the portfolio stemming from the stock and the bond holdings at time t by

xt = α0
tBt +

Nstocks∑︂
k=1

αkt S
k
t . (5.1)

Since the portfolio is self-financing,

α0
t = 1

Bτ(t)

(︃
xτ(t) −

Nstocks∑︂
k=1

αkτ(t)S
k
τ(t)

)︃
, (5.2)

where τ(t) = maxs{s ∈ T | s ≤ t}, i.e., the most recent trading date. Sometimes, it is convenient
to work with the total amount of cash.We therefore denote by Ak = (Akt)t∈[0,T], the amount
of cash invested in asset k and define for k > 0, Akt = αkt S

k
t and for k = 0, A0

t = α0
tB

0
t . The

return on investment from trading in the stocks and the bond is then given by

RSB(S;α) = xT − x0. (5.3)

119

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

Let βi denote the amount of option i in the portfolio. The total amount invested in the
options at time t is then given by

yt =
Noptions∑︂
i=1

βiV i(t, St;Ki),

where Ki is the strike price for option i. We can define the return on the investment from the
static option position by

RO(S;β) = yT − y0. (5.4)

Summing up (5.3) and (5.4), we obtain the total return

R(S;α, β) = RSB(S;α) +RO(S;β). (5.5)

In order to evaluate the satisfaction of the investor with the return, we use an objective
function. A good objective function should be able to numerically represent the investor’s view
of risk. In this section, the only restriction we put on the objective function is that it is a
deterministic function, taking the trading strategies α and β as inputs. The objective function
is of the form

U(α, β) = u
(︁
L[R(S;α, β)]

)︁
, (5.6)

where L(·) denotes the probabilistic law. Our objective is then to find a trading strategy
α, β, such that the objective function is maximized. Note that we do not specify the trading
strategies that are allowed. Moreover, we assume that the maximum of the objective function
above is attainable.

Example 5.2.1. Suppose we consider a portfolio consisting of only stocks, modeled with a
multi-dimensional Geometric Brownian Motion and a bond with deterministic interest rate
and that continuous trading on [0, T] is allowed. If the aim is to maximize the expectation and
minimize the variance of RSB(S;α), i.e., using an objective function of the form UDMVO(α;λ) =
E[RSB(S;α)]−λVar[RSB(S;α)] (λ ∈ R+ is a risk parameter), we are in the classical Dynamic
Mean-Variance Optimization framework. It is well-known, see e.g., [7], that there is an analytic
strategy α∗ such that

UDMVO(α∗;λ) = MaxαUDMVO(α;λ).

Now, if we would also allow for trading in vanilla call and put options on each of the underlying
stocks, this would not increase the utility, since in the Black–Scholes framework, the options
would be fully replicable by the stocks and the bond. This implies that any strategy involving
stocks, the bond and options can be replicated by a strategy only involving stocks and the bond.

The example above indicates that adding options to a specific portfolio does not increase
utility for the trader, but is that statement true in general? The answer is that if we are able
to trade continuously in a complete market, then the European option is replicable, and hence
it is not possible to increase the utility by adding options to the portfolio. On the other hand,
if the market is incomplete, or when we are not able to trade continuously, then there is a
possibility that adding options to a portfolio can increase the utility. It is a well-known fact
that the real world financial market is incomplete, and in the subsections below, we introduce

120

5.2 Problem formulation

some aspects which make the model of the market incomplete. It should however be pointed
out that in general, a Lévy process modelling the stocks, (e.g., Geometric Brownian Motion
with jumps) would lead to an incomplete market, even without adding any other market
frictions.

5.2.1 Market frictions

In this section, we introduce the market frictions and trading constraints considered in this
chapter. Below, we extend the framework to allow for transaction costs, non-bankruptcy
constraint and leverage constraints for the trading strategies α and β.

From now on, unless otherwise is stated, we assume that T is a set of finite trading dates1,
i.e., T = {t0, t1, . . . , tN−1}, such that t0 = 0 and ti < ti+1. We can now rewrite the value of the
stock and the bond, given in (5.1), in terms the initial value plus the accumulated increments
between the finite trading dates, i.e.,

xtn+1 = xtn + α0
tn(Btn+1 −Btn) +

Nstocks∑︂
k=1

αktn(Sktn+1 − S
k
tn). (5.7)

Transaction costs: Assuming a proportional transaction cost we can write the sum
of the transaction costs for stock k as

TCk =
N∑︂
n=1

Cer(T−tn)⃓⃓αktn − αktn−1

⃓⃓
Sktn . (5.8)

Here 100×C ∈ R+ represents the transaction costs as a percentage of the size of the transaction.
Finally, the total transaction cost is given by

TC =
Nstocks∑︂
k=1

TCk.

In fact, the implication of the above is that we do not pay transaction costs immediately, but
instead at the end of the trading period, with appropriate interest rate.

Non-bankruptcy constraint: The non-bankruptcy constraint is formulated in a way
such that the first time the sum of the values of the stocks and the bond is non-positive, the
portfolio is liquidated. This implies that, in the presence of a non-bankruptcy constraint, (5.7)
is replaced by

xtn+1 = xtn + I{x>0}(xtn)
(︃
α0
tn(Btn+1 −Btn) +

Nstocks∑︂
k=1

αktn(Sktn+1 − S
k
tn)
)︃
, (5.9)

where I{x>0}(·) is the indicator function.
1Or a discrete approximation of continuous trading. In practice, all trading is carried out in a time discrete

fashion, but in some cases a closed-form optimal strategy can be achieved in the continuous case, which is why
we allow for such trading in our framework.

121

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

The above implies that a liquidation of x caused by a bankruptcy can only occur at
a trading date. In reality, it would be reasonable to liquidate the portfolio as soon as the
value touches zero. On the other hand, immediate liquidation may not be possible, due to
low liquidity. It should also be noted that the underlying methodology does not rely on this
specific modelling choice.

Trading constraint: There are several different trading constraints and below, we mention a
few of them.

• No short-selling constraint - No short-selling of the stocks, implying that for t ∈ [0, T]
and 1 ≥ k ≥ N stocks, αkt ≥ 0.

• No leverage constraint - Implying that we cannot short sell the bond, i.e., for t ∈ [0, T],
α0
t ≥ 0.

• No bankruptcy constraint - If xtn ≤ 0, then all positions are liquidated and for t ≥ tn,
xt = xtn .

• No short selling of the options, which is equivalent to ensuring that for 1 ≥ i ≥
Noptions βi ≥ 0.

• Positivity of the bond and the stocks part of the portfolio - If y0 ≤ xIC
0 is

ensured, then from the definition x0 ≥ 0.

The aim in this chapter is to apply a neural network-based strategy to approximate the
allocations at each trading date. The constraints described above are built into the neural
networks, which is specified in full detail in sections below.

5.2.2 Objective functions

There are several different ways of measuring the performance of a trading strategy. What
all measures have in common is that they attempt to numerically represent the risk
aversion of the trader so that a strategy optimal for the trader’s preferences can be adopted.
Below, we introduce a few different objective functions and present their individual motivations.

Utility functions: A utility function measures the so-called marginal happiness of wealth,
i.e., how happy is the investor with one extra unit of wealth, given the current level of wealth.
These functions are typically concave since one extra unit adds more happiness when the
investor’s wealth is low than when it is high. The objective function used is usually the
expected utility, which leads to a mathematically nice framework from a modeling perspective
since the problem becomes time-consistent and, hence, the dynamic programming principle
holds. A disadvantage with these types of objective functions is that they are not particularly
intuitive and it becomes therefore difficult for managers to determine the risk parameters.
Another disadvantage is that the expected utility is a narrow measure of the utility and does
not say anything about the variability of the utility outcomes.

Mean-Variance objective: Under the assumption that asset returns are normally distributed,

122

5.2 Problem formulation

Volatility strategy Equities
Mean 9.9% 9.7%
Standard deviation 15.2% 15.1%
Skewness -8.3 -0.6
Kurtosis 104.4 4.0

Table 5.1: Comparison of returns of a volatility strategy and a pure equity strategy, in terms of
mean, standard deviation, skewness and kurtosis. If returns would have been normally distributed,
the skewness and the kurtosis would have been 0 and 3, respectively.

the mean-variance objective function is the optimal choice, since the normal distribution
is completely determined by its mean and variance. It is however a well-known fact that
asset returns are not normally distributed, but have a slightly fatter tail than the one of
a normal distribution. This phenomenon is even more pronounced for volatility strategies
(strategies implemented in the derivatives market using options and other financial products),
see e.g., [160, page 40], in which these two strategies are compared in terms of their first four
moments. It is shown that while the first two moments are almost identical, the third and
fourth moments differ significantly (the third and fourth moments for asset returns are closer
to being normal while these moments for the returns of a volatility strategy exhibit significant
leptokurtic behaviour). The numbers are displayed in Table 5.1. It should be emphasized
that by using the mean-variance objective function, we do not inherently assume normally
distributed returns but optimality in terms of the trading strategy related to a mean-variance
objective function could be ambiguous as can be demonstrated with the example above. Since
the mean values (9.9% and 9.7%) and the variances (15.2% and 15.1%) are similar in a
mean-variance objective function, one could conclude that the strategies are equally good,
even though the distributions of the returns are very different. The question is then which of
the two strategies a trader should apply? If the trader manages a pension fund, it is reasonable
to believe that a high negative skewness and a large kurtosis are highly undesirable, while
for a hedge fund with short time horizon the reasoning could be the other way around. The
challenge for us is then to construct an objective function which better represents the true
objective compared to the mean-variance objective.

As a final note on when it makes sense to consider another objective, we claim that when
the returns deviate from normality and in particular if the distribution is asymmetric, it is
natural to ask why a trader would want to penalize not only downside risk but also the upside
potential, which is the direct consequence of using the variance as a measure of risk.

Non-symmetric objectives: Since we deal with trading strategies that are able to
create highly non-symmetrical distributions of the terminal wealth, we want to explore
objective functions suitable for this. The first important aspect is to model downside risk
and upside potential differently. One way to assess this problem is to use expected shortfall,
which is defined as the mean of the tail of a distribution. For example, if we want to penalize
downside risk, we may try to maximize the average of the 10% worst outcomes or if we want
to encourage upside potential, we could try to maximize the average of the 10% best outcomes.

123

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

The expected shortfall can be defined using the Value at Risk in the following way

VaRp(R) = inf{P ∈ R |A(R ≤ P) ≥ p},

ES−
p (R) = E[R |R ≤ VaRp(R)], ES+

p (R) = E[R |R ≥ VaRp(R)].

For notational convenience, we omit the dependency on the trading strategy in the notation
below. A typical objective function would then be

U = u
(︁
L(S)

)︁
= E[R]− λ1Var[R] + λ2ES−

p1(R) + λ3ES+
p2(R), (5.10)

where λ1, λ2, λ3 ∈ R+ are parameters describing the risk preference and p1, p2 ∈ (0, 1) are the
parameters controlling the sizes of the left and right tails we want to address. For instance,
one could choose p1 = 0.1 and p2 = 0.9 to control the upper and lower tails (10% on each
side). In the formulation above, we view R as a generic return of some strategy, however, in
our case U and R would depend on the trading strategy and R would in addition also depend
on a random realization of the stochastic economy, as in (5.5) and (5.6). In Figure 5.1, the
objective function given in (5.10) is illustrated for a toy example with a returns following a
skew-normal distribution.

Figure 5.1: Example of a probability density function for the terminal wealth and the terms in
(5.10) are illustrated. Red, blue and green represent the lower expected shortfall, mean and higher
expected shortfall, respectively, and the arrows represent the preferred direction. The gray area
represents the mean plus/minus the variance and the arrows represent the preference to decrease
variance.

5.2.3 Full optimization problem

The aim in the previous sections was to explain and motivate each component of the problem
statement. Here, we summarize the above and formulate the optimization problem.

In the sections above, we referred to α and β as the trading strategies. From here on,
we also consider the set of strike prices, K = (K1,K2, . . . ,Koptions), as part of the trading
strategy which is denoted by π = (α, β,K). The following example aims to motivate why we
also include strike prices.

124

5.2 Problem formulation

Example 5.2.2 (Bull-call-spread strategy). Consider a situation where a trader believes that
a stock will either increase in value, or drastically decrease, for instance, when the company is
about to report. Then, a so-called bull-call-spread can be used. This is the position where the
trader both buys and sells a European call option but with different strike prices. If executed
correctly, this can create a situation where the trader only risks to loose the difference in the
premiums between the bought and sold option with an upside potential proportional to the
stock value but bounded from above. This strategy is arguably best explained with a specific
example and illustrative figures. Therefore, we consider a stock which today, at t = 0, has
value S0 = 1.0. Moreover, we have two European call options with values at maturity T ,
V 1(T, ST ;K1) = max(ST −K1, 0) and V 2(T, ST ;K2) = max(ST −K2, 0), respectively. We set
K1 = 1.1 and K2 = 1.3 and in Figure 5.2 (left-side), we display the return, at maturity T , for
the stock itself, buying one unit of option 1 and selling one unit of option 2, respectively. In
the right-side figure, we compare returns of three different strategies and clearly the return is
dependent not only on how much of each of the three products the trader invests in, but also
on the strike prices K1 and K2.

Figure 5.2: Returns plotted against the stock value at the terminal time T . Left: Returns for
investing in a stock, buying one unit of option 1 and selling one unit of option 2, respectively.
Right: Returns for three different combinations of the products, where the red line is the classical
bull-call spread.

As becomes clear in the example above, it is not easy to have an intuitive overview on which
strike prices to choose, especially not when a complex objective function is used. Therefore,
we consider also the strike prices to be part of the optimization problem.

We assume an objective function U(π) = u
(︁
L[R(S;π)]

)︁
, an initial wealth xIC

0 ∈ R+ (usually
set to 1) and we denote by Π the set of admissible (allowed) trading strategies, i.e. the set of
executable strategies taking all the trading constraints into account. All equations below are
collected from the sections above, but the dependency on the trading strategy π is specified

125

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

more carefully to make the optimization problem more clear.

maximize
π∈Π

= U(π) = u
(︁
L(R(S ;π))

)︁
, where,

R(S ;π) = RSB(S ;π) +RO(S ;π)

RSB(S ;π) = xT (S;π)− x0(π)−
Nstocks∑︂
k=1

TCk, RO(S ;π) = yT (S ;π)− y0(π),

xT (S;π) = x0 +
N∑︂
n=0

I{x>0}
(︁
xtn(S;π)

)︁[︁
α0
tn(Btn+1 −Btn) +

Nstocks∑︂
k=1

αktn(Sktn+1 − S
k
tn)
]︁
,

x0 = xIC
0 − y0(π), yT (S ;π) =

Noptions∑︂
i=1

βiV i(T, ST ; Ki), y0(π) =
Noptions∑︂
i=1

βiV i(0, S0 ; Ki).

(5.11)
This optimization problem admits to closed-form strategies α and β (for fixed K) only in
rare special cases and we therefore have to rely on numerical approximations. When it is
required, we use a time discretization scheme for S and we use empirical distributions as
approximations for L[R(S;π)] in a Monte–Carlo fashion. The discrete counterpart (in time
and/or in probability space) of (5.11) is then approximated by letting deep neural networks
represent the trading strategies and optimizing with a gradient decent type algorithm. This is
explained in more detail in sections below.

5.3 Methodology

As briefly mentioned in the previous section, there are two entities that often need to be
discretized, namely the asset price process and the objective function. For the asset process, we
need to resort to a discretization scheme when there are no closed-form expressions available.
The objective function usually not only depends on the returns but also on the probability
distribution of the returns. Since this is unknown, despite for rare special cases, we need an
approximation. This is simply done by using empirical distributions as approximations.

5.3.1 Discretized asset process and empirical distribution

Let T N = {t0, t1, . . . , tN−1} be the set of distinct trading dates, where either, T N = T , or, if
T is an infinite set (continuous trading), T N is a discrete approximation of T . We let tN = T

and for 0 ≤ i ≤ N − 1, ti < ti+1. We assume that we are able to generate M ∈ N+ samples of
the N stocks−dimensional asset process S. We denote asset k, realization m, at time tn ∈ TN by
Sktn(m), realization m at time tn ∈ TN by Stn(m) = {S1

tn(m), . . . SNstocks
tn (m)} and realization

m by S(m) = {St0(m), . . . StN (m)}.

Example 5.3.1 (A one-dimensional Geometric Brownian motion). Given the initial value
S0 and assuming we have access to the drift and diffusion parameters µ and σ, a closed-form
solution for the asset process is given by

St = S0e(µ− σ2
2)t+σ(Wt−W0).

126

5.3 Methodology

A model like this can easily be sampled from for any t ∈ T N and by the Markovianity of St no
information is lost by only sampling discrete values.

Example 5.3.2 (A general jump-diffusion SDE). Given the initial value S0 and assuming we
have access to the drift, diffusion and jump coefficients µ, σ and J , we employ,

dSt = µ(t, St)dt+ σ(t, St)dWt + J(t, St)dXt,

where Xt represents a jump process which we do not further specify in this example. In
general, we do not have a closed-form solution for St and therefore we need to rely on a
discrete approximation scheme such as the Euler–Maruyama scheme. Similar to the Geometric
Brownian motion, the jump-diffusion SDE above is Markovian, but one needs to be careful
with the time discretization in order to ensure convergence.

We denote by Ū
M (π) the objective function when the distributions of the returns are

approximated by an empirical counterpart with M samples and by LM [·] the empirical
probability law.

5.3.2 Neural network approximation

In this section, we describe how the trading strategy π is represented by a sequence of neural
networks and simple parameters. Optimality in terms of the objective function is then sought
with a gradient descent type algorithm. We sometimes use the machine learning terminology
loss function and training for the objective function and optimization procedure, respectively.

5.3.2.1 General notation for a neural network

Below, we introduce some machine learning notation, which is subsequently put into the
context of this chapter. A neural network, which is nothing but a parametrized mapping,
is here denoted by ϕ(· ; θNN) : RDinput → RDoutput , where Dinput and Doutput are the input
and output dimensions, respectively. Here, θNN is a parameter containing all the trainable
(optimizeable) parameters of the network.

• Denote the number of layers (input and output layers included) by L ∈ N, and for layer
ℓ ∈ {1, 2, . . . ,L}, the number of nodes by Nℓ ∈ N. Note that N1 = Dinput;

• For layer ℓ ∈ {2, 3, . . . ,L}, we denote the weight matrix, acting between layers ℓ− 1 and
ℓ, by wℓ ∈ RNℓ−1×Nℓ , and the bias vector by bℓ ∈ Rℓ;

• For layer ℓ ∈ {2, 3, . . . ,L}, we denote the (scalar) activation function by aℓ : R→ R and
the vector activation function by aℓ : RNℓ → RNℓ , which, for x = (x1, x2, . . . , xNℓ

), is
defined by

aℓ(x) =

aℓ(x1)

...
aℓ(xNℓ

)

 ;

• The output of the network should obey the trading constraints and this is managed by
choosing an appropriate activation function in the output layer.

127

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

The neural network is then defined by

ϕ(· ; θ) = LL ◦ LL−1 ◦ · · · ◦ L1(·), (5.12)

where for x ∈ RLℓ−1 , the layers are defined as

Lℓ(x) =

 x, for ℓ = 1,

aℓ(w⊤
ℓ x+ bℓ), for ℓ ≥ 2,

with w⊤
ℓ the matrix transpose of wℓ. The trainable parameters are then given by the list

θNN = {w2, b2, w3, b3, . . . , wL, bL} .

Finally, denote by DθNN the number of trainable parameters, i.e., DθNN = ∑︁L
k=2 dim(wk) +

dim(bk).

5.3.2.2 Neural networks representing the trading strategy

As mentioned above, the trading strategy π consists of three parts; i) the static amount
invested in each option β, ii) the static strike prices of the options K, and iii) the dynamic
amount invested in each stock α. Recall that β and K are decided at t = 0, and, as long as
we have a deterministic initial wealth xIC

0 , we want to have a deterministic representation for
β and K (this is what is meant by a static strategy above). The third component, α, on the
other hand, does not have to be deterministic since it may depend on previous performance,
which is affected by randomness through the stock process (this is what is meant by a dynamic
strategy above). Below, we describe how each of these three components is represented, one by
one, and give examples of how some trading constraints can be modeled.

The difference between the static and the dynamic parts requires different modeling
strategies. For the static strategies, the trader simply needs to decide an allocation or a strike
price. This can be modelled with a set of trainable parameters, which does not take an input,
i.e., these allocations are not functions of some input but instead constant vectors. For the
dynamic trading strategy, which, at each trading date, is a function of the current wealth, we
use a deep neural network taking the current wealth as input and outputs the stock allocation.
The set of admissible trading strategies Π = {Πβ,ΠK ,Πα0 ,Πα1 , . . . ,ΠαN−1}, where we note
that Πα1 , . . . ,ΠαN−1 , may also depend on the stock process. For instance, there may be a
constraint on how high the exposure can be in a single stock which also depends on the
evolution of that specific stock value.

Static option strategy (β):
The number of trainable parameters needed to represent β is the same as the number
of options, i.e., Noptions, implying that θβ ∈ RNoptions . Moreover, an activation function
aβ : RNoptions → Πβ is applied to ensure that the trading constraints are satisfied. The obtained
β−strategy is then given by

β̂ = aβ(θβ).

128

5.3 Methodology

For instance, if there are no constraints on how we are allowed to trade in the options, then Πβ =
RNoptions and aβ would be the component-wise identity function. A more realistic constraint
would be to not allow short selling and a maximum total amount of βmax plus a maximum
amount of βmax

Noptions in each option, which would give Πβ =
[︁
0Noptions

,1Noptions × βmax

Noptions
]︁
, where

0Noptions and 1Noptions are vectors of zeros and ones, respectively. A natural way to achieve this
is to set

aβ(θβ) = βmax

Noptions × sigmoid(θβ), (5.13)

where sigmoid(·) is the component-wise sigmoid function, which in each component is given
by (1− e−x)−1.

Static strike price strategy (K):
Similar to β above, the number of trainable parameters for the strike prices is Noptions and we
use the notation aK : RNoptions → ΠK with the K-strategy

K̂ = aK(θK).

In practice, there is a discrete set of strike prices available in the market, and a reasonable
model is to consider each option strike price in some interval [K low,Khigh], implying that
ΠK = [K low × 1Noptions

,Khigh × 1Noptions]. A natural choice for such an activation function is
given by

aK(θK) = (Khigh −K low)⊙ sigmoid(θK)⊕K low, (5.14)

where ⊙ and ⊕ denote component-wise multiplication and addition, respectively.

Dynamic stock and bond strategy (α):
Since the allocation into the bond and the stocks changes at each trading date, we need to
approximate the sequence α = {α0, . . . , αN−1}. At t0, the allocation is deterministic, since
we assume a fixed initial wealth, therefore α0 needs to be treated differently from αn, for
n ∈ {1, . . . , N − 1}. The number of trainable parameters in the representation of α0 is N stocks

(the amount traded in the bond is given to maintain the self-financing constraint) and we use
the notation aα0 : RNstocks → Πα0 , with α0−strategy

(α̂1
0, . . . , α̂

Nstocks
0)⊤ = aα0(θα0).

A typical setup at t0 can be that the trader is allowed to allocate a specific amount within a
specified interval [Alow

0 , Ahigh
0], which gives Πα0 = [Alow

0 × 1Nstocks
, Ahigh

0 × 1Nstocks]. Note that
αk0 is the amount of stock k in the portfolio and not the amount of cash allocated into stock k.
Therefore, it is Ak0 that is supposed to be within [Alow

0 , Ahigh
0]. On the other hand, since we

have assumed that the initial values of all assets equal 1, the definition still holds. Similar to
above, we can then use the activation function

aα0(θα0) = (Ahigh
0 −Alow

0)⊙ sigmoid(θα0)⊕Alow
0 . (5.15)

129

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

Finally, α̂0 (which also includes the initial bond allocation) is given by

α̂0 =
(︁
α̂0

0, aα0(θα0)⊤)︁⊤,
where α̂0

0 = x̂0 −
∑︁Nstocks
k=1 α̂k0, with x̂0 = xIC

0 − ŷ0 and ŷ0 = ∑︁Noptions
k=1 β̂

k.
The above trading strategies all have in common that they are decided at time t0 before

any randomness enters the system, and hence, they do not depend on previous performance.
For trading after t0, on the other hand, we need to take previous performance, as well as
random realization of the asset processes, into account. Therefore, we use fully connected
neural networks of the form from Section 5.3.2.1

(α̂1
n, . . . , α̂

Nstocks
n)⊤ = ϕ(Stn ; θαn).

Given a parametrization θαn , the above is a mapping from Stn , which represents the value of
all the stocks at tn, to the new stock allocation, or αn−strategy. On the other hand, given Stn ,
the neural network is a mapping from the parameter space to the admissible strategy space,
i.e., ϕ(Stn ; ·) : RDθn → Παn , where Dθn is the number of trainable parameters, as specified in
Section 5.3.2.1. The activation functions in the interior layers can be chosen arbitrarily, however,
as for the strategies above, the activation function in the output layer should be chosen such
that the trading constraints are satisfied. With the same trading constraints as for t0, we have
Παn = [Alow

n × 1Nstocks � Stn , A
high
n × 1Nstocks � Stn], where � denotes component-wise division.

The reason for dividing by the stock process above is that it is usually not the amount of each
stock that matters from a constraint perspective, but rather the value of the traders position
in each stock. We specify a possible activation function in the output layer, which guarantees
that the trading constraints are obeyed:

aαn(χ) =
[︁
(Ahigh

n −Alow
n)⊙ sigmoid(χ)⊕Alow

n

]︁
� Stn , (5.16)

where χ = w⊤
LLL−1 +bL, with LL−1 is the vector from layer L−1 (with slight abuse of notation)

and wL and bL are the weight and bias vectors, respectively. Similar to above, we have α̂n,
which is given by

α̂n =
(︁
α̂n0 , ϕ(Stn ; θαn)⊤)︁⊤,

where α̂0
n = (Btn)−1(︁x̂tn −∑︁Nstocks

k=1 α̂knS
k
tn

)︁
, with x̂tn = α̂0

nBn +∑︁Nstocks
k=1 α̂kn−1S

k
tn .

5.3.2.3 Optimization problem with neural networks

Summarizing, all the trainable parameters from above, we conclude that our neu-
ral network-based trading strategy (β̂, K̂, α̂) is determined by the parameters θ =
(θβ, θK , θα0 , θα1 . . . , θαN−1), where each component is vectorized before concatenation. Note
that θ as given above contains all the trainable parameters for a sequence of networks which
together control the trading strategy, while in (5.11), θ denotes the trading strategy itself.
Even though this constitutes a minor abuse of notation, the simplicity weighs in favor of a
simpler notation.

Below, a list of the strategy evaluated at one random realization of the underlying asset
process is given by

130

5.4 Numerical experiments

{︁
aK(θK),aβ(θβ),aα0(θα0), ϕ1(x̂t1 ; θα1), . . . , ϕN−1(x̂tN−1 ; θαN−1)

}︁
, and the full neural network-

based optimization problem is defined by

maximize
θ∈ΘNN

= Ū
M (θ), where the M i.i.d. random variables follow,

R(S ; θ) = RSB(S ; θ) +RO(S ; θ)

RSB(S ; θ) = x̂tN − x̂0 −
Nstocks∑︂
k=1

TCk, RO(S ; θ) = ŷtN − ŷ0,

x̂tN = x̂0 +
N∑︂
n=0

I{x>0}
(︁
x̂tn
)︁[︁
α̂0
n(Btn+1 −Btn) +

Nstocks∑︂
k=1

α̂kn(Stn+1 − Stn)
]︁
, x̂0 = x̂IC

0 − ŷ0,

ŷtN =
Noptions∑︂
i=1

β̂
i
V i(T, StN ; K̂i), ŷ0 =

Noptions∑︂
i=1

β̂
i
V i(0, S0 ; K̂i),

α̂0
0 = x̂0 −

Nstocks∑︂
k=1

α̂k0, (α̂1
0, . . . , α̂

Nstocks
0)⊤ = aα0(θα0), β̂ = aβ(θβ), K̂ = aK(θK),

α̂0
n = 1

Btn

(︁
x̂tn −

Nstocks∑︂
k=1

α̂knS
k
tn

)︁
, (α̂1

n, . . . , α̂
Nstocks
n)⊤ = ϕ(x̂tn ; θαn).

(5.17)
Note that in the above, ŪM (θ) = u(R̄M (θ)), where R̄M (θ) = {R(S(1); θ), . . . , R(S(M); θ)} is
the empirical distribution from M samples distributed as described in (5.17) above.

5.3.2.4 Pseudo-code

Denote the number of training samples, batch size and the number of epochs by Mtrain, Mbatch,
Mepoch ∈ N+, respectively. Pseudo-code aiming to describe the proposed algorithm is given
below. For notational convenience, the pseudo-code describes the algorithm in the special case
when Mepoch = 1, but the extension to Mepoch > 1 can simply be achieved by repeating the
procedure Mepoch times.

5.3.2.5 Pre-commitment strategy

The allocation strategy obtained by our algorithm is by design of pre-commitment type. The
reason for this is that the cost is computed only once and the optimization is performed globally.
If the DPP would be satisfied for the problem at hand then the obtained pre-commitment
strategy would also be time-consistent.

5.4 Numerical experiments

In this section, we aim to demonstrate the effectiveness and flexibility of the proposed algorithm.
In previous sections, the asset process has not been fully specified and the reason for this is
that any process, computer generated or real world data, can be used. In this section, on the
other hand, we need to decide how to generate the training data and we use the jump-diffusion
SDE. Moreover, the fully implementable model includes the market frictions as well as the
European call and put options, which are introduced below. A special case, which fits into
this framework, is the mean-variance (MV) portfolio optimization problem, which admits

131

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

Input: Initialization of neural network parameters, {θβ(1), θK(1), θα0 (1), . . . , θαN−1(1)},
initial state S0, initial cash x̂IC, and for 0 ≤ m ≤Mtrain and 1 ≤ n ≤ N − 1,
asset state Stn(m).

Output: Approximation of the trading strategy, determined by β,K and (αt)t∈T N .
for k = 1, 2, . . . ,Kbatch − 1, where Kbatch = Mtrain/Mbatch is the number of batches.
(should be carried out sequentially) do

for m ∈ {1, . . . ,Mbatch} (may be carried out in parallel) do

β̂ = aβ(θβ(k)), K̂ = aK(θK(k)), ŷ0 = ∑︁Noptions
i=1 β̂

i
V i(0, S0 ; K̂i), x̂0 =

x̂IC
0 − ŷ0, (α̂1

0, . . . , α̂
Nstocks
0)⊤ = aα0(θα0(k)), α̂0

0 = x̂0 −
∑︁Nstocks
k=1 α̂k0,

x̂t1(m) = x̂t0 + I{x>0}
(︁
x̂t0
)︁[︁
α̂0

0(Bt1 −Bt0) + α̂k0
(︁
St1(m)− S0

)︁]︁
for n = 1, . . . , N − 1 (should be carried out sequentially) do

(α̂1
n(m), . . . , α̂Nstocks

n)⊤ = ϕ(Stn(m) ; θαn(k)), α̂0
n(m) =

1
Btn

(︁
x̂tn −

∑︁Nstocks
k=1 α̂knS

k
tn(m)

)︁
, x̂tn+1(m) =

x̂tn(m)+ I{x>0}
(︁
x̂tn(m)

)︁[︁
α̂0
n(m)(Btn+1−Btn)+ α̂kn(m)

(︁
Stn+1(m)−Stn(m)

)︁]︁
end
R(S(m) ; θ(k)) = RSB(S(m) ; θ(k)) +RO(S(m) ; θ(k))
RSB(S(m) ; θ(k)) = x̂tN (m)− x̂0 −

∑︁Nstocks
k=1 TCk(m), RO(S(m) ; θ(k)) =

ŷtN (m)− ŷ0,

end

θ(k) = {θβ(k), θK(k), θα0(k), θα1(k) . . . , θαN−1(k)}, (trainable parameters)
R̄
Mbatch(θ(k)) = {R(S(1) ; θ(k)), . . . , R(S(Mbatch) ; θ(k))} (empirical distribution).

Ū
Mbatch(θ(k)) = u

(︁
R̄
Mbatch(θ(k))

)︁
(Loss-function)

θ(k + 1)← arg minθ u(R̄Mbatch(θ)) (some optimization algorithm, usually of
gradient ascent type).

end
Algorithm 2: Pseudo-code of one epoch of the neural network training.

132

5.4 Numerical experiments

to a closed-form analytic solution (an admissible trading strategy in closed-form, which is
optimal in the sense of the objective function). This solution is used here as a reference for
our approximate trading strategy for the MV portfolio optimization problem. In subsequent
sections, we go beyond classical MV problems and consider market frictions, other objective
functions as well as more general asset dynamics. This leads to interesting investment strategies
in which combinations of a bond, stocks and options seem optimal.

The asset model used in this chapter is a Geometric Brownian motion with multiplicative
jumps, which is given by{︄

dSt = b⊙ Stdt+ σSt ⊙ dWt + J ⊙ dXt; S0 = (1, . . . , 1)⊤, (5.18)

dBt = rBtdt; B0 = 1. (5.19)

Here, T ∈ [0,∞), N stocks ∈ N, (Wt)t∈[0,T] is an N stocks-dimensional standard Brownian
motion, J is an N stocks-dimensional multivariate normally distributed random variable with
mean µJ ∈ RNstocks and covariance ΣJ ∈ RNstocks×Nstocks , (Xt)t∈[0,T] is an N stocks-dimensional
Poisson process parametrized by ξp ∈ RNstocks

+ and model parameters b ∈ RNstocks and σ ∈
RNstocks×Nstocks . The initial values S0 and B0 are scaled to unity for the purpose of simplicity.

Setting x0 = 1 and using a binary parameter for the no-bankrupcy-constraint NB ∈ {0, 1},
we have

dxt =
(︁
1−NB× I{x≤0}(xt)

)︁[︂(︁
rα0

tBt +
Nstocks∑︂
i=1

biα
i
tS
i
t

)︁
dt

+
Nstocks∑︂
i=1

Nstocks∑︂
j=1

σijα
i
tS
i
tdW

j
t +

Nstocks∑︂
i=1

αitStJ
i
tdXi

t

]︂

=
(︁
1−NB× I{x≤0}(xt)

)︁[︂(︁
rxt +

Nstocks∑︂
i=1

(bi − xt)N i
t

)︁
dt

+
Nstocks∑︂
i=1

Nstocks∑︂
j=1

σijN
i
tdW

j
t +

Nstocks∑︂
i=1

NtJ
i
tdXi

t

]︂
, (5.20)

where N i
t = αitS

i
t . Transaction costs are expressed according to (5.8). Note that the above

formulation is expressed in a time-continuous fashion, while in Section 5.2, the allocation
process, as well as x, are expressed in a time discrete way. The reason for this is that the
classical MV-optimization problem admits to a closed-form solution for the allocation process
which offers the opportunity to compare with a reference solution in this special case. Moreover,
by considering a piecewise continuous allocation process, the formulations coincide (up to a
discrete approximation of the geometric Brownian motion with jumps).

In all experiments, the objective function is approximated in the simplest possible way, by
means of its empirical counterpart. For instance, the mean and variance are approximated
by the built in Numpy-functions (or, when appropriate, Tensorflow-functions). The expected
shortfall is approximated as the average of the empirical tail of a sample. However, it should
be pointed out that for these specific examples (variance and expected shortfall), we could
instead employ the embedding techniques described in [7, 130]. This would potentially result
in simpler optimization and, in turn, in the possibility to use smaller training batches. On the
other hand, we want to emphasize the generality of our method and demonstrate that it does

133

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

not rely on problem-specific reformulations. Therefore, we keep the empirical loss functions as
close as possible to their original forms.

General neural network settings Although any function approximator can be used
in (5.17), we choose a sequence of neural networks (as described in the pseudo-code in
Algorithm 2). In this chapter, the neural networks are seen merely as tools to solve the
problem. Therefore, the focus is not placed on optimizing the structure or parameter choices
but rather on finding a setting which is not too much problem dependent. We therefore use the
same settings, which are given below, for all problems considered in this chapter. Following
the notation in Sections 5.3.2.1 and 5.3.2.4, the total number of training samples is set to
Mtrain = 222, the batch size to Mbatch = 212, the number of epochs to Mepoch = 10 and the
number of layers to L = 4. For the interior layers, i.e., ℓ ∈ {2, 3}, we set the number of nodes
to Nℓ = 20 and the activation functions aℓ(·) = ReLU(·). The input dimension Dinput = 1 and
the output dimension Doutput, as well as the activation function in the output layer depend
on the trading constraints and are specified for each specific problem below. We use 0.01 as
initial learning rate and after two batches it decreases with a factor exp(−0.5) for each new
batch. We do not apply regularization or normalization techniques.

5.4.1 Classical continuous mean-variance optimization

As a first example, we consider the classical mean-variance optimization problem. This means
that the asset process (5.18) is a pure geometric Brownian motion. This can fit our framework,
for instance, by setting the µJ and ΣJ to a zero vector and a zero matrix, respectively. Moreover,
trading should be carried out without transaction costs and no-bankruptcy constraint, i.e.,
setting the courtage, C = 0 and NB = 0 and there should be no constraints for short selling,
leverage or bankruptcy. Here trading in the options is not allowed and the algorithm used is
D-TIP. The MV objective function is given by

U(θ) = E[xT]− λVar[xT],

where λ > 0 controls the risk aversion. From [7], we know that there exists an analytic solution
to this problem in terms of a closed-form expression for the optimal allocation as well as a
theoretical optimal mean and variance of the terminal wealth, i.e., an infimum of the objective
function.

In the example below, the following parameter values are used

T = 2, N = 20, r = 0.06, b =

0.08
0.07
0.06
0.05
0.04

, σ =

0.23 0.05 −0.05 0.05 0.05
0.05 0.215 0.05 0.05 0.05
−0.05 0.05 0.2 0.05 0.05
0.05 0.05 0.05 0.185 0.05
0.05 0.05 0.05 0.05 0.17

, λ = 1.10.

(5.21)
The parameter setting as given above leads to a non-symmetric problem with asset dynamic
with correlated components, i.e., each stock is correlated to the other stocks. Moreover, we
vary between positive correlation and negative correlation, which typically is the case in factor

134

5.4 Numerical experiments

investing [160].

Problem specific neural network settings In addition to the general neural network
settings from Section 5.3.2 and the introduction of Section 5.4, we here give the finer, problem
specific, details. Since D-TIP does not allow options in the portfolio, we only consider the
networks that compute the dynamic stock and bond strategy.

We have one neural network per allocation point and the requirements are i) the output
dimension should coincide with the number of stocks, N stocks, and ii) since we do not apply
any trading constraints, the range for each individual stock allocation is R and hence the
activation function in the output layer should have R as its range for each component. This is
achieved by adjusting (5.15) and (5.16) to

aα0(θα0) = θα0 , with θα0 ∈ RN
stocks

,

aαn(χ) = χ, with χ ∈ RN
stocks

, for n ∈ {1, 2, . . . , N − 1},

where χ is the output of layer 3, i.e., the output of last hidden layer in our neural networks.
The optimal value of the objective function is approximately 1.1637 and in Figure 5.3,

top left, we see the convergence of our approximation to the true value with respect to the
number of epochs2. It should be emphasized that the implementation results in a discrete
approximation of a continuous problem. By increasing N the approximation should converge
with respect to the step size h = T/N , but to investigate this is beyond the scope of this
chapter. The top right plot shows the expected value as well as the 5:th and 95:th percentiles
of the wealth as a function of time. We see that the approximation corresponds well to the
analytic counterpart. The plots at the bottom display a comparison of the empirical pdfs
and CDFs, respectively, in which it is clear that our approximation corresponds well to the
empirical distributions obtained from the analytic allocation strategy.

5.4.2 Beyond MV, with market frictions and jumps

In this subsection, we consider the full generality offered by the asset model from (5.18)-(5.19),
as well as transaction costs, no bankruptcy constraint and we allow for trading in European
call and put options. When also options are allowed to trade in, the algorithm used is D-
TIPO. The parameter values from (5.21) are reused and we set λJ = 0.05, µJ = (0, . . . , 0)⊤,
ΣJ = diag(0.2, . . . , 0.2), NB = 1 and C = 0.005. This means that we have an asset price
process with symmetric jumps around zero for each individual asset and a courtage of 0.5% for
each trade. This could seem high, but an alternative interpretation of C is as a penalizing term
for too heavy reallocation (which is something that for instance pension funds want to avoid).
With a slight abuse of notation, we denote the discretized version of (5.18) by S but keep in
mind that we must rely on an approximation in this section. In all our examples, we use N (the
number of allocation dates) as time steps in an Euler–Maruyama scheme, however, if necessary,
a finer mesh can be used. In turn, this also implies that (5.20) has to be approximated and
this is done with the Euler–Maruyama scheme as well. When there is no risk of confusion, we

2Since our data is synthetic we could have generated new data instead of reusing data in each epoch. On
the other hand, since our algorithm is data-driven, it would be possible to use real world data which makes it
desirable to be able to reuse data.

135

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

Figure 5.3: Upper left: Convergence of the loss to the analytic counterpart with respect
to the number of training epochs. Upper right: Comparison of our approximation and the
reference solution. Upper lines, middle lines and lower lines represent the 95th percentiles, the
mean values and the 5th percentiles, respectively. Lower left: Comparison of the empirical pdfs of
our approximation and the reference solution. Lower right: Comparison of the empirical CDFs of
our approximation and the reference solution.

136

5.4 Numerical experiments

simply denote the discretized versions of S and x by

Sn = Stn , xn = xtn ,

where tn is the n:th allocation date.
For each stock, Si, i ∈ {1, . . . , N stocks}, we allow trading in one European call option

and one European put option with terminal time T and strike Ki. For i ∈ {1, . . . , N stocks},
denoted by V̄

i(t, Sit ;Ki), the risk-neutral price of a call option, and for i ∈ {. . . , N stocks +
1, . . . , 2 . . . , N stocks}, we denote by V̄

Nstocks+i(t, Sit ;KNstocks+i) a put option with Si as
underlying. Note that a drift correction term needs to be added to the asset dynamics to obtain
a risk-neutral measure, which is necessary in order to make the option values martingales under
the jump-diffusion SDE, see e.g., [161]. We then have that V̄ i(T, SiT ;Ki) = max(0, SiT −Ki)
and V̄ Nstocks+i(T, SiT ;KNstocks+i) = max(0,KNstocks+i−SiT). We want to work with normalized
entities and define

V i(0, Si0;Ki) = 1, V i(T, SiT ;Ki) = max(0, SiT −Ki)
V̄
i(0, Si0;Ki)

,

V Nstocks+i(0, Si0;KNstocks+i) = 1, V Nstocks+i(T, SiT ;KNstocks+i) = max(0,KNstocks+i − SiT)
V̄
Nstocks+i(0, Si0;KNstocks+i)

.

In this section, we use the objective function from (5.10). The main reason is that this extended
version of the mean-variance objective function allows us to better control the tails of the
final wealth distribution (or in fact, of the return R). We want to use an objective function
which has similarities to mean-variance since it is desirable to achieve a high mean and a low
variance of the terminal wealth. On the other hand, we want to be able to better control the
tail distribution. With this in mind, we add two terms aiming to increase the expected value
in the tails. Below we give the theoretical version of the used objective function, but when
implemented, we always resort to ŪM (θ), which is the M -sample empirical counterpart to
U(θ).

U(θ) = E[R]− λ1Var[R] + λ2ES−
p1(R) + λ3ES+

p2(R).

We use p1 = 0.01 which means that we penalize low values of the expected return of the
worst 1% performance of the portfolio. For the upper tail, we want to maximize the expected
return of the 5% best outcomes and therefore set p2 = 0.95. The weights are set to λ1 = 0.552,
λ2 = 0.276 and λ3 = 0.110.

Problem specific neural network settings In addition to the general neural network
settings from Section 5.3.2 and the introduction of Section 5.4, we here give the finer details
which are problem specific. The D-TIPO algorithm does not only return a dynamic trading
strategy for the bond and the stocks, as in classical MV-optimization, but also static strategies
for allocations into a set of options as well as a strike price for each option. For the option
allocation, we follow (5.13) and set βmax = 1. This implies that the maximum total amount
of allocation into the options is 100% of the initial wealth. One problem with (5.13) is that
when the number of stocks increases, the possible allocation into each option decreases. Since
Noptions = 10 in the example considered in this section, the maximum amount allocated into

137

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

each specific option is 0.1. We therefore use a slight modification of (5.13), given by

aβ(θβ) = 1
max{1, β̂}

× âβ(θβ),

where âβ(θβ) = βmax

Noptions × sigmoid(θβ) and β̂ = ∑︁Noptions
i=1 [âβ(θβ)]i. In this way, the allocation

range into each option is [0, βmax] while keeping the total allocation range (the sum of the
allocations into each option) to [0, βmax] as well.

For the strike prices, we follow (5.14) and use K low = (0.75, 0.75 . . . , 0.75)⊤ and Khigh =
(1.25, 1.25 . . . , 1.25)⊤, i.e., setting the range for strike prices to between 75% to 125% of the
stock price at the initial time.

Finally, for n ∈ {0, 1, . . . , N − 1}, (5.13) is used and we set αlow
n = −2xn and αhigh

n = 2xn
implying that we can allocate into each stock between −200% and 200% of the total value of
the stocks and the bond.

5.4.2.1 Evaluation of the results

In this section, we aim to show that for a more sophisticated objective function, it can be
beneficial to include options to a portfolio of stocks and a bond.

To begin with, we display the kind of strategy D-TIPO generates. In Figure 5.4 to the
left, the average total allocation into the stocks (the sum of all stock positions) and the bond
over time as well as the total allocation to the options (the sum of all option positions) is
displayed. We see that approximately 35% of the initial wealth is allocated to the options and
the remainder to the stocks and the bond. In Figure 5.4 to the right, the average allocations
are displayed for each individual stock and we note that the main allocation is into stock 1,
for the stock itself as well as for the call and put options. The purpose of Figure 5.5 is to gain

Figure 5.4: Left: Average allocation to stocks, bond and options over time. Right: Average
allocation to stocks, bond and options over time for each stock. Asterisks and bullets represent call
and put option holdings, respectively.

insight into differences between portfolios with different levels of performance, e.g., is there
a difference in the contribution from the different asset classes (stocks, bonds and options)
for the best contra worst performing portfolios? In Figure 5.5 the average contributions of
the stocks and the bond, the call options and put options are displayed for portfolios in three
different performance ranges. From left to right, we see portfolios with terminal wealth less

138

5.4 Numerical experiments

than 1.03, between 1.03 and 1.12, and above 1.12, respectively. The strike prices are optimized
by the neural networks to 0.75 for all call options and 1.25 for all put options, i.e., deep in
the money. This enhances the viewpoint that the main purpose of the options in the portfolio
is to cover up for tail events of the stocks rather than to leverage potential upside. We also
note that for the best performing outcomes, the main option contribution comes from the call
options and for the worst performing outcomes from the put options.

Figure 5.5: Contribution to the portfolios for terminal wealth less than 1.03 (33% of the outcomes),
between 1.03 and 1.12 (41%), and above 1.12 (26%).

In Section 5.4.1, we had a closed-form solution as a reference, which made it easy to
evaluate the algorithm. Unfortunately, we do not have such a reference in this section. We
therefore use two different allocation strategies to compare our results with (for a problem
with the same asset process and trading costs):

1. The same algorithm but with a portfolio consisting of only stocks and a bond, i.e.,
D-TIP;

2. The MV-strategy from Section 5.4.1 which generates the same mean as D-TIPO does
(1.14). This means that we compare with a strategy that is optimal for classical MV-
optimization problem and apply it to the setting in this section.

For the first comparison, we use the same objective function, but a more restrictive investment
directive in the sense that we are not allowed to allocate into the options. Therefore, a
reasonable comparison is the optimal (up to the optimization algorithm) value of objective
function. If the objective function converges to the same value during optimization with and
without options in the portfolio, this would imply that it is not beneficial to add options to the
portfolio, i.e., D-TIPO performs in line with D-TIP. If, on the other hand, it converges to a
higher value with options in the portfolio, we conclude that it adds value to include options in
the portfolio, i.e., D-TIPO performs better than D-TIP. In Figure 5.6, it is clear that the loss
function converges to a lower value when options are allowed (we are here using the machine
learning convention of a loss function, which is defined by multiplying the objective function by

139

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

Figure 5.6: Convergence of the loss functions for D-TIPO in blue and D-TIP in orange as a
function of the number of training epochs.

-1). In Figure 5.7, top figures, the allocation strategies with and without options are compared
in terms of the distribution of the terminal wealth. From left to right, the empirical pdfs and
the empirical CDFs are compared. We note that with options we observe i) a thinner left tail,
ii) a higher density around the expected terminal wealth, and iii) a fatter right tail. At least
the first and the last features are beneficial since the objective function aims to prevent large
losses (by the lower expected shortfall term) and encourage large gains (by the upper expected
shortfall term). The reason for this is the additional flexibility to shape the distribution, which
is offered by adding options to the portfolio.

For the second comparison, in which we compare the D-TIPO strategy with the MV-
strategy, it is no longer suitable to compare the objective functions. The reason for this is
that the MV-strategy is obtained as the optimal allocation strategy for a different problem,
with other asset dynamics as well as another objective function. The best we can do is to
compare the distributions of the terminal wealth, which is also done in Figure 5.7. We note
the same differences as in the comparison above which is not surprising since the MV-strategy
only allocates into stocks and the bond. More interesting is that, in contrast to our strategies
both with and without options, we encounter a fatter left tail than the right tail, which
is non-desirable from a practical perspective. The reason for this is the limitation of the
MV-objective function distinguish between downside risk and upside potential, i.e., it does
not only penalize downside risk, but also upside potential.

Similar conclusions can be drawn from Table 5.2, in which the empirical mean values,
variances and expected shortfalls of the terminal wealth from the three algorithms are compared.
For all measures but the variance the portfolio with options performs best. The reason for
the variance to be lower without options is simply because the right tail, with a possibility of
very high returns. From a practical perspective, this is clearly not a problem. In the rightmost
column of Table 5.2 the transaction cost as a percentage of the initial wealth is expressed.
By using the D-TIPO strategy, we see that the transaction cost decreases by more than 60%
compared to the D-TIP strategy and by more than 90% compared to the MV-strategy. This is

140

5.4 Numerical experiments

Figure 5.7: Comparison of empirical pdfs (left) and CDFs (right) for the D-TIPO and D-TIP
strategies (top) and the MV-strategy (bottom).

141

5. D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

E[R] Var[R] ES−
p1(R) ES+

p2(R) U(θ∗) Trading cost
Strategy with options 1.146 0.0806 0.971 2.176 1.609 0.386%
Strategy without options 1.140 0.0449 0.931 1.933 1.583 1.01%
Mean-variance strategy 1.146 0.0769 -0.208 1.479 1.209 3.98%

Table 5.2: Comparison of our three strategies in terms of empirical mean values, variances,
expected shortfalls and the full loss function. Note that for the MV-strategy, the risk parameter
λ, is set to make the mean coincide with the mean obtained from the strategy with options. The
trading cost is calculated as a percentage of the initial wealth and reflects how volatile the portfolio
re-allocations are.

beneficial not only from the perspective of lower transaction costs but also since less aggressive
re-allocation is desirable for most investors.

5.4.2.2 Testing for robustness

In this chapter, we model the market with a jump-diffusion SDE, but as already stated, any
model that can generate enough samples would fit the framework. On the other hand, whatever
model is used, the only thing that we can be sure of is that real world market does not
behave exactly as the model. Therefore, we aim to test the robustness of the algorithms for
model miss-specification. This is carried out by applying the strategies from above with either
significantly higher or significantly lower volatility of the underlying asset process. In the high
volatility case, we multiply σ from (5.21) by two and in the low volatility case, we divide σ by
two.

In Table 5.3, we see that the D-TIPO and D-TIP strategies significantly outperform the
MV-strategy both with increased and decreased volatility. This is due to the fact that the
volatility is a sensitive parameter in the closed-form strategy implying that if the volatility
is either larger or smaller, then the strategy deviates significantly from optimality.3 Most
notable is the lower expected shortfall, which expresses a loss of 172.8% and 98.4% and
the trading costs at 10.1% and 2.74% for the higher and lower volatilities, respectively. In
the comparison between the strategies, it does not come as a surprise that options in the
portfolio are particularly beneficial when the volatility increases and are less beneficial when
the volatility decreases. Moreover, we note that the variance is larger for the strategy with
options than without options, especially in the case with higher volatility. As described above,
this is due to the fatter right tail of the distribution of terminal wealth and should not be
viewed as a problem.

5.5 Conclusions

The main conclusions drawn from this chapter can be summarized in three parts: 1) It is
important to be careful with the choice of objective function, in order to reflect the true
incentives of a rational trader; 2) Adding options makes shaping the distribution of the
terminal wealth more flexible, due to the asymmetric distribution of option returns. Moreover,
adding options may significantly reduce the re-allocation and in turn the trading costs; 3) A

3Bear in mind that for the MV-strategy optimality is only in the sense of mean and variance since the
expected shortfall terms do not enter the objective function.

142

5.5 Conclusions

E[R] Var[R] ES−
p1(R) ES+

p2(R) U(θ∗) Trading cost
Evaluation with increased volatility for the underlying assets (σ ↦→ 2× σ).

Strategy with options 1.318 0.660 0.763 3.268 1.540 0.838%
Strategy without options 1.350 0.175 0.734 2.635 1.532 1.23%
Mean-variance strategy 1.081 0.674 -0.728 1.460 0.668 10.1%

Evaluation with decreased volatility for the underlying assets (σ ↦→ 0.5× σ).
Strategy with options 1.074 0.0262 0.969 1.620 1.506 0.261%
Strategy without options 1.143 0.0160 0.957 1.548 1.569 0.636%
Mean-variance strategy 1.163 0.0569 0.0160 1.487 1.301 2.74%

Table 5.3: Comparison of our three strategies in terms of empirical mean values, variances,
expected shortfalls and the full loss function. Note that for the MV-strategy, the risk parameter
λ, is set to make the mean coincide with the mean obtained from the D-TIPO strategy. The
trading cost is calculated as a percentage of the initial wealth and reflects how volatile the portfolio
re-allocations are.

sequence of neural networks can produce a high quality allocation strategy in high dimensions
(many assets, options and also approximating strike prices for each option).

The extension to trading options in a dynamic setting is straight forward, as long as we
have access to an efficient method for option valuation along stochastic asset trajectories.
To approximate other options parameters, such as terminal time etc., is a straight forward
extension.

143

6
Conclusions and outlook

The main topic of this thesis is the usage of neural networks to find approximate solutions to
problems in stochastic control with applications in mathematical finance. For some problems,
we considered a classical problem formulation and simply replaced the standard function
approximator with a neural network. For instance, in Chapters 2 and 3, when pathwise
option values were approximated, we relied on projections of conditional expectations on a
finite-dimensional function space. A classical approach would be to use the function space
constructed by a set of countable basis functions and then find the analytic expression for
the minimizer of the L2-risk, i.e., to use a least-squares method. Our approach was instead
to consider the same problem formulation, but to optimize over the set of neural network
parameters. This implied that the function space we were searching in was constructed from
the neural network structure. In this way, we could gain flexibility, since this space is richer.
On the other hand, we lost some explainability and introduced an additional source of error
since our problem does not offer a closed-form optimal solution, but instead has to rely on
numerical optimization. The aim was that the richer function space could compensate for the
added optimization error.

For other problems, we made use of mathematical reformulations to arrive at a problem
formulation specifically tailored to neural networks. More precisely, the reformulations resulted
in a loss function, which, if minimized, also solved the original stochastic control problem.
The loss functions considered in this thesis usually had too complex structures to be solved
analytically or even with classical numerical optimization schemes. In those scenarios, we relied
on the stochastic gradient descent optimization machinery which is offered by modern software
packages, such as Tensorflow and Pytorch. For this type of problems, our main contribution
was a novel reformulation, which, with the help of modern machine learning tools, simplified
the original problem.

Finally, for the most complex problems considered, classical methods could not be
implemented or at least did not have a realistic chance of being successful. In situations
like this, neural networks and their optimization procedures are often the last resort and their
capability truly stood out.

145

6. Conclusions and outlook

In this section, we walk through the thesis chapter by chapter, and describe the impact of
using neural networks as an approximation method. In addition, we explain some interesting
lines of future research.

Chapters 2-3
In Chapters 2 and 3, part of the task was to find the fair value for high-dimensional Bermudan
options. The accuracy obtained by the neural network-based method was shown to be fully
comparable with an (almost) analytic PDE solver and significantly better than state of the art
Monte-Carlo methods. In high dimensions, the PDE solver is no longer a feasible alternative
and even though the Monte-Carlo method is still implementable dimensionality hampers both
accuracy and practicability. These problems did not seem to be present when using the neural
network-based methods (even without a reference solution it was possible to compare the
accuracy since all tested methods were biased low, implying that, the higher the approximate
value, the better the approximation). It is well known that neural networks often perform
relatively well on problems that are not feasible with classical methods, but in these chapters,
we also showed that the accuracy was even sometimes better than conventional methods, even
in low to moderate dimensions.

A disadvantage of the least squares Monte–Carlo method is that, in order to chose an
appropriate set of basis functions, one often requires some apriori knowledge of the problem
solution. In general, for high dimensional function surfaces, this is not the case, and we are
left with a cumbersome trial and error procedure.

In Chapter 3, the algorithm was extended to act on the level of a portfolio of options, i.e., the
stopping decisions as well as the valuation were performed for multiple high-dimensional options
simultaneously. The double high-dimensionality in this problem really put the framework to
an extreme test, but the performance was shown to be comparable to the performance for less
complex problems.

In Chapters 2-3, the main objective was to compute pathwise option values of Bermudan
or American options. Even though this is a challenging task on its own, the final goal is usually
to use these values to compute X-valuation adjustments (xVA). In Chapter 3, we computed
credit valuation adjustments (CVA), the valuation adjustment that is used to take the credit
risk of the counterpart into account. Although this is one of the most common valuation
adjustments, a formalized framework to compute other xVAs would be an interesting and
straight-forward extension.

Chapter 4
In this Chapter, a stochastic control problem was reformulated into a FBSDE, which was
then approximated with the help of a sequence of neural networks. The loss function used a
combination of properties from the stochastic control problem and the associated FBSDE.
We demonstrated that the proposed method was both accurate and robust when applied to
problems that classical methods as well as similar machine learning methods fail to converge.
For instance, a direct extension of the deep BSDE method to FBSDEs fails to converge for
low dimensional Linear-Quadratic Gaussian control problems. The main conclusion from this
chapter was however not about the capability of machine learning. What should instead be

146

noticed is that the seemingly small adjustments to the problem formulation (compared to
the deep BSDE method) changed the outcome drastically. From not converging, to being
able to robustly solve high-dimensional problems as well as problems with significantly more
complex dynamics. One conclusion drawn from this is that even though neural networks can
be thrown at many problems and perform well, it is still important to use as much problem
specific knowledge as possible.

The problem considered in this chapter was control of a SDE with a cost functional of
standard type for which the DPP holds. The SDE took the control process as input in the
drift but not in the diffusion coefficient. However, there are many interesting applications in
which also control in the diffusion coefficient is a natural way to model the problem. One
important example is portfolio optimization in the presence of market impact. This, slightly
more general problem formulation yields an associate FBSDE of second order (2FBSDE),
in which the sought solution is a quadrupel, (X,Y, Z,Γ), instead of the triple, (X,Y, Z), we
search for when solving first-order FBSDEs. In principle, the same neural network structure
and loss function could be used for such a more general problem. It is however likely that one
could use the extended problem formulation with known mathematical properties from the
Γ-process to construct an improved loss function.

Although the generalization discussed above is the most straight-forward extension to
our method, there are several other interesting future lines of research. Arguably, the most
important generalization of our deep FBSDE method would be an extension so that it could
be applicable for all kinds of FBSDEs, not only the ones stemming from stochastic control.
With the current problem formulation, this would not be possible since a crucial term in
the loss function is directly connected to stochastic control problems. Therefore, in order to
achieve this extension, one would have to find a similar penalty term for general FBSDEs.
Exactly how this term would look is not obvious, but it is surely an interesting as well as
important line of research.

Chapter 5
In Chapters 2-4, all problem formulations were well-established with nice mathematical
properties. In Chapter 5, on the other hand, the problems were formulated from a realistic
economic perspective. One consequence of this procedure was that much of the mathematical
foundation enjoyed for standard formulations collapsed. For instance, we imposed various
trading constraints, transaction costs and we did not assume a complete market. Moreover,
we allowed for trading in a bond, stocks and options with a general objective function. All
the above combined led to a problem in which the existing mathematical theory was limited
and we could generally not guarantee existence or uniqueness of solutions. Although these
are important issues for mathematicians, especially if one wants to formulate a dual problem,
they are of relatively minor importance to an investor. For instance, the important task for an
investor is to follow a trading strategy which yields the best possible risk-reward properties
according to some pre-determined objective. Usually, it does not matter whether there are
other strategies that perform equally well. With this in mind, it seemed plausible to simply
adopt a straight-forward approach to replace the allocation strategy at each time point with a
neural network and to use an empirical version of the objective function as loss function. From

147

6. Conclusions and outlook

the numerical results, it became evident that the performance of the neural network-based
algorithm, D-TIPO, was more than acceptable. It offers practitioners the possibility of relaxing
many of the restrictive constraints that historically had to be incorporated in a trading
strategy.

In the numerical results section of Chapter 5, we only considered synthetic asset data
in the shape of a jump-diffusion SDE. Even though, this is an interesting starting point for
our methodology, it would be highly interesting to input real world historical data into our
algorithm. This is possible due to the fact that the D-TIPO algorithm is model independent
and fully data-driven. This means that if we would have enough historical data (and we trust
that this data is representative) we could implement our method without any assumptions on
an underlying model. Even though this is clear in principle, it comes with some challenges. First
of all, with synthetic data we can sample as much as needed which constitutes a significant
difference when compared to the single time series of historical data available per asset.
Furthermore, a viable question to ask is what the historical distribution of returns says about
the future counterparts? If a time series could be considered stationary in time, then one
could find clever ways to split up a long time series into many shorter ones. There are many
interesting challenges associated with implementing our method with historical data, but given
its properties of being completely data-driven, it is clearly a compelling future line of research.

148

References

[1] Kristoffer Andersson and Cornelis Oosterlee. “A deep learning approach for com-
putations of exposure profiles for high-dimensional Bermudan options”. In: Applied
Mathematics and Computation 408 (2021), p. 126332.

[2] Kristoffer Andersson and Cornelis W Oosterlee. “Deep learning for CVA computations
of large portfolios of financial derivatives”. In: Applied Mathematics and Computation
409 (2021), p. 126399.

[3] Kristoffer Andersson, Adam Andersson, and Cornelis W Oosterlee. “Convergence of a
robust deep FBSDE method for stochastic control”. In: SIAM Journal on Scientific
Computing 45.1 (2023), A226–A255.

[4] Jiequn Han, Arnulf Jentzen, and E Weinan. “Solving high-dimensional partial differential
equations using deep learning”. In: Proceedings of the National Academy of Sciences
115.34 (2018), pp. 8505–8510.

[5] Kristoffer Andersson and Cornelis W Oosterlee. “D-TIPO: Deep time-inconsistent
portfolio optimization with stocks and options”. In: arXiv preprint arXiv:2308.10556
(2023).

[6] Jiequn Han and E Weinan. “Deep Learning Approximation for Stochastic Control
Problems”. In: ArXiv abs/1611.07422 (2016). url: https://api.semanticscholar.

org/CorpusID:16386889.

[7] Xun Yu Zhou and Duan Li. “Continuous-time mean-variance portfolio selection: A
stochastic LQ framework”. In: Applied Mathematics and Optimization 42 (2000), pp. 19–
33.

[8] René Carmona and François Delarue. Probabilistic theory of mean field games with
applications I-II. Springer, 2018.

[9] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. “Deep Optimal Stopping”. In:
Journal of Machine Learning Research 20 (2019).

[10] John Gregory. The xVA Challenge: counterparty credit risk, funding, collateral and
capital. John Wiley & Sons, 2015.

[11] Andrew Green. XVA: credit, funding and capital valuation adjustments. John Wiley &
Sons, 2015.

[12] Peter Forsyth and Kenneth Vetzal. “Quadratic convergence for valuing American
options using a penalty method”. In: SIAM Journal on Scientific Computing 23.6
(2002), pp. 2095–2122.

149

https://api.semanticscholar.org/CorpusID:16386889
https://api.semanticscholar.org/CorpusID:16386889

REFERENCES

[13] Christoph Reisinger and Jan Hendrik Witte. “On the use of policy iteration as an easy
way of pricing American options”. In: SIAM Journal on Financial Mathematics 3.1
(2012), pp. 459–478.

[14] Carlos Vázquez. “An upwind numerical approach for an American and European option
pricing model”. In: Applied Mathematics and Computation 97.2-3 (1998), pp. 273–286.

[15] Tinne Haentjens and Karel in’t Hout. “ADI schemes for pricing American options under
the Heston model”. In: Applied Mathematical Finance 22.3 (2015), pp. 207–237.

[16] Karel in’t Hout. Numerical Partial Differential Equations in Finance Explained; An
Introduction to Computational Finance. Palgrave Macmillan UK, 2017.

[17] Fang Fang and Cornelis Oosterlee. “Pricing early-exercise and discrete barrier options
by Fourier-cosine series expansions”. In: Numerische Mathematik 114.1 (2009), p. 27.

[18] Oleksandr Zhylyevskyy. “A fast Fourier transform technique for pricing American
options under stochastic volatility”. In: Review of Derivatives Research 13.1 (2010),
pp. 1–24.

[19] Fang Fang and Cornelis Oosterlee. “A Fourier-based valuation method for Bermudan
and barrier options under Heston’s model”. In: SIAM Journal on Financial Mathematics
2.1 (2011), pp. 439–463.

[20] Mark Broadie and Jerome Detemple. “American option valuation: new bounds,
approximations, and a comparison of existing methods”. In: The Review of Financial
Studies 9.4 (1996), pp. 1211–1250.

[21] Mark Rubinstein. “Edgeworth binomial trees”. In: Journal of Derivatives 5 (1998),
pp. 20–27.

[22] Jens Jackwerth. “Option-implied risk-neutral distributions and implied binomial trees:
A literature review”. In: The Journal of Derivatives 7.2 (1999), pp. 66–82.

[23] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[24] Leif Andersen and Mark Broadie. “Primal-dual simulation algorithm for pricing multi-
dimensional American options”. In: Management Science 50.9 (2004), pp. 1222–1234.

[25] Francis Longstaff and Eduardo Schwartz. “Valuing American options by simulation:
a simple least-squares approach”. In: The review of financial studies 14.1 (2001),
pp. 113–147.

[26] Mark Broadie and Paul Glasserman. “A stochastic mesh method for pricing high-
dimensional American options”. In: Journal of Computational Finance 7 (2004), pp. 35–
72.

[27] Mark Broadie and Menghui Cao. “Improved lower and upper bound algorithms for
pricing American options by simulation”. In: Quantitative Finance 8.8 (2008), pp. 845–
861.

[28] Shashi Jain and Cornelis Oosterlee. “The stochastic grid bundling method: Efficient
pricing of Bermudan options and their Greeks”. In: Applied Mathematics and
Computation 269 (2015), pp. 412–431.

150

REFERENCES

[29] Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. “Pricing of High-Dimensional
American Options by Neural Networks”. In: Mathematical Finance: An International
Journal of Mathematics, Statistics and Financial Economics 20.3 (2010), pp. 383–410.

[30] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. “Pricing and hedging American-
style options with deep learning”. In: Journal of Risk and Financial Management 13.7
(2020), p. 158.

[31] Bernard Lapeyre and Jérôme Lelong. “Neural network regression for Bermudan option
pricing”. In: Monte Carlo Methods and Applications 27.3 (2021), pp. 227–247.

[32] Vikranth Lokeshwar, Vikram Bhardawaj, and Shashi Jain. “Neural network for pricing
and universal static hedging of contingent claims”. In: Available at SSRN 3491209
(2019).

[33] Andrew David Green, Chris Kenyon, and Chris Dennis. “KVA: Capital valuation
adjustment”. In: Risk, December (2014).

[34] Shashi Jain, Patrik Karlsson, and Drona Kandhai. “KVA, Mind Your P’s and Q’s!” In:
Wilmott 2019.102 (2019), pp. 60–73.

[35] Cornelis De Graaf et al. “Efficient computation of exposure profiles for counterparty
credit risk”. In: International Journal of Theoretical and Applied Finance 17.04 (2014),
p. 1450024.

[36] Yanbin Shen, Johannes AM Van Der Weide, and Jasper HM Anderluh. “A benchmark
approach of counterparty credit exposure of Bermudan option under Lévy Process: the
Monte Carlo-COS Method”. In: Procedia Computer Science 18 (2013), pp. 1163–1171.

[37] Qian Feng et al. “Efficient computation of exposure profiles on real-world and risk-
neutral scenarios for Bermudan swaptions”. In: Available at SSRN 2790874 (2016).

[38] Roberto Baviera, Gaetano La Bua, and Paolo Pellicioli. “CVA with wrong-way risk in
the presence of early exercise”. In: Innovations in Derivatives Markets. Springer, Cham,
2016, pp. 103–116.

[39] Michèle Breton and Oussama Marzouk. An efficient method to price counterparty risk.
Groupe d’études et de recherche en analyse des décisions, 2014.

[40] Bernt Oksendal. Stochastic differential equations: an introduction with applications.
Springer Science & Business Media, 2013.

[41] Chigozie Nwankpa et al. “Activation functions: Comparison of trends in practice and
research for deep learning”. In: Preprint arXiv:1811.03378 Comment: Published as a
conference paper at the 2nd International Conference on Computational Sciences and
Technologies, 17-19 Dec 2020 (2018).

[42] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980. ISO 690. Comment: Published as a conference paper
at the 3rd International Conference for Learning Representations, San Diego (2015).

[43] Mark Broadie and Jérôme Detemple. “The valuation of American options on multiple
assets”. In: Mathematical Finance 7.3 (1997), pp. 241–286.

151

REFERENCES

[44] A Max Reppen, H Mete Soner, and Valentin Tissot-Daguette. “Neural optimal stopping
boundary”. In: arXiv preprint arXiv:2205.04595 (2022).

[45] László Györfi et al. A distribution-free theory of nonparametric regression. Springer
Science & Business Media, 2006.

[46] Halbert White. Asymptotic theory for econometricians. Academic press, 2014.

[47] Paul Glasserman. Monte Carlo methods in financial engineering. Vol. 53. Springer
Science & Business Media, 2013.

[48] Iñigo Arregui et al. “PDE models for American options with counterparty risk and two
stochastic factors: Mathematical analysis and numerical solution”. In: Computers &
Mathematics with Applications (2019).

[49] Steven Heston. “A closed-form solution for options with stochastic volatility with
applications to bond and currency options”. In: The review of financial studies 6.2
(1993), pp. 327–343.

[50] Leif Andersen and Vladimir Piterbarg. “Moment explosions in stochastic volatility
models”. In: Finance and Stochastics 11.1 (2007), pp. 29–50.

[51] John Cox, Jonathan Ingersoll, and Stephen Ross. “A theory of the term structure of
interest rates”. In: Theory of valuation. World Scientific, 2005, pp. 129–164.

[52] William Feller. “Two singular diffusion problems”. In: Annals of mathematics (1951),
pp. 173–182.

[53] Leif Andersen. “Efficient simulation of the Heston stochastic volatility model”. In:
Available at SSRN 946405 (2007).

[54] Marjon Ruijter and Cornelis Oosterlee. “Two-dimensional Fourier cosine series expansion
method for pricing financial options”. In: SIAM Journal on Scientific Computing 34.5
(2012), B642–B671.

[55] John Hull and Alan White. “The impact of default risk on the prices of options and
other derivative securities”. In: Journal of Banking & Finance 19.2 (1995), pp. 299–322.

[56] Richard Zhou. “Back to CVA: the case of American option”. In: Available at SSRN
3189805 (2019).

[57] “Basel III: A global regulatory framework for more resilient banks and banking systems.”
In: Available at: https://www.bis.org (2010).

[58] Damiano Brigo, Massimo Morini, and Andrea Pallavicini. Counterparty credit risk,
collateral and funding: with pricing cases for all asset classes. Vol. 478. John Wiley &
Sons, 2013.

[59] Qian Feng and Cornelis W Oosterlee. “Wrong Way Risk Modeling and Computation in
Credit Valuation Adjustment for European and Bermudan Options”. In: Available at
SSRN 2852819 (2016).

[60] Long Teng. “A review of tree-based approaches to solve forward-backward stochastic
differential equations”. In: The Journal of Computational Finance (2021).

[61] Jin Ma et al. “Numerical method for backward stochastic differential equations”. In:
The Annals of Applied Probability 12.1 (2002), pp. 302–316.

152

REFERENCES

[62] Marjon J Ruijter and Cornelis W Oosterlee. “A Fourier cosine method for an efficient
computation of solutions to BSDEs”. In: SIAM J. Sci. Computing 37.2 (2015), A859–
A889.

[63] TP Huijskens, Maria J Ruijter, and Cornelis W Oosterlee. “Efficient numerical Fourier
methods for coupled forward–backward SDEs”. In: Journal of Computational and
Applied Mathematics 296 (2016), pp. 593–612.

[64] Marjon J Ruijter and Cornelis W Oosterlee. “Numerical Fourier method and second-
order Taylor scheme for backward SDEs in finance”. In: Applied Numerical Mathematics
103 (2016), pp. 1–26.

[65] Bruno Bouchard and Nizar Touzi. “Discrete-time approximation and Monte-Carlo
simulation of backward stochastic differential equations”. In: Stochastic Processes and
their applications 111.2 (2004), pp. 175–206.

[66] Ki Wai Chau and Cornelis W Oosterlee. “Stochastic grid bundling method for backward
stochastic differential equations”. In: International Journal of Computer Mathematics
96.11 (2019), pp. 2272–2301.

[67] Arash Fahim, Nizar Touzi, and Xavier Warin. “A probabilistic numerical method for
fully nonlinear parabolic PDEs”. In: The Annals of Applied Probability 21.4 (2011),
pp. 1322–1364.

[68] Christian Bender and Jessica Steiner. “Least-squares Monte Carlo for backward SDEs”.
In: Numerical methods in finance. Springer, 2012, pp. 257–289.

[69] Dan Crisan, Konstantinos Manolarakis, and Nizar Touzi. “On the Monte Carlo
simulation of BSDEs: An improvement on the Malliavin weights”. In: Stochastic
Processes and their Applications 120.7 (2010), pp. 1133–1158.

[70] Emmanuel Gobet et al. “Stratified regression Monte-Carlo scheme for semilinear PDEs
and BSDEs with large scale parallelization on GPU s”. In: SIAM J. Sci. Computing
38.6 (2016), pp. C652–C677.

[71] Jin Ma, Philip Protter, and Jiongmin Yong. “Solving forward-backward stochastic
differential equations explicitly - A four step scheme”. In: Probability theory and related
fields 98.3 (1994), pp. 339–359.

[72] Emmanuel Gobet and Céline Labart. “Error expansion for the discretization of backward
stochastic differential equations”. In: Stochastic processes and their applications 117.7
(2007), pp. 803–829.

[73] Emmanuel Gobet and Céline Labart. “Solving BSDE with adaptive control variate”.
In: SIAM J. Numerical Analysis 48.1 (2010), pp. 257–277.

[74] Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. “On multilevel Picard
numerical approximations for high-dimensional nonlinear parabolic partial differential
equations and high-dimensional nonlinear backward stochastic differential equations”.
In: Journal of Scientific Computing 79.3 (2019), pp. 1534–1571.

[75] Christian Bender and Robert Denk. “A forward scheme for backward SDEs”. In:
Stochastic processes and their applications 117.12 (2007), pp. 1793–1812.

153

REFERENCES

[76] Jared Chessari et al. “Numerical methods for backward stochastic differential equations:
A survey”. In: Probability Surveys 20 (2023), pp. 486–567.

[77] Christian Beck et al. “Solving the Kolmogorov PDE by means of deep learning”. In:
Journal of Scientific Computing 88.3 (2021), pp. 1–28.

[78] Pierre Henry-Labordere. “Deep primal-dual algorithm for BSDEs: Applications of
machine learning to CVA and IM”. In: Available at SSRN 3071506 (2017).

[79] Christian Beck, Arnulf Jentzen, et al. “Machine learning approximation algorithms
for high-dimensional fully nonlinear partial differential equations and second-order
backward stochastic differential equations”. In: Journal of Nonlinear Science 29.4
(2019), pp. 1563–1619.

[80] Christian Beck et al. “Deep splitting method for parabolic PDEs”. In: SIAM J. Sci.
Computing 43.5 (2021), A3135–A3154.

[81] Masaaki Fujii, Akihiko Takahashi, and Masayuki Takahashi. “Asymptotic expansion as
prior knowledge in deep learning method for high dimensional BSDEs”. In: Asia-Pacific
Financial Markets 26.3 (2019), pp. 391–408.

[82] Maziar Raissi. “Forward-backward stochastic neural networks: Deep learning of high-
dimensional partial differential equations”. In: Preprint arXiv:1804.07010 (2018).

[83] Shaolin Ji et al. “Three algorithms for solving high-dimensional fully coupled FBSDEs
through deep learning”. In: IEEE Intelligent Systems 35.3 (2020), pp. 71–84.

[84] Alessandro Gnoatto, Athena Picarelli, and Christoph Reisinger. “Deep xVA Solver: A
Neural Network–Based Counterparty Credit Risk Management Framework”. In: SIAM
Journal on Financial Mathematics 14.1 (2023), pp. 314–352.

[85] Shaolin Ji et al. “A control method for solving high-dimensional Hamiltonian systems
through deep neural networks”. In: Preprint arXiv:2111.02636 (2021).

[86] Yutian Wang and Yuan-Hua Ni. “Deep BSDE-ML Learning and I ts Application to
Model-Free Optimal Control”. In: Preprint arXiv:2201.01318 (2022).

[87] Jiequn Han and Jihao Long. “Convergence of the deep BSDE method for coupled
FBSDEs”. In: Probability, Uncertainty and Quantitative Risk 5.1 (2020), pp. 1–33.

[88] Martin Hutzenthaler et al. “A proof that rectified deep neural networks overcome the
curse of dimensionality in the numerical approximation of semilinear heat equations”.
In: SN partial differential equations and applications 1.2 (2020), pp. 1–34.

[89] Julius Berner, Philipp Grohs, and Arnulf Jentzen. “Analysis of the generalization error:
Empirical risk minimization over deep artificial neural networks overcomes the curse
of dimensionality in the numerical approximation of Black–Scholes partial differential
equations”. In: SIAM J. Mathematics of Data Science 2.3 (2020), pp. 631–657.

[90] Dennis Elbrächter et al. “DNN expression rate analysis of high-dimensional PDEs:
Application to option pricing”. In: Constructive Approximation (2021), pp. 1–69.

[91] Philipp Grohs et al. “A proof that artificial neural networks overcome the curse of
dimensionality in the numerical approximation of Black–Scholes partial differential
equations”. In: ArXiv abs/1809.02362 (2018).

154

REFERENCES

[92] Arnulf Jentzen, Diyora Salimova, and Timo Welti. “A proof that deep artificial neural
networks overcome the curse of dimensionality in the numerical approximation of
Kolmogorov partial differential equations with constant diffusion and nonlinear drift
coefficients”. In: Preprint arXiv:1809.07321 (2018).

[93] Yifan Jiang and Jinfeng Li. “Convergence of the Deep BSDE method for FBSDEs with
non-Lipschitz coefficients”. In: Preprint arXiv:2101.01869 (2021).

[94] Côme Huré, Huyên Pham, and Xavier Warin. “Deep backward schemes for high-
dimensional nonlinear PDEs”. In: Mathematics of Computation 89.324 (2020), pp. 1547–
1579.

[95] Côme Huré, Huyên Pham, and Xavier Warin. “Some machine learning schemes for
high-dimensional nonlinear PDEs”. In: Preprint arXiv:1902.01599 33 (2019).

[96] Quentin Chan-Wai-Nam, Joseph Mikael, and Xavier Warin. “Machine learning for semi
linear PDEs”. In: Journal of Scientific Computing 79.3 (2019), pp. 1667–1712.

[97] Fang Fang and Cornelis W Oosterlee. “A novel pricing method for European options
based on Fourier-cosine series expansions”. In: SIAM J. Sci. Computing 31.2 (2009),
pp. 826–848.

[98] Balint Negyesi, Kristoffer Andersson, and Cornelis W. Oosterlee. “The One Step
Malliavin scheme: new discretization of BSDEs implemented with deep learning
regressions”. In: Preprint arXiv:2110.05421 (2021).

[99] Christian Beck et al. “An overview on deep learning-based approximation methods for
partial differential equations”. In: Preprint arXiv:2012.12348 (2020).

[100] Kristoffer Andersson. “Approximate stochastic control based on deep learning and
forward backward stochastic differential equations”. MA thesis. 2019.

[101] Marcus Pereira et al. “Learning deep stochastic optimal control policies using forward-
backward SDEs”. In: Preprint arXiv:1902.03986 (2019).

[102] Yujun Liu et al. “Deep FBSDE Controller for Attitude Control of H ypersonic Aircraft”.
In: 2021 6th IEEE Int. Conf. on Advanced Robotics and Mechatronics (ICARM). IEEE.
2021, pp. 294–299.

[103] Bolun Dai et al. “Learning Locomotion Controllers for W alking U sing Deep FBSDE”.
In: Preprint arXiv:2107.07931 (2021).

[104] Christoph Reisinger, Wolfgang Stockinger, and Yufei Zhang. “A posteriori error
estimates for fully coupled McKean-Vlasov forward-backward SDEs”. In: arXiv preprint
arXiv:2007.07731 (2020).

[105] Christoph Reisinger and Yufei Zhang. “Rectified deep neural networks overcome the
curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear
stiff systems”. In: Analysis and Applications 18.06 (2020), pp. 951–999.

[106] Christoph Reisinger, Wolfgang Stockinger, and Yufei Zhang. “Linear convergence of a
policy gradient method for finite horizon continuous time stochastic control problems”.
In: arXiv e-prints (2022), arXiv–2203.

155

REFERENCES

[107] Michael Giegrich, Christoph Reisinger, and Yufei Zhang. “Convergence of policy gradient
methods for finite-horizon stochastic linear-quadratic control problems”. In: arXiv
preprint arXiv:2211.00617 (2022).

[108] Christoph Reisinger, Wolfgang Stockinger, and Yufei Zhang. “A fast iterative PDE-
based algorithm for feedback controls of nonsmooth mean-field control problems”. In:
arXiv preprint arXiv:2108.06740 (2021).

[109] Fabio Antonelli. “Backward forward stochastic differential equations”. PhD thesis.
Purdue University, 1993.

[110] Yajie Yu, Narayan Ganesan, and Bernhard Hientzsch. “Backward deep BSDE methods
and applications to nonlinear problems”. In: Risks 11.3 (2023), p. 61.

[111] George Cybenko. “Approximations by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals and Systems 2 (1989), pp. 183–192.

[112] Raphael Kruse. “Characterization of bistability for stochastic multistep methods”. In:
BIT Num. Math. 52.1 (2012), pp. 109–140.

[113] Wolf-Jürgen Beyn and Raphael Kruse. “Two-sided error estimates for the stochastic
theta method”. In: Discrete & Continuous Dynamical Systems-B 14.2 (2010), p. 389.

[114] Remigius Mikulevicius and Eckhard Plate. “Rate of convergence of the Euler
approximation for diffusion processes”. In: Mathematische Nachrichten 151.1 (1991),
pp. 233–239.

[115] Arturo Kohatsu-Higa, Antoine Lejay, and Kazuhiro Yasuda. “Weak rate of convergence
of the Euler–Maruyama scheme for stochastic differential equations with non-regular
drift”. In: Journal of Computational and Applied Mathematics 326 (2017), pp. 138–158.

[116] Giuseppe Buttazzo and Gianni Dal Maso. “Γ-convergence and optimal control problems”.
In: Journal of optimization theory and applications 38.3 (1982), pp. 385–407.

[117] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis. Vol. 317. Springer
Science & Business, 2009.

[118] Joseph Frédéric Bonnans, Justina Gianatti, and Francisco J Silva. “On the time
discretization of stochastic optimal control problems: the dynamic programming
approach”. In: ESAIM: Control, Optimis. Calculus of Variations 25 (2019), p. 63.

[119] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
Preprint arXiv:1412.6980 (2014).

[120] Karl J Åström. Introduction to stochastic control theory. Courier Corporation, 2012.

[121] Lorenc Kapllani and Long Teng. “Deep Learning algorithms for solving high di-
mensional nonlinear Backward Stochastic Differential Equations”. In: arXiv preprint
arXiv:2010.01319 (2020).

[122] HM Markowitz. “Portfolio Selection, the journal of finance. 7 (1)”. In: N 1 (1952),
pp. 71–91.

[123] Fei Cong and Cornelis W Oosterlee. “Multi-period mean–variance portfolio optimization
based on Monte-Carlo simulation”. In: Journal of Economic Dynamics and Control 64
(2016), pp. 23–38.

156

REFERENCES

[124] F Cong and CW Oosterlee. “On robust multi-period pre-commitment and time-
consistent mean-variance portfolio optimization”. In: International Journal of Theoreti-
cal and Applied Finance 20.07 (2017), p. 1750049.

[125] Peter A Forsyth and Kenneth R Vetzal. “Multi-Period Mean Expected-Shortfall
Strategies:‘Cut Your Losses and Ride Your Gains’”. In: Applied Mathematical Finance
(2022), pp. 1–37.

[126] Giuseppe Carlo Calafiore. “Multi-period portfolio optimization with linear control
policies”. In: Automatica 44.10 (2008), pp. 2463–2473.

[127] Pieter M van Staden, Duy-Minh Dang, and Peter A Forsyth. “The surprising robustness
of dynamic mean-variance portfolio optimization to model misspecification errors”. In:
European Journal of Operational Research 289.2 (2021), pp. 774–792.

[128] Suleyman Basak and Georgy Chabakauri. “Dynamic mean-variance asset allocation”.
In: The Review of Financial Studies 23.8 (2010), pp. 2970–3016.

[129] Min Dai et al. “A dynamic mean-variance analysis for log returns”. In: Management
Science 67.2 (2021), pp. 1093–1108.

[130] R Tyrrell Rockafellar, Stanislav Uryasev, et al. “Optimization of conditional value-at-
risk”. In: Journal of risk 2 (2000), pp. 21–42.

[131] Tomas Bjork and Agatha Murgoci. “A general theory of Markovian time inconsistent
stochastic control problems”. In: Available at SSRN 1694759 (2010).

[132] Peter A Forsyth. “Multiperiod mean Conditional Value at Risk asset allocation: Is it
advantageous to be time consistent?” In: SIAM Journal on Financial Mathematics 11.2
(2020), pp. 358–384.

[133] Elena Vigna. “Tail optimality and preferences consistency for intertemporal optimization
problems”. In: SIAM Journal on Financial Mathematics 13.1 (2022), pp. 295–320.

[134] Elena Vigna. “On time consistency for mean-variance portfolio selection”. In: Interna-
tional Journal of Theoretical and Applied Finance 23.06 (2020), p. 2050042.

[135] Pieter M van Staden, Duy-Minh Dang, and Peter A Forsyth. “On the distribution
of terminal wealth under dynamic mean-variance optimal investment strategies”. In:
SIAM Journal on Financial Mathematics 12.2 (2021), pp. 566–603.

[136] ST Tse et al. “Comparison between the mean-variance optimal and the mean-quadratic-
variation optimal trading strategies”. In: Applied Mathematical Finance 20.5 (2013),
pp. 415–449.

[137] Tomas Björk, Mariana Khapko, and Agatha Murgoci. “On time-inconsistent stochastic
control in continuous time”. In: Finance and Stochastics 21 (2017), pp. 331–360.

[138] Yuying Li and Peter A Forsyth. “A data-driven neural network approach to optimal
asset allocation for target based defined contribution pension plans”. In: Insurance:
Mathematics and Economics 86 (2019), pp. 189–204.

[139] Pieter M van Staden, Peter A Forsyth, and Yuying Li. “A parsimonious neural network
approach to solve portfolio optimization problems without using dynamic programming”.
In: arXiv preprint arXiv:2303.08968 (2023).

157

REFERENCES

[140] Sebastian Jaimungal. “Reinforcement learning and stochastic optimisation”. In: Finance
and Stochastics 26.1 (2022), pp. 103–129.

[141] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
nature 518.7540 (2015), pp. 529–533.

[142] Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”.
In: International conference on machine learning. PMLR. 2016, pp. 1329–1338.

[143] Biao Luo and Huai-Ning Wu. “Approximate optimal control design for nonlinear one-
dimensional parabolic PDE systems using empirical eigenfunctions and neural network”.
In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42.6
(2012), pp. 1538–1549.

[144] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[145] Yoshua Bengio et al. “Learning deep architectures for AI”. In: Foundations and trends®
in Machine Learning 2.1 (2009), pp. 1–127.

[146] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality. Vol. 703. John Wiley & Sons, 2007.

[147] Richard S Sutton, Andrew G Barto, et al. “Reinforcement learning”. In: Journal of
Cognitive Neuroscience 11.1 (1999), pp. 126–134.

[148] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484–489.

[149] John Schulman et al. “High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[150] John Schulman et al. “Trust region policy optimization”. In: International conference
on machine learning. PMLR. 2015, pp. 1889–1897.

[151] Vigdis Boasson, Emil Boasson, and Zhao Zhou. “Portfolio optimization in a mean-
semivariance framework”. In: Investment management and financial innovations 8, Iss.
3 (2011), pp. 58–68.

[152] Luís Lobato Macedo, Pedro Godinho, and Maria João Alves. “Mean-semivariance
portfolio optimization with multiobjective evolutionary algorithms and technical analysis
rules”. In: Expert Systems with Applications 79 (2017), pp. 33–43.

[153] Stefano Ciliberti, Imre Kondor, and Marc Mézard. “On the feasibility of portfolio
optimization under expected shortfall”. In: Quantitative Finance 7.4 (2007), pp. 389–396.

[154] Yasuhiro Yamai and Toshinao Yoshiba. “Value-at-risk versus expected shortfall: A
practical perspective”. In: Journal of Banking & Finance 29.4 (2005), pp. 997–1015.

[155] Jonathan Raimana Chan et al. “Portfolio optimisation with options”. In: arXiv preprint
arXiv:2111.12658 (2021).

[156] Joshua D Coval and Tyler Shumway. “Expected option returns”. In: The journal of
Finance 56.3 (2001), pp. 983–1009.

[157] Joost Driessen, Pascal J Maenhout, and Grigory Vilkov. “The price of correlation risk:
Evidence from equity options”. In: The Journal of Finance 64.3 (2009), pp. 1377–1406.

158

REFERENCES

[158] José Afonso Faias and Pedro Santa-Clara. “Optimal option portfolio strategies:
Deepening the puzzle of index option mispricing”. In: Journal of Financial and
Quantitative Analysis 52.1 (2017), pp. 277–303.

[159] Pedro Santa-Clara and Alessio Saretto. “Option strategies: Good deals and margin
calls”. In: Journal of Financial Markets 12.3 (2009), pp. 391–417.

[160] Andrew Ang. Asset management: A systematic approach to factor investing. Oxford
University Press, 2014.

[161] Cornelis W Oosterlee and Lech A Grzelak. Mathematical modeling and computation
in finance: with exercises and Python and MATLAB computer codes. World Scientific,
2019.

159

Acknowledgements

I would like to begin by expressing my heartfelt gratitude to my supervisor, Prof. Cornelis ’Kees’
Oosterlee. Kees has been an exceptional guide in the realm of financial mathematics, providing
not only invaluable subject-specific advice but also steadfast support in navigating the intricate
world of academic formalities. Beyond his academic mentorship, Kees demonstrated remarkable
patience and flexibility, especially during the period of the Covid-19 pandemic.

I am also indebted to Dr. Adam Andersson, who served as my master thesis supervisor,
colleague, and, subsequently, co-author of the research article forming the basis for Chapter 4
in this thesis. His assistance and support have been instrumental to my academic journey.

Furthermore, I extend my gratitude to the consortium behind the ABC-EU-XVA project,
including Prof. Iñigo Arregui, Prof. Pasquale Cirillo, Prof. Griselda Deelstra, Dr. Lech Grzelak,
Prof. Andrea Pascucci, and Prof. Carlos Vazquez. Their collective contributions significantly
enriched my research. I would also like to thank my fellow PhD candidates within the
consortium, namely Graziana Colonna, Kevin Kamm, Roberta Simonella, Luis Souto Arias,
Davide Trevisani, and Felix Wolf, for the enriching and enjoyable interactions during the course
of this project.

Finally, I am deeply grateful to all my colleagues during my tenures at CWI, TU Delft, and
the University of Utrecht. A special word of appreciation goes out to my office room-mates:
Ki-Wai Chau, Sangeetika Ruchi, Balint Négyesi, Nikolaj Mücke, and Leonardo Perotti, whose
friendships and shared moments have made this academic journey all the more meaningful.

161

Curriculum Vitae

2019-2022 Marie-Curie Early Stage Researcher
Centrum Wiskunde & Informatica, Amsterdam, the Netherlands

2022-2023 PhD Researcher
University of Utrecht, Utrecht, the Netherlands

2023 PhD. Applied Mathematics
University of Utrecht, Utrecht, the Netherlands
Thesis: Neural networks for stochastic control and decision making in mathematical

finance
Promoter: Prof. dr. ir. C.W. Oosterlee

163

List of publications

5. Kristoffer Andersson, and Cornelis W. Oosterlee. D-TIPO: Deep time-inconsistent
portfolio optimization with stocks and options. arXiv preprint arXiv:2308.10556 (2023).

4. Kristoffer Andersson, Adam Andersson, and Cornelis W. Oosterlee. Convergence of a
robust deep FBSDE method for stochastic control. SIAM Journal on Scientific Computing
45.1 (2023): A226-A255.

3. Balint Negyesi1, Kristoffer Andersson, and Cornelis W. Oosterlee. The One Step
Malliavin scheme: new discretization of BSDEs implemented with deep learning
regressions. arXiv preprint arXiv:2110.05421 (2021). To appear in: IMA Journal of
Numerical Analysis Oxford University Press

2. Kristoffer Andersson, and Cornelis W. Oosterlee. Deep learning for CVA computations
of large portfolios of financial derivatives. Applied Mathematics and Computation 409
(2021): 126399.

1. Kristoffer Andersson and Cornelis W. Oosterlee. Deep learning for CVA computations
of large portfolios of financial derivatives. Applied Mathematics and Computation 409
(2021): 126399. APA

1The main author of this paper is Balint Negyesi and the contents of this paper do not appear in this thesis

165

List of presentations

Talks
6. 21th Winter school on Mathematical Finance, Amersfoort, the Netherlands,

January 2024.

5. Dutch Math Finance afternoons, Delft, the Netherlands, March 2023.

4. 4th International Conference on Computational Finance2 (ICCF), Wuppertal,
Germany, June 2022.

3. SAAB Technical Forum - Radar systems, Gothenburg, Sweden, March 2022.

2. Workshop on Machine Learning in Quantitative Finance and Risk Manage-
ment3, Amsterdam, the Netherlands, July 2020.

1. 9th International Congresson Industrial and Applied Mathematics (ICIAM),
Valencia, Spain, July 2019.

Posters
1. Utrecht AI Labs Event, Utrecht, the Netherlands, May 2023.

2Awarded ”Best youngster presentation”
3Organized by Cornelis W. Oosterlee and Kristoffer Andersson

167

