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Preface

While I have long been dismissive of the seemingly obligatory tradition to include a clever epigraph
at the start of your PhD thesis, I eventually caved. The quote below, originally a Haitian proverb but
also included in the lyrics of the song that unquestionably became the soundtrack of my thesis writing
(Sprawl II by Arcade Fire), particularly resonated with me during the final phases of my PhD and as I
began to reflect on the previous four years of my life:

Beyond mountains there are mountains

On the surface, it might seem an overly pessimistic worldview – along the lines of ‘the challenges are
endless’, or ‘as you solve one problem, another one will present itself ’. A more optimistic reading could
be ‘life is a continuous journey of growth’, or ‘overcoming challenges leads to new opportunities’. In my
opinion, both interpretations are valid.

Doing a PhD is somewhat unique in that you have a lot of flexibility to choose what you want to
research, who you want to engage with, and which skills you want to develop. I found that this freedom,
combined with the four-year duration of a PhD, allowed for a lot of personal and professional growth.
The sense of achievement I gained from the more tangible high points of my PhD – such as publishing
papers, receiving positive reactions at conferences, and engaging with the media – definitely helped to
renew my enthusiasm for tackling the next challenge.

In the context of undertaking research, and as I think many of my colleagues would agree, the
pessimistic interpretation can often feel more appropriate. Topic wise, the ‘wickedness’ of
environmental problems, such as the ones discussed in this thesis, can be extremely daunting –
especially against the backdrop of anthropogenic climate change. Completing a PhD is also fraught
with personal challenges. The culture of critique in academia, while essential for maintaining the
integrity of science, is also one that permeated into my private life and made detachment from work
difficult. Conducting multi-year research, mostly independently, can also be a lonely endeavour,
which in my case was exacerbated by a global pandemic. Overcoming, or at least better navigating,
these challenges requires having the right people around you. In that respect, I have been extremely
fortunate and I take the opportunity here to show my gratitude to those people.

To begin, I would like to thank my supervisory team at Utrecht University. I very much appreciate
the faith you have placed in me since the beginning of my PhD, and for allowing me the opportunity
to largely shape the project myself. Your guidance and feedback over the last four years has not only
been invaluable for the research showcased in this thesis, but also for my personal development in
becoming a more confident and independent researcher. I extend my thanks to the other collaborators
from DFG, who, while having no official supervisory obligations, would always spare me some of their
time, expertise, or advice whenever I came knocking. To my other colleagues at Utrecht University,
and especially the PhD cohort, it has been a pleasure to share in experiences, celebrate milestones and
vent frustrations together over the last four years.
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Outside of the academic world, I would like to pay special thanks to three groups of people. While
your contribution to this thesis from a scientific perspective has undoubtedly been detrimental (read:
debaucherous late nights), you have kept me sane enough to ensure its completion.

Firstly, to my (rugby club) Wageningen friends: thank you for welcoming me to the Netherlands
with open arms back in 2016. Despite the speed and eagerness with which you designated me as a
Brexit refugee, I immediately felt at home. It has been a privilege to meet people from all different
walks of life: students and non-students, young and old, Dutch and internationals. The fact you remain
the core of my social life here in the Netherlands is a testament to the depth of the camaraderie built
through exchanging blood, sweat and beers on a rugby pitch. I cannot overstate the importance of your
friendships to me, especially during the dog-days of COVID.

Secondly, to my British friends: thanks for sticking by me over all these years. While the time we
spend together has dramatically decreased since leaving school, and even more so since I moved abroad,
it is fantastic to maintain such strong friendships with you all. Our many weekend reunions – Ameland,
Lille and Gent, to name a few – have been an enormous source of fun and stress relief. I hope we can
continue to blow the lid off unsuspecting places for many years to come.

Finally, to my family: thank you for your unwavering love. Lonneke, thank you for standing with me
day-by-day, through the good, the great and the bad, and for adding a new and exciting dimension to
my life. Mum and Dad, thank you for giving me the best possible start in life, and for your continued
support for everything I do. This includes, of course, my decision to move overseas to pursue higher
education – despite your (self-confessed) obliviousness to what it is I actually do. Perhaps this book will
finally help to make this clearer, but I suspect that it is more likely to be squirreled away in the muck
box.

Edward Jones
November 2023
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Introduction

Chapter 1 | Introduction

1.1 The ‘invisible’ water crisis

Safeguarding the quality of our surface waters is a global challenge. Water pollution can pose direct risks
to human and environmental health, while also impacting the usability of water for a diverse range of
purposes (UNEP, 2016; Damania et al., 2019; van Vliet et al., 2021). For example, water temperature is
critical for the cooling of thermoelectric power plants (van Vliet et al., 2012b), salinity for determining
the suitability of water for irrigation (Rietz and Haynes, 2003; Thorslund et al., 2022), while the presence
of heavy metals and pathogens can impact the safety of drinking water (Ashbolt, 2004; Chowdhury et
al., 2016). Excessive nutrient (particularly nitrogen and phosphorus) delivery to aquatic environments
enhances eutrophication, which can induce conditions of hypoxia and harm biodiversity (Binzer et
al., 2016; Wurtsbaugh et al., 2019). More recently, emerging contaminants such as pharmaceuticals,
pesticides and (micro-)plastics have gained significant attention in the scientific community (Geissen
et al., 2015; Rice and Westerhoff, 2017; van Wijnen et al., 2019).

While humans are susceptible to the impacts of poor water quality, somewhat paradoxically,
anthropogenic activities are key drivers of water quality deterioration. Water that is extracted to fulfil
sectoral demands, but that is not consumed in the process, is often discharged back to the
environment (termed ‘return flows’ or ‘wastewater’). The composition of these return flows is altered
by water use. For example, domestic wastewater will contain elevated concentrations of organic and
fecal matter from human waste (WWAP, 2017), while discharges of cooling water from
thermoelectric powerplants contain additional heat energy relative to the ambient surface waters (van
Vliet et al., 2012b; Raptis et al., 2016). Environmental discharge of these flows, commonly to surface
waters, represent a significant source of pollution. The existence of and degree to which treatment
practices reduce contaminant levels (Mateo-Sagasta et al., 2015) and the proportion of (treated)
wastewater relative to streamflow (Macedo et al., 2022) are crucial determinants of the impact of these
return flows on the quality of receiving surface waters.

Despite widespread recognition of its importance, our knowledge of global surface water quality is
severely impaired by a lack of information. This lack of information, combined with the
imperceptibility of water quality issues, has led the World Bank to label water quality issues as an
‘invisible crisis’ (Damania et al., 2019). However, global surface water quality data is required to
assess the critical regions (hotspots) where pollution poses risks to safe water use, and therefore for
devising a combination of technological solutions and effective governance measures to protect
surface water quality (UNEP, 2016). The need to improve surface water quality is also recognised as
an integral part of the Sustainable Development Agenda, with wider implications for almost all
Sustainable Development Goals (SDGs) (UNEP, 2016). Furthermore, there is a growing recognition
of the importance of including water quality in water scarcity assessments (van Vliet et al., 2017;
Vanham et al., 2018; van Vliet et al., 2021). A pre-requisite for these assessments, and ultimately for
improving surface water quality, is to understand the current quality status of surface waters, the
main drivers of pollution and how these may change in the future.

The huge range of water quality constituents, their complex interactions and their implications for
different sectoral users are so numerous they defy full comprehension (Rode et al., 2010; UNEP,
2016). Focus has therefore been placed on investigating critical water quality constituents and

4 | GENERAL INTRODUCTION
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determining maximum concentrations (i.e. ‘safe’ thresholds) at which the water is acceptable for
specific purposes (van Vliet et al., 2017). In this thesis, surface water quality is assessed with respect to
water temperature (Tw) and concentrations of total dissolved solids (TDS), biological oxygen demand
(BOD) and fecal coliform (FC). These water quality constituents were selected due to their key role in
constraining different sector water uses and environmental health (van Vliet et al., 2021), in addition
to acting as proxies for other pollutants. Furthermore, SDG 6.3.2 (‘Proportion of bodies of water with
good ambient water quality’) includes both salinity (TDS) and organic (BOD) pollution as indicators
of the quality status of surface waters (UN, 2015), while FC has commonly been used as an
overarching indicator of bacterial or pathogenic pollution (Reder et al., 2015).

This thesis focuses on understanding the past, present and future status of surface water quality
globally, as indicated by these constituents. To this end, a new high-resolution process-based model
was developed, evaluated and applied to identify the major spatio-temporal patterns in surface water
quality. To better represent the abatement of pollutant loadings due to management practices, novel
spatially explicit datasets on the distribution and pollutant removal efficiencies of wastewater
treatment plants were generated and included in model simulations. In line with the key purposes of
large-scale water quality models, our evaluation of global water quality focuses on: 1) hot- and bright-
spot identification; 2) assessing trends over time; and 3) estimating the potential exposure of
populations to poor surface water quality.

1.2 Global surface water quality assessment

Our quantitative understanding of historical surface water quality is mostly predicated on the analysis
of in situ observations made at water quality monitoring stations. While the value of ground-truthed
measurements is irrefutable, in-stream water quality sampling and analysis can be both
time-consuming and expensive. Observations from water quality monitoring stations are therefore
unevenly distributed across space (Fig. 1.1a) and highly fragmented across time (Fig. 1.1b) (Damania
et al., 2019).

North America is the most data-rich world region, with 45%, 76%, 62% and 92% of all monitoring
stations for Tw, TDS, BOD and FC located in this region, respectively, accounting for 39%, 32%, 50%
and 83% of the total number of observations, respectively. Observations made across Western Europe
account for 28%, 14% and 4% of global Tw, BOD and FC measurements, respectively, but just 3% of
the TDS observations. Australia is data-rich for TDS measurements, yet the number of observations
from across the rest of the East Asia and Pacific region is relatively low. Recent efforts to improve
monitoring of Tw and BOD in Latin America are notable, but measurements before 2010 are lacking.
Data is extremely scarce across the other world regions. While there are some localised pockets of
high data availability in different regions (e.g. TDS measurements in South Africa), publicly accessible
observational data records are virtually non-existent across Africa, the Middle East and most of Asia.
Therefore, it is not possible to rely solely on measured data to assess the global status of surface water
quality. Techniques that can further improve our understanding of global water quality dynamics with
less reliance on in situ measurements are rapidly emerging.

GENERAL INTRODUCTION | 5
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Figure 1.1 a) Locations of water quality monitoring stations with >90 observations from 1980–2019 of any
of the following water quality constituents: water temperature (Tw), total dissolved solids (TDS), biological
oxygen demand (BOD) or fecal coliform (FC). Line plots in panel b) display the number of observations per
year, aggregated per geographic region, while bar plots show the ten countries with themost observations per
water quality constituent.

6 | CHAPTER 1
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Remote sensing techniques can be applied to assess surface water quality with a wide
spatio-temporal coverage, while the use of historical images can facilitate the reconstruction of past
conditions (Gholizadeh et al., 2016). Further improvements to the radiometric, spatial and spectral
resolution of remote sensing techniques, in combination with the increasing availability of images
over space and time, will continue to increase the potential for large-scale monitoring of
optically-active water quality constituents (e.g. turbidity, chlorophyll-a, dissolved oxygen)
(Gholizadeh et al., 2016). However, remote sensing applications are limited to constituents with
distinguishable spectral features and are constrained by the spatio-temporal resolution of the
available imagery (Damania et al., 2019).

With the limitations associated with in situ observations and the analysis of remote sensing images,
modelling approaches have been developed to assess surface water quality. Global water quality
modelling is an emerging field (Kroeze et al., 2016; Tang et al., 2019), particularly compared to global
hydrological modelling (Bierkens, 2015; Sood and Smakhtin, 2015). The field incorporates a range of
modelling approaches, from machine-learning algorithms that predict water quality based on
anthropogenic and environmental data (Desbureaux et al., 2022), to more mechanistic and
process-based approaches (Beusen et al., 2015; UNEP, 2016; Vermeulen et al., 2019; van Vliet et al.,
2021). Process-based surface water quality models offer opportunities to overcome shortcomings
related to deficiencies in the observational records by simulating the emission and transport of
pollutant loadings along the river network directly, based on climatic, hydrological and
socioeconomic forcings. In addition to state assessment, these models can be used to elucidate the
drivers of pollution or to assess the impact of management interventions (Tang et al., 2019).
Furthermore, process-based modelling approaches offer unique opportunities to project future
surface water quality under different climate change and socioeconomic development scenarios.

While the field of large-scale surface water quality modelling is still in its relative infancy, there are
increasing efforts to simulate a diverse range of water quality constituents. This has included physical
parameters (e.g. water temperature, salinity), indicators of organic pollution (e.g. biological oxygen
demand), microorganisms (e.g. fecal coliform, cryptosporidium), nutrients (e.g. nitrogen, phosphorus)
and emerging contaminants (e.g. microplastics, triclosan) (Table. 1.1). In addition to the variety in
water quality constituents, there is high diversity in the existing large-scale water quality models with
respect to aspects including: 1) spatial extent (e.g. distributed vs. lumped); 2) temporal resolution (e.g.
daily to decadal); and 3) reporting form (e.g. pollutant loads vs. concentrations).

As with in situ monitoring and remote sensing approaches, large-scale surface water quality
modelling approaches have significant limitations. The availability of high quality and easily
accessible global datasets, both for model inputs and evaluation, presents the biggest challenge (Tang
et al., 2019). Aiming for consistency across large scales, globally available datasets of socioeconomic
drivers (e.g. population, urbanisation, GDP) are typically used to represent drivers of pollution.
However, it should be noted that large uncertainties exist in the translation of these drivers into
pollutant loadings (UNEP, 2016; Moreno-Rodenas et al., 2019).

GENERAL INTRODUCTION | 7
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Uncertainties in pollutant loading calculations and the high variability of biogeochemical
processes, combined with the propagation of prediction errors from climate and hydrological models,
translate into relatively large uncertainties in the output of global water quality models (van
Griensven and Meixner, 2006). Given these uncertainties, parsimonious approaches should be the
basis of future developments in the field of global water quality modelling (UNEP, 2016). Coupled
hydrological and pollutant transport modelling is beneficial for water quality simulations, as
interactions between these components (e.g. dilution, flow velocities) are important determinations
of in-stream concentrations. With many pollutants sharing common sources (e.g. wastewater
treatment plants, agriculture), represented in water quality models using similar input datasets,
multi-pollutant approaches can be computationally efficient while facilitating a more holistic
understanding of the surface water quality status. Multi-pollutant modelling approaches can also
facilitate the representation of biological, physical and chemical interactions between pollutants
(Kroeze et al., 2016). For example, decay rates of many pollutants are strongly water temperature
dependent, while plastics can bind hydrophobic chemicals and pesticides (Kroeze et al., 2016).

Therefore, this thesis advocates for models that provide consistent descriptions of water, energy
and (multiple) pollutant fluxes. This is particularly important for realising two of the key aims of
large-scale water quality modelling: 1) to simulate water quality in ungauged catchments; and 2) to
project water quality under (uncertain) future change. However, given the necessary model
approximations, uncertainties in input data and the overall complexity in the drivers of pollutant
loadings, understanding and communicating the purpose(s) of global water quality models is
paramount (UNEP, 2016).

In this thesis, a new global surface water quality model (the Dynamical Surface Water Quality
model), henceforth DynQual, is introduced. DynQual is a high-spatio-temporal resolution surface
water quality model that can be used to simulate water temperature (Tw) and concentrations of total
dissolved solids (TDS), biological oxygen demand (BOD) and fecal coliform (FC) at 5 arc-min spatial
resolution (∼10x10km at the equator) with a daily timestep. DynQual extends the current
representation of human-water interactions in the hydrological model PCR-GLOBWB2 (Sutanudjaja
et al., 2018), in which dynamic human water demands, withdrawals and return flows per sector are
fully integrated, to also consider these sectors as sources of surface water pollution (Fig. 1.2). The
development of DynQual is rooted in past large-scale water temperature and pollutant concentration
modelling, most notably DynWat (van Beek et al., 2012; Wanders et al., 2019), VIC-RBM (van Vliet
et al., 2012a), QUAL (van Vliet et al., 2021) and WorldQual (UNEP, 2016).

Figure 1.2 Human interactions with the water system included in the DynQual modelling framework, from
both water quantity and water quality perspectives.

GENERAL INTRODUCTION | 9
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The key strengths of DynQual both supplement and extend the possibilities of existing large-scale
water quality models. The high spatial resolution at which DynQual is implemented is advantageous
as simulations of both hydrological variables and water temperature are improved at finer spatial
extents (Sutanudjaja et al., 2018; Wanders et al., 2019). High fidelity simulations of discharge and
water temperature are important due to the impact of dilution and in-stream decay processes,
respectively, on in-stream pollutant concentrations. Unlike static models, the dynamic nature of
DynQual enables analysis of intra- and inter- annual trends in surface water quality. Pollutant
loadings are estimated and tracked from different water user sectors (i.e. irrigation, livestock,
domestic, manufacturing, thermoelectric power) separately, which can facilitate increased
understanding on the main drivers of pollution in different rivers via (dynamic) sectoral attribution.

Furthermore, the accessibility and flexibility of DynQual is a key strength over existing surface
water quality models. The source code, standard parameterisation and input datasets for DynQual are
openly accessible (https://github.com/UU-Hydro/DYNQUAL). The model can be run in multiple
configurations depending on user preference. For example, the routing can be run as a stand-alone
routine, facilitating the use of hydrological input from any land surface or hydrological model.
Similarly, there is flexibility in the quantification of pollutant loadings, which can be estimated within
DynQual simulations or forced to the model directly. The second option enables users to quantify
pollutant loadings via their preferred methodology, and subsequently route these through the global
stream network, account for in-stream decay processes and compute in-stream pollutant using the
DynQual model framework.

Of course, DynQual is not immune to the many challenges that complicate large-scale water quality
modelling efforts. Nevertheless, DynQual, together with the existing suite of large-scale models
(Table. 1.1), represent valuable tools that facilitate first-order assessments of global water quality
dynamics which are consistent across space and time. This is especially advantageous for investigating
surface water quality in ungauged catchments, facilitating meaningful comparisons across different
world regions and for projecting surface water quality under (uncertain) future change.

1.3 Global change scenarios and surface water quality

Climate change and socioeconomic developments will impact both the availability and quality of global
surface waters in the future, with implications for human water uses and freshwater ecosystem health
(Arnell, 1999; Haddeland et al., 2014). While the impacts of global change on water availability have
been studied extensively (Schewe et al., 2014), quantitative projections of future surface water quality
are sparse, particularly at the global scale (Caretta et al., 2022). However, changes in water quantity and
water quality aspects are intrinsically linked, with a combination of alterations to hydrological regimes
(Trenberth et al., 2014; Konapala et al., 2020; Kraaijenbrink et al., 2021), water withdrawals (Wada et
al., 2016) and pollutant loadings under (uncertain) climate change and socioeconomic developments
driving changes in future surface water quality.

Given fundamental uncertainties, exploring different possible futures are an essential part of global
change assessments (Riahi et al., 2017). The current framework adopted by the climate research
community, and as featured in the Intergovernmental Panel Report on Climate Change Sixth
Assessment Report (IPCC AR6) (IPCC, 2022), combines Shared Socioeconomic Pathways (SSPs) and
Representative Concentration Pathways (RCPs) in scenario matrix architecture (van Vuuren et al.,
2014; O’Neill et al., 2016). SSPs and RCPs describe future plausible developments in socioeconomic
and climatic conditions, respectively, to provide integrated scenarios for exploring uncertain future
change in a consistent framework. RCPs describe alternative trajectories of atmospheric greenhouse
gas concentrations and other radiative forcings. On the other hand, SSPs describe plausible alternate
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pathways of future societal development (narratives) with respect to factors such as population,
technological and economic growth.

Narratives and quantitative projections for the SSPs are further used for the development of
integrated scenarios, which elaborate the SSPs in terms of factors such as energy systems (Bauer et al.,
2017), land use (Popp et al., 2017), sectoral water demands (Wada et al., 2016) and greenhouse gas
emissions (Riahi et al., 2017; Meinshausen et al., 2020) using a range of Integrated Assessment Models
(IAMs). While many SSP-RCP combinations are plausible, priority scenarios have been identified as
part of Phase 6 of the Coupled Model Intercomparison Project (CMIP6). These ‘Tier 1’ scenarios (i.e.
SSP1-RCP2.6; SSP2-RCP4.5; SSP3-RCP7.0 and SSP5-RCP8.5) are selected to span a wide range of
uncertainty in future conditions (O’Neill et al., 2016) and are displayed in Fig. 1.3.

Figure 1.3 The RCP scenarios with their corresponding (feasible) SSP pathways (adapted from: Meinshausen
et al., 2020)

For modelling future global water quality, projections of changes to both climate and socioeconomic
forcings under different scenarios is required. To produce projections of future climate, global climate
models (GCMs) are forced with these emissions scenarios. Output from GCMs, such as precipitation,
air temperature and solar radiation, is commonly bias-corrected for use in hydrological models. On
the other hand, changes in sectoral water demands and anthropogenic pollution are quantified based
on socioeconomic variables, such as population, economic development and urbanisation, commonly

GENERAL INTRODUCTION | 11
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derived from IAMs. In this thesis, future surface water quality is simulated using bias-corrected daily
CMIP6 climate output from the five primary GCMs (GFDL-ESM4; IPSL-CM6A-LR; MPI-ESM1-2-
hr; MRI-ESM2-0 and UKESM1-0-LL) of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP3b) (Lange and Buchner, 2021) for three SSP-RCP scenarios (SSP1-RCP2.6; SSP3-RCP7.0 and
SSP5-RCP8.5). These scenarios capture a large range of plausible future developments in societal and
climatic conditions, while using output from five GCMs better accounts for uncertainties inherent in
the climatological projections.

1.4 Research objectives and questions

Human activities, including crop and livestock production, the manufacturing of goods, power
generation and domestic activities rely upon the availability of water in both adequate quantities and
of acceptable quality for an intended use. Water uses that are not fully consumptive generate return
flows, the composition of which will be reflective of the water use activity. These return flows, if
managed inadequately or ineffectively (e.g. insufficient wastewater treatment capacities or
efficiencies), can degrade the quality of the receiving waters. This can both threaten ecosystem health
and impact our ability to safely use surface water resources further downstream.

Inability to meet our clean water demands, both now and in the future, is considered one of the
major risks to humankind both in terms of likelihood and potential impacts. While many studies have
addressed this topic from a water quantity perspective, limited knowledge exists regarding the current
quality status of global surface waters. Even less is known about how climate and socioeconomic change
will impact surface water quality in the future.

To address these knowledge gaps, the following research objective was defined:

To assess the past and current status of surface water quality globally, and to evaluate the impact of
(uncertain) global change on future surface water quality.

This objective was addressed in three sequential steps, each associated with a specific research
question:

1. What is the current global status of wastewater management (i.e. production, collection,
treatment and reuse)? (Chapters 2 and 3)

2. What is the past and current status of global surface water quality, as indicated by water
temperature (Tw) and indicators of salinity (total dissolved solids), organic (biological oxygen
demand) and pathogen (fecal coliform) pollution? (Chapters 3 and 4)

3. How does global surface water quality change in the future under near-term sustainability targets
(Chapter 4) and long-term scenarios of climate and socioeconomic change (Chapter 5)?
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1.5 Research approach and thesis outline

The objective and research questions are addressed in four scientific papers, which are presented in
Chapters 2 to 5. An overview of all Chapters, including their interconnections and dependencies, is
presented in Fig. 1.4.

To address the first research question, the global status of wastewater production, collection,
treatment and reuse was assessed using a data-driven approach (Chapter 2). Country-level
wastewater data was collated from various databases, with multiple linear regression used to predict
missing values. Subsequently, these data were downscaled to 5 arc-min resolution (Chapter 2) and
wastewater treatment was further disaggregated by treatment level (Chapter 3). The country-level
database serves as a reference for understanding the global status of wastewater, while spatially
explicit results are suited to more detailed hydrological, water quality and water resource assessments.

To answer the second research question, the Dynamical Surface Water Quality model (DynQual)
model was developed, evaluated and applied for the time period 1980–2019 (Chapters 3 and 4). Notable
features of DynQual include the high spatial (5 arc-min) and temporal (daily) resolution, full coupling
with the global hydrological model PCR-GLOBWB2 (Sutanudjaja et al., 2018) and the inclusion of the
high-resolution wastewater data (i.e. Chapters 2 and 3). Presentation of results in Chapter 3 focuses on
hot- and bright- spot identification, trends in surface water quality dynamics (seasonal and long-term)
and the relative contribution of different water sectors to in-stream pollutant concentrations.

Conversely, the results presented in Chapter 4 focus on linking simulated in-stream concentrations
to critical water quality thresholds for different water use sectors and environmental health.
Furthermore, DynQual was applied to investigate the benefit of achieving SDG 6.3 (i.e. to halve the
proportion of untreated wastewater entering the environment by 2030) on global surface water
quality especially considering exceedances of these critical thresholds.

In Chapter 5, the first assessment of the impact of (uncertain) climate change and socioeconomic
development on long-term water quality is provided. To this end, DynQual was forced with an
ensemble of bias-correct GCM output, together with socioeconomic scenarios for estimating
pollutant loadings and developments in wastewater treatment, under multiple scenarios to simulate
surface water quality until the end of the century. To elucidate the implications of changing surface
water quality in the future, the number of people exposed to in-stream concentrations that exceed
safe water quality thresholds was estimated.

Chapter 6 combines the main findings of the previous Chapters to fulfil the research objective of this
thesis. Here, the scientific contribution and outlook for future research is also discussed. Incorporating
novel findings from all preceding Chapters, this thesis presents the first (preliminary) analysis of future
water scarcity including water quality aspects. This also provides an example of how the water quality
simulations presented in this thesis can inform large-scale water resource assessments.
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Figure 1.4 Overview of the Chapters presented in this thesis, including their interconnections and
dependencies.
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Country-level and gridded estimates of
wastewater production, collection, treatment and

reuse

Chapter 2 | Country-level and gridded estimates
of wastewater production, collection, treatment
and reuse

Abstract

Continually improving and affordable wastewater management provides opportunities for both pollution
reduction and clean water supply augmentation, while simultaneously promoting sustainable
development and supporting the transition to a circular economy. This study aims to provide the first
comprehensive and consistent global outlook on the state of domestic and manufacturing wastewater
production, collection, treatment and reuse. We use a data-driven approach, collating, cross-examining
and standardising country-level wastewater data from online data resources. Where unavailable, data are
estimated using multiple linear regression. Country-level wastewater data are subsequently downscaled
and validated at 5 arc-min (∼10 km) resolution. This study estimates global wastewater production at
359.4 billion m3 yr−1, of which 63% (225.6 billion m3 yr−1) is collected and 52% (188.1 billion m3 yr−1) is
treated. By extension, we estimate that 48% of global wastewater production is released to the
environment untreated, which is substantially lower than previous estimates of∼80%. An estimated 40.7
billion m3 yr−1 of treated wastewater is intentionally reused. Substantial differences in per capita
wastewater production, collection and treatment are observed across different geographic regions and by
level of economic development. For example, just over 16% of the global population in ‘high income’
countries produce 41% of global wastewater. Treated wastewater reuse is particularly substantial in the
Middle East and North Africa (15%) and Western Europe (16%), while comprising just 5.8% and 5.7% of
the global population, respectively. Our database serves as a reference for understanding the global
wastewater status and for identifying hotspots where untreated wastewater is released to the
environment, which are found particularly in south and southeast Asia. Importantly, our results also serve
as a baseline for evaluating progress towards many policy goals that are both directly and indirectly
connected to wastewater management. Our spatially-explicit results available at 5 arc-min resolution are
well suited for supporting more detailed hydrological analyses such as water quality modelling and
large-scale water resource assessments, and can be accessed at:
https://dx.doi.org/10.1594/PANGAEA.918731.

Published: Jones, E.R., van Vliet, M.T.H., Qadir, M., and Bierkens, M.F.P. (2021). Country-level and gridded
estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13(2), pp.
237–254, DOI:10.5194/essd-13-237-2021
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2.1 Introduction

Clean water is essential for supporting human livelihoods, achieving sustainable development and
maintaining ecosystem health. All major human activities, such as crop and livestock production,
manufacturing of goods, power generation and domestic activities rely upon the availability of water
in both adequate quantities and of acceptable quality at the point of intended use (Ercin and
Hoekstra, 2014; van Vliet et al., 2017). It is increasingly recognised that conventional water resources
such as rainfall, snow-melt and runoff captured in lakes, rivers and aquifers are insufficient to meet
human demands in water scarce areas (Hanasaki et al., 2013; Kummu et al., 2016; Jones et al., 2019).
While increases in water use efficiencies can somewhat reduce the water demand-supply gap, these
approaches must be combined with supply and quality enhancement strategies (Gude, 2017).
Conventional supply enhancement strategies, such as reservoir construction, surface water diversion
and pipeline construction are contingent on geographic and climate factors, can face strong public
opposition and often lack water quality considerations.

A growing set of viable but unconventional water resources offer enormous potential for narrowing
the water demand-supply gap towards a water-secure future. Unconventional water resources
encapsulate a range of strategies across different scales, from localised fog-water and rainwater
harvesting, to mega-scale desalination plants and wastewater treatment and reuse facilities (Jones
et al., 2019; Morote et al., 2019; Qadir et al., 2020). The use of unconventional water resources has
grown rapidly in the last few decades, often out of necessity, and their importance across various
geographic scales is already irrefutable (Qadir et al., 2018; Jones et al., 2019). Furthermore,
continually improving unconventional water resources technologies have permitted more efficient
and economical ‘tapping’ of water resources which were previously unusable due to access constraints
or the added costs related to unsuitable water quality (e.g. seawater desalination, wastewater
treatment).

Wastewater is broadly defined as ‘used’ water that has been contaminated as a result of human
activities (Mateo-Sagasta et al., 2015). While agricultural runoff is rarely collected or treated (WWAP,
2017), return flows from domestic and manufacturing sources (henceforth ‘wastewater’) can be
collected in infrastructure including piped systems (sewerage) or on-site sanitation systems (e.g.
septic tanks, pit latrines). Wastewater is increasingly recognised as a reliable and cost-effective source
of freshwater, particularly for agricultural applications (Jiménez and Asano, 2008; Mateo-Sagasta
et al., 2015). Nevertheless, wastewater remains an ‘untapped’ and ‘undervalued’ resource
(Mateo-Sagasta et al., 2015). Wastewater treatment aims to improve the quality of ‘used’ water
sources to reduce contaminant levels below sectoral quality thresholds for intentional reuse or to
minimise the environmental impacts of wastewater return flows. Treated wastewater flows can also
provide a substantial source of (clean) freshwater flows for maintenance of river flows, especially
during drought (Luthy et al., 2015). Where treated wastewater discharges form a substantial part of
the river flow, de-facto wastewater reuse, defined as the incidental presence of treated wastewater in a
water supply, can be high (Rice et al., 2013; Beard et al., 2019). Treated wastewater can also be used
for groundwater recharge, helping to preserve the viability of freshwater extraction from groundwater
into the future (Qadir et al., 2015), in addition to applications in agroforestry systems (Moussaoui
et al., 2019) and aquaculture (Khalil and Hussein, 2008). In summary, wastewater treatment can
improve river water quality and ecosystem health, while providing an alternative source of freshwater
for human use and subsequently reducing competition for conventional water supplies.

Historically, wastewater (both treated and untreated) has predominantly been used for non-potable
purposes, particularly agriculture and landscape irrigation (Qadir et al., 2007; WWAP, 2017; Zhang
and Shen, 2019). Agricultural activities are expected to increasingly rely on alternative water
resources, as this sector has the largest water demands globally (Wada et al., 2013). Furthermore, the
agricultural sector faces reductions in conventional water resources allocation (Sato et al., 2013). The
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reliable supply of water, reduced need for additional fertilizer and potential for growing high value
vegetables promote wastewater irrigation in water-scarce developing countries (Sato et al., 2013).
However, much of the wastewater currently reused is inadequately treated or even untreated (Qadir
et al., 2010). Demands for wastewater are increasing at a faster pace than treatment solutions and
institutions that ensure the safe distribution and management of wastewater (Sato et al., 2013). The
primary challenge in promoting reuse is ensuring safety – both for human and ecosystem health –
and therefore ensuring that wastewater is adequately treated prior to use or environmental discharge
(Scott et al., 2010; WWAP, 2017). This is needed to achieve the required paradigm shift in water
resources management, whereby wastewater is viewed as a resource (for energy, nutrients and water)
rather than as ‘waste’ (WWAP, 2017; Qadir et al., 2020).

To understand the current state and explore the future potential of wastewater as a resource, a
comprehensive and consistent global assessment of wastewater production, collection, treatment and
reuse is required. This information is essential for assessing progress towards Sustainable
Development Goal (SDG) 6, such as SDG 6.3 that specifically focuses on achieving water quality
improvements through halving the proportion of untreated wastewater and promoting safe reuse
globally. Furthermore, this information is important for identifying hotspots where improvements in
wastewater management are highly necessary and as input data for a range of scientific assessments
(e.g. stream water quality dynamics, water scarcity assessments). However, the availability of
wastewater data at the continental and global scales is sparse, and often outdated or from inconsistent
reporting years (Sato et al., 2013). Previous studies remain limited in their approach and estimates,
relying on a few data sources covering less than half of the countries across the world (Sato et al.,
2013; Mateo-Sagasta et al., 2015). A recent study explored the global and regional ‘potential’ of
wastewater as a water, nutrient and energy source, but did not address the collection, treatment and
reuse aspects of wastewater (Qadir et al., 2020). This paper presents the first global assessment of
spatially-explicit wastewater production, collection, treatment and reuse, consistently combing
different data sources. Country-level quantifications are downscaled to a grid level of 5 arc-min for
inclusion in large-scale water resource assessments and water quality models.

2.2 Methods

2.2.1 Wastewater data sources
The fate of domestic and manufacturing wastewater after production can follow a number of paths
(Fig. 2.1). Wastewater from these activities can be collected, typically in sewers, septic tanks or pit
latrines, or uncollected and discharged directly to the environment (e.g. open defecation). Collected
wastewater can undergo treatment, ranging from basic primary treatment (e.g. removing suspended
solids) to specialised tertiary or triple barrier treatment (e.g. nutrient removal, toxic compound
removal), or can be discharged to the environment untreated (Mateo-Sagasta et al., 2015). When
treated, wastewater can be released to the environment or intentionally reused as a ‘fit-for-purpose’
water source. Untreated wastewater can similarly be discharged to the environment or intentionally
used as a source of freshwater. Furthermore, both treated and untreated wastewater can be used
unintentionally where wastewater is incidentally present in a water supply (‘de-facto reuse’).

Country-level wastewater data was collated from four online databases (Table. 2.1): Global Water
Intelligence; Food and Agricultural Organisation of the United Nations, Eurostat and United Nations
Statistics Division. For consistency, the year 2015 was selected for all wastewater data. Where
wastewater data from the online sources was reported in a different year (up to a maximum of 10
years, i.e. 2006 onwards), all wastewater data was standardised to 2015 based on data from the most
recent reporting year (see Table 2.1 for the standardisation method).
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Figure 2.1 a) Fate of wastewater: including b) the number of countries for whichwastewater data is available;
and c) thepercentageof population coverage (i.e. theproportionof theglobal population forwhichwastewater
data is available).

Data from different sources was cross examined to check for consistency and to remove
implausible data. Where large discrepancies (exceeding one order of magnitude) existed between
different data sources for a country, data points were excluded. For example, GWI report Kazakhstan
to produce 6,205 million m3 yr−1, whereas FAO report just 411 million m3 yr−1. Similarly, FAO
report Moldova to produce 46.7 million m3 yr−1 compared to 672.1 million m3 yr−1 by UNSD. In
total, reported data for 11 countries were excluded for wastewater production. For wastewater
collection and treatment, percentage data was cross referenced with reported connection rates (i.e.
percentage population connected to wastewater infrastructure). Six and seven countries were
excluded for collection and treatment, respectively. For example, GWI report a 95.2% collection rate
for Azerbaijan, while UNSD report that only 32.4% of people are connected to wastewater collection
systems. Similarly, GWI report a 17% treatment rate in Hong Kong, whereas UNSD report that 93.5%
of people are connected to wastewater treatment plants. No data points were excluded for wastewater
reuse. In a small number of cases where percentage values obtained were marginally illogical (i.e.
wastewater collection < wastewater treatment, wastewater treatment < wastewater reuse), percentage
values were set to the proceeding level in the wastewater chain (Fig. 2.1).

Table 2.1 displays the data sources and the associated number of countries with wastewater data for
production, collection, treatment and reuse. The procedure for standardising data to the year 2015,
when required, is presented. Wastewater production is assumed to be dependent upon both
population size and per capita production (related to per capita wealth). Hence, we standardise
wastewater production linearly with GDP, a combined metric of population size and wealth.
Conversely, wastewater collection and treatment are assumed to be more dependent on economics,
hence we linearly apply GDP per capita for standardisation. The methods used to compile wastewater
production, collection, treatment and reuse data from multiple sources to provide a single
quantification per country is also displayed. Lastly, the population coverage in percentage terms and
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by the number of unique countries is displayed both per geographic region and by economic
classification. The number of unique countries and the population coverage of data at each stage of
the wastewater chain is also displayed in Fig. 2.1. Reported wastewater data was available for the
majority of the world’s most populous countries. This results in a high percentage population
coverage relative to the number of countries. Both the number of countries and population coverage
reduces through the wastewater chain, with available wastewater data decreasing from 118 to 37
countries (90% to 60% population coverage) from wastewater production to wastewater reuse data.

Table 2.1 Wastewater data sources and population coverage by regional and economic aspects, including
the number of unique countries (in square brackets). Method for standardisation of wastewater data to 2015
and the method for compiling wastewater data frommultiple sources into a single quantification per country.

Region
Population 
coverage2 Income

Population 
coverage3

North America 100% [2]
Latin America & 
Caribbean 93.9%) [19]

Western Europe 99.8% [19]
Middle East & 
North Africa 98.8% [19]

Sub-Saharan 
Africa 49.6% [17]

Southern Asia 96.4% [4]
Eastern Europe & 
Central Asia 89.4% [23]

East Asia & Pacific 95.3% [15]

North America 100% [2]
Latin America & 
Caribbean 96.7% [20]

Western Europe 99.8% [18]
Middle East & 
North Africa 88.3% [17]

Sub-Saharan 
Africa 61.1% [13]

Southern Asia 96.4% [4]
Eastern Europe & 
Central Asia 69.9% [16]

East Asia & Pacific 83.6% [12]

North America 100% [2]
Latin America & 
Caribbean 90.0% [17]

Western Europe 99.8% [19]
Middle East & 
North Africa 65.9% [13]

Sub-Saharan 
Africa 25.7% [8]

Southern Asia 95.2% [3]
Eastern Europe & 
Central Asia 73.4% [21]

East Asia & Pacific 80.2% [10]

North America 90.0% [1]
Latin America & 
Caribbean 67.2% [5]

Western Europe 42.5% [3]
Middle East & 
North Africa 83.0% [13]

Sub-Saharan 
Africa 21.5% [6]

Southern Asia 74.9% [1]
Eastern Europe & 
Central Asia 0.6% [2]

East Asia & Pacific 70.2% [6]

1Abbreviations for the data sources are as follows: Global Water Intelligence (GWI), Food and Agricultural Organisation of the United Nations (FAO), 
United Nations Statistics Department (UNSD), European Union Statistics Office (Eurostat).
2Data availability per region expressed as a percentage of the total population. Total number of countries per geographic region are: East Asia and 
Pacific [38], Eastern Europe and Central Asia [30], Latin America and Caribbean [41], Middle East and North Africa [21], North America [3], Southern 
Asia [8], Sub-Saharan Africa [48] and Western Europe [26].
3Data availability per economic classification expressed as a percentage of the total population. Total number of countries per economic classification 
are: High [76], Upper middle [56], Lower middle [52], and Low [31] income.

Production
Divide by GDP ($) in 
reporting year, multiply 
with GDP ($) in 2015.

Average of all available 
sources.

High 99.4% [48]

Upper middle 98.0% [34]

Lower middle 94.6% [31]

Low 13.3% [5]

GWI [94]

FAO [98]

UNSD [23]

Eurostat [20]

Standardisation to 
2015

Data compiling 
method

Regional aspects Economic aspects
Data sources1

Collection

Divide by GDP per 
capita ($ per capita) in 
reporting year, multiple 
with GDP per capita ($ 
per capita) in 2015.

GWI data prioritised. 
FAO data if 
unavailable.

High 99.4% [47]

Upper middle 97.7% [29]

Lower middle 81.0% [21]

Low

GWI [95]

FAO [55]

34.9% [5]

Treatment

Divide by GDP per 
capita ($ per capita) in 
reporting year, multiple 
with GDP per capita ($ 
per capita) in 2015.

GWI data prioritised. 
FAO or UNSD where 
unavailable (most 
recent reporting year 
prioritised)

High 98.4% [46]

Upper middle 91.2% [27]

Lower middle 69.4% [15]

UNSD [21]

GWI [76]

FAO [78]

Low 27.1% [5]

Re-use

Wastewater production 
normalised to reporting 
year of wastewater re-
use based on GDP ($), 
percentage re-use 
calculated, applied to 
2015 production data.

GWI data prioritised. 
FAO data if 
unavailable.

High 68.7% [19]

Upper middle 77.7% [10]

Lower middle

GWI [20]

FAO [32]

48.7% [4]

Low 24.8% [4]
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2.2.2 Regression for country-level predictions
Datasets of predictor variables for regression analyses were downloaded from multiple sources (see
overview Table 2.2). Datasets spanned a wide range of predictor variables covering social (e.g. total
and urban population), economic (e.g. GDP, HDI), hydrological (e.g. irrigation water scarcity) and
geographic (e.g. land area, agricultural land) dimensions. The selected predictor variables were
expected to have a physical basis for correlation with wastewater production, collection, treatment or
reuse. Where appropriate, datasets from these sources were combined to produce comparable metrics
for countries of different population and geographic sizes (e.g. GDP per capita [$ per capita];
desalination capacity per capita [m3 yr−1 per capita]). Values were taken for the year 2015, where
available, or from the closest reporting year when unavailable. Irrigation water scarcity and
desalination capacity were taken from 2019 and 2018, respectively. Data was transformed, either
using a log or square root transformation, to reduce the skew in the independent variables and to
ensure normality.

Table 2.2 Data sources of predictor variables for wastewater production, collection, treatment and reuse
regression analysis.

Data Source Predictor Variable Year Link
Land area (km2) 2015 data.worldbank.org/indicator/AG.LND.TOTL.K2
Total population (millions) 2015 data.worldbank.org/indicator/sp.pop.totl
Urban population (%) 2015 data.worldbank.org/indicator/SP.URB.TOTL
GDP (billion USD) 2015 data.worldbank.org/indicator/NY.GDP.MKTP.CD
Access to basic sanitation (%) 2015 data.worldbank.org/indicator/SH.STA.BASS.ZS
Mortality rate attributed to unsafe WASH 2015 data.worldbank.org/indicator/SH.STA.WASH.P5
Access to internet (%) 2015 data.worldbank.org/indicator/it.net.user.zs
Access to electricity (%) 2015 data.worldbank.org/indicator/EG.ELC.ACCS.ZS
People practicing open defecation (%) 2015 data.worldbank.org/indicator/SH.STA.ODFC.ZS
Agricultural land (%) 2015 data.worldbank.org/indicator/AG.LND.AGRI.ZS
Fertilizer consumption (kg ha-1 arable land) 2015 data.worldbank.org/indicator/ag.con.fert.zs
Renewable internal water resources (109 m3) 2015 data.worldbank.org/indicator/ER.H2O.INTR.K3

United Nations 
Development 
Programme (UNDP)

Human Development Index (-) 2015 dasl.datadescription.com/datafile/hdi-2015/

World Resources 
Institute (WRI) Baseline Irrigation Water Scarcity (-) 2019 www.wri.org/resources/data-sets/aqueduct-30-country-rankings

Global Water 
Intelligence (GWI) Desalination capacity (106 m3 yr-1) 2018 www.desaldata.com/ as synthesised in Jones et al. (2019)

World Bank

Multiple linear regression was used to predict country-level wastewater variables (i.e. production,
collection, treatment and reuse) for countries without reported data. Stepwise elimination was used
for feature selection to remove redundant predictor variables and reduce overfitting. Wastewater
production was predicted in volumetric flow rate units (million m3 yr−1). Conversely, wastewater
collection, treatment and reuse were predicted as a percentage of wastewater production. Predicted
values of percentages were bounded to the 0–100% range (i.e. <0 = 0; >100 = 100). Predicted
percentages were subsequently applied to reported or predicted values of wastewater production to
obtain wastewater collection, treatment and reuse in volumetric flow rate units. Bootstrap regression
was used to quantify the uncertainty in the predictions (by geographic region, economic classification
and at the global scale) at the 95th confidence level. In total, 1,000 regressions with random sampling
and replacement were fit to provide predictions at countries lacking data. Wastewater observations
were combined with these 1,000 bootstrapped predictions, with the 2.5th and 97.5th confidence
intervals taken as lower and upper confidence limits, respectively.

Wastewater data (reported and predicted) are at the national level, for the 215 countries as listed by
the World Bank (https://data.worldbank.org/country). Wastewater data are also aggregated to eight
geographic regions based on the World Bank regional classifications: 1) East Asia and Pacific; 2)
Eastern Europe and Central Asia; 3) Latin America and Caribbean; 4) Middle East and North Africa;
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5) North America; 6) Southern Asia; 7) Sub-Saharan Africa; and 8) Western Europe. Furthermore,
data are also aggregated to four economic classifications based on the World Bank Atlas Method: 1)
‘high income’ (>$12,056 GNI per capita); 2) ‘upper-middle income’ ($3896 to $12,055); 3)
‘lower-middle income’ ($966 to $3895); and 4) ‘low income’ (<$995). Predicted wastewater data was
used to supplement reported data, where unavailable, to develop a comprehensive global outlook of
wastewater production, collection, treatment and reuse.

2.2.3 Downscaling and validation
Country-level wastewater production, collection, treatment and reuse data was downscaled to 5 arc-
min resolution (∼10km at the equator) based on the sum of averaged annual domestic and industrial
return flow data (henceforth ‘return flow’). Return flows represent the water extracted for a specific
sectoral purpose, but which is not consumed, and hence it returns to and dynamically interacts with
surface and ground water hydrology (Graaf et al., 2014; Sutanudjaja et al., 2018). Return flows used for
downscaling are calculated as gross minus net water demands from the Water Futures and Solutions
(WFaS) initiative for the years 2000–2010 (Wada et al., 2016). The WFaS water demand dataset follows
the approach developed for PCR-GLOBWB2 (Wada et al., 2014). Domestic return flows only occur
where the urban and rural population have access to water, whereas industrial return flow occur from all
areas where water is withdrawn. Both domestic and industrial return flows are dependent on country-
specific recycling ratios based on GDP and the level of economic development (Wada et al., 2011; Wada
et al., 2014).

Gridded return flows were divided by the countries total return flow to obtain the fraction per
gridcell. Wastewater production was downscaled directly proportionally to return flows by
multiplying the gridcell return flow fraction per gridcell with wastewater production at the
country-level. Wastewater collection is assigned sequentially to gridcells with the largest downscaled
produced wastewater flows. Therefore, collected wastewater is preferentially allocated to gridcells
with the highest levels of municipal activities, where centralised wastewater collection (and
treatment) is assumed to be most economically feasible. Wastewater treatment is assigned to gridcells
only where wastewater collection exists, at an average treatment rate calculated at the country-level.
The treatment rate is calculated as the proportion of collected wastewater that undergoes treatment,
and hence can differ from the country-level wastewater treatment percentage (which is calculated as
the proportion of produced wastewater that is treated). For the downscaling of wastewater reuse an
additional criterion was introduced to represent water scarcity, a key driver of wastewater reuse. The
ratio of water demand to water availability was calculated. Gridcells within a country with a treated
wastewater allocation are then ordered based off this ratio and treated wastewater reuse was assigned
sequentially to these gridcells.

The location and design capacity of individual wastewater treatment plants were used to validate
the downscaled wastewater treatment data. Reported data for 25,901 wastewater treatment plants
located across Europe were obtained from the European Environmental Agency (EEA, 2019). Data
for a further 4,283 wastewater treatment plants was obtained for the contiguous United States from
the US Environmental Protection Agency (US-EPA, 2020). An additional 478 wastewater treatment
plants, distributed globally (excluding Europe and the US), were extracted from the GWI wastewater
database (GWI, 2015). For EEA and GWI wastewater treatment plants, treatment capacity reported
only in Population Equivalent (PE) was approximated in volume flow rate units based on the linear
regression obtained for wastewater treatment plants reporting capacity in both population equivalent
and volume flow rate (EEA: R2 = 0.80, p < 0.001; GWI: R2 = 0.81, p < 0.001). Wastewater treatment
plants were assigned to their nearest gridcell and treatment capacities were aggregated per cell. In
total, wastewater treatment data was available for 22,133 unique gridcells. For validating downscaled
wastewater reuse, only plants (with treatment capacity > 1 million m3 yr−1) using tertiary or higher
wastewater treatment technologies were considered. In total, 572 wastewater treatment plants in the
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EEA database met this criterion. A further 78 wastewater treatment plants, which are specifically
designated as wastewater reuse facilities, were sourced from the GWI database. In total, wastewater
reuse data was available for 601 gridcells. Downscaled wastewater treatment and reuse were
compared to wastewater design capacities.

To account for the large variation in the treatment capacities of wastewater treatment plants
considered, in addition to the geographical mismatch between where wastewater is produced and
treated (i.e. wastewater treatment plants are typically located on the outskirts of urban areas),
validation occurred at differing geographical scales. Wastewater treatment plant capacity was divided
by wastewater production per capita to approximate the number of people that the wastewater
treatment plant serves. If the population served by a wastewater plant exceeds the gridcell population,
the validation extent was expanded to the directly neighbouring cells. This is allowed to occur until
the population served by the treatment plant is reached, but up to a maximum of 3 iterations,
reflecting a radius of ∼30km around the wastewater treatment plant. The total downscaled
wastewater treated over the extended area was then compared to that of the treatment plant.

To quantify the performance of the downscaling approaches, the root-mean-square error (RMSE)
and mean bias (BIAS) were calculated. Normalised values of RMSE and BIAS were calculated (nRMSE
and nBIAS) by dividing by the standard deviation of the wastewater treatment plant capacity. Pearson’s
(r) coefficients were calculated to quantify the linear dependence, with R2 values based on both the
linear and log-log relationship between downscaled and observed values also calculated.

2.3 Results

2.3.1 Regression and country-level predictions
The results of the regression analysis for wastewater production, collection, treatment and reuse are
summarised in Table 2.3. All regression models were significant at the p < 0.001 level with adjusted
R2 values ranging between 0.61 and 0.89. Country-level observed versus simulated wastewater
production (log million m3 yr−1), collection (%), treatment (%) and reuse (%) data are displayed in
Fig. 2.2. The regression equations were applied for 97, 113, 122 and 178 countries with no or excluded
data representing 10%, 14%, 22% and 40% of the global population for wastewater production,
collection, treatment and reuse, respectively.

Wastewater production was best predicted based on total population, GDP per capita and access to
basic sanitation. A significant regression equation was found (p<0.001) with an adjusted R2 value of
0.89, with all predictor variables also significant at the p<0.001 level. While the number of people
within a country was found to have the strongest influence on total wastewater production (β = 0.96),
the average economic output per inhabitant (β = 0.31) and the level of access to wastewater services (β
= 0.19), such as flushing toilets to piped sewers are important for determining the amount of
wastewater produced per capita. These three factors therefore account for the combined effect of
population size and variations in wastewater production per capita linked to economic and
development factors in determining total wastewater production in a country. Comparing observed
with predicted total wastewater production data demonstrates the overriding importance of a
country’s population, with wastewater production spread across multiple orders of magnitude for
countries irrespective of geographical region or economic classification (Fig. 2.2a).
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Table 2.3 Wastewater production, collection, treatment and reuse multiple linear regression results.

Regression model Explanatory Variables (units) B  (SE B ) β P Adjusted R2

Intercept (-) -1.68 (0.45) **
GDP (log $ yr-1 per capita) 0.45 (0.06) 0.31 **
Population (log millions) 1.02 (0.03) 0.96 **
Access to basic sanitation (%) 0.02 (0.00) 0.19 **
Intercept (-) -80.73 (11.06) **
Human Development Index (-) 120.82 (26.94) 0.5 **
Urban population (%) 0.22 (0.13) 0.14 .
Wastewater production (log m3 yr-1 

per capita)
8.01 (2.97) 0.25 *

Intercept (-) -61.32 (14.06) *
Wastewater collection (%) 0.72 (0.08) 0.66 *
GDP (log $ yr-1 per capita) 7.2 (1.88) 0.28 *
Intercept (-) -5.29 (4.59) 0.26
Desalination capacity (sqrt m3 yr-1 

per capita)
1.50 (0.78) 0.29 .

Treated wastewater for irrigation 
water scarcity alleviation (-) 13.66 (3.50) 0.6 *

Intercept (-) -4.11 (6.10) 0.5
Desalination capacity (sqrt m3 yr-1 

per capita)
3.22 (0.63) 0.63 *

Treated wastewater (%) 0.23 (0.12) 0.24 .
B indicates unstandardised regression weights, SE B indicates the standard error of B , β indicates 
standardised regression weights.
Significance level represent by: ‘**’ (p<0.001), ‘*’ (p<0.01), ‘.’ (p<0.1), or as stated numerically.

Re-use (alternate) 0.61**

Production (log) 0.89**

Collection 0.69**

Treatment 0.80**

Re-use (primary) 0.70**

Wastewater collection was predicted (adjusted R2 = 0.69; p <0.001) based on the Human
Development Index (HDI), urban population and wastewater production per capita. HDI, an
overarching proxy for level of development, was found to be the strongest influence over wastewater
collection (β = 0.50; p<0.001). Urban population (β = 0.14; p<0.01) and wastewater production per
capita (β = 0.25; p<0.01) were also significant but less important predictor variables of wastewater
collection. For urban population, a greater proportion of a population living in urban areas resulted
in higher collection rates for the country, while higher levels of wastewater production per capita
corresponded to larger collection rates. The observed versus predicted wastewater collection rates are
depicted in Fig. 2.2b, which displays the trend across different geographic zones and economic
classifications.

Wastewater treatment was predicted (adjusted R2 = 0.80; p <0.001) based on GDP per capita (β =
0.28; p < 0.01) and wastewater collection (β = 0.66; p < 0.01). Countries with larger economic outputs
per capita likely have more resources for wastewater treatment, resulting in higher overall treatment
rates. As wastewater treatment is dependent upon wastewater collection, countries with higher
wastewater collection rates typically also treat a greater proportion of their wastewater. Observed
versus predicted wastewater treatment rates are displayed in Fig. 2.2c.

The amount of wastewater treated will determine the maximum potential for treated wastewater
reuse within a country. Water scarcity, particularly when driven by high irrigation water demands, is
also a primary driver of wastewater reuse (Garcia and Pargament, 2015). To account for this
relationship, the fraction of wastewater undergoing treatment processes and irrigation water scarcity
was multiplied to give an integrated metric indicating the ‘availability of treated wastewater for
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Figure 2.2 Observed versus predicted wastewater a) production; b) collection; c) treatment; and d) reuse,
from regression analysis.

irrigation water scarcity alleviation’. Wastewater reuse was predicted (adjusted R2 = 0.70; p <0.001)
from this metric (β = 0.60; p < 0.01) in combination with the desalination capacity per capita (β =
0.29; p < 0.1), as an indicator of the prevalence of unconventional water resources in a country. The
observed versus predicted wastewater reuse rates from this regression are displayed in Fig. 2.2d.
Irrigation water scarcity data was unavailable for 53 countries, mostly small island nations. Here an
alternate regression model was constructed based on desalination capacity per capita (β = 0.63; p <
0.01) and wastewater treatment (β = 0.24; p < 0.1) only, resulting in a slightly lower explained
variance (R2 = 0.61). While these countries represent <1% of the global population, this alternate
regression was necessary to account for wastewater reuse occurring particularly in water-scarce small
island nations. These islands typically lack renewable water resources and hence unconventional
water resources such as desalinated water and treated wastewater represent a substantial proportion
of the water availability (Jones et al., 2019).
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2.3.2 Global production, collection, treatment and reuse
Globally, this study estimates annual wastewater production at 359.4 (358.0–361.4) billion m3 yr−1,
with a global average of 49.0 (48.8–49.2) m3 yr−1 per capita. Global wastewater collection and
treatment is estimated at 225.6 (224.4–226.9) and 188.1 (186.6–189.3) billion m3 yr−1, respectively.
These values indicate that approximately 63% and 52% of globally produced wastewater is collected
and treated, respectively, with approximately 84% of collected wastewater undergoing a treatment
process. Wastewater reuse is estimated at 40.7 (37.2–47.0) billion m3 yr−1, representing
approximately 11% of the total volume of wastewater produced. This estimate also indicates that
approximately 22% of treated wastewater undergoes intentional reuse, with the remaining 78%
(totalling 147.4 billion m3 yr−1) discharged to the environment. This compares to the estimated
171.3 billion m3 yr−1 of wastewater discharged directly to the environment without undergoing any
form of treatment. It is worth highlighting that the vast majority of wastewater data are from reported
sources, with just 2.4%, 4.8% and 5.2% of global wastewater production, collection and treatment
being from predicted values using regression. This occurs both due to the high population coverage
and due to the missing data primarily being from developing countries, where wastewater production
per capita and percentage collection and treatment rates are lower. The global quantification of
wastewater reuse relies more heavily on predicted values, constituting 23.4% of reuse volume globally.
This occurs primarily due to poor data availability, particularly in countries with large populations in
Eastern Europe and Central Asia (e.g. Russia, Turkey and Poland) and Western European countries
where wastewater treatment rates are generally high but the proportion of wastewater reused relies on
simulations (e.g. Germany, Italy and Greece).

Table 2.4 displays wastewater production per capita (m3 yr−1 per capita) and wastewater
production, collection, treatment and reuse (billion m3 yr−1), aggregated from the country data
(reported plus simulated) at the global scale and by region and level of economic development.
Fig 2.3 displays wastewater data plotted at the country scale in proportional terms (m3 yr−1 per
capita for production; percentage of produced wastewater for collection, treatment and reuse),
facilitating direct comparisons between countries.

Substantial differences in wastewater production, collection, treatment and reuse occur across
different geographic regions and by the level of economic development. Wastewater production per
capita is notably highest in North America at 209.5 m3 yr−1 per capita, over double that of Western
Europe (91.7 m3 yr−1 per capita), the next highest producing region per capita. When considering
individual countries in these regions, the USA (211 m3 yr−1 per capita) and Canada (198 m3 yr−1

per capita), in addition to small, prosperous European countries (e.g. Andorra: 257 m3 yr−1 per
capita; Austria: 220 m3 yr−1 per capita; Monaco: 203 m3 yr−1 per capita) are the highest producers
per capita. Comparatively, the larger Western European countries have lower wastewater production
per capita, with Germany, the U.K. and France at 92, 92 and 66 m3 yr−1 per capita, respectively.
Conversely, most Sub-Saharan African countries produce less than 10 m3 yr−1 per capita.
Wastewater production values are comparable to the World Health Organisation’s absolute minimum
water requirements for survival of 2.7 m3 yr−1 per capita (WHO, 2011) in countries such as Niger
(2.7 m3 yr−1 per capita), Burkina Faso (3.4 m3 yr−1) and Ethiopia (4.2 m3 yr−1 per capita).
Aggregated for the region, Sub-Saharan Africa produces approximately 20 times less wastewater than
North America per capita, at 11.0 m3 yr−1 per capita.

In volumetric flow rate terms, East Asia and Pacific produces the most wastewater (117.6 billion m3

yr−1), coinciding with the largest population share (31%). Conversely, Southern Asia produces just
7% of global wastewater despite a population share of 24%, whereas the 5% of people living in North
America account for 20% of global wastewater production. Wastewater production also varies greatly
with level of economic development. The prominent discrepancies between economic classifications
indicate a strong relationship between wealth and wastewater production regardless of geographic
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Table 2.4 Wastewater production, collection, treatment and reuse (billion m3 yr−1) by region and level of
economic development. The numbers in parentheses display the prediction uncertainty (2.5th and 97.5th
confidence limits, in m3 yr−1) on the totals based on the results of 1,000 bootstrap regressions with random
sampling and replacement.

Global Production Production Collection Treatment Re-use
Population (%) (m3 yr-1 per capita) (billion m3 yr-1) (billion m3 yr-1) (billion m3 yr-1) (billion m3 yr-1)

49.0 359.4 225.6 188.1 40.7

(48.8 – 49.2 ) (358.0 – 361.4 ) (224.4 – 226.9 ) (186.6 – 189.3 ) (37.2 – 47.0 )

209.5 74.7 59.1 50.6 9.1
(209.5 - 209.5) (74.7 – 74.7) (59.1 – 59.1) (50.6 – 50.6) (8.8 – 9.5)

67.6 42.1 25.2 15.4 2.1
(67.3 – 67.9) (41.9 – 42.3) (25.2 – 25.2) (15.2 – 15.5) (2.0 – 2.5)

91.7 38.5 33.7 33.0 6.7
(91.7 – 91.8) (38.4 – 38.5) (33.7 – 33.7) (33.0 – 33.0) (4.1 – 9.5)

51.4 21.9 16.1 11.4 6.1
(51.3 – 51.5) (21.8 – 21.9) (16.1 – 16.2) (11.2 – 11.5) (6.0 – 6.2)

11.0 11.0 2.5 1.8 1.6
(10.1 – 12.4) (10.1 – 12.4) (2.5 – 2.6) (1.7 – 1.9) (1.6 – 1.8)

14.6 25.6 7.8 4.0 0.5
(14.5 – 14.7) (25.4 – 25.7) (7.8 – 7.8) (4.0 – 4.1) (0.5 – 0.8)

57.9 28.2 18.4 14.9 2.6
(57.2 – 58.8) (27.8 – 28.6) (18.2 – 18.7) (14.7 – 15.1) (1.3 – 4.4)

51.5 117.6 62.8 57.0 11.9
(51.5 – 51.7) (117.3 – 117.9) (61.9 – 63.8) (56.1 – 57.8) (11.7 – 13.5)

126.0 149.1 121.7 110.4 21.2
(125.9 – 126.2) (149.0 – 149.3) (121.6 – 121.7) (110.4 – 110.5) (19.1 – 24.9)

54.7 139.5 74.8 60.2 15.1
(54.5 – 54.8) (139.1 – 139.9) (74.6 – 74.9) (59.7 – 60.6) (13.9 – 16.9)

22.5 66.8 28.8 17.3 4.4
(22.3 – 22.6) (66.4 – 67.4) (27.7 – 29.9) (16.2 – 18.2) (3.6 – 5.7)

6.4 4.0 0.4 0.2 0.0
(5.0 – 8.5) (3.2 – 5.3) (0.3 – 0.4) (0.1 – 0.2) (0.0 – 0.1)

Geographic Region

Global 100

4.9North America

Low 8.6

40.5

34.8

16.1

31.1

Income Level

High

Upper middle

Lower middle

East Asia & 
Pacific

Western Europe

Latin America & 
Caribbean

23.8

6.6

8.5

5.7

5.8

13.6

Southern Asia

Eastern Europe & 
Central Asia

Sub-Saharan 
Africa

Middle East & 
North Africa

location. Wastewater production per capita more than doubles at each income classification level
from ‘low income’ (6.4 m3 yr−1 per capita) to ‘high income’ (126.0 m3 yr−1 per capita). With respect
to population size, people living in ‘high income’ countries (16% global population) produce 42% of
global wastewater, compared to ‘low income’ and ‘lower-middle income’ countries (∼50% global
population) producing 20% of global wastewater.

Wastewater collection and treatment rates are highest in Western Europe (88% and 86%,
respectively) and lowest in Southern Asia (31% and 16%, respectively) and Sub-Saharan Africa (23%
and 16%, respectively). Wastewater collection is notably low in the East Asia and Pacific region,
where total wastewater production is high. Conversely, wastewater collection in the Middle East and
North Africa region is relatively high at 74%, likely resulting from the lack of renewable water
supplies. Wastewater treatment percentages follow similar regional patterns. Notably, wastewater
treatment is substantially lower than wastewater collection in the Latin America and Caribbean and
Southern Asia regions, potentially indicative of high rates of untreated wastewater reuse in these
regions. Wastewater collection and treatment percentages follow similar patterns as wastewater
production with respect to income level, with ‘high income’ countries collecting and treating the
majority of their wastewater (82% and 74%, respectively) down to ‘low income’ countries with small
collection and treatment rates (9% and 4%, respectively). The proportion of collected wastewater
being treated also decreases with income level, at 91%, 73%, 60% and 47% for ‘high’, ‘upper-middle’,
‘lower-middle’ and ‘low’ income classifications, respectively. The fact that 40% and 53% of collected
wastewater is untreated in the ‘lower-middle’ and ‘low’ income classifications, respectively, may also
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be indicative of the higher prevalence of intentional untreated wastewater reuse (whereby collected
wastewater is reused without undergoing treatment).

High utilisation of treated wastewater reuse occurs predominantly in the Middle East and North
Africa, with the United Arab Emirates, Kuwait and Qatar reusing more than 80% of their produced
wastewater. Water scarce small island developed countries, including the Cayman Islands, US Virgin
Islands and Malta also have high rates of intentional treated wastewater reuse of 78%, 75% and 67%,
respectively. Treated wastewater reuse is prohibitively low in areas with low wastewater treatment rates,
such as Sub-Saharan Africa and Southern Asia. In addition, treated wastewater reuse is also low in areas
with sufficient availability of conventional water resources such as across Scandinavia (where reuse is
<5%).

In volumetric flow rate terms, intentional treated wastewater reuse is estimated to be largest in East
Asia and Pacific (11.9 billion m3 yr−1) and North America (9.1 billion m3 yr−1) and lowest in
Southern Asia (0.5 billion m3 yr−1) and Sub-Saharan Africa (1.6 billion m3 yr−1). Conversely the
Middle East and North Africa (27.8%) and Western Europe (17.5%) dominate in percentage terms. In
volumetric flow rate units, the Middle East and North Africa (15%) and Western Europe (16%)
account for almost a third of treated wastewater reuse globally, despite only accounting for 5.8% and
5.7% of the global population, respectively. Approximately half (52%) of intentional treated
wastewater reuse occurs in ‘high income’ countries, with 37% from ‘upper-middle’ income countries.
Intentional treated wastewater reuse is contingent upon the availability of treated wastewater
resources, which is typically more prevalent in ‘high income’ countries (who both produce more
wastewater per capita and treat a higher percentage of the resource). However, the proportion of
treated wastewater intentionally reused is higher in the ‘upper-middle’ (25%) and ‘lower-middle’
(25%) income groups than in the ‘high income’ group (19%).

2.3.3 Gridded production, collection, treatment and reuse
Fig. 2.4 displays gridded wastewater production, collection, treatment and reuse, allowing for the
identification of hotspot regions and zones at 5 arc-min resolution. Wastewater production occurs
across the globe, with hotspots coinciding with the largest metropolitan areas (e.g. Tokyo and
Mumbai) where the largest concentration of domestic and industrial activities occurs (Fig. 2.4a). In
contrast, wastewater production is close to zero in world regions with low concentrations of people
and industrial activities, such as the Sahara desert, inland Australia and the high latitude climate
zones (e.g. Northern Canada and Russia). In countries where municipal activities are heavily
concentrated in a small number of cities, such as in the Middle East and Australia, small clusters of
gridcells with very high wastewater production (>5 million m3 yr−1) occur. Wastewater collection
(Fig. 2.4b) and treatment (Fig. 2.4c) are typically more concentrated in urban areas within individual
countries. This is particularly prominent in Latin America and Sub-Saharan Africa. Conversely,
downscaled wastewater collection and treatment reflect wastewater production in regions where
wastewater collection and treatment rates are very high, such as Western Europe and Scandinavia.
Wastewater reuse is constrained to the lowest area (number of gridcells), being concentrated in
regions with where treated wastewater resources are available and where water scarcity issues are of
particular concern.
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Fig. 2.5a displays the global distribution of the wastewater treatment plants and designated
wastewater reuse sites considered in this study. Plant capacities were compared to downscaled
quantifications for validation of wastewater treatment (Fig. 2.5b) and wastewater reuse (Fig. 2.5c).
Overall, a reasonable performance is obtained at most wastewater treatment and reuse plants with
linear R2 values of 0.57 (p < 0.001) and 0.50 (p < 0.001), respectively. The observed negative
normalised biases suggest that downscaled wastewater treatment (−0.32) and reuse (−0.51) was
underestimated with respect to the observed treatment capacities. This may occur due to
discrepancies between the design (i.e. maximum) capacity of wastewater treatment plants, which is
commonly the capacity that is reported, versus the actual treated wastewater volumes. Factors such as
the construction year of wastewater treatment plant are important, as plants are constructed to be
larger than current requirements in anticipation of future increases in wastewater flows.
Furthermore, uncertainties in the data used as basis for downscaling wastewater production (i.e.
PCR-GLOBWB2 return flows) directly impacts the downscaled results of wastewater treatment. For
example, the underprediction of return flows in urban areas and overprediction in rural areas could
lead to the overprediction of wastewater treatment in areas without treatment plants and
underprediction of wastewater treatment for gridcells with large treatment capacities.

Figure 2.5 a) Global distribution of wastewater treatment plants and designated wastewater reuse sites; and
validation of downscaling approach for b) wastewater treatment; and c) and wastewater reuse (c).
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2.4 Discussion and conclusions

This study aimed to develop a consistent and comprehensive spatially-explicit assessment of global
domestic and manufacturing wastewater production, collection, treatment and reuse for the reference
year of 2015. Multiple linear regression models using a diverse set of social, economic, geographic
and hydrological datasets were fit for country-level wastewater data collated for a variety of sources.
These relationships were applied for predictions of wastewater production, collection, treatment and
reuse for countries where data was unavailable. Bootstrapping with random sampling and
replacement was employed to quantify prediction uncertainty. It should be noted that bootstrapping
only accounts for uncertainty in the regression terms, not for uncertainties in the underpinning
source data. Uncertainties associated with wastewater observations are not accounted for in this
study, despite likely being substantial. Nevertheless, this study represents the first attempt to
simultaneously analyse wastewater production, collection, treatment and reuse for all countries across
the globe. While agricultural runoff is also a substantial source of pollution, this is outside the scope
of this study. Country-level data on agricultural runoff is sparse, necessitating modelling approaches
to quantify irrigation return flow by calculating net demand (e.g. based on crop composition and
irrigated area per gridcell), gross irrigation demand (to account for irrigation efficiency and losses)
and water withdrawals (Sutanudjaja et al., 2018). Agricultural runoff is also rarely collected or treated
(WWAP, 2017), hence is less applicable for inclusion in this study.

Our global quantification of wastewater production of 359.4 (358.0–361.4) billion m3 yr−1 is
broadly in accordance with previous quantifications, such as 380 billion m3 yr−1 quantified based on
reported data and urban population (Qadir et al., 2020), and 450 billion m3 yr−1 quantified by
modelling of return flows in WaterGAP3 (Flörke et al., 2013). Few studies were found analysing the
global state of wastewater collection, treatment and reuse. Our quantification of wastewater
collection, which is estimated at 225.6 (224.4–226.9) billion m3 yr−1, can give an important
indication of the amount of collected wastewater that goes untreated. At the global scale, this study
estimates that wastewater treatment is 188.1 (186.6–189.3) billion m3 yr−1, or 52% of the produced
wastewater. By extension, 48% of produced wastewater is released to the environment without
treatment (either directly, or following collection). This is substantially lower than the commonly
cited statistic that ∼80% of global wastewater is released to the environment without treatment
(WWAP, 2017). Our quantifications of wastewater treatment must be treated with caution however –
particularly in the developing world – as wastewater treatment plants typically operate at capacities
below the installed (and usually reported) capacities (Murray and Drechsel, 2011; Mateo-Sagasta
et al., 2015) that are used for country-level estimates. Similarly, wastewater plants may be entirely
non-functional (mothballed) due to lack of funding and maintenance, or have unsuitable treatment
processes for the incoming wastewater, yet the associated wastewater volumes are still reported as
treated (Qadir et al., 2010). Therefore, it is possible that the actual treated volume of wastewater is
somewhat below our estimated 52% and the proportion of collected wastewater which is not treated
could far exceed 16%. ‘Wastewater treatment’ is also a generic term that may refer to any form of
wastewater treatment regardless of level (e.g. primary, secondary or tertiary), which this study does
not attempt to distinguish between. This is due to different data sources reporting different levels of
treatment, for instance with GWI only reporting secondary treatment or above while
FAO-AQUASTAT also includes primary treatment.

In percentage terms, wastewater treatment by economic classification is broadly in line with
previous work (Sato et al., 2013), who estimate wastewater treatment to be 70%, 38%, 28% and 8% for
‘high’, ‘upper-middle’, ‘lower-middle’ and ‘low’ income countries, respectively, compared to our
quantifications of 74%, 43%, 26% and 4.2%. While similar, these estimations could potentially
indicate that percentage collection and treatment have increased in the developed world, but have
decreased in the developing world. This could be caused by wastewater production, particularly in the
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developing world, rising at a faster pace than the development of collection infrastructure and
treatment facilities (Sato et al., 2013). It should be noted that while the aim of wastewater collection
and treatment is to reduce pollutant loadings to minimise risks to human health and the
environment, these facilities can also act as point sources of pollution. Wastewater collection
concentrates pollutants, which can pose serious water quality issues if discharged with insufficient
treatment. Furthermore, a range of emerging pollutants (e.g. pharmaceuticals, pesticides and
industrial chemicals) are concentrated in wastewater collection networks (Geissen et al., 2015). These
pollutants are of particular concern as they are not typically monitored for or sufficiently removed in
wastewater treatment processes, with ambiguous risks posed to human and environmental health
even in low concentrations (Deblonde et al., 2011; Geissen et al., 2015). The solution is not however
to collect less wastewater, but to increase treatment in terms of percentage of collected wastewater,
treatment level and the number of pollutants (UNEP, 2016).

The drivers behind wastewater reuse are a complex mixture of social, economic, geographic and
hydrological factors, and data are highly limited globally. Nevertheless, this study represents the first
attempt to quantify intentionally treated wastewater reuse at the country scale. It should be noted
that this study does not aim to quantify either de-facto (unintentional) treated wastewater reuse or
any form (intentional or unintentional) of untreated wastewater reuse. The total volume of wastewater
reused for human purposes is therefore likely much greater than the 40.7 billion m3 yr−1 of intentional
treated wastewater reuse estimated in this study. For example, previous research has indicated that
the magnitude of intentional untreated wastewater reuse may be approximately ten times greater than
intentional treated wastewater reuse (Scott et al., 2010).

This study sought to downscale country-level wastewater estimates to spatially-explicit
(grid-based) quantifications for purposes such as large-scale water resource assessments and water
quality modelling. Wastewater production has previously been quantified based only on simulated
return flows in hydrological models (Flörke et al., 2013). We instead used the proportions of
simulated return flows to downscale country-based volumes of wastewater production. Our results
also represent the first efforts to quantify global wastewater collection, treatment and reuse at the
sub-national level. Our validation results suggest that our downscaled estimates of wastewater
treatment and reuse are, in general, realistic. However, a number of uncertainties should also be
considered. Firstly, our downscaling for wastewater production inherently relies on the ability to
accurately simulate domestic and industrial return flows, and hence on the methodology for
calculating gross and net water demand (Wada et al., 2014). As we downscale using the return flows
proportionally, accurate spatial disaggregation of return flows is more important than the absolute
simulated flow volumes. The accuracy of downscaled wastewater collection relies on the assumption
that this preferentially occurs in areas where wastewater production is highest. Due to the high
capital costs of wastewater treatment plants, combined with economies of scale, we deem this a logical
assumption (Hernandez-Sancho et al., 2011; Hernández-Chover et al., 2018). Lacking more detailed
information on the spatial variance in wastewater collection compared to treatment, we assume an
equal wastewater treatment rate across all cells that have a collected wastewater allocation.
Wastewater reuse is downscaled with the only additional criteria being an indicator of water scarcity.
While water scarcity is an important driver of wastewater reuse, site-specific social, economic and
political factors will also have a large influence on the viability of wastewater reuse on a case-by-case
basis (WWAP, 2017). Accounting for these factors is outside the scope of this study. Furthermore,
uncertainties in the validation datasets, both in terms of treatment capacity and geographical
location, must also be recognised. Overall, due to the global scale of this work and the available data
for validation, we purposely opt for more simple and parsimonious approaches where possible.
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This study did not target acreage in its considerations of wastewater reuse, which has been a common
method in previous work. For example, estimates made a decade ago suggest that up to 200 million
farmers practice wastewater irrigation over an area of 4.5–20.0 million ha worldwide (Jiménez and
Asano, 2008; Raschid-Sally and Jayakody, 2008). More recently, a global, spatially explicit assessment
of irrigated croplands influenced by municipal wastewater flows estimated the area under direct and
indirect wastewater irrigation at 36 million ha, of which 29 million ha are likely exposed to untreated
wastewater flows (Thebo et al., 2017). These estimates were based on modelling studies and considered
wastewater in both diluted and undiluted forms with a cropping intensity of 1.48 (Thebo et al., 2014).
Considering the same cropping intensity and recent estimates of wastewater production (380 billion
m3 yr−1), the irrigation potential of undiluted wastewater was estimated at 42 million ha (Qadir et al.,
2020).

Our results have a range of important applications including as input data for water resource
assessments and as a baseline for informing and evaluating economic and management policies
related to wastewater. For example, our data can be used to assess progress towards SDG 6.3 aimed at
halving the proportion of untreated wastewater discharged into water bodies. As our data is
standardised for 2015 and provides full geographic coverage, problems of discrepancies in data
reporting years and missing data are reduced. Similarly, our data allows for identification of hotspot
regions whereby the proportion of wastewater collected and treated are low, and of areas where large
volumes of wastewater are entering the environment untreated (see Fig. 2.6). Volumetrically,
substantial untreated wastewater flows to the environment are found across south and southeast Asia,
particularly in the populous regions of Pakistan, Malaysia, Indonesia, India and China. Information
on untreated wastewater flows have a diverse range of important implications for global water quality
modelling and human health assessments.

Our results also highlight the vast potential of treated wastewater as an unconventional water
resource for augmenting water resources and alleviating water scarcity, particularly in water scarce
regions. To put wastewater as a potential resource into perspective, the estimated global volume of
∼360 km3 yr−1 is comparable to the global consumptive use of non-renewable groundwater of
150–400 km3 yr−1 over the years 2000–2010 (Bierkens and Wada, 2019). As wastewater production
continues to rise with population and economic growth, wastewater management and reuse practices
will become more important in the future (WWAP, 2017). Expansion in reuse of wastewater must be
accompanied by strong legislation and regulations to ensure its safety (Voulvoulis, 2018; Smol et al.,
2020). However, in response to concerns related to groundwater contamination, disruption to
industrial processes and impacts for human health, tightening regulation can also be a barrier to
expansion in treated wastewater reuse (Voulvoulis, 2018). It should also be recognised that
wastewater reuse is not viable in all regions due to economic, technical and social considerations
(Voulvoulis, 2018). Particularly in water-scarce developing countries with economic constraints, the
application of untreated wastewater (diluted or undiluted) will likely remain the dominant form of
wastewater reuse (Qadir et al., 2010). This is especially true in dry areas, despite official restrictions
and regardless of potential health implications, where untreated wastewater reuse is triggered
because: 1) wastewater is a reliable or often the only guaranteed water source available throughout the
year; 2) the need to apply fertilisers decreases as wastewater is a source of nutrients; 3) wastewater
reuse can be cheaper and less energy intensive than other water sources, such as if the alternative
clean water source is deep groundwater; and 4) additional economic benefits including higher income
generation from the cultivation and marketing of high-value crops, which can create year-round
employment opportunities.
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Continued failure to address wastewater as a major social and environmental challenge prohibits
progress towards the 2030 Agenda for Sustainable Development (WWAP, 2017). Ultimately, the cost
of action must also be weighed against the cost of inaction (Hernandez-Sancho et al., 2011). A
paradigm shift in wastewater management is required from viewing wastewater as solely an
environmental problem associated with pollution control and regulations, to recognise the economic
opportunities of wastewater, which can provide a means of financing management and treatment
(Drechsel et al., 2015; WWAP, 2017). In addition to revenue from selling treated wastewater for
reuse, these opportunities include ‘fit-for-purpose’ treatment (Chhipi-Shrestha et al., 2017), recovery
of energy and nutrients (Qadir et al., 2020) and cascading reuse of water from high to lower quality
(Hansen et al., 2016). Creative exploitation of these opportunities offers potential to support the
transition to a circular economy (Voulvoulis, 2018; Smol et al., 2020) and make progress towards
many interconnected SDGs such as achieving a water-secure future for all (WWAP, 2017).

Data availability
The country-level and spatially-explicit (5 arc-min) wastewater production, collection, treatment and reuse datasets
can be accessed at: https://dx.doi.org/10.1594/PANGAEA.918731.
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DynQual v1.0: a high-resolution global surface
water quality model

Chapter 3 | DynQual v1.0: a high-resolution
global surface water quality model

Abstract

Maintaining good surface water quality is crucial to protect ecosystem health and for safeguarding human
water use activities. However, our quantitative understanding of surface water quality is mostly
predicated upon observations at monitoring stations that are highly limited in space and fragmented
across time. Process-based models, based upon pollutant emissions and subsequent routing through the
hydrological network, provide opportunities to overcome these shortcomings. To this end, we have
developed the dynamical surface water quality model (DynQual) for simulating water temperature (Tw)
and concentrations of total dissolved solids (TDS), biological oxygen demand (BOD) and fecal coliform
(FC) with a daily timestep and at 5 arc-min (∼10km) spatial resolution. Here, we describe the main
components of this new global surface water quality model and evaluate model performance against in
situ water quality observations. Furthermore, we describe both the spatial patterns and temporal trends
in TDS, BOD and FC concentrations for the period 1980–2019, and attribute the dominant contributing
sectors to surface water pollution. Modelled output indicates that multi-pollutant hotspots are especially
prevalent across northern India and eastern China, but that surface water quality issues exist across all
world regions. Trends towards water quality deterioration have been most profound in the developing
world, particularly Sub-Saharan Africa and southern Asia. The model code is available open source
(https://github.com/UU-Hydro/DYNQUAL) and we provide global datasets of simulated hydrology, Tw,
TDS, BOD and FC at 5 arc-min resolution with a monthly timestep
(https://doi.org/10.5281/zenodo.7139222). These data have the potential to inform assessments in a
broad range of fields, including ecological, human health and water scarcity studies.

Published: Jones, E.R., Bierkens, M.F.P., Wanders, N., Sutanudjaja, E.H., van Beek, L.P.H., and van Vliet, M.T.H.
(2023) DynQual v1.0: a high-resolution global surface water quality model. Geoscientific Model Development, 16,
pp. 4481–4500, DOI: 10.5194/gmd-16-4481-2023
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3.1 Introduction

Maintaining good surface water quality is important for protecting ecosystem health and ensuring
human access to safe water resources for a diverse range of sectoral needs (van Vliet et al., 2021; Jones
et al., 2022). For example, high organic pollution can reduce oxygen availability and can lead to the
suffocation of aquatic organisms (Sirota et al., 2013), while pathogen pollution represents a potential
health risk for people exposed to this water. The consumption of contaminated drinking water can
lead to the transmission of diseases such as cholera, dysentery and polio, which cause an estimated
485,000 deaths annually (Prüss-Ustün et al., 2019). Another example is salinisation of water
resources, which can both limit irrigation water use (Thorslund et al., 2022) and threaten freshwater
biodiversity where species cannot tolerate elevated salinity concentrations (Velasco et al., 2019).
Similarly, increased water temperatures can disrupt energy production (van Vliet et al., 2016), and
also provide more favourable conditions for cyanobacterial blooms that can lead to hypoxia which
can disrupt freshwater habitats (Smucker et al., 2021).

Human activities, both directly and indirectly, cause changes in surface water quality relative to
ambient (‘pristine’) conditions. Indirectly, altered precipitation patterns and the increased frequency
of hydro-meteorological extremes that result from human-induced climate change can lead to
fundamental changes in the hydrological regime (Wanders and Wada, 2015; Gudmundsson et al.,
2021). Lower water levels due to altered seasonality patterns or droughts reduce the stream dilution
capacity, which can increase the proportion of streamflow originating from (polluted) point sources
(Wright et al., 2014; Luthy et al., 2015; Macedo et al., 2022). Both of these factors increase river water
contamination, threatening both the safe usability of water and environmental health. Climate
change is also altering the thermal regime of rivers (van Vliet et al., 2013), with higher temperatures
also causing dissolved oxygen depletion (Ozaki et al., 2003).

More directly, sectoral activities generate return flows: water that is extracted for a specific purpose
that is not consumed (evaporated) in the process but which has changed in composition as a result of
the water use activity (Sutanudjaja et al., 2018; Jones et al., 2021). For example, the composition of
domestic wastewater will reflect the various household water uses, including organic and fecal
contamination from human waste (WWAP, 2017) and elevated nutrient concentrations from
household chemicals and laundry detergents (van Puijenbroek et al., 2019). The reintroduction of
these flows back to the environment represents a significant source of pollutant loadings that degrade
river water quality (Jones et al., 2022). Collection and treatment of these flows, before their
reintroduction to the environment, can help to minimise the impact on surface water quality (Jones
et al., 2022). However, these processes can be economically expensive to establish and operate, and
hence collection and treatment infrastructure is not ubiquitous worldwide (Jones et al., 2021; Jones
et al., 2022).

Water quality is an integral part of the Sustainable Development Agenda, cross-cutting almost all
Sustainable Development Goals (SDGs). Despite widespread recognition of its importance, water
quality monitoring data are still severely lacking in several world regions – particularly Africa and
central Asia (Damania et al., 2019). Furthermore, in regions where observation data are available,
data are often sparse in both space and time. Water quality models offer opportunities to overcome
these limitations (Hofstra et al., 2013; Beusen et al., 2015; UNEP, 2016; van Vliet et al., 2021). As
opposed to statistical models which heavily rely on observed water quality data, physical models
simulate the emission and transport of pollutant loadings along the river network directly based on
climatic, hydrological and socioeconomic input data. This makes physically based model approaches
especially advantageous when simulating water quality in ungauged catchments and for projecting
water quality under future (uncertain) climatic and socioeconomic developments (Wanders et al.,
2019).
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A spatially and temporally detailed assessment of multiple water quality constituents at the global
scale is lacking. Furthermore, only a few studies have quantitatively evaluated temporal dynamics and
trends in water quality over extended time periods, particularly considering changes in factors that
drive higher pollutant emissions (e.g. population growth, industrialisation) relative to factors that abate
pollutant emissions (e.g. wastewater treatment). Lastly, few studies have assessed the spatio-temporal
patterns in the specific sectoral activities that are driving patterns in surface water quality worldwide.

Here, we present a high-spatio-temporal-resolution surface water quality model (henceforth
DynQual), which can currently be used to simulate water temperature (Tw), and concentrations of
total dissolved solids (TDS) to represent salinity pollution, biological oxygen demand (BOD) to
represent organic pollution and fecal coliform (FC) as a coarse indicator of pathogen pollution. All
simulations are made at a daily timestep with a spatial resolution of 5 arc-min (∼10x10km at the
equator). DynQual considers a wide range of hydro-climatic and socioeconomic drivers, spanning
across the major contributing pollutant sources. The high spatio-temporal resolution of DynQual,
combined with these features, allows the model to address scientific questions that are not currently
possible using existing surface water quality models. For example, while previous work has compared
pollutant loads (masses) originating from different sources at aggregated spatial scales (i.e. basin or
sub-basin level), the impact on in-stream concentrations – which is also dependent upon
spatio-temporal variability in dilution capacity and in-stream decay processes – has not been assessed.

The objectives of this study are to: 1) introduce a new open source global surface water quality model
and evaluate model performance; 2) assess spatial patterns and trends in surface water quality, focussing
on TDS, BOD and FC concentrations for the period 1980–2019; and 3) demonstrate additional model
capabilities by assessing the sector-specific contributions towards surface water pollution across both
space and time.

3.2 DynQual – model description

3.2.1 General overview
The newly developed DynQual model builds on the modelling framework of DynWat, a global water
temperature model that solves the energy-water balance to simulate daily water temperature (Tw) and
ice thickness (van Beek et al., 2012; Wanders et al., 2019). A full model description including the energy
balance equations and the representation of ice cover, floodplains, channel roughness and lakes and
reservoirs within DynWat is available in published literature (Wanders et al., 2019). DynQual further
includes the impact of heat dumps produced in thermoelectric powerplants (van Vliet et al., 2012b;
van Vliet et al., 2021) on water temperature. In addition to water temperature, DynQual simulates
daily in-stream concentrations of three water quality constituents, namely, total dissolved solids (TDS),
biological organic matter (BOD) and fecal coliform (FC), which are of key social and environmental
relevance (van Vliet et al., 2021) (Fig. 3.1).

Two options for running DynQual are offered: 1) in a stand-alone configuration with specific
discharge (i.e. baseflow, interflow and direct runoff in m day−1) fed from any land surface or
hydrological model; or 2) coupled with the global hydrological and water resources model
PCR-GLOBWB2 (Sutanudjaja et al., 2018). The routine for surface water (and pollutant) routing
follows an eight-point steepest-gradient algorithm across the terrain surface (local drainage direction)
in a convergent drainage network with the lowermost cell connected to either the ocean or an
endorheic basin, as per PCR-GLOBWB2 (Sutanudjaja et al., 2018) and DynWat (van Beek et al., 2012;
Wanders et al., 2019). Routing within DynQual uses the kinematic wave approximation of the
Saint-Venant equations with flow described by Manning’s equation, solved using a time-explicit
variable sub-time-stepping scheme based on the minimum Courant number (Sutanudjaja et al.,
2018). In the coupled configuration, surface waters are subject to water withdrawals and return flows

40 | CHAPTER 3



621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

Figure 3.1 Overview of the required input data for running DynQual in different model configurations. Runs
coupled with PCR-GLOBWB2 require socioeconomic (arrow 1) and climatic forcing (3,4) data as standard, with
options to either 1) estimate loads based on additional socioeconomic (2) and simulated hydrological (6) data ;
or 2) providepollutant loadingsdirectly as inputdata (8). Offline runs requirebothhydrological (5) andpollutant
loading (8) input data to be provided directly.

from the domestic, industrial, livestock and irrigation sectors calculated within the water use module
of PCR-GLOBWB2. A complete model description of PCR-GLOBWB2 including detailed information
on the model structure, individual modules (meteorology, land surface, groundwater, surface water
routing and water use) and validation of hydrological output is available in published literature
(Sutanudjaja et al., 2018). In both configurations of DynQual, pollutant loadings can be prescribed
directly (akin to a forcing). Alternatively, when running DynQual coupled with PCR-GLOBWB2
pollutant loadings can be simulated within the model runs by providing only simple input data
(Appendix A.1). An overview of DynQual, which details the input data required for the different
model configurations, is displayed in Fig. 3.1. By providing these options, we allow for flexibility –
allowing pollutant loadings to be directly imposed on the model enables users to estimate loadings
using their preferred methodology and assumptions, whereas the option to estimate pollutant
loadings within the model run enables users to simulate water quality without any pre-processing
requirements, but still provides flexibility to use their preferred input datasets. Parameter values
related to pollutant emissions can be adjusted by the user, as desired. When simulating pollutant
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loadings within model runs, it is also possible to quantify the contribution and relative importance of
different water use sectors to the spatial patterns and temporal trends in surface water quality.

As per PCR-GLOBWB2 (Sutanudjaja et al., 2018) and DynWat (Wanders et al., 2019), DynQual is
written in Python 3 and is run using an initialization (.ini) file in which key aspects of the model run
are defined (e.g. spatial extent, simulation period, paths to parameter and forcing files). Most input
files required and all output files are in NetCDF format. Global 5 arc-min DynQual runs that are
coupled with PCR-GLOBWB2 have a wall-clock time of approximately 6 hours per year when run
with parallelisation, due to the requirement to use the kinematic wave routing option for
higher-accuracy discharge and water temperature simulations. This is approximately equivalent to
the PCR-GLOBWB2 run times given by Sutanudjaja et al. (2018). DynQual runs performed in the
stand-alone configuration are faster (∼20%).

3.2.2 Water quality equations
Water temperature (Tw)
Water temperature (Tw) is simulated by solving the surface water energy balance using the DynWat
model as basis (van Beek et al., 2012; Wanders et al., 2019). In addition to solving the surface water
energy balance, DynWat also accounts for surface water abstraction, reservoirs, riverine flooding and
the formation of ice (Wanders et al., 2019). Here, we further develop DynWat to include advected heat
flows from thermoelectric powerplants, as per the method described in van Vliet et al. (2012b) and van
Vliet et al. (2016). The modelling equations for Tw incorporated into DynQual are shown in Eq. 3.1
and are fully elaborated on in previous work (van Beek et al., 2012; van Vliet et al., 2012b; van Vliet
et al., 2016; Wanders et al., 2019).

ρwCp
∂(hTw)

∂t
= ρwCp

∂(vTw)

∂x
+Htot + ρwCp

∫ dx

x=0

qsTs +
Twpown

h · w · ∂x
Htot = Sin(1− aw) + Lin − Lout −H − LE

Twpown = ρw · Cp ·RFpow,n ·∆Tpowrf

(3.1)

where t is time, x is location along the drainage network, Tw is water temperature (K), Cp is the
specific heat capacity of water (4,190 J kg−1 K−1), ρw is the density of fresh water (1,000 kg m−3), h
is the stream water depth (m), v is the velocity of water (m3 s−1), Htot is the heat flux at the air–water
interface, Sin is the incoming shortwave radiation (J m−2 s−1), 1 − aw is the reflected shortwave
radiation (J m−2 s−1), Lin is the incoming longwave radiation (J m−2 s−1), Lout is the outgoing
longwave radiation (J m−2 s−1), H is the sensible heat flux (J m−2 s−1), LE is the latent heat flux (J
m−2 s−1), qs is the lateral water fluxes from land to stream (m s−1), Ts is the temperature of lateral
water fluxes (K), Twpown is the heat dump from thermoelectric powerplants (J s−1), RFpow,n is the
return flows of cooling water from thermoelectric powerplants (m3 s−1), ∆Tpowrf is the difference in
water temperature between the return flows and ambient river water (K), w is the stream width (m)
and dx is the distance between gridcell n and the upstream gridcell n− 1 (m).

Conservative (TDS) and non-conservative (BOD, FC) substances
Our modelling strategy for TDS, BOD and FC is a mass balance approach assuming transport by
advection only, whereby sector-specific loadings (i.e. masses of pollutants generated from a particular
human activity in a given time period) are accumulated from all contributing sectors and routed
through the global stream network until outflow to the ocean or an endorheic basin (Thomann and
Mueller, 1987; Chapra and Pelletier, 2004; Voß et al., 2012; UNEP, 2016; van Vliet et al., 2021).

TDS is modelled as a conservative substance, while BOD and FC are modelled as non-conservative
substances that include first-order decay processes (Voß et al., 2012; Reder et al., 2015; UNEP, 2016;
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Figure 3.2 Schematic overview of DynQual, including a translation of local hydrological and socioeconomic
situation into a local drain direction (LDD) map that includes hydrological and pollutant fluxes, and a
representation of the gridcell based processes (pollutant emission calculation, routing procedure and
computation of pollutant concentrations) in an individual DynQual gridcell. Cp,n is the concentration of
pollutant p (e.g. mg l−1), while Mp,n is the total mass of pollutant p (e.g. g) and Vn is the channel storage
(m3), all of which are in gridcell n. V t=0

n is the volume of channel storage from the previous timestep (m3),
whileQn−1→n andQn→n+1 are the discharge (m3 s−1) into and out of gridcell n, respectively, per timestep
∆t. Mt=0

p,n is the mass of pollutant p from the previous timestep, while RLpn−1→n and RLpn→n+1 are
the loadings of pollutant p (e.g. g s−1) that are routed into and out of gridcell n, per timestep ∆t. Lp,n are
the combined local loadings of pollutant p (e.g. g day−1) in gridcell n, which is the sum of loadings from
all contributing sectors and urban surface runoff. kp,n represents a decay coefficient, which depends upon
pollutant p. D is the length of a day in seconds (i.e. 86,400 s day−1), while∆t is the length of the sub-timestep
(s) which is linked to the internal routing regime within DynQual and PCR-GLOBWB2. Pn is precipitation (m3

day−1) andEn is evapotranspiration (m3 day−1), with these terms included as an example of gridcell-specific
hydrological fluxes. For a more detailed overview of the hydrological fluxes within a gridcell we refer to the
PCR-GLOBWB2 documentation (Sutanudjaja et al., 2018).

van Vliet et al., 2021). Our approach for both the conservative and non-conservative substances
assumes instantaneous and full mixing of all streamflow and return flows in each gridcell. As per
most water quality models, DynQual simulates water quality per individual gridcell over a
consecutive series of discrete time periods (Loucks and van Beek, 2017). Each gridcell represents a
volume element, which is in steady-state conditions within each time period and contains a
(fully-mixed) pollutant mass (Fig. 3.2). In each consecutive timestep, there is an associated volume of
water and mass of pollutant that flows into the gridcell from upstream and that flows out of the
gridcell to the downstream gridcell. For non-conservative substances, there are also gridcell-specific
in-stream decay processes that influence the total mass of pollutant in each sub-time interval.
DynQual simulates these transport and decay processes with a sub-daily interval (∆t in seconds), the

DYNQUAL: MODEL DESCRIPTION | 43

https://runoff.kp/


621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

length of which is determined with respect to channel characteristics and discharge (Appendix A.2 &
Eq. A.9).

The pollutant concentration at each subsequent time interval (t+∆t) is calculated following Eq. 3.2.
It should be noted that, while we simulate the terms of this equation with a sub-daily timestep interval,
DynQual only reports concentrations in the final sub-daily interval of each day. This is due to the lack
of sub-diurnal input data, for efficient data storage and the lack of relevance of such high-resolution
simulations with respect to our large-scale modelling approach.

Ct+∆t
p,n =

M t+∆t
p,n

V t+∆t
n

+BGp,n (3.2)

Where Ct+∆t
p,n and M t+∆t

p,n are the concentration and mass, respectively, of pollutant p in gridcell n
at the consecutive time period (t + ∆t), whereas V t+∆t

n is the volumetric channel storage (m3) in
this grdicell in the same time interval. V t+∆t

n is simulated directly within PCR-GLOBWB2,
accounting for the initial storage, discharge into and out of gridcell n over time interval ∆t and
gridcell-specific hydrological fluxes including precipitation and evapotranspiration (Sutanudjaja
et al., 2018). M t+∆t

p,n is simulated by solving the mass balance equation for pollutant p and accounting
for in-stream decay processes following Eq. 3.3. BGp,n represents the background concentration of
pollutant p in gridcell n. For TDS, these are estimated based on minimum observed EC-converted to
TDS observations (Walton, 1989) contained in a new global salinity dataset (Thorslund and van Vliet,
2020) and are applied as a constant background concentration. Conversely, BGBOD,n and BGFC,n

are assumed to be negligible relative to the mass of pollution produced by anthropogenic activities.

Mt+∆t
p,n = (M t=0

p,n + (
∑

(RLpn−1→n)−RLpn→n+1) +
Lpn

D
∆t) · e−kpn (∆t

D
) (3.3)

Where, at the subsequent timestep interval t+∆t, each gridcell n contains the mass of pollutant p
from the previous timestep M t=0

p,n plus the pollutant load (mass second−1) that has been transported
from the immediately (adjacent) upstream gridcell(s) (RLpn→n−1 ) and minus the pollutant load
(mass second−1) that has been transported downstream (RLpn→n+1 ) in the time interval ∆t (s).
Lp,n represents the daily influx of pollutant loadings produced into gridcell n (mass day−1), which
are added to the stream in equal increments per sub-daily timestep ∆t (s) relative to the total length
of a day D in seconds (i.e. 86,400 s day−1). Our approach for adding local pollutant loadings in equal
increments per sub-daily timestep is necessary as we lack information regarding the (sub-diurnal)
timing at which pollution enters the stream network.

The variable kp,n represents a pollutant-specific p and gridcell-specific n decay rate (day−1). While
we model TDS as a conservative substance (i.e. kTDS,n = 0), we determine the first-order degradation
rate of BOD (kBOD,n) as a function of water temperature (Eq. 3.4) and of FC (kFC,n) as a function
of water temperature, solar radiation and sedimentation (Eq. 3.5). Decay is implemented directly into
DynQual by assuming that decay occurs at an equal rate over the course of a day (∆t

D
). This assumption

is necessary because we do not have sub-daily input data for some terms of the decay equations, such
as Tw and incoming solar radiation (Io).

kBOD,n = k(20) ·ΘTwn−20 (3.4)

Where k(20) is a first-order degradation rate coefficient at 20◦C (day−1) assumed at 0.35 (van Vliet
et al., 2021),Twn is the water temperature (◦C) in gridcelln andΘ is a temperature correction assumed
to be 1.047 as per previous assessments (Wen et al., 2017; van Vliet et al., 2021).
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kFC,n = kd(20)Θ
Twn−20 + ks

Io
keH

(1− e−keH) +
v

H
(3.5)

Where kd is dark inactivation (day−1), Θ is a temperature correction, Twn is the water temperature
(◦C) in gridcell n, ks is sunlight inactivation (m2 W−1), Io is the surface solar radiation (W m−2),
ke is an attenuation coefficient (m−1), H is stream depth (m) and v is the settling velocity (m day−1).
Parameter values (Table 3.1) and mean basin average total suspended solids (Beusen et al., 2005) are
based off previous fecal coliform modelling studies (Reder et al., 2015). Parameter values, including
decay coefficients, can alternatively be defined by the user directly in the source code.

Table 3.1 Assumed parameter values for fecal coliformmodelling.

Variable Unit Value
kd day-1 0.82
c - 1
ks m2 W-1 0.0068
ke m-1 0.0931TSS + 0.881
v m day-1 1.656

3.2.3 Pollutant loadings
In both model configurations (stand-alone or one-way coupled to PCR-GLOBWB2), user-defined
pollutant loadings can be directly imposed on the model (akin to a forcing). Users can estimate
pollutant loadings using their preferred methodology, and subsequently route these through the
global stream network, account for in-stream decay processes and calculate in-stream pollutant
concentrations using the DynQual model framework. Pollutant loadings that are prescribed to
DynQual directly should have a daily temporal resolution (e.g. g day−1 or 106 cfu day−1).

Alternatively, when runningDynQual coupled withPCR-GLOBWB2, pollutant loadings (with a daily
temporal resolution) can be simulated within the model runs, requiring only simple input data (see
Fig. 3.1 and Appendix A.1). This option is beneficial for users that do not have their own estimates of
pollutant loadings. Furthermore, this option may be useful for those interested in scenario modelling,
as input files related to different scenarios can be altered to reflect alternative climate and socioeconomic
conditions.

In this set-up, DynQual estimates and routes pollutant loadings individually and combined for the
main water use sectors (domestic, manufacturing, livestock and irrigation) and from urban surface
runoff at 5 arc-min spatial resolution.

Loadings from the domestic sector are estimated by multiplying the gridded population with
region-specific per capita excretion rates (Appendix A.1.1; Table A.1). For the manufacturing sector, a
mean effluent concentration is multiplied by location-specific gridded estimates of return flows from
the manufacturing sector (Appendix A.1.2; Table A.2). Urban surface return flows are approximated
by multiplying surface runoff (simulated by PCR-GLOBWB2) with the gridded urban fraction, which
are multiplied by a region-specific mean urban surface runoff effluent concentration (Appendix A.1.3;
Table A.3). The livestock sector is sub-divided into ‘intensive’ and ‘extensive’ production systems
based on livestock densities to better account for differences in the paths by which waste enters the
stream network (Appendix A.1.4; Table A.4). Gridded livestock numbers for buffalo, chickens, cows,
ducks, goats, horses, pigs and sheep are multiplied by pollutant excretion rates per livestock type and
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by region (Appendix A.1.4; Tables A.5-A.7). TDS loadings from the irrigation sector are estimated by
multiplying irrigation return flows simulated by PCR-GLOBWB2 with spatially-explicit mean
irrigation drainage concentrations based on salinity (as indicated by electrical conductivity) over the
top- and sub- soil (Appendix A.1.5). Thermal effluents (heat dumps) from thermoelectric
powerplants are included as point sources of advected heat by considering the temperature difference
between the flows and ambient surface water temperature conditions (Appendix A.1.6). Pollutant
loadings from the domestic, manufacturing and intensive livestock sectors, and from urban surface
runoff, are abated based on gridcell-specific wastewater practices. The proportion of pollutant
loadings removed by wastewater treatment practices is estimated by multiplying the fraction of each
treatment level occurring in a gridcell by the pollutant removal efficiency associated with that
treatment level, as described in detail in previous work (Jones et al., 2021; Jones et al., 2022).

A detailed explanation of how pollutant loadings are estimated within DynQual is provided in
Appendix A.1, including equations (Eq. A.1-A.8), data sources and all parameter estimates (Tables
A.1–A.7).

3.3 Model demonstration

3.3.1 Model run setup
DynQual is run for the time period 1980–2019 using W5E5 forcing data (Cucchi et al., 2020; Lange
et al., 2021) in the configuration coupled with PCR-GLOBWB2. We used the standard
parameterisation of PCR-GLOBWB2 for hydrological simulations, as described in previous work
(Sutanudjaja et al., 2018). The focus of our model demonstration is on TDS, BOD and FC, as results
for Tw have been displayed extensively in previous work (Wanders et al., 2019). Pollutant loadings of
TDS, BOD and FC are estimated within the model run at the daily timestep using input data
summarised in Table 3.2, and as detailed in Section 3.2.3 and Appendix A.1. Both the meteorological
forcing data and input data used for simulating pollutant loadings used in this study are accessible
through links provided. We also provide the model code and full input data required for running an
example catchment (Rhine basin) in the ‘Code and data availability’ statement.

As perPCR-GLOBWB2 (Sutanudjaja et al., 2018), in addition to the original water temperature model
DynWat (Wanders et al., 2019), no calibration was performed. The process-based nature and global
scale of DynQual, combined with strong spatial biases in observations (Fig. A.2) and the large number
of parameters that need to be estimated, complicate meaningful calibration. In addition, uncalibrated
physical models can theoretically be applied in ungauged basins without loss of performance and are
more preferable for global change assessments with different climatic and socioeconomic scenarios
(Hrachowitz et al., 2013; Wanders et al., 2019).
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3.3.2 Model evaluation
Model simulations were compared to observations from surface water quality monitoring stations
worldwide at daily temporal resolution. Observed data were obtained from various state-of-the-art
databases (Appendix A.3.1). Water quality monitoring data cover the entire modelled time period
(1980–2019) and include a far greater number of observations than in previous surface water quality
modelling validation procedures (Table A.8). However, monitoring stations are unevenly distributed
across space, with a strong bias towards North America and Western Europe for all water quality
constituents (Fig. A.2). Furthermore, observations at monitoring stations are highly fragmented
across time, particularly for BOD and FC.

The overarching purpose and applications of a model, including large-scale water quality models
(Beusen et al., 2015; UNEP, 2016), must be considered for determining suitable metrics for model
evaluation and judging model performance. Given the approximations in the model, uncertainties in
input data and the overall complexity in the drivers of pollutant loadings, the purpose of global water
quality models is not to compute daily concentrations exactly (UNEP, 2016). The modelling strategy
is thus to focus on the main spatial and temporal drivers of pollution in river networks globally to
facilitate first-order approximations of in-stream concentrations. A key reason for implementing
DynQual at 5 arc-min spatial resolution is due to the marked improvement of the performance of
both PCR-GLOBWB2 (e.g. discharge) (Sutanudjaja et al., 2018) and DynWat (e.g. water temperature)
(Wanders et al., 2019) at finer spatial extents. These two factors have an important influence on
simulated in-stream concentrations due to dilution and in-stream decay processes, respectively.

Given these factors, combined with limitations in the observational records of surface water quality
(Appendix A.3.1), global water quality models have typically not been evaluated with metrics
commonly used for hydrological modelling such as coefficients of determination, Nash–Sutcliffe
efficiency (NSE) and Kling–Gupta efficiency (KGE) (Voß et al., 2012; Beusen et al., 2015; UNEP,
2016; Wen et al., 2017; van Vliet et al., 2021), with the exception of water temperature simulations
(van Vliet et al., 2012a; Wanders et al., 2019). The model evaluation approach adopted for DynQual
combines methods applied for the evaluation of other global water quality modelling efforts.
Simulated TDS, BOD and FC concentrations are evaluated with respect to pollutant classes linked to
key sectoral water quality thresholds (UNEP, 2016; Wen et al., 2017) (Appendix A.3.2; Table A.9) and
statistically using normalised-root-mean-square error (nRMSE) (Beusen et al., 2015; van Vliet et al.,
2021) (Appendix A.3.2; Eq. A.11). This provides an indication of prediction errors across the different
water quality constituents comparable with previous large-scale water quality assessments.
Conversely, the quality of water temperature simulations is evaluated using KGE (Appendix A.3.2;
Eq. A.10). All four water quality constituents are also evaluated by considering long-term time-series
and multi-year annual cycles at individual monitoring stations (Appendix A.3.2), which we present
for the station with the most data availability across all four constituents (see Fig. 3.5 for a station in
the Mattaponi River in the USA) and for a selection of additional monitoring stations per water
quality constituent (Figs. A.5–A.8).

Overall, a strong correspondence between simulated and observed concentrations classes is found,
indicating that the model is (largely) able to simulate concentrations within the correct concentration
range (Fig. 3.3). The simulated concentration class matches the observed concentration class exactly
in 69%, 51% and 44% of instances for TDS, BOD and FC, respectively. When considering ±1
pollutant class, these percentages rise to 92%, 79% and 79%. Of the mismatches in simulated and
observed concentration classes, DynQual tends to underestimate TDS and BOD concentrations
relative to observed in-stream concentrations (i.e. difference in classification level >=1). This occurs
for 75% of mismatches in simulated TDS classes and 69% of mismatches in BOD classes. Conversely,
FC mismatches occur both for under-estimates (57% of cases) and over-estimates (43% of cases) in
more equal proportions.
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Figure 3.3 Differences in observed vs. simulated pollutant classes for a) total dissolved solids (TDS); b)
biological oxygen demand (BOD); and c) fecal coliform (FC). Pollutant classes are defined based on water
use and ecological limitations, as stated by governmental and international organisations. A difference in
classification level of ‘0’ indicates the simulated pollutant class matches the observed pollutant class, while
negative differences indicate that observed concentrations exceeded simulated concentrations and vice versa
for positive differences.

Statistical evaluation of the water temperature simulations using the KGE coefficient demonstrates
the strong performance ofDynQual (Fig. 3.4a) across all world regions (Fig. A.3). Across all observation
stations, a median KGE of 0.72 is found (25th percentile = 0.52, 75th percentile = 0.83), with 32% of
stations with KGE > 0.8, 83% of stations with KGE > 0.4 and 99% of stations with KGE values exceeding
the performance threshold of > −0.41 (Knoben et al., 2019). Detailed time-series of individual rivers
also demonstrate the ability of DynQual to closely replicate observed water temperature at the daily
timestep, in addition to seasonal patterns, across different world regions (Fig. 3.5a; Fig. A.5). A detailed
evaluation of water temperature simulations is available in previous work (Wanders et al., 2019).

The distribution of nRMSE values, sub-divided by annual average river discharge, for TDS, BOD
and FC is displayed in Fig. 3.4b-d. Statistical evaluation of the simulations using nRMSE shows mixed
results. A median nRMSE value of 0.76 is found for TDS across all observation stations, with 25th
percentile of 0.79 and a 75th percentile of 1.83 (Fig. 3.4b). For BOD simulations, a median nRMSE of
0.98, 25th percentile of 0.76 and 75th percentile of 1.25 is found (Fig. 3.4c). A large spread is found for
nRMSE values for FC simulations, with a median of 1.89, a 25th percentile of 1.16 and a 75th
percentile of 3.53 (Fig. 3.4d). Simulated TDS concentrations are typically lower than observations in
many locations that are proximate to the coastline, presumably due to a combination of background
TDS concentrations based upon minimum observations (and applied constantly) and DynQual not
accounting for the influence of saltwater intrusion. This may somewhat explain the long tail (nRMSE
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Figure 3.4 Evaluation of model performance using the Kling–Gupta efficiency (KGE) coefficient for a) water
temperature (Tw); and normalised root mean square error (nRMSE) for b) total dissolved solids (TDS); c)
biological oxygen demand (BOD); and d) fecal coliform (FC) simulations. Spatial patterns in KGE for Tw (Fig. A.3)
and nRMSE for TDS, BOD and FC (Fig. A.4) are displayed in Appendix A.3.2

> 10) in the histogram for TDS (Fig. 3.4b) and the disproportionate tendency of DynQual to simulate
TDS concentrations that are lower than observed concentrations (Fig. 3.3). Overall, no strong spatial
patterns are found in the distribution of nRMSE values of BOD (Fig. A.4b) and FC (Fig. A.4c). For
these water quality constituents, model simulations tend to represent the observed data better in
larger streams (>100 m3 s−1). This is likely due to the influence of spatial mismatches between
monitoring station locations and model simulations being especially important in smaller streams,
where concentrations are more sensitive to natural dilution capacity (i.e. water availability) and
variabilities in pollutant source contributions.

Long-term time-series and average annual cycle plots for TDS (Fig. 3.5b; Fig. A.6), BOD (Fig. 3.5c;
Fig. A.7) and FC (Fig. 3.5d; Fig. A.8) show that DynQual can generally simulate in-stream
concentrations within the correct range (e.g. min–max daily concentrations, 10th and 90th percentile
average annual cycles). Simulated concentrations at the example monitoring station (Fig. 3.5) display
that TDS, BOD and FC concentrations are largely simulated within plausible limits with strong
overlaps in the average annual cycles, but the exact correspondence between observed and simulated
concentrations at the daily timestep is relatively poor. For this observation station, simulated peaks in
daily TDS, BOD and FC concentrations tend to exceed those in the observational record. However,
given the incomplete nature of the observed records, it is problematic to draw conclusions on whether
these concentrations are plausible but unrecorded, or if DynQual is simulating unrealistic peak
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Figure 3.5 Time-series (left) and average annual cycles (right) of observed vs. simulated surface water
quality as indicated by a) water temperature (Tw; ◦C); b) total dissolved solids (TDS; mg l−1) concentrations;
c) biological oxygen demand (BOD; mg l−1) concentrations; and d) fecal coliform (FC; cfu 100ml−1)
concentrations at an example water quality monitoring station. In the time-series plots, observations are
indicated by blue crosses, daily simulations are indicated by grey lines and 30 day running averages are
indicated by red lines. In the average annual cycle plots, blue and red lines indicate the median observed and
simulated values, respectively, while the shading represents the range in values as indicated by the 10th and
90th percentiles. More examples for Tw (Fig. A.5), TDS (Fig. A.6), BOD (Fig. A.7) and FC (Fig. A.8) across different
world regions are displayed in Appendix A.3.2

concentrations. For example, while DynQual captures some of the peaks in observed daily BOD
concentrations, simulated BOD concentrations exceed those in the observational record while
simultaneously under-predicting average annual cycles in BOD concentrations (Fig. 3.5c). This
pattern is also observable in TDS concentrations in the Mersey River (Fig. A.6) and FC
concentrations in the Exe River (Fig. A.8).

While strong seasonality is present in the Tw observations, which is well captured by DynQual
(Fig. 3.5a; Fig. A.5), and in TDS concentrations to a lesser extent (e.g. Mersey and Komati rivers in
Fig. A.6), there is an overall lack of strong seasonal patterns in the observed records of BOD and FC
concentrations. This, combined with large variability in the observed concentrations, results in large
uncertainty in average annual cycles of observed concentrations across all months, as indicated by
10th and 90th percentiles (Fig. 3.5c-d; Figs. A.7–A.8). Annual average cycles in observed and
simulated concentrations tend to strongly overlap for both BOD and FC. However, seasonal patterns
are more evident in BOD simulations than observations (e.g. Mersey, Periyar in Fig. A.7) and the
large variability in observed FC concentrations is not replicated by DynQual daily simulations (e.g.
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Cauvery, Rhine in Fig. A.8). In the case of FC concentrations, for example, this could suggest that
DynQual misses or under-represents the importance of pulse disturbances (e.g. high rainfall events
causing sewer overflows) on the transport of pollutants to surface waters.

3.3.3 Spatial patterns
The spatial patterns in TDS (Fig. 3.6), BOD (Fig. 3.7) and FC (Fig. 3.8) concentrations show
substantial variations both within and across world regions, driven by different sectoral activities
(Fig. 3.9). The dilution capacity of rivers is also a major determinant of in-stream concentrations.
Averaged at the annual time-scale this is particularly evident for BOD and FC where the large dilution
capacity of some major rivers is sufficient to dilute concentrations to relatively low levels, despite often
being fed by more polluted tributaries. However, it should also be noted that both river discharges
and in-stream concentrations can exhibit substantial intra-annual variability, thus pollutant hotspots
and the magnitude of pollutant levels must also be considered at finer temporal scales than presented
here. Intra-annual variability can occur in the model due temporal variations in: 1) pollutant
loadings; 2) water availability (i.e. dilution capacity); and 3) in-stream decay processes.

Figure 3.6 Annual average total dissolved solids (TDS) concentrations for the period 2010–2019. Plotted for
rivers with > 10 m3 s−1 annual average discharge.

TDS concentrations show strongly regional patterns, with key hotspots of salinity pollution located
in southern Asia (Pakistan and northern India) and eastern China, and to a lesser degree across the
United States and Europe (Fig. 3.6). High TDS concentrations in southeast Asia are predominantly
driven by the irrigation sector and the presence of saline soils (Fig. 3.9a). While the irrigation sector is
also an important driver of TDS pollution in eastern China, the contribution from manufacturing
activities is also substantial (Fig. 3.9a). The manufacturing sector is the dominant contributor of TDS
pollution across most of North America and Western Europe, accounting for >75% of in-stream
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pollutant loadings in almost all major river segments in these regions (Fig. 3.9a). Aside from the
lower Nile, where salinity pollution is predominantly from the manufacturing sector, the domestic
sector is the key source of (non-natural) TDS loadings in Africa. However it should be noted that,
aside from in the lower Nile, TDS concentrations are simulated to be relatively low across most of
Africa (Fig. 3.6).

Figure 3.7 Annual average biological oxygen demand (BOD) concentrations for the period 2010–2019.
Plotted for rivers with > 10 m3 s−1 annual average discharge.

While BOD concentrations show considerable diversity across the major world regions, a
substantial proportion of river segments across populated areas of all continents experience
moderate-to-high organic pollution (Fig. 3.7). There are clear spatial patterns in the dominant
sectoral activities contributing BOD loadings worldwide, and it also evident that BOD pollution in
most world regions is driven by a combination of multiple sectors opposed to from an individual
dominant activity (Fig. 3.9b). Across Europe in particular, which sector is dominant varies both
spatially and temporally and the contribution from the dominant sector is typically <50% (Fig. 3.9b).
The manufacturing sector is the most significant source of BOD pollution across rivers in the United
States; however the relative contribution commonly falls in the 20–50% or 50–75% categories
(Fig. 3.9b). In the most polluted world regions, south and southeast Asia, the domestic sector is
typically dominant. However, there are also significant contributions from manufacturing and
extensive livestock activities (Fig. 3.7; Fig. 3.9b). Lastly, while its influence is highly localized, urban
surface runoff can also represent an important source of BOD pollution in heavily urbanised gridcells
across all world regions.
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Figure 3.8 Annual average fecal coliform (FC) concentrations for the period 2010–2019. Plotted for riverswith
> 10 m3 s−1 annual average discharge.

FC pollution is particularly high across south and southeast Asia, with more localised hotspots
found in parts of western Latin America, southern Europe, Middle East and eastern Africa (Fig. 3.8).
Similar to BOD pollution, a large proportion of stream segments in south and southeast Asia are
heavily polluted, with typically only rivers with extremely high dilution capacities appearing in the
lower concentration classes. In this region, the domestic sector is predominantly responsible for FC
pollution (commonly > 75%), attributed to large urban populations coupled with a large proportion
of domestic wastewater being inadequately treated (Fig. 3.9c). In countries with high municipal
wastewater collection and treatment rates, such as in Europe, the relative influence of livestock
activities tends to be larger. While manufacturing activities remain the dominant source of FC
pollution in North America, despite relatively high wastewater treatment rates, the percentage
contribution is typically <50% and livestock activities also represent an important source of FC
loadings (Fig. 3.9c). Despite variable municipal wastewater collection and treatment rates across Latin
America, livestock activities appear to dominate FC loadings outside of the Amazon basin (Fig. 3.9c).
This can be attributed to very high livestock numbers (particularly cattle), combined with the fact that
the most of the large urban settlements (and thus domestic FC pollutant loadings) in Latin America
are located in the coastal zone. As such, pollution from the domestic and manufacturing sectors
typically enter the river network at downstream locations causing localised pollution before outflow
to the ocean.
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3.3.4 Trends
Long-term trends in TDS, BOD and FC concentrations over the simulated period (1980–2019) are also
presented (Fig. 3.10). TDS concentrations in most world regions are either relatively constant or show
relatively upward gradual trends (Fig. 3.10a). Typically, where TDS concentrations are increasing, the
trend has been driven mainly by expansions in manufacturing or irrigation activities. Comparatively,
trends in BOD (Fig. 3.10b) and FC (Fig. 3.10c) concentrations are larger in magnitude and exhibit
substantially more spatial variation across the major world regions. Regionally, the strongest increases
in BOD and FC concentrations are found in Sub-Saharan Africa, where wastewater treatment rates are
low, and south Asia, where the rate of population growth and economic development has significantly
outstripped the expansion of wastewater treatment infrastructure. Strong increasing trends are also
found across most of Latin America, where a significant proportion of collected wastewater does not
undergo wastewater treatment (UNEP, 2016; Jones et al., 2021). BOD and FC concentrations across
North American rivers have typically remained relatively constant, or exhibit small decreasing trends.
Strong decreasing trends are found across Europe, including the Danube and Rhine basins. In all world
regions, the influence of reservoirs on BOD and FC concentrations is also evident, with increased water
volumes (i.e. dilution) coupled with longer residence times (i.e. greater decay) reducing BOD and FC
concentrations at these specific locations.

Complementary to the spatial analysis, we considered the proportion of the population that
inhabits gridcells exhibiting different trends in pollutant concentrations, aggregated by geographical
region and economic classification (Fig. 3.11). It should be noted that trends (Figs. 3.10–3.11) are not
indicative of the degree of pollution directly and thus should also be considered with respect to
in-stream concentrations (Figs. 3.6–3.8). Changes in TDS concentrations in the most populated areas
worldwide are typically low, with increases of 0–1% most common across all geographical regions
(Fig. 3.11a). Conversely, strong regional patterns are evident for BOD (Fig. 3.11b) and FC (Fig. 3.11c)
concentrations. Particularly in Sub-Saharan Africa and southern Asia, BOD and FC concentrations
in populated locations have been almost exclusively increasing. Over half of the population of
Sub-Saharan Africa live in areas where BOD and FC concentrations have increased (on average) by
>2% per year from 1980–2019. Conversely, in Western Europe, trends in BOD and FC have been
negative for areas where 60% of the population lives.

When aggregating trends by country-specific economic classifications, trends in TDS, BOD and FC
pollutant concentrations all display a clear correlation with level of economic development (Fig. 3.11).
For the water quality constituents considered, the strongest and most widespread decreases in pollutant
concentrations have been experienced by ‘high income’ countries, while ‘low income’ countries have
experienced the greatest and most widespread degree of water quality degradation. These patterns are
particularly clear for FC, where approximately 60% of the population in ‘high income’ countries live in
gridcells displaying negative trends in FC concentrations, compared to 50%, 25%, and 10% in ‘upper-
middle income’, ‘lower-middle income’ and ‘low income’ countries, respectively. Furthermore, in the
‘low income’ countries, 50% of the population live in areas where FC concentrations have increased (on
average) by >2% each year from 1980 to 2019.
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Figure 3.11 Average annual percentage changes in a) total dissolved solids (TDS); b) biological oxygen
demand (BOD); and c) fecal coliform (FC) concentrations for the period 1980–2019. Plotted for rivers with >
10 m3 s−1 annual average discharge.

Lastly, we present time-series of in-stream TDS, BOD and FC concentrations delineated by
sector-specific contributions at three selected locations (Fig. 3.12) for which validation plots are also
presented (Figs. A.6–A.8). While it is not our intention to explain the patterns in concentrations and
sectoral drivers for the Mersey, Cauvery and Kiso rivers specifically, these plots are illustrative of the
capabilities of DynQual. For example, these plots demonstrate the relative importance of different
water use activities on in-stream concentrations dynamically, and also display changes over longer
time periods. This is particularly evident in FC concentrations in the Mersey River, where decreasing
loadings from the domestic and manufacturing sectors, primarily due to increases in wastewater
treatment capacities, have driven an overall trend towards water quality improvements. Conversely,
the manufacturing sector is simulated to have had an increasing influence on TDS concentrations in
the Kiso River since ∼2004, replacing the irrigation sector as the dominant driver of salinity
pollution.
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Figure 3.12 Simulated in-stream total dissolved solids (TDS), biological oxygen demand (BOD) and fecal
coliform (FC) concentrations in selected rivers, disaggregated by contributing water use sectors and including
linear decadal trends.

3.4 Discussion, conclusions and future work

To conclude, we have developed and evaluated a new global surface water quality model for simulating
TDS, BOD and FC concentrations as indicators of salinity, organic and pathogen pollution, respectively.
Building upon the water temperature model DynWat and utilising approaches developed in previous
water quality model efforts, the open source code is structured in a way that allows for flexibility in
both hydrological and pollutant loading inputs. Output data from DynQual has potential to inform
assessments in a broad range of fields, including ecological, human health and water scarcity studies.
Such work is not only relevant to the hydrological and water quality modelling communities but also
has applications for the broader scientific community in addition to informing policy regarding water
resources management.

DynQual is ambitious in its aim to model global surface water quality: 1) using a consistent
approach; 2) dynamically; 3) considering multiple water quality constituents; and 4) at a high
spatio-temporal (i.e. 5 arc-min and daily timestep) resolution. Any model must consider the
trade-offs between model complexity and availability of input datasets and data to parameterise
process descriptions of the model (Weaver and Zwiers, 2000; Wen et al., 2017), and the impact of this
on model scope. Being a global model, DynQual is inherently unable to accurately represent all
aspects relevant to the local context. Rather, the modelling strategy is to focus on the main spatial and
temporal drivers of pollution in river networks globally to facilitate first-order approximations of
in-stream concentrations at high spatial (5 arc-min) and temporal (daily) resolution with global
coverage. As such, DynQual allows for the investigation of research questions that only large-scale
modelling efforts can address. These include, as presented in the model application section, global
pollution hot- and bright- spot identification (Figs. 3.6–3.8), the relative importance of different
contributing sectors to water quality status across the globe (Fig. 3.9) and meta-trends in surface
water quality dynamics (Figs. 3.10–3.11). The dynamic nature of DynQual can also facilitate analysis
of intra- and inter- annual trends in surface water quality and help to further enhance the
understanding of the main drivers of pollution via (dynamic) sectoral attribution (Fig. 3.12).
Furthermore, this approach has particular value for simulating surface water quality in ungauged
catchments, and our use of globally consistent input data facilitates meaningful comparisons across
different world regions. Given severe limitations in observational records of surface water quality,
both in terms of spatial coverage and the number of observations per water quality monitoring
station (Appendix A.3.1), these are key strengths of DynQual. However, poor data availability is a
severe limitation for both the development of global water quality models and their evaluation.
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Uncertainties in surface water quality simulations arise from a combination of uncertainties
associated with quantifications of pollutant loadings (e.g. pollutant excretion, emission rates and
sector-specific return flows), the quality of hydrological simulations (e.g. discharge and velocities)
and the representation of in-stream processes (e.g. decay coefficients). These uncertainties are
especially prevalent when modelling at large spatial extents. In-stream pollutant concentrations are
sensitive to dilution capacity and thus the quality of the hydrological simulations. This issue
contributes to uncertainties in simulated concentrations particularly in headwater streams. Fixed
estimates of decay coefficients are assumed, which contributes to uncertainties in simulations of
reactive constituents such as BOD and FC. In addition, the representation of lakes and reservoirs in
DynQual is rudimentary, with total (routed) loadings instantaneously averaged over the volume of
the waterbody assuming full mixing.

With respect to pollutant loading quantifications, spatial mismatches between the generation of
pollutant loadings and the location of entry to the stream network (return flows) can result in the
simulation of unrealistic concentrations, particularly in gridcells with very low water availability (i.e.
headwater streams). This can occur where the drivers of point source pollutant emissions (e.g.
population) do not directly coincide with the location of wastewater treatment plant outlets. A lack of
temporally-explicit input data can hinder proper representation of sectors with strong intra- or inter-
annual variability. For instance, notable limitations for the livestock sector are the simplified
assumptions made for livestock population numbers (assumed to be constant across days of the year),
changes to livestock numbers across multi-year periods (applied annually and based on regional
averages) and transportation pathways to the stream network (assumed to be a function of surface
runoff excluding the representation of processes that affect pollutant retention in soils). Locally
relevant sources of pollution may also be entirely excluded, such as the lack of information on TDS
emissions from mining activities and road de-icing. Similarly, pulses of pollutant loadings occurring
during extreme rainfall of flood events are also overlooked, such as those associated with sewer
overflows or from inundated industrial areas.

Despite these uncertainties, DynQual has been demonstrated to perform with a reasonable level of
performance, especially given the approximations of the model. Water temperature simulations
closely match observations at daily resolution as indicated by KGE coefficients (Fig. 3.4a), which are
high across all world regions (Fig. A.3). Furthermore, time-series and average annual plots (Fig. 3.5a;
Fig. A.5) demonstrate that seasonal regimes present in observed water temperatures are well captured
by the model. Simulated TDS, BOD and FC concentrations are largely within the correct
concentration classes (Fig. 3.3) with nRMSE coefficients (Fig. 3.4b-d) deemed reasonable considering
the challenges of comparing individual (instantaneous) observed daily TDS, BOD and FC
concentrations against simulated daily concentrations. Long-term time-series and average annual
cycle plots for TDS (Fig. 3.5b; Fig. A.6), BOD (Fig. 3.5c; Fig. A.7) and FC (Fig. 3.5d; Fig. A.8) show
that DynQual can generally simulate in-stream concentrations within the correct range (e.g.
min–max daily concentrations, 10th and 90th percentile average annual cycles), but simulations of
in-stream concentrations timeseries on a daily timestep show relatively poor agreement with the
observed timeseries. Observed data records also tend to display large variability in concentrations but
little (systematic) seasonality, especially for BOD (Fig. A.7) and FC (Fig. A.8) concentrations. These
factors have a strong influence on metrics including nRMSE but especially the other commonly used
evaluation metrics in hydrology such as the Nash–Sutcliffe efficiency (NSE) and Kling–Gupta
efficiency (KGE), and hence support our decision not to evaluate model performance using these
metrics. Challenges related to the observational records themselves should also be acknowledged.
These can relate to, for example, artefacts in observational records (Fig. A.9a), issues related to
instrument detection limits and/or reporting accuracies (Fig. A.9b) and large variability in the
observation records (Fig. A.9c). Lastly, given the approximations of the model, the overall complexity
in the drivers of pollutant loadings and input data limitations, we reiterate that the current set-up of
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DynQual is not suited to simulate daily TDS, BOD and FC concentrations that correspond exactly
with in situ observational measurements.

With few comparable studies in the current literature, it is difficult to quantitatively assess the
performance of DynQual relative to other large-scale surface water quality models. Overall, our
modelled spatial patterns in surface water quality match well with previous regional and global
assessments – showing multi-pollutant hotspots (e.g. TDS, BOD, FC) to be located across northern
India and eastern China in particular (UNEP, 2016; Wen et al., 2017; van Vliet et al., 2021).
Consistent with a recent data-driven (machine learning) approach (Desbureaux et al., 2022), albeit for
some different water quality constituents (e.g. total phosphorus), we find a general trend towards
surface water quality improvement in developed countries and deterioration in developing countries.
Water temperature (Tw) simulations closely match those of the global water temperature models
upon which DynQual is based (van Vliet et al., 2012a; Wanders et al., 2019; van Vliet et al., 2021). For
total dissolved solids (TDS) and biological oxygen demand (BOD) concentrations, values of and
patterns in nRMSE are similar to previous work (van Vliet et al., 2021), with reasonable model
performance (<1 nRMSE) exhibited at monitoring locations across all continents. Other large-scale
surface water quality models have validated simulated concentrations with respect to concentration
classes linked to sectoral water use and environmental health limits. Following this approach, Wen
et al. (2017) reported BOD concentrations simulated within the same classification in 94% of
instances; however this is based on only 760 measurements of which 91% are modelled in the lowest
pollutant class (0–5 mg l−1). More comparable to our simulations, UNEP (2016) compared modelled
and observed pollutant classes for TDS, BOD and fecal coliform (FC) concentrations across Latin
America, Africa and Asia, achieving largely comparable model performance. Comparing our
simulations to output from other global water quality models modelling Tw, BOD, TDS and FC,
when available, will provide further insights into model performance.

Meaningful comparisons to other surface water quality models are challenging due to the high
diversity in terms of: 1) spatial extent (e.g. lumped vs. distributed); 2) temporal resolution (e.g. daily
vs. monthly vs. annual vs. decadal); and 3) water quality constituent and reporting form (e.g. loads vs.
concentrations). Similarly, watershed-scale surface water quality models are constructed for different
purposes than large-scale (continental to global) surface water quality models. These watershed
models can better incorporate locally relevant input data and processes, are parameterized for local
conditions and typically have data of good quality and record length for calibration and validation –
which facilitates higher precision and accuracy in both hydrological and water quality simulations.
However, these models are reliant upon detailed local knowledge which is severely lacking for many
(particularly ungauged) catchments worldwide (e.g. large parts of Africa).

Despite their limitations, process-based large-scale water quality models can facilitate first-order
assessments of global water quality dynamics that are consistent across both space and time, such as
those demonstrated in the model application section of this study. Future applications of DynQual
may include: 1) expanding the number of modelled water quality constituents; 2) further
spatio-temporal analysis of surface water quality; and 3) investigating the impact of uncertain climatic
and socioeconomic change on future surface water quality.
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Code and data availability
DynQual v1.0 is open source and distributed under the terms of the GNU General Public License version 3, or any
later version, as published by the Free Software Foundation. The full model code, configuration INI files and a user
manual are provided through a GitHub repository: https://githubv.com/UU-Hydro/DYNQUAL. The model code
presented in this paper is archived at https://doi.org/10.5281/zenodo.7398410.

A full set-up with all required input datasets for running DynQual for the Rhine–Meuse basin is provided as an
example (https://doi.org/10.5281/zenodo.7027242). Monthly water temperature (Tw) and salinity (TDS), organic
(BOD) and pathogen (FC) concentrations are available directly via https://doi.org/10.5281/zenodo.7139222. Here,
we also provide the output hydrological data (discharge and channel storage) simulated within the model run.
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Current wastewater treatment targets are
insufficient to protect surface water quality

Chapter 4 | Current wastewater treatment
targets are insufficient to protect surface water
quality

Abstract

The quality of global water resources is increasingly strained by socioeconomic developments and climate
change, threatening both human livelihoods and ecosystem health. With inadequately managed
wastewater being a key driver of deterioration, Sustainable Development Goal (SDG) 6.3 was established
to halve the proportion of untreated wastewater discharged to the environment by 2030. Yet, the impact
of achieving SDG 6.3 on global ambient water quality is unknown. Addressing this knowledge gap, we
develop a high-resolution surface water quality model for salinity as indicated by total dissolved solids
(TDS), organic pollution as indicated by biological oxygen demand (BOD) and pathogen pollution as
indicated by fecal coliform (FC). Our model includes a novel spatially-explicit approach to incorporate
wastewater treatment practices, a key determinant of in-stream pollution. We show that achieving SDG
6.3 reduces water pollution, but is still insufficient to improve ambient water quality to below key
concentration thresholds in several world regions. Particularly in the developing world, reductions in
pollutant loadings are locally effective but transmission of pollution from upstream areas still leads to
water quality issues downstream. Our results highlight the need to go beyond the SDG-target for
wastewater treatment in order to achieve the overarching goal of clean water for all.

Published: Jones, E.R., Bierkens, M.F.P., Wanders, N., Sutanudjaja, E.H., van Beek, L.P.H. & van Vliet, M.T.H. (2022)
Current wastewater treatment targets are insufficient to protect surface water quality. Communications Earth &
Environment, 3(1), pp. 1–8, DOI: 10.1038/s43247-022-00554-y
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4.1 Introduction
Compared to water availability (e.g. river discharge), few observations and large-scale modelling
assessments exist for understanding global surface water quality (Alcamo et al., 2010). Inadequate
water quality for different sectoral purposes poses a variety of constraints across the
water-food-energy-ecosystem nexus (Heal et al., 2021): organic and pathogen pollution causes risks
to human health (Ashbolt, 2004), increased salinity levels threaten agricultural productivity (Rietz
and Haynes, 2003) and increased water temperatures can disrupt thermoelectric power plants that
depend on surface water resources for cooling (van Vliet et al., 2012b; van Vliet et al., 2016).
Moreover, all these pollutants can adversely affect the aquatic environment (Englert et al., 2013).
Improving our ability to accurately simulate in-stream pollutant concentrations is therefore key to
improved understanding of the threats to global clean water resources and to devise management
options that safeguard clean water for all (UNEP, 2016; van Vliet et al., 2021).

Sectoral activities artificially increase surface water pollutant concentrations by discharging
polluted water back to the environment, particularly in regions with limited wastewater treatment
(UNEP, 2016; Wen et al., 2017; van Vliet et al., 2021). The existence of and degree to which treatment
practices reduce contaminant levels (Jones et al., 2021) and the proportion of (treated) wastewater
relative to streamflow (Macedo et al., 2022) are crucial determinants of the quality of receiving waters
(Mateo-Sagasta et al., 2015; Jones et al., 2021). The importance of wastewater management practices
is recognised in Sustainable Development Goal (SDG) target 6.3 (UN, 2015), which sets the target of
halving the proportion of untreated wastewater released to the environment by 2030. With
inadequately managed wastewater being the key driver of water pollution, this target represents the
principal action for achieving the overarching goal of improved ambient water quality. Yet, no study
has quantitatively assessed the effectiveness of achieving SDG 6.3 on global ambient water quality.

Here we develop a high-resolution surface water quality model (henceforth DynQual) that is
essential for addressing this knowledge gap. DynQual simulates surface water temperature (Tw),
salinity as indicated by total dissolved solids (TDS), organic pollution as indicated by biological
oxygen demand (BOD) and pathogen pollution as indicated by fecal coliform (FC) concentrations
(Fig. B.1). The model is unique in that it operates at an unprecedented spatial resolution of 5x5
arc-min (∼10km at the equator) and simulates water quality dynamically at daily temporal resolution
globally. Water temperature (Tw) is simulated using a heat-advection approach (van Beek et al., 2012;
Wanders et al., 2019) with thermoelectric powerplant effluents added as an additional point source of
advected heat (Fig. B.2). Pollutant loadings of TDS, BOD and FC are calculated per sector following
previous approaches (UNEP, 2016; van Vliet et al., 2021) (Appendix B.1). The high spatial resolution
of our model allows for meaningful inclusion of a novel spatially-explicit wastewater treatment
dataset (Jones et al., 2021), further disaggregated by treatment level (Appendix B.4, Fig. B.12), that is
more representative of the real-world situation compared to existing approaches. Pollutant loadings
are subsequently routed through the global stream network to calculate in-stream concentrations at
the daily timestep. The model accounts for both the dilution capacity of the rivers and natural
degradation processes (see Materials & Methods and Appendix B.2).

4.2 Results

4.2.1 Global surface water quality
Modelled water temperature (Tw) and in-stream concentrations of TDS, BOD and FC show overall
good agreement with the observed data (Appendix B.3). Global patterns in salinity, organic and
pathogen pollution at the high spatial resolution (Fig. 4.1) are consistent with previous work (UNEP,
2016; van Vliet et al., 2021). While TDS concentrations are strongly influenced by geological factors,
hotspots of high salinity pollution (> 2,100 mg l−1 TDS) correspond to heavily industrialised regions,
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such as northeastern China and the contiguous United States, and to heavily irrigated regions such as
northern India (Fig. 4.1a; Fig. B.3; Fig. B.6). Exceedance of the salinity threshold in these regions
tends to occur for more than half the year (>6 months) and occasionally year-round. More localised
salinity pollution is also common in the tributaries to some major European rivers, before dissipating
due to the increased dilution capacity of the main stream. Exceedance of the salinity threshold
between 1–3 months per year occur in the Mediterranean and across large swathes of Africa.
Exceedance of salinity thresholds are relatively low across Latin America, although some seasonal
exceedances do occur in the more populated and industrialised regions.

Global patterns in the exceedance of BOD (8 mg l−1) and FC (1,000 cfu 100ml−1) thresholds
follow similar patterns, attributed to the pollutant loadings originating from similar sectoral sources
(Fig. 4.1b-c; Figs. B.4–B.6). However, both the frequency and magnitude of FC threshold exceedances
are larger than for TDS and BOD. Modelled FC concentrations can occasionally exceed 10,000 cfu
100ml−1, with the most polluted river stretches having FC concentrations surpassing 1 million cfu
100ml−1. Exceedances of BOD and FC thresholds are typically very low in sparsely populated
locations, such as in northern high-latitudes and wet-tropical rainforests. In most other world
regions, exceedance of organic and pathogen pollution thresholds are commonplace for at least some
part of the year. Across east and southern Asia, in-stream concentrations of BOD and FC that exceed
quality thresholds are occurring both frequently and across many streams irrespective of river
discharge (i.e. dilution capacity). Year-round exceedances of thresholds, especially for FC, are very
high across China. Frequent exceedances are also widespread across Africa, such as in the tributaries
of the Nile and the Niger, with typically more seasonal exceedances in the main channels of these
rivers. BOD and FC thresholds are also exceeded across many parts of Western Europe, Japan and the
Eastern Seaboard of the USA, despite wastewater treatment rates already being high. However,
exceedances in these regions tend to be more seasonal and do not typically occur in rivers with large
year-round discharges. Statistics aggregated by geographical region are displayed in Fig. B.7.

Fig. 4.1d displays the incidences of threshold exceedance in any month of the year aggregated
across multiple water quality constituents. Thus, a value of 2 denotes that 2 out of 3 of the water
quality constituent thresholds are jointly exceeded in at least one month, with monthly
concentrations averaged over 2006–2015. In line with the analysis of individual water quality
constituents, no exceedances in any of the water quality thresholds considered are found for large
portions of the high-latitude and wet tropical regions. Conversely, in most other populated regions,
one or more water quality thresholds are exceeded in at least one month per year. Simultaneous
exceedances of all three water quality constituents (i.e. TDS, BOD, FC) mostly occur where large
seasonal variations in river discharge (e.g. Africa, India) exist. High TDS loadings can be mostly
attributed to either large-scale irrigation systems (e.g. northern India) or manufacturing activities
(e.g. eastern China). Exceedances in BOD and FC concentrations are commonplace both where
wastewater treatment rates are low (e.g. East Asia and Pacific, Southern Asia) and high (e.g. Western
Europe, North America). This demonstrates the importance of dilution (i.e. river discharge) in
determining in-stream concentrations. Incidences where only one water quality constituent shows
exceeded concentrations are mostly attributed to FC, and mostly during low-flow seasons.

4.2.2 Halving the proportion of untreated wastewater (SDG 6.3)
Expansions in wastewater treatment capacities to achieve SDG 6.3 are designated at the country-level
and delineated to gridcells based upon where pollutant loadings are highest (Appendix B.5,
Figs. B.14–B.15). Fig. 4.2a displays the top 30 countries with the largest required expansions in
wastewater treatment. Together, these 30 countries account for ∼87% of the total required expansions
to achieve SDG 6.3. The largest expansions required before 2030 are in China (40 billion m3 yr−1),
the USA (16 billion m3 yr−1) and India (15 billion m3 yr−1), with these three countries alone
accounting for ∼45% of the required expansions. Expansions are required across many regions in the
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populated areas of North America and Europe, particularly where (a proportion of) the collected
wastewater is still released to the environment without treatment. Conversely, in world regions with
little or no wastewater treatment in 2015, the expansions required to achieve SDG 6.3 are fulfilled by
establishing wastewater treatment in only a few, densely populated locations. While high percentage
reductions in pollutant loadings are achieved in these specific locations, achieving SDG 6.3 in these
regions has a more limited impact on pollutant loadings across geographical space (Fig. B.16).

Figure 4.2 a) Expansions in annual wastewater treatment capacity (109 m3 yr−1) required by 2030 to achieve
SDG6.3 for the top 30 countries; and the associated absolute andpercentage reductions in b) biological oxygen
demand (BOD) and c) fecal coliform (FC) pollutant loadings per sector, aggregated by geographical region

As we assume that secondary wastewater treatment practices do not influence TDS loadings (van
Vliet et al., 2021), the expansions in wastewater treatment influence BOD and FC loadings and
concentrations only. This assumption also means that reductions in gridded pollutant loadings are
capped at 85% and 97.5%, which are the assumed pollutant removal efficiencies for secondary
wastewater treatment for BOD and FC, respectively (Table B.4). Fig. 4.2b and Fig. 4.2c display the
region-aggregated reductions in BOD and FC pollutant loadings relative to loadings without
expansions in wastewater treatment. Strong (absolute) reductions are achieved in the East Asia and
Pacific and Southern Asia regions. Reductions in total BOD loadings range from 16% to 32% across
the different regions; and reductions in total FC loadings from 17% to 43%. While increases in
wastewater treatment capacities reduce point source pollution locally, the benefits to surface water
quality also propagate downstream. The average annual reductions in BOD and FC concentrations
when achieving SDG 6.3 are displayed in Fig. 4.3a and Fig. 4.3b, respectively (see Fig. B.17 and
Fig. B.18 for zoom-in panels).

While Fig. 4.3a and Fig. 4.3b are very similar, variations between BOD and FC reductions occur
due to: 1) the different removal efficiencies associated with secondary wastewater treatment; 2) the
differences in proportion of loadings originating from sectors influenced by wastewater treatment;
and 3) interplay with the decay processes. Reductions in BOD and FC concentrations are particularly
large in northern India, eastern China and the Eastern Seaboard of the USA, corresponding to the
countries requiring the largest volumetric expansions in wastewater treatment (Fig. 4.2a). SDG 6.3
expansions led to very high localised reductions in BOD and FC concentrations, which also translate
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into substantial improvements in the river water quality of the regions’ major rivers e.g. Mississippi
(USA), Ganges (India) and Yellow (China). Improvements in water quality associated with SDG 6.3
can be seen in most streams across Europe, with reductions of ∼40% for BOD and ∼50% for FC
concentrations are achieved in the major rivers. The fact that such substantial reductions are achieved
in both the tributaries and main channels of European river networks is attributed to the fact that the
required increases in wastewater treatment capacities for SDG 6.3 are widespread in space, following
the extensive treatment capacity currently in place.

Conversely, in regions where SDG 6.3 can be achieved by expanding wastewater treatment capacities
at a small number of locations – particularly Africa – reductions in BOD and FC concentrations are
less ubiquitous. Here, the concentrations in a greater proportion of stream segments are unaffected
by achieving SDG 6.3. Nevertheless, the benefit of achieving SDG 6.3 on BOD and FC concentrations
can still be seen in both localised stream segments (where expansions are occurring) and also for major
rivers, such as the lower Nile and parts of the Niger. In countries with highly concentrated populations,
such as Australia, SDG 6.3 expansions in wastewater treatment are also confined to a small number of
locations. Therefore, very high localised reductions in BOD and FC concentrations are achieved, but
only in the major urban settlements.

Time-series of in-stream concentrations at selected locations (Fig. 4.3c; Fig. B.19) show that SDG
6.3 can drastically reduce in-stream concentrations and reduce the frequency and magnitude of water
quality threshold exceedance. For example, BOD concentrations in the Citarum River, Indonesia can
be reduced to below the 8 mg l−1 threshold in almost all months of the year under SDG 6.3, whereas
year-round exceedance is commonplace under current wastewater treatment levels. Similarly, without
expansions in wastewater treatment, FC concentrations in the Hudson River, USA begin to frequently
exceed the 1,000 cfu 100ml−1 threshold (typically 4–6 months per year), whereas these exceedances are
entirely prevented under SDG 6.3. Such exceedances of water quality thresholds are important as they
may result in the surface water being unsuitable for sectoral uses, or threaten environmental health.

The percentage reductions in BOD (Fig. 4.3a; Fig. B.17) and FC (Fig. 4.3b; Fig. B.18) also translate
into changes in the frequency and magnitude of water quality threshold exceedances. We demonstrate
these changes with respect to the percentage of surface water abstractions that exceed quality thresholds
under historical, no expansion and SDG 6.3 conditions (Fig. 4.4; Figs. B.20–B.21). With no reductions
in TDS loadings assumed with secondary wastewater treatment, no variation in TDS exceedances under
the two scenarios are found. Furthermore, only small changes are found in these scenarios relative to
the historical conditions.

In terms of BOD and FC threshold exceedance, reductions in the proportion of surface water
extractions exceeding quality thresholds are highest in developed regions of North America, Western
Europe and Eastern Europe and Central Asia. In these regions, expansions in wastewater treatment
for SDG 6.3 are widespread in space, achieved through a combination of expanding wastewater
treatment in gridcells where wastewater collection is already present (‘collected, untreated’, Fig. B.13)
and establishing wastewater treatment facilities in new locations. Furthermore, in-stream
concentrations of BOD and FC are typically lower in these regions attributed to the wastewater
collection and treatment infrastructure that is already established. Thus, SDG 6.3 expansions in
wastewater treatment are more frequently sufficient for achieving reductions beneath quality
thresholds. Conversely, in world regions with more limited existing wastewater treatment (e.g.
Sub-Saharan Africa), achieving SDG 6.3 leads to relatively fewer changes in threshold exceedances.
While wastewater treatment expansions in these regions causes substantial reductions in localised
pollutant loadings, these are often insufficient to reduce in-stream concentrations to levels beneath
quality thresholds. This primarily occurs due to the propagation of pollution originating in upstream
areas where expansions in wastewater treatment are not allocated.
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Figure 4.4 Percentage of surface water abstractions exceeding critical water quality thresholds for salinity
pollution as indicated by total dissolved solids (TDS) concentrations (2,100 mg l−1), organic pollution as
indicated by biological oxygen demand (BOD) concentrations (8 mg l−1) and pathogen pollution as indicated
by fecal coliform (FC) concentrations (1,000 cfu 100ml−1) under historical and near-future (no expansions
and SDG 6.3) conditions. Water quality threshold exceedance and surface water abstractions are assessed at
monthly temporal resolution, and subsequently aggregated per geographic region across all months. Results
are averaged across multiple general circulation models (GCMs) using 2005–2014 as the historical and 2021–
2030 as the future time period.

4.3 Conclusions

Our findings show that substantial reductions in organic and pathogen pollution, as indicated by BOD
and FC concentrations in surface waters, are achieved under SDG 6.3. The achieved water quality
improvements, to differing extents across regions, reduce the frequency and magnitude of water quality
threshold exceedances for sectoral uses and aquatic ecosystem health (Fig. 4.4; Fig. B.20). Reductions
in threshold exceedances are typically largest where wastewater treatment rates are already high, such
as North America and Western Europe. Conversely, in world regions with limited existing wastewater
treatment, the impact of achieving SDG 6.3 on threshold exceedance is more modest. This occurs due
to SDG 6.3 being met by expanding wastewater treatment in a relatively limited number of locations.
Furthermore, volumes of untreated wastewater (and the associated pollutant loadings) can still be very
large under SDG 6.3 – in a country without any existing wastewater treatment facilities, 50% of the total
produced wastewater is still released to the environment untreated. With propagation of pollution from
upstream areas still resulting in widespread exceedances of key water quality thresholds, the suitability
of SDG 6.3 as a global sustainability target for improving ambient water quality must be considered.
Based on our study, it can be concluded that SDG 6.3 can substantially improve ambient water quality
worldwide, but that in many world regions improvements are still insufficient to meet water quality
requirements for human use and aquatic ecosystem health.

As we enter the ‘Decade of Action (2021–2030)’ for achieving the Sustainable Development
Agenda, now is the time to renew global efforts to go above and beyond the wastewater treatment
target stipulated by SDG 6.3. While achieving the required expansions in wastewater treatment will
poses serious economic challenges, extracting the economic value inherent within wastewater flows
(e.g. water, nutrients and energy recovery) can provide funding opportunities compatible with a
circular economy. Yet, our results also demonstrate that in addition to expanding and improving our
‘hard infrastructure’ (i.e. sewer networks and wastewater treatment facilities), a strong focus on
reducing pollutant emissions at source will also be required to achieve the overarching goal of SDG6 –
clean water and sanitation for all.
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4.4 Materials andmethods

4.4.1 Wastewater treatment and pollutant loadings
Pollutant loadings are considered from six distinct sources, namely from the domestic,
manufacturing, irrigation, livestock and thermoelectric power sectors, and from urban surface runoff
(Fig. B.1). Pollutant loadings of water temperature (Tw), total dissolved solids (TDS), biochemical
oxygen demand (BOD) and fecal coliform (FC) are calculated at a gridcell resolution of 5x5 arc-min
(∼10km at the equator) with a monthly timestep. Socioeconomic and hydroclimatic data are used as
basis from 1980–2015 (historical), with data for 2016–2030 based on future projections associated
with RCP7.0 and SSP3 (Lange and Buchner, 2021). This combination represents an intermediate-high
emissions and development scenario, characterised by regional rivalry (Fujimori et al., 2017).
Loadings from the domestic and livestock sectors are estimated by multiplying the gridded
population (Jones and O’Neill, 2016) with a pollutant-specific per capita excretion rate (UNEP, 2016;
van Vliet et al., 2021). Conversely, loadings from the manufacturing and irrigation sectors, and from
urban surface runoff, are estimated by multiplying a return flow volume, simulated with the global
hydrology and water resources model PCR-GLOBWB2 (Sutanudjaja et al., 2018), with a
pollutant-specific mean effluent concentration (UNEP, 2016; van Vliet et al., 2021). Heat dumps from
the power sector are estimated by multiplying the associated return flows with an estimated difference
in water temperature between the return flows and the receiving waters (van Vliet et al., 2012b; van
Vliet et al., 2021). More information on the datasets used and methodology for calculating pollutant
loadings per sector are presented in Appendix B.1 (Figs. B.2–B.6).

Sector-specific pollutant loadings can be abated based upon their transmission paths to receiving
waters (Appendix B.4, Fig. B.1). Pollutant loadings from the domestic and manufacturing sectors,
and from urban surface runoff, can be heavily influenced by wastewater management plants where
wastewater collection (e.g. in sewers) and subsequent treatment (e.g. in sewage treatment works)
practices are occurring (Fig. B.11). The specific path via which municipal wastewater is disposed,
including the treatment level (i.e. removal efficiency) of collected wastewater, is therefore key to
determining the resultant pollutant loadings. Previous global water quality studies have used
country-level data to represent this process (van Vliet et al., 2012b; van Vliet et al., 2021). Here, we
use a newly developed global wastewater collection and treatment dataset (Jones et al., 2021), further
disaggregated by treatment level (primary, secondary, tertiary+), to delineate these wastewater
pathways at 5 arc-min (Figs. B.12–B.13). This is a substantially higher spatial resolution than
previously captured. For detailed information on the spatially-explicit wastewater dataset, we refer to
the original publication (Jones et al., 2021).

4.4.2 Surface water quality modelling (DynQual)
A new surface water quality model, named DynQual, has been developed in this study to simulate
surface water temperature (Tw), water salinity as indicated by total dissolved solids (TDS), organic
pollution as indicated by biological oxygen demand (BOD) and pathogen pollution as indicated by
fecal coliform (FC) concentrations at a spatial resolution of 5x5 arc-min and daily temporal resolution
globally. These water quality constituents are selected because they are key in constraining different
sector water uses and ecosystem health (Dumont et al., 2012; Damania et al., 2019). DynQual has been
developed in a flexible way to allow for the addition of more water quality constituents, which could
include nutrients, dissolved oxygen and emerging contaminants.

DynQual builds on recent water quality model developments (UNEP, 2016; Wen et al., 2017; van
Vliet et al., 2019; van Vliet et al., 2021) and the water temperature modelling framework DynWat (van
Beek et al., 2012; Wanders et al., 2019). DynWat solves the surface water energy balance at the daily
timestep, while also accounting for surface water abstractions, reservoirs, riverine flooding and the
formation of ice, giving Tw at a spatial resolution of 5x5 arc-min (Wanders et al., 2019). We further
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include advected flow from heat effluents of thermoelectric powerplants, following previous work (van
Vliet et al., 2012a; van Vliet et al., 2021). Daily surface water concentrations of TDS (mg l−1), BOD (mg
l−1) and FC (cfu 100ml−1) are simulated by using a mass balance approach, combining the sectoral
pollutant loadings routed over the stream network with the dilution capacity of the receiving stream.
We assume instantaneous and full mixing of all pollutant loadings in each gridcell. TDS is simulated
using a conservative substances approach, whereas BOD and FC are simulated using a non-conservative
substances approach with first-order decay during downstream water transport (Reder et al., 2015;
UNEP, 2016; van Vliet et al., 2021). The decay coefficient for FC is a function of water temperature, solar
radiation and the settling rate of bacteria (sedimentation) (Reder et al., 2015; UNEP, 2016), whereas the
decay coefficient for BOD is water-temperature dependent only (Wen et al., 2017; van Vliet et al., 2021).
Hydrology (e.g. surface runoff, interflow, baseflow, channel storage) and surface water abstractions are
simulated by the global hydrology and water resources modelPCR-GLOBWB2, for which we refer to the
original publication (Sutanudjaja et al., 2018). More information on the surface water quality modelling
approach is presented in Appendix B.2.

In this study, DynQual is run for a historical time period of 1980–2015 using W5E5 forcing data
(Cucchi et al., 2020; Lange et al., 2021) (Appendix B.2). DynQual is uncalibrated to facilitate
application in ungauged basins (e.g. parts of Africa with limited water quality monitoring availability)
without loss of performance (Wanders et al., 2019). In-stream concentrations for the historical time
period are validated against in situ surface water quality monitoring data from the Global
Environment Monitoring System (GEMS) (UNEP, 2019) (Table B.1). Overall, modelled Tw and
in-stream concentrations of TDS, BOD and FC show good agreement with the observed data, as
indicated by calculated Kling Gupta Efficiency coefficients. In accordance with the focus of our study
– the exceedance of key water quality thresholds under past and near-future conditions – we also
present our validation results with respect to pollutant classes (UNEP, 2016). More information on
the validation of the water quality model from 1980–2015 is presented in Appendix B.3
(Figs. B.8–B.10).

Future projections of water quantity, surface water temperature and pollutant (i.e. TDS, BOD and
FC) concentrations are made up to 2030, including the impact of climate change following the
representative concentration pathway RCP 7.0 (Lange and Buchner, 2021). We use bias-corrected
CMIP6 forcing data from 5 GCMs (Lange et al., 2021) for the time period 2006–2030. Future
pollutant loadings are simulated following the shared socioeconomic pathway SSP3 (Jones and
O’Neill, 2016; Lange and Buchner, 2021) under two different assumptions considering 1) no
expansion in wastewater treatment (‘no expansion’); and 2) expansions to halve the proportion of
untreated wastewater globally by 2030 (‘SDG 6.3’). We compare our water quality simulations under
these two assumptions to evaluate the relative impact of halving the proportion of untreated
wastewater on global surface water quality. Surface water quality simulations are linked to
concentration thresholds relevant for sectoral water use (Table B.2) (UNEP, 2016) to determine the
frequency and magnitude of their exceedance. This allows for evaluation of the constraints posed to
sectoral water users from a water quality perspective. Future work should also assess pollution status
from an ecological perspective, whereby the assimilative capacity of the receiving waters (aside from
just the dilution component) is a key additional consideration.

4.4.3 Halving the proportion of untreated wastewater (SDG 6.3)
SDG 6.3 sets the target of halving the proportion of untreated wastewater that is released to the
environment and improve ambient water quality by 2030 (UN, 2015). We only consider wastewater
undergoing secondary or higher treatment practices in 2015 as adequately treated for SDG 6.3, as a
substantial proportion of pollutant loadings are abated only at these treatment levels. We calculate the
volumetric expansion required in domestic and manufacturing sectors to achieve SDG 6.3 at the
country level using trend analysis, and subsequently delineate these expansions hierarchically to
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gridcells with the highest pollutant loadings in 2015. We focus our expansions on gridcells with high
pollutant loadings as collection and treatment is assumed to be both more desirable and economically
feasible (and hence more likely) where the strongest reductions in pollutant loadings are achieved.
Expansions in wastewater treatment are assumed to be at the secondary level. An overarching
assumption is that SDG 6.3 is met by all countries by 2030. Given current progress towards this
target, particularly against the backdrop of financial challenges of COVID-19 (Kantur and Özcan,
2021), we acknowledge the likelihood of SDG 6.3 achievement to be low. Nevertheless, this
assumption allows for quantitative assessment of the suitability of SDG 6.3 for improving ambient
water quality. Detailed information and results regarding the spatial expansions in wastewater
treatment associated with achieving SDG 6.3 is presented in Appendix B.5 (Figs. B.14–B.15).

Data availability
Data used in this study for water quality simulations is primarily available open-access and is accessible from the
original sources: climate forcing (Lange and Buchner, 2021), population (O’Neill et al., 2016), livestock numbers
(Gilbert et al., 2018), powerplants (Lohrmann et al., 2019) and wastewater collection and treatment (Jones et al.,
2020; Jones et al., 2021). Global water quality output data from 1980 to 2015 at 10km resolution is available at:
https://doi.org/10.6084/m9.figshare.20486277, while simulated water quality under the two wastewater treatment
scenarios for all 5 GCMs is available at: https://doi.org/10.6084/m9.figshare.20486310. Further information is
available in the Appendix B or upon reasonable request.

Code availability
The global hydrological modelPCR-GLOBWB2 (Sutanudjaja et al., 2018), which is used for hydrological simulations,
is available at: https://github.com/UU-Hydro/PCR-GLOBWB_model/. The code of the water quality model is
available upon request to the corresponding author.
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Sub-Saharan Africa will increasingly become the
dominant hotspot of surface water pollution.

Chapter 5 | Sub-Saharan Africa will increasingly
become the dominant hotspot of surface water
pollution.

Abstract

Human activities greatly impact surface water quality, while being reliant upon it for water supply.
Surface water quality is expected to change in the future as a result of alterations to pollutant loadings,
surface water withdrawals and hydrological regimes, driven by both climate change and socioeconomic
developments. Here, we use a high-resolution global surface water quality model to project water
temperature, and indicators of salinity (total dissolved solids), organic (biological oxygen demand) and
pathogen (fecal coliform) pollution until 2100. Results show that while surface water quality, as indicated
by these pollutants, will improve in most advanced economies, the outlook for poorer nations is bleak.
The proportion of the global population exposed to salinity, organic and pathogen pollution by the end of
the century ranges between 17–27%, 20–37% and 22–44%, respectively, with poor surface water quality
disproportionately affecting people living in developing countries. Exhibiting the largest increases in
both the absolute and relative number of people exposed, irrespective of climate change and
socioeconomic development scenario, we conclude that Sub-Saharan Africa will become the new hotspot
of surface water pollution globally.

Published: Jones, E.R., Bierkens, M.F.P., van Puijenbroek, P.J.T.M., van Beek, L.P.H., Wanders, N., Sutanudjaja, E.H.,
and van Vliet, M.T.H. (2023) Sub-Saharan Africa will increasingly become the dominant hotspot of surface water
pollution. Nature Water, 1, pp. 602–613, DOI: 10.1038/s44221-023-00105-5
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5.1 Introduction

Alterations to global water resources are expected in the coming decades as a result of climate change
and socioeconomic developments (Arnell, 1999; Haddeland et al., 2014). Global warming is projected
to cause fundamental shifts in hydrological regimes worldwide, including altered precipitation and
evaporation patterns (Konapala et al., 2020), changes to snowmelt regimes (Kraaijenbrink et al., 2021)
and an increase in the frequency and magnitude of hydrological extremes (e.g. droughts, floods)
(Trenberth et al., 2014). Simultaneously, population and economic growth are projected to alter water
demands for different sectoral uses (e.g. agriculture, domestic, energy), leading to greater water
withdrawals and exacerbated competition for global water resources in some world regions (Wada
et al., 2016).

In addition to water availability, human activities also greatly impact water quality (Jones et al., 2022;
van Vliet et al., 2021). Pollutants originating from different water use sectors are often discharged to
surface waters, causing water quality degradation (Jones et al., 2022; Jones et al., 2023; van Vliet et al.,
2021). Proper management of pollution from water use sectors, including domestic, manufacturing,
livestock and irrigation activities, is crucial for minimising the impact on receiving aquatic ecosystems,
but the prevalence of these practices is highly unequal across the globe (Jones et al., 2021; Jones et al.,
2022). Changes in future pollutant concentrations are also strongly driven by the dilution capacity of
rivers, and thus sensitive to changes in the hydrological regime induced by both climatological changes
and increased sectoral water abstractions. Furthermore, projected changes in abiotic conditions (e.g.
water temperature, incoming solar radiation) can exert considerable influence over in-stream physical,
chemical and biological processes that also determine in-stream pollutant concentrations (Reder et al.,
2015; Bosmans et al., 2022).

The impacts of future climate change on hydrological regimes have been assessed extensively
(Caretta et al., 2022), predominantly using numerical hydrological models forced with projections of
future climatic conditions (e.g. precipitation, air temperature, evapotranspiration) under different
‘Representative Concentration Pathways’ (RCPs) (Schewe et al., 2014; Bosmans et al., 2022). Future
changes to water demands are typically based on quantitative projections of socioeconomic drivers,
particularly population, GDP and land use, associated with different development scenarios such as
those described by the ‘Shared Socioeconomic Pathways’ (SSPs) (Wada et al., 2016; O’Neill et al.,
2017; Riahi et al., 2017). Water scarcity assessments have typically combined these factors to evaluate
spatial and temporal mismatches in water demand and supply (Wada et al., 2014; Döll et al., 2018;
Hanasaki et al., 2018).

Conversely, quantitative projections of future water quality are sparse, particularly at the global
scale (Caretta et al., 2022). Yet, akin to water availability, future changes in water quality will have
direct consequences for both human water uses (van Vliet et al., 2021; Jones et al., 2022) and
freshwater ecosystems (van Vliet et al., 2013; Bosmans et al., 2022). This study represents a
comprehensive assessment of the impacts of long-term climate and socioeconomic change on future
surface water quality globally. We use a new high-resolution global surface water quality model
(DynQual) (Jones et al., 2022; Jones et al., 2023), which is coupled to a global hydrological and water
resources model (PCR-GLOBWB2) (Sutanudjaja et al., 2018), to simulate hydrology (e.g. discharge,
channel storage, runoff), sectoral water use and return flows, and multiple water quality constituents
that are relevant for human uses and ecosystem health (UNEP, 2016; van Vliet et al., 2021; Jones et al.,
2022). We focus on water temperature (Tw) and total dissolved solids (TDS), biological oxygen
demand (BOD) and fecal coliform (FC) concentrations as indicators of salinity, organic and pathogen
pollution, respectively. Global model simulations are made for the time period 2005–2100 with a
daily timestep and at 5 arc-min (∼10 km) spatial resolution. We consider multiple RCP-SSP scenarios
to explore a range of possible surface water quality futures based on (uncertain) future developments
in societal and climatic conditions (O’Neill et al., 2017), and use bias-corrected output from five
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general circulation models (GCMs) to account for uncertainties inherent in the climatological
projections (Lange and Buchner, 2021). To assess the potential impact of future changes in surface
water quality, we link simulated in-stream pollutant concentrations to key water quality thresholds
for human uses and environmental health.

5.2 Results

5.2.1 Pollutant loadings
Future loadings of pollutants depend strongly on the rate and direction of change in socioeconomic
drivers (e.g. population, prosperity) relative to developments in wastewater management practices, as
dictated by the SSPs (Fig. 5.1). In general, pollutant loadings of BOD and FC are projected to reduce
in most world regions. Conversely, TDS loadings are projected to increase, except under
SSP1-RCP2.6, predominantly due to population increase and the associated rise in irrigation and
manufacturing activities. The sharpest and largest reductions in global loadings of all three pollutants
(TDS, BOD and FC) are achieved under SSP1-RCP2.6, resulting from a combination of a stable and
prosperous world population acting as sustainable consumers (O’Neill et al., 2017), achieved via
inclusive and equitable development that respects environmental boundaries. These factors drive
substantial reductions in loadings from domestic, manufacturing and intensive livestock activities,
with global BOD and FC loadings under SSP1-RCP2.6 reduced by ∼25% by the mid-century, and by
more than half by 2100. BOD and FC loadings also substantially decrease under SSP5-RCP8.5,
particularly by the end of the century. Rapid growth of the global economy, albeit driven by
fossil-fuelled development and resource intensive lifestyles, facilitate widespread development of
advanced wastewater treatment practices. Yet, compared to SSP1-RCP2.6, loadings from the livestock
sector are especially high under SSP5-RCP8.5 reflecting the high and increasing demand for meat
products worldwide. Furthermore, global TDS loadings are highest under SSP5-RCP8.5,
predominantly driven by increased manufacturing activities associated with the resource intensive
lifestyle of the global population.

While global pollutant loadings under SSP3-RCP7.0 are comparable to historical conditions,
strong regional differences exist (Figs. C.1–C.3). Reductions in pollutant loadings achieved in the
developed world are offset by increases in developing nations, particularly in Sub-Saharan Africa and
Southern Asia. For example, BOD loadings in Sub-Saharan African more than quadruple by the end
of the century (Fig. C.2), predominantly due to rapid population growth massively outstripping the
development of wastewater treatment infrastructure. Under SSP3-RCP7.0, the percentage of global
BOD loadings originating in Sub-Saharan Africa increases from <10% historically to >25% by the end
of the 21st century. Strong regional differences also exist under SSP1-RCP2.6 and SSP5-RCP8.5. In
regions where wastewater treatment rates are already high, such as North America and Western
Europe, pollutant loadings are consistently highest under SSP5-RCP8.5. Conversely, in countries
with low wastewater treatment rates, slower population growth combined with the development of
wastewater infrastructure facilitated by strong economic growth under SSP1-RCP2.6 and
SSP5-RCP8.5 result in lower pollutant loadings relative to SSP3-RCP7.0. Yet, it should be noted that
pollutant loadings in most developing nations will continue to rise until the mid-century (Latin
America and Caribbean, Southern Asia, Middle East and North Africa) or the end of the century
(Sub-Saharan Africa) even under the most optimistic future scenario (RCP1-SSP2.6).

78 | CHAPTER 5



621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

Figure 5.1 Future pollutant loadings by contributing water use sector under three combined climate and
socioeconomic scenarios, disaggregated by water use sector. Displayed percentages show the change in
pollutant loadings relative to the reference period (2005–2020). More detailed line plots displaying changes
in pollutant loadings, disaggregated by geographic region, are displayed in Appendix C.1 (Figs. C.1–C.3).

5.2.2 Future surface water quality
Patterns in future surface water quality are driven by a complex balance of changes in pollutant
loadings (Fig. 5.1; Figs. C.1–C.3), the dilution capacity of streams (Fig. C.4) and in-stream decay
processes, which are strongly dependent on water temperature (Fig. C.5) under global change. Our
projected changes to global TDS, BOD and FC concentrations under different combined climate and
socioeconomic development scenarios exhibit patterns of both water quality improvement and
deterioration, which vary greatly across world regions (Fig. 5.2; Figs. C.6–C.11) and individual river
basins (Figs. C.3–C.4). To evaluate the impact of these relative changes on surface water quality, we
also consider the number of months that concentration thresholds are exceeded under the climatic
and socioeconomic scenarios (Fig. 5.5; Figs. C.12–C.13).

Water quality deterioration is projected across most of Sub-Saharan Africa, irrespective of the
future climate and socioeconomic scenario (Fig. 5.2). Increases in TDS, BOD and FC concentrations
are largely ubiquitous in space, including the outlets of major river basins such as the Niger, Congo
and Jubba (Fig. 5.3). While variability exists, some general patterns are evident. Water quality
deterioration of all three constituents is typically strongest and most widespread for all three
constituents under SSP3-RCP7.0. The strongest percentage increases mostly occur for BOD
concentrations, with in-stream concentrations across many rivers projected to more than double by
the end of the century. Some reductions in FC concentrations are projected under SSP5-RCP8.5,
mostly related to improvements in wastewater treatment practices that are facilitated by the strong
economic growth under this scenario.
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While most African rivers are projected to become more saline, increases in TDS concentrations are
lowest under SSP1-RCP2.6. These conclusions are further supported by seasonal patterns in individual
gridcells, located at major African cities (Fig. 5.4). For example, water quality deterioration is projected
for Addis Abada in Ethiopia irrespective of global change scenario, with average monthly TDS, BOD
and FC concentrations consistently highest under SSP3-RCP7.0.

Future water quality deterioration results in river stretches in most African basins exhibiting
multi-seasonal or year-round exceedances of key water quality thresholds. For BOD, this is both most
extreme and widespread under SSP3-RCP7.0 with similar (albeit dampened) patterns under
SSP5-RCP8.5 (Fig. 5.5). While deterioration is projected even under the most optimistic scenario
(SSP1-RCP2.6), exceedances of BOD thresholds are less frequent and widespread, with some rivers
across Sub-Saharan Africa (e.g. White Nile) displaying some water quality improvements (Fig. 5.5).
Similar patterns exist for exceedances of TDS (Fig. C.12) and FC (Fig. C.13) thresholds. While water
quality deterioration across Sub-Saharan Africa appears inevitable as the continent develops
demographically and economically, the spatial extent, frequency and magnitude of exceedances is
sensitive to the future climate and socioeconomic scenarios.

Contrasting patterns in surface water quality are projected for Latin America under the different
scenarios. Strong reductions in BOD and FC concentrations occur under SSP1-RCP2.6 (Fig. 5.2),
which decrease both the spatial extent and frequency of BOD and FC threshold exceedances
(Fig. 5.5), while there are relatively minor changes in TDS concentrations and exceedances.
Conversely, substantial increases in both concentrations and threshold exceedances of all three water
quality constituents (TDS, BOD and FC) are widespread under SSP3-RCP7.0 and SSP5-RCP8.5
(Fig. 5.2). This is driven both by socioeconomic developments and climate change. In particular, an
increase in livestock activities in Latin America to meet the increased global demand for animal
products (e.g. meat) leads to increased BOD and FC loadings, while TDS concentrations mostly
increase due to climate-change induced reductions in streamflow (Fig. C.4). While water quality
deterioration is projected across most of the Latin America, some water quality improvements are
projected for BOD and FC in downstream locations. This corresponds to a reduction in BOD and FC
loadings from coastal urban areas (e.g. Rio de Janeiro, São Paulo, Buenos Aires) as a result of
improved wastewater treatment practices and a reduction in the proportion of wastewater that is
collected but not treated. This explains why reductions are projected at the outlet of the Amazon and
Parana rivers (Fig. 5.3), despite many upstream regions becoming more polluted (Fig. 5.2). This
spatial pattern is also reflected in the changes in the number of months that BOD (Fig. 5.5) and FC
(Fig. C.13) concentration thresholds are exceeded.

Water quality patterns also vary across the other world regions. Typically, improvements in surface
water quality are projected in developed countries under all the future climate and socioeconomic
scenarios (Fig. 5.2). This translates into a reduction in the number of months exceeding water quality
thresholds (Fig. 5.5, Figs. C.12–C.13).
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Figure 5.4 Seasonal variability in total dissolved solids (TDS), biological oxygen demand (BOD) and fecal
coliform (FC) concentrations in selected African cities averaged over a historical reference period (2005–
2020) and in the future time period 2081–2100 under three combined climate and socioeconomic scenarios.
Lines display the mean average over the 5 general circulation models (GCMs) considered, while shaded areas
represent the uncertainty arising from variations in GCM simulations as ±1 standard deviation.

Surface water quality improvements are strongest under SSP1-RCP2.6, and occur to a lesser extent
under SSP3-RCP7.0. While reductions in BOD and FC concentrations are strong under SSP5-RCP8.5
due to very high wastewater treatment rates, TDS concentrations tend to increase due to high
demands for manufactured goods (Figs. C.6–C.7). These patterns are reflected in changes in pollutant
concentrations in outlets of major European (e.g. Rhine, Danube) and North American (e.g.
Mississippi, Rio Grande) rivers (Fig. 5.3). High percentage reductions in BOD and FC concentrations
occur across China under all scenarios (Fig. 5.2), as displayed for the outlet of the Yangtze (Fig. 5.3).
This is driven by both reductions in pollutant loadings, occurring mostly due to vastly improved
wastewater treatment services, but also partly due to projected increases in streamflow. Surface water
quality improvements translate into widespread reductions in exceedances of water quality
thresholds, which were mostly ubiquitous in space and time in the reference period (2005–2020)
(Fig. 5.5). The same patterns do not hold true for the rest of east and southeast Asia, where mixed
patterns for different constituents are observed across the region (Fig. 5.2) and at the outlets of
individual river basins (e.g. Cagayan, Fly, Ganges) (Fig. 5.3). Lastly, water quality improvements in
the Middle East are predominantly only projected under SSP1-RCP2.6. In this region, severe water
quality deterioration is projected under SSP3-RCP7.0 which occurs due to a combination of increased
pollutant loadings and streamflow reduction.
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5.2.3 Population at risk
For an indication of the potential impact of future changes in surface water quality on humankind, we
quantify the number of people living in areas exposed to concentrations that exceed thresholds for safe
use (Fig. 5.6a; Figs. C.14–C.16) and the relative change in exposed population per geographic region
and water quality constituent (i.e. TDS, BOD and FC) (Fig. 5.6b-d).

The number of people exposed to surface water pollution varies greatly per water quality
constituent, RCP-SSP scenario and geographic region (Fig. 5.6a; Figs. C.14–C.16). Substantial
decreases in the number of people exposed to surface water BOD and FC pollution are achieved by
the end of the century under SSP1-RCP2.6 (BOD: 1.6 ±0.1 billion; FC: 2.0 ±0.1 billion) and
SSP5-RCP8.5 (BOD: 1.6 ±0.3 billion; FC: 1.9 ±0.3 billion), relative to historical conditions (BOD: 2.7
±0.1 billion; FC: 3.7 ±0.1 billion). Changes in exposure to BOD and FC pollution roughly follow
consistent patterns per geographic region, with exposure becoming negligible in Western Europe and
North America and strong percentage reductions in the historically polluted regions of East Asia and
Latin America. Reductions in exposure across Eastern Europe, Central Asia and Southern Asia are
more modest, but are still substantial. Under SSP1-RCP2.6 and SSP5-RCP8.5, changes in the
proportion of the population exposed to BOD and FC pollution in Sub-Saharan Africa are also
modest, although there is substantial spread across the GCMs. The global population exposed to TDS
pollution at the end of the century under SSP1-RCP2.6 (1.3 ±0.1 billion) and SSP5-RCP8.5 (1.4 ±0.3
billion) is comparable to historic levels (1.3 ±0.1 billion people), with small increases (∼5%) in
exposed population across most world regions counterbalanced by the reductions in East Asia and
Pacific.

Conversely, substantial increases in the total number of people exposed to surface water pollution
occur under SSP3-RCP7.0. The number of people exposed to TDS, BOD and FC pollution increases
to 2.9 (±0.4), 4.2 (±0.4) and 5.1 (±0.4) billion people, respectively. Compared to the most optimistic
future scenario, the total population exposed to BOD and FC pollution approximately triples, while also
more than doubling for TDS pollution. In some world regions, such as South Asia, the Middle East and
North Africa, rapid population growth in regions under SSP3-RCP7.0 leads to an overall increase in
absolute number of people exposed to BOD and FC pollution despite decreases in the percentage of
the population exposed (Fig. 5.6).

Multi-pollutant threshold exceedances at the end of the century are projected to be widespread in
Sub-Saharan Africa, irrespective of the climate and socioeconomic scenario (Fig. 5.7). This pattern is
not replicated in any other world region, with the exception of more localised pockets in south and
south-east Asia, central America and continental Latin America (Fig. C.17). Across all scenarios for
Sub-Saharan Africa, rapid population growth is coupled with strong water quality deterioration. This
leads to large increases in the absolute number of people exposed to pollution issues, with hotspots
coinciding with major urban centres where rapid population growth is projected, such as Kinshasa,
Nairobi and Addis Ababa (Fig. 5.7).
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Figure 5.7 a) Combined number of constituents that exceed water quality thresholds, and under how many
scenarios, for the African continent, averaged over 2081–2100. Water quality thresholds considered are 2,100
mg l−1 , 8 mg l−1 and 1,000 cfu 100ml−1 for total dissolved solids (TDS), biological oxygen demand (BOD)
and fecal coliform (FC), respectively. Line plots display the number of people in Sub-Saharan Africa exposed
to in-stream concentrations that exceed b) TDS, c) BOD and d) FC thresholds under the different combined
climate and socioeconomic scenarios, averaged over multi-year periods. Lines display the mean average over
the 5 general circulationmodels (GCMs) considered, while shaded areas represent the uncertainty arising from
variations in GCM simulations as ±1 standard deviation. Line plots for all world regions (Figs. C.14–C.16) and
the same map at the global extent (Fig. C.17) are displayed in Appendix C.3.

Even under the most optimistic future scenario (SSP1-RCP2.6) the number of people exposed to
TDS, BOD and FC exceedances in Sub-Saharan Africa will more than double. Under SSP5-RCP8.5,
the population exposed to surface water pollution peaks in the mid-late century (2061–2080). By the
end of the century projections of population exposure under SSP5-RCP8.5 are comparable to
SSP1-RCP2.6. This is due to strong (fossil-fuelled) economic developments under SSP5-RCP8.5
facilitating the development of wastewater treatment infrastructure to a level that can counteract the
trend of increasing pollution. Conversely, extreme population growth combined with restricted and
more regional economic development under SSP3-RCP7.0 leads to a continuously increasing trend in
the number of people exposed to surface water pollution. An estimated 1.5 (±0.2) billion people in
Sub-Saharan Africa alone are exposed to surface waters with BOD concentrations exceeding 8 mg l−1

under SSP3-RCP7.0, approximately three times that under SSP1-RCP2.6 (550 ±60 million people)
and SSP5-RCP8.5 (515 ±149 million people) (Fig. 5.7c), and over five times that in the historical
reference period (290 ±16 million people). Overall, similar patterns exist for both TDS (Fig. 5.7b) and
FC (Fig. 5.7d).
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Figure 5.8 Percentage of the total global population versus the percentage of the global population that
are exposed to surface waters that exceed a biological oxygen demand (BOD) concentration of 8 mg l−1 ,
disaggregated by world region. Results are for averaged over multi-year periods for both a historical reference
period (2005–2020) and for the time period 2081–2100 under the three different combined climate and
socioeconomic scenarios. The same plots for total dissolved solids (TDS; 2,100 mg l−1) and fecal coliform (FC,
1,000 cfu 100ml−1) are displayed in Appendix C.3 (Figs. C.18–C.19).

The global aggregation (Fig. 5.6a) thus conceals the substantial regional variability that exists in
both the percentage and absolute number of people exposed to surface water pollution, particularly
for BOD and FC. Aforementioned increases in Sub-Saharan Africa, in addition to in Southern Asia,
the Middle East and North Africa, mask the vast improvements projected in other world regions. This
is particularly true for the East Asia and Pacific region, which was the dominant pollution hotspot in
the reference period. Here, exposed populations are projected to substantially decrease across all
climate and socioeconomic scenarios. As an illustration, the proportion of people exposed to organic
pollution in the East Asia and Pacific region drops from 46% in the historical period to 18–20%,
25–27% and 21–23% under SSP1-RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5, respectively. This
represents a drop from 36% of the total global exposed population to between 13–19%, depending on
the global change scenario (Fig. C.8). By contrast, a disproportionately high share of the global
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population exposed to organic pollution will live in Sub-Saharan Africa by the end of the century
irrespective of future scenarios: 36–38% under SSP1-RCP2.6, 35–37% under SSP3-RCP7.0 and
29–36% under SSP5-RCP8.5, with the region containing just 25%, 29% and 23% of the global
population, respectively (Fig. 5.8). This represents a prominent shift from historical conditions, where
the Sub-Saharan Africa region contained 14% of the global population but just 10% of the population
exposed to organic surface water pollution (Fig. 5.8). Similar patterns exist for exposure to both
salinity (Fig. C.18) and pathogen (Fig. C.19) pollution. Therefore, irrespective of climate and
socioeconomic scenario, our results suggest a shift in the dominant hotspot of surface water pollution
from the East Asia and Pacific region to Sub-Saharan Africa. While Southern Asia, the Middle East
and North Africa are also important hotspots of future surface water quality pollution, trends towards
further deterioration in these regions are mainly projected under SSP3-RCP7.0.

5.3 Discussion

This work represents the first study to comprehensively evaluate the impact of uncertain climate and
societal change on global surface water quality, as indicated by TDS, BOD and FC, at high spatial and
temporal resolution. The global outlook is mixed, exhibiting strong regional trends in surface water
quality improvements and deterioration, while also sensitive to scenarios of climate change (based on
the RCPs) and socioeconomic developments (SSPs). It should also be noted that the analysis displayed
in this paper focuses on concentrations averaged over aggregated periods (i.e. annual, monthly), and
thus not on extreme values. With expected changes in the frequency and magnitude of both droughts
and floods under climate change (Trenberth et al., 2014), intensification of surface water quality issues
that occur on shorter time periods are expected.

Uncertainties in surface water quality simulations arise from a combination of uncertainties
associated with estimates of pollutant loadings (e.g. pollutant excretion rates, emission rates and
sector-specific return flows), the quality of hydrological simulations (e.g. discharge and velocities)
and the representation of in-stream processes (e.g. decay coefficients). These uncertainties are further
amplified when modelling at large spatial extents. Our modelling strategy is thus to focus on the main
spatial and temporal drivers of pollution in large-scale river networks to facilitate first-order
approximations of in-stream concentrations, using globally consistent input data to facilitate
meaningful comparisons of in-stream concentrations across different world regions. We opt to
implement DynQual at 5 arc-min spatial resolution as the performance of both PCR-GLOBWB2
(Sutanudjaja et al., 2018; Hoch et al., 2023) and DynWat (Wanders et al., 2019) have been
demonstrated to markedly improve at finer spatial extents, which have a strong influence on
simulated surface water pollutant concentrations due to dilution and in-stream decay processes,
respectively.

Our results are sensitive to the structural uncertainty of the global hydrological model (GHM)
PCR-GLOBWB2 (Sutanudjaja et al., 2018) and the water quality model DynQual (Jones et al., 2023).
This is important to acknowledge as all models are imperfect, with errors and biases arising from
aspects such as model parameterisation and inaccuracies in the representation of physical processes
(van der Wiel et al., 2019). Severe limitations in observational surface water quality data, both in
terms of spatial coverage and with respect to the number of observations per water quality
monitoring station (UNEP, 2016; Damania et al., 2019), make systematically quantifying these factors
challenging. Overall, TDS, BOD and FC simulations are consistently better in larger streams than
gridcells with low water availability (e.g. headwater streams) (Jones et al., 2023). This is likely due to
spatial mismatches between the generation of pollutant loadings and the location of entry to the
stream network (return flows), which become less influential on simulated concentrations as
pollutants are routed downstream (Jones et al., 2023). Given this, combined with the overall research
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aims of global water quality models, our analysis of future water quality focuses on large rivers. We
also focus on relative changes (Figs. 5.2–5.3), using an absolute concentration plot (aggregated over a
20-year period) as a means to communicate variability under the global change scenarios (Fig. 5.4)
rather than as a projection or prediction of future in-stream concentrations. Similarly, we use a simple
binary threshold exceedance (i.e. exceedance vs. no exceedance) approach, as opposed to specifically
considering changes to absolute concentrations when analysing surface water quality with respect to
concentration thresholds (Fig. 5.5) and population exposure to polluted surface waters (Figs. 5.6–5.8).
Repeating the analysis with hydrological simulations from different GHMs (as facilitated by the
model structure of DynQual) could provide further insights into model sensitivity (van der Wiel
et al., 2019). Furthermore, comparing our simulations to output from other global water quality
models, when available, will be crucial for understanding uncertainties in the underlying assumptions
for estimating pollutant loadings and in the representation of in-stream decay processes.

As few studies have projected global surface water quality into the future, there is limited scope to
compare our results to the existing scientific literature. Recent work using CMIP5 climate forcing has
simulated changes in water temperature under future climate change (Barbarossa et al., 2021;
Bosmans et al., 2022) with similar results to ours, hence our decision not to present detailed analysis
here. Previous work estimated that 2.5 billion people will be affected by organic (BOD) surface water
pollution in 2050 (Wen et al., 2017), with developing countries disproportionality affected, which is
comparable to our estimates of between 1.8–3.6 billion people depending on the combined climate
and socioeconomic scenario. No previous studies have simulated TDS or FC concentrations into the
future. However, there is historical precedent for improvements in surface water quality associated
with economic development (Damania et al., 2019), particularly with respect to the so called
‘pollutants of poverty’ (e.g. BOD, FC), as demonstrated in studies using both modelling (Jones et al.,
2023) and data-driven approaches (Desbureaux et al., 2022).

While we use TDS, BOD and FC to draw conclusions on future global surface water quality, they
do not represent the full suite of contaminants that pose risks to human water use and environmental
health. The diversity in pollutants, their drivers and the associated impacts to humans and the
environment make the establishment of all-encompassing metric to assess surface water quality
extremely challenging. As an illustration, the global repository for water quality data (GEMStat)
contains observations for more than 220 different water quality constituents (UNEP, 2019), while
thousands of extra constituents have been identified by organisations such as the World Health
Organisation (WHO) (Damania et al., 2019). Furthermore, the US Environmental Protection Agency
(EPA) set maximum concentrations for 125 individual pollutants based on human health criteria
under the Clean Water Act.

Of these, nutrient pollution is of particular concern, with the associated eutrophication and loss of
ecosystems services posing both serious economic and environmental problems (Xie and Ringler,
2017; Beusen et al., 2022). The Integrated Model to Assess the Global Environment–Global Nutrient
Model (IMAGE-GNM) is similarly coupled to PCR-GLOBWB2 and has been used extensively to
assess the delivery of nitrogen (N) and phosphorus (P) to surface waters under different
socioeconomic developments globally (van Drecht et al., 2009; Morée et al., 2013; Beusen et al., 2022).
Future trends in N and P are largely driven by changes in agricultural practices (Xie and Ringler,
2017), making direct comparisons to our selected constituents (i.e. TDS, BOD and FC) difficult.
However a general pattern of the most severe degradation in surface water quality with respect to
nutrients occurring in developing nations is consistent with our findings (Beusen et al., 2022).
Patterns in other constituents, particularly those that are not typically removed at conventional
wastewater treatment plants, likely exhibit vastly different trends. These include so called ‘pollutants
of prosperity’, such as pharmaceuticals, plastics and industrial chemicals, which will pose their own
challenges and risks for humans and ecosystems (Damania et al., 2019; Desbureaux et al., 2022).
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Future work could explore expanding physically-based modelling approaches such as DynQual to
include a greater range of water quality constituents, thus enhancing our overall understanding of
global water quality dynamics.

5.4 Methods

5.4.1 Surface water quality model (DynQual)
We use the new physically-based Dynamical Surface Water Quality (DynQual) model to simulate
in-stream water temperature (Tw) and concentrations of total dissolved solids (TDS), biological
oxygen demand (BOD) and fecal coliform (FC) at daily timestep and 5 arc-min spatial resolution
(Jones et al., 2022; Jones et al., 2023). These water quality constituents are selected due to their key
role in constraining different sector water uses and environmental health (van Vliet et al., 2021), in
addition to acting as proxies for other pollutants and more generally as overarching indicators of
water quality status. The open source model DynQual is coupled to the global hydrological and water
resources model PCR-GLOBWB2 (Sutanudjaja et al., 2018), which simulates hydrological variables
(e.g. discharge, channel storage) including the influence of human activities (e.g. sectoral water
withdrawals, consumption and return flows). Pollutant loadings are estimated within DynQual based
on sectoral water use activities (domestic, manufacturing, irrigation, livestock and power generation)
and from urban surface runoff, accounting for wastewater collection and treatment practices.
Pollutant loadings are routed through the hydrological network, with in-stream concentrations
computed considering both the dilution capacity and pollutant-specific decay processes (Jones et al.,
2023). As with all modelling studies, and particularly those at the global scale, we must acknowledge
uncertainties in our water quality simulations. Uncertainties arising from the representation of
physical processes within DynQual, as well as an extensive validation using observed water
temperature and TDS, BOD and FC concentrations, are described and presented in previous work
(Wanders et al., 2019; Jones et al., 2022; Jones et al., 2023).

5.4.2 Future climate and socioeconomic change
Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) describe
future possible developments in socioeconomic and climatic conditions, respectively, to provide
integrated scenarios to explore uncertain future change in a consistent framework (O’Neill et al.,
2017). In this study, we simulate surface water quality under (uncertain) climate change and
socioeconomic scenarios for the time period 2005–2100, considering three combined SSP-RCP
scenarios: SSP1-RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5. Each scenario is run using bias-corrected
daily CMIP6 climate output (precipitation, air temperature and solar radiation) from the five General
Circulation Models (GCMs) included in the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP3b) database (GFDL-ESM4; UKESM1-0-LL; MPI-ESM1-2-hr; IPSL-CM6A-LR and
MRI-ESM2-0) (Lange and Buchner, 2021).

The required socioeconomic data for simulating pollutant loadings under the different SSPs is
derived from various data sources. Datasets for gridded population (Jones and O’Neill, 2016) and
urban fraction (Hurtt et al., 2020) are derived at the annual time-step, while return flows from the
manufacturing and irrigation sectors are simulated by PCR-GLOBWB2 with a daily timestep
(Sutanudjaja et al., 2018; Jones et al., 2023). Country-level rates of change in livestock numbers up to
2050 (Beusen et al., 2022) are applied to 2010 livestock populations at 5 arc-min resolution (Gilbert
et al., 2018), extended to 2100 by assuming a continuation of the rate of change in the final available
timestep (2049–2050) for all subsequent years. We apply regional and sub-regional decadal rates of
change in water withdrawals for thermoelectric power generation that include variations in
technological change under the SSPs (Graham et al., 2018) to return flows from the thermoelectric
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power sector in 2020 (Lohrmann et al., 2019). Human and livestock excretion rates per capita and
effluent concentrations from the different sectors are assumed to remain constant and follow previous
work (UNEP, 2016; van Vliet et al., 2021; Jones et al., 2022; Jones et al., 2023).

5.4.3 Wastewater management scenarios
The mass of pollution discharged to surface waters is strongly influenced by the transmission path
(van Puijenbroek et al., 2019; Beusen et al., 2022; Jones et al., 2022). Collection and subsequent
treatment of wastewater can remove a substantial proportion of the loadings, depending on the
removal efficiency (i.e. treatment level). Thus, how wastewater treatment infrastructure develops
under different socioeconomic assumptions has a strong influence on future surface water quality.
We account for seven different wastewater management practices in three categories: 1) collection
and treatment (primary, secondary, tertiary and quaternary); 2) collected but untreated; and 3)
uncollected (basic sanitation, open defecation). These wastewater management practices are reported
at country-level per SSP with a decadal time-step and are derived as a function of GDP (van
Puijenbroek et al., 2019). Country-level estimates are downscaled to 5 arc-min following previous
work (Jones et al., 2021; Jones et al., 2022). Removal efficiencies of pollutants from different
wastewater management practices are also based on previous work (Jones et al., 2023). To account for
future technological improvement, the practice ‘quaternary treatment’ was introduced (van
Puijenbroek et al., 2019) for which we assume almost complete removal of BOD (up to 99%) and FC
pollution (99.99%), and 65% removal of TDS (based on the removal efficiency of TDS from
wastewater via reverse osmosis (Jones et al., 2019).

5.4.4 Future surface water quality and exposed population
Future surface water quality is assessed with respect to multi-year periods, in accordance with the
WorldClim (Fick and Hijmans, 2017) time periods (2005–2020, 2021–2040, 2041–2060, 2061–2080
and 2081–2100). We select a 20-year time interval to account for natural inter-annual variability in
the climatology and associated hydrological regimes, while still being short enough to observe
changes in the socioeconomic drivers of pollutant loadings that typically occur on shorter timescales
(e.g. population growth, expansions in wastewater treatment). The displayed results are based on the
average of the multi-model ensembles. Where possible, we display the uncertainty arising from the
different GCMs as either ±1 standard deviation (e.g. Fig. 5.4; Fig. 5.6a; Fig. 5.7b-d) or by displaying
results for the entire range of simulations (e.g. Fig. 5.3; Fig. 5.6b-d).

In order to assess the potential impacts of future changes in surface water quality, we assess
in-stream concentrations with respect to quality thresholds that are derived from extensive literature
research (UNEP, 2016; Jones et al., 2022). A TDS threshold of 2,100 mg l−1 is used, reflecting the
concentration at which water becomes ‘unsuitable’ for irrigation purposes (Fipps, 2003; Zaman et al.,
2018). Consumption of saline water at this level has also been linked to negative human health
impacts, with a 42% increase in the prevalence of hypertension associated with consumption of water
>2,000 mg l−1 TDS in Bangladesh (Nahian et al., 2018). For BOD, a threshold of 8 mg l−1 is used,
which is representative of ‘high pollution’ that can pose risks to both the domestic sector and
ecosystem health (UNEP, 2016; Wen et al., 2017). The threshold of 1,000 cfu 100ml−1 for FC is based
on human health concerns associated with direct contact (UNEP, 2016; Jones et al., 2022). The
selected concentration thresholds are further elaborated on in previous work (Jones et al., 2022). The
population exposed to surface water pollution, as defined by these thresholds, is estimated per
abstraction zone. Abstraction zones represent groups of gridcells which relate water availability to
human demands, in order to match local demand to available water resources in nearby cells.
Abstraction zones are inherent to the water demand module of PCR-GLOBWB2 (Sutanudjaja et al.,
2018), with approximately 60,000 defined globally.
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Code and data availability
The surface water quality model used in this study, DynQual, is available open-access through a GitHub repository
(https://github.com/UU-Hydro/DYNQUAL/). Input data is available through the references provided in the
methods section. Global hydrological and surface water quality output at 10km resolution, per general circulation
model (GCM) and global change scenario (RCP-SSP), is available open-access at:
https://doi.org/10.5281/zenodo.7811612.
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Synthesis

Chapter 6 | Synthesis

Water pollution is a globally-relevant problem, affecting developed and developing countries alike,
yet one that has proven difficult for researchers and society to fully grasp. The diversity in pollutants,
their drivers and the associated impacts to humans and the environment exacerbate the challenge
further (Rode et al., 2010; UNEP, 2016), and is at least partly why global water quality monitoring has
been so difficult (Damania et al., 2019). Being largely under-monitored, difficult to detect and often
imperceptible to the human eye, the World Bank has branded water quality issues as an ‘invisible
crisis’ (Damania et al., 2019).

Techniques that can improve our understanding of global water quality dynamics without
requiring in situ measurements are rapidly emerging, facilitated by technological advancements.
Rapid developments in hardware and software architecture, reductions in the cost of
high-performance computing and improved access to these resources offer increased opportunities
for (process-based) modelling of global surface water quality, as has been well-utilised by the global
atmospheric and hydrological modelling communities (Bierkens, 2015).

Leveraging these capabilities, the objective of this thesis was:

To assess the past and current status of surface water quality globally, and to evaluate the impact of
(uncertain) global change on future surface water quality.

In this Chapter, the key findings of this thesis are summarised, together with a wider discussion on
the implications for science and society. Bringing together the novel findings of this thesis, a
preliminary assessment of future water scarcity that includes water quality projections is presented.
Lastly, an outlook of the opportunities and challenges for future research in large-scale water quality
modelling is provided.
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6.1 Main results: contribution to science and society

The key results of this thesis, disaggregated by research question, are summarised in Table 6.1.

Table 6.1 Overview of the main results and conclusions of this thesis, disaggregated by research question.

Research question Main results
The proportion of wastewater undergoing treatment varies strongly with level of 
economic development, estimated at 74% for high-income countries, 43% for upper-
middle income countries, 23% for lower-middle income countries and 4.2% for low-
income countries. 
Approximately half (52%) of global wastewater undergoes treatment, opposed to 
previous estimates of 20%.
Treated wastewater re-use already represents an important source of freshwater for 
human uses at ~111 million m3 day-1, exceeding the volume of water produced by 
desalination (~95 million m3 day-1). 
Current multi-pollutant hotspots are especially prevalent in northern India and eastern 
China, but surface water quality issues exist across all world regions.
In highly developed economies, organic (BOD) and pathogen (FC) pollution have 
decreased over time, particularly due to expansions in wastewater collection and 
treatment, while TDS concentrations have marginally increased, predominantly due to 
expansions in manufacturing activities. 
Recent trends towards surface water quality deterioration are most profound in the 
developing world, particularly Sub-Saharan Africa and southern Asia. Here, increases in 
TDS concentrations are predominantly driven by irrigation activities, while increases in 
BOD and FC pollution are driven by the domestic sector. 
Process-based global modelling approaches (e.g. DynQual ) can facilitate surface water 
quality dynamics with a consistent spatial and temporal resolution, but challenges 
remain for simulating in-stream pollutant concentrations that correspond exactly with in-
situ observations at high temporal (e.g. daily) resolution. 

Future surface water pollution will disproportionately affect people living in developing 
countries, with a widening gap in exposure rates between rich and poor countries.

While achieving the UN’s wastewater treatment target by 2030 would substantially 
improve surface water quality globally, this is insufficient to safeguard human water uses 
and environmental health - particularly in developing countries.
The proportion of the global population exposed to salinity (TDS), organic (BOD) and 
pathogen (FC) pollution by the end of the century ranges between 17 – 27%, 20 – 37% 
and 22 – 44%, respectively, under the three combined climate and socioeconomic 
scenarios (SSP1-RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5)

A combination of surface water quality deterioration and demographic changes will 
increasingly make Sub-Saharan Africa the new global hotspot of surface water pollution, 
irrespective of climate change and socio-economic development scenarios.

Q1: What is the current 
global status of wastewater 
management (i.e. 
production, collection, 
treatment and reuse)? 
(Chapters 2 and 3)

Q2: What is the past and 
current status of global 
surface water quality, as 
indicated by water 
temperature (Tw) and 
indicators of salinity (total 
dissolved solids), organic 
(biological oxygen demand) 
and pathogen (fecal 
coliform) pollution? 
(Chapters 3 and 4)

Q3: How does global 
surface water quality change 
in the future under near-term 
sustainability targets 
(Chapter 4) and long-term 
scenarios (Chapter 5) of 
climate and socioeconomic 
change?
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6.1.1 Current status of wastewater practices (RQ1)
This thesis provides the first comprehensive and consistent global outlook on the state of wastewater
production, collection, treatment and reuse. The open-access databases (country-level and 5 arc-min)
have a broad range of applications, such as serving as a reference for understanding the global
wastewater situation, identifying hotspots where untreated wastewater enters the environment and
for evaluating progress towards policy goals that are both directly and indirectly related to wastewater
management (e.g. SDG 6.3). Spatially-explicit results are well-suited for detailed hydrological
analysis, such as the surface water quality model simulations presented in this thesis (Chapters 3–5).

Global wastewater production is estimated at 359 billion m3 yr−1, with 63% collected (225 billion
m3 yr−1) and 52% treated (188 billion m3 yr−1). Therefore, our results imply that globally 48% is
released to the environment untreated – far lower than the commonly cited statistic of ∼80%.
However, global wastewater statistics are skewed by the large amount of wastewater produced in the
developed world, where wastewater collection and treatment rates are high. For example,
‘high-income’ countries produce 41% of wastewater globally, but contain just 16% of the global
population. Conversely, countries classified as ‘lower-middle’ and ‘low-income’ contain ∼50% of the
global population but produce just ∼20% of the world’s wastewater. While per capita wastewater
production rates in the developing world are much lower, wastewater treatments are also extremely
low (e.g. ‘low-income’ countries treat just 4.2% of the wastewater produced). Thus, while this thesis
showed that more wastewater is collected and treated than previously thought, significant volumes of
wastewater enter the environment untreated – particularly in the poorest countries.

Improved wastewater management is required to protect human and environmental health, while
simultaneously providing opportunities to promote sustainable development and support the
transition to a circular economy. A key opportunity associated with wastewater, particularly in water
scarce regions, is to augment freshwater supplies by treated wastewater reuse. In this thesis, the first
global estimate of treated wastewater reuse is made (∼111 million m3 day−1), which exceeds the
global desalination capacity (∼95 million m3 day−1) (Jones et al., 2019). In addition to
demonstrating the importance of treated wastewater for clean water provision, the results highlight
the enormous potential for expansions in treated wastewater reuse capacities. Wastewater treatment
also presents opportunities for the recovery of by-products, such as energy and nutrients. This thesis
echoes calls for a paradigm shift in water resources management, whereby wastewater is viewed as a
resource rather than as ‘waste’ (WWAP, 2017; Qadir et al., 2020).

6.1.2 Global surface water quality (RQ2)
This thesis contributes to the advancement of the (emerging) field of large-scale surface water quality
modelling through the introduction of a new open-source model (DynQual) for simulating water
temperature (Tw) and concentrations of total dissolved solids (TDS), biological oxygen demand
(BOD) and fecal coliform (FC) (https://githubv.com/UU-Hydro/DYNQUAL). The model is
structured in a flexible way to allow both hydrological and pollutant loadings to either be simulated
within the model run or user-defined as a forcing. This facilitates the estimation of pollutant loadings
using a different methodology and the use of a different land-surface or global hydrological model to
simulate hydrological fluxes, respectively. These features could also prove to be advantageous for
simulating surface water quality in world regions where locally-specific input data (compared to the
globally consistent datasets) or higher fidelity models are available.

In this thesis, DynQual was applied to provide a long-term global assessment of surface water
quality (1980–2019), using state-of-the-art climate and socioeconomic forcing data. For example,
hydrological simulations are made with the most recent W5E5 climate forcing data (Cucchi et al.,
2020; Lange et al., 2021). Similarly, pollutant loading estimates leverage novel gridded datasets on
wastewater management practices (Chapter 2), to more realistically account for the impact of these
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practices on pollutant delivery to surface waters. This represents an advancement on existing
methods adopted by large-scale water quality models, which typically estimate the abatement of
pollutants at wastewater treatment plants based on country-level or regional average rates.

Historical simulations of global surface water quality display past and current hot- and bright-
spots of surface water pollution, providing insights into the sectoral drivers of these patterns and also
linking in-stream concentrations to water quality thresholds. Modelled results demonstrate that
surface water quality issues are globally relevant, with in-stream TDS, BOD and FC concentrations
exceeding key thresholds across all world regions, albeit with different frequencies and magnitudes.
Globally, TDS pollution is predominantly driven by the irrigation and manufacturing sectors, while
hotspots of BOD and FC pollution are largely driven by (untreated) wastewater from domestic and
livestock activities. Current year-round multi-pollutant hotspots are particularly prevalent across
northern India and eastern China, while trends towards surface water quality deterioration in the last
∼40 years have been most profound in the developing world, particularly Sub-Saharan Africa and
southern Asia. While modelled results demonstrate that improvements to wastewater collection and
treatment practices, particularly in the developed world, have been successful for improving
in-stream water quality (e.g. BOD and FC), trends are also strongly pollutant-specific. However, this
thesis reiterates assertions that surface water pollution does not necessarily disappear with economic
development, but rather evolves (Desbureaux et al., 2022). DynQual provides a framework for
process-based modelling of additional constituents, which may be particularly relevant for emerging
contaminants and other so-called pollutants of prosperity (Damania et al., 2019), which are not
typically well-monitored (Deblonde et al., 2011; Geissen et al., 2015).

This thesis also elucidates some of the challenges of large-scale water quality assessments. The
dearth of in situ observations of water quality across both space and time severely limit the
understanding that can be gained from in situ measurements alone, motivating approaches such as
process-based modelling. However, the lack of water quality observations complicate model
development and evaluation. Furthermore, there are significant limitations associated with the poor
availability of and uncertainties in input data for model simulations. This thesis advocates for
improved global monitoring, in addition to the public and free dissemination of existing data, of both
observed surface water quality (e.g. in-stream concentrations, pollutant loadings) and pollutant fluxes
originating from sectoral activities (e.g. effluent concentrations from wastewater treatment plants and
industrial facilities, management practices of livestock waste). These data are crucial for advancing
our knowledge of global surface water quality and for facilitating the development of effective policies
and intervention strategies to tackle surface water pollution.

6.1.3 Future global surface water quality (RQ3)
The IPCC AR6 report describes existing attempts to quantify future changes in water quality as
‘incipient’ and ‘sparse’, noting a ‘dearth of quantification at the global scale’ (Caretta et al., 2022).
Future in-stream pollutant concentrations are dependent upon changes in the mass of pollution
discharged to surface waters, which is strongly driven by anthropogenic activities, in combination
with climate-change induced changes to hydrological regimes (e.g. dilution capacities) and abiotic
conditions (e.g. water temperature) – all of which are simulated by DynQual. This enables the use of
DynQual for assessments of future surface water quality, driven by multiple interconnected factors,
under global change.

The need for short-term improvements to surface water quality is recognised in the Sustainable
Development Agenda, with related impacts cross-cutting almost all Sustainable Development Goals
(SDGs) (UN, 2015) – including food (SDG 2), water (SDG 6) and energy (SDG 7) security (Wang
et al., 2022). The target to halve the proportion of untreated wastewater released to the environment
by 2030 (SDG 6.3) represents the principal action to achieve the overarching goal of improved
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ambient water quality. In this thesis, DynQual was applied to provide the first quantitative assessment
of the effectiveness of SDG 6.3 for improving global surface water quality by 2030. Results indicate
that while substantial reductions in organic (BOD) and pathogen (FC) concentrations are achieved
across all world regions, the effectiveness of this measure for protecting surface water quality (i.e.
meeting concentration thresholds for sectoral use and environmental health) is highly variable. If
existing wastewater treatment rates in a country are low, the volume of untreated wastewater (and the
associated pollutant loadings) can still be very large under SDG 6.3. Here, halving the proportion of
untreated wastewater can also be achieved by establishing wastewater treatment in a relatively limited
number of locations. As such, while achieving SDG 6.3 is locally effective in reducing pollutant
loadings, transmission of pollution from upstream can still result in widespread exceedances of key
water quality thresholds. The suitability of SDG 6.3 as a global sustainability target for improving
water quality must therefore be considered. The findings also demonstrate that, in addition to
expanding centralised collection networks and treatment facilities, alternative measures are also
required to protect the quality of surface waters. These could include both preventative (e.g. measures
to reduce pollutant emissions at source) and reactive (e.g. constructed wetlands) measures, with a
strong focus on nature-based solutions (Jarosiewicz et al., 2022).

While scenario-based modelling has been applied to assess future changes in hydrology at the
global scale (Schewe et al., 2014), it has rarely been applied for projections of future water quality. In
this thesis, DynQual is applied to assess global surface water quality, as indicated by multi-pollutants
(i.e. Tw, TDS, BOD, FC), considering three combined climate and socioeconomic scenarios
(SSP1-RCP2.6, SSP3-RCP7.0 and SSP5-RCP8.5). This work represents the first quantitative
assessment of the impact of climate and socioeconomic change on global surface water quality until
the end of the century. While projections indicate strong and robust trends towards surface water
quality improvement in most developed countries, widespread deterioration is projected in the
poorest nations. Coupled with the fact that most of the future population growth will occur in ‘low
income’ to ‘lower-middle income’ countries, future water pollution issues will disproportionately
impact people living in developing countries. This is particularly true for Sub-Saharan Africa, where
there will be a strong increase in the number of people who are exposed to poor surface water quality
irrespective of the climate change and socio-economic scenario considered. As such, this thesis
concludes that Sub-Saharan Africa will become the key hotspot of surface water pollution in the
future.

6.2 (Re-)evaluating water scarcity in the 21st century

6.2.1 Rationale and approach
Human activities rely upon the availability of water in both adequate quantities and of acceptable quality
for an intended use (van Vliet et al., 2017; van Vliet et al., 2021). However, existing water scarcity
assessments have predominantly focused on water quantity aspects only (Liu et al., 2017). This includes
the water scarcity indicator adopted by the United Nations in SDG 6.4.2, whereby water scarcity is
defined as the ratio of water withdrawal to the overall water availability (UN, 2015). The suitability of
this indicator has been critiqued for a number of reasons, including that aspects related to water quality
are largely ignored (Vanham et al., 2018). Methods that have incorporated water quality aspects include
the water poverty index (Sullivan et al., 2003), threat indices (Vörösmarty et al., 2010) and approaches
building on the grey-water footprint concept (Liu et al., 2016; Zhao et al., 2016; van Vliet et al., 2017;
van Vliet et al., 2021). These studies have consistently demonstrated that poor water quality intensifies
water scarcity problems.

While previous studies have assessed future water scarcity from a quantity perspective (Schewe et
al., 2014; Greve et al., 2018; He et al., 2021), these approaches have not included water quality in their
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projections. The preliminary results presented in this Chapter represent the first attempt to quantity
future water scarcity including both quantity and quality aspects.

To this end, the approach developed in van Vliet et al. (2017) and van Vliet et al. (2021) has been
further modified (Appendix D.1). Water scarcity is assessed considering quantity aspects only (WS)
(Eq. D.1) and also including water quality (WSq) (Eq. D.2) for current conditions (2005–2020), and for
the end of the century (2081–2100) under (uncertain) climate and socioeconomic change scenarios.
All input data used is as described in Chapter 5, mostly simulated by PCR-GLOBWB2 and DynQual.
The population exposed to water scarcity issues, as indicated by WS and WSq values exceeding 1, are
quantified for each scenario.

6.2.2 Preliminary results
Water scarcity, as indicated by both (WS) and (WSq), varies drastically across the year (Fig. 6.1).
Inter-annual patterns in water scarcity are influenced by multiple factors: for WS these are reflective
of changes in water demand and the availability of surface and groundwater resources, while changes
in surface water quality are also included in WSq. As such, exacerbation of WS indicates more
frequent and widespread water gaps (i.e. instances where human water demands exceed the
renewable water supply), while increases in WSq indicates that in-stream concentrations are more
commonly exceeding critical water quality thresholds.

With surface water quality issues currently ubiquitous across the globe (Chapters 3 and 4), the
inclusion of water quality exacerbates water scarcity in all world regions. The impact is strongest in
the current hotspots of surface water pollution (Chapters 3 and 4): such as northern India, eastern
China and coastal Latin America. This pattern is reflected in the increase in people exposed to water
scarcity when including water quality, which occurs year-round in the East Asia and Pacific (mean
monthly increase: +24%, minimum monthly increase: +18%, maximum monthly increase: +28%)
and Latin America and Caribbean (mean: +23%, min: +17%, max: +29%) regions, and more
seasonally in southern Asia (mean: +19%, min: +12%, max: +30%) (Fig. 6.1). These regions also
correspond with those where wastewater production is rising at a faster pace than the development of
wastewater collection and treatment infrastructure (Chapter 2).

Figure 6.1 Percentage of the population exposed towater scarcity based onwater quantity aspects only (WS)
and including water quantity and quality (WSq) in the historical reference period (2005–2020), disaggregated
by geographic region. Shaded areas represent the uncertainty as ±1 standard deviation.
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Comparatively, exacerbation of water scarcity due to water quality is more limited in regions where
pollution is less widespread, such as Western Europe (mean: +9%, min: +7%, max: +14%) and North
America (mean: +10%, min: +7%, max: +11%). While trends towards water quality deterioration
since 1980 have been most profound in Sub-Saharan Africa, in-stream concentrations remain below
key thresholds (Chapter 3 and 4). Thus, this region is not (yet) identified as a dominant hotspot of
surface water quality pollution (Chapter 3). This is also reflected in the relatively limited influence
of water quality on current quantifications of water scarcity in the region, with an average increase of
+12% (min: +10%, max: +14%) (Fig. 6.1).

Figure 6.2 Water quality hotspots and their drivers, designated as ‘quantity only’ (i.e. insufficient water
availability, no quality issues), ‘quality only’ (i.e. sufficient water availability, quality issues) and ‘quantity and
quantity’ (i.e. insufficient water availability, further exacerbated by quality issues). Hotspots are displayed for
two months (February and August) averaged over a historical reference period (2005–2020) and at the end of
the century under three combined climate and socioeconomic scenarios (2081–2100).
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However, projected changes in surface water quality under various climate and socioeconomic
changes scenarios suggest Sub-Saharan Africa will increasingly become the dominant hotspot for
surface water pollution (Chapter 5). This is reflected by the spatial patterns of water scarcity (Fig. 6.2)
and the exacerbation in the population exposed to water scarcity issues when including water quality
(Fig. 6.3).

Across all months, the proportion of the population exposed to water scarcity issues (as indicated by
both WS and WSq) in Sub-Saharan Africa by 2081–2100 is substantially greater than in the historical
period under all future scenarios (Fig. 6.1). Thus, water scarcity is driven by both water quantity and
quality issues (Fig. 6.2). High levels of (year-round) exposure in the future, coupled with the rapid
population growth projected for the region, leads to a huge increase in the number of people living in
Sub-Saharan Africa that are exposed to water scarcity issues (Fig. 6.3).

Figure 6.3 Percentage of the population exposed to water scarcity based on water quantity aspects only
(WS) and including water quantity and quality (WSq) at the end of the century under three combined climate
and socioeonomic scenarios, disaggregated by geographic region. Lines display the mean average over the
5 general circulation models (GCMs) considered, while shaded areas represent the uncertainty arising from
variations in GCM simulations as ±1 standard deviation.

Compared to Sub-Saharan Africa, most world regions display stronger inter-annual patterns in
future water scarcity. For example, there are stark differences between spatial patterns in Western
Europe and North America in February and August (Fig. 6.2). Despite widespread improvements to
surface water quality in both regions (Chapter 5), water scarcity increases under all scenarios. This is
predominantly water quantity-driven, and is especially prevalent in the summer months. Conversely,
improvements in surface water quality across the East Asia and Pacific region (Chapter 5), combined
with limited changes to quantity-driven water scarcity, reduce WSq with respect to historical
conditions.
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6.2.3 Next steps
The presented water scarcity framework accounts for aspects related to both water quantity (water
demands vs. renewable supply) and surface water quality (usability of water based on key thresholds
for safe use). In this preliminary study, ‘safe’ water quality thresholds of 2,100 mg l−1, 8 mg l−1 and
1,000 cfu 100ml−1 for TDS, BOD and FC, respectively, are used in the quantification of water
scarcity. As water quality requirements differ by intended use (van Vliet et al., 2017; van Vliet et al.,
2021), this represents a gross simplification. However, including sector-specific concentration
thresholds in global assessments remains challenging due to: 1) high uncertainty as to what
constitutes a ‘safe’ level of pollution per sector; 2) large variations in water quality requirements
within individual sectors (e.g. different crop water quality requirements); and 3) large uncertainties in
the water demands and withdrawals for specific (sub-)sectors, particularly in the future. A simplified
approach is therefore adopted for this preliminary water scarcity assessment, using concentration
thresholds that are consistent with other analyses presented in this thesis (e.g. Chapters 4 and 5).
Future work should aim to advance our understanding of (sub)-sector specific water requirements
from both quantity and quality perspectives, enabling improved inclusion of water quality in global
clean water scarcity assessments.

Secondly, the role of unconventional water resources, which can alleviate water scarcity (van Vliet
et al., 2021), is currently overlooked. This is a common oversight and a weakness of current water
scarcity assessments (Vanham et al., 2018). Wastewater undergoing treatment, when to an
appropriate level, can be directly reused to fulfil sector-specific water demands. Similarly,
desalination can supplement existing (conventional) water supplies by making previously unusable
water resources (e.g. seawater, brackish water) appropriate for fulfilling sectoral demands (Jones et al.,
2019). These technologies already represent important sources of freshwater for human uses, with
95.4 million m3 day−1 produced via desalination (Jones et al., 2019) and 111 million m3 day−1 of
treated wastewater reused (Chapter 2). Future work will aim towards the meaningful inclusion of
these resources in this water scarcity assessment.

Theoretical maximum expansions in treated wastewater reuse to 4.0 billion m3 month−1 and
desalination to 13.6 billion m3 month−1 could significantly reduce water scarcity levels (van Vliet
et al., 2021). However, an assessment of how these technologies will change in the future under
various climatic and socioeconomic scenarios is lacking. Therefore, while future scenarios of water
scarcity presented in this Chapter include the impact of changes in water demands, water availability
(surface and groundwater) and surface water quality under uncertain climate and socioeconomic
change, the influence of changes to the use of unconventional water resources for water scarcity
alleviation is overlooked. Future work will aim to quantify these changes and assess the associated
impact on clean water scarcity quantifications.

6.3 Future directions: opportunities and challenges

The complexity of water quality, the diversity in constituents and uncertainties in impacts make
understanding global water quality dynamics a significant challenge. With no silver bullet available to
solve global water quality problems, these represent a large threat to both humans and the
environment – but one that is often overlooked on account of its imperceptible nature.

Making progress to improve the quality of global surface waters is contingent upon understanding
of the problem and its drivers. In this thesis, a new tool for enhancing our knowledge of global surface
water quality dynamics is presented. The focus of this thesis is on modelling Tw and TDS, BOD and
FC concentrations, primarily in rivers, with results mostly displayed for multi-year periods to be
representative of ‘average’ conditions. However, the presented modelling framework has the potential
to be expanded in multiple ways to help address other aspects of global surface water quality.
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For example, opportunities exist for expanding the model framework to include a greater number
of water quality constituents. With many pollutants having common sources, combined with the
co-simulation of variables (e.g. flow velocities, water depth, water temperature) that can influence
in-stream processes (e.g. decay, growth, sedimentation), the DynQual framework may be particularly
advantageous for modelling other water quality constituents. This could include water quality
constituents such as nutrients, dissolved oxygen and heavy metal concentrations, but also emerging
contaminants such as pharmaceuticals, plastics and industrial chemicals. While the DynQual
framework provides a strong technical basis for this, the major challenge here will be in the
development of methods for pollutant loading estimates and for the adequate representation of
pollutant specific in-stream processes. Challenges may be especially large for the emerging
contaminants due to lack of knowledge on these aspects, combined with the scarce availability of
observation data for model development and evaluation.

Similarly, the analysis presented in this thesis is predominantly on average conditions (e.g.
monthly, annual), both in the past and future. Quantifying the impact of extreme events (floods,
droughts, heatwaves) on surface water quality is, however, also key. With climate change projected to
increase the frequency and magnitude of extreme events (Trenberth et al., 2014), robust
understanding of these responses will become increasingly important in the future. Simulating
hydrology, water temperature and pollutant concentrations with a daily timestep, DynQual has
potential to be used for this purpose. However, the challenges posed by data scarcity in observational
records of water quality are exacerbated further when considering extreme events. Similarly, a lack of
temporally explicit input data for quantifying pollutant loadings and transmission pathways to
surface waters is already a major challenge for large-scale water quality modelling, and one that is
only amplified further under extremes. For example, contaminant pulses (i.e. large changes in
pollutant loadings and concentrations over a short period) can occur under extreme conditions, due
to factors such as sewer overflows, inundation and overload of wastewater treatment plants or the
increased mobilisation and transport of pollutants (Kaushal et al., 2008; Whitehead et al., 2009;
Kaushal et al., 2014; Miller and Hutchins, 2017; van Vliet et al., 2023). Changes to hydrological
conditions (i.e. dilution capacity) under extreme events is also uncertain, particularly for low flows
(Staudinger et al., 2011), yet have a strong influence over in-stream pollutant concentrations.
Improved understanding and representation of these processes in hydrological and water quality
models is therefore a prerequisite for applying large-scale modelling approaches to quantify the
impact of extreme events on in-stream pollutant concentrations.

Therefore, while the modelling framework presented in this study has the potential to address a
variety of aspects, this will not be without challenges. It should also be noted that process-based
models, such as DynQual, are not a panacea for understanding global water quality dynamics. As
advocated by the World Water Quality Alliance, more efforts are required to combine existing
knowledge gained from in situ observations, remote sensing and modelling approaches via a so-called
triangulation approach (WWQA, 2021). Improvements to the measurement and reporting of water
quality are desperately required, particularly in developing countries. In situ data both provides the
ground truth on which water quality assessment and management is based in its own right and is also
irreplaceable for the development and evaluation of water quality models and remote sensing
approaches. Open dissemination of in situ measurement data is therefore essential, yet it is often
prohibited for political or economic reasons (Damania et al., 2019).

In addition to measurement data for model evaluation, the availability of good quality, freely
available and easily accessible global input datasets remains one of the biggest challenges for
large-scale water quality modelling approaches (UNEP, 2016). Aiming for global consistency, the
large-scale water modelling community is strongly reliant on globally available datasets of
socioeconomic drivers (e.g. population, urbanisation, GDP) to represent drivers of pollution.
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However, the translation of these drivers into pollutant loadings introduces substantial uncertainty
(Tang et al., 2019). Access to more detailed data, such as inflow and outflow concentrations at
wastewater treatment plants and industrial facilities, could facilitate better estimates of pollutant
loadings. In addition to the uncertainties in pollutant loading estimates, the high variability of
biogeochemical processes and the propagation of prediction errors from climate and hydrological
models translate into relatively large uncertainties in global water quality model output (van
Griensven and Meixner, 2006; Tang et al., 2019). Better understanding and representation of
processes in these models would therefore have a beneficial knock-on effect on water quality
simulations. There is also high uncertainty with regards to impacts and safe thresholds of water
pollutants. Robust scientific understanding of the dose-response relationships are required to inform
pollution reduction plans, and therefore in for the design and implementation of measures to
safeguard the quality of surface water resources for human use and environmental health. As such, it
is essential to research the problem and impacts of poor surface water quality in tandem.

Successful implementation of measures to improve water quality, whether proactive (i.e. prevent or
mitigate pollution at source) or reactive (i.e. treat or purify effluent before environmental discharge),
is contingent upon having sufficient economic capacity, and societal and political willpower. With
these factors being highly heterogenous across and within countries, effective pollution reduction
schemes will require a mix of approaches. These must be tailored to the local conditions and based on
risk, feasibility and cost-effectiveness. Water pollution can also be driven by far-end consumption.
Globalisation has effectively enabled wealthy countries to outsource some of their pollution overseas
through trade (Wan et al., 2016). Efforts that also transcend national boundaries are therefore
required to address the global challenge of water pollution, which is crucial for fulfilling the UN’s
2030 Agenda for Sustainable Development and to secure a safe and equitable future for all.
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Supplementary information to Chapter 3

Appendix A | Supplementary information to
Chapter 3

Supplementary to: Jones, E.R., Bierkens, M.F.P., Wanders, N., Sutanudjaja, E.H., van Beek, L.P.H., and van Vliet,
M.T.H. (2023) DynQual v1.0: a high-resolution global surface water quality model. Geoscientific Model
Development, 16, pp. 4481–4500, DOI: 10.5194/gmd-16-4481-2023
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A.1 Pollutant loadings

Pollutant loadings can be either be: 1) prescribed by the user directly; or 2) calculated within the
DynQual run by providing simple input data. When loadings are prescribed directly to the model, the
user is only required to provide input files on the total (i.e. combined) pollutant loadings of TDS (in g
day−1), BOD (in g day−1), FC (in 106 cfu day−1) and Tw (in MW). Conversely, when pollutant
loadings are calculated within DynQual, a variety of input data is required to reflect both pollutant
emissions from sectoral activities and the transmission of pollution to the environment (Jones et al.,
2022). Loadings calculated using DynQual are in consistent units across all sectors: g day−1 for TDS
and BOD and 106 cfu day−1 for FC. The subsequent routing of pollutants through the stream network
and the calculation of in-stream concentrations follows the same approach in both configurations.

Figure A.1 Sectoral sources of salinity (TDS), organic (BOD), pathogen (FC) and temperature (Tw) pollution.

The following section describes the approach used and assumptions made for calculating pollutant
loadings dynamically within a DynQual model run. DynQual considers pollutant emissions from five
distinct sectors (domestic, manufacturing, livestock, irrigation and thermoelectric power generation)
and from urban surface runoff (Fig. A.1). The prevalence of wastewater collection and treatment,
combined with their associated pollutant removal efficiencies, are key factors controlling subsequent
delivery of pollution to surface waters (Jones et al., 2022).

The fraction of pollutant loadings removed by wastewater treatment (-) are estimated for the
domestic (Rdom,p,n), manufacturing (Rman,p,n) and extensive livestock (RintLiv,p,n) sectors, and
from urban surface runoff (RUSR,p,n), by multiplying the fraction of each treatment level occurring
in a gridcell by the pollutant removal efficiency associated with that treatment level (Eq. A.1). For
more detailed information about the development and implementation of gridcell-specific
wastewater treatment practices and their inclusion in DynQual, we refer to previous work (Jones
et al., 2021; Jones et al., 2022).
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Rdom,p,n = ftern · rterp + fsecn · rsecp + fprin · rprip + (fbsn · rbsp) + (fodn · (1− sn))

Rman,p,n = ftern · rterp + fsecn · rsecp + fprin · rprip
Rurb,p,n = ftern · rterp + fsecn · rsecp + fprin · rprip

RintLiv,p,n = (fsecn + ftern) · rsecp
(A.1)

Where: f is the fraction of tertiary+ treatment (ftern ), secondary treatment (fsecn ) and primary
treatment (fprin ) within gridcell n, and r is the removal efficiency associated with teriary (rterp ),
secondary (rsecp ) and primary (rprip ) treatment per pollutant p. fbsn and fodn is the fraction of basic
sanitation and open defecation, respectively, within gridcell n. rbsp is the reduction of pollutant p from
basic sanitation collection facilities, and sn is the gridcell-specific surface runoff fraction.

A.1.1 Domestic
Pollutant loadings from the domestic sector (Ldom,p,n) are calculated by multiplying the total
population (Popn) in gridcell n by a regional-specific per capita excretion rate (Edom,p,n) of
pollutant p (TDS and BOD in g capita−1 day−1; FC in cfu capita−1 day−1) (Eq. A.2). Pollutant
loadings are abated based upon gridcell-specific domestic wastewater collection and treatment
practices, represented by Rdom,p,n (-), which depends upon the wastewater pathway(s) in gridcell n
and the pathway-specific removal efficiency of pollutant p (Jones et al., 2021; Jones et al., 2022).

Ldom,p,n = Popn · Edom,p,n · (1−Rdom,p,n) (A.2)

Gridded population data at 5 arc-min and annual temporal resolution was obtained from ISIMIP3a
(Lange and Geiger, 2020). Per capita pollutant loadings are prescribed per water quality constituent
at the regional scale (Table A.1). Per capita excretion rates of BOD and FC vary at the regional level
due to differences in diet, climate and health status (Williams et al., 2012; UNEP, 2016). Conversely,
due to a lack of more detailed data, an average global value for per capita excretion of TDS was used.
Pollutant loadings per capita are based on extensive literature research conducted for previous global
water quality modelling studies (UNEP, 2016; van Vliet et al., 2021) and are assumed to remain constant
throughout the study period.
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Table A.1 Per capita excretion rates of total dissolved solids (TDS), biological oxygen demand (BOD) and fecal
coliform (FC) loadings per geographic region.

TDS1

(g day-1 capita-1)
BOD2

(g day-1 capita-1)
FC3

(cfu day-1 capita-1)
North America 100 65 1.3 ∙ 1010

Latin America & Caribbean 100 56 1.4 ∙ 1010

Western Europe 100 60 1.3 ∙ 1010

Middle East & North Africa 100 45 1.8 ∙ 1010

Sub-Saharan Africa 100 37 4.7 ∙ 109

Southern Asia 100 40 1.9 ∙ 1010

Eastern Europe & Central Asia 100 50 1.6 ∙ 1010

East Asia & Pacific 100 50 1.6 ∙ 1010

Geographic Region
Domestic

1as per UNEP (2016) & van Vliet et al., (2021); 2as per UNEP (2016) & Williams et al., (2012);
3as per UNEP (2016) & Reder et al., (2015)

A.1.2 Manufacturing
Pollutant loadings from the manufacturing sector (Lman,p,n) are calculated by multiplying the
manufacturing wastewater flows (return flows) in gridcell n (WWman,n in m3 day−1) by a mean
manufacturing effluent concentration (Cman,p,n) for pollutant p (TDS and BOD in mg l−1; FC in cfu
100ml−1) (Eq. A.3). Pollutant loadings are abated based upon gridcell-specific manufacturing
wastewater collection and treatment practices, represented by Rman,p,n (-) which depends upon the
wastewater pathway(s) in gridcell n and the pathway-specific removal efficiency of pollutant p (Jones
et al., 2021; Jones et al., 2022).

Lman,p,n = WWman,n · Cman,p,n · (1−Rman,p,n) (A.3)

As PCR-GLOBWB2 does not distinguish explicitly between the manufacturing and thermoelectric
power sectors (lumped together as the ‘industrial’ sector), we estimate the percentage of total
industrial flows that originate specifically from manufacturing activities and apply this to
PCR-GLOBWB2 simulated industrial return flows at the country level. To make this distinction, we
subtract power return flows derived from an external source (Lohrmann et al., 2019) from
PCR-GLOBWB2 industrial return flows, to provide an estimate of manufacturing return flows. We
further cross-checked these estimated manufacturing return flows against a spatially-explicit
municipal wastewater dataset (Jones et al., 2021).

Lacking more detailed information regarding both the specific manufacturing processes and the
associated effluent quality, globally consistent effluent concentrations are applied for all manufacturing
return flows worldwide (Table A.2), consistent with previous work (UNEP, 2016; van Vliet et al., 2021).
Mean effluent concentrations are derived from literature review and are assumed to remain constant
throughout the study period.
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Table A.2 Effluent concentrations of total dissolved solids (TDS), biological oxygen demand (BOD) and fecal
coliform (FC) from the manufacturing sector.

TDS (mg l-1) BOD (mg l-1) FC (cfu 100ml-1)
Global 3000 400 3.55 ∙ 106

Manufacturing1

as per UNEP (2016) & van Vliet et al., (2021)

A.1.3 Urban surface runoff
Pollutant loadings from urban surface runoff (LUSR,p,n) are calculated by multiplying urban surface
return flows (RFUSR,n in m3 day−1) in gridcell n by a mean urban runoff effluent concentration
(CUSR,p,n) for pollutant p (TDS and BOD in mg l−1; FC in cfu 100ml−1) (Eq. A.4). Pollutant loadings
are abated based upon gridcell-specific wastewater collection and treatment practices, represented by
RUSR,p,n (-) which depends upon the wastewater pathway(s) in gridcell n and the pathway-specific
removal efficiency of pollutant p (Jones et al., 2021; Jones et al., 2022).

LUSR,p,n = RFUSR,n · CUSR,p,n · (1−RUSR,p,n) (A.4)

Urban surface runoff flows are simulated within PCR-GLOBWB2 (Sutanudjaja et al., 2018),
calculated by multiplying the fraction of the gridcell that is urban by the simulated surface runoff.
Mean urban surface runoff pollutant concentrations are taken from existing work (UNEP, 2016),
based on extensive literature review. TDS and BOD concentrations vary at the regional level whereas,
lacking detailed data, FC is assumed to be constant across all regions (Table A.3). Mean urban surface
runoff concentrations are assumed to remain constant throughout the study period.

Table A.3 Urban surface runoff total dissolved solids (TDS), biological oxygen demand (BOD) and fecal
coliform (FC) mean concentrations per geographic region.

TDS (mg l-1) BOD (mg l-1) FC (cfu 100ml-1)
North America 205 12 1 ∙ 106

Latin America & Caribbean 205 12 1 ∙ 106

Western Europe 205 12 1 ∙ 106

Middle East & North Africa 212 19 1 ∙ 106

Sub-Saharan Africa 178 62 1 ∙ 106

Southern Asia 246 105 1 ∙ 106

Eastern Europe & Central Asia 246 19 1 ∙ 106

East Asia & Pacific 246 105 1 ∙ 106

Geographic Region Urban surface runoff1

1as per UNEP (2016) 
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A.1.4 Livestock
For calculating pollutant loadings from the livestock sector, the sector is sub-divided into intensive and
extensive systems based on livestock population density. For defining intensive livestock systems, a
minimum threshold density of 25 livestock units per km2 was set with one livestock unit equivalent to
∼250kg (1 bovine) (Wen et al., 2017; Vigiak et al., 2019). Average animal mass equivalent coefficients
were taken from literature (Robinson et al., 2011; Wen et al., 2017) to convert this threshold density into
a livestock-type specific threshold density per km2 (Table A.3) (Wen et al., 2017; Vigiak et al., 2019).
Gridcells exceeding this threshold density (per livestock type) were designated as intensive livestock
systems, whereas gridcells below this threshold were designated as extensive livestock systems.

Table A.4 Threshold density for designation of livestock activities as intensive systems, per livestock type.

Livestock type
Animal mass equivalent 

coefficient1
Threshold density 

(stock km-2)
Buffalo 1 25
Chicken 0.01 2500
Cow 1 25
Duck 0.01 2500
Goat 0.1 250
Horse 1 25
Pig 0.3 83
Sheep 0.1 250
1as per Robinson et al., (2012) & Wen et al., (2017)

The distinction between intensive and extensive livestock systems is made to account for the
differences in the paths by which livestock waste (manure) enters the stream network, namely
whether there is transportation by surface runoff (for extensive systems) or whether there is collection
(and potentially subsequent treatment) of livestock waste (for intensive systems). Abation of collected
livestock waste is all assumed to be at the same level as secondary treatment in line with Wen et al.
(2017) and occurs only in gridcells where municipal wastewater treatment is also occurring. The
waste is subsequently assumed to be spread to land as manure and transported to surface water via
surface runoff. This approach for calculating pollutant loadings from the livestock sector is line with
previous work (Wen et al., 2017; Vigiak et al., 2019).
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Pollutant loadings from the livestock sector are calculated as per Eq. A.5, in line with the previous
approaches for calculating pollutant loadings from intensive (Wen et al., 2017; Vigiak et al., 2019) and
extensive (van Vliet et al., 2021) livestock systems.

LintLiv,p,n = Σy(LivPopy,n · Eliv,y,p,n) · (1−RintLiv,p,n) · sn
LextLiv,p,n = Σy(LivPopy,n · Eliv,y,p,n) · sn

(A.5)

Where LintLiv,p,n and LextLiv,p,n represent the loadings of pollutant p in gridcell n from the
intensive and extensive livestock sectors, respectively. LivPopy,n is the total livestock population in
gridcell n per livestock type y, with 8 separate livestock types considered (buffalo, chicken, cow, duck,
goat, horse, pig, sheep). Eliv,y,p,n is the per stock excretion rate of pollutant p (BOD in g stock−1

day−1; FC in cfu stock−1 day−1) of livestock type y and gridcell n. Sn is the fraction surface runoff
in gridcell n and RintLiv,p,n is the removal fraction of pollutant p due to livestock waste
management practices in gridcell n (Jones et al., 2021; Jones et al., 2022).

Gridded livestock numbers at 5 arc-min are derived at the annual timescale from a global dataset for
the reference year of 2010 (Gilbert et al., 2018). Thus, we do not account for intra-annual variations in
livestock numbers. For the quantification of past gridded livestock numbers, a region-specific (annual)
constant percentage change in the number of animals per livestock type is applied to all gridcells based
on data from the FAO (Thomson, 2003) (Table A.5).

Table A.5 Annual growth in livestock type (population number) between 1999–2030 (%), applied to gridded
livestock populations for 1980–2019 (Thomson 2003).

Cattle & 
Buffalo

Sheeps & 
Goats Pigs Horses Chickens & 

Ducks
North America -0.1 0.2 0.1 0.0 0.6
Latin America & Caribbean 1.0 0.6 1.1 0.0 1.9
Western Europe -0.1 0.2 0.1 0.0 0.6
Middle East & North Africa 1.5 1.0 0.0 0.0 2.1
Sub-Saharan Africa 1.1 1.2 1.4 0.0 2.2
Southern Asia 0.3 1.1 1.0 0.0 3.6
Eastern Europe & Central Asia 1.2 1.2 0.8 0.0 1.5
East Asia & Pacific 1.2 1.2 0.8 0.0 1.5

Geographic Region
Livestock type (% annual change)

Excretion rates of BOD (Table A.6) and FC (Table A.7) per livestock type y and per region were
determined through literature study, as per previous global water quality modelling studies (UNEP,
2016; van Vliet et al., 2021). Excretion rates of pollutants per livestock type is assumed constant
throughout the study period.
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Table A.6 Biological oxygen demand (BOD) loadings per animal per livestock type and geographic region.

Buffalo Chicken Cow Duck Goat Horse Pig Sheep
North America 400 8.3 400 8.3 50 300 233 50
Latin America & Caribbean 280 8.3 280 8.3 50 300 233 35
Western Europe 400 8.3 400 8.3 50 300 233 50
Middle East & North Africa 280 8.3 280 8.3 50 300 186.4 35
Sub-Saharan Africa 240 8.3 240 8.3 50 300 186.4 35
Southern Asia 200 8.3 200 8.3 50 300 233 35
Eastern Europe & Central Asia 240 8.3 240 8.3 50 300 233 35
East Asia & Pacific 280 8.3 280 8.3 50 300 233 35

Geographic Region Biological oxygen demand (g day-1 stock-1)1

1as per Robinson et al., (2011), Wen et al., (2017), Vigiak et al., (2019) & van Vliet et al., (2021).

Table A.7 Fecal coliform (FC) loadings per animal per livestock type and geographic region.

Buffalo Chicken Cow Duck Goat Horse Pig Sheep
North America 1.01∙1011 1.36∙108 1.01∙1011 2.43∙109 1.20∙109 1.40∙109 1.08∙1010 1.12∙109

Latin America & Caribbean 6.06∙1010 1.36∙108 6.06∙1010 2.43∙109 1.20∙109 1.40∙109 8.64∙109 7.84∙108

Western Europe 5.05∙1010 1.36∙108 5.05∙1010 2.43∙109 1.20∙109 1.40∙109 1.08∙1010 7.84∙108

Middle East & North Africa 1.01∙1011 1.36∙108 1.01∙1011 2.43∙109 1.20∙109 1.40∙109 1.08∙1010 1.12∙109

Sub-Saharan Africa 7.07∙1010 1.36∙108 7.07∙1010 2.43∙109 1.20∙109 1.40∙109 8.64∙109 7.84∙108

Southern Asia 7.07∙1010 1.36∙108 7.07∙1010 2.43∙109 1.20∙109 1.40∙109 1.08∙1010 7.84∙108

Eastern Europe & Central Asia 6.06∙1010 1.36∙108 6.06∙1010 2.43∙109 1.20∙109 1.40∙109 1.08∙1010 7.84∙108

East Asia & Pacific 7.07∙1010 1.36∙108 7.07∙1010 2.43∙109 1.20∙109 1.40∙109 1.08∙1010 7.84∙108

Geographic Region Fecal coliform (cfu stock-1 day-1)1

1as per Weaver et al., (2005) & Wilcock et al., (2006)

A.1.5 Irrigation
Lirr,p,n = RFirr,n · Cirr,p,n (A.6)

The only pollutant considered from the irrigation sector in DynQual is TDS. To calculate TDS from
the irrigation sector, the return flows from the irrigation sector (RFirr,n) in gridcell n is multiplied
by a mean irrigation drainage concentration Cirr,p,n for pollutant p, which for TDS is in mg l−1

(Eq. A.6). As irrigation runoff is rarely collected or treated (WWAP, 2017), no abation due to
wastewater management practices occurs.

Irrigation return flows are simulated by PCR-GLOBWB2, under the assumption that withdrawn
water that is not consumed (via plant transpiration and open water or soil evaporation) is lost via
percolation and contributes to groundwater recharge (Sutanudjaja et al., 2018). Mean irrigation
drainage concentrations are derived from the electrical conductivity (dS m−1) averaged over the
topsoil (0–30cm) and subsoil (30–100cm) at 0.50 resolution from the ISRIC-WISE global soil
database (Batjes, 2005), as per previous work (van Vliet et al., 2021). Electrical conductivity (EC) is
converted to TDS using a TDS/EC ratio for freshwater of 0.7 (Walton, 1989). Mean irrigation
drainage concentration is assumed to be constant throughout the study period.
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A.1.6 Power
The only pollutant considered from the thermoelectric power sector is water temperature (Tw).
Thermal pollution (heat dumps) from the power sector (Eq. A.7) is calculated based on a
spatially-explicit powerplant database containing 13,506 powerplants with detailed information on
fuel type and cooling type, representing an estimated 87% of the global thermoelectric capacity in
2015 (Lohrmann et al., 2019).

Lpow,Tw,n = ρw · Cp ·RFpow,n ·∆Tpowrf (A.7)

Where Lpow,Tw,n is the heat dump from thermoelectric powerplants (W) in gridcell n, Cp is the
specific heat capacity of water (4,190 J kg−1 K−1), ρw is the density of fresh water (1,000 kg m−3),
RFpow,n is the return flows of cooling water (m3 s−1) in gridcell n and ∆Tpowrf is the difference in
water temperature between the return flows and ambient river water (K).

Water withdrawals and consumption per powerplant are from a spatially explicit powerplant
dataset (Lohrmann et al., 2019). These estimates are quantified as a function of plant capacity, load
hours and water use intensity, which depends primarily on fuel type and cooling system. The dataset
considers five types of cooling systems (wet cooling towers, dry cooling systems, inlet cooling
systems, once through cooling and recirculating cooling-pond systems) and four fuel types (nuclear,
coal, gas and oil). Power return flows RFpow,n are subsequently calculated by subtracting water
consumption from the water withdrawal. We aggregated these power return flows at the gridcell level
(5 arc-min) and delineate them in time based upon the construction year of the powerplant. The
construction year is derived by cross-referencing powerplant coordinates with information from
various other sources (http://GlobalEnergyObservatory.org/;
https://datasets.wri.org/dataset/globalpowerplantdatabase).

A range of values for ∆Tpowrf were found in the literature, varying from between 3 K based upon
maximum permissible limits for powerplants in the US as per the Clean Water Act (van Vliet et al.,
2012b) to 10 K from once-through systems in the USA in summer months between 2001–2005
(Madden et al., 2013). We selected an intermediate value of 7 K for ∆Tpowrf , as this falls within the
range of reported values in the literature and matches well with more recent global thermal emission
rates of ∼480 GW (Raptis et al., 2016). Results of a sensitivity analysis also suggests that values for
∆Tpowrf of between 3–7 K have relatively moderate impacts on simulated water temperature in
thermally polluted basins (van Vliet et al., 2012b).

A.1.7 Combined sectoral loadings
Sectoral loadings of each water quality constituent per gridcell n are converted into consistent units
(MW for Tw; g day−1 for TDS and BOD; 106 cfu day−1 for FC) and aggregated across the contributing
sectors, with LTDS,n, LBOD,n, LFC,n, LTw,n representing the combined local TDS, BOD, FC and
Tw loads in gridcell n (Eq. A.8).

LTDS,n = Ldom,TDS,n + Lman,TDS,n + LUSR,TDS,n + Lirr,TDS,n

LBOD,n = Ldom,BOD,n + Lman,BOD,n + LUSR,BOD,n + LintLiv,BOD,n + LextLiv,BOD,n

LFC,n = Ldom,FC,n + Lman,FC,n + LUSR,FC,n + LintLiv,FC,n + LextLiv,FC,n

LTw,n = Lpow,Tw,n

(A.8)
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A.2 Implementation of water quality equations

DynQual uses a numerical scheme (time-explicit fine differences) to simulate the routing of both water
and pollutants through the surface water network (based on a local drain direction map), including
in-stream processes, with a sub-daily timestep.

The length of the time interval (∆tn in seconds) is estimated with respect to both channel storage
and discharge (Eq. A.9). This ensures that the length of the time interval is small enough to ensure that
flow from gridcell n only flows into the immediately downstream gridcell n + 1, and not further (i.e.
∆tn > Tn, where Tn represents the residence time of gridcell n).

∆tn =
hn ·An · (wn·ln

An
)

Qn
(A.9)

Where hn is the water height (m), An is the gridcell area (m2), wn is the channel width (m), ln is
the channel length (m) and Qn is the discharge (m3 day−1) simulated at the sub-daily timestep using
the simplified kinematic wave routing, all in gridcell n.

While ∆tn is initially initially determined per individual gridcell, the shortest calculated interval
is used consistently for all gridcells within the simulation extent (∆t). We also set a maximum time-
interval (∆t) of 720s (i.e. to ensure that the routing procedure happens at least once every 12 minutes).
While we could further increase the numerical accuracy of our simulations by introducing shorter time
intervals, this also increases computational times, and thus a balance must be struck (Loucks and van
Beek, 2017). More information on the implementation of water quality equations within DynQual is
available in the open-access model code (https://github.com/UU-Hydro/DYNQUAL).
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A.3 Model validation

A.3.1 Water quality observations
Tw and BOD data was downloaded from the Global River Water Quality Archive (GRQA) (Virro
et al., 2021), which aggregates data from a variety of datasets including GEMStat (Global Freshwater
Quality Database) (UNEP, 2019), GLORICH (GLObal River CHemistry) (Hartmann et al., 2014) and
WQP (Water Quality Portal) (Read et al., 2017). Electrical conductivity (EC) data was obtained from
a global surface water database (Thorslund and van Vliet, 2020), which we additionally supplemented
with GEMStat data (UNEP, 2019), and converted to TDS using a conversion factor of 0.7 (Walton,
1989). FC data was obtained from GEMStat (UNEP, 2019), additionally supplemented with data
from the National Water Information System (NWIS) from the United States Geological Survey
(USGS). The total number of water quality modelling stations and associated observations collated for
DynQual validation is presented in Table A.8. The number of stations with >30 and >90
measurements across the time period 1980–2019 and the associated number of observations are also
presented (Table A.8).

Table A.8 Number of water quality monitoring stations and measurements used for DynQual model
validation.

N Stations N Obs N Stations N Obs N Stations N Obs
Tw 22,990 841,781 7,312 729,813 2,194 474,567
TDS 31,509 6,809,700 26,615 6,722,775 10,494 5,921,049
BOD 12,604 312,019 2,735 233,169 636 133,106
FC 7,917 246,652 2,263 213,705 863 136,961

Constituent All stations Stations > 30 obs Stations > 90 obs

Both the number of water quality monitoring stations and the length of the observation record are
highly unequally distributed across space (Fig. A.2). Spatial patterns are relatively consistent across
all four water quality constituents. North America is by far the most data-rich world region, with
45%, 76%, 62% and 92% of all monitoring stations for Tw, TDS, BOD and FC located in this region,
respectively, accounting for 39%, 32%, 50% and 83% of the total number of observations, respectively.
Observations made across Western Europe account for 28%, 14% and 4% of Tw, BOD and FC of the
total data availability, respectively, but just 3% of the TDS observations. Conversely, 58% of total TDS
observations are from the East Asia and Pacific region, but just 14%, 7% and 3% of the Tw, BOD and
FC observations, respectively. However strong spatial biases within individual regions must also be
considered, particularly for TDS observations in East Asia and Pacific where >99% of these observations
are from Australia. The Latin America and Caribbean region also accounts for a small but significant
share of total Tw, TDS, BOD and FC observations, at 13%, 1%, 15% and 3% of total observations,
respectively.

Data is extremely scarce across other world regions, especially when also considering the length of
observation records (Fig. A.2). While there are some localised pockets of high data availability in
different regions (e.g. TDS measurements in South Africa), publicly accessible observational data
records are mostly non-existent. For example, the number of stations in Sub-Saharan Africa with >30
observations of Tw, BOD and FC is just 10, 1 and 1, respectively. When considering stations with >90
observations, these numbers drop to 6, 1 and 0. Similar patterns in data availability are observed for
the Middle East and North Africa and Southern Asia regions.
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The spatial biases in the observed data, combined with data availability issues in general (especially
for BOD and FC), provide acute challenges for the evaluation of global water quality models across
different world regions (Appendix A.3.2).

Figure A.2 Number of surface water quality monitoring stations per world region, disaggregated by the total
number of observations made at each site from 1980–2019. Black dots on the map display the locations of
water quality monitoring stations with > 90 observations of any water quality constituent. Please note that
different numbers are used on the vertical axis for bar charts displaying the number of observation stations for
different world regions.
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A.3.2 Model evaluation
Concentration classes
As per Jones et al. (2022), we evaluate model performance for TDS, BOD and FC with respect to
pollutant classes linked to key sectoral water quality thresholds (Table A.9), which are derived from
extensive literature research (UNEP, 2016). TDS thresholds are based upon irrigation water quality
standards (Fipps, 2003; Zaman et al., 2018), with < 525 mg l−1 designated as ‘good’, 525–2,100 mg l−1

as ‘permissible to doubtful’ and > 2,100 mg l−1 as ‘unsuitable’. BOD thresholds are linked to
environmental standards, with < 4 mg l−1 designating low pollution (‘sufficient oxygen and high
species diversity’), 4–8 mg l−1 designating moderate pollution (‘suspended discharges occur but have
no major effect on biota’) and > 8 mg l−1 designating high pollution (‘depletion of oxygen can result
in fish kills’) (UNEP, 2016). FC thresholds are based upon human health concerns related to direct
contact, with high pollution designated as >1,000 cfu 100ml−1 (‘unsuitable for direct human
contact’), and < 200 cfu 100ml−1 representing no risk to human health (UNEP, 2016).

Table A.9 Total dissolved solids (TDS), biological oxygen demand (BOD) and fecal coliform (FC) concentration
thresholds denoting the pollution status of a freshwater body as ‘low’, ‘moderate’ or ‘high’.

Pollutant 
Status

TDS
(mg l-1)

BOD
(mg l-1)

FC
(cfu 100ml-1)

Low < 525 < 4 < 200
Medium 525 – 2,100 4 – 8 200 – 1,000
High > 2,100 > 8 > 1,000

Statistical evaluationmetrics
For Tw, model performance is evaluated statistically using the Kling-Gupta efficiency (KGE) coefficient
(Eq. A.10) (Gupta et al., 2009).

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (A.10)

Where r is the linear correlation between observations and simulations, is a measure of the flow
variability error, and a bias term. KGE values of 1 indicate perfect agreement between observations
and simulations, while KGE values exceeding −0.4 indicate that a model improved upon a mean
benchmark (Knoben et al., 2019).

Spatial patterns in KGE for water temperature simulations by DynQual are displayed in Fig. A.3 and
are described in the manuscript.

Time-series and average annual cycles
Supplementing the time-series and average annual cycles displayed in the manuscript (Fig. 3.5),
results from additional stations are presented for Tw (Fig. A.5), TDS (Fig. A.6), BOD (Fig. A.7) and
FC (Fig. A.8).

For TDS, BOD and FC, model performance is evaluated statistically using the root mean square error
normalised by the mean (nRMSE) (Eq. A.11).

nRMSE =

√∑N
i=1(Simi−Obsi)2

n

Obs
(A.11)

Patterns in nRMSE for TDS, BOD and FC simulations are displayed in Fig. A.4 and are described in
the manuscript.
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Figure A.4 Spatial validation of a) total dissolved solids (TDS); b) biological oxygen demand; and c) fecal
coliform (FC) observations versus simulations using the normalised root mean square error (nRMSE) at for
observation stations with > 30 observations over 1980–2019.
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Figure A.5 Time-series (left) and average annual cycles (right) of observed versus simulated water
temperature (◦C) at four selected monitoring stations. In the time-series plots, observations are indicated by
blue crosses, daily simulations by grey lines and 30 day running averages by red lines. In the average annual
cycles plots, blue and red lines indicated the median observed and simulated water temperature, respectively,
while the shading represents the range in water temperatures as indicated by the 10th and 90th percentiles.
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Figure A.6 Time-series (left) and average annual cycles (right) of observed versus simulated total dissolved
solids (TDS) concentrations (mg l−1) at four selectedmonitoring stations. In the time-series plots, observations
are indicated by blue crosses, daily simulations by grey lines and 30 day running averages by red lines. In the
average annual cycles plots, blue and red lines indicated the median observed and simulated concentrations,
respectively, while the shading represents the range in concentrations as indicated by the 10th and 90th
percentiles.
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Figure A.7 Time-series (left) and average annual cycles (right) of observed versus simulated biological
oxygen demand (BOD) concentrations (mg l−1) at four selected monitoring stations. In the time-series plots,
observations are indicated by blue crosses, daily simulations by grey lines and 30 day running averages by
red lines. In the average annual cycles plots, blue and red lines indicated the median observed and simulated
concentrations, respectively, while the shading represents the range in concentrations as indicated by the 10th
and 90th percentiles.
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Figure A.8 Time-series (left) and average annual cycles (right) of observed versus simulated fecal coliform
(FC) concentrations (cfu 100ml−1) at four selected monitoring stations. In the time-series plots, observations
are indicated by blue crosses, daily simulations by grey lines and 30 day running averages by red lines. In the
average annual cycles plots, blue and red lines indicated the median observed and simulated concentrations,
respectively, while the shading represents the range in concentrations as indicated by the 10th and 90th
percentiles.
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A.3.3 Examples of issues in observational records
To evaluate the performance of DynQual, data from ∼57,000 individual water quality monitoring
stations was collated from various data sources (Appendix A.3.1). While this is beneficial for having a
greater number of observations, this procedure also introduces additional challenges for model
evaluation. We illustrate some examples of issues within the observational records themselves in
Fig. A.9, including a) artefacts in data records; b) issues related to detection limits or reporting
accuracies; and c) large variability in the observational records.

Figure A.9 Examples of challenges associated with observation data when evaluating global surface water
quality models: a) artefacts in the data; b) detection limits or reporting accuracy; c) large variability in the
observed record.
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Supplementary information to Chapter 4

Appendix B | Supplementary information to
Chapter 4

Supplementary to: Jones, E.R., Bierkens, M.F.P., Wanders, N., Sutanudjaja, E.H., van Beek, L.P.H. & van Vliet, M.T.H.
(2022) Current wastewater treatment targets are insufficient to protect surface water quality. Communications Earth
& Environment, 3(1), pp. 1–8, DOI: 10.1038/s43247-022-00554-y .
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B.1 Pollutant loading calculations

We have developed a new water quality model, named DynQual, to simulate surface water temperature
(Tw), salinity (total dissolved solids; TDS), organic pollution (biochemical oxygen demand; BOD) and
pathogen pollution (fecal coliform; FC). These water quality constituents are selected because they are
key in constraining different sector water uses and ecosystem health (Dumont et al., 2012; Damania et
al., 2019), and most of these water quality constituents are also part of SDG indicator 6.3.2 (‘Proportion
of bodies of water with good ambient water quality’).

Sector specific pollutants loadings of Tw, TDS, BOD and FC are calculated at the monthly timestep
for the years 1980–2030. Historical socioeconomic data (e.g. population, GDP) (Jones and O’Neill,
2016) and hydrological data from the PCR-GLOBWB2 hydrology and water resources model
(Sutanudjaja et al., 2018) are used as basis for pollutant loading calculations. W5E5 v2.0 forcing data
is used for the historical period from 1980–2015 (Cucchi et al., 2020), whereas data from 2016–2030
are based on future projections associated with RCP 7.0 and SSP 3 (Fujimori et al., 2017; Lange et al.,
2021), representing an intermediate-high emissions and development scenario. We simulate water
quantity and quality using forcing from the five GCMs included in ISIMIP3b (Lange et al., 2021),
namely GFDL-ESM4, IPSL-CM6A- LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL, which is
bias corrected using W5E5 v2.0 as the observational reference dataset (Cucchi et al., 2020; Lange
et al., 2021). It should also be noted that there is low variability in both greenhouse gas concentrations
and socioeconomic drivers (e.g. population, GDP) associated with the different RCPs and SSPs up
until 2030, with significant deviations occurring mainly beyond our chosen study period. An
overview of the sectoral pollutant loadings per water quality constituent is provided in Fig. B.1.

The overarching approaches for calculating sector-specific pollutant loadings for Tw (van Vliet
et al., 2012b; van Vliet et al., 2021), TDS (Williams et al., 2012; UNEP, 2016; van Vliet et al., 2021),
BOD (Williams et al., 2012; UNEP, 2016; Wen et al., 2017; Vigiak et al., 2019; van Vliet et al., 2021)
and FC (Reder et al., 2015; UNEP, 2016) loadings closely follow previous work. Loadings from the
domestic sector are calculated by multiplying the gridded population numbers (Jones and O’Neill,
2016) with a (regional-specific) per capita excretion rate derived from previous work (UNEP, 2016;
van Vliet et al., 2021). Pollutant loadings from the manufacturing sector are calculated by multiplying
gridded manufacturing wastewater flows with a mean manufacturing effluent concentration derived
from previous work (UNEP, 2016; van Vliet et al., 2021). As PCR-GLOBWB2 does not simulate
manufacturing return flows directly, and rather ‘industrial’ flows (which combines the manufacturing
and power sectors), we subtract power return flows, derived from an external source (Lohrmann
et al., 2019), as an estimate of manufacturing return flows.

Pollutant loadings from urban surface runoff are calculated by multiplying gridcell-specific urban
surface return flows, as simulated by PCR-GLOBWB2 on 5x5 arcminutes, with a mean urban runoff
effluent concentration, derived from previous studies (UNEP, 2016). Following Wen et al. (2017), we
sub-divide the livestock sector into ‘intensive’ and ‘extensive’ systems based on livestock density to
account for differences in the paths by which livestock waste enters the stream network. A minimum
threshold density of 25 livestock units per km2 was set with one livestock unit equivalent to ∼250kg
(1 bovine) with average animal mass equivalent coefficients from literature (Robinson et al., 2011;
Wen et al., 2017; Vigiak et al., 2019). Gridcells exceeding this threshold density (per livestock type)
were designated as intensive livestock systems, whereas gridcells below this threshold were designated
as extensive livestock systems. Gridded livestock numbers for buffalo, chickens, cows, ducks, goats,
horses, pigs and sheep are obtained from a 5 arc-min global dataset for the reference year of 2010
(Gilbert et al., 2018), with a region-specific constant percentage change in the number of animals per
livestock type applied to gridcells based on data from the FAO (Bruinsma, 2003). Livestock numbers
are multiplied by excretion rates per livestock type and per region, obtained from previous work
(UNEP, 2016; van Vliet et al., 2021). To calculate TDS from the irrigation sector, return flows from
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Figure B.1 Sources of salinity (TDS), organic (BOD), pathogen (FC) and temperature (Tw) pollution by sector
and including wastewater management pathways.

the irrigation sector, calculated by PCR-GLOBWB2, were multiplied by a mean irrigation drainage
concentration (TDS in mg l−1). The mean irrigation drainage concentration is derived from the
electrical conductivity (dS m−1) averaged over the topsoil (0–30cm) and subsoil (30–100cm) at
0.5x0.5 degree spatial resolution from the ISRIC-65 WISE global soil database (Batjes, 2005), as per
previous work (van Vliet et al., 2021). Lastly, thermal pollution (heat dumps) from the thermoelectric
power sector were calculated based on a spatially-explicit powerplant database with detailed
information on fuel and cooling system type (Lohrmann et al., 2019). Return flows from powerplants,
calculated by subtracting water consumption from water withdrawal, are multiplied by the specific
heat capacity of water (4,190 J kg−1 K−1), the density of freshwater (1,000 kg m−3) and the
difference in water temperature between return flows and ambient river water (assumed to be 7 K) to
obtain spatially-explicit estimates of thermal pollution (van Vliet et al., 2012b; van Vliet et al., 2021).

The path by which contaminated wastewater re-enters the environment can have a large influence
on the eventual pollutant loading to the stream, especially where systems of wastewater collection and
treatment exist. Pollutant loadings from the domestic, manufacturing and intensive livestock sectors,
as well as from urban surface runoff, are abated based on gridcell-specific wastewater collection and
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treatment practices. This is implemented per sector by multiplying by the complement of the removal
ratio, the calculations of which are detailed in Section B.4 (Eqs. B.1–B.5). As irrigation runoff is rarely
collected or treated, no abatement due to wastewater management practices occurs (WWAP, 2017).
Similarly, no abatement in temperature loadings from the thermoelectric power sector are considered
due to wastewater management practices.

Thermoelectric power generation is the only sectoral activity that is considered as a source of
temperature loadings and we therefore display the gridded heat dumps from thermoelectric
powerplants for the year 2015 in Fig. B.2. For other pollutants, gridded (5 arc-min) pollutant loadings
of each water quality constituent are aggregated over the contributing sectors to give a total pollutant
load per gridcell. The spatial distribution of combined pollutant loadings and the sector-specific
loadings per geographical region, averaged for the year 2015, are displayed for salinity pollution as
indicated by TDS (Fig. B.3), organic pollution as indicated by BOD (Fig. B.4) and pathogen pollution
as indicated by FC (Fig. B.5).

Figure B.2 Gridded heat dumps from thermoelectric powerplants (MW) in 2015.

The geographic locations of temperature pollution (Fig. B.2) match the point locations of
thermoelectric powerplants (Lohrmann et al., 2019), which are located across much of the developed
world, particularly in North America, Western Europe and Eastern China. Temperature loadings
from individual powerplants depend upon factors including powerplant size (i.e. volume of return
flows), cooling system technology and fuel type. These factors differ both within and across world
regions, particularly related to the year that the powerplant was commissioned. Generally,
thermoelectric powerplants are less prevalent across Sub-Saharan Africa, whereby energy demands
are lower and mostly fulfilled by hydro-electric power, and unpopulated continental areas such as
Australian Outback and the Tibetan Plateau.
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Gridded TDS loadings (in 103 kg day−1) are displayed in Fig. B.3a. Across most world regions,
TDS loadings are dominated by the irrigation (e.g. Southern Asia, Middle East and North Africa) and
manufacturing (e.g. Western Europe, North America) sectors (Fig. B.3b). The location of loadings
within countries and regions strongly reflects these activities – with the heavily irrigated areas of
Northern India and the large cities of North America and Europe clearly visible as salinity hotspots. A
combination of both irrigation and manufacturing activities contribute to the high TDS loadings seen
across China, thus high TDS loadings are more ubiquitous across the country. With the exception of
the major cities of South America and Africa, and the lower Nile, TDS loadings across these regions
are relatively low.

Figure B.3 a) Average TDS loadings averaged for 2015 from all contributing sectors at 5 arc-min spatial
resolution; and b) sector-specific contributions aggregated per region.
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Spatial patterns in BOD loadings (Fig. B.4a) are closely related to of the distribution of urban and
livestock activities, but also to wastewater treatment rates (Fig. B.12), with dominant sectoral sources
varying slightly across different regions (Fig. B.4b). Generally, the proportional contribution of the
domestic sector is highest in regions with low wastewater treatment rates (e.g. Southern Asia, Sub-
Saharan Africa). The manufacturing sector dominates BOD loadings in North America, despite high
wastewater treatment rates. In most world regions, extensive livestock systems contribute a significant
proportion of BOD loadings – however it should be noted these are typically spread out over large
geographical extents.

Figure B.4 a) Average BOD loadings averaged for 2015 from all contributing sectors at 5 arc-min spatial
resolution; and b) sector-specific contributions aggregated per region.

134 | APPENDIX B



621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 141PDF page: 141PDF page: 141PDF page: 141

Spatial patterns in FC loadings (Fig. B.5a) closely match patterns in BOD loadings, attributed to
common sources of organic and pathogen pollution and contributing sectors. Again, geographical
patterns in FC are strongly influenced by wastewater treatment pathways and levels (Fig. B.12).
Compared to BOD loadings, FC loadings are more strongly dominated by the domestic sector across
all world regions (Fig. B.5b). Besides the domestic sector, intensive and extensive livestock activities
are the major sources of FC pollution across most world regions.

Figure B.5 a) Average FC loadings averaged for 2015 from all contributing sectors at 5 arc-min spatial
resolution; and b) sector-specific contributions aggregated per region.
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The emissions and pollutant loadings differ substantially, both in magnitude and by sectoral
sources, across geographic regions (Fig. B.6). Highest pollutant loading estimates are typically found
in Southern Asia and East Asia and Pacific regions, with highest TDS loadings originating from the
irrigation sector and BOD and FC loadings from domestic and intensive livestock production sectors.
The domestic sector is the dominant contributor of BOD and FC loads in East Asia and Pacific and
Southern Asia in particular, resulting from a combination of large populations and relatively low
wastewater treatment rates (Jones et al., 2021). Municipal sewerage systems that are not connected to
wastewater treatment also act as large point sources of BOD and FC (UNEP, 2016; Jones et al., 2021),
which is commonplace in Southern Asia (51% of collected wastewater is untreated) and in Latin
America and the Caribbean (61% of collected wastewater is untreated) (Jones et al., 2021). Loadings
of BOD and FC are notably lower in Western Europe and North America, relative to population size,
where wastewater treatment practices are more widespread and typically have higher removal
efficiencies (Section B.4, Fig. B.12, Table B.4). TDS loadings in these world regions are also more
dominated by the manufacturing sector opposed to irrigation activities.

Figure B.6 Sector-specific contributions (aggregated per region) to pollutant loadings for salinity (total
dissolved solids; TDS), organic pollution (biological oxygen demand; BOD) and pathogen pollution (fecal
coliform; FC) averaged for 2015.
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B.2 In-streamwater quality

Water temperature is simulated building on the method developed for DynWat, solving the surface
water energy balance at the daily timestep and at 5 arc-min spatial resolution (van Beek et al., 2012;
Wanders et al., 2019). The exchange of heat between the atmosphere and the river is a key determinant
of river temperature in naturalized river systems (Wanders et al., 2019). DynWat also accounts for
surface water abstraction, reservoirs, riverine flooding and the formation of ice (Wanders et al., 2019).
Impacts of from heat effluents of thermoelectric powerplants are also included as advected heat sources,
following previous work (van Vliet et al., 2012b; van Vliet et al., 2021).

While pollutant loadings are used to quantify the mass of pollutant that is discharged to surface
waters in a given period of time, in-stream concentrations represent the mass of pollutant in a defined
volume of water. Salinity (TDS) is modelled using a mass balance and conservative substances
approach, relating TDS concentrations in a downstream gridcell to concentrations in upstream
gridcells, assuming instantaneous full mixing of all streamflow and wastewater flows in each gridcell
and including dilution (van Vliet et al., 2021). Organic (BOD) and pathogen (FC) pollution are
modelled using a non-conservative mass balance approach, equally relating pollutant loadings in a
downstream gridcell to concentrations in upstream gridcells and assuming instantaneous full mixing
of all streamflow and wastewater flows in the gridcell. BOD decay during downstream transport is
simulated as a function of water temperature, following previous assessments (Wen et al., 2017; van
Vliet et al., 2021). FC bacteria decay during downstream transport is simulated as a function of solar
radiation, water temperature and the settling rate of bacteria (sedimentation) (Reder et al., 2015;
UNEP, 2016). Water quality equations to simulate daily TDS (mg l−1), BOD (mg l−1) and FC (cfu
100 ml−1) concentrations are implemented within the modelling framework of DynWat (van Beek
et al., 2012; Wanders et al., 2019), with a spatial resolution of 5 arc-min. For numerical stability, a
sub-timestep was used for both solving the surface water energy balance (for Tw) and for pollutant
loading routing (of TDS, BOD and FC) (Wanders et al., 2019).

Aside from pollutant loadings from the different human sectors, background processes can also be
important determinants of in-stream water quality. All surface waters contain a natural concentration
of salts, with variations in geology, soils, climate and vegetation causing variations in background
salinity of freshwater systems to span over at least two orders of magnitude (Olson and Hawkins,
2012). Background TDS concentrations are inferred based on minimum observed EC-converted to
TDS data (Walton, 1989), contained in a new global salinity dataset (Thorslund and van Vliet, 2020),
with spatial interpolation for pixels without observed data conducted using ordinary kriging.

Complementing Fig. 4.1, Fig. B.7 displays the percentage of gridcells within each geographical
region that exceed a water quality threshold for high pollution (Table B.2) and the number of months
of exceedance. All geographical regions experience frequent exceedances across the considered water
quality constituents. Exceedances of TDS thresholds are particularly common across Southern Asia,
while more limited in the East Europe and Central Asia region. Exceedance patterns in BOD and FC
are closely related, attributed to common sectoral sources of pollution. It should however be noted
that these results display the proportion of gridcells exceeding water quality thresholds, and thus are
not directly linked to water availability or surface water abstractions in the region for which we refer
to Fig. 4.4.
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Figure B.7 Percentage of gridcells (average annual discharge >1 m3 s−1) exceeding critical water quality
thresholds (high pollution; see Table B.2) for salinity (TDS; 2,100mg l−1), organic (BOD; 8mg l−1) andpathogen
(FC; 1,000 cfu 100ml−1) averaged for 2005–2014. Water quality threshold exceedance are assessed at monthly
temporal resolution.
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B.3 Model validation

For model validation, observed water quality data was obtained from the Global Environment
Monitoring System for freshwater (GEMS/Water), part of the United Nations Environment
Programme (UNEP, 2019). Observed water temperature (Tw) and salinity (EC), organic (BOD) and
pathogen (FC) concentrations were downloaded from all water quality monitoring stations with > 30
measurements in the time period 1980–2014. Observed EC measurements were subsequently
converted to TDS using a conversion factor of 0.7, following Walton (1989). The number of water
quality modelling stations meeting this criteria, together with the total number of measurements
aggregated at the regional level is presented in Table B.1. The spatial distribution of water quality
monitoring stations can be inferred from Fig. B.8 and Fig. B.9.

Table B.1 Number of water quality monitoring stations and measurements considered per water quality
constituent, aggregated per geographic region.

N stations N Obs N stations N Obs N stations N Obs N stations N Obs
Global 711 119,106 903 137,346 529 78,988 340 36,825

Western Europe 208 33,186 216 30,077 180 23,397 115 9,746
Sub-Saharan Africa 3 199 21 8,171 1 110 1 34
Southern Asia 84 14,182 85 13,833 84 14,117 79 11,096
North America 40 5,803 199 26,630 2 172 27 2,206
Middle East & North Africa 7 740 7 774 7 673 5 472
Latin America & Caribbean 148 13,209 135 10,800 87 8,029 71 6,584
Eastern Europe & Central Asia 42 13,482 16 4,901 42 11,331 8 1,413
East Asia & Pacific 179 38,373 224 42,160 126 21,159 34 5,274

Geographic Region

Pathogen (FC)Salinity (EC) Organic (BOD)Temperature (Tw)

We assess the performance of Tw simulations statistically by calculating normalised Root Mean
Square error (nRMSE) and qualitatively using a confusion matrix (Fig. B.8). Observed water
temperatures closely match model simulations, with nRMSE values of below 0.25 at 68% of stations
and below 0.5 at 94% of stations. nRMSE values indicate particularly strong performance at
monitoring stations located across South America, Europe, India and Japan. Poorer model
performance occurs especially in high-latitude rivers. The confusion matrix demonstrates that, in the
majority of cases, water temperature simulations are within 5◦C of observed temperatures. Very few
cases of large mismatches between observations and simulations occur. For an in-depth validation of
the water temperature model, excluding thermoelectric powerplants as an additional source of heat,
we refer to the original DynWat publications (van Beek et al., 2012; Wanders et al., 2019).

We assess model performance for TDS, BOD and FC statistically by calculating Kling Gupta
Efficiency (KGE) coefficients, a widely used metric for evaluating the performance of hydrological
model output 30. We chose KGE, as opposed to nRMSE (as used for Tw) due to the importance of the
hydrological simulations for calculating in-stream concentrations of TDS, BOD and FC. KGE values
greater than −0.41 indicate that a model improves upon using the mean as a benchmark, up to a
theoretical maximum of 1 if simulations exactly match observations (Knoben et al., 2019). The three
KGE terms (correlation, variability bias and mean bias) can be weighted to allow specification of the
relative importance of each term based on the application (Gupta et al., 2009; Knoben et al., 2019). In
this study, we opt for a weighting scheme of 0.2, 0.4 and 0.4 for correlation, variability bias and mean
bias, respectively. We reduce the relative importance of correlation (timing) with respect to the other
terms as we validate at the daily timestep, whereby in-stream concentrations are sensitive to
short-term fluctuations in water availability (channel storage).

APPENDIX B | 139



621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 146PDF page: 146PDF page: 146PDF page: 146

Figure B.8 Calculated normalised rootmean square error (nRMSE) coefficients and confusionmatrix forwater
temperature.

For TDS, BOD and FC, we also evaluate model performance with respect to pollutant classes,
which are linked to key sectoral water quality thresholds (Table B.2) imposed by governments and
international organisations. In-stream concentrations are translated into pollutant classes that denote
‘low’, ‘moderate’ and ‘high’ pollution status for freshwater bodies, based upon sectoral water use or
environmental water quality thresholds.

Table B.2 TDS, BOD and FC concentration thresholds denoting the pollution status of a freshwater body as
low, moderate or high.

Total dissolved solids Biological oxygen demand Fecal coliform
(TDS; mg l-1) (BOD; mg l-1) (FC; cfu 100 ml-1)

Low pollution < 525 < 4 <100
Moderate pollution 525 - 2100 4 - 8 100 - 1000
High pollution > 2100 > 8 > 1000

Pollutant status
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The water quality thresholds associated with pollutant classes, which are derived from extensive
literature research (UNEP, 2016), considered in this study are shown in Table B.2. Salinity thresholds
used are based upon irrigation water quality standards (Fipps, 2003; Zaman et al., 2018), which
classify TDS concentrations below 525 mg l−1 as ‘good’, 525–2,100 mg l−1 as
‘permissible-to-doubtful’ and >2,100 mg l−1 as ‘unsuitable’. These standards also closely reflect those
recommended by the FAO (Ayers and Westcot, 1985). For organic pollution, we follow the threshold
classifications used by UNEP (UNEP, 2016) which are based on analysis of water quality standards in
11 countries. BOD concentrations below 4 mg l−1 are designated as ‘low pollution’ (sufficient oxygen
supply and high species diversity), 4–8 mg l−1 as ‘moderate pollution’ (suspended discharges occur
but have no major effect on biota) and > 8 mg l−1 as ‘high pollution’ (depletion of dissolved oxygen
can result in fish kills). Our selected thresholds are also in a similar range as to those used in other
studies, which have used 5 mg l−1 as indicative of high pollution based on adverse effects to the
domestic sector and to ecosystem health (Wen et al., 2017; van Vliet et al., 2021). For pathogen
pollution, we also closely follow thresholds developed by UNEP (2016) which are based on analysis of
water quality standards in 17 countries. These standards are primarily based on concentrations that
pose human health concerns associated with direct contact. FC concentrations above 1,000 cfu
100ml−1 are deemed unsuitable for contact, thus used in this study as the threshold level for ‘high
pollution’. We take a slightly more stringent concentration range of 100–1,000 cfu 100 ml−1 to
designate moderate pollution, opposed to 200 cfu 100ml−1 as used by UNEP (2016), based on the
interim criteria for recreational waters (Bartram and Rees, 1999). Beneath 100 cfu 100ml−1 is
considered in this study as indicative of ‘low pollution’.

Overall, calculated Kling Gupta Efficiency coefficients indicate reasonable model performance
(Fig. B.9). In line with other studies, the best validation results are achieved for TDS, followed by
BOD and then FC (UNEP, 2016; van Vliet et al., 2021). For TDS, KGE coefficients exceed 0.4 in 65%
of stations and are below −0.41 in only 22% of cases. For BOD and FC, KGE coefficients of > 0.4 are
calculated at 42% and 33% of stations, respectively. KGE values below −0.41, indicating very low
agreement between observed and simulated concentrations, occur at 27% and 18% of monitoring
stations, respectively.

Overall, a very strong correspondence between simulation and observed performance for simulated
versus observed pollutant classes is found for TDS and BOD, indicating strong model performance
(Fig. B.9). The model simulates the same pollutant class as the observed pollutant class in 84% and 75%
of cases for TDS and BOD, respectively. When considering ±1 pollutant class, these numbers rise to
98% and 91%, respectively. Simulated versus observed pollutant classes are less well simulated for FC,
with just 41% of simulated pollutant classes exactly matching observations. When also considering ±1
pollutant class, this rises to 79%.

As displayed in Fig. B.9, the poorest model performance obtained in this study is for FC. We
attribute this to a combination of both uncertainty in the modelling approach, including both
quantification of pollutant loadings and decay processes (Reder et al., 2015), and uncertainties in
reported FC concentrations. FC concentrations that span across all three pollutant classes (i.e.
observations that are <100, 100–1,000 and >1,000) are present in the data in 74% of water quality
stations, and 88% of water quality monitoring stations report FC concentrations ranging over three or
more orders of magnitude. To illustrate this, we present the time-series for modelled and observed
fecal coliform concentrations at three water quality monitoring stations (Fig. B.10). These plots
display that while, in general, the model is able to model observations within the correct
concentration range, it underestimates the temporal variability represented by the measured
timeseries data – especially when measured concentrations are low.
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Figure B.9 Calculated Kling Gupta Efficiency (KGE) coefficients and differences in observed and simulated
pollutant classes for a) TDS; b) BOD; and c) FC. Pollutant classes are defined based on thresholds imposed by
governmental bodies and international organisations, separated into three classes, and are as follows: TDS
(mg l−1): < 525, 525–2,100, >2,100; BOD (mg l−1): < 4, 4–8, >8; FC (cfu 100ml−1): < 100, 100–1,000, >1,000.
A difference in classification level of ‘0’ indicates no difference in pollutant class between simulations and
observations, negative differences indicate that the observed concentration was higher than the simulated
concentration, and positive differences indicate that simulated concentration was higher than the observed
concentration.
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Figure B.10 Selected time series of observed vs. simulated fecal coliform (FC) concentrations (cfu 100ml−1).
Black (daily) and red (rolling 30-day average) lines indicated simulated FC concentrations; whereas blue crosses
are observed concentrations.
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B.4 Wastewater collection and treatment pathways

Following production, wastewater from domestic and manufacturing activities can follow a number
of collection and treatment pathways (Fig. B.11). Wastewater from both domestic and manufacturing
activities can be collected, typically in a sewered system or septic tanks, and subsequently undergo
treatment practices to reduce pollutant loadings that are subsequently introduced to the environment.
Treatment practices include primary, secondary and tertiary+ processes. Wastewater that is collected
but untreated is not associated with a reduction in pollutant loadings, while having a significant effect
in concentrating the discharge of pollutants (UNEP, 2016).

Figure B.11 Wastewater disposal pathways for the domestic and manufacturing sectors.

Primary treatment processes aims to settle and remove suspended solids, including processes of
screening, comminution and sedimentation (Mateo-Sagasta et al., 2015). Secondary treatment uses
biological processes to degrade and remove organic matter, typically using bacteria or protozoa
(Mateo-Sagasta et al., 2015). Treatment techniques can include using activated sludge, aerated
lagoons or constructed wetlands. Tertiary treatment processes represent a broad range of techniques,
including membrane filtration, disinfection and carbon adsorption. Tertiary treatment is particularly
used for the removal of inorganic materials and nutrients (especially nitrogen and phosphorus), and
an important step for ensuring the safety of wastewater for reuse (Mateo-Sagasta et al., 2015).

Country-level wastewater production, collection and treatment were determined at the annual
timestep for 1980–2015 following the methodology described and validated in previous work (Jones
et al., 2021). Treated wastewater flows are further disaggregated by treatment level (primary,
secondary and tertiary+) based on country-level statistics. Reported data on the ratio of primary,
secondary and tertiary+ treatment was obtained from Eurostat (38 countries) and Global Water
Intelligence (42 countries) for the year 2015. Supplemented with the 38 countries with no wastewater
treatment (Jones et al., 2021), these 118 countries account for ∼89% of the global population. For
countries where reported data was not available, proportions are applied to the country-level
treatment rates based on ratios averaged by income level from the reported data (Table B.3). It should
be noted that these ratios are only applied to countries containing ∼11% of the global population,
and predominantly for countries where treatment rates are low. The ratio of primary, secondary and
tertiary+ treatment levels within a country are assumed to remain constant throughout the study
period 1980–2015.
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Table B.3 Ratio of primary, secondary and tertiary + treatment applied to countries without data.

Primary Secondary Tertiary+
High 0 0.33 0.67
Upper-middle 0 0.87 0.13
Lower-middle 0.54 0.44 0.02
Low 1 0 0

Economic classification
Treatment ratio1

1These ratios are applied to treatment rates within a country.

We derive gridcell-specific flows of produced, collected and treated wastewater for 1980–2015
using the methodology developed and validated in Jones et al. (2021). Treated wastewater flows are
then disaggregated by treatment level at 5 arc-min by hierarchically assigning the highest treatment
levels to gridcells with the largest treated wastewater flows. Treated wastewater flows, disaggregated
by treatment level for 2015, are displayed in Fig. B.12. High spatial coverage of tertiary treatment
practices are found across North America and Western Europe. Conversely, across South America,
India and China, the dominant wastewater treatment level is secondary and these practices occur
across a smaller number of gridcells. Very little wastewater treatment to any level is displayed across
much of Sub-Saharan Africa, whereby the majority of wastewater treatment (if any) is occurring in
the major cities. Volumetric wastewater flows, disaggregated by treatment level, are subsequently
divided by the total gridded wastewater production to give the fraction of each treatment level
occurring in a gridcell.

Figure B.12 Gridded treated municipal (domestic and manufacturing) wastewater flows by treatment level
(primary, secondary, tertiary+) in 2015.
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Gridcell-specific reductions in pollutant loadings from wastewater collection and treatment are
determined by multiplying the fraction of each treatment level occurring in a gridcell by the pollutant
removal efficiency associated with that treatment level (Eq. B.1). Tertiary+ practices are typically
associated with the highest level of pollutant removal, followed by secondary and primary treatment
(Table B.4).

Rp,n = ftern · rterp + fsecn · rsecp + fprin · rprip (B.1)

Where: f is the fraction of tertiary+ treatment (ftern ), secondary treatment (fsecn ) and primary
treatment (fprin ) within gridcell n, and r is the removal efficiency associated with teriary (rterp ),
secondary (rsecp ) and primary (rprip ) treatment per pollutant p. Pollutant removal efficiencies per
wastewater treatment level are based on extensive literature research in previous global water quality
modelling studies (Williams et al., 2012; UNEP, 2016; van Vliet et al., 2021) and are displayed in
Table B.4. Notably, no removal of TDS is assumed across any treatment level. This follows previous
studies (UNEP, 2016; van Vliet et al., 2021), and is assumed due to limited information on specific
technologies that reduce TDS loadings at individual wastewater treatment plants.

Table B.4 Pollutant removal efficiency by wastewater treatment level.

Salinity (TDS) Organic (BOD) Pathogen (FC)

Tertiary+ 0 99 99.99
Secondary 0 85 97.45
Primary 0 25 42.79

Treatment 
level

Pollutant removal efficiency (%)

The difference between collected and treated wastewater per gridcell represents the collected but
untreated flows, while the difference between the produced and treated wastewater represents the
uncollected flows. Uncollected domestic wastewater is further disaggregated into two categories:
basic sanitation and open defecation. Country-level data for open defecation rates are for 1980–2015,
while basic sanitation practices account for all the wastewater produced that is not either collected or
accounted for by open defecation. No further segregation between different basic sanitation practices
(e.g. pit latrines, composting toilets) is made due to lack of data. Basic sanitation and open defecation
flows are downscaled to 5 arc-min based on gridded untreated wastewater flows for the domestic
sector, with gridcells with the highest flows allocated to basic sanitation and the remaining gridcells
designated to open defecation (Fig. B.13a).

The reduction in pollutant loadings from the domestic sector is also dependent on wastewater
following these uncollected pathways. While basic sanitation and open defecation practices are not
associated with any direct reductions in pollutant loadings due to treatment practices, these pathways
can delay or reduce the entry of wastewater into the environment, which can affect the loading. No
abatement of TDS, BOD or FC loadings from basic sanitation practices are assumed. However, only a
portion of loadings from open defecation will enter the stream network, for which we use the surface
runoff fraction as per previous work (UNEP, 2016).
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Figure B.13 Gridded untreated wastewater flows in 2015 by pathway for the a) domestic; and b)
manufacturing sectors.

As such, the reduction in pollutant loadings from the domestic sector (Rdom,p,n) is calculated as per
Eq. B.2.

Rdom,p,n = Rp,n + (fbsn · rbsp) + (fodn · (1− sn)) (B.2)

Where: fbsn and fodn is the fraction of basic sanitation and open defecation, respectively, within
gridcell n, rbsp is the reduction of pollutant p from basic sanitation collection facilities (assumed to
be 0 for TDS, BOD and FC), and sn is the gridcell-specific surface runoff fraction as simulated by
PCR-GLOBWB2.

APPENDIX B | 147



621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones621764-L-bw-Jones
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 154PDF page: 154PDF page: 154PDF page: 154

Conversely, all uncollected manufacturing wastewater is assumed to be discharged directly to
surface waters (Fig. B.13b). With this pathway, no reduction in pollutant loadings is assumed.
Therefore, abatement of pollutant loadings from the manufacturing sector (Rman,p,n) depends only
upon centralised (gridcell-specific) wastewater collection and treatment practices (Eq. B.3).

Rman,p,n = Rp,n (B.3)

As per previous studies (Williams et al., 2012; UNEP, 2016) and due to data limitations, gridded
municipal (domestic and manufacturing) wastewater collection and treatment rates are applied to
urban surface runoff. The reduction of pollutants from urban surface runoff (Rurb,p,n) depend only
upon centralised (gridcell-specific) wastewater collection and treatment practices (Eq. B.4). Urban
surface runoff flows that are designated as uncollected are assumed to enter the surface water network
directly without abatement.

Rurb,p,n = Rp,n (B.4)

The distinction between intensive and extensive livestock systems is made to account for the
differences in the paths by which livestock waste enters the stream network, namely whether there is
transportation by surface runoff (for extensive systems) or whether there is collection (and potentially
subsequent treatment) of livestock waste (for intensive systems). For extensive livestock systems, only
a portion of loadings will be transported to the surface water network, which we account for by
multiplying by the fraction surface runoff from PCR-GLOBWB2 (in line with the approach used for
domestic pollutant loadings from open defecation practices).

Due to data limitations, and in line with previous studies (Wen et al., 2017; Vigiak et al., 2019)
intensive livestock farming was considered akin to a manufacturing activity for the purposes of
determining livestock waste treatment rates. The reduction of pollutant loadings from intensive
livestock activities (RintLiv,p,n) (Eq. B.5) was calculated at the gridcell level, occurring in line with
the location where municipal wastewater treatment of secondary level or higher is occurring. All
treatment of wastewater from the intensive livestock sector is assumed to be to the secondary level, as
per previous work (Wen et al., 2017; Vigiak et al., 2019).

RintLiv,p,n = (fsecn + ftern) · rsecp (B.5)

Where RintLiv,p,n is the reduction in pollutant loadings from the intensive livestock sector, fsecn
and ftern are the fraction of secondary and tertiary+ treatment, respectively, in gridcell n, and rsecp
is the removal efficiency associated with secondary treatment per pollutant p.
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B.5 Towards SDG 6.3 and improved wastewater treatment

SDG 6.3 aims to improve ambient water quality by halving the proportion of untreated wastewater
released to the environment by 2030, relative to 2015. The volume of wastewater from 2016–2030 is
projected based on trend analysis of wastewater flows from 2011–2015, which are estimated based on
population, GDP per capita and access to basic sanitation (Jones et al., 2021). Projections for 2016–
2030 wastewater flows are downscaled to 5 arc-min proportionally following the method implemented
for 1980–2015, as discussed in Section B.4.

Only wastewater undergoing secondary or higher treatment practices in 2015 is considered
adequately treated for SDG 6.3, as only these treatment levels represent abate a substantial proportion
of pollutant loadings. As such, the required additional volume of wastewater that must be treated in
2030 (req_WWtSDG6.32030,c ) to meet SDG 6.3 in country c is calculated (Eq. B.6), where
WWp2030 is the wastewater production in 2030, and WWtsecondary and WWttertiary is the total
volume of wastewater treated to secondary and tertiary+ treatment levels in 2015, respectively. The
required treatment to meet SDG 6.3 is thus half of the difference between the wastewater produced in
2030 and the wastewater treated to above secondary level in 2015.

req−WWtSDG632030 =
WWp2030 −

(
WWtsecondary 2015

+WWttertiary 2015

)
2

(B.6)

The required volumetric expansion in municipal wastewater treatment, aggregated by geographic
region and by level of economic development, are displayed in Fig. B.14.

Figure B.14 Required expansions in wastewater treatment in order to achieve SDG 6.3 (i.e halving the
proportion of untreated waste water) aggregated by a) geographical region; and b) economic classification.
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The increase in wastewater treatment is delineated within countries to 5 arc-min by hierarchically
assigning expansions to gridcells where 2015 pollutant loadings are highest, until the required volume
of wastewater treatment expansion is met. The gridded percentage expansions in wastewater treatment
required for SDG 6.3 at 5 arc-min is displayed in Fig. B.15. We focus our expansions on gridcells
with high pollutant loadings as collection and treatment is assumed to be both more desirable and
economically feasible, and hence more likely, where the strongest reductions in pollutant loadings will
be achieved. Expansions in wastewater treatment are assumed to be to secondary level, the minimum
treatment level required by SDG 6.3 and in lieu of the prohibitive economic costs of tertiary treatment
for all but the most developed nations.

For determining pollutant loadings in 2030, the loadings for domestic (Rdom,p,n) and
manufacturing (Rman,p,n) are recalculated under these (SDG 6.3-realised) conditions to account for
the increased abatement of pollutant loadings associated with the expansions in wastewater treatment
capacities. The pollutant loadings from urban surface runoff (Rurb,p,n) and intensive livestock
(RintLiv,p,n) also increase, in in line with the assumptions associated with treatment in these
particular sectors. As this study assumes that secondary treatment practices do not influence loadings
of salinity (TDS) or water temperature (Tw), only changes in organic pollution (BOD) and pathogen
(FC) loads and concentrations occur as a result of expanding wastewater treatment. The gridded
percentage changes in pollutant loadings as a result of achieving SDG 6.3, opposed to no additional
expansions in wastewater treatment capacity over 2015 levels, is displayed in Fig. B.16. In countries
where wastewater treatment rates are already high, SDG 6.3 is achieved by both expanding treatment
capacities in gridcells with existing wastewater treatment facilities are already established and in
gridcells without existing treatment. Conversely, in countries with limited existing wastewater
treatment, SDG 6.3 is achieved by treating all wastewater produced in a smaller number of gridcells.

Fig. B.17 and Fig. B.18, derived directly from Fig. 4.3a and Fig. 4.3b respectively, display ‘zoomed-in’
panels for a) United States; b) Europe; c) South and East Asia and d) North and Central Africa.

Fig. B.19 is complementary to Fig. 4.3c, displaying in-stream concentrations for six additional rivers
(Rhine-Meuse, Thames, Ogan, Qiantang, Vaal, Karnaphuli).
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Figure B.16 Percentage reductions in (unrouted) pollutant loadings of a) BOD; and b) FC per gridcell due to
wastewater treatment expansions required to achieve SDG 6.3.
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FigureB.19 In-streamBOD (left) and FC (right) concentrations under historical (black), no expansion (red) and
SDG 6.3 (green) conditions at selected locations.
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We also consider the exceedance of key surface water quality thresholds with respect to surface water
abstractions (Fig. B.20). For the historical period, surface water abstractions that exceed the moderate
TDS threshold vary from 8% in Eastern Europe and Central Asia to 31% in Southern Asia. Exceedance
of high or very high salinity levels are largest in the regions of Southern Asia (17%), East Asia and
Pacific (17%) and the Middle East and North Africa (13%). Volumetrically, the largest surface water
abstractions exceeding 2,100 mg l−1 TDS are in East Asia and Pacific (119 km3 yr−1) and Southern
Asia (47 km3 yr−1) regions – dominated by China and India, respectively.

Figure B.20 a) Percentage of surface water abstractions exceeding multiple critical water quality thresholds
for salinity (TDS), organic (BOD) and pathogen (FC) pollution under historical and near-future (no expansions
and SDG 6.3) conditions. Water quality threshold exceedance and surface water abstractions are assessed at
monthly temporal resolution, and subsequently aggregated per geographic region across all months. b) Total
annual surface water abstractions (km3 yr−1) per geographic region. All results are averaged across multiple
GCMs using 2005–2014 as the historical and 2021–2030 as the future time period.

The percentage of surface water abstractions exceeding the moderate BOD threshold (4 mg l−1) in
the historic period is relatively consistent across all world regions, ranging from 25% to 37%
(Fig. B.20). Similarly, exceedances of the moderate FC threshold (1,000 cfu 100 ml−1) are similar
across world regions, and are also notably high at between 42–65%. Larger differences between the
regions emerge when considering stricter water quality thresholds. 18% and 16% of surface water
abstractions in East Asia and Pacific and Southern Asia, respectively, exceed 30 mg l−1 BOD
compared to just 5% in Western Europe and 7% in North America. This pattern, which is also
reflected in the FC statistics, can be largely attributed to the higher wastewater treatment rates in
these regions.

Without expansions in wastewater treatment (scenario ‘No Expansion’), both the percentage of
surface water abstractions and the degree of exceedance increase across all world regions,
commensurate with factors such as population growth (Fig. B.20). This is particularly true for the
Sub-Saharan Africa region, whereby the total surface water abstractions exceeding >4 mg l−1 BOD
rises from 25% to 32% and abstractions exceeding 8 mg l−1 from 19% to 25%. Increases in surface
water abstractions exceeding FC thresholds are also highest in Sub-Saharan Africa. Furthermore,
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without expansions in wastewater treatment, the Western Europe and North America regions also see
a substantial rise in the percentage of surface water abstractions that exceed quality thresholds. This
occurs as current wastewater treatment capacities become increasingly insufficient to treat rising
loadings, particularly from the domestic sector.

The average volumes of polluted surface water abstractions under SDG 6.3 and no expansions in
wastewater treatment are displayed for BOD (Fig. B.21a) and FC (Fig. B.21b). Fewer surface water
abstractions are polluted in all world regions under SDG 6.3, indicating that expansions in wastewater
treatment do have some impact for reducing pollutant concentrations below key quality thresholds.
Yet, these impacts strongly differ per region. Most notably, surface water abstractions polluted with
BOD (>8 mg l−1) reduce from 76 km3 yr−1 without expansions to 52 km3 yr−1 under SDG 6.3 in
Northern America – a 31% reduction. Similarly, a 24% reduction is achieved in Western Europe. More
moderate, yet still considerable, improvements are found for other world regions – with a decrease of
28 km3 yr−1 in East Asia and Pacific being the largest volumetrically. Reductions are even larger with
respect to the FC threshold (1,000 cfu 100ml−1), ranging from 10% in Sub-Saharan Africa to 33% in
Northern America.

Figure B.21 Average annual volumes of surface water abstractions exceeding quality thresholds for a) BOD
(8 mg l−1); and b) FC (1,000 cfu 100ml−1).
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Supplementary information to Chapter 5

Appendix C | Supplementary information to
Chapter 5

Supplementary to: Jones, E.R., Bierkens, M.F.P., van Puijenbroek, P.J.T.M., van Beek, L.P.H., Wanders, N.,
Sutanudjaja, E.H., and van Vliet, M.T.H. (2023) Sub-Saharan Africa will increasingly become the dominant
hotspot of surface water pollution. Nature Water, 1, pp. 602-613, DOI: 10.1038/s44221-023-00105-5
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C.1 Future pollutant loadings

Figure C.1 Changes in total dissolved solids (TDS) loadings under the different combined climate change and
socioeconomic scenarios, disaggregated by geographic region.
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Figure C.2 Changes in biological oxygen demand (BOD) loadings under the different combined climate
change and socioeconomic scenarios, disaggregated by geographic region.
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Figure C.3 Changes in fecal coliform (FC) loadings under the different combined climate change and
socioeconomic scenarios, disaggregated by geographic region.
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C.2 Future hydrology and water quality

Figure C.4 Percentage changes in discharge in the time periods 2041–2060 and 2081–2100 under three
combined climate and socioeconomic scenarios, relative to a historical reference period (2005–2020).
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Figure C.5 Water temperature (Tw) anomaly (◦C) in the time periods 2041–2060 and 2081–2100 under three
combined climate and socioeconomic scenarios, relative to a historical reference period (2005–2020).
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Figure C.6 Average annual total dissolved solids (TDS) concentrations (mg l−1) in the time periods 2041–
2060 and 2081–2100 under three combined climate and socioeconomic scenarios.
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Figure C.7 Percentage changes in total dissolved solids (TDS) concentrations in the time periods 2041–2060
and 2081–2100 under three combined climate and socioeconomic scenarios, relative to a historical reference
period (2005–2020).
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Figure C.8 Average annual biological oxygen demand (BOD) concentrations (mg l−1) in the time periods
2041–2060 and 2081–2100 under three combined climate and socioeconomic scenarios.
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Figure C.9 Percentage changes in biological oxygen demand (BOD) concentrations in the time periods 2041–
2060 and 2081–2100 under three combined climate and socioeconomic scenarios, relative to a historical
reference period (2005–2020).
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Figure C.10 Average annual fecal coliform (FC) concentrations (cfu 100ml−1) in the time periods 2041–2060
and 2081–2100 under three combined climate and socioeconomic scenarios.
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Figure C.11 Percentage changes in fecal coliform (FC) concentrations in the time periods 2041–2060 and
2081–2100under three combined climate and socioeconomic scenarios, relative to a historical referenceperiod
(2005–2020).
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C.3 Population exposed to polluted surface water

Figure C.14 Number of people exposed to surface water quality that exceed a total dissolved solids
(TDS) concentration of 2,100 mg l−1 under the different combined climate and socioeconomic scenarios,
disaggregated by geographic region. Lines display the mean average over the 5 general circulation models
(GCMs) considered, while shaded areas represent the uncertainty arising from variations in GCM simulations as
±1 standard deviation.
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Figure C.15 Number of people exposed to surface water quality that exceed a biological oxygen demand
(BOD) concentration of 8 mg l−1 under the different combined climate and socioeconomic scenarios,
disaggregated by geographic region. Lines display the mean average over the 5 general circulation models
(GCMs) considered, while shaded areas represent the uncertainty arising from variations in GCM simulations as
±1 standard deviation.
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Figure C.16 Number of people exposed to surface water quality that exceed a fecal coliform (FC)
concentration of 1,000 cfu 100ml−1 under the different combined climate and socioeconomic scenarios,
disaggregated by geographic region. Lines display the mean average over the 5 general circulation models
(GCMs) considered, while shaded areas represent the uncertainty arising from variations in GCM simulations as
±1 standard deviation.
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Figure C.18 Percentage of the global population residing in different world regions compared to the
percentage of the global population that is exposed to surface waters that exceed a total dissolved solids (TDS)
concentration of 2,100mg l−1 in each world region. Results are for averaged overmulti-year periods for both a
historical reference period (2005–2020) and for the time period 2081–2100 under the three different combined
climate and socioeconomic scenarios.
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Figure C.19 Percentage of the global population residing in different world regions compared to the
percentage of the global population that is exposed to surface waters that exceed a fecal coliform (FC)
concentration of 1,000 cfu 100ml−1 in each world region. Results are for averaged over multi-year periods
for both a historical reference period (2005–2020) and for the time period 2081–2100 under the three different
combined climate and socioeconomic scenarios.
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D.1 Water scarcity indicators
Methods building on the grey water footprint concept have been used to evaluate quality-induced water
scarcity (Liu et al., 2016; Wan et al., 2016; Zhao et al., 2016; van Vliet et al., 2017; van Vliet et al.,
2021). The grey water footprint represents the volume of water required to assimilate pollution to meet
ambient water quality standards via dilution (Hoekstra and Mekonnen, 2012). While the dilution does
not necessarily happen in reality, the purpose of this approach is to estimate a fresh water equivalent
to facilitate a comparable measure of quantity and quality aspects for water scarcity assessment (Wan
et al., 2016).

Further building on the method developed by van Vliet et al. (2017) and van Vliet et al. (2021),
indicators of water scarcity accounting for: 1) water quantity aspects only (WS) (Eq. D.1); and 2) water
quantity and quality aspects (WSq) (Eq. D.2) are developed.

WS =
DnonIrr +Dirr −GWA

Q− EFR
(D.1)

Where: WS represents water scarcity based on water quantity only (-); DnonIrr and DIrr

represent the monthly average water demands for the non-irrigation (domestic, industrial) and
irrigation sectors (m3 month−1), respectively; GWA is the groundwater abstractions for fulfilling
sectoral demands (m3 month−1); Q is discharge (m3 month−1); and EFR is the environmental flow
requirement (m3 month−1), estimated using the monthly variable flow methods (Pastor et al., 2014).

WSq =
DnonIrr +Dirr −GWA+ dqmax

Q− EFR

dqmax = max(dqTDS , dqBOD, dqFC)

dqp =

{
0, Cp ⩽ Cmax
(DnonIrr+Dirr−GWA)·Cp

Cmax
− (DnonIrr +Dirr −GWA), Cp > Cmax

(D.2)

Where: WSq represents water scarcity including both water quantity and water quality [-]; dqp is the
extra water demands for dilution to obtain acceptable quality for water constituent p (m3 month−1);
Cp is the surface water concentration of water quality constituent p (TDS and BOD in mg l−1; FC in cfu
100ml−1); and Cmaxp is the critical threshold concentration of water quality constituent p considered
(TDS: 2,100 mg l−1; BOD: 8 mg l−1; FC: 1,000 100ml−1). Other terms are as per Eq. D.1.

WS and WSq values exceeding 1 are used to indicate water scarcity – i.e. the demands for water
resources (less those met by groundwater pumping) exceed the renewable water avaliability (less the
water required to maintain environmental flows).
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Summary

Clean water is essential for supporting human livelihoods and maintaining ecosystem health.
However, our knowledge of water quality is severely impaired by a lack of quantitative information.
Observations from water quality monitoring stations – the fundamental basis of water quality
assessment – are expensive and time-consuming, and therefore are highly limited in space and
fragmented across time. Being under-monitored and often imperceptible to the human eye, water
pollution has been branded an ‘invisible crisis’.

Global surface water quality data is required to assess the key regions where pollution poses risks to
safe water use. Similarly, protecting and improving the quality of surface waters globally is contingent
upon an improved understanding of the problem and its drivers. Process-based models are tools that
can supplement our knowledge of water quality beyond what is possible using in situ measurements
alone. Surface water quality models simulate the emission and transport of pollution along the river
network directly, based on input data representing climatic, hydrological and socioeconomic drivers.
The philosophy of global surface water quality modelling is to apply an approach that is consistent
across all world regions in order to facilitate meaningful comparisons at large scales. While the field
of global water quality modelling is still in its infancy, there are increasing efforts to simulate a diverse
range of water quality constituents. Representing one of these efforts, this thesis introduces and applies
the Dynamical Surface Water Quality (DynQual) model in order to address the research objective:

To assess the past and current status of surface water quality globally, and to evaluate the impact of
(uncertain) global change on future surface water quality.

Anthropogenic activities are key drivers of water quality deterioration. Water that is extracted for
sectoral purposes, but which is not consumed, is often discharged to surface waters. The quality of
this wastewater will be reflective of the human use activity and the pathway by which it re-enters the
environment. Realistic representation of the existence of and degree to which treatment practices
reduce contaminant levels before environmental discharge is therefore important for surface water
quality models. However, the availability of wastewater data at large-scales is sparse, often outdated
and pertains to inconsistent reporting years. This thesis provides a comprehensive and consistent
global assessment of wastewater production, collection, treatment and reuse, both at country-level
and gridded (5 arc-min resolution) level (Chapter 2). Results show that approximately half (52%) of
global wastewater is treated, opposed to previous estimates of ∼20%. However, wastewater treatment
plants are unevenly distributed across the world, with just 4.2% of wastewater treated in ‘low-income’
countries compared to 74% in ‘high-income’ countries. Country-level results provide quantitative
information for understanding the global wastewater status, while, as leveraged in this thesis, spatially
explicit (gridded) results can be used as input for large-scale water resource assessments.

In this thesis, DynQual was applied to provide a global assessment of past and current surface
water quality (1980–2019) using state-of-the-art climate and socioeconomic input data (Chapter 3).
The model was used to simulate water temperature (Tw) and indicators of salinity (total dissolved
solids; TDS), organic (biological oxygen demand; BOD) and pathogen (fecal coliform; FC) pollution.
Modelled results demonstrate that surface water quality issues are globally relevant, with exceedances
of key concentration thresholds for TDS, BOD and FC pollution occurring across all world regions
albeit with different frequencies and magnitudes. Current year-round and multi-pollutant hotspots of
poor surface water quality are located across northern India and eastern China, whereas trends
towards surface water quality deterioration in the last ∼40 years are most profound in Sub-Saharan
Africa and southern Asia.
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Both the availability and quality of water resources will change in the future. Process-based models
provide unique opportunities to quantitatively assess the impact of future change on in-stream
pollutant concentrations. This includes exploring hypothetical ‘what-if ’ questions, such as the
effectiveness of management and intervention strategies for improving water quality. In this thesis,
DynQual was applied to assess the effectiveness of halving the proportion of untreated wastewater
entering the environment by 2030 (i.e. achieving SDG 6.3) for improving ambient surface water
quality (Chapter 4). While substantial reductions in organic (BOD) and pathogen (FC) pollution are
achieved, changes to the frequency and magnitude of water quality threshold exceedances drastically
vary across world regions. Particularly in the developing world, reductions in pollutant loadings are
locally effective but the transmission of pollution from upstream areas still leads to water quality
issues downstream. The results therefore highlight the need to go beyond the SDG-target for
wastewater in order to achieve the overarching goal of ‘clean water for all’.

Lastly, this thesis presents the first assessment of the impact of global change on long-term water
quality (Chapter 5). To this end, DynQual was forced with state-of-the-art projections of societal
change and trajectories of climate change. Three diverging scenarios are considered, ranging from a
world characterised by sustainability and equality (SSP1-RCP2.6), to resurging nationalism and
widening inequality (SSP3-RCP7.0), to strong but fossil-fueled economic development
(SSP5-RCP8.5). Results indicate that the proportion of the global population exposed to salinity,
organic and pathogen pollution by the end of the century ranges from 17–27%, 20–37% and 22–44%,
respectively, with poor surface water quality disproportionately affecting people living in developing
countries. Exhibiting the largest increases in both the absolute and relative number of people exposed
to polluted surface water, irrespective of climate change and socioeconomic development scenario,
this thesis concludes that Sub-Saharan Africa will increasingly become the key hotspot of surface
water pollution. Preliminary results suggest that this surface water quality deterioration, in
combination with the increased prevalence of water gaps (i.e. instances where human water demands
exceed the renewable water supply), will establish Sub-Saharan Africa as a key hotspot of
(year-round) water scarcity in the future (Chapter 6).

Inability to meet our clean water demands is considered one of the major risks to humankind both
in terms of likelihood and potential impacts, and water scarcity issues will further intensify into the
future. This thesis highlights the need to better understand and account for water quality aspects, in
addition to water availability aspects, in order to achieve sustainable management of water resources
globally.
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Samenvatting

Schoon water is essentieel voor het levensonderhoud van de mens en voor gezonde ecosystemen.
Onze kennis van waterkwaliteit wordt echter beperkt door de beperkte beschikbaarheid aan data. Het
monitoren van waterkwaliteit met behulp van meetstations is kostbaar en tijdrovend. Als gevolg
hiervan zijn metingen van de waterkwaliteit beperkt in wereldwijde geografische spreiding en
gefragmenteerd over tijd. Vanwege beperkte monitoring in verschillende werelddelen (bijvoorbeeld
Afrika) en het gebrek aan direct zichtbare gevolgen wordt waterverontreiniging bestempeld als een
‘onzichtbare crisis’.

Wereldwijde gegevens over de kwaliteit van het oppervlaktewater zijn nodig om te beoordelen in
welke regio’s watervervuiling risico’s vormen voor veilig watergebruik. Daarnaast is het beschermen
en het verbeteren van de kwaliteit van het oppervlaktewater afhankelijk van een beter begrip van het
probleem en de oorzaken. Om de beperkte kennis over de mondiale waterkwaliteit aan te vullen
kunnen we gebruik maken van computermodellen die de belangrijkste processen van waterkwaliteit
representeren. Op basis van klimatologische, hydrologische en socio-economische ontwikkelingen
kunnen deze proces-gebaseerde modellen de belasting en het transport van vervuilende stoffen in
rivieren simuleren. Het idee achter mondiale waterkwaliteitsmodellering is dat het wereldwijd
toepassen van één methode zinvolle vergelijkingen van de waterkwaliteit tussen verschillende regio’s
mogelijk maakt. Hoewel de modellering van de wereldwijde waterkwaliteit nog in de kinderschoenen
staat, ziet men recentelijk een sterke groei in studies waarin verschillende aspecten van grootschalige
waterkwaliteit worden gemodelleerd. Dit proefschrift is één van deze studies. In dit proefschrift wordt
het Dynamical Surface Water Quality (DynQual) model, of in het kort DynQual, geïntroduceerd en
gebruikt om het volgende onderzoeksdoel te behalen:

Het bepalen van de status van wereldwijde oppervlaktewaterkwaliteit in het heden en het verleden en
het evalueren van de invloed van (onzekere) wereldwijde veranderingen op de toekomstige kwaliteit

van het oppervlaktewater.

Menselijke activiteiten zijn de belangrijkste oorzaak van de achteruitgang van de waterkwaliteit.
Water dat wordt onttrokken maar niet geheel wordt verbruikt, wordt vaak geloosd in het
oppervlaktewater. De kwaliteit van dit afvalwater weerspiegelt het eerdere gebruik en de route dat het
heeft afgelegd voordat het weer in het milieu terecht kwam. De juiste representatie van
afvalwaterzuivering en de effectiviteit waarmee verontreinigingen verwijderd worden, is daarom van
groot belang voor modellering van oppervlaktewaterkwaliteit. De beschikbaarheid van data van
afvalwater op grote schaal is echter schaars, vaak verouderd en inconsistent over tijd. Dit proefschrift
biedt een uitgebreid en consistent overzicht van de productie, opvang, zuivering en hergebruik van
afvalwater, zowel op landenniveau als ruimtelijk expliciet niveau- (5 arc-min grid resolutie)
wereldwijd (Hoofdstuk 2). Resultaten tonen dat ongeveer de helft (52%) van het mondiaal afvalwater
gezuiverd wordt, terwijl eerdere studies aantoonden dat dit ongeveer ∼20% was. De verdeling van
afvalwaterzuiveringsinstallaties wereldwijd is echter onevenredig, met slechts 4.2% van het afvalwater
dat in lage inkomens-landen gezuiverd wordt, ten opzichte van 74% in hoge inkomens-landen.
Resultaten op landniveau zorgen voor kwantitatieve informatie die gebruikt kunnen worden voor een
beter begrip van de status van het afvalwater wereldwijd. De ruimtelijk expliciete resultaten met een
resolutie van 5 arc-min kunnen worden gebruikt als input voor grootschalige
waterkwaliteit(model)studies.

In dit proefschrift is het DynQual model ontwikkeld en gebruikt om op mondiale schaal een
overzicht te geven van de kwaliteit van het oppervlaktewater in het heden en het verleden
(1980–2019) op basis van de nieuwste klimaat en socio-economische data (Hoofdstuk 3). Dit model
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simuleert de oppervlakte watertemperatuur (Tw), saliniteit (total dissolved solids; TDS), organische
verontreiniging (biochemical oxygen demand; BOD) en pathogenen verontreiniging (fecal coliform;
FC). De modelresultaten laten zien dat problemen met de waterkwaliteit van wereldwijd belang zijn.
Belangrijke drempelwaarden voor de waterkwaliteit, zoals voor TDS, BOD en FC vervuiling, worden
in alle regio’s in de wereld overschreden, zij het in verschillende mate en frequenties. Huidige
hotspots, waar de waterkwaliteit het hele jaar slecht is door meerdere vervuilingsbronnen, zijn vooral
te vinden in Noord-India en Oost-China. De regio’s waarbij de waterkwaliteit het meest verslechterd
is in de aflopen ∼40 jaar zijn Sub-Saharaans-Afrika en Zuid-Azië.

Zowel de beschikbaarheid als de kwaliteit van water zal in de komende decennia veranderen.
Proces-gebaseerde modellen bieden een unieke mogelijkheid om de effecten van toekomstige
veranderingen in klimaat en socio-economische veranderingen op oppervlaktewaterkwaliteit te
evalueren. Deze modellen bieden ook de mogelijkheid om ‘wat-als’ vragen te stellen en op te lossen
zoals; wat is de effectiviteit van bepaalde beleidsmaatregelen en interventiestrategieën? In dit
proefschrift is het DynQual model toegepast om te evalueren wat het effect is van het halveren van het
aandeel ongezuiverd afvalwater dat in het milieu terechtkomt tegen 2030 (d.w.z. het bereiken van
SDG 6.3) op het verbeteren van de oppervlaktewaterkwaliteit (Hoofdstuk 4). Hoewel een halvering
van het ongezuiverde afvalwater zorgt voor een substantiële vermindering van organische (BOD) en
pathogene (FC) vervuiling op mondiale niveau, verschillen de vervuilingsniveaus sterk per regio en
worden de kritische drempelwaardes voor waterkwaliteit in veel regio’s in de wereld nog steeds
overschreden. Met name in ontwikkelende landen is de vermindering in verontreinigende stoffen
effectief op lokale schaal, maar het transport van verontreiniging vanuit stroomopwaarts gelegen
gebieden zorgt nog steeds voor problemen voor de waterkwaliteit stroomafwaarts. Deze resultaten
benadrukken daarom dat het noodzakelijk is om verder te gaan dan de SDG-doelstelling voor
afvalwater om het algehele doel van ‘schoon water voor iedereen’ te kunnen bereiken.

Ten slotte presenteert dit proefschrift de eerste analyse van de impact van mondiale veranderingen
op de oppervlaktewaterkwaliteit in de toekomst (Hoofdstuk 5). Hiervoor werd het DynQual model
aangedreven door de nieuwste socio-economische en klimaat-scenario’s voor de 21ste eeuw.
Verschillende combinaties van socio-economische en klimaat-scenario’s werden gebruikt op basis van
zogenaamde Shared Socioeconomic Pathway (SSPs) en Representative Concentration Pathways
(RCPs). In totaal, zijn drie uiteenlopende scenario’s getest. Deze variëren van een wereld die wordt
gekenmerkt door duurzaamheid en gelijkheid (SSP1-RCP2.6), tot heroplevend nationalisme en
toenemende ongelijkheid (SSP3-RCP7.0), tot sterke maar door fossiele brandstoffen aangedreven
economische ontwikkeling (SSP5-RCP8.5). De resultaten van deze scenario’s laten zien dat tegen het
einde van de eeuw het deel van de bevolking dat is blootgesteld aan een te hoog zoutgehalte, en
organische en pathogene vervuiling varieert tussen respectievelijk 17–27%, 20–37% en 22–44%.
Hierbij geldt dat met name mensen in ontwikkelingslanden te maken zullen krijgen met
verslechtering van oppervlaktewaterkwaliteit. Dit proefschrift laat zien dat, ongeacht welk klimaat of
socio-economisch scenario, Sub-Saharaans Afrika de toekomstige mondiale kritische regio (hotspot)
zal zijn voor oppervlaktewatervervuiling. Eerste resultaten laten zien dat deze regio in de toekomst
ook meer waterschaarste zal ondervinden door verslechtering in oppervlaktewaterkwaliteit in
combinatie met een toenemende disbalans tussen de beschikbaarheid versus vraag naar water voor
menselijke gebruiken (Hoofdstuk 6).

Het onvermogen om aan onze huidige vraag naar schoon water te voldoen wordt nu al beschouwd als
één van de grootste risico’s voor de mensheid, zowel in termen als waarschijnlijkheid als de potentiële
gevolgen Dit onvermogen zal leiden tot een sterke toename van waterschaarste, niet alleen door geringe
waterbeschikbaarheid, maar ook in grote mate door slechte waterkwaliteit. Dit proefschrift laat zien
dat voor duurzaam waterbeheer het voor de meeste gebieden in de wereld essentieel is om rekening te
houden met de kwaliteit van water.
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