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Chapter 1

Introduction

The study of inverse problems is an active area of research in applied mathematics that has at-
tracted the attention of researchers both from mathematical and numerical analysis. The under-
standing of the theory of inverse problems and the development of tools aimed to study inverse
boundary value problems have led to great advances in numerous areas of science, see [19, 5, 37]
and the references therein. In seismology and subsurface imaging applications, changes in den-
sity and sound-speed of the earth are detected by solving highly ill-posed and nonlinear inverse
problems based on reflection measurements, see figure 1.1. In medical applications such as ul-
trasound imaging, it is common to formulate an inverse problem of reconstructing the boundary
of a scatterer or the change in material properties using reflections of known incident fields,
see figure 1.2. Also, similar inverse problems can be found in astrophysics, and in particular in
imaging of celestial and cosmic objects, see figure 1.3. Better understanding of the theory of
inverse problems, can result in greater progress to other areas of science such as the aforemen-
tioned for example.

Figure 1.1: A simplified visual representation of a seismic survey
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6 CHAPTER 1. INTRODUCTION

Figure 1.2: An ultrasound machine used to image internal organs. Nowadays, ultrasound ma-
chines keep getting a lot more portable.

Figure 1.3: Radio telescopes are used in collecting radio waves coming from outer space. Dis-
tant radio galaxies and quasars have been discovered using radio telescopes.

The writing of this thesis is motivated by the many applications of inverse problems in
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science and the beauty of the related mathematics. Before elaborating more on the motivation,
it is useful to explain two important terms/concepts of this thesis.

Scattering. Within this text, scattering refers to the interaction of an incoming wave with a
scatterer (in acoustic scattering: change in sound-speed and/or density, in Schrödinger scatter-
ing: potential). Mathematically speaking, the Schrödinger equation is described as follows.

(−∆+q− k2)u = f , on D ⊂ Rn, n = 1,2,3, (1.1)

where ∆ being the Laplace operator, k ∈C is a wavenumber, q ∈ L∞(D) is a scattering potential
and u is the solution. When D is unbounded, we use the Sommerfeld radiation condition. In case
where D is bounded, we use an approximation of the radiation condition, often called impedance
(Robin-type) boundary condition. The source term is denoted by f and it is responsible for
causing an incident field inside the volume of the domain D. This incident field interacts with
q by causing a scattered field. In cases where we study the full scattering problem (D = Rn)
we can even assume that an incident plane wave or a spherical wave causes scattering. In this
case, we even have an explicit formula for the incident field, ui, and we have that u = ui+us (us

denotes scattererd field). Similarly, the Helmholtz equation is formulated as

(−∆− k2m)u = f , on D ⊂ Rn, (1.2)

where the coefficient m∈L∞(D) describes the change in soundspeed. In both cases (Schrödinger
and Helmholtz), u depends on k, and we usually write u = u(k).

Inverse scattering. Within the boundaries of this thesis, inverse scattering refers to the
reconstruction of an acoustic scaterrer or a potential using measurements of scattered waves.
Mathematically, we can formulate an inverse scattering problem of such kind as:

given a set of frequencies Λ = {ki}i∈I and measurements {u(ki)|D0}i∈I, with D0 ⊂ D,

estimate q (or m). (1.3)

The issues coming with inverse scattering problems of this type make on one hand inversion
challenging, on the other hand they require special treatment that involves beautiful mathemati-
cal concepts. A major source of various issues when it comes to inversion, is the nonlinearity of
the so-called coefficient to solution map. This makes the inversion process complicated because
the nonlinear relations between coefficients of PDEs to their solutions, also transfer to the asso-
ciated inverse scattering problems. Essentially, this means that the inverse problem is nonlinear.
Another remarkable issue is the so-called ill-posedness of the inverse problem. This means that
two different coefficients of a PDE can produce (nearly) the same measurements in the sense of
the definition 1.3. Considering the nonlinearity and ill-posedness issues that come in pair with
inverse problems, mathematicians have come up with several ways of solving them. In princi-
ple, there have been two main categories of methods for solving inverse scattering problems of
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this kind. In general, we separate them in direct and indirect methods. A method is referred as
indirect, when it is based on an implicit non-linear relation between data and coefficients that
need to be solved iteratively. On the other hand, the inverse scattering problem can be solved
using a direct method. Following a direct method, an explicit formula leads to the exact solu-
tion of the inverse problem. In the following two paragraphs, we elaborate on direct and indirect
methods.

1.1 Direct Methods

Recently, in the context of seismic imaging, direct inversion methods based on inverse scatter-
ing theory have received attention. One of the most characteristic example of a direct method
used in imaging is the so-called Marchenko integral equation method. The idea behind the
Marchenko imaging method is closely related to the Gelfand-Levitan-Marchenko integral equa-
tion that can be found in the classical Schrödinger scattering theory. Both the classical GLM
method within the Schrödinger scattering framework, and the Marchenko method are alter-
native linear ways of solving highly nonlinear inverse scattering problems. In short, in both
methods one tries to solve the inverse scattering problem first by obtaining the solution of the
PDE. In both cases, the solution (or a Fourier transform of the solution) is recovered by solv-
ing an integral equation, see [22], [18]. The advantages of both the classical GLM method
and the Marchenko imaging method, and their high level similarities created the need for the
development of a framework that will help us understand their possible connections.

Also recently, inverse boundary value problems were studied based on methods originat-
ing from the so-called theory of reduced order models. Reduced order model techniques were
originally developed for solving numerically boundary value problems (as alternative to con-
ventional finite elements) [46]. Within the context of inverse problems, the use of reduced order
models was initially introduced in the inverse medium/coefficient problem for diffusion type
PDEs or time-domain wave problems [8, 10]. In short, using reduced order models one can
approximate the state of a PDE and subsequently solve the inverse problem using linear steps,
in the same spirit as in the GLM method.

Over the previous years there have been great advances in both traditional inverse scattering
techniques based on the GLM approach and on the ROM based inversion methods. Between
the sixties and the eighties there have been great developments in the area of classical inverse
scattering theory based on the GLM point of view. First of all, worth noting are the classic
books [28, 17] and the paper [21] that develop both forward inverse scattering theory for the 1D
Schrödinger equation. In the context of solving the inverse medium problem using the classic
GLM approach, there were the innovative works by Ware and Aki [66] and Burrdige et al. [15].
In these papers one can find elaborate discussion on how and why one can solve the inverse
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scattering problem for the acoustic wave equation using the GLM integral equation. The key
feature that allows the use of the GLM method for the Helmholtz equation is the equivalence
between the 1D Helmholtz/acoustic and 1D Schrödinger equation through a coordinate trans-
form. There have been notable attempts to extend this inversion approach to higher dimensions
under some assumptions on the acoustic parameters. Though, for the general case it is still not
known how the acoustic/Helmholtz equation can be transformed to the Schrödinger equation.

Now, regarding the ROM based inversion approach, there have been great advances and
developments the past recent years. First of all, as it was mentioned above, reduced basis
approximations were initially used in numerical analysis of PDEs, since, compared to conven-
tional finite elements, they are computationally cheap. In the context of inverse problems, the
ROM approach has been used primarily in combination with the so-called Lancszos method to
obtain a linearized problem. The main idea in the ROM inversion method, is that one can use
the Lanczos algorithm to orthogonalize the reduced order basis consisting of exact solutions
corresponding to different frequencies. Interestingly, the new set of orthogonalized functions
are localized compared to the original basis. Moreover, the localized basis functions seem to
depend weakly on the coefficients of the PDE, therefore, one can approximate them using the
set consisting of orthogonalized solutions corresponding to a background coefficient. This ap-
proach seems to produce better results than the conventional Born approximation. In high level,
both the Born and the ROM inversion methods use a background model to estimate solutions
of PDEs. Especially in time domain wave propagation and in diffusion, there are obvious im-
provements in the results using the ROM inversion method compared to classical approaches
such as the Born inversion, see e.g. [26]. All of the above ideas on the ROM inversion in time
domain wave propagation and in diffusion are elaborated in the following innovative works,
[26, 8, 11, 27, 8]. All of these great developments and observations motivated us to apply these
ideas of the ROM inversion in the frequency domain for a scattering framework.

1.2 Indirect Methods

The standard way of solving inverse scattering problems (since the early 2000’s) is surprisingly
an indirect method. It is the so-called full waveform inversion (FWI) that has been proposed in
1984 [58]. In short, using FWI, the inverse scattering problem is solved by formulating a PDE-
constrained optimization problem. In particular, the unknown coefficient and the corresponding
solution of the PDE are jointly recovered by matching observed data to modelled data. The
full waveform inversion has been the standard approach for imaging purposes due to its many
advantages. Apart from being a straightforward method to implement, the FWI method offers
great detail in the solution of the inverse problem. Since the PDE-constrained problem is solved
iteratively, one has the option to increase even more the detail in the reconstruction of the
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minimizer through spatial grid refinement and strategic increases in the use of high frequency
data in each iteration. Also, the FWI approach can be useful in cases where there are more than
one PDE coefficients that need to be estimated. Moreover, the FWI method is a robust method
when it comes to handling noise in the data. However, there is the big shortcoming of convexity
due to the highly nonlinear coefficient to solution map. This makes the FWI method sensitive
when it comes to choosing a coefficient as the initial iterate. For that reason, the FWI method is
notorious for getting stuck in local minimizers. Also, due to the iterative approaches for solving
the PDE-constrained problem that require multiple solutions of large linear systems, there is
an increased need for computational power. Great sources for studying the FWI method are
the classic papers [58, 64]. Also, for an introduction to optimal control for PDEs, the standard
sources are [44, 35, 61].

1.3 Outline of the Thesis

So far, we have seen and discussed the main challenges one faces in the study of inverse prob-
lems. As we discussed above, the majority of the issues in the study of inverse problems have
roots in the nonlinearity and also the ill-posedness of the coefficient to state map. For that rea-
son, the contributions made in this thesis are mostly in the area of direct inversion methods, and
in particular in the GLM inversion and in the ROM based inversion. The contributions will be
highlighted in the next few following paragraphs describing the outline of the thesis.

The following two chapters (2-3) deal with developments on the classical Gelfand-Levitan-
Marchenko inversion method in one spatial dimension. In particular, new results regarding
variational Total Least Squares regularization and extension of the classical GLM equation to
the Helmholtz scattering problem are presented. In chapters (4-5) we present the extension
of the conventional ROM inversion method to a frequency domain scattering framework. We
conclude this dissertation with an outlook and conclusions chapter.

In chapter 2 we study the inverse scattering problem for a Schrödinger operator related to a
static wave operator with variable velocity, using the GLM integral equation. Assuming noise
in the data, we derive a stability estimate for the error of the solution of the GLM integral
equation by showing the invertibility of the GLM operator between suitable function spaces. To
regularise the problem, we formulate a variational total least squares problem, and we show that,
under certain regularity assumptions, the optimization problem admits minimizers. Finally, we
compute numerically the regularised solution of the GLM equation using the total least squares
method in a discrete sense.

In chapter 3 we study an inverse scattering problem for the Helmholtz equation on the
whole line and we obtain a GLM type equation for the Jost solution that corresponds to the
1D Helmholtz differential operator. Using the asymptotic behaviour of the Jost solutions with
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respect to the wave-number we derived a generalized Povzner-Levitan representation in the
space of tempered distributions. We finally derive a generalized Gelfand-Levitan-Marchenko
equation by applying the Fourier transform on the scattering relation that describes the solutions
of the Helmholtz scattering problem.

In chapter 4, we extend the conventional ROM-based approach for inverse scattering with
Neumann boundary conditions to the 1D Schrödinger equation with impedance (Robin) bound-
ary conditions. We also propose a novel data-assimilation (DA) inversion method based on the
ROM approach, thereby avoiding the need for a Lanczos-orthogonalization (LO). Furthermore,
we present a detailed numerical study and comparison of the accuracy and stability of the DA
and LO methods.

In chapter 5 we study a reduced order model (ROM) based waveform inversion method
applied to a Helmholtz problem with impedance boundary conditions and variable refractive
index. We first obtain relations that allow the reconstruction of the Galerkin projection of the
continuous problem onto the space spanned by solutions of the Helmholtz equation. We also
introduce and study a nonlinear optimization method based on the ROM aimed to estimate the
refractive index from reflection and transmission data. Finally, we compare numerically our
method to the conventional full waveform inversion method.

In the last chapter of the thesis we give the conclusions and outlook of the thesis.
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Chapter 2

A Regularised Total Least Squares
Approach for 1D Inverse Scattering

Abstract: We study the inverse scattering problem for a Schrödinger operator related to a static
wave operator with variable velocity, using the GLM (Gelfand-Levitan-Marchenko) integral
equation. We assume to have noisy scattering data, and we derive a stability estimate for the
error of the solution of the GLM integral equation by showing the invertibility of the GLM op-
erator between suitable function spaces. To regularise the problem, we formulate a variational
total least squares problem, and we show that, under certain regularity assumptions, the opti-
mization problem admits minimizers. Finally, we compute numerically the regularised solution
of the GLM equation using the total least squares method in a discrete sense. This chapter is
based on our paper [60].

13
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2.1 Introduction
In many scientific, medical and industrial problems, one has to retrieve unknown coefficients of
a governing differential equation (PDE) from (partial) measurements of its solution. This way,
properties of materials can be studied in a medium that we do not have direct physical access
to. In geophysics, for example, a well-known problem is estimating the elastic parameters
of the subsurface from surface measurements. The governing PDE is a wave equation, and
the measurements consist of a trace of its solution on the boundary of the domain. See, for
example, [5] for an overview.

In particular, we focus on the inverse problem for the 1D static wave/Helmholtz equation

− d
dy

{
c2(y)

d
dy

v(k,y)
}
= k2v(k,y), y ∈ R, (2.1)

with v = vi + vs and (asymptotic) boundary conditions

lim
y→±∞

{dvs(k,y)
dx

∓ ikvs(k,y)
}
= 0 (2.2)

We let vi(k,y) = e−ıky, which corresponds to an incoming plane wave from the right (+∞).
The measurements at y = 0 are given by

K(t) =
∫
R

vs(k,0)e2ıktdk,

for t ∈ [0,T ]. The goal is now to retrieve c from these measurements.
Various methods for solving the inverse coefficient problem for the wave equation have

been developed. A well-known method is full waveform inversion, which poses the inverse
problem as a PDE-constrained optimization problem [58, 64]. Other variational formulations
for the inverse problem have been proposed as well; see, for example, [56, 57]. We refer to
such methods as indirect, as they are based on an implicit non-linear relation between data
and coefficients that need to be solved iteratively. On the other hand, the inverse problem can
be solved using a direct method. Here, an explicit formula leads to the exact solution of the
inverse problem (for noiseless data). A classical direct method is given by the Gelfand-Levitan-
Marchenko (GLM) integral equation [18, 66, 15]. This method has its roots in inverse scattering
theory, and has recently attracted renewed attention [2, 45, 13, 53]. In [14], for example, a
GLM-like approach for wavefield redatuming was proposed. Here, boundary measurements are
used to estimate the wavefield in the entire domain. Subsequently, such a wavefield can be used
to estimate medium parameters by solving the Lippmann-Schwinger integral equation [23].

One advantage of the indirect (variational) methods over the direct ones is that they can
handle better situations where there is noise in the data. In direct methods, noise in the data
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likely gets amplified. To counter such instabilities, one typically adds regularisation. In par-
ticular, the GLM approach with noisy data requires a total least squares (TLS) approach, and
was studied numerically by [55]. Other regularised approaches for similar integral equations in
seismic imaging are discussed in [62].

In this chapter, we revisit the classical GLM approach for the 1D inverse medium problem
and consider in particular the infinite dimensional case with noisy measurements. To regularise
the problem, we formulate a regularised (TLS) approach for it. To solve the resulting variational
problem, we use an alternating iterative method [7]. Some numerical examples complete the
chapter.

Our main contributions are as follows:

• We extend the stability estimates that can be found in [16] to the classical GLM inte-
gral equation.

• We show that the variational TLS formulation of the GLM method admits minimizers.

This chapter is organised as follows. In Section 2.2, we state the forward scattering problem
and we review some classical results from scattering theory. We also review basic properties of
the GLM integral operator. In Section 2.3, we include our new findings, namely the stability
estimate for the GLM inversion assuming having access to noisy scattering data. We then
continue studying the variational total least squares problem of reconstructing the solution of
the inverse problem from noisy scattering data, and we show the well-posedness of it. We also
discuss its analytical limitations. In Section 2.4 we implement numerically the proposed total
least squares regularisation method. In Section 2.5 we show a number of numerical examples
and conclude the chapter with a discussion section.

2.2 Preliminaries

This section summarises mostly known and well-established results in 1D scattering theory.
In Section 2.2.1, we use the travel time coordinate transform to derive the equivalence of the
static wave equation with variable velocity to the Schrödinger equation and we formulate the
forward scattering problem. In Section 2.2.2, we repeat the classical procedure of using the
Jost solutions to construct the solution of the forward scattering problem. In Section 2.2.3, we
briefly discuss the derivation of the GLM integral equation and we review some basic properties
of the GLM integral operator.
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2.2.1 Formulation of the Forward Problem
It has been well-established (see, for example, [66, 15]) that the inverse problem for the 1D
static wave/ Helmholtz equation may equivalently be stated in terms of the 1D Schrödinger
equation {

− d2

dx2 +q(x)
}

u(k,x) = k2u(k,x), x ∈ R, (2.3)

with boundary conditions

lim
x→+∞

{dus(k,x)
dx

− ıkus(k,x)
}
= 0, (2.4)

lim
x→−∞

{dus(k,x)
dx

+ ıkus(k,x)
}
= 0, (2.5)

where

u(k, ·) = ui(k, ·)+us(k, ·) (2.6)

with ui(k,x) = e−ıkx, x ∈ R. The quantities are related via

u(k,x) = η(x)v(k,y(x)), x ∈ R, (2.7)

q(x) =
1

η(x)
d2η(x)

dx2 ,x ∈ R. (2.8)

where

η(x) = {c(y(x))}1/2, (2.9)

and

y(x) =
∫ x

0
η

2(r)dr, x ∈ R. (2.10)

We assume that the velocity is c > 0 is bounded and sufficiently smooth to apply the coor-
dinate transform. We also assume that c′ is bounded and has a compact support and that c′′ is a
bounded function. Therefore, q is bounded and compactly supported since η ′′ is bounded and
compactly supported. We refer to [60] for more details on this transformation. Furthermore,
we note that we seek for an element of H2

loc(R) as the solution of the differential equation since
the scattering potential can be discontinuous in general, and thus, we cannot necessarily obtain
a solution of C2-regularity.

A key result that we will need later on is the absence of bound states.
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Theorem 2.2.1. Let the Schrödinger operator

S =− d2

dx2 +q : H2(R)→ L2(R), (2.11)

where q is given by relation (2.8). Then the discrete spectrum of S is empty.

For the proof of the result of the absence of bound states for this particular Schrödinger
operator see [66, 60].

2.2.2 Classical Results from Scattering Theory
It is well known that the Schrödinger differential equation can be reduced to the following
Schrödinger integral equations at ±∞.

f+(k,x) = eıkx −
∫

∞

x

sin(k(x− y))
k

q(y) f+(k,y)dy,x ∈ R,

and

f−(k,x) = e−ıkx +
∫ x

−∞

sin(k(x− y))
k

q(y) f−(k,y)dy,x ∈ R.

Such Volterra-type integral equations can be derived using the variation of constants and we
refer to [39] for a discussion about the existence and uniqueness of solutions of these integral
equations. The functions f±(±k, ·) are called the Jost solutions, and the solution of the forward
scattering problem can be decomposed as a sum of these functions as

u(k,x) = T (k) f−(k,x) = f+(−k,x)+R(k) f+(k,x), x ∈ R, (2.12)

where the functions T,R are called the transmission and reflection coefficients respectively. The
transmission and reflection coefficients, as functions of the wavenumber k, satisfy the following
relations

T (k) = 1+
1

2ık

∫
R

u(k,y)q(y)eıkydy,

R(k) =
1

2ık

∫
R

u(k,y)q(y)e−ıkydy, (2.13)

for k ∈ R\{0} and the conservation of energy

|T (k)|2 + |R(k)|2 = 1, k ∈ R\{0}. (2.14)
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The scattering theory for the Schrödinger equation is a classical mathematical subject that
dates back to the 1960s. We refer, for example, to [24, 39, 52] and the references therein for
introduction and extensive analysis of the quantum scattering problem.

2.2.3 The Inverse Scattering Problem and the Gelfand–Levitan–Marchenko
Inversion Method

The inverse scattering problem is now to retrieve the scattering potential, q, from the reflection
coefficient R. The GLM integral equation is the key for solving this inverse scattering problem.
In this section, we review the classical inverse scattering problem of the determination of the
scattering potential from scattering data, using the GLM integral equation. In Section 2.2.3, we
study the integral operator defined by the GLM equation in order to derive properties that will
help us to construct an inequality for the error of the solution of the GLM equation as we show
in Section 2.3.1.

Derivation of the GLM Equation

The key ingredient for deriving the GLM integral equation is the scattering identity (2.12). For
fixed x, we get that CIm>0 ∋ k 7→ f+(k,x)e−ikx−1 is an element of the Hardy class H +

2 . Using
the Paley–Wiener theorem, we obtain that f+(·,x) satisfies the following relation

e−ıkx f+(k,x) = 1+
∫

∞

0
B(x, t)e2ıktdt, ∀k ∈ R\{0}, (2.15)

where B(x, ·) ∈ L2(0,∞) satisfies

−dB(x,0)
dx

= q(x). (2.16)

The calculation of the Fourier transform of relation (2.12) gives the classical GLM integral
equation. For more details on the application of the Paley-Wiener theorem to the Jost function
f+(·, ·), we refer to [39]. Below, we give the GLM integral equation. For a detailed proof, we
refer again to [39], which gives a very detailed exposition of the quantum scattering problem on
the line using analytical methods.

Theorem 2.2.2. Let x ∈ R. Then the function B(x, ·) satisfies the GLM integral equation

K(x+ t)+
∫

∞

0
B(x,z)K(x+ t + z)dz+B(x, t) = 0, a.e. for t ∈ [0,∞), (2.17)

where the scattering data K = Kc +Kd are given by
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Kc(t) =
1
π

∫
R

R(k)e2ıktdk, t ∈ [0,∞), (2.18)

Kd(t) = 2
N

∑
n=1

ρne−2pnt , t ∈ [0,∞), (2.19)

where (−ρn)
N
n=1 are the eigenvalues of the Schrödinger operator S = − d2

dx2 + q and (−pn =

− 1
∥ fn∥L2(R)

)N
n=1, ( fn)

N
n=1 are the eigenfunctions corresponding to the eigenvalues.

Analysing the GLM Operator

In this subsection, we study the GLM integral operator and we review some of its properties.
In particular, we use these properties in Section 2.3.1 for deriving an upper bound for the error
of the noisy inverse problem. Since we assume that the scattering potential q is compactly
supported, we obtain that for every fixed x ∈ R, the solution of the GLM equation B(x, ·) is
compactly supported. In particular, this is justified using the following inequality,

|B(x, t)| ≤
∫

∞

x+t
|q(z)|dzexp

(∫
∞

x
(z− x)|q(z)|dz

)
, (2.20)

for x ∈ R and t > 0, see [39]. Consequently, the domain of integration in the GLM integral
equation can be reduced to an integration over a finite interval. For a fixed potential q, we
assume that the interval of integration is (0,Tx), where Tx depends on the fixed value of x∈R. In
addition, since we are interested in reconstructing B(·, ·) for the values of x where the scattering
potential is supported, it is reasonable to consider the following. Since the set {Tx : x∈ supp(q)}
is bounded from above, we denote with T its supremum. We assume without loss of generality
that (0,T )⊃supp(q). We define

Y = { f ∈ L2(R) : supp( f )⊂ (0,T )}. (2.21)

We also define the set B(Y ) = {L : Y → Y : bounded and linear}. Additionally, for a
fixed x ∈ (0,T ) and f ∈ Y we define

{A(K) f}(x, t) :=
∫ T

0
χ(0,T )(t)K(x+ t + z) f (z)dz, t ∈ R. (2.22)

Since we fix K ∈ L2(R), we write for simplicity

{A(K) f}(x, ·) = Ax f . (2.23)

With χω(·), we denote the characteristic function which is 1 in ω and 0 in R\ω . Since the
reflection coefficient R ∈ L2(R), thus K ∈ L2(R), see [39], we find the following.
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Lemma 2.2.1. For fixed x, the operator

Ax : Y → Y (2.24)

is compact and self-adjoint.

Lemma 2.2.2. The numbers λ =±1 are not eigenvalues of Ax.

Considering the previous lemmas, the following result follows.

Proposition 2.2.1. The operator I +Ax ∈ B(Y ) is invertible and its inverse is given by the
Neumann series expansion in B(Y ).

2.3 Main Results
So far, we have summarised mainly known results for the scattering problem of our study. In
the following subsection, we provide the reader with a new result regarding the stability of
the reconstruction of the GLM kernel from noisy scattering data. In Section 2.3.2, we show
the existence of minimizers for the variational total least squares regularisation of the GLM
inversion.

2.3.1 Stability Estimates
Assuming now that there is an error ε ∈ L2(R) in the measurements of the scattering data K
(due to noise, measuring errors, etc.); we are then dealing with the following problem.

Given K⋆ = K + ε ∈ L2(R), find B⋆
x ∈ L2(0,T ) : (2.25)

B⋆
x(t)+

∫ T

0
χ(0,T )(t)K

⋆(x+ t + z)B⋆
x(z)dz+K⋆(x+ t) = 0,a.e. for t in (0,T ), (2.26)

where we let Bx(·) = B(x, ·) for ease of notation. We then want to bound ∥B⋆
x −Bx∥L2(R) in

terms of ∥ε∥L2(R). A similar upper bound for the error for a similar GLM equation is given
in [16], but not in L2(R). In addition, we refer to [1] for a discussion on a stability estimate of
the Marchenko inversion where the bounds are on the scattering potential. In the application
of recovering the scattering potential from scattering data, a pointwise estimate for the error is
sufficient in view of relation (2.16). We denote

∆Bx = B⋆
x −Bx. (2.27)

and
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εx(t) = K⋆(x+ t)−K(x+ t), a.e for t ∈ R. (2.28)

Assuming further that the error ε is real valued, we obtain, as before, that A⋆
x is a compact

and self-adjoint operator. We then find the following result.

Lemma 2.3.1. Let the previous assumptions be true. The following inequality holds,

∥A⋆
x −Ax∥B(Y ) ≤

√
T∥ε∥L2(R). (2.29)

Proof. Let f ∈ Y . We obtain

|[(A⋆
x −Ax) f ](t)|=

∣∣∣∣∫ T

0
χ[0,T ](z)

{
K⋆(x+ z+ t)−K(x+ z+ t)

}
f (z)dz

∣∣∣∣≤ (2.30)

∥εx+t∥L2(0,T )∥ f∥L2(0,T ) ≤ ∥ε∥L2(R)∥ f∥Y a.e. for t ∈ (0,T )⇒ (2.31)

the operator (A⋆
x −Ax) is well defined and

∥(A⋆
x −Ax) f∥L2(0,T ) ≤

√
T∥ε∥L2(R)∥ f∥Y , (2.32)

∀ f ∈ Y .

With this, we are ready to present the error bound.

Theorem 2.3.1. Under the previous assumptions, we obtain the following:

∥∆Bx∥Y ≤
∥ε∥L2(R)(1+

√
T∥B⋆

x∥Y )

1−∥Ax∥B(Y )
(2.33)

Proof. We subtract (2.26)–(2.17) to obtain

(I +Ax +{A⋆
x −Ax})B⋆

x − (I +Ax)Bx =−εx ⇐⇒ (2.34)

(I +Ax)∆Bx =−(A⋆
x −Ax)B⋆

x − εx ⇒ (2.35)

since 1 is not an eigenvalue of Ax

∆Bx = (I +Ax)
−1{−εx − (A⋆

x −Ax)B⋆
x}⇒ (2.36)

∥∆Bx∥Y ≤ ∥(I +Ax)
−1∥B(Y ){∥εx∥Y +∥A⋆

x −Ax∥Y ∥B⋆
x∥Y } ≤ (2.37)

∥ε∥L2(R)(1+
√

T∥B⋆
x∥Y )

1−∥Ax∥B(Y )
. (2.38)
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The previous stability estimate gives an upper bound for the error of the solution of the GLM
equation, which is proportional to the L2- norm of the error in the measurements, ε . Though,
we cannot rule out the case where the operator norm of Ax is almost 1. In general, the operator
norm of Ax is determined by K. However, what kind of potential produces scattering data that
make the operator norm be closer to 1 is still something to investigate.

2.3.2 Variational Regularisation

In this section, we define and show well-posedness for the variational total least squares regu-
larisation problem of determining the kernel B from inexact scattering data. Similar work on
this subject was done in the finite dimensional setting by [55], where they considered discrete
scattering data and they followed a data analytic way for studying the total least squares prob-
lem for regularizing the GLM equation. In our approach, we fill the theoretical gap of showing
well-posedness of the total least squares regularisation method of the GLM inversion in the
infinite dimensional setting.

Now, for a set Ω ⊂ RN , N = 1,2 and a generic function space Ψ(Ω) = { f : Ω → C}, we
define the extension operator

E0 : Ψ(Ω)→ Ψ(RN), (2.39)

as the map that extends a function to 0 if the argument is not included in Ω. (This is a bounded
operator if, for example, Ψ(Ω) = L2(0,T ).) Then, we consider the usual Lebesgue space

L2((0,T )2) = { f : (0,T )→ L2(0,T ) :
∫ T

0
∥ f (t, ·)∥2

L2(0,T )dt < ∞}.

The inner product is given by

⟨ f ,g⟩L2((0,T )2) =
∫ T

0
⟨ f (t),g(t)⟩L2(0,T )dt =

∫ T

0

∫ T

0
f (x, t)g(x, t)dxdt.

We also define

Θ : L2((0,T )2)→ L2((0,T ),L2(R)) (2.40)

with

Θ f = x 7→ E0 f (x, ·), for almost all x ∈ (0,T ). (2.41)

Lemma 2.3.2. Θ is a bounded linear operator.
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Proof. The linearity is easy to show. Now, for the boundedness, let f ∈ L2((0,T )2)

∥ f∥2
L2((0,T )2) =

∫ T

0

∫ T

0
| f (x, t)|2dtdx =

∫ T

0

∫
R
|E0 f (x, t)|2dtdx = ∥Θ f∥2

L2((0,T ),L2(R)).

We define G : L2((0,T )2)×L2(R)→ L2((0,T ),L2(R)) as

G(B,K) = {I +A(K)}ΘB =

x 7→
{

t 7→ ΘB(x, t)+
∫ T

0
χ(0,T )(t)ΘB(x,z)K(x+ t + z)dz

}
(2.42)

Remark 2.3.1. We need Θ in order to have a well-defined convolution type relation in G. In
addition, compare this with the setting of the previous section. By using Θ, we avoid the use of
the space Y altogether.

Proposition 2.3.1. G : L2((0,T )2)×L2(R)→ L2((0,T ),L2(R)) is well defined.

Proof. Let (B,K) ∈ L2((0,T )2)× L2(R). We want to show that G(B,K) ∈ L2((0,T ),L2(R)).
For almost all x ∈ (0,T ), t ∈ R, we obtain that

|A(K)ΘB(x, t)|=
∣∣∣∫ T

0
χ(0,T )(t)ΘB(x,z)K(x+ t + z)dz

∣∣∣≤
∥E0B(x, ·)∥L2(R)∥K∥L2(R) = ∥B(x, ·)∥L2(0,T )∥K∥L2(R) ⇒∫ T

0

{∫ T

0
χ(0,T )(t)ΘB(x,z)K(x+ t + z)dz

}2
dt ≤ T∥B(x, ·)∥2

L2(0,T )∥K∥2
L2(R).

Therefore,

∥∥∥x 7→
{

t 7→
∫ T

0
χ(0,T )(t)ΘB(x,z)K(x+ t + z)dz

}∥∥∥2

L2((0,T ),L2(R))
≤ T∥K∥2

L2(R)∥B∥2
L2((0,T )2).

Finally,

∥G(B,K)∥L2((0,T ),L2(R)) ≤
√

T∥K∥L2(R)∥B∥L2((0,T )2)+∥B∥L2((0,T )2).
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Now, for a function g ∈ L2(R), we define for almost all x ∈ (0,T )

S(g) : x 7→ g(x+ ·). (2.43)

Lemma 2.3.3. S : L2(R)→ L2((0,T ),L2(R)) is linear and bounded.

Proof. Let g,g1,g2 ∈ L2(R).

S(ag)(x, t) = ag(x+ t) = aSg(x, t), a.e. in (0,T )×R.

In addition,

S(g1 +g2)(x, t) = (g1 +g2)(x+ t) = Sg1(x, t)+Sg1(x, t), a.e. in (0,T )×R.

Now, we observe that

∥Sg∥2
L2((0,T ),L2(R)) =

∫ T

0
∥g(x+ ·)∥2

L2(R)dx = (2.44)

∫ T

0
∥g∥2

L2(R)dx = T∥g∥2
L2(R) ⇒∥Sg∥L2((0,t),L2(R)) =

√
T∥g∥L2(R). (2.45)

Let K ∈ L2(R) given. Let also α,β > 0. We define the total least squares functional φK :
H1((0,T )2)×H1

0 (0,3T )→ [0,∞] as
φK(B,e) :=

∥G(B,K +E0e)+S(K +E0e)∥2
L2((0,T ),L2(R))+α∥B∥2

L2((0,T )2)+β∥e∥2
L2(0,3T ). (2.46)

We assume that we have access to inexact scattering data K ∈ L2(R). We will define the
solution of the inverse problem of finding the kernel B (in a region where the potential is sup-
ported) from K.

Definition 2.3.1. Let K ∈ L2(R) inexact scattering data. Let α,β > 0, and let that there exist
functions B̂ ∈ H1((0,T )2) and ê ∈ H1

0 (0,3T ) such that

(B̂, ê) ∈ argmin
B∈U ,e∈V

φK(B,e), (2.47)

with U ⊂ H1((0,T )2), V ⊂ H1
0 (0,3T ), both bounded convex and closed in the respective

topologies. Then, we call B̂ a regularised total least squares solution of the GLM integral
equation.
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Remark 2.3.2. Ideally, we would like to find a perturbation e that will almost cancel out the
noise ε which is included in K.

We state some auxiliary results needed for showing well-posedness for the variational in-
verse problem (2.47).

Lemma 2.3.4. Let K ∈ L2(R) and let the strongly convergent sequences

Bn → B in L2((0,T )2) (2.48)

and

en → e in L2(0,3T ). (2.49)

Then

A(K +E0en)ΘBn → A(K +E0e)ΘB in L2((0,T ),L2(R)). (2.50)

Proof. For almost all x ∈ (0,T ), t ∈ R, we take∫ T

0
χ(0,T )(t)ΘBn(x,z)(K +E0en)(x+ t + z)dz−∫ T

0
χ(0,T )(t)ΘB(x,z)(K +E0e)(x+ t + z)dz =∫ T

0
χ(0,T )(t)Θ{Bn(x,z)−B(x,z)}(K +E0en)(x+ t + z)dz+ (2.51)∫ T

0
χ(0,T )(t)ΘB(x,z)(K +E0en −K −E0e)(x+ t + z)dz = (2.52)

Using the triangular inequality and working similarly to proposition 2.3.1, we obtain

∥A(K +E0en)ΘBn −A(K +E0e)ΘB∥L2((0,T ),L2(R)) ≤ (2.53)

√
T∥K +E0en∥L2(R)∥Bn −B∥L2((0,T )2)+

√
T∥E0en −E0e∥L2(R)∥B∥L2((0,T )2) ≤

√
T (∥K∥L2(R)+∥en∥L2(0,3T ))∥Bn −B∥L2((0,T )2)+

√
T∥en − e∥L2(0,3T )∥B∥L2((0,T )2). (2.54)

As n → ∞, ∥en∥L2(0,3T ) is bounded, so we conclude the result.

Now, using the above auxiliary results, we find the following well-posedness result.

Theorem 2.3.2. The optimization problem (2.47) admits minimizers.
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Proof. Since

0 ≤ φK(B,e),∀(B,e) ∈ U ×V , (2.55)

we can find a minimizing sequence (Bn,en)⊂ U ×V with

lim
n

φK(Bn,en) = inf
(e,B)∈U ×V

φK(B,e) = M . (2.56)

Since U ,V , are bounded in their respective spaces these two sequences are bounded. By re-
flexivity, see ([12, pages 67-68]), there exist weak limits B,e such that (passing to subsequences
using the same indexing)

Bn ⇀ B in σ(H1((0,T )2),H1((0,T )2)′) (2.57)

and

en ⇀ e in σ(H1
0 (0,3T ),H−1(0,3T )). (2.58)

Since U ,V are strongly closed and convex subsets of reflexive spaces, they are also weakly
closed; see ([12, page 60]). Therefore,

(B,e) ∈ U ×V . (2.59)

Now, by the following compact embeddings,

H1
0 (0,3T )

c
↪→ L2(0,3T )

see [12, theorem 8.8] and

H1((0,T )2)
c
↪→ L2((0,T )2)

we can conclude the strong convergence

Bn → B in L2((0,T )2) (2.60)

and

en → e in L2(0,3T ). (2.61)

Using the above lemmas, we obtain that

M = lim
n→∞

φK(Bn,en) = (2.62)
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(continuity of the square function and the norm function)

∥ lim
n

G(Bn,K +E0en)+S(K)+ lim
n

S(E0en)∥2
L2((0,T ),L2(R))+

α∥ lim
n

Bn∥2
L2((0,T )2)+β∥ lim

n
en∥2

L2(0,3T ) =

∥ lim
n

Bn + lim
n

A(K +E0en)ΘBn +S(K)+ lim
n

S(E0en)∥2
L2((0,T ),L2(R)+

α∥ lim
n

Bn∥2
L2((0,T )2)+β∥ lim

n
en∥2

L2(0,3T ) =

∥G(B,K+E0e)+S(K)+S(E0e)∥2
L2((0,T ),L2(R))+α∥B∥2

L2((0,T )2)+β∥e∥2
L2(0,3T )⇒ φK(B,e)=M

Remark 2.3.3. The set (0,T )2 ⊂R2 is a bounded Lipschitz domain. By the Rellich-Kondrachov
theorem, we conclude the following compact embedding

H1((0,T )2)
c
↪→ L2((0,T )2),

see [29].

Remark 2.3.4. Regarding the choice of H = H1((0,T )2) and the choice of H1
0 (0,3T ) as the

space of the perturbations. We choose in particular these spaces for the space of the GLM
kernels (in the total least squares sense) and the perturbations since we have the above com-
pact embedding properties. Otherwise (working, for example, with the L2((0,T 2)) and the
L2(0,3T )), we cannot pass to some further strongly convergent subsequences in the proof of
existence of minimizers of our variational inverse problem and conclude the existence result.
Similar work on this subject was done in [6]. However, the assumptions made in this paper are
too strong to require in our application. In particular, the authors considered the existence of
minimizers issue for a general class of total least squares problems. Assuming that the inverse
problem is described by a bilinear operator with the property that weakly convergent sequences
are mapped to strongly convergent sequences, they show existence. However, without work-
ing the way we did, the weak to strong continuity property of the forward operator is a very
strong assumption to claim, and in general it does not hold. To see that, it is sufficient to pick
a weakly convergent sequence of the form (Bn,0)n ⊂ L2((0,τ)2)×L2(R) and then observe that
(G(Bn,0))n is not necessarily norm convergent. Keep also in mind that G is not bilinear. In
addition, the convolution type relation between K and B should be carefully studied under the
convolution and the weak convergence.

To sum up our approach, we pick the spaces of interest so that we have a compact embedding
property. This way, we do not need to make any assumptions on G.
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Remark 2.3.5. Regarding the reasonability of the H1- regularity assumption for the GLM ker-
nels. Even though a GLM kernel naturally has an L2- regularity at least in the box of interest,
we know that it satisfies a Goursat-type hyperbolic PDE (see [39])

{∂x(∂x −∂t)−q(x)}B(x, t) = 0, x ∈ R, t > 0 (2.63)

B(x,0) =
∫

∞

x
q(z)dz, x ∈ R (2.64)

lim
x→∞

∥B(x,0)∥∞ = 0. (2.65)

So either we study the regularity of solutions of the above PDE, or we just view our proposed
existence of minimizers result as a relaxed version of the problem of seeking kernels with L2-
regularity (and perturbations).

Remark 2.3.6. Finally, another thing to keep in mind is that it is possible to obtain multiple
minimizers of the above optimization problem since the TLS functional, φK , is not convex.

2.4 Numerical Results

2.4.1 Numerical Implementation

In this section, we show the discrete form of the GLM equation and its numerical implementa-
tion. We also implement numerically the total least squares regularisation method of the GLM
equation, using noisy scattering data.

Discretisation of the GLM Equation

We discretise the quantities K and B on a regular grid of samples ti = i ·∆t. We then denote the
discrete scattering data by k ∈ Rn. The discrete GLM kernel is denoted by B ∈ R(m+1)×(m+1).
The discrete counterpart to GLM equation is then given by

bi j +∆t
m

∑
l=0

bilki+ j+l =−ki+ j, (2.66)

for i, j = 0,1, . . .m. We will assume that n = 3m to properly define these relations. The discrete
GLM equation can be more compactly expressed using the map G : R(m+1)×(m+1) ×Rn →
R(m+1)2

and S : Rn → R(m+1)2
:

G(B,k)+S(k) = 0. (2.67)
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For fixed k, this system of equations decouples in m independent systems of equations of
the form 

Im+1×m+1 +∆t


ki ki+1 · · · ki+m

ki+1 ki+2 · · · ki+m+1
... . . .

ki+m ki+m+1 · · · ki+2m


︸ ︷︷ ︸

Ai




bi0
bi1
...

bim

=−


ki

ki+1
...

ki+m

 ,

for i = 0, . . . ,m. For fixed B, the system of equations takes the following form

T0 0(m+1)×m

0(m+1)×1 T1 0(m+1)×(m−1)

. . .

0(m+1)×m Tm




k0
k1
...

k3m

=−



b00
...

b0m
b10

...
b1m

...
bm0

...
bmm



, (2.68)

with Ti ∈ R(m+1)×(2m+1) defined as

Ti =


1 0 . . .
0 1 0 . . .

. . .
. . . 0 1 0 . . .

+∆t


bi0 bi1 . . . bim
0 bi0 bi1 . . . bim

. . .
bi0 bi1 . . . bim

 .

Numerical Regularisation

Having discretised the GLM equation, we can now define the numerical regularisation strate-
gies. The Tikhonov-regularised problem (LS) reads

min
B

∥G(B,k)+S(k)∥2
2 +α∥LB∥2

F , (2.69)
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where L represents a finite-difference approximation of the second derivative. Due to the special
form of the equations for fixed k, this problem separates in m separate least-squares problems
for the columns of B. These problems can be readily solved using standard iterative methods,
such as LSQR.

The total least-squares (TLS) functional in the discrete setting is given by

φk(B,e) = ∥G(B,k+ e)+S(k+ e)∥2
2 +α∥LB∥2

F +β∥e∥2
2. (2.70)

To find a minimizer, we apply an alternating minimisation algorithm, as proposed by [7] we
repeat for k = 0,1, ...

B(k+1) = argmin
B

φk(B(k),e(k)) (2.71)

e(k+1) = argmin
e

φk(B(k+1),e(k)). (2.72)

As explained in the previous section, both steps involve a quadratic problem that can easily
be solved using an iterative method like LSQR. The convergence of this alternating approach is
guaranteed by the bi-convex nature of the functional φk [7].

Having solved either of the regularised problems for B and in view of relation (2.16), we
can compute the scattering potential from the reconstructed kernel by extracting the first column
from B and using a finite-difference approximation to compute the derivative.

Choice of Regularisation Parameters

Both regularised formulations (LS and TLS) include regularisation parameter(s) that need to
be estimated. In particular, for the TLS method, we need to estimate two parameters, α,β . In
practice, though we expect that β does not play a significant role, as the problem for e is overde-
termined, G(B,k+ e) =−S(k+ e) defines (m+1)2 equations in 3m+1 unknowns. Moreover,
the corresponding system matrix consists of an identity matrix plus a small perturbation (cf.
(2.68)), so the system is unlikely to be ill-posed. Thus, we pick a (small) reference value for
β = β̂ and focus on estimating the remaining parameter, α .

Ideally, we would pick α to minimize the reconstruction error, i.e.,

α̂ = argmin
α

∥B̂α −B∥2, (2.73)

where B is the unregularised solution corresponding to noiseless data, k, (i.e., G(B) =−S(k)),
and B̂α denotes the optimal solution of either the LS or the TLS method corresponding to noisy
data, k = k+ ε . For the sake of completeness, we mention below a number of commonly used
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methods for choosing regularisation parameters and how these could potentially be applied in
the problem of estimating α .

A posteriori parameter selection methods aim to achieve this by using only knowledge of
the data and the noise level. A well-known method in this class is the discrepancy principle.
The particular nature of our problem (involving a product of B and k) makes it difficult to apply
such rules, however, as they would require an estimate of the residual at the optimal solution.
To see why, note that the residual for (LS) is given by ∥G(B,ε) + S(ε)∥2. The discrepancy
principle then finds an α such that

∥G(B̂α ,k)+S(k)∥2 ≈ ∥G(B,ε)+S(ε)∥2, (2.74)

but this would require knowledge of the true kernel. For the total least squares approach, we
could use the estimated error êα and find α such that

∥êα∥2 ≈ ∥ε∥2. (2.75)

Heuristic methods such as the L-curve method could be applied. However, it is not clear how
well they would perform on problems of this nature, as even for classical ill-posed linear inverse
problems, such heuristic methods are not convergent [67]. Despite this theoretical shortcoming,
such methods are often applied in practice with success [33].

2.5 Numerical Examples
In this subsection, we present a couple of numerical examples comparing the regularised ap-
proaches (LS and TLS) outlined above. The least-squares (sub-) problems are solved using
LSQR. Unless stated otherwise, we use 10 iterations of the alternating method and 10 iterations
of LSQR for the sub problems. The scattering potential is obtained by numerically differentiat-
ing the reconstructed kernel, as in (2.16).

We find that the TLS method is not sensitive to the choice of β (as argued in the previous
section). We therefore use a fixed value of β = 1 · 10−16 for all experiments. The remaining
regularisation parameter α for each method (LS and TLS) is obtained via (2.73). Although
this requires knowledge of the noiseless data in order to compute B, it allows us to make a fair
best-case comparison between the methods.

The reconstruction quality of the methods is measured by the relative L2-error between the
reconstructed kernel and the reference solution B.

The code used to produce the examples is available on:
https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/
tag/publication.

https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/tag/publication
https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/tag/publication
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2.5.1 Example 1: The Plasma Wave-Equation with a Smooth Potential

In this first numerical experiment, we consider the case where the scattering data are generated
directly by the plasma wave equation. The measured scattering data and the scattering potential
are shown in Figure 2.1.
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Figure 2.1: Scattering potential and scattering data. The scattering potential has a relatively
smooth profile.

We apply the methods described in the previous subsections, and thus, we solve the GLM
integral equation to find the GLM kernel and then the scattering potential. Figure 2.2 shows
the solution of the GLM equation (matrix B) and the comparison between the true and the
recovered potential. For such a smooth potential, the generated scattering data lead to a good
reconstruction.
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Figure 2.2: Reconstruction using the unregularised GLM approach from noiseless data. Shown
are the kernel (left) and corresponding reconstructed scattering potential (right). The recovered
scattering potential matches well with the ground truth.

As we studied previously, the presence of noise in the scattering data is expected to affect
the reconstruction of both the GLM kernel and the potential. To test this, we add i.i.d. normally
distributed random noise to the data with mean zero and variance σ2. Reconstructions using
the unregularised, LS and TLS approach for σ = 1 ·10−3 are shown in Figure 2.3. The results
for various noise levels are summarised in Table 2.1. In all cases, the TLS approach is superior
and requires less regularisation (smaller value of α).
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Figure 2.3: Comparison of the unregularised (left), LS (middle) and TLS (right) approaches
on noisy data (σ = 1 ·10−3). The true potential corresponds to the blue curve.

Table 2.1: Table for comparing the relative errors of the regularisation methods for various noise
levels.

Unregularised LS TLS

σ Rel. Error α Rel. Error α Rel. Error

1 ·10−4 9.30 ·10−2 1.99 ·10−2 9.30 ·10−2 1.68 ·10−2 6.48 ·10−2

1 ·10−3 8.35 ·10−1 1.34 4.85 ·10−1 2.79 ·10−1 2.86 ·10−1

1 ·10−2 7.62 6.27 ·102 8.89 ·10−1 2.94 ·101 7.52 ·10−1

2.5.2 Example 2: Data from the Wave Equation
In this second example, we consider scattering data generated from the wave equation with
variable density,

ρvtt = {ρc2vy}y.

The coefficients of the wave equation, the corresponding scattering potential and the mea-
sured data are shown in Figure 2.4. This example is more challenging than the previous one,
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due to significant multiple scattering.
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Figure 2.4: Shown are the the elastic parameters ρ,c (left), the corresponding scattering poten-
tial (middle) and the resulting scattering data (right). The chosen elastic parameters result in
significant multiple scattering, seen on the right.

The results of the GLM method on noise-free data are shown in Figure 2.5. The band
limitation of our source and the singular behaviour of the potential affects the reconstruction of
q.
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Figure 2.5: Results for noise-free data. Shown are the reconstructed kernel (left) and the re-
constructed scattering potential (right). The band limitation of our source clearly affects the
approximation.

Reconstructions using the unregularised, LS and TLS approach for σ = 1 ·10−2 are shown
in Figure 2.6. The results for various noise levels are summarised in Table 2.2. In all cases, the
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TLS approach is superior.
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Figure 2.6: Comparison of the unregularised (left), LS (middle) and TLS (right) approaches
on noisy data (σ = 1 ·10−2). The true potential corresponds to the blue curve.

Table 2.2: Table for comparing the relative errors of the regularisation methods for various noise
levels.

Unregularised LS TLS

σ Rel. Error α Rel. Error α Rel. Error

1 ·10−3 3.81 ·10−2 6.56 ·10−3 3.91 ·10−2 9.52 ·10−3 3.26 ·10−2

1 ·10−2 3.87 ·10−1 3.91 ·10−1 3.27 ·10−1 1.01 ·10−1 1.76 ·10−1

1 ·10−1 3.59 ·100 1.00 ·102 8.05 ·10−1 1.68 ·101 7.03 ·10−1

2.6 Discussion and Conclusions
We revisited some classical results from inverse scattering to solve the 1D inverse coefficient
problem for the wave equation. In particular, we considered the GLM method with noisy data
and proposed a regularised total least squares formulation in the infinite dimensional setting.
We contributed an error bound for the unregularised GLM approach and have shown existence
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of minimizers for the variational formulation of the TLS approach. Numerical results illustrate
the approach, showing that the TLS approach gives superior results as compared to conventional
Tikhonov regularisation.

The results from inverse scattering, in particular a GLM-like approach has recently received
renewed attention in the geophysical literature. Noisy data is a significant source of error in
these methods, and various discrete regularisation schemes have been proposed to address this
issue. While these methods have been shown to work well in practice, careful analysis of the
infinite dimensional problem has not been done. We believe that it is important to study this
because it will yield new insight in the behaviour of practical approaches as they are pushed to
include higher frequency data (and hence finer discretisation). Ultimately, these insights may
lead to adaptive methods. Moreover, the 1D problem analysed here serves as a model problem
for many practical problems in 2D and 3D, and the insights may inspire new approaches there
as well.
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Chapter 3

A Distributional
Gelfand-Levitan-Marchenko Equation For
The Helmholtz Scattering Problem On
The Line

Abstract: We study an inverse scattering problem for the Helmholtz equation on the whole
line. The goal of this chapter is to obtain a Gelfand-Levitan-Marchenko type equation for
the Jost solution that corresponds to the 1D Helmholtz differential operator. We assume for
simplicity that the refraction index is of compact support. Using the asymptotic behaviour of
the Jost solutions with respect to the wave-number we derive a generalized Povzner-Levitan
representation in the space of tempered distributions. Then, we apply the Fourier transform
on the scattering relation that describes the solutions of the Helmholtz scattering problem and
we derive a generalized Gelfand-Levitan-Marchenko equation. Finally, we discuss possible
application of this new generalized GLM equation to the inverse medium problem. This chapter
is based on our paper [59]

39
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3.1 Introduction
The so-called inverse medium problem appears in many applications, where one aims to recon-
struct unknown coefficients of a (partial) differential equation from traces of its solution. This
way, one can study materials and internal structures of media that are not directly accessible. In
geophysics for example, a well-known inverse problem is the estimation of the medium param-
eters of a subsurface domain from seismic measurements, see for example [5]. Similar inverse
problems can be also found in ultrasound and ultrasonic non-destructive testing see for example
[34]. The governing equation in these applications is a variable coefficient wave equation, and
the measurements consist of boundary traces of the wavefield for a number of frequencies. A
variety of methods for solving the resulting inverse medium problem have been developed over
the previous decades. We roughly divide these methods into two classes. On the one end of
the spectrum one can find "modern" variational formulations (that are often solved iteratively),
such as full waveform inversion, see for example [3]. On the other end, one can find classical
inverse scattering methods, see for example [5, 19]. Recently, classical results from inverse
scattering have found renewed interest in the geophysical community and hybrid methods have
been proposed [23].

In this chapter we revisit one such classical method based on the Gelfand-Levitan-Marchenko
(GLM) equation. In particular we focus on the derivation of a GLM equation corresponding to
the scattering problem for the Helmholtz equation with form{

− d2

dx2 + k2n(x)
}

y(k,x) = k2y(k,x), x ∈ R, (3.1)

y(k, ·) = yi(k, ·)+ ys(k, ·), (3.2)

yi(k,x) = e−ıkx, x ∈ R and asymptotic boundary conditions

lim
x→±∞

{dys(k,x)
dx

∓ ıkys(k,x)
}
= 0. (3.3)

Originally, the GLM equation is a fundamental relation that can be used to solve the Schrödinger
inverse scattering problem on the line [39]. It relates scattering data (reflection measurements)
with the so-called Jost solutions of the Schrödinger operator (plane wave like, right or left prop-
agating solutions). It is also well known that the Helmholtz equation can be transformed to
the Schrödinger equation using the travel time coordinate transform. Therefore, by changing
the setting, it is sufficient to just focus on the study of the transformed system governed by the
Schrödiger equation see for example [60, 15, 66]. This equivalence allows us to use a wealth
of mathematical tools available from the Schrödinger scattering theory, including of course the
GLM equation.
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One advantage of this approach is that the path leading from the measurements (scattering
data) to the parameter of the differential operator involves linear steps (as opposed to full wave-
form inversion for example). Although this approach is known for a very long time, it is only
limited to the 1D case. In higher dimensional media it is impossible to transform the Helmholtz
equation to the Schrödinger equation. The only exception to this is when the medium is later-
ally stratified, see e.g. [18]. This creates the need of the development of a GLM framework that
avoids the use of a transformation to the Schrödinger setting. The first step towards developing
this new inversion method is given in the 1D case with this chapter.

The following basic observation is the starting point of our analysis. Let u+ be the Jost
solution of the Helmholtz equation (3.1). Contrary to the Schrödinger case, the function of the
wave number

k 7→ |e−ıkxu+(k,x)−1|

might not have a growing behaviour that allows the use of the classical Paley-Wiener theory,
but still grows in a controlled way as |k| grows. This allows us to use a distributional setting
which also permits the definition of the Fourier transform.

Our main contribution are:

• The extension of the so-called Povzner-Levitan representation to the Jost solutions of the
Helmholtz scattering problem

• The derivation of a generalised GLM equation for the Helmholtz problem in the space of
the tempered distributions.

This chapter is organized as follows. In section 3.2 we formulate the direct scattering problem
and we review basic properties of the solutions of the forward problem. Then follows section
3.3 that contains the main result of the chapter (and of our paper [59]) and breaks down its
proof in multiple lemmas. We continue with section 3.4 where we propose a practical way for
solving the inverse medium problem using the main result, and we conclude the chapter with a
discussion section.

3.2 Preliminaries
In this section we present some well-known results regarding the forward scattering problem
for the Helmholtz equation on the line. In subsection 3.2.1 we formulate the forward scattering
problem and we give the definition of the Jost solutions of the Helmholtz equation. In subsection
3.2.2 we recall some fundamental properties of the solutions of the forward scattering problem
and we define the reflection and the transmission coefficients.
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3.2.1 Forward Scattering Problem
We consider the forward scattering problem for the 1D Helmholtz operator on the real line
described by equations (3.1)-(3.3). We assume that the real valued coefficient, n, is sufficiently
smooth, having a compact support with form

supp(n) = (0,b), (3.4)

for some b > 0 and that 1− n > 0. Also, the incident wave field is a plane wave (incoming
from the right (+∞)), yi(k,x) = e−ıkx,x ∈ R. Working the same way as in [39] we reduce the
Helmholtz differential equation to the following Volterra integral equations.

Proposition 3.2.1. The solutions of the following integral equations

u(x) = eıkx −
∫

∞

x
k sin(k(x− t))n(t)u(t)dt (3.5)

u(x) = e−ıkx +
∫ x

−∞

k sin(k(x− t))n(t)u(t)dt. (3.6)

satisfy the Helmholtz differential equation (3.1). The solutions of these integral equations are
the Jost solutions of the Helmholtz equation. Also, the following asymptotic behaviour holds
true for the unique solution of (3.5), let u+(k, ·). For k ∈ R we get

|u+(k,x)− eıkx| ≤

c(k,n)
k2

1+ |k|(1+max{−x,0})
∫

∞

x
(1+ |t|)|n(t)|dt (3.7)

and

|∂xu+(k,x)− ıkeıkx| ≤

c(k,n)
k2

1+ |k|
∫

∞

x
(1+ |t|)|n(t)|dt.

We get similar asymptotic behaviour for the left-going Jost solution, u−, which solves equation
(3.6).
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We obtain the above result working the same way as in [39, Chapter 4] for the scattering
potential Q := k2n. Also, c(k,n) grows faster than an exponential function as a function of k.
Finally, we define the Fourier transform as

f̂ (t) = (F f )(t) =
1
π

∫
R

f (k)e2ıktdk, t ∈ R,

f (k) = (F−1 f̂ )(k) =
∫
R

f̂ (t)e−2ıktdt, k ∈ R,

for f ∈ S (R) (Schwartz functions).

3.2.2 Basic Properties of the Solutions of the Forward Problem
In this subsection we present essential properties of the Jost solutions and in turn of the solutions
of the forward problem. Again, the next result is classic and we refer to [39] for its proof.

Proposition 3.2.2. Let k ∈ R \ {0} and f ,g ∈ H2
loc(R) solutions to the Helmholtz differential

equation. Then the Wronskian of the two solutions W ( f ,g) is constant. In particular we get for
the Jost solutions

W (u+(k, ·),u+(−k, ·)) =−2ık

and

W (u−(k, ·),u−(−k, ·)) = 2ık.

Remark 3.2.1. Since the solution space for the Helmholtz differential equation is 2-dimensional,
we obtain that

u−(k,x) = a+k u+(k,x)+b+k u+(−k,x) (3.8)

and

u+(k,x) = a−k u−(k,x)+b−k u−(−k,x) (3.9)

for x ∈ R. This implies that

2ık =W (u−(k, ·),u−(−k, ·)) =

W (a+k u+(k, ·)+b+k u+(−k, ·),a+−ku+(−k, ·)+b+−ku+(k, ·))⇒

1 = |b+k |2 −|a+k |2. (3.10)
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Remark 3.2.2. For k ∈ R\{0} we define the reflection and the transmission coefficients as

T (k) =
1

b+k
(3.11)

and

R+(k) =
a+k
b+k

, (3.12)

respectively. The + superscript in the reflection coefficient denotes reflection caused by an in-
coming plane wave from the right. Similarly we can define R−, see figures 3.1 and 3.2 (assuming
k > 0 to make sense of "right" and "left").

Figure 3.1: yi = e−ik· enters from +∞ and creates reflection and transmission responses R+,T
respectively.

Figure 3.2: yi = eik· enters from −∞ and creates reflection and transmission responses R−,T
respectively.
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The transmission coefficient is the same regardless of right or left side of incidence. This is
known as transmission reciprocity, see [49]. Therefore, using (3.10) we obtain the conservation
of energy

|T (k)|2 + |R±(k)|2 = 1, k ∈ R\{0}. (3.13)

Now, similarly to the Schrödinger equation case, the solution of the forward problem, (3.1)-
(3.3), for k ∈ R\{0}, can be decomposed as

y(k,x) = T (k)u−(k,x) = u+(−k,x)+R+(k)u+(k,x), (3.14)

for x ∈ R. Finally, we get the following relations for k ∈ R\{0}

R+(k) =
k
2ı

∫
R

n(x)y(k,x)e−ıkxdx (3.15)

and

T (k) = 1+
k
2ı

∫
R

n(x)y(k,x)eıkxdx. (3.16)

3.3 Main Result
In this section we present our main finding, which is a generalized Gelfand-Levitan-Marchenko
equation for the 1D Helmholtz scattering problem. The difference between our finding and the
classical Gelfand-Levitan-Marchenko equation for the 1D Schrodinger scattering is the mathe-
matical setting. In the latter case we are working in an L2-setting due to the sufficiently regular
asymptotic behaviour of the Schrödinger-Jost solution as a function of the wave-number. In our
Helmholtz case we have a "less regular" asymptotic behaviour that requires the use of tempered
distributions to do calculations. The following theorem is the main result of this chapter.

Theorem 3.3.1. Let the Jost solution, u+, of the Helmholtz problem, a fixed x ∈ R and define

v+(k,x) := e−ıkxu+(k,x).

There exists a unique kernel B+
x ∈ S ′(R) such that

v+(k,x) = 1+πFB+
x (k), k ∈ R. (3.17)

This kernel can be decomposed as

B+
x = B+,Lp

x +B+,E ′
x (3.18)
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with B+,Lp

x ∈ ∩∞
p=1Lp(R), and B+,E ′

x ∈ E ′(R). Furthermore, the following GLM-like relation
holds true in S ′(R)

B+
x +K+(x+ ·)+K+(x+ ·)⋆B+

x = F{k 7→ T (k)v−(k,x)−1} (3.19)

with ⋆ denoting correlation, and

K+ = FR+ ∈ L2(R). (3.20)

Remark 3.3.1. It is clear that relation (3.19) has exactly the same form as in the Schrödinger
case. In section 3.4 we will discuss the use of this GLM-type relation. We can derive a similar
GLM expression for B− using K− = FR−.

We will break down the proof of theorem 3.3.1 in multiple lemmas. At the end of section
(3.3) we will combine the results to the proof of the main theorem.

3.3.1 Generalised Povzner-Levitan Representation
Similarly to the Schrödinger equation case, in this section we obtain a generalized Povzner-
Levitan representation for the right-going Jost solution of the Helmholtz equation. The major
difference between the Schrödinger and the Helmholtz case is that in the latter equation case we
must work in a distributional setting. We show that the Jost solutions u±(·,x) behave "nicely"
at infinity as a functions of k. But before elaborating more on our theory, for the sake of com-
pleteness we show how one can transform the Helmholtz equation to the Schrodinger equation
using the travel-time transform. We only use the equivalence between the Helmholtz and the
Schrödinger problems to show the Povzner-Levitan representation and to show regularity prop-
erties of the kernel and of the scattering data. It is important to notice that the travel time
transformation is the mean to show the generalized Povzner-Levitan representation. Obviously
this particular writing for the Jost solutions holds true independently of how one shows it. But
possibly the simplest way to prove it is the one we follow.

We define the new travel-time variable as

z(x) =
∫ x

0

√
m(y)dy, x ∈ R, (3.21)

with m = 1−n > 0. The scattering potential, q, depends only on m and it is defined similarly as
in the acoustic case, see [66, 15] Also q is compactly supported on (0,z(b)), see e.g. [2]. The
new equation now is {

− d2

dz2 +q(z)
}

f (k,z) = k2 f (k,z), z ∈ R. (3.22)
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Assuming that u solves the Helmholtz differential equation, f is connected with u via the for-
mula

f (k,z(x)) = θ(x)u(k,x) (3.23)

with θ(x) = (m(x))1/4. The following result follows.

Proposition 3.3.1. Let the Jost solutions, u±(k, ·) of (3.1) and f±(k, ·) of (3.22). We get that

f+(k,z(x)) = θ(x)eık(Ib−b)u+(k,x), x ∈ R, (3.24)

and

f−(k,z(x)) = θ(x)u−(k,x), x ∈ R, (3.25)

with Ib =
∫ b

0

√
m(y)dy.

Proof. Let the Jost solution of the Helmholtz equation, u+(k, ·) with

u+(k,x) = eıkx,x > b.

We want to show that the Jost solutions of equations (3.22) and (3.1) respectively are related.
By relation (3.23) we get that u+(k, ·) is related to a solution f (k, ·) of the Schrödinger equation
with f (k,z(x)) = θ(x)u+(k,x), x ∈ R. This gives

f (k,z(x)) = eıkx, x > b (z(x)> z(b)). (3.26)

Keep in mind that θ(x) = 1 if x > b. Now for x > b we also get

z(x) =
∫ b

0

√
m(y)dy+

∫ x

b
dy = Ib +(x−b).

Combining the above, (3.26) gives

f (k,z(x))eık(Ib−b) = eıkxeık(Ib−b) = eıkz(x), x > b.

Therefore eık(Ib−b) f (k, ·) solves the Schrödinger equation and behaves as a plane wave when
z > z(b). Now, since the solution space of the Schrödinger equation is spanned by the Jost
solutions f+(k, ·), f+(−k, ·) we get

eık(Ib−b) f (k,z) = a1 f+(k,z)+b1 f+(−k,z), z ∈ R⇒
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eık(Ib−b) f (k,z) = a1eıkz +b1e−ıkz, z > z(b). (3.27)

Therefore, a1 = 1 and b1 = 0, thus

eık(Ib−b) f (k,z) = f+(k,z), z ∈ R. (3.28)

Similarly, for the left propagating Jost solution we get

u−(k,x) = e−ıkx, x < 0. (3.29)

Since z = x,θ(x) = 1 for x < 0 we obtain that g = θu− solves the Schrödinger equation and for
x < 0

e−ıkx = e−ıkz = g(k,z)⇒ (3.30)

g(k,z) = f−(k,z(x)) = θ(x)u−(k,x), x ∈ R. (3.31)

Remark 3.3.2. In view of relations (3.24) and (3.25) the Jost solutions u±(·,x) are continuous
as functions of k see [39, Corollary 4.1.4, Theorem 4.1.8]. We can also define complex analytic
extensions of the Jost solutions.

Using the above results we show the following distributional Povnzer-Levitan representation
for the right-going Jost solution, u+ of the Helmholtz equation. Before proceeding to the result
we remind the reader a basic result from the theory of distributions.

Lemma 3.3.1. Let a function f ∈ L1
loc(R;C), such that | f (x)|= O(1+ |x|), |x| → ∞. Then the

map S (R) ∋ φ 7→ ∫
R f (x)φ(x)dx defines an element of S ′(R).

Proof. See [32, page 105].

Lemma 3.3.2. Let x ∈ R fixed. Then there exists a tempered distribution V+
x = V+(x, ·) such

that

R ∋ k 7→ v+(k,x) = 1+F−1V+
x (k), is in S ′(R) (3.32)

as an L1
loc(R) function that defines distribution through integration.
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Proof. Let x fixed and k ∈ R. We can change the spatial variable using relation (3.21). Since

f+(k,z) = θ(x)eık(Ib−b)u+(k,x), x ∈ R, (3.33)

we set θ̃ = θeik(Ib−b) and we obtain

|u+(k,x)− eıkx|=
∣∣∣ f+(k,z)

θ̃(x)
− eıkx

∣∣∣≤ (3.34)

∣∣∣ f+(k,z)

θ̃(x)
− eıkz

θ̃(x)

∣∣∣+ ∣∣∣ eıkz

θ̃(x)
− eıkx

∣∣∣≤ (3.35)

1
|θ(x)| | f

+(k,z)− eikz|+1+
1

|θ(x)| . (3.36)

Now, we know that for k ∈ R, the Jost solution of the Schrödinger problem has the following
behaviour,

| f+(k,z)− eıkz| ≤ C(q)(1+max{−z,0})
1+ |k|

∫
∞

z
(1+ |z|)q(z)dz, (3.37)

see [39, chapter 4]. Therefore, for fixed x the map

R ∋ k 7→ |u+(k,x)− eıkx| (3.38)

behaves asymptotically at most as a constant A ∈ R. Similarly,

R ∋ k 7→ |u+(k,x)e−ıkx −1| (3.39)

behaves at most as a constant, therefore it defines a tempered distribution as a locally integrable
function. Now, since the Fourier transform is a homeomorphism

F : S ′(R)→ S ′(R)

and similarly
F−1 : S ′(R)→ S ′(R)

is also a homeomorphism (onto), there exist a tempered distribution V+(x, ·)∈S ′(R) such that

R ∋ k 7→ u+(k,x)e−ıkx = 1+F−1V+
x (k), in S ′(R). (3.40)
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Corollary 3.3.1. Let x ∈ R fixed. The function

R ∋ k 7→ u±(k,x)e∓ıkx (3.41)

defines a tempered distribution as a locally integrable function.

Remark 3.3.3. In the Schrödinger equation case, it is well known that the Fourier kernel of the
Povzner-Levitan representation is supported in R>0. In the next section we will clarify what the
support of V+(x, ·) is.

Remark 3.3.4. We can also write

R ∋ k 7→ v+(k,x) = 1+πFB+
x (3.42)

with B+
x = RV+

x ,
Rφ(x) = φ(−x), x ∈ R,

for φ ∈ S (R). Obviously, we have a similar writing for v−.

3.3.2 Properties of the GLM Kernel and of the Scattering Data
Essentially, we can consider the quantities involved in the GLM equation only as distributions.
But the equivalence between the Schrödinger and the Helmholtz equation in 1D naturally lets
us to "gain more regularity" for the scattering data and the kernel B+

x . Our GLM equation would
still hold but it would be given in a more abstract form than its current compact writing (3.19).
Following the classical method of associating the Helmholtz equation with the Schrödinger
equation, we obtain that the associated Schrödinger scattering problem is{

− d2

dz2 +q(z)
}

f (k,z) = k2 f (k,z) (3.43)

f (k,z) = e−ıkz + f s(k,z) (3.44)

lim
z→±∞

{ d
dz

f s(k,z)∓ ık f s(k,z)
}
= 0 (3.45)

Remark 3.3.5. Take a solution, let u, of the Helmholtz scattering problem. Define

f̃ = θu. (3.46)
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f̃ now solves the Schrödinger equation as we have discussed, and we would like to see how f̃
compares with the solution of the Schrödinger scattering problem. First, observe that

f̃ (k,z) = θ(x)u(k,x) = θ(x){u+(−k,x)+R+(k)u+(k,x)}= (3.47)

θ(x)
{eık(Ib−b)

θ(x)
f+(−k,z)+R+(k)

e−ık(Ib−b)

θ(x)
f+(k,z)

}
, (3.48)

x ∈ R. This gives

f̃ (k,z)e−ık(Ib−b) = f+(−k,z)+R+(k)e−2ık(Ib−b) f+(k,z). (3.49)

Similarly,

f̃ (k,z) = T (k)u−(k,x)θ(x) = T (k) f−(k,z). (3.50)

Therefore

f̃ (k,z)e−ık(Ib−b) ∼ e−ıkz +R+(k)e−2ık(Ib−b)eıkz, z → ∞,

and

f̃ (k,z)e−ık(Ib−b) ∼ e−ık(Ib−b)T (k)e−ıkz, z →−∞.

Since f̃ (k,z)e−ık(Ib−b)− e−ıkz, z ∈ R, is radiating (i.e. satisfies (3.45)) , and since solutions of
the scattering problem are unique, we obtain that

R̃+(k) = R+(k)e−2ık(Ib−b) and T̃ (k) = T (k)e−ık(Ib−b),

where R̃+ and T̃ are the reflection and transmission coefficients of the Schrödinger scattering
problem respectively.

The previous remark leads to the following proposition.

Proposition 3.3.2. The following relations hold true,

|R+(k)|= |R̃+(k)|, ∀k ∈ R\{0}, (3.51)

|T (k)|= |T̃ (k)|, ∀k ∈ R\{0}. (3.52)

We also get the following.
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Corollary 3.3.2. K+ = FR+ is a well defined L2(R)−element.

Proof. For the Schrödinger equation case the reflection coefficient is an element of L2(R), see
[39]. Since the absolute values of the R+ and R̃+ coincide we get the result.

Lemma 3.3.3. Let x ∈ R. Then V+
x ∈ S ′(R) is a distribution that consists of a singular part

and an Lp−part. The same holds for B+
x .

Proof. Let x ∈ R. We get for k ∈ R

e−ıkxu+(k,x) = 1+F−1V+
x (k) (3.53)

and

e−ıkz(x) f+(k,z(x)) = 1+F−1Ṽ+
z(x)(k), (3.54)

using the classical Paley-Wiener theory to the solution of the Jost solution f+, see [39]. Now,
we use relation (3.24) and we get

e−ıkz(x)
θ(x)eık(Ib−b)u+(k,x) = 1+F−1Ṽ+

z(x)(k)⇒

e−ıkz(x)
θ(x)eık(Ib−b)eıkx

(
1+F−1V+

x (k)
)
=

1+F−1Ṽ+
z(x)(k).

We define λ = (λ (x) =)z(x)− x− Ib +b, thus

θ(x)e−ıkλ +θ(x)e−ıkλ F−1V+
x (k) = 1+F−1Ṽ+

z(x)(k)⇒ (3.55)

θ(x)e−ıkλ F−1V+
x (k) =−θ(x)e−ıkλ +1+F−1Ṽ+

z(x)(k)⇒ (3.56)

F−1V+
x (k) =−1+

eıkλ

θ(x)
+

eıkλ

θ(x)
F−1Ṽ+

z(x)(k). (3.57)

Now since Ṽ+
z(x) ∈ Lp(R) for every p ∈ [1,∞] and since the Fourier transform of complex expo-

nential functions are Dirac-delta distributions we obtain the result.

Remark 3.3.6. We can identify the support of V+
x in view of relation (3.57). Moreover, (3.57)

gives a full description of the singularities of the kernel V+
x .
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3.3.3 Proof of Theorem 3.3.1
In this subsection we combine our findings and give the proof of our main result.

Theorem 3.3.1. Let x ∈ R. The scattering identity that describes the solutions of the forward
problem reads

y(k,x) = T (k)u−(k,x) = u+(−k,x)+R+(k)u+(k,x),

k ∈ R\{0}. As before, we set v±(k,x) = e∓ıkxu±(k,x) and we take

T (k)v−(k,x) = v+(−k,x)+R+(k)e2ıkxv+(k,x), k ∈ R\{0}. (3.58)

We can view relation (3.58) in S ′(R) since v±(·,x)∈S ′(R) (corollary 3.3.1) and |T |, |R+|< 1.
We get ∀ψ ∈ S (R)

⟨F{k 7→ T (k)v−(k,x)},ψ⟩= ⟨F{k 7→ v+(−k,x)},ψ⟩+

⟨F{k 7→ R+(k)e2ıkxv+(k,x)},ψ⟩, (3.59)

(with the sense that we transform the distributions that are defined through integration). Using
relation (3.32) we get

R ∋ k 7→ v+(−k,x) = 1+(F−1V+
x )(−k) =

1+(RF−1V+
x )(k), (3.60)

therefore we obtain

⟨F{k 7→ T (k)v−(k,x)−1},ψ⟩= ⟨FRF−1V+
x ,ψ⟩+

⟨F{k 7→ R+(k)e2ıkx,ψ⟩+

⟨F{k 7→ R+(k)e2ıkx(F−1V+
x )(k)},ψ⟩. (3.61)

Now, for φ ∈ S (R)

⟨FRF−1V+
x ,φ⟩= ⟨RF−1V+

x ,Fφ⟩= (3.62)
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⟨F−1V+
x ,RFφ⟩= ⟨F−1V+

x ,FRφ⟩= ⟨FF−1V+
x ,Rφ⟩

= ⟨RV+
x ,φ⟩. (3.63)

Therefore we have for the first term of (3.61) that

FRF−1V+
x = RV+

x , in S ′(R). (3.64)

Now, observe that R+ = F−1(K+) and F−1δ−x = k 7→ e2ıkx. We take for ψ ∈ S (R)

⟨F{k 7→ R+(k)e2ıkx},ψ⟩= ⟨F{F−1K+F−1
δ−x},ψ⟩= (3.65)

⟨FF−1(K+ ∗δ−x),ψ⟩= ⟨K+(x+ ·),ψ⟩. (3.66)

Now, since V+
x = V+,E ′

x +V+,Lp

x the convolution of V+
x and the shifted scattering data

K+(x+ ·) ∈ L2(R) makes sense and we obtain

k 7→ R+(k)e2ıkx(F−1V+
x )(k) = F−1(K+(x+ ·))F−1(V+

x ) =

F−1(K+(x+ ·)∗V+
x ).

Combining the above we get

F{k 7→ R+(k)e2ıkx(F−1V+
x )(k)}= K+(x+ ·)∗V+

x =

K+(x+ ·)⋆RV+
x , (3.67)

where for tempered distributions we define f ⋆ g = f ∗Rg. Now putting all of our findings
together we get that

RV+
x +K+(x+ ·)+K+(x+ ·)⋆RV+

x =

F{k 7→ T (k)v−(k,x)−1} (3.68)

or equivalently

B+
x +K+(x+ ·)+K+(x+ ·)⋆B+

x = F{k 7→ T (k)v−(k,x)−1} (3.69)
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3.4 Inversion
In this section we use some of our theoretical findings to propose a practical method for solving
the inverse medium problem. The right hand side of the GLM equation (3.19) depends on
unknown quantities assuming that we only consider one-sided reflection measurements. To
get around this obstacle we will need to consider two sided data, namely, R+,R−,T , for all
frequencies. Using them, we can form a coupled system for the GLM kernels B+,B− of the
right and left-going Jost solutions respectively. After obtaining the Jost solutions, then either
using equations (3.5)-(3.6) or the equation error method [8], we can obtain the coefficient of the
Helmholtz operator.

First, observe that we can write T (k)= 1+τ(k) k∈R\{0} with τ(k)= k
2ı
∫
R n(x)y(k,x)eıkxdx.

τ is also well defined. Now, for fixed x ∈ R we have that

u−(k,x)eıkx = 1+F−1V−
x (k), k ∈ R. (3.70)

Considering this, we can compute the right hand side of the GLM equation as

r.h.s. = F{(1+ τ)(1+F−1V−
x )−1}. (3.71)

The argument of the Fourier transform is (1+τ)(1+F−1V−
x )−1= 1+τ+F−1V−

x +τF−1V−
x −

1 = τ +F−1V−
x + τF−1V−

x . Therefore

F{τ + τF−1V−
x +F−1V−

x }= L+L∗V−
x +V−

x =

L+L⋆B−
x +RB−

x (3.72)

with B−
x = RV−

x and L = F τ . We can set up an auxiliary scattering problem of the following
form. We consider an incident wave travelling from −∞ to +∞ of the form ui(k,x) = eıkx,x ∈R.
The scattering identity of this problem is

u−(−k,x)+R−(k)u−(k,x) = T (k)u+(k,x). (3.73)

As before, we compute

u−(−k,x)e−ıkx +R−(k)u−(k,x)e−ıkxeıkxe−ıkx =

T (k)u+(k,x)e−ıkx ⇐⇒ (3.74)

v−(−k,x)+R−(k)v−(k,x)e−2ıkx = T (k)v+(k,x) ⇐⇒ (3.75)
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F−1V−
x (−k)+R−(k)e−2ıkx +R−(k)e−2ıkxF−1V−

x (k) =

T (k)v+(k,x)−1. (3.76)

Now, we compute the Fourier transform to obtain

RV−
x +K−(−x+ ·)+K−(−x+ ·)∗V−

x =

F{T (k)v+(k,x)−1}. (3.77)

Therefore, we get the GLM equation

B−
x +K−(−x+ ·)+K−(−x+ ·)⋆B−

x =,

F{k 7→ T (k)v+(k,x)−1} (3.78)

with RV−
x = B−

x . Similarly as before, we obtain

F{k 7→ T (k)v+(k,x)−1}= L+L⋆B−
x +RB−

x (3.79)

Combining our findings we are left with a system of two equations and two unknowns, B−
x ,B

+
x

B+
x +K+(x+ ·)+K+(x+ ·)⋆B+

x = L+L⋆B−
x +RB−

x (3.80)

B−
x +K−(−x+ ·)+K−(−x+ ·)⋆B−

x = L+L⋆B+
x +RB+

x (3.81)

Assuming the knowledge of discrete K+,K− and L we can solve for the GLM kernels B+
x and

B−
x . The solution of the system can be found using a conventional least squares solver, see

[60]. Once we know B+
x , we also know u+ (relation (3.17)). Thus we can solve for n in (3.5).

Alternatively, we can use the equation error method, see [8], to obtain n, since u+ also obeys
the Helmholtz equation.

Remark 3.4.1. The coupled system of equations (3.80) and (3.81) yields the exact solutions B±
x

assuming K± and L. Though one could consider only one sided reflection data and solve only
(3.80) (or (3.81)) by approximating its right hand side with zero for example. For a discussion
and comparison of the use of one sided versus two sided data for the computational solution of
an inverse problem of estimating a diffusion potential from boundary measurements we refer to
[25].
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3.5 Discussion and Conclusions
We have revisited the classical 1D Helmholtz scattering problem and we have derived a gener-
alised Gelfand-Levitan-Marchenko equation in the space of tempered distributions. In particu-
lar, we showed that the Jost solution of the Helmholtz equation minus a plane wave grows in
a controlled way as the wave number grows. This allows us to consider a distributional frame-
work where we derived a generalized version of the Gelfand-Levitan-Marchenko equation. We
finally discussed a way to solve the inverse medium-problem using 2-sided data, whereas one-
sided should theoretically suffice. In the future we will seek an explanation on why this is the
case.

Recently, GLM-like methods have received renewed attention, especially in the area of
seismic imaging. Though, the most significant limitation of GLM-like approaches for the
Helmholtz equation is the difficulty of extending them in higher dimensional media. Without
assuming symmetry to the medium (e.g. laterally stratified) we cannot transform the Helmholtz
equation to the Schrödinger equation. With our new point of view, we believe that we have made
a first step towards a possible extension of this particular GLM method to 2 and 3D Helmholtz
scattering problems using the least amount of a-priori assumptions.

3.6 Appendix: Calculations with Distributions and Schwartz
Functions

In this last part of the chapter we recall certain properties of distributions that we used above.

1
2π

∫
R

eiωtdω = δ (t) ⇐⇒ 1
2π

∫
R

e2ikt2dk =

1
π

∫
R

e2iktdk = δ (t) (3.82)

According to our notation

F (1)(t) = δ (t). (3.83)

Similarly

1
π

∫
R

e2ikte2ikgdk =
1
π

∫
R

e2ik(t+g)dk = δ (t +g) (3.84)

therefore

F (e2ikg) = δ (t +g). (3.85)
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Similarly
1
π

∫
R

e2ikteikgdk =
1
π

∫
R

e2ik(t+ g
2 )dk =

1
π

∫
R

eik(2t+g)dk =

2
2π

∫
R

eik(2t+g)dk = 2δ (2t +g) (3.86)

therefore

F (eikg) = 2δ (2t +g) = δ

(
t +

g
2

)
. (3.87)

Another important property is the following

(δa ∗ f )(t) = f (t −a) (3.88)

for f ∈ L2(R) with δa(t) = δ (t − a). Also previously, using the R (reflection) operator we
exchanged between the convolution and the correlation of distributions. Assuming a function
b ∈ S (R) we get

(K(x+ ·)∗b)(t) =
∫
R

K(x+ z)b(t − z)dz. (3.89)

Now we set ζ =−t + z and obtain z = t +ζ . We get

(K(x+ ·)∗b)(t) =
∫
R

K(x+ t +ζ )b(−ζ )dζ =

(K(x+ ·)⋆Rb)(t) (3.90)

For tempered distributions we define

⟨R f ,φ⟩= ⟨ f ,Rφ⟩
see [31, page 334]. Also R2 = I since

⟨ f ,φ⟩= ⟨ f ,R2
φ⟩= ⟨R f ,Rφ⟩= ⟨R2 f ,φ⟩. (3.91)

Finally, F and R commute since

RFφ(t) =
1
π

∫
R

φ(k)e−iktdk =
1
π

∫
R

φ(−k)eiktdk =

F (Rφ)(t) (3.92)

and this gives

⟨FR f ,φ⟩= ⟨R f ,Fφ⟩=

⟨ f ,RFφ⟩= ⟨ f ,FRφ⟩= ⟨F f ,Rφ⟩= ⟨RF f ,φ⟩ (3.93)



Chapter 4

A Data-Driven Approach to Solving a 1D
Inverse Scattering Problem

Abstract: In this chapter, we extend the ROM-based approach for inverse scattering with Neu-
mann boundary conditions, introduced by Druskin at. al. (Inverse Problems 37, 2021), to the 1D
Schrödinger equation with impedance (Robin) boundary conditions. We also propose a novel
data-assimilation (DA) inversion method based on the ROM approach, thereby avoiding the
need for a Lanczos-orthogonalization (LO) step. Furthermore, we present a detailed numerical
study and comparison of the accuracy and stability of the DA and LO methods. This chapter is
based on our paper [43]
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4.1 Introduction
Inverse scattering appears in many applications, including medical imaging, non-destructive
testing, and geophysical exploration [51]. While acquisition setups differ, at their core all these
inverse problems involve a wave-equation and require estimation of its variable coefficients
from boundary data. Approaches to solving the resulting non-linear inverse problem can be
classified as either direct or indirect methods. The direct methods originate in classical in-
verse scattering theory and rely on formulating a linear relation between scattering data and
the medium parameters, see e.g. [66]. The indirect methods formulate a non-linear data-fitting
problem that can be solved iteratively [58].

The direct methods have recently attracted renewed attention, in particular in the geophysi-
cal community [13]. A recent development is the use of data-driven reduced-order models for
solving the inverse problem [26]. We summarize this procedure below.

4.1.1 Approach

The state equation is denoted as (
Aq + k2I

)
u(k) = s,

with u denoting the state for wavenumber k, s the source term, and q the variable coeffi-
cient included in the differential operator Aq. The measurements are given by fi = ⟨s,ui⟩ =〈

s,
(
Aq + k2

i I
)−1 s

〉
for i = 0,1, . . . ,m− 1. The approach is to first estimate the states ui from

the measurements, and subsequently estimate q from these using the state equation.
The first step of estimating the states is approached via a reduced-order model which looks

for a solution of the state equation in U = span
(
{ui}m−1

i=0
)

by projecting the state equation
on this subspace. This requires computing ⟨ui,u j⟩ and ⟨ui,Aqu j⟩. Remarkably, this can be
done directly in terms of the measurements, without explicit reference to the states ui. To
approximate the states, then, we solve the projected state equation and represent the solution in
a basis U (0) of solutions u(0)i for a given q0. This last step is intricate and requires a Lanczos
orthogonalization, see [26] for more details.

The next step of retrieving q from the approximated states, ũi, can be approached in different
ways. We can follow an equation error approach (see e.g. [38]) and solve q from(

Aq + k2
i I
)

ũi = s.

Alternatively, we can solve it from a Lipmann-Schwinger integral equation (see, e.g. [40])

fi − f (0)i =−
〈

u(0)i ,
(
Aq −A0

)
ũi

〉
.
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4.1.2 Contributions and Outline
The ROM-based approach has been applied in various settings, including time domain wave
propagation, see e.g. [10] and frequency-domain diffusion processes, see [26]. As a first step
towards extending this procedure to frequency-domain wave-problems, we extend the approach
to a 1D Schrödinger equation with impedance boundary conditions. It turns out that both re-
flection and transmission measurements are needed to compute the ROM matrices from the
data. Furthermore, we propose an alternative approach to the Lanczos-based state estimation
approach described by [26]. To study the accuracy and stability properties of the resulting
methods, we present numerical experiments.

The chapter is organized as follows. First, we review the forward problem and present
the relations between the boundary data and required ROM matrices. Then, we discuss the
two-step approach to solve the inverse problem; state estimation and subsequent estimation of
the scattering potential from the state. We then present numerical experiments to illustrate the
accuracy and stability of both methods on noisy data. We conclude the chapter with a brief
summary of the main findings and discussion on further work.

4.2 The Forward Problem
Consider a Schrödinger equation

−u′′(x;k)+q(x)u(x;k)− k2u(x;k) = 0, x ∈ (0,1) (4.1)

with boundary conditions

u′(0;k)+ ıku(0;k) = 2ık,u′(1;k)− ıku(1;k) = 0, (4.2)

which corresponds to an incoming plane wave from −∞. The scattering potential is assumed to
have compact support in (0,1). The measurements are given by

f (k) = u(0;k), g(k) = u(1;k). (4.3)

Well-posedness of this forward problem has been well-established (at least when q is continu-
ous), since the boundary value problem can be transformed to the Lippmann-Schwinger inte-
gral. Then it is sufficient to study just the integral equation see e.g. [41].

4.2.1 A Reduced-Order Model
The point of departure for the ROM-based approach is the weak formulation of (4.1)

⟨u′,φ ′⟩+ ⟨qu,φ⟩− k2⟨u,φ⟩− ık
(

f (k)φ(0)+g(k)φ(1)
)
=−2ıkφ(0), (4.4)
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where ⟨·, ·⟩ denotes the standard inner product in L2(0,1) and · denotes complex conjugation.
Using a basis of solutions {ui}m−1

i=0 with ui ≡ u(·;ki), the resulting system matrices are de-
fined correspondingly

Si j = ⟨u′j,u′i⟩+ ⟨qu j,ui⟩, (4.5)
Mi j = ⟨u j,ui⟩, (4.6)

Bi j = f j fi +g jgi, (4.7)

and right-hand-side
bi =−2ık fi. (4.8)

The main feature making this approach useful for solving the inverse problem is that the system
matrices can be computed from the data directly, as per the following Lemma.

Lemma 4.2.1. The ROM system matrices S,M (equations (4.5) and (4.6)) are given in terms of
the boundary data { fi}m−1

i=0 and {gi}m−1
i=0 (equation (4.3)) as

Si j = ı

(
kik jBi j

ki − k j
−2

k2
j ki f j + k2

i k j f i

k2
i − k2

j

)
, i ̸= j

Sii = k2
i
(
ℜ( fi)ℑ( f ′i )−ℑ( fi)ℜ( f ′i )+ℜ(gi)ℑ(g′i)−ℑ(gi)ℜ(g′i)−ℑ( f ′i )−ℑ( fi)/ki

)
.

Mi j = ı

(
Bi j

ki − k j
−2

ki f j + k j f i

k2
i − k2

j

)
, i ̸= j

Mii = ℜ( fi)ℑ( f ′i )−ℑ( fi)ℜ( f ′i )+ℜ(gi)ℑ(g′i)−ℑ(gi)ℜ(g′i)−ℑ( f ′i )+ℑ( fi)/ki.

The proof of this lemma can be found in paragraph 4.6.1.
Correspondingly, the approximate solution is then given by

ũ(x;k) =
m−1

∑
i=0

ci(k)ui(x), (4.9)

with (
S− k2M− ıkB

)
c(k) = b(k).

Remark 4.2.1. From the proof of lemma 4.2.1 we see that ci(k j) = δi j. Thus ũ will match the
boundary data.

We refer the reader to [30, 46, 63, 54] for the discussion regarding the approximation error
of such ROM-approximations.
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4.3 The Inverse Problem
The inverse problem is now to retrieve q from boundary measurements at wave numbers {ki}m−1

i=0 .
As outlined in the introduction of this chapter, this is achieved in a 2-step procedure. First the
states {ui}m−1

i=0 are estimated from the data, and subsequently the scattering potential is esti-
mated from these approximated states.

4.3.1 Estimating the State
As outlined in the previous section, we can compute the coefficients in (4.9) directly from the
data following the ROM-based approach. Since the basis {ui}m−1

i=0 needed to evaluate (4.9) is

unknown, however, we need to use a different basis. The basic idea is to use states {u(0)i }m−1
i=0

corresponding to a given q(0) instead. It is tempting to directly replace (4.9) by

ũ(x;k) =
m−1

∑
i=0

ci(k)u
(0)
i (x),

however, this will not work as it would yield ũ(x;ki) = u(0)i (x), see Remark 4.2.1. Below, we
discuss two alternatives.

Lanczos Orthogonalization

The authors of [26] propose to use an orthogonalization procedure as follows. They first apply
the M-orthogonal Lanczos procedure to M−1S, which yields matrices Q ∈ Cm×r and T ∈ Cr×r,
where r ≤ m, satisfying

Q∗SQ = T, Q∗MQ = I.

The ROM-approximation of the state is then given by

ũ(x;k) =
m−1

∑
i=0

ci(k)vi(x), (4.10)

with c satisfying (
T − k2I − ıkQ∗BQ

)
c(k) = Q∗b(k),

and {vi}r−1
i=0 an orthogonal basis w.r.t. the regular L2-inner product defined as

v j =
m−1

∑
i=0

Qi jui.
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The expression in (4.10) is equivalent to (4.9) (although the coefficients differ). Because we do
not have access to the states {ui}m−1

i=0 , and cannot form the orthogonal basis {vi}r−1
i=0 , we replace

it by {v(0)i }r−1
i=0 , obtained as

v(0)j =
m−1

∑
i=0

Q(0)
i j u(0)i ,

where the states u(0)i are the solutions for a reference scattering potential q(0) and Q(0) is ob-
tained by applying the Lanczos procedure to the corresponding system matrices.

Remark 4.3.1. In practice, we replace M by M + εI for some ε > 0 to ensure it is invertible
and to stabilize the Lanczos procedure.

Data-Assimilation

An alternative approach is inspired by [42] and sets up an overdetermined system of equations
which ensures that the resulting estimate of the internal solution closely matches the data. We
directly define the approximated state in terms of the reference solutions

ũ(x;k) =
m−1

∑
i=0

ci(k)u
(0)
i (x),

where the coefficients c(k) are obtained by solving the following least-squares problem

min
c

∥∥∥∥∥∥∥
 S− k2M− ıkB

ρf(0)T

ρg(0)T

c−

 b(k)
ρ f (k)
ρg(k)


∥∥∥∥∥∥∥

2

, (4.11)

where ρ > 0 is a penalty parameter controlling the trade-off between data-fit and model-fit.
The required data f (k) and g(k) can be obtained by solving (4.9) and using the coefficients to
interpolate them.

4.3.2 Estimating the Scattering Potential

Using the weak formulation of the differential equation we obtain a Lippmann-Schwinger-type
equation,

f (k)− f (0)(k) =− 1
2ık

∫ 1

0
u(0)(x;k)u(x;k)(q(x)−q0(x))dx. (4.12)
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Representing q in terms of a suitable basis and enforcing the equation for wavenumbers {ki}m−1
i=0

yields a system of equations. In practice, we replace u by its approximation ũ and solve it in a
least-squares sense to obtain an estimate of q:

min
q

∥Kq− (f− f(0))∥2
2 +α∥q∥2

2. (4.13)

Remark 4.3.2. Note that replacing u by ũ in (4.12) induces an error in K. To explicitly account
for this, a Total Least-Squares (TLS) formulation (see e.g. [60] for its use in inverse scattering)
might be beneficial.

4.4 Numerical Results
The inversion procedure consists of two steps; state estimation and estimation of the scattering
potential from the states. For the first step, we use either the Lanczos orthogonalization ap-
proach (LO) with parameter ε , or the data-assimilation approach (DA) with parameter ρ . With
the approximated states, the scattering potential is then estimated by solving the regularized
Lippmann-Schwinger equation, with parameter α . This two-step algorithm is outlined in Al-
gorithm 1. Implementation of the described method is fairly straightforward. The code used to
produce these results is available at:
https://github.com/ucsi-consortium/1DInverseScatteringROM.

Algorithm 1 Overview of the two-step inversion procedure to estimate the states and scattering
potential from boundary data.

Require: reference q(0), data f ,g at wavenumbers {ki}m−1
i=0 , regularisation parameters ((ε,α)

or (ρ,α))
Ensure: reconstructed states {ũi}m−1

i=0 and scattering potential q̃.

Step 1: state estimation
Compute ROM-matrices M,S,B according to Lemma 4.2.1
Compute reference states {u(0)i }m−1

i=0 corresponding to q(0).
Compute approximate states {ũi}m−1

i=0 at wavenumbers {ki}m−1
i=0 according to the LO or

DA procedures (outlined in sections 3.1.1, 3.1.2 resp.)

Step 2: estimating the scattering potential
Reconstruct the scattering potential q̃ according to the procedure outlined in the above

section

https://github.com/ucsi-consortium/1DInverseScatteringROM
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4.4.1 Experimental Settings
To illustrate the methods, we use the scattering potential depicted in figure 4.1. The data are
obtained by numerically solving the Schrödinger equation for m= 10 equispaced wave numbers
in the interval (0,10).
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Figure 4.1: From left to right, the scattering potential q, the real (blue) and imaginary (red) part
of the reflection data, f , and the real and imaginary part of the transmission data, g,.

4.4.2 Benchmark Results
As a benchmark, we reconstruct the scattering potential using the approach described in section
4.3.2 using the true states (as the ideal setting) and the reference states for q(0) = 0 (which
corresponds to the Born approximation). The results are shown in figures 4.2 and 4.3. Even
using the true states we do not get a perfect reconstruction of the scattering potential due to
the band-limited nature of the data. Furthermore, the inferior result obtained using the Born
approximation underlines the need for non-linear inversion.
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Figure 4.2: Results using the true state to reconstruct the scattering potential. The top row
shows the (reconstructed) states (solid) used in the subsequent step to estimate the scattering
potential as well as the true states (dashed). In the second row we see the reconstructed scatter-
ing potential (solid) and the corresponding data. The real part of the quantities is shown in blue,
while the imaginary part is shown in red.

4.4.3 Noiseless Data
Next, we present the results yielded by the (LO) and (DA) methods for noise-free data in figures
4.4, 4.5 respectively. We observe that the DA method gives slightly more accurate reconstruc-
tions of the states. The corresponding reconstructed scattering potentials are slightly different,
but there seems to be little difference in the accuracy of the reconstructions.
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Figure 4.3: Results using the reference state to reconstruct the scattering potential (i.e., the Born
approximation). The top row shows the (reconstructed) states (solid) used in the subsequent step
to estimate the scattering potential as well as the true states (dashed). In the second row we see
the reconstructed scattering potential (solid) and the corresponding data. The real part of the
quantities is shown in blue, while the imaginary part is shown in red.
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Figure 4.4: Results using LO-approach on noiseless data. The top row shows the (reconstructed)
states (solid) used in the subsequent step to estimate the scattering potential as well as the true
states (dashed). In the second row we see the reconstructed scattering potential (solid) and the
corresponding data. The real part of the quantities is shown in blue, while the imaginary part is
shown in red.

4.4.4 Noisy Data

In this subsection we compare the methods on noisy data. In particular, we add i.d.d. normally
distributed noise to the data with mean zero and variance σ2. The parameters ε,ρ,α are chosen
to yield the best approximation (as measured by the L2 error between the reconstructions and
the ground-truth, averaged over 100 realizations of the noise). The corresponding plots showing
the dependence of the error on the parameters are included in section 4.6. In table 4.1 we sum-
marize the results for varying σ . The corresponding plots are shown in figure 4.6. As expected,
the noise influences the reconstruction of the state and consequently the reconstruction of the
scattering potential. Overall, we see that the DA method gives superior estimates of the state. In
terms of the scattering potential there is no significant difference between both methods, how-
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Figure 4.5: Results using DA-approach on noiseless data. The top row shows the (recon-
structed) states (solid) used in the subsequent step to estimate the scattering potential as well as
the true states (dashed). In the second row we see the reconstructed scattering potential (solid)
and the corresponding data. The real part of the quantities is shown in blue, while the imaginary
part is shown in red.
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ever, for moderate noise levels the DA method gives more stable results with a much smaller
variance in the error.
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σ method parameters error in u error in q

10−6 LO(ε,α) (10−3,10−3) 1.5 ·10−1 (1.6 ·10−3) 4.7 ·10−1 (3.2 ·10−3)
DA(ρ,α) (10−2,10−4) 6.1 ·10−3 (1.4 ·10−5) 3.9 ·10−1 (2.3 ·10−3)

10−5 LO(ε,α) (10−2,10−3) 1.5 ·10−1 (5.3 ·10−4) 4.6 ·10−1 (2.3 ·10−3)
DA(ρ,α) (10−1,10−3) 6.1 ·10−3 (3.0 ·10−5) 4.5 ·10−1 (2.8 ·10−3)

10−4 LO(ε,α) (10−2,10−2) 1.8 ·10−1 (1.5 ·10−1) 5.7 ·10−1 (1.4 ·10−1)
DA(ρ,α) (10−1,10−2) 6.2 ·10−3 (3.4 ·10−4) 5.3 ·10−1 (3.2 ·10−3)

10−3 LO(ε,α) (10−1,10−2) 2.1 ·10−1 (1.2 ·10−1) 6.2 ·10−1 (1.3 ·10−1)
DA(ρ,α) (100,10−2) 6.4 ·10−3 (7.0 ·10−4) 6.0 ·10−1 (5.9 ·10−2)

10−2 LO(ε,α) (10−1,10−1) 2.6 ·10−1 (7.1 ·10−1) 9.2 ·10−1 (9.4 ·10−2)
DA(ρ,α) (101,10−1) 1.4 ·10−2 (4.4 ·10−3) 9.2 ·10−1 (9.0 ·10−2)

Table 4.1: Comparison between the relative errors in reconstructed states and scattering poten-
tial for both methods. We report the average and standard deviation over 100 realizations of the
noise.

4.5 Discussion and Conclusions

We treat the inverse problem of retrieving the scattering potential in a 1D Schrödinger equation
from boundary data. To do this, we propose a two-step approach inspired by a previously-
published ROM-based method. We extend this method, previously applied to 1D diffusion
problems with Neumann boundary conditions, to the 1D Schrödinger equation with impedance
boundary conditions. In particular, we presented explicit expressions for retrieving the ROM-
matrices from boundary data and proposed a novel approach for approximating the state from
these matrices. This approach, based on ideas from data-assimilation, is an alternative to the
previously proposed method based on Lanczos-orthogonalization. Given the estimates of the
states, the scattering potential is obtained by solving an integral equation.

We compared the two approaches numerically on a simulated example with varying noise
levels. These experiments suggest that the data-assimilation approach for estimating the state
is more accurate and stable and leads to a more stable estimate of the scattering potential for
moderate noise levels.

This work is the first step towards extending the ROM-based approach to frequency-domain
wave-like problems (e.g., the Helmholtz equation) and 2D/3D. Other open questions for further
research include the approximation error, stability estimates, and more practical aspects such an
iterative approach where the reference potential is iteratively updated.
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Figure 4.6: Results for the LO (left) and DA (right) methods for varying noise levels (σ =
10−6,10−5,10−4,10−3 respectively from top to bottom). The subplots follow the same layout
as the previous figures. Individual results for different realizations of the noise are superimposed
to clearly show the variation.
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4.6 Appendix: Proofs and Regularization Parameter Selec-
tion

4.6.1 Proofs
Proof of lemma 4.2.1. From the weak form we find

Si j − k2
j Mi j − ık jBi j =−2ık j f i,

and
S ji − k2

i M ji − ıkiB ji =−2ıki f j,

from which (by taking the conjugate transpose and using the fact that the matrices involved are
Hermitian)

Si j − k2
i Mi j + ıkiBi j = 2ıki f j.

Combining these yields

(k2
i − k2

j)Mi j − ı(ki + k j)Bi j =−2ı(ki f j + k j f i),

and
(k2

i − k2
j)Si j − ı(k2

j ki + k2
i k j)Bi j =−2ı(k2

j ki f j + k2
i k j fi),

from which we can compute Mi j and Si j:

Mi j = ı

(
Bi j

ki − k j
−2

ki f j + k j f i

k2
i − k2

j

)
.

Si j = ı

(
kik jBi j

ki − k j
−2

k2
j ki f j + k2

i k j f i

k2
i − k2

j

)
.

For the diagonal elements we need to take a limit of the above two relations. We first compute
the diagonal elements of M. We set λ = k2

j , and k2
i = λ + h. We also define f (k j) = φ(λ ) =

φ1 + ıφ2 and φ(λ +h) = φ h
1 + ıφ h

2 and similarly γ(λ ) = g(k j). Since ℑ(M j j) = 0, we obtain

M j j = lim
h→0

{
−2

√
λφ h

2 −
√

λ +hφ2

h
− γ2γh

1 − γ1γh
2 +φ2φ h

1 −φ1φ h
2√

λ +h−
√

λ

}
=

−2
(√

λ
dφ2

dλ
(λ )− 1

2
λ
−1/2

φ2(λ )
)
− γ2(λ )2

√
λ

dγ1

dλ
(λ )+ γ1(λ )2

√
λ

dγ2(λ )

dλ
−
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φ2(λ )2
√

λ
dφ1

dλ
(λ )+φ1(λ )2

√
λ

dφ2(λ )

dλ
. (4.14)

The product rule gives that dφ

dλ
= d f

dk
dk
dk2 = f ′(k)(2k)−1. Combining gives,

M j j =
{
−2
(

k
1
2k

ℑ( f ′)− 1
2k

ℑ( f )
)
−

ℑ(g)2k
1
2k

ℜ(g)+ℜ(g)2k
1
2k

ℑ(g)−ℑ( f )2k
1
2k

ℜ( f )+ℜ( f )2k
1
2k

ℑ( f )
}∣∣∣

k=k j
,

which gives

M j j = ℜ( f j)ℑ( f ′j)−ℑ( f j)ℜ( f ′j)+ℜ(g j)ℑ(g′j)−ℑ(g j)ℜ(g′j)−ℑ( f ′j)+ℑ( f j)/k j.

We obtain similarly the relation for the diagonal of S.

4.6.2 Regularization Parameter Selection
The LO and DA methods both have two regularization parameters that regularize the problem.
These parameters are chosen to minimize the expected reconstruction error for the given noise
level. We approximate the expected error by averaging the error over 100 realization of the
noise. The plots corresponding to the results presented in table 4.1 and figures 4.4, 4.5, and 4.6
are shown in figure 4.7.
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Figure 4.7: Average error for both methods (LO, left and DA,right) for various noise levels
(0,10−6,10−5,10−4,10−3 respectively from to to bottom).



Chapter 5

Reduced Order Model Based Nonlinear
Waveform Inversion for the 1D Helmholtz
Equation

Abstract: In this chapter we study a reduced order model (ROM) based waveform inversion
method applied to a Helmholtz problem with impedance boundary conditions and variable re-
fractive index. Our first goal is to obtain relations that allow the reconstruction of the Galerkin
projection of the continuous problem to the space spanned by solutions of the Helmholtz equa-
tion. Our second goal is to study the newly introduced nonlinear optimization method based on
the ROM aimed to estimate the refractive index from reflection and transmission data. Finally
we compare numerically our method to the conventional full waveform inversion method.

77
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5.1 Introduction

Reduced order model techniques have been studied for a long time in the context of solving
boundary value problems numerically. The main difference between conventional finite ele-
ment methods and the ROM approach is that in the latter, one approximates the solution of the
problem in a finite-dimensional subspace spanned by solutions of the PDE itself (i.e. solutions
for different wavenumbers in case of the Helmholtz equation). The advantage of using the ROM
method for solving forward boundary value problems is the rapid convergence of the approxi-
mates to the true solution of the problem. We refer the interested reader to [30, 46, 63, 54] and
the references therein for more information on the subject.

Recently, reduced order model techniques have received attention and have been applied to
Neumann inverse boundary value problems for estimating coefficients of diffusion type elliptic
partial differential equations, see [26] [9]. In short, in the cited papers, the authors consider
boundary traces of solutions of the diffusion equation that correspond to a discrete set of spectral
parameters. Using these measurements they reconstruct the so-called ROM matrices, which
describe the projection of the continuous forward problem onto the finite dimensional space
spanned by solutions of the forward problem. Using the Lancszos algorithm (see [50]) and
the ROM projections as input, it is possible to linearise the inverse problem by obtaining an
estimate of the state using some knowledge of the background coefficient, which refers to a
known approximation of the unknown coefficient. Subsequently, the unknown coefficient can
be estimated by solving an integral equation. Roughly speaking, the use of the ROM method
to obtain a linearised solution of the inverse problem can be thought as a discrete analog of the
classical Gelfand-Levitan-Marchenko approach, see [59, 60, 66, 15, 39].

The approach that we take in this chapter was initially developed for time-domain wave
propagation with Dirichlet boundary conditions, see [11], [47]and [10]. For practical applica-
tions, however, impedance boundary conditions are of great interest since they are equivalent to
the Sommerfeld radiation condition in 1D (and an approximation of the radiation condition in
two and three dimensions). In this chapter therefore, we extend the ROM based FWI method
introduced in [10, 11] and [47] to the 1D Helmholtz equation with impedance boundary condi-
tions.

The motivation behind studying the ROM method within an optimization framework is the
promising results that have been observed in the time-domain setting. Also, as we shall see in
detail, in the case where we consider impedance boundary conditions, the stiffness and mass
(ROM) matrices do not depend linearly on the data. Thus we expect different convexity proper-
ties for misfit functionals based on the ROM approach compared with functionals based on the
conventional FWI approach.

Our contributions include the extension of the ROM based FWI in the frequency domain,
and the study of the nonlinear inverse problem in an infinite dimensional framework. We also
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compare our method to the conventional full waveform inversion method in terms of the con-
vexity of the misfit functionals, and how accurately each method reconstructs a coefficient (re-
fractive index of Helmholtz operator) using both noiseless and noisy measurements.

The chapter is organized as follows. We start with section 5.2 where we present a couple
of well-posedness results regarding the forward problem. In section 5.3 we present the main
results. In particular we explain how to recover the ROM matrices using double sided data.
We also study the well-posedness of the associated nonlinear variational inverse problem and
we present the optimality condition. We continue with section 5.4 where we present several
numerical experiments of our ROM based FWI method and we conclude the chapter with a
discussion section.

5.2 Preliminaries
Our forward problem is to find a weak solution u ∈ H1(0,1) such that(

− d2

dx2 − k2m
)

u(k) = 0, x ∈ (0,1) (5.1)

u′(k)+ ıku(k) = 1, x = 0 (5.2)

u′(k)− ıku(k) = 0, x = 1. (5.3)

We assume for simplicity that the coefficient m, is an element of H1((0,1); [1,∞)), with
m(0) = m(1) = 1, and k > 0. We also note that for m > 0 bounded we can prove existence and
uniqueness of solutions. In a variational framework, the above differential equation becomes,

(u′(k),ψ ′)− k2(mu(k),ψ)− ık{u(k)|x=1ψ(1)+u(k)|x=0ψ(0)}=−ψ(0), (5.4)

∀ψ ∈ H1(0,1).

Here, (·, ·) denotes the L2-inner product. We also assume to have measurements of the solutions
for a discrete set of wavenumbers,

W= {ki : i = 1, ...,N},

of the form

f (k2) = u(k)|x=0, g(k2) = u(k)|x=1. (5.5)
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The feature that sets apart our setting from what has been implemented in the past [26, 9], is
that we consider double sided data (reflection and transmission). From the data we reconstruct
the ROM projection of the forward scattering problem onto the finite dimensional space

XN = span{ui : i = 1, ...N}, (5.6)

with ui = u(ki). As we shall see in detail, this projection yields three matrices, the stiffness, the
mass and the boundary matrix, S,M,B respectively.

We now present some known results about the forward problem. Well-posedness of the
forward problem can be shown either using the Lax-Milgram theory, see for example [65] or
[4], or using the equivalent Lippmann-Schwinger equation of the direct scattering problem. We
denote the anti-dual of H1 as H1′ and the brackets ⟨·, ·⟩ denote duality.

Proposition 5.2.1. Given k > 0, there exist a unique solution u(k,m) ∈ H1(0,1) that satisfies
the state equation (5.1)-(5.3).

Proof. A more detailed sketch of the proof can be found in the appendix of this chapter, and for
full details we refer to [66, 4]. In short, the forward problem can be reduced to the following
linear problem, of finding u ∈ H1(0,1) :

ΦT (I + k2A )u =−δ0, H1(0,1)
′

(5.7)

where Φ is the linear Riesz isomorphism, T is defined through the form

a1(u,v) =
∫ 1

0
u′v′dx− ik{(uv)|x=0 +(uv)|x=1}, u,v ∈ H1 (5.8)

such that

a1(u,v) = (T u,v)H1, u,v ∈ H1. (5.9)

We define V such that

⟨V u,v⟩= a2(u,v) =
∫ 1

0
muvdx, u,v ∈ H1, (5.10)

and A = T −1Φ−1V iH1→L2 , where iH1→L2 is the compact embedding operator of H1(0,1) to
L2(0,1).

Corollary 5.2.1. The traces

f (λ ) = u(
√

λ )|x=0, g(λ ) = u(
√

λ )|x=1, λ > 0 (5.11)

are well defined.
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5.3 Main Results

In this section we present our main results. We start with describing how to recover the so-
called ROM matrices from double-sided data. We then continue with the study of our ROM
based nonlinear inversion method.

5.3.1 ROM Matrices Construction Using Two-Sided Data

In this paragraph we describe the passage from boundary measurements to the ROM projections
of the forward problem. We can express (5.4) equivalently as

(S − k2M (m)− ıkB)u =−δ0, (5.12)

as an H1(0,1)
′
relation. For example

S : H1(0,1)→ H1(0,1)
′

(5.13)

acts as follows

⟨S y,φ⟩= (y′,φ ′). (5.14)

Similarly, we define M ,B.

Remark 5.3.1. For the shake of completeness, it is useful to connect S ,M ,B with the opera-
tors used in the proof of proposition 5.2.1. We get

⟨(S − k2M (m)− ıkB)u,v⟩=−⟨δ0,v⟩, ∀v ∈ H1, (5.15)

or

⟨(S − k2M (m)− ıkB)u,v⟩= a1(u,v)− k2a2(u,v) = (T (I + k2A )u,v)H1 = (5.16)

⟨ΦT (I + k2A )u,v⟩, ∀v ∈ H1, (5.17)

Therefore

S − k2M (m)− ıkB = ΦT (I + k2A ) (5.18)
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We now consider relation (5.12) on XN which is spanned by exact solutions that correspond
to different wavenumbers, as explained before. We first observe that we can restrict S on XN
such that

⟨S |XN u,φ⟩= ⟨S u,φ⟩,u ∈ XN ,φ ∈ H1(0,1). (5.19)

and subsequently the elements

⟨S |XN u,φ⟩= ⟨S u,φ⟩,u ∈ XN ,φ ∈ XN . (5.20)

This way, we define the stiffness matrix, S ∈ CN×N with entries

Si j = ⟨S ui,u j⟩= (u′i,u
′
j), i, j ∈ {1, ...N}. (5.21)

Similarly, we define the mass matrix

Mi j = (mui,u j), i, j ∈ {1, ...N}. (5.22)

The main characteristic making this approach useful for solving the inverse problem, is that the
ROM matrices can be computed directly from the data. From now on we denote

fi = f (k2
i ), i = 1, ...,N,

and

gi = g(k2
i ), i = 1, ...,N.

Lemma 5.3.1. The ROM system matrices S,M are given in terms of the boundary data

Mi j =− f j − fi

k2
j − k2

i
+ i

gig j + fi f j

k j − ki
, i ̸= j, (5.23)

Mii =
{
− dRe( f )

dλ
(λ )− Im(g)(λ )2

√
λ

dRe(g)
dλ

(λ )+Re(g)(λ )2
√

λ
dIm(g)

dλ
(λ )−

Im( f )(λ )2
√

λ
dRe( f )

dλ
(λ )+Re( f )(λ )2

√
λ

dIm( f )
dλ

(λ )
}∣∣∣

λ=k2
i

(5.24)

Si j =−
k2

j f j − k2
i fi

k2
j − k2

i
+ ı(k2

j ki + k2
i k j)

gig j + fi f j

k2
j − k2

i
, i ̸= j, (5.25)
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Sii =
{
(−λ

dRe( f )
dλ

(λ )−Re( f )(λ ))− Im(g)(λ )2λ
3/2 dRe(g)

dλ
(λ )+

Re(g)(λ )2λ
3/2 dIm(g)

dλ
(λ )+Re( f )(λ )2λ

3/2 dIm( f )
dλ

(λ )−

Im( f )(λ )2λ
3/2 dRe( f )

dλ
(λ )
}∣∣∣

λ=k2
i

, (5.26)

i, j = 1, ...,N.

Proof. The proof can be found in the appendix 5.6.2.

5.3.2 Solving the Inverse Problem with Nonlinear Optimization
In this paragraph we study a nonlinear inversion method based on the ROM approach. In partic-
ular, after acquiring the ROM matrix, S = Sobs., we set up the following nonlinear optimization
problem of estimating the refractive index m, using the stiffness matrix Sobs. as input:

min{φ(m) : m ∈ H1((0,1); [1,∞)),m(0) = m(1) = 1} (5.27)

with

φ(m) =
1
2
∥Sobs.−S(m)∥2

F +
ε

2
∥m∥2

H1(0,1), for some ε > 0. (5.28)

S(m) is given according to relation (5.21) for a given m, and ∥ · ∥F is the Frobenius norm (i.e.
we try to estimate m by matching modelled S(m) with true Sobs.). The special form of the
functional that implicitly defines φ , let J, (product of wavefields in the computation of the
modelled stiffness) makes showing existence of minimizers interesting. In particular since J is
a sum of both weakly lower semicontinuous and not weakly lower semicontinuous functionals
there is no guarantee on the behaviour of φ in terms of weak lower semicontinuity.

Existence of Minimizers

There are many ways of showing existence of minimizers in optimal control problems, see
e.g. [36]. Here, the form that the elements of our modeled data have (elements of S are L2

inner-products of the derivatives of the states) are not standard and create challenges in proving
existence of solutions for the inverse problem. To be specific, the functional that implicitly
defines φ through the reduced formulation includes non-weakly lower semicontinuous terms.
In this framework, it is convenient to analyse the coefficient to state map m 7→ u(m) for showing
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well-posedness for the optimization problem. Showing "smoothness" of the coefficient to state
map has been shown formally in the R2,3 scattering problem, see [20]. We work similarly here.
We define the admissible set

Kad = {m ∈ H1((0,1); [1,∞)), m(0) = m(1) = 1}. (5.29)

Also, with ∂1,∂2 we denote the partial Fréchet derivatives with respect to the first and second
variables of a function respectively.

We consider the function F : C([0,1];(0,∞))×H1(0,1)→ H1(0,1)
′
given by

F(m,u) = (S − k2M (m)− ıkB)u+δ0, (m,u) ∈C([0,1];(0,∞))×H1(0,1). (5.30)

Using the implicit function theorem applied on F , we obtain that a wavefield u is a smooth
function of the coefficient m as stated below.

Lemma 5.3.2. Given k > 0, the map C([0,1];(0,∞)) ∋ m → u(k,m) ∈ H1(0,1) is continuous
and Fréchet differentiable.

All details on the above lemma are given in the appendix 5.6.3. Now, we are ready to show
existence of minimizers for the variational inverse problem of our study.

Remark 5.3.2. As will shall see in the proof of the following theorem, it is convenient to study
the smoothness of u as a function of m ∈C[0,1] since we will make a passage from H1−weakly
convergent sequence of coefficients to C[0,1]−strongly convergent sequences.

Theorem 5.3.1. The misfit functional φ obtains minimizers on Kad .

Proof. We denote

φ(m) =
1
2

N

∑
i, j=1

{
|Si j(m)−Sobs.

i j |2
}
+

ε

2
∥m∥2

H1(0,1) =

1
2

N

∑
i, j=1

φi j(m)+
ε

2
∥m∥2

H1(0,1),m ∈Kad. (5.31)

Let (i, j) ∈ {1, ...,N}2. Since φ ≥ 0 for all m ∈Kad , there exists µ > 0 such that

µ = inf
m∈Kad

φi j(m). (5.32)

Therefore there is a sequence

(φ(mν))ν∈N ⊂ {φ(m) : m ∈Kad} (5.33)
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such that

φ(mν)→ µ, ν → ∞. (5.34)

Since we use a regularization parameter, and since {φ(mν)}ν is included in a ball, it follows
that the sequence (mν)ν∈N ⊂ Kad is bounded. Therefore, there is a subsequence (mν)ν∈N1 ⊂
(mν)ν∈N that has a weak limit, let m̂, in σ(H1,H1′). Symbolically

mν ⇀ m̂ in σ(H1((0,1),R),H1((0,1),R)′). (5.35)

m̂ is included in Kad since the set is closed and convex. Due to the Sobolev’s compact embed-
ding we also obtain that

mν → m̂ in C([0,1];R). (5.36)

Since u(k, ·) is continuous as a function of m, we obtain for every i, j = 1, ...,N that

u(ki,mν)→ u(ki, m̂), in H1(0,1) (5.37)

and

u(k j,mν)→ u(k j, m̂), in H1(0,1), (5.38)

as ν → ∞. Since d
dx : H1(0,1)→ L2(0,1) is bounded, we obtain that

du(ki,mν)

dx
→ du(ki, m̂)

dx
, in L2(0,1) (5.39)

and
du(k j,mν)

dx
→ du(k j, m̂)

dx
, in L2(0,1), (5.40)

as ν → ∞, for all i, j = 1, ...,N. Finally, for all i, j = 1, ...,N we obtain that

lim
ν

φi j(mν) = lim
ν

∣∣∣∫ ui(mν)
′u j(mν)

′dx−Sobs.
i j

∣∣∣2 =∣∣∣∫ ui(m̂)′u j(m̂)′dx−Sobs.
i j

∣∣∣2 = φi j(m̂),

since the absolute value function is continuous and the following limit exists,

lim
ν

∫ 1

0
ui(mν)

′u j(mν)
′dx ∈ C. (5.41)

Therefore by the strong convergence of the sequences (φi j(mν))ν , i, j = 1, ...,N and the weak
lower semicontinuity of the norm, we obtain

µ = lim
ν

φ(mν)≥ liminf
ν

φ(mν) =
N

∑
i j=1

φi j(m̂)+
ε

2
liminf

ν
∥mν∥2

H1 ≥ φ(m̂)≥ µ (5.42)
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Derivative of Misfit and Optimality Condition

Here we derive the first order optimality condition of the problem in the continuous setting. We
first define the form

b(u,v) =
∫ 1

0
u′v′dx, u,v ∈ H1(0,1). (5.43)

We obtain the following result.

Proposition 5.3.1. Let (i, j) ∈ {1, ...,N}2. Then the function φi j : H1((0,1);(0,∞))→ [0,∞] is
C1, with derivative at an m0

⟨Dmφi j(m0),h⟩= Re({b(ui(m0),u j(m0))−Sobs.
i j }{⟨b(·,u j(m0)),Dui(m0)h⟩+

⟨b(ui(m0), ·),Dmu j(m0)h)⟩})+
ε

N
(m0,h)H1(0,1),

for a direction h ∈ H1((0,1);R).

Proof. We know that if

q : H1((0,1);R)→ C (5.44)

is differentiable, then

1
2
⟨Dm|q(m0)|2,h⟩= Re(q(m0)⟨Dmq(m0),h⟩) (5.45)

In our case, q(m0) = b(ui(m0),u j(m0))−Si j, with

⟨Db(u,v),(h,z)⟩= b(u,z)+b(h,v) (5.46)

at (u,v) ∈ {H1(0,1)}2, at direction (h,z). Therefore

⟨Dmq(m0),h⟩=
⟨Db(ui(m0),u j(m0))◦Dm(ui(m0),u j(m0)),h⟩=
⟨Db(ui(m0),u j(m0)),Dm(ui(m0),u j(m0))h⟩=

b(Dmu j(m0)h,ui(m0))+b(Dmui(m0)h,u j(m0)) =

⟨b(ui(m0), ·),Dmu j(m0)h)})⟩+ ⟨b(·,u j(m0)),Dui(m0)h⟩. (5.47)
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We define G : H1(0,1)→ H1(0,1)′ such that

⟨G φ ,u⟩=
∫ 1

0
u′φ ′dx = b(u,φ). (5.48)

This gives for a direction h ∈ H1((0,1);R)

b(Dmu j(m0)h,ui(m0)) = b(Dmu j(m0)h,ui(m0)) =

⟨G ui,Dmu jh⟩= ⟨(Dmu j)∗G ui,h⟩.

Since h = h (h is real), we obtain the following (see [48, page 37])

⟨(Dmu j)∗G ui,h⟩= ⟨(Dmu j)∗G ui,h⟩=

⟨(Dmu j)∗G ui,h⟩. (5.49)

We obtain similarly,

b(Dmui(m0)h,u j(m0)) = ⟨(Dmui)
∗G u j,h⟩

Combining the above we obtain the following theorem.

Theorem 5.3.2. The function φ : H1((0,1);(0,∞))→ [0,∞] is C1, with derivative at an m0

Dmφ(m0) =
N

∑
i, j=1

Re
({

(Dmu j)∗G ui +(Dmui)
∗G u j

}
(b(ui(m0),u j(m0))−Sobs.

i j )
)
+

ε(m0, ·)H1(0,1).

Remark 5.3.3. Since we have derived the analytical expression of the F-derivative of φ , then
the optimality condition is a variational inequality of the form,

⟨Dmφ(m̂),m− m̂⟩ ≥ 0, ∀m ∈Kad, (5.50)

with Dmφ(m̂) given above at a local minimizer, m̂.

5.4 Numerical Results
In this section we include a number of numerical experiments/comparisons between the ROM
based FWI method and the conventional FWI method. Before doing so, we include a paragraph
regarding the discrete optimality condition of the ROM based misfit functional.
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5.4.1 Numerical Implementation: Discrete Optimality Condition
In this paragraph we derive the discrete optimality condition that we use for the numerical
computation of the gradient of the ROM based misfit functional. In the discrete case, given L,
a first order finite-difference matrix and η = 1/Nx being the length of the spatial discretisation
(Nx spatial points) we have that

Si j = η(Lui,Lu j)CNx , (5.51)

assuming that we realize (ui)
N
i=1 in the discrete sense. Now, in order to follow similar steps as

in the continuous case, we take a direction h ∈Rn and we consider as before, φ = ∑
N
i, j=1 φi j (for

simplicity we take ε = 0).

(Dmφi j(m0),h)Rn = Re{(Dm(Si j(m0)−Sobs.
i j ),DmSi j(m)h)CNx}=

Re{((DmSi j(m))∗{Si j(m0)−Sobs.
i j },h)CNx )}. (5.52)

We obtain that

DmSi j = η(Dmu j)
∗L∗Lui +ηu∗jL

∗L(Dmui)⇒ (5.53)

(DmSi j)
∗ = ηu∗i L∗L(Dmu j)+η(Dmui)

∗L∗Lu j. (5.54)

Also,

Dmφi j = Re{η(u∗i L∗L(Dmu j)+η(Dmui)
∗L∗Lu j)[Si j −Sobs.

i j ]}. (5.55)

Now,

ηu∗i L∗L(Dmu j) = η(L(Dmu j),Lui)CNx = η(Lui,LDmu j)CNx = ηDmu∗jL∗Lui, (5.56)

therefore we get

Dmφi j = ηRe{[Si j −Sobs.
i j ](Dmu∗jL∗Lui +Dmu∗i L∗Lu j)}

Remark 5.4.1. Instead of using a variational inequality as our optimality conditions, we can
seek for simplicity solutions such that Dmφ(m̂) = 0.

Remark 5.4.2. In the continuous case we defined an operator G such that

⟨G φ ,u⟩=
∫ 1

0
∂xφ∂xudx. (5.57)

In the discrete sense this means that

⟨G φ ,u⟩ ≈ η(Lφ ,Lu)RNx = η(L∗Lφ ,u)RNx = ηφ
∗L∗Lu,

where L∗ is the adjoint of L defined by the inner product, (·, ·).
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5.4.2 Comparison with Conventional FWI: Convexity
In this section we compare our ROM based FWI approach with the conventional FWI. We use
double sided data for both methods. We can now consider u as a function of discrete values of
x (assuming as before Nx amount of spatial nodes). We also recall that we use N-samples of the
wavenumber. We formulate the FWI problem as follows; given observations zi ∈ C2 with

zi = ( f (ki),g(ki)),

and sampling matrix

P =

(
1 0 · · ·0
0 0 · · ·1

)
∈ R2×Nx ,

find m such that the following functional

φ f wi(m) =
1
2

N

∑
i=1

∥Pu(ki,m)− zi∥2
2

is minimized. As we shall see in the chosen examples, the ROM based method has a convex
profile that avoids local minimizers of the conventional FWI functional. We showcase that by
performing three experiments. In the first two we use measurements corresponding to relatively
high wavenumbers compared to the maximum value of the respective m. In the last one we use
both high wavenumber measurements and strong contrast.

We show that the ROM based FWI misfit avoids the local minimizers of the FWI functional
by plotting the values of the two misfits as functions of m, when m = m0 +adm, with m0 = 1,
and with a having range in an interval Ia such that there exists a′ ∈ Ia with mtrue = m0 +a′dm,
(dm = mtrue − m0). We observe that in the first two examples the ROM misfit functional
is convex. In the third example the functional is not convex, but the local minimizers of the
conventional FWI are avoided.

5.4.3 Comparison with conventional FWI: reconstruction of a smooth co-
efficient

We split this section in two parts. In the first part we compare the two methods assuming that we
have access to noiseless measurements. In the second part we add noise to the measurements.

Reconstruction Using Noiseless Data.

Following the standard adjoint state method, we present the numerical reconstruction of a re-
fractive index using the ROM based FWI. For the numerical reconstruction we use a standard
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Figure 5.1: Comparison between the ROM based FWI and the conventional FWI when we use
10 wavenumbers with kmin = 18 and kmax = 24. On the right we show m0 and mtrue.
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Figure 5.2: Comparison between the ROM based FWI and the conventional FWI when we use
2 wavenumbers k = 20,20.1. On the right we show m0 and mtrue.
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Figure 5.3: Comparison between the ROM based FWI and the conventional FWI when we use
2 wavenumbers with k = 20,20.1. On the right we show m0 and mtrue.

0.0 0.5 1.0
x

1.00

1.02

1.04

1.06

1.08

1.10

m
(x

)

2.5 5.0 7.5 10.0
k

0.5

0.4

0.3

0.2

0.1

0.0

f(k
)

(f)
(f)

2.5 5.0 7.5 10.0
k

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

g(
k)

(g)
(g)

Figure 5.4: From left to right. The coefficient, the reflection data f , the transmission data g.

fixed point iteration of the form

m(κ+1) = m(κ)−ωDmφ(m(κ)), κ = 1,2, ..., (5.58)

with step ω. In figure 5.4 we show the refractive index of our experiment, the reflection and the
transmission data. We compare the results of our method with the results of the conventional
FWI method using the same step ω for both methods, and when we run the fixed point iteration
for 15,30 and 45 steps. Results can be seen in figures 5.5-5.7. Finally, figure 5.8 shows that
after a sufficiently large number of iterations, the ROM based method recovers a coefficient that
is closer to the true one. Also, the data fit of the reflection data is slightly better when we follow
the ROM based method. The data fit of the transmission data does not seem to improve when
following the ROM based method.
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Figure 5.5: Comparison between the results produced by the ROM based and conventional
FWI methods after 15 steps of the fixed point iteration. On the left, comparison between re-
constructed coefficients. The errors are ∥mrom −m∥2 = 0.214 and ∥m f wi −m∥2 = 0.271. In the
middle and on the right we compare data-fit (transmission and reflection).
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Figure 5.6: Comparison between the results produced by the ROM based and conventional
FWI methods after 30 steps of the fixed point iteration. On the left, comparison between re-
constructed coefficients. The errors are ∥mrom −m∥2 = 0.152 and ∥m f wi −m∥2 = 0.169. In the
middle and on the right we compare data-fit (transmission and reflection).
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Figure 5.7: Comparison between the results produced by the ROM based and conventional
FWI methods after 45 steps of the fixed point iteration. On the left, comparison between re-
constructed coefficients. The errors are ∥mrom −m∥2 = 0.145 and ∥m f wi −m∥2 = 0.156. In the
middle and on the right we compare data-fit (transmission and reflection).
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Figure 5.8: From left to right. On the left, comparison of the misfit ∥m−mκ∥2 when mκ is
recovered doing κ− steps of the fixed point iterations either of the conventional or the ROM
based FWI method. We compare similarly the misfits of the reflection and the transmission data
yielded by the respective mκ . We used the same step ω in both fixed point iterations.
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Figure 5.9: Comparison of the two methods when there is noise in the measurements (σ =
1× 10−4). On the left, comparison of the misfit ∥m−mκ∥2 when mκ is recovered doing κ−
steps of the fixed point iterations either of the conventional or the ROM based FWI method
(dotted lines show average of 5 experiments). We compare similarly the average of the misfits
of the reflection and the transmission data yielded by the respective mκ . We used the same step
in both fixed point iterations.

Reconstruction with Noise in the Data.

In this subsection we compare the methods on noisy data. We add i.d.d. normally distributed
noise to the data with mean zero and variance σ2. We study the case when σ = 1×10−4. We
do not add any additional regularization. The results are shown in figure 5.9. We observe that
the ROM based approach is affected by the noise and it yields inferior results compared with
the conventional FWI method.

5.5 Discussion and Conclusions
In this chapter we studied a nonlinear optimization problem which can be viewed as a modi-
fied FWI problem using the stiffness ROM matrix as input. Due to the unconventional form
of the misfit functional that includes not weakly lower semicontinuous terms, we studied well-
posedness of the problem and we compared numerically our proposed method with the con-
ventional FWI method. As we observed through our numerical experiments, the ROM based
FWI misfit functional seems to have a convex profile, something that the conventional FWI
lacks when we use relatively high frequency data. This observed convex behaviour of the ROM
based functional makes the extension of the method to 2 and 3 dimensional inverse problems
for the Helmholtz equation interesting. With this chapter we believe that we have made the first
steps towards this extension. Of course, different variations of the ROM based FWI methods
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can be proposed, in the sense of using M (or even B) as input. The study of these cases are
interesting and in the future we plan on analysing these variations. Finally, it is worth noting
that our method might have some desired properties, such as improved convexity of the misfit
for example, but it is sensitive in the presence of noise. We also plan to investigate various ways
of improving the performance of the ROM based FWI method when the measurements are not
exact.

5.6 Appendix: Proofs

5.6.1 Proof of Proposition 5.2.1
Proof of proposition 5.2.1. For the sake of completeness we include a sketch of the proof. We
refer to [65] and [4] for more details. We define the forms a1,a2 : H1(0,1)2 → C with

a1(u,v) =
∫ 1

0
u′v′dx− ik{(uv)|x=0 +(uv)|x=1}, (5.59)

a2(u,v) =−
∫ 1

0
muvdx, u,v ∈ H1(0,1). (5.60)

We note that a1 is coercive and that a1,a2 are bounded forms. For a1, we denote with L,U the
low bound in the coercivity estimate, and the upper bound for the continuity estimate respec-
tively. We define the linear Riesz isomorphism,

Φ : H1(0,1)→ H1(0,1)
′
, (5.61)

with Φu = (u, ·)H1,u ∈ H1(0,1). Since a1(u, ·) is an antilinear functional on H1(0,1), and using
the Riesz representation theorem we define T : H1(0,1)→ H1(0,1) with

a1(u,v) = (T u,v)H1. (5.62)

T is one-to-one onto and we have the estimates ∥T ∥∞ ≤U, ∥T −1∥∞ ≤ L. Also, we define the

linear operator V : L2(0,1)→ H1(0,1)
′
, s V7→ a2(s, ·). We also define the linear map

A1 = T −1
Φ

−1V : L2(0,1)→ H1(0,1) (5.63)

and

A = A1 ◦ iH1→L2 : H1(0,1)
c
↪→ L2(0,1)→ H1(0,1), s 7→ A1s. (5.64)
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A is bounded as composition of bounded operators. Also, for s ∈ H1(0,1),w ∈ H1(0,1), we
have a1(A s,w) = a2(s,w). We claim that I + k2A is one-to-one. Let now u ∈ H1(0,1).
Finding a solution of the differential equation, is equivalent to finding u ∈ H1(0,1) that satisfies

a1(u,v)+ k2a2(u,v) =−⟨δ0,v⟩,∀v ∈ H1(0,1) ⇐⇒
a1(u,v)+ k2a1(A u,v) =−⟨δ0,v⟩, ∀v ∈ H1 ⇐⇒

a1(u+ k2A u,v) =−⟨δ0,v⟩, ∀v ∈ H1 ⇐⇒ (5.65)

(T (u+ k2A u),v)H1(0,1) =−⟨δ0,v⟩, ∀v ∈ H1 ⇒ (5.66)

ΦT (I + k2A )u
H1(0,1)

′

= −δ0 ⇐⇒ (I + k2A )u = T −1
Φ

−1(−δ0) ∈ H1(0,1). (5.67)

Since A ∈ L (H1(Ω),H1(Ω)) is compact and I + k2A is injective, using the Fredholm alter-
native we obtain that there exists a unique element u ∈ H1(Ω) that satisfies the last equation.
Finally, we obtain the forward stability estimate

∥u∥H1(0,1) ≤ ∥(I + k2A )−1∥L (H1,H1)∥T −1∥L (H1,H1)∥Φ
−1∥

L (H1,H1′)
∥δ0∥H1′.

5.6.2 Proof of Lemma 5.3.1
Proof of lemma 5.3.1. We take k = ki and we write ui = u(ki, ·). Take φ = u j,

(u′i,u
′
j)− k2

i (mui,u j)− ıkiui(1)u j(1)− ıkiui(0)u j(0) =−u j(0) (5.68)

Now we denote

Mi j = (mui,u j) (5.69)

Si j = (u′i,u
′
j) (5.70)

and we obtain

Si j − k2
i Mi j =− f j + iki{gig j + fi f j} (5.71)
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Similarly for k = k j

(u′j,u
′
i)− k2

j(mu j,ui)− ık ju j(1)ui(1)− ık ju j(0)ui(0) =−ui(0), (5.72)

which gives

S ji − k2
j M ji =− fi + ik j{g jgi + f j fi}. (5.73)

Taking the complex conjugate of the above relation we obtain

S ji − k2
j M ji =

Si j − k2
j Mi j =− fi − ik j{gig j + fi f j}. (5.74)

Subtracting (5.71) - (5.74) we arrive at

Si j − k2
i Mi j −Si j + k2

j Mi j =

− f j + iki{gig j + fi f j}+ fi + ik j{gig j + fi f j}}⇒

(−k2
i + k2

j)Mi j =− f j + fi + iki{gig j + fi f j + fi}+ ik j{gig j + fi f j}⇒ (5.75)

Mi j =
− f j + fi + iki{gig j + fi f j}+ ik j{gig j + fi f j}

k2
j − k2

i
⇒ (5.76)

Mi j =− f j − fi

k2
j − k2

i
+ i

(ki + k j)(gig j + fi f j)

k2
j − k2

i
⇒ (5.77)

Mi j =− f j − fi

k2
j − k2

i
+ i

gig j + fi f j

k j − ki
. (5.78)

Similarly we multiply (5.71) by k2
j and (5.74) by k2

i and we obtain

k2
j Si j − k2

j k
2
i Mi j =−k2

j f j + ık2
j ki{gig j + fi f j} (5.79)

k2
i Si j − k2

j k
2
i Mi j =−k2

i fi − ık2
i k j{gig j + fi f j} (5.80)
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Subtracting the above two relations,

(k2
j − k2

i )Si j =−k2
j f j + ık2

j ki{gig j + fi f j}+ k2
i fi + ık2

i k j{gig j + fi f j}⇒ (5.81)

Si j =
−k2

j f j + k2
i fi

k2
j − k2

i
+ ı(k2

j ki + k2
i k j)

gig j + fi f j

k2
j − k2

i
⇒ (5.82)

Si j =−
k2

j f j − k2
i fi

k2
j − k2

i
+ ı(k2

j ki + k2
i k j)

gig j + fi f j

k2
j − k2

i
. (5.83)

Now, we derive the formula for the diagonal elements of M. First of all, consider∫ 1

0
mu(λ )u(µ)dx := M (λ ,µ) : [λmin,λmax]× [µmin,µmax]→ C. (5.84)

M is a continuous function, thus, if we fix µ = µ0, then the following limit exists

lim
λ→µ0

M(λ ,µ0) = ∥u(µ0)∥L2(0,1,mdx) > 0 (5.85)

The elements of the mass matrix M are given by relation (5.78) above. Let k2
i = λ and k2

j =
λ +h, with h ∈ R. Take

Mi j = M(λ ,λ +h) =− f (λ +h)− f (λ )
h

+ ı
g(λ )g(λ +h)+ f (λ ) f (λ +h)√

λ +h−
√

λ
(5.86)

We write f = Re( f )+ ıIm( f ) and g = Re(g)+ ıIm(g). The first term of (5.86) can be written as

− f (λ +h)− f (λ )
h

=−Re( f )(λ +h)− ıIm( f )(λ +h)−Re( f )(λ )− ıIm( f )(λ )
h

=

−Re( f )(λ +h)−Re( f )(λ )
h

+ ı
Im( f )(λ +h)+ Im( f )(λ )

h
. (5.87)

The second term of (5.86) is

ı
g(λ )g(λ +h)+ f (λ ) f (λ +h)√

λ +h−
√

λ
=

ı
Re(g)Re(gh)+ Im(g)Im(gh)+Re( f )Re( f h)+ Im( f )Im( f h)√

λ +h−
√

λ
+
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(
− Im(g)Re(gh)−Re(g)Im(gh)+ Im( f )Re( f h)−Re( f )Im( f h)√

λ +h−
√

λ

)
, (5.88)

since

gḡh = (Re(g)+ ıIm(g))(Re(gh)− ıIm(gh)) =

Re(g)Re(g)h + Im(g)Im(g)h + ıIm(g)Re(gh)− ıIm(gh)Re(g),

where we used the shorthand notation f h = f (λ +h) (also for g). Now, since this limit exists,

lim
h→0

M(λ ,λ +h) = ∥u(λ )∥L2(0,1,mdx) ∈ R,

we obtain that

lim
h→0

ℑ(M(λ ,λ +h)) = 0, (5.89)

thus

lim
h→0

{Im( f )h + Im( f )
h

+

Re(g)Re(g)h + Im(g)Im(g)h +Re( f )Re( f )h + Im( f )Im( f )h
√

λ +h−
√

λ

}
= 0.

Therefore

Mii = lim
h→0

{
− Re( f )(λ +h)−Re( f )(λ )

h
−

Im(g)Re(g)h −Re(g)Im(g)h + Im( f )Re( f )h −Re( f )Im( f )h
√

λ +h−
√

λ

}
=

lim
h→0

{
− Re( f )(λ +h)−Re( f )(λ )

h
−

Im(g)Re(g)h −Re(g)Im(g)+Re(g)Im(g)−Re(g)Im(g)h
√

λ +h−
√

λ
−

Re( f )Im( f )h − Im( f )Re( f )h
√

λ +h−
√

λ

}
⇒

Mii =−dRe( f )
dλ

(λ )− Im(g)(λ )2
√

λ
dRe(g)

dλ
(λ )+Re(g)(λ )2

√
λ

dIm(g)
dλ

(λ )−

Im( f )(λ )2
√

λ
dRe( f )

dλ
(λ )+Re( f )(λ )2

√
λ

dIm( f )
dλ

(λ ) (5.90)

We compute the diagonal of S similarly.
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5.6.3 Proof of Lemma 5.3.2
We start by stating the implicit function theorem.

Theorem 5.6.1. Let a function F : C×P → W, C,P,W being Banach spaces. We assume that
there exists an open set C0 ⊂ C such that for every m ∈ C0 there exists a unique u = u(m) ∈ P
such that

F(m,u) = 0. (5.91)

Then if

F : C×P →W (5.92)

is continuous, if

∂2F : C×P →W (5.93)

is continuous and if

(∂2F(m,u))−1 : W → P, ∀m ∈C0, (5.94)

exists and is bounded, then there exists a continuous map such that

C0 ∋ m 7→ u(m) ∈ P. (5.95)

Also, if ∂1F is continuous, we obtain that u is Fréchet differentiable.

Lemma 5.6.1. The requirements of theorem 5.6.3 hold for F.

Proof. Let P = H1(0,1). For all m ∈C0 =C([0,1];(0,∞))⊂C =C([0,1];R) there exists u such
that F(m,u) = 0. Second, we want to show continuity of F . We get for (δm,δu) ∈C×H1

F(m+δm,u+δu)−F(m,u) =

S (u+δu)− k2M (m+δm)(u+δu)− ıkB(u+δu)+δ0−
(S (u)− k2M (m)(u)− ıkB(u)+δ0) =

S (δu)− k2M (δm)(u)− k2M (m)(δu)− k2M (δm)(δu)− ıkB(δu). (5.96)
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Now, for φ ∈ H1(0,1)

|⟨M (δm)(u),φ⟩|=
∣∣∣∫ 1

0
(δm)uφdx

∣∣∣≤ ∥δm∥∞

∫ 1

0

∣∣∣uφ

∣∣∣dx ≤

∥δm∥∞∥u∥∞

∫ 1

0

∣∣∣φ ∣∣∣dx ≤ ∥δm∥∞∥u∥∞∥φ∥∞ ≤ γ
2∥δm∥∞∥u∥H1∥φ∥H1 ,

where γ is the bound of the Sobolev imbedding from H1 to C[0,1]. Similarly,

|⟨M (m)(δu),φ⟩| ≤ γ
2∥δu∥H1∥m∥∞∥φ∥H1, (5.97)

|⟨M (δm)(δu),φ⟩| ≤ γ
2∥δu∥H1∥δm∥∞∥φ∥H1. (5.98)

Also,

|⟨S δu,φ⟩|= |(δu′,φ ′)| ≤ ∥δu′∥L2∥φ
′∥L2 ≤ ∥δu∥H1∥φ∥H1, (5.99)

|⟨B(δu),φ⟩|= |(δuφ)|x=0 +(δuφ)|x=1| ≤ ∥δu∥∞∥φ∥∞ +∥δu∥∞∥φ∥∞ ≤
2γ∥δu∥H1∥φ∥H1.

All the above relations yield that

∥F(m+δm,u+δu)−F(m,u)∥
H1′ → 0 as δm,δu → 0. (5.100)

Also, since for fixed m, F(m, ·) is affine on u, we get that

∂2F(m,u) ∈ L (H1,H1′), u ∈ H1, (5.101)

and at a point (m,u) at a direction s we get

∂2F(m,u)s = ⟨(S − k2M (m)− ıkB)s, ·⟩, s ∈ H1. (5.102)

As before, ∂2F is continuous as a function of (m,u). Similarly, for fixed u, we obtain at (m,u)
in a direction h

∂1F(m,u)h =−k2⟨M (u)h, ·⟩ ⇒ (5.103)

∂1F(m,u)h =−k2⟨M (u)h, ·⟩, ∀(m,u) ∈C×H1(0,1), (5.104)
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and ∂1F is continuous on C×H1. Since the partial derivatives of F are continuous we conclude
that the gradient of F exists and is continuous. Finally, since at any point of evaluation,

∂2F(m,u) = S − k2M (m)− ıkB = ΦT (I + k2A ) (5.105)

is invertible, we obtain that the following map

C([0,1];(0,∞)) ∋ m 7→ u(k,m) ∈ H1(0,1) (5.106)

is well-defined, continuous and is F-differentiable.

Proof of lemma 5.3.2. The proof of the lemma is a corollary of the above result



Chapter 6

Outlook and Conclusions

In this thesis we studied the GLM and ROM based inversion methods for solving inverse scat-
tering problems. In particular, our contributions are the following:

1. Variational TLS regularization for classical GLM inversion: We revisited some clas-
sical results from inverse scattering to solve the 1D inverse coefficient problem for the
frequency domain wave equation. We considered the GLM method with noisy data and
proposed a regularised total least squares formulation in the infinite dimensional setting.
We contributed an error bound for the unregularised GLM approach and have shown ex-
istence of minimizers for the variational formulation of the TLS approach. Finally, we
illustrated numerically that the TLS approach gives superior results as compared to con-
ventional Tikhonov regularisation.

2. A generalized GLM equation for the 1D Helmholtz scattering: We revisited the clas-
sical 1D Helmholtz scattering problem and we derived a generalised Gelfand-Levitan-
Marchenko equation in the space of tempered distributions. We showed that the Jost
solution of the Helmholtz equation minus a plane wave grows in a controlled way as the
wave number grows. This allowed us to consider a distributional framework where we
derived a distributional version of the Gelfand-Levitan-Marchenko equation.

3. Data driven 1D inverse Schrödinger scattering: We treated the inverse problem of re-
trieving the scattering potential in a 1D Schrödinger equation from boundary data. To
do this, we proposed a two-step approach inspired by a previously-published ROM-based
method. We extended this method, previously applied to 1D diffusion problems with
Neumann boundary conditions, to the 1D Schrödinger equation with impedance bound-
ary conditions. In particular, we presented explicit expressions for retrieving the ROM-
matrices from boundary data and proposed a novel approach for approximating the state
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from these matrices. This approach, based on ideas from data-assimilation, is an alterna-
tive to the previously proposed method based on Lanczos-orthogonalization. Given the
estimates of the states, the scattering potential is obtained by solving an integral equation.

4. ROM based nonlinear waveform inversion We studied a reduced order model (ROM)
based waveform inversion method applied to a Helmholtz problem with impedance bound-
ary conditions and variable refractive index. We obtained relations that allow the recon-
struction of the Galerkin projection of the continuous problem onto the space spanned by
solutions of the Helmholtz equation. We also studied the nonlinear optimization method
based on the ROM aimed to estimate the refractive index from reflection and transmission
data.

In the next two paragraphs we elaborate on future research directions both in the GLM and
the ROM based inversion.

6.1 Future Work on the Gelfand-Levitan-Marchenko Inver-
sion

In this paragraph we discuss interesting future work directions on the GLM based inversion.
First of all, it is interesting to study the numerical solution of the coupled system (3.80) (3.81).
The most interesting research direction however, is the extension of the distributional GLM
method to the Helmholtz problem in 2,3D. Since there is no transformation from the Helmholtz
equation to the Schrödinger equation, the distributional point of view that we introduced can
be useful. We can even give some more details. For example, take the following scattering
problem,

(−∆− k2m(x))u(k,x) = 0, x ∈ Rδ , δ = 2,3, (6.1)

u(k,x) = us(k,x)+ eıkx·d, x ∈ Rδ (6.2)

lim
r→∞

r
δ−1

2

(
∂us(k,r)

∂ r
− ıkus(k,r)

)
= 0, (6.3)

where d ∈ {x ∈ Rδ : |x| = 1} and r = |x|. It is interesting to study u as a function of k, and
particularly to examine the growth properties of the solution in terms of the wave-number. That
would be a first step towards a possible extension of our point of view to 2,3D.
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6.2 Future Work on Reduced Order Model Inversion
In this paragraph we discuss interesting future work directions on the ROM based inversion.
We start by discussing possible research directions based on chapter 4. Worth noting is under-
standing why when orthogonalizing the snapshot space using the Lanczos algorithm, we obtain
a basis that depends weakly on the medium. Working towards this direction is interesting re-
gardless of the framework (scattering or diffusion). Also, it is interesting to extend the ROM
based techniques that we introduced in chapter 4 to the Helmholtz case and to 2,3D. Some other
open questions based on the techniques of chapter 4 include the approximation error, stability
estimates, and more practical aspects such an iterative approach where the reference potential
is iteratively updated.

Now, there are many different research routes we can follow by taking inspiration from
our work on the ROM based FWI of chapter 5. First of all, different variations of the ROM
based FWI methods can be proposed, in the sense of using the mass matrix (or even B) as
input. It would be interesting to investigate how a method in the spirit of the ROM based FWI
method would compare in 2 and 3D with the conventional FWI. It would be also interesting to
combine the Lanczos algorithm with a ROM based FWI method applied to inverse Schrödinger
scattering. This could be set up as follows. Define A = M−1S and let T be the tridiagonal matrix
that the Lanczos algorithm returns after giving as input A and M−1 f . It would be interesting to
study the problem

min
q

1
2
∥T (q)−T obs∥2

F . (6.4)

Apart from the practical study of the above optimization problem (convexity, reconstruction),
the theoretical study of this approach is interesting (existence of minimizers when adding regu-
larization, optimality). Finally, it is interesting to examine ways to improve the already proposed
ROM based FWI method when there is noise in the data, since as we observed, the reconstruc-
tion is affected.
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Chapter 7

Summary

Inverse scattering problems arise in many applications, especially in imaging. In this thesis we
studied frequency domain inverse scattering problems for the Helmholtz and the Schrödinger
operators using both classical inverse scattering and modern reduced order model techniques.

We started by revisiting the classical Gelfand-Levitan-Marchenko (GLM) integral equation
method for solving the inverse Schrödinger scattering problem in 1D. The inverse Schrödinger
scattering problem is interesting for imaging purposes, since it is possible to transform the
Helmholtz and the (frequency domain) acoustic wave equation to the Schrödinger equation us-
ing a coordinate transform. In particular, we considered the GLM method with noise in the data,
where we contributed an error bound for the solution of the unregularised GLM equation. We
also proposed a regularised total least squares formulation in the infinite dimensional setting and
we showed well posedness. Moreover, we studied the 1D scattering problem for the Helmholtz
operator and we developed a GLM theory exclusively for the Helmholtz problem. In particular,
we derived a generalised GLM equation in the space of tempered distributions for reconstruct-
ing the Jost solutions of the Helmholtz operator. To do so, we had to examine the asymptotic
behaviour of the Jost solutions of the Helmholtz operator in terms of the wavenumber.

After studying classical inverse scattering methods based on the GLM approach, we contin-
ued by studying inversion methods based on reduced order models (ROMs). We started with the
inverse Schrödinger scattering problem of retrieving the scattering potential in 1D Schrödinger
equation using boundary data. For that reason, we proposed a two-step approach inspired by a
previously-published ROM-based method. We presented explicit expressions allowing the exact
reconstruction of the ROM-matrices from boundary data and proposed a new data-assimilation
approach for approximating the state from these matrices. Given the estimates of the states,
the scattering potential is obtained by solving a Lippmann-Schwinger type integral equation.
Finally, we combined the traditional FWI method with reduced order models and we proposed
a new nonlinear inversion method for the inverse Helmholtz scattering problem. In particular,



108 CHAPTER 7. SUMMARY

the input of our misfit functional consisted of the stiffness matrix of the ROM projection. In
this case, we studied the well posedness of the nonlinear optimization problem and we derived
the optimality condition. We finally compared numerically the ROM based FWI method with
the conventional FWI method.
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Samenvatting

Problemen binnen inverse scattering ontstaan op natuurlijke wijze in veel toepassingen, met
name binnen de beeldvorming. In dit proefschrift hebben we problemen binnen inverse scat-
tering in het frequentiedomein bestudeerd voor de Helmholtz- en de Schrödinger-operatoren,
gebruikmakend van zowel klassieke inverse scattering als moderne model order reduction tech-
nieken.

We zijn begonnen met het herzien van de klassieke Gelfand-Levitan-Marchenko (GLM)
integraalvergelijksingmethode voor het oplossen van het inverse Schrödinger-scattering prob-
leem in 1D. Het inverse Schrödinger-scattering probleem is interessant voor beeldvormings-
doeleinden, aangezien het mogelijk is om de Helmholtz en de (frequentiedomein) akoestis-
che golfvergelijking te transformeren naar de Schrödinger-vergelijking met behulp van een
coördinatentransformatie. We hebben met name gekeken naar de GLM-methode met ruis
in de gegevens, waar we een foutgrens hebben bijgedragen voor de oplossing van de niet-
geregulariseerde GLM-vergelijking. We hebben ook een geregulariseerde kleinste kwadraten
formulering in het oneindig dimensionale geval voorgesteld én goedgesteldheid aangetoond.
Ook hebben we het 1D-scattering probleem voor de Helmholtz operator bestudeerd én een
GLM-theorie direct voor het Helmholtz-probleem ontwikkeld. In het bijzonder hebben we
een generaliseerde GLM vergelijking afgeleid in de ruimte van getempereerde distributies om
Jostoplossingen van de Helmholtzoperator te reconstrueren. Om dit te doen, moesten we het
asymptotische gedrag van de Jost-oplossingen van de Helmholtz-operator onderzoeken in ter-
men van het golfgetal.

Na het bestuderen van klassieke inverse scattering methoden op basis van de GLM-benadering,
zijn we verder gegaan met het bestuderen van inversiemethoden op basis van reduced order
models (ROM’s). We zijn begonnen met het inverse Schrödinger-scattering probleem van
het ophalen van het scatteringpotentiaal 1D Schrödingervergelijking met behulp van grens-
gegevens. Om die reden hebben we een aanpak in twee stappen voorgesteld, geïnspireerd op een
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eerder gepubliceerde op ROM gebaseerde methode. We hebben expliciete uitdrukkingen gep-
resenteerd die de exacte reconstructie van de ROM-matrices uit grensgegevens mogelijk maken
en een nieuwe data-assimilatiebenadering voor het benaderen van de toestand van deze matrices
voorgesteld. Gegeven de schattingen van de toestanden, wordt het scattering potentiaal verkre-
gen door een integraalvergelijking van het type Lippmann-Schwinger op te lossen. Ten slotte
hebben we de traditionele FWI-methode gecombineerd met reduced order models en hebben
we een nieuwe niet-lineaire inversiemethode voorgesteld voor het inverse Helmholtz-scattering
probleem. De input van onze misfit functional bestond met name uit de stijfheidsmatrix van
de ROM-projectie. In dit geval hebben we de goedgesteldheid van het niet-lineaire optimal-
isatieprobleem bestudeerd en de optimaliteitsvoorwaarde afgeleid. We hebben uiteindelijk de
op ROM gebaseerde FWI-methode numeriek vergeleken met de conventionele FWI-methode.
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