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Chapter 1

Introduction

Geometry. The world is inherently geometric. We are three-dimensional beings
in a three-dimensional world. We move along a two-dimensional surface and jump
up into the third dimension, all the while moving through time along the fourth
dimension. Our eyes produce two flat images that are combined so that we are able to
detect depth. Seeing is geometry, as we constantly guess distances and match shapes.
Geometry cannot just be defined, it can be visualized, it can be drawn. Geometry can
be beautiful.

Figure 1.1: Two spiroplots [50].

This thesis defines and solves abstract computational problems in this geometric
world. When working on a problem one does not look at the entire world, but restricts
their view to a specific geometric space; this space then also defines the number of
dimensions to consider. For example, a map is a drawing in two-dimensional space
(see Figure 1.2) On the other hand, a hiker in the mountains moves around in three-

7



8 Chapter 1 Introduction

Figure 1.2: A map used in orienteering.1It depicts a hillside close to the village of
Val d’Isère. The red curves are contour lines, the black line segments show ski lifts
and the gray polygons represent buildings.

dimensional space. As long as there are no overhangs in this mountain range, when
given the latitude and longitude of a hiker, we also know their elevation, in which
case we talk of a 2.5-dimensional surface. As a third example we mention the inside
of a 3D-printer, where we are clearly in a three-dimensional environment.

We concern ourselves with the objects in these spaces and in their properties.
Continuing with the examples above, objects on a paper map are anything that you
can draw with ink like points, lines, curves, circles, colored regions or labels. When
hiking in the mountains, the interesting objects besides the surface of the mountain
itself are the stones and boulders, the plants, the streams flowing down the mountain,
the animals living there and the people walking around. Inside a 3D-printer we
consider the robotic arm or arms that place the material, we consider the floor, the
walls, the ceiling, and the platform. We are interested in the shape of the half-finished
product and in the shape of the end product.

1The map was graciously provided by the Savoie Departmental Orienteering Committee (Comité
Départemental de Course d’Orientation de la Savoie) with is part of the French Federation of Orienteering
(Fédération Française de Course d’Orientation).
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Measures. All of the above objects have multiple properties like their size, shape,
color, momentum, or their position in space. If a characteristic can be quantified with
a single number, it is a measure. We can measure the length of a path on a map, the
average steepness of a hiking path, or the volume printed so far during a 3D-printing
process.

However, instead of focusing our attention on just the features of one object at a
time, we can also investigate the relations between two objects. We can measure how
far apart two points on a map are, using for example the Euclidean distance or the
Manhattan distance. The relation between the two objects can also be how similar
they are. One can evaluate how closely a path drawn on a map reflects the real path
it represents, or whether the finished 3D-printed product matches the design (see
Figure 1.3). These relations can be quantified using distance or similarity measures.
Note that distance measures can also measure similarity. The Hausdorff distance
for instance measures similarity between regions or point sets by determining the
distance to outliers.

Figure 1.3: A 3D-printed object and the corresponding model. The curved surface in
this sculpture plays a role in the data structure in Chapter 4.

Measuresmay quantify an aspect of one, two ormultiple objects and themeasured
trait does not have to be of a geometric nature. One can measure how grid-like the
roads of a city are. One can determine the diversity of the fauna or flora of a mountain
range by counting the number of species. One can quantify how consistent a printing
process is using a batch of products.

Algorithms. An algorithm is a sequence of basic operations. Algorithms are used to
instructmachineswhich steps to take to produce a certain result (see Figure 1.4). Since
nowadays most processes are automated, the art of developing efficient algorithms is
more important than ever. Throughout this thesis, we approach different problems
and aim to develop efficient algorithms that solve these problems.

But when is an algorithm considered to be efficient? There are multiple parameters
that can be considered when defining the efficiency of an algorithm, like the execution
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s s s s

t t t t

Figure 1.4: To find the shortest path from the red vertex s to the blue vertex t on this
graph, we use the breadth-first search algorithm. This algorithm finds all vertices
with distance 1 to s, then all vertices with distance 2 to s, and so on, until it finds t.

time, or the storage space needed. For algorithms that do not aim to find the optimal
solution, but just try to approximate the result, the quality of the output is another
parameter of interest. Similarly, for algorithms with random elements, an important
aspect is the probability that the output is as desired. Some parameters like the
storage space needed, or the time it takes to execute the algorithm generally change
depending on the size of the input. Furthermore, the execution time depends on the
machine that runs the algorithm. That is why, when displaying these properties, we
focus on the scalability of these properties depending on the input size.

Another important aspect of the execution time of algorithms is that, in order
to prove that a problem can be solved within certain time constraints, it suffices to
showcase an algorithm that solves that problem provably within the given time. Note
that finding such an algorithm may be far from trivial. On the flip side, proving that
a given problem is hard, that is, proving that a given problem cannot be solved within
a certain time span turns out to be more difficult in most cases. For that reason the
concept of complexity classes was introduced. Depending on the complexity class,
membership of a problem in a class can be shown by reduction, meaning one shows
that an efficient algorithm for the investigated problem would imply an efficient
algorithm for the other problems in that class. Thus, a proof that one of the problems
in a class cannot be solved quicker than a certain bound implies a lower bound on
the execution time of all problems in that class. Therefore, if one is faced with a
hard problem, it is common that one attempts to show that it it belongs to a well-
known complexity class. A common example is the class of NP-complete problems;
informally, it contains problems for which it is believed to be hard to find an efficient
solution, but for which one can quickly check if a given solution is correct. An example
of an NP-complete problem is the Subset Sum problem (see Figure 1.5): given a set A
of integers and an integer b, we ask if one can select some of the integers in A such
that they sum up to b. The problem is hard to solve, that is, it is hard to determine
which integers to select. If on the other hand, one is given a supposed solution, that
is, a selection of integers, it is easy to check whether they sum up to b. The problem
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A = {6, 6, 9, 13, 17, 22, 24, 27, 30}, b = 59

6 + 22 + 30 = 58 ✗

13 + 17 + 30 = 60 ✗

6 + 9 + 17 + 27 = 59 ✓

Figure 1.5: An instance of the NP-complete problem Subset Sum, that is, a set of
integers A and an integer b. The question is whether there is a subset of numbers
in A that sum up to b.

Subset Sum is used in a reduction in Chapter 6.
In the field of algorithms one can classify problems depending on the setting.

A problem is static if input is given in full before any computation is run. In the
dynamic setting, the input is given incrementally, that is, an algorithm is required to
not only calculate a result, but also to update that result when more input appears,
respectively when the input changes. The query setting sits in the middle between the
two: some data is given in advance and the input of the query is given later. For the
query setting, algorithms are expected to precompute additional information on the
data available at the start so that when queried, an answer can be found quickly. Data
structures are helpful in all three settings but are a major part of algorithm design in
the latter two. A data structure is simply a method of storing information that allows
specific queries concerning the stored information to be evaluated efficiently. An
example of precomputing data and putting it into a data structure is sorting books
lexicographically onto a bookshelf. It allows finding a specific book faster compared
to searching through books placed arbitrarily on the bookshelf. A data structure is
dynamic if it allows the data it stores to be updated. The bookshelf can be considered
a dynamic data structure if the books are not packed too tight. Then, new books can
be added without much work while still keeping the lexicographic order intact.

Computational Geometry. Finally, the field of computational geometry combines
geometry and algorithms, that is, a computational geometer investigates how to
obtain an efficient solution to a geometric question using a set of basic operations.
Going back to the examples used above, a question in computational geometry is
how to find the shortest path between two points between obstacles (see Figure 1.6)
or how to best place labels on maps to maximize readability. Given the description of
a mountain range, one problem to approach would be to determine which slopes risk
forming avalanches in winter. During the 3D-printing process, if the model to print
has overhanging parts and if the printing method creates the structure in layers, one
is concerned with placing supporting structures while minimizing printing overhead.
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s

t

Figure 1.6: The shortest path from s to t in the plane among polygonal obstacles.

One way computers can store data is using a random-access memory, for short
RAM. This type of memory allows to read and write data independent of the actual
location of the data within the storage medium. Data is stored using a certain number
of bits, which implies that numbers can only be stored up to a certain precision. In
contrast, in the field of computational geometry, we generally use the real RAMmodel,
that is, we assume the algorithm we develop runs on a hypothetical computer with
the following features: we can store and access real numbers with infinite precision
in constant time and perform arithmetic operations on them in constant time. In
general, we are not allowed modulo or the floor operator in the real RAMmodel, as
they can be exploited to create algorithms that solve hard problems faster that they
should be possible to be solved. This model is used because it allows to focus on
the geometric decision points, instead of the numerics of the situation. In practice,
algorithms developed on the real RAM model do run on actual computers, although
with restrictions. For a good overview of the real RAM model and the implication of
its use, see [57].

This thesis combines the aspects listed above, that is, it treats geometric measures
and how to define, calculate and use them.

1.1 Preliminaries
Here we define the notation that is used throughout the thesis. Additionally, we
introduce and define core concepts.

1.1.1 Notation for Basic Concepts
We first define the notation for some basic concepts. For a set S, its cardinality |S|
is the number of elements in S. For real numbers a ≤ b ∈ R, we write (a, b) =
{c ∈ R | a < c < b} for the open interval between a and b. Further, we write
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(a, b] = {c ∈ R | a < c ≤ b} and [a, b) = {c ∈ R | a ≤ c < b} for the half-open intervals
and [a, b] = {c ∈ R | a ≤ c ≤ b} for the closed interval.

Throughout this thesis, we work in the h-dimensional Euclidean space Rh for
h ∈ {1, 2, 3}. A point p ∈ Rh is a h-dimensional vector p = (p1, p2, . . . , ph). We
furthermore define px = p1, py = p2 and pz = p3. For a region S ⊆ Rh defined by an
equation E, we write S ≡ E; for example for the two-dimensional line ℓ with slope s
and y-intercept t, we write ℓ ≡ y = sx + t, that is, ℓ = {(x, y) | y = sx + t}. The
Euclidean distance between the points p ∈ Rh and q ∈ Rh is d(p, q) =

√∑h
i=1(pi − qi)2.

For two regions A,B ⊆ Rh, we denote by d(A,B) = mina∈A,b∈B d(a, b) the distance
between their closest points. We define pq as the (closed) line segment between the
two points p, q ∈ Rh. The length of pq equals the distance d(p, q). Lastly, a curve is a
continuous function T : [0, 1] → Rh. We sometimes overload the term and also refer
to the image of that function as the curve.

1.1.2 Measures
In this thesis, a measure is simply a function that returns a number. Depending on the
nature of the measure, we require additional properties. For distance and similarity
measures it can be helpful if the measure is a metric. Formally, a set S and a measure
f : S × S → R on that set form a metric space if the following holds:

∀a, b ∈ S : f(a, b) = 0 ⇐⇒ a = b (separation)
∀a, b ∈ S : f(a, b) ≥ 0 (non-negativity)
∀a, b ∈ S : f(a, b) = f(b, a) (symmetry)

∀a, b, c ∈ S : f(a, c) ≤ f(a, b) + f(b, c) (triangle inequality)

We call the measure f(·, ·) in a metric space a metric.
Some similarity measures below are so-called bottleneck measures. Those meas-

ures, when comparing two objects, look at the most dissimilar parts between them
(the bottleneck) and use those parts to quantify the similarity between the objects.
We now define the measures relevant for this thesis.

The Hausdorff distance [76] between two regions A ⊆ Rh and B ⊆ Rh is

dH(A,B) = max
{−→
dH(A,B),

−→
dH(B,A)

}
, with

−→
dH(A,B) = sup

a∈A
inf
b∈B

d(a, b).

The function −→
dH(A,B) is the directed Hausdorff distance. The Hausdorff distance is

determined by the point in one of the sets that is the farthest away from its closest point
in the other set, see Figure 1.7. Thus, it is a bottleneck distance. TheHausdorff distance
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Figure 1.7: Two sets of points. For each red point its closest blue point is indicated
and vice versa. Here, the Hausdorff distance between the two sets is determined by
the distance of the blue point on the right to its closest red point.

satisfies the non-negativity, symmetry and triangle inequality conditions to be ametric.
For compact sets the separation condition holds as well. The Hausdorff distance
between two polygons of size n and m can be computed in O((n +m) log(n +m))
time [7]. The same holds for sets of n and m points or segments. On the other hand,
computing the Hausdorff distance between two semi-algebraic sets is hard for a
quite general complexity class (∀∃<R-hard) which implies that the problem is both
NP-hard and co-NP-hard (as well as ∃R-hard and ∀R-hard) [82]. The concept of
NP-hardness is introduced in Subsection 1.1.3. The Hausdorff distance is widely used,
for example in computer vision [105], or for detecting anomalies in trajectories [92].

Figure 1.8: The Fréchet distance of two curves is calculated by traversing both curves
simultaneously while staying within a certain distance indicated by the black arrow.

The Fréchet distance [61] is also a bottleneck similarity measure. The Fréchet
distance between two curves P and Q is

dF(P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t))

).
The reparametrizations σ, τ : [0, 1] → [0, 1] range over all orientation-preserving
homeomorphisms. The Fréchet distance is a metric. The main difference compared
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dF(P,Q)

dH(P,Q) dwF(P,Q)

Q

P

Figure 1.9: The difference between the Hausdorff distance and the (weak) Fréchet
distance. The two bottleneck points that induce the Fréchet distance between the two
curves are shown in yellow. For the Hausdorff distance they are green, and for the
weak Fréchet distance the points are purple.

to the Hausdorff distance is that the Hausdorff distance works on sets whereas the
Fréchet distance is only defined for curves, although it can be extended to surfaces.
When comparing both distances on curves, we see that the Fréchet distance takes
into account the order in which the curves are traversed (see Figure 1.8), which the
Hausdorff distance does not. For polygonal chains P and Q of length n andm, the
Fréchet distance can be calculated inO(nm log(n+m)) time [8]. The Fréchet distance
has been used in a variety of applications, for example when analyzing geographic
data, such as curves describing animal movement, or comparing chemical structures
like protein chains or DNA [109].

Theweak Fréchet distance [8] is a variation of the Fréchet distance that allows
backtracking along the curves. Formally, the weak Fréchet distance between two
curves P and Q is

dwF(P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t))

).
Here, the reparametrizations σ, τ : [0, 1] → [0, 1] range over all continuous surjective
functions. Note that contrary to [8], we do not require for endpoints to be matched
in this thesis. The weak Fréchet distance satisfies the non-negativity, symmetry and
triangle inequality conditions to be a metric but not the separation condition, that is,
two distinct curves can have weak Fréchet distance 0. Note that for any two curves P
and Q, dH(P,Q) ≤ dwF(P,Q) ≤ dF(P,Q) holds. Figure 1.9 shows curves where there
is a significant difference between the Fréchet, the weak Fréchet and the Hausdorff
distance.

The species richness [110] is a diversity measure that aims to determine the
diversity of a set of labeled objects, like a set of animals of various species or a set
of colored points. The species richness of a labeled set S is simply the number of
different labels present in that set S, see Figure 1.10. This means the species richness
of a labeled set S is |{ℓ | s ∈ S, ℓ is the label of s}|.

The Shannon index [111] is also a diversity measure that, contrary to the species
richness, takes the ratios of the labeled objects into account. Formally, the Shannon
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2 2 3 3 4Richness:

Shannon index: log2 3

= 1

log2 3− 2
3

3
2

5
2 − 3

8 log2 3

≃ 0.9 ≃ 1.6 = 1.5 ≃ 1.9

1

Figure 1.10: For each depicted set its richness and its Shannon index are indicated.

index of a labeled set S is −
∑r

i=1 ρi log2 ρi, where r is the species richness of S,
ρi = |Si|/|S| and Si ⊆ S is the set of objects with label i. Note that since the ratio ρi
is between 0 and 1, the term log2 ρi is negative. Therefore, we use a minus so that the
Shannon index yields a positive number, as shown in Figure 1.10. Note that multiple
bases for the Shannon index have been discussed. We chose 2 as this simplifies our
calculations. Note that this diversity measure is strongly related to entropy, in a way
that the Shannon index of a labeled set is the entropy of the probability distribution
induced by the set.

1.1.3 Additional Concepts
Big-O Notation. An important aspect of an algorithm is its running time. It is
common to indicate the running time of an algorithm in terms of the number of basic
steps the algorithm needs to perform in the worst case, as a function of the input
size. Furthermore, as the exact running time depends on the programming language
used to implement the algorithm and the machine running the code, it is common
to disregard constant factors in the running time. To that end, we define the big O
notation [14]: for functions f, g : R → R,

f(n) ∈ O(g(n)) ⇐⇒ ∃c ∈ R+,∃n′ ∈ R,∀n > n′ : f(n) ≤ c · g(n);

f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n));

Θ(g(n)) = O(g(n)) ∩ Ω(g(n)).
Therefore, when we state that an algorithm has a running time of O(g(n)), we mean
that our algorithm will produce a result using at most c · g(n) basic operations in the
worst case, where c is a constant. For more information, see Chapter 3 in [49].

ComputationalComplexity. Wedefine the complexity classesP,NP andNP-complete [48].
A problem is in P if there exists an algorithm that solves all instances of that problem
with polynomial running time, that is, with running time in O(nc), where n is the
size of the input and c is a constant independent of n. A problem is in NP if first, a
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solution can be described using polynomial space and second, a potential solution can
be tested in polynomial time. Note that P is contained in NP. The question whether
there are problems in NP that are not in P is open. A problem is NP-hard if it is at
least as hard as all other problems in NP. That is, a problem A is NP-hard if any
problem B in NP can be reduced to A in polynomial time. The class NP-complete
contains the NP-hard problems that are in NP. The existence of a polynomial time
algorithm for anyNP-hard problemwould imply P=NP. Thus, proving that a problem
is NP-complete, means that, unless one of the most impactful discoveries in the field
of theoretical computer science is made, we cannot solve all instances of that problem
in polynomial running time. More information can be found in Chapter 34 in [49].

Approximation Algorithm. Another important concept, especially in the context of
NP-hard problems, is approximation. An optimization problem being NP-hard only
means that finding an algorithm that produces an optimal solution is challenging.
An approximation algorithm is an algorithm that guarantees to produce a result
that is within a certain distance of an optimal solution. For example, a constant
factor approximation algorithm guarantees a solution that is at most a constant factor
worse than an optimal solution. For example, a 2-approximation algorithm for a
shortest path problem produces a path that is at most twice as long as the shortest
possible path.

y = −x+ 2

(1, 1)

(−2, 4)

(−1,−2)

y = x− 1

y = −2x− 4

dualprimal

e

e∗

Figure 1.11: An orange segment, its purple supporting line and the corresponding
dual double wedge. The blue line intersects the edge and therefore its dual point is
inside the double wedge.
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Dual Transformation. We define the dual transformation, a useful tool to look
at problems from a different perspective [29]. For certain geometric objects o, we
define their dual o∗. Let p = (px, py) be a point, ℓ ≡ y = sx+ t be a line and s = qw
be the line segment between the points q and w. The dual of the point p is the line
p∗ ≡ y = pxx−py . The dual of the line ℓ is the point ℓ∗ = (s,−t). Note that this implies
(v∗)∗ = v for any point or line v. The duality transformation preserves incidences,
that is, we have p ∈ ℓ ⇐⇒ ℓ∗ ∈ p∗. Finally, s∗ is the double wedge between the two
lines q∗ and w∗, that is, s∗ is the set of points below q∗ or below w∗, but not below
both. As incidence is preserved, s∗ is the set of all points dual to lines intersecting s.
Note that the dual transformation is not defined for vertical lines. Also, the dual
of a vertical segment is the strip between two parallel lines. For a more in-depth
explanation, see Chapter 8 in [18].

Voronoi Diagrams. Finally, we briefly explain Voronoi diagrams [116]. Intuitively,
a Voronoi diagram is a subdivision of space using nearest neighbors, as shown in
Figure 1.12. The Voronoi diagram of a set S of points in R2 is a subdivision of
the plane into cells with the following properties: each cell is associated with a
point p ∈ S and the cell Cp associated with p ∈ S contains all the points whose
nearest neighbor among S is p, that is, Cp =

{
w ∈ R2 | d(w, p) < minq∈S\{p} d(w, q)

}.
In general, a Voronoi diagram of a set S of regions is a subdivision of the two-
dimensional space R2 into cells Cr associated with the regions r ∈ S, with Cr ={
w ∈ R2 | d(w, r) = minq∈S\{r} d(w, q)

}. The boundary between two cells is called
a Voronoi edge. When S is a set of points, the cells are convex and the Voronoi edge
between two adjacent cells associated with the points p and q is a subsegment of the
bisector between p and q. For more information, see Chapter 7 in [18].

Figure 1.12: Left: A set of red points and the corresponding orange Voronoi diagram.
Right: a set of red segments and the corresponding Voronoi diagram. For the blue
points, the closest red element is shown.
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1.2 Overview of the Thesis

Below, I briefly introduce the chapters of the thesis, all focusing on different aspects
concerning algorithms on geometric measures.

Mapping Regions to the Grid with Bounded Hausdorff Distance
As described above, measures can be used to quantify the similarity of two geometric
objects. One use of this is elaborated in Chapters 2 and 3. Here, we consider an
abstraction of displaying geometric regions on a screen. More formally, we represent
a set of objects given as a vector graphic using a raster image. The input is a vector
graphic which is an analytical representation of geometric objects using points, seg-
ments, lines, circles and curves in general. A raster image is a discrete representation
of geometric objects using a set of colored pixels on a grid. We use the Hausdorff dis-
tance to determine how well the pixelated version represents the input. In Chapter 2
the input is a set of disjoint and simply-connected regions and we investigate the
influence of the shapes of the regions on how similar a pixelated version can be to the
original. We prove asymptotically tight bounds for several classes of input regions.

I. van der Hoog, M. van de Kerkhof, M. van Kreveld, M. Löffler, F. Staals,
J. Urhausen and J. L. Vermeulen. Mapping Multiple Regions to the Grid with
Bounded Hausdorff Distance. 17th Algorithms and Data Structures Symposium
(WADS), pages 627–640, 2021.
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Mapping Points to the Grid with Bounded Hausdorff Distance
Again, we study a problem in digital geometry in Chapter 3: given a set of objects
as a vector graphic, represent those objects using a raster image. However, instead
of representing general regions using a set of grid cells, we focus on representing
points using disjoint pixels on a grid, again with bounded Hausdorff distance. We
explore algorithms that compute—or at least approximate—the pixels with the least
distance to the respective points. We prove that optimizing the problem is NP-hard.
Additionally, we present a constant factor approximation algorithm, as well as a
slower algorithm with only a constant additive error.

M. Löffler and J. Urhausen. Mapping Points to the Grid with Bounded
Hausdorff Distance. 33rd Canadian Conference on Computational Geometry
(CCCG), pages 47–55, 2021.
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Querying the Hausdorff Distance of a Line Segment
We then move on to determining the Hausdorff distance efficiently in a query setting:
given one possibly large set and multiple smaller sets, we want to determine the
Hausdorff distance between the large set and each individual smaller set one by one.
In Chapter 4, we focus on line segments and thus attack the problem of preprocessing
a set of line segments R with the aim to quickly determine the Hausdorff distance
between R and a query line segment b. We present a data structure for this problem
that allows a trade-off between the query time and the space required for storing the
structure.

F. Staals, J. L. Vermeulen and J. Urhausen. Querying the Hausdorff Distance
of a Line Segment. Abstracts of the 38th European Workshop on Computational
Geometry (EuroCG), pages 60:1–60:8, 2022.
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The k-Fréchet Distance: How to Walk your Dog while Teleporting
Next, in Chapter 5, we describe the k-Fréchet distance, a similarity measure that
bridges between the Fréchet distance and the Hausdorff distance, by testing similarity
between curves that resemble each other only piecewise. The parameter k denotes the
number of subcurves into which we divide the input curves. The k-Fréchet distance
allows two variants, the cover and the cut distance. The cut variant is not just NP-hard,
but APX-hard [38]. We show that computing the cover variant of k-Fréchet is NP-
hard, which is interesting since both the (weak) Fréchet and Hausdorff distance are
computable in polynomial time. We then present two algorithms for the cover variant:
a polynomial time 2-factor approximation and an exact algorithm with exponential
running time. Finally, we present a polynomial time algorithm for the case k = 2 in
the cut variant.

H. A. Akitaya, M. Buchin, L. Ryvkin and J. Urhausen. The k-Fréchet Distance:
How to Walk Your Dog While Teleporting. 30th International Symposium on
Algorithms and Computation (ISAAC), pages 50:1–50:15, 2019.

M. Buchin, L. Ryvkin and J. Urhausen. Computing the Cut Distance of Two
Curves. Abstracts of the 36th European Workshop on Computational Geometry
(EuroCG), 2020.
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Diverse Partitions of Colored Points
Instead of similarity we measure diversity in Chapter 6. We determine how well a set
of colored points is mixed, that is, how well the colors are distributed. We approach
this by partitioning space into well-shaped cells with the aim that overall the points
within the cells form diverse sets, as measured using the species richness or the
Shannon index. The diversity of a partition is the sum of the diversity scores of
its cells. Note that this is the first spatial definition of diversity that does not use a
predetermined subdivision. The algorithmic question asked in this chapter is, given a
set of colored points, how to best partition this set into diverse and well-shaped cells.
We study multiple versions of this problem in one and two dimensions. We measure
the diversity of the cells using species richness, or the Shannon index. Furthermore,
we consider partitioning the set using convex cells, or cells derived from a Voronoi
diagram. Our results include hardness proofs and efficient algorithms.

M. van Kreveld, B. Speckmann and J. Urhausen. Diverse Partitions of Colored
Points. 17th Algorithms and Data Structures Symposium (WADS), pages 641–
654, 2021.

3 3

2

4
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Chapter 2

Mapping Regions to the Grid
with Bounded Hausdorff
Distance

We study a problem motivated by digital geometry: given a set of disjoint geometric
regions, assign each regionRi a set of grid cellsPi, so thatPi is connected, similar toRi,
and does not touch any grid cell assigned to another region. Similarity is measured
using the Hausdorff distance. We analyze the achievable Hausdorff distance in terms
of the number of input regions, and prove asymptotically tight bounds for several
classes of input regions. This chapter is based on the following publication:

I. van der Hoog, M. van de Kerkhof, M. van Kreveld, M. Löffler, F. Staals,
J. Urhausen and J. L. Vermeulen. Mapping Multiple Regions to the Grid with
Bounded Hausdorff Distance. 17th Algorithms and Data Structures Symposium
(WADS), pages 627–640, 2021.

2.1 Introduction
Digital geometry is concerned with the proper representation of geometric objects and
their relationships using a grid of pixels. This greatly simplifies both representation
and many operations, but the downside is that common properties of geometric
objects no longer hold. For example, two lines in R intersect in at most a single point,
but it may be that two digitized lines intersect in multiple connected components.
One objective of digital geometry is how to consistently digitize a set of geometric
objects. Another objective is the presentation of vector objects with bounded error,
using subsets of pixels.

25
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Early results in digital geometry were mostly concerned with consistency and
arose in computer vision. For a survey, see Klette and Rosenfeld [86, 87]. More
recently, also error bounds under the Hausdorff distance have been studied. Chun et
al. [46] investigate the problem of digitizing rays originating in the origin to digital
rays such that certain properties are satisfied. They show that rays can be represented
on the n × n grid in a consistent manner with Hausdorff distance O(log n). This
bound is tight in the worst case. By ignoring one of the consistency conditions, the
distance bound improves to O(1). Their research is extended by Christ et al. [44]
to line segments (not necessarily starting in the origin), who obtain the logarithmic
distance bound in this case as well. A possible extension to curved rayswas developed
by Chun at el. [45]. Other results with a digital geometry flavor within the algorithms
community are those on snap rounding [19, 66, 77], integer hulls [10, 75], and discrete
schematization [95].

In a recent paper, Bouts et al. [26] showed that any simple polygon, no matter
how detailed, can be represented by a simply connected set of unit pixels such that
the Hausdorff distance to and from the input is bounded by 3

√
2/2.

Figure 2.1: Three disjoint simply connected regions and a representation by simply
connected sets of disjoint pixels.

2.1.1 Contribution
We extend the result from Bouts et al. [26] to multiple regions, see Figure 2.1. We
investigate several restrictions on the class of regions and we show that stricter re-
strictions allow for pixel representations with a smaller Hausdorff distance. All our
bounds are tight. We express our bounds in the number of input regions. Our results
are shown in Table 2.1; they are fundamental results on the error that may be incurred
when converting vector to grid representations, a common operation in computer
graphics and GIS.

We do not make any assumptions on the resolution of the input. If the minimum
distance between any pair of polygons is at least some constant (e.g., 4

√
2 is enough),

then we can realize a constant Hausdorff bound in all cases by applying the results
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Table 2.1: Worst-case bounds on Hausdorff distances for m regions; β is constant.

region Points Convex β-fat Convex General Polygons General Polygons
class and m = 2 andm ≥ 3

Hausdorff Θ(
√
m) Θ(

√
m) Θ(m) Θ(1) unbounded

distance

from Bouts et al. [26] separately on each polygon. We consider the case where no
such assumptions are made.

2.1.2 Notation and Definitions

We denote by Γ the (infinite) unit grid, whose unit squares are referred to as pixels.
We say two different pixels are adjacent if they share a vertex or edge. Recall that the
Hausdorff distance between two sets A,B ⊂ R2 is defined as dH(A,B) = max{supa∈A

infb∈B d(a, b), supb∈B infa∈A d(a, b)}, where d(a, b) is the distance between the
points a and b. Further we denote by d′H(A,B) = max{dH(A,B), dH(∂A, ∂B)} the
Hausdorff distance between the sets themselves and between their boundaries. See
Figure 2.2 for an example where the distinction between dH(·, ·) and d′H(·, ·) is import-
ant.

Let R = {R1, R2, . . . Rm} be a set of m disjoint simply connected regions in the
plane. In this chapter, we show how to assign a subset of the pixels Pi ⊂ Γ to each
region Ri ∈ R, such that the result is a set of m disjoint simply connected regions.
Two such grid polygons are disjoint if they do not meet in any edge or vertex of the
grid. A grid polygon is connected if its pixels are connected by edge adjacency, and
simply connected if it is connected and its complement is also connected by edge
adjacency. Hence, we do not allow vertex adjacency at all as it is ambiguous. We call
the set {P1, P2, . . . , Pm} of such grid polygons a valid assignment for R.

Figure 2.2: When we assume that their centers are aligned, the Hausdorff distance
between the green and red regions is large while the Hausdorff distance between
their boundaries is small. The inverse is true for the red and purple regions.
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2.1.3 Overview

We are interested in finding for any set of regions R a valid assignment such that
for all i ∈ {1, . . . ,m} the Hausdorff distance between Ri and Pi is at most h, and
the Hausdorff distance between their boundaries is also at most h. In general, a
worst-case bound on h will be a function of m. We study this problem under several
restrictions onR; refer to Table 2.1. For each class of restrictions, first we show that
there is a set of regions in that class for which any valid assignment contains at least
one region Ri with a grid polygon Pi where d′H(Ri, Pi) = Ω(h). Second we show
that for any set of regions in that class, we can find a valid assignment such that for
all regions Ri ∈ Rwith corresponding grid polygon Pi, we have d′H(Ri, Pi) = O(h).
Hence, our bounds are asymptotically tight.

We may interpret a solution to our problem as a coloring of Γ: each pixel q ∈ Γ
is assigned one color in C = {c1, . . . cm} ∪ {b}, where ci is the color of the input
region Ri and b is the background color.

Our upper bound constructions all use similar concepts. Let Γk be a coarsening of
the grid Γ whose cells have k × k pixels, see Figure 2.3. We call these cells superpixels.
For any superpixel S ∈ Γk, we denote by S[x, y] the pixel that is the (2x)th from the
left and (2y)th from the bottom within S. We will determine for each region from R
which superpixels it contains and which ones it properly intersects, that is, for which
it intersects the interior of the superpixel. If a regionRi contains a superpixel, then all
pixels of Γ in that superpixel will be part of Pi. If Ri properly intersects a superpixel,
we ensure that at least one, but not all pixels in that superpixel will be part of Pi.
A superpixel not intersecting Ri will have no pixels in Pi. The main challenge is
then finding a scheme by which each grid polygon becomes simply connected yet all
remain disjoint. It is then relatively straightforward to see that d′H(Ri, Pi) ≤ k

√
2.

1

3

Figure 2.3: A coarsening Γ3 of the grid Γ. Each superpixel has 3× 3 = 9 pixels.
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2.2 Input Regions Are Points
In this section we first consider the simplest possible case, namely,R is a set of points.
We will construct a map that assigns points to pixels such that the Hausdorff distance
between each point and its corresponding pixel is bounded. For a lower bound,
consider a set of m points R that all lie within a single pixel. If we want to assign
each point to a unique pixel, we clearly need to use m different pixels. Any set of m
pixels has diameter Ω(√m), so at least one of the point regions will be mapped to a
pixel at distance Ω(√m).

Figure 2.4: The algorithm assigns to each point a pixel in the superpixel that contains
the point.

Accompanied by Figure 2.4, we now present a scheme that maps any set of m
pointsR to a set of pixels, such that the Hausdorff distance between any point and its
pixel is at mostO(

√
m). Let Γk be a coarsening of Γwith k = 2

⌈√
m
⌉. Each superpixel

has the space to accommodatem disjoint pixels without using the bottom row and
left column. For each region Ri ∈ R, we determine the superpixel S containing Ri.
We choose a pixel S[x, y] that is not yet colored and color it with ci; that pixel is Pi.
As, per definition, no two pixels S[x, y] and S′[x′, y′] are adjacent, even if S = S′, this
results in a valid assignment. As for each Ri ∈ R, the point Ri and the pixel Pi are in
the same superpixel, we have d′H(Ri, Pi) = Ω(

√
m).

Theorem 2.1. IfR is a set ofm points, a valid assignment exists such that for each region
Ri ∈ R with a corresponding region Pi, we have d′H(Ri, Pi) = O(

√
m). Furthermore, there

exists a setR ofm points such that for every valid assignment we have d′H(Ri, Pi) = Ω(
√
m).
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Figure 2.5: If the distance between p and a is 5βk then the triangle induced by p, a
and a′ contains a disk with diameter at least 2

√
2k. This disk contains a superpixel.

2.3 Input Regions Are Convex β-Fat Regions
A connected region R is β-fat if for some point w in R, the ratio of the radius of the
smallest w-centered circle containing R and the radius of the largest w-centered circle
contained in R, is at most β [96]. Observe that the only regions that are 1-fat are
points and disks, as points are β-fat regions for any β ≥ 1 by convention. In this
section we consider the class of convex β-fat regions for a constant β. From Section 2.2
it follows that for any m, there exists a set of m regions for which the Hausdorff
distance betweenR and any valid assignment is Ω(√m).

Let R be a set of convex β-fat regions and let Γk be a coarsening of Γ with k =
4
⌈√

m
⌉
+ 2. For a superpixel Si, we denote by vi the center of Si. Also, for two

superpixels S1 and S2 both contained within the same regionR, the line segment v1v2
is called the spine. We show some lemmata that lead to an algorithm that maps R
to a set of grid polygons P , such that the Hausdorff distance between any region Ri

and its assigned region Pi is at most O(β
√
m).

Lemma 2.2. Let R be a convex β-fat region, and let p be a point in R. Either R has diameter
less than 2

√
2βk, or R contains a superpixel within distance 5βk from p.

Proof. Let w ∈ R be a point such that, for r (r′) being the radius of the incircle
(excircle) centered at w inside (outside) R, r′/r ≤ β. Also, let d be the diameter of R.
If r ≤

√
2k holds, we have r′ ≤

√
2βk and therefore d ≤ 2

√
2βk. So in the following

we assume r >
√
2k. We distinguish two cases.

Case d(w, p) ≤ 5βk: The superpixel containing w is inside the incircle centered
at w, as r >

√
2k. So now p has distance less than 5βk to a superpixel contained

within R.
Case d(w, p) > 5βk: the construction is depicted in Figure 2.5. Let a be the point

on the segment wp at distance 5βk from p. Further let w′ and a′ be points on the
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Ri

S2

S1

v1

v2

Figure 2.6: A convex β-fat region Ri (purple), and the region formed by sweeping a
superpixel from S1 to S2 (green). The grid polygon Pi (orange) consists of S1, S2,
and all pixels on the segment between the centers v1 and v2.

same side of wp such that ww′ and aa′ are both perpendicular to wp and such that
d(w,w′) = r and a′ ∈ pw′. Due to R being convex and p, w and w′ being inside R
we also know that the triangle induced by those points is contained in R. We have
d(a, a′) = r · 5βk/d(w, p). Due to d(w, p) ≤ r′ and r′ ≤ βr we get d(a, a′) ≥ 5k. Note
that the isoceles right triangle with side length 2 + 2

√
2 contains a disk of radius

√
2.

As 5 > 2 + 2
√
2 and β ≥ 1, the triangle induced by the points p, a and a′ contains a

disk of radius
√
2k. This disk contains a superpixel. Also the distance between that

superpixel and p is less than 5βk.

Lemma 2.3. Let S1, S2 ⊂ R be two superpixels. Let p be a point on the spine v1v2 and let q
be a point such that |px − qx| ≤ k/2 and |py − qy| ≤ k/2. Then, q ∈ R.

Proof. We define d = q − p = (qx − px, qy − py) and have |dx| ≤ k/2 and |dy| ≤ k/2.
Thus v1 + d = (v1,x + dx, v1,y + dy) ∈ S1 ⊂ R and v2 + d ∈ S2 ⊂ R. As R is convex
and as q = p+ d ∈ v1 + d v2 + d, we have q ∈ R.

Algorithm. This leads to the following algorithm with two cases for each region Ri,
depending on the diameter of Ri.

Case 1: the diameter of Ri is at least 2
√
2βk. Then, the set of superpixels Si

contained in Ri is not empty. We need two steps. First we assign all pixels in each
superpixel of Si to Ri. Note that Si is not necessarily connected, as can be seen in
Figure 2.6. Nonetheless we can connect the superpixels in the second step.

Let S1 and S2 be two superpixels in different connected components of the super-
pixels contained in Ri. We aim to connect S1 and S2 with a path of pixels. We do so
by coloring all pixels that intersect the spine v1v2 with ci. We repeat this process for
each pair of superpixels contained in Ri, resulting in a connected grid polygon Pi.
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We finish by also coloring all pixels enclosed within Pi with ci. As a result, Pi is
simply connected.

Finally, we show that no two such colored pixels of different regions are adjacent.
For a region R, using Lemma 2.3, we know that each point within distance k/2 to a
point on a spine of R is contained in R. As k/2 ≥ 3 > 2

√
2, each pixel adjacent to a

pixel intersected by the spine is in R. Thus, the grid polygons Pi are disjoint.
Case 2: the diameter of Ri is smaller than 2

√
2βk. We select any superpixel S

intersected by Ri. First, if S is not intersected by any spine of two superpixels that are
within another region, let Q be any quadrant of S. Else assume that S is intersected
by a spine of two superpixels that are within a region Rj , see Figure 2.7. Lemma 2.3
implies that the center of S is contained in Rj , thus no spine of another region can
intersect S. Also, asRj is convex and S ⊈ Rj , at least one corner of S is not contained
in Rj . This, together with Lemma 2.3, implies that at least one quadrant Q of S is not
intersected by any spine spanned by two superpixels contained in another region.

Ri

S

Q

Figure 2.7: A convex β-fat region Ri (purple), and the region (green) formed by
sweeping a superpixel between the superpixels inRi. For a superpixelS not contained
in Ri but intersected by the spine of two of its superpixels, the center (red) of S is
inRi, but there is at least one corner (yellow) of S outsideRi. There is one quadrantQ
(blue) that will not contain pixels of Pi.

For the quadrantQ, letQ[x, y] be the pixel that is the (2x)th from the left and (2y)th

from the bottom withinQ. As the side length ofQ is k/2 = 2
⌈√

m
⌉
+1, Q contains at

least m distinct pixels Q[x, y] and no pixel Q[x, y] is adjacent to the boundary of Q.
Similarly to Section 2.2, we choose a pixel Q[x, y] that is not yet colored and color it
with ci; that pixel is Pi.

Note that we slightly deviate from the scheme proposed in Subsection 2.1.3. For
example, we do not require that any superpixel intersected by a region contains a
pixel of the corresponding color; we only require that a superpixel within bounded
distance contains a pixel of the corresponding color.
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Bounds on the Hausdorff distance. What remains to be proven is that for each
regionRi, d′H(Ri, Pi) ≤ 5βk holds. If the regionRi is in case 2, it has diameter smaller
than 2

√
2βk. Then the maximum distance between a point in Ri and any point in the

pixel Pi is 2
√
2βk +

√
2k ≤ 5βk. Thus, d′H(Ri, Pi) ≤ 5βk.

Else, Ri falls into case 1. First, we prove that for each (boundary) point p of Pi,
there is a (boundary) point q of Ri within distance 5βk. By construction, we know
Pi ⊆ Ri, so the claim holds for interior points. Now, let p ∈ ∂Pi. We assume for
the sake of contradiction that there is no point of ∂Ri within distance

√
2k. As p

is contained within Ri, we have that Ri contains the superpixels containing p, a
contradiction. Second, we prove the inverse. For a point q ofRi, Lemma 2.2 guarantees
that Ri contains a superpixel S within distance 5βk of q. Then S ⊆ Pi holds, proving
the claim. As Pi ⊆ Ri, this also proves that for each boundary point q of Ri, there is a
boundary point p of Pi within distance 5βk.

Theorem 2.4. For each β ≥ 1, if R is a set of m β-fat convex regions, a valid assignment
exists such that for each regionRi ∈ Rwith a corresponding region Pi, we have d′H(Ri, Pi) =
O(β

√
m). Furthermore, there exists a set R of m β-fat regions such that for every valid

assignment d′H(Ri, Pi) = Ω(
√
m).

2.4 Input Regions Are Convex Regions
WhenR is a set of convex regions, we can show a higher lower bound on theHausdorff
distance than in the previous cases.

Lemma 2.5. There is a set of regions R, such that for any valid assignment, we have
d′H(Ri, Pi) = Ω(m).

Proof. Let R be a set containing m long, horizontal line segments stacked close each
other, as shown in Figure 2.8. Formally, let Ri = piqi with pi = (−m, i/(m+ 1)) and
qi = (m, i/(m + 1)), for i ∈ {1, . . . ,m}. Assume for the sake of contradiction that

Figure 2.8: The lower bound construction for convex regions.
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there exists a valid assignment such that d′H(Ri, Pi) < m − 1 for each Ri ∈ R and
corresponding Pi. Then, for each i ∈ {1, . . . ,m}, there is a pixel in Pi at distance at
mostm− 1 to pi and a pixel in Pi at distance at most m− 1 to qi. This means Pi has
pixels left and right the y-axis. Furthermore, Pi is connected and thus it has at least
one pixel intersecting the y-axis. As no two pixels from different grid polygons are
adjacent, we know the distance between the top of the uppermost and the bottom
of the lowermost pixels belonging to grid polygons is at least 2m − 1. Thus for at
least one grid polygon, the Hausdorff distance between the grid polygon and its
corresponding segment is at leastm− 1.

We will describe an algorithm that, given a set of convex regions R, gives a valid
assignment of disjoint orthoconvex grid polygons such that, for all i, d′H(Ri, Pi) =
O(m).
Observation 2.6. Let R1, R2 ∈ R be two disjoint convex regions, and let ℓ be a horizontal
line that intersects R1 left of R2. Then any horizontal line intersecting both R1 and R2

intersects R1 left of R2. Similarly, all vertical lines that intersect both R1 and R2 do so in the
same order.

Observation 2.6 allows us to define two partial orders ⪯x and ⪯y on R: Ri ⪯x Rj

if and only if there is a horizontal line intersecting both regions and Ri intersects the
line left of Rj ; since the regions are convex we get a partial order [68]. We extend
this partial order as follows: first we add transitive arrows, where we recursively add
the inequality Ri ⪯x Rj if there exists a region Rk with Ri ⪯x Rk and Rk ⪯x Rj

and we denote this partial order by Πx(R). We then transform Πx(R) into a linear
order XR : R → [1,m] in any manner. A linear order YR : R → [1,m] is defined
symmetrically.

GivenXR and YR, we assign a coloring. Let Γk be a coarsening of Γ with k = 2m.
Recall that, for any superpixel S ∈ Γk, we denote by S[x, y] the pixel that is the (2x)th
from the left and (2y)th from the bottom within S. Additionally the horizontal and
vertical lines induced by Γk are called major lines. Each region Ri that intersects at
most one major horizontal line and at most one major vertical line is a small region.
Each region Ri that intersects at least two major parallel lines is a large region. Our
assignment of regions to pixels, illustrated in Figure 2.9, is:

1. For each small regionRi we choose one superpixel S intersected byRi and color
the pixel p(S,Ri) = S[XR(Ri), YR(Ri)]with ci. This single pixel will be Pi.

2. For each superpixel S and each large regionRi intersecting S that also intersects
the two major horizontal lines incident to S, or the two major vertical lines incid-
ent to S, we color p(S,Ri) = S[XR(Ri), YR(Ri)] with ci. Note that region Ri

need not intersect two opposite edges of S.
3. For any two pixels that are colored with ci in edge-adjacent superpixels (Ri

must be large), we color all pixels in the row or column between them with ci.
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(a) (b) (c)

Figure 2.9: The coloring algorithm for convex regions. (a) The input of five convex
regions, overlaid onto a superpixel grid with k = 10. (b) The pixels colored in Steps 1
and 2 of the algorithm. (c) The final coloring obtained after Steps 3 and 4.

4. For any four superpixels that share a common vertex, if they each contain a
pixel colored with ci in Step 2, we color all pixels in the square between these
pixels with ci.

Let P be the set of polygons induced by this grid coloring.
Lemma 2.7. Each polygon Pi ∈ P is simply connected and orthoconvex.

Proof. If Ri is small, Pi is a single pixel and thus simply connected and orthoconvex.
If Ri is large, we argue as follows: let B be the axis-aligned bounding-box of Ri. All
superpixels intersected by B are incident to two major parallel lines intersected by Ri

with the exception of the four superpixels containing the corners of B. Also, the
superpixels intersected by Ri form a simply connected, orthoconvex grid polygon S.
Recall that in Step 2 we place a pixel in each superpixel intersected by Ri that has
two major parallel lines incident to it. Thus, the only superpixels intersected by Ri

that do not have a pixel are superpixels that contain a corner of B. Let S′ be the grid
polygon formed by the superpixels that have a pixel of Pi. Since our algorithm picks
the pixel with the same relative position inside each superpixel, connects the chosen
pixels in adjacent superpixels with a horizontal or vertical row of pixels, and fills the
holes, we have that Pi is an orthoconvex grid polygon. It also follows that Pi is simply
connected if and only if S′ is simply connected.

Now, assume for the sake of contradiction that Pi and S′ are not simply connected.
Recall that the only superpixels in S that are not in S′ contain corners of B and
that S is simply connected. Let S ⊂ S be a superpixel containing a corner of B such
that S′ and S together form a connected grid polygon. Without loss of generality, we
assume that S contains the bottom-left corner of B, see Figure 2.10. Let St (Sr, Str)
be the superpixel directly above (right of, to the top-right of) S. Both S and S′
contain St and Sr. Also, S′ does not contain Str. We know thatRi does not intersect the
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S Sr

St

Stt

Srr

Str

Ri B

Figure 2.10: A region Ri and its bounding box B. If Pi is not simply connected, Ri

intersects the superpixels S, St, and Sr, as well as the major lines marked in green,
but not the superpixel Str. Note that this is only possible for non-convex Ri.

major vertical line incident to the left of St, so Ri intersects the two major horizontal
lines incident to St which also are the two major horizontal lines incident to Str.
Since Str ⊈ S, Ri does not intersect Str. It follows that Ri intersects the superpixel Stt
directly above St. Symmetricly, Ri intersects the superpixel Srr directly right of Sr.
Any line segment between a point in Stt and a point in Srr intersects Str. Since Ri is
convex, Ri intersects Str; a contradiction.

Lemma 2.8. The polygons in P are pairwise disjoint.

Proof. Assume by contradiction that the colorings of two regions R and Q intersect.
Then the intersection was created during one of the four coloring steps. In Steps 1
and 2, we assign each color to single pixels per superpixel in unique rows and columns,
hence they cannot create two colorings that intersect.

Let the colorings of R and Q intersect after Step 3. This implies that R and Q
are both large regions. The intersection occurs between a vertical and horizontal
pixel sequence in a super pixel S. Assume without loss of generality that the vertical
sequence belongs to R and the horizontal sequence belongs to Q. Consider the
case that the pixel p(S,R) assigned to R in S in Step 2 is to the top-left of p(S,Q)
(see Figure 2.11); the other three cases are symmetric. Then the intersection occurs
between the column sequence connecting p(S,R) to p(Sd, R) and the row sequence
connecting p(S,Q) to p(Sℓ, Q), where Sd is the superpixel directly below S and Sℓ is
the superpixel directly to the left of S.

Since Q is large and assigned a pixel in S it intersects both horizontal major lines
incident to S or both vertical major lines incident to S. The same applies for R. We
first consider the case where Q does not intersect the major horizontal line incident
to the bottom of S, and hence it intersects both vertical lines. That is, Q spans the
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Figure 2.11: The cases for the proof of Lemma 2.8. The pixels p(S,R) and P (S,Q) are
highlighted in yellow.

vertical slab defined by S and does so in or above S. Since R intersects the cell Sd

below S it then follows that R ⪯y Q. However, since p(S,R) lies above p(S,R) we
also have Q ⪯y R. Since Q ̸= R we thus obtain a contradiction.

Thus, Q intersects the major horizontal line ℓ incident to the bottom of S. Since R
is convex, and intersects both S and Sd it intersects the bottom edge of S (and thus ℓ)
in a point r. Symmetrically, Q intersects the left edge of S in a point q. If Q also
intersects the horizontal line ℓ in some point q′ this point cannot be left of r, as this
would immediately imply that Q ⪯x R, contradicting the assignment of p(S,R) and
p(S,Q). So q′ lies right of r. However, then the vertical ray starting at r pointing
upwards intersects the segment connecting q and q′. Since Q is convex, this segment
is contained in Q. This implies R ⪯y Q, which again contradicts the assignment of
p(S,R) and p(S,Q). It follows that Step 3 does not create intersecting colorings.

Finally, let the colorings of R and Q intersect only after Step 4. Without loss of
generality, the coloring of a region R is entirely contained in the coloring of a large
region Q. Let S be the superpixel containing the lone pixel of R. Without loss of
generality we assume that the pixel p(S,R) assigned to R in S is to the top-left of
p(S,Q) (See Figure 2.11). Thus,Q intersects S, the superpixel above S, the superpixel
left of S, and the superpixel left and above S. The point qwhere these four superpixels
meet lies inside Q by convexity. Let r be any point in R ∩ S.

As Q is a large region it needs to intersect two opposite major lines incident to S.
Assume that Q intersects the vertical major lines, in particular the one incident to
the right edge of S in a point q′. The vertical line through r intersects the segment
between q and q′. The point r is above that segment, because the opposite would
imply R ⪯y Q. As a consequence r is also right of the segment between q and q′,
which implies that the horizontal line through r intersects this segment left of R, a
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contradiction. The case where Q intersects the major horizontal line through the
bottom edge of S is symmetric.

Lastly, it remains to be shown that the Hausdorff distance d′H(Ri, Pi) are in O(m)
for each region Ri ∈ R. If a region Ri intersects a superpixel S, Pi has a pixel in S or
in at least one of the eight adjacent superpixels. Conversely, if Pi contains a pixel in S,
we know that Ri intersects S. This gives a bound on the Hausdorff distance between
the regions and the grid polygons. For the boundaries, note that if Ri contains a
superpixel S and all four edge-adjacent superpixels, Pi contains S. Furthermore,
if Pi contains a superpixel S, Ri also contains S. Together this gives a bound on the
Hausdorff distance between the boundaries. Since superpixels have size Θ(m), the
Hausdorff distance between Ri and Pi and between their boundaries is at most O(m).
We thus obtain the following result.

Theorem 2.9. If R is a set of m convex regions, a valid assignment exists such that for each
region Ri ∈ R with a corresponding region Pi, we have d′H(Ri, Pi) = O(m). Furthermore,
there exists a set R of m convex regions such that for every valid assignment, there exists
some 1 ≤ i ≤ m with d′H(Ri, Pi) = Ω(m).

2.5 Input Regions Are General Regions
When the input regions are arbitrary, we see a sharp contrast between the casem ≤ 2,
where constant Hausdorff distance can be realized, and the case m ≥ 3, where
the Hausdorff distance may be unbounded. The fact that a single region can be
represented as a grid polygon with constant Hausdorff distance was shown before
by Bouts et al. [26]. In Subsection 2.5.1 we show that the same result holds for two
regions. In Subsection 2.5.2 we show that for three regions, no bounded Hausdorff
distance bound exists that applies to all inputs.

2.5.1 Two Regions

Our result for two arbitrary regions is based on a combination of two previous results:
mapping a polygon to the grid with constant Hausdorff distance by Bouts et al. [26],
and a result on the Painter’s Problem by van Goethem et al. [64]. We briefly explain
the former result in our framework using superpixels first (see Figure 2.12), and then
extend it to our case with two regions using the latter result.

Assume we have a region R that we want to represent by a grid polygon P .
Consider the grid coarsening Γ3, which has superpixels of 3 × 3 pixels. For every
superpixel fully covered byR, choose all nine pixels in P . For every superpixel visited
but not covered byR, take themiddle pixel. Take nothing from superpixels not visited
by R. Let the chosen pixels be P ′.
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Figure 2.12: Left, a region with Γ and Γ3. Middle, the set P ′ of pixels chosen in the
first selection. Right, the set P of pixels chosen after the spanning tree pixels are
added.

Observe that P ′ forms a set of grid polygons that has no interior boundary cycles.
Also observe that all superpixels for which at least one pixel is in P ′ is a connected
(but not necessarily simply connected) part of Γ3.

We make P ′ into one simply connected grid polygon P by using a (minimum)
spanning tree on the components of P ′. We will add pixels from visited superpixels
only, and only ones adjacent to the already chosen center pixel. Two separate com-
ponents will always be connected using one or two pixels.

Since the boundary of P does not intersect the interior of fully covered superpixels
and visited superpixels always have a piece of boundary of P , it is easy to see that
dH(Ri, Pi) = Θ(1) and dH(∂Ri, ∂Pi) = Θ(1). This is an alternative way to show the
same results as Bouts et al., albeit with worse constants.

A Painter’s Problem instance takes a grid, and for each cell, the color white, blue,
red, or purple. White indicates the absence of red and blue while purple indicates the
presence of both red and blue. The question is whether two disjoint simply connected
regions for red and blue exist that are consistent with all specifications of the cells, or,
in the terminology of [64], “admits a painting”. Since red cells can simply be colored
red and blue cells blue, the problem boils down to recoloring the purple cells with
red and blue pieces. The red and blue pieces in a cell provide a panel, and all panels
together make up a painting. They prove:

Lemma 2.10. (Theorem 2 in [64]) If a partially 2-colored grid admits a painting, then it
admits a 5-painting.

In a 5-painting each cell contains at most 5 components. The components make
sure that the overall red and blue parts are connected across the whole painting.
Additionally [64] show that each cell has atmost 3 intervals of alternating red and blue
along each side. This implies that there are only a constant number of configurations
within a cell, so all configurations can be represented using a grid of constant size c
for each cell.
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In our problem, we have two regions R1 and R2 that we call red and blue, for
consistency. We create a grid coarseningΓc+2. We record for every superpixelwhether
it is fully covered by red or blue, or visited by red and/or blue. If one color covers
a superpixel completely, we assign all of its pixels to that color. If a color, say, red,
visits a superpixel but blue does not, we start by making the middle c× c pixels of
that superpixel red. Finally, for all superpixels visited by both red and blue, we apply
the results from [64]. Since the recording of colors with panels comes from disjoint
simply connected regions, namely, our input, we know that the 2-colored grid of
superpixels admits a painting with connected regions/colors, so it admits one as
specified in Lemma 2.10.

Once we choose a coloring of pixels in each 2-colored superpixel according to
the panels, it remains to make the red set and blue set of pixels simply connected.
The method from [64] did not produce any cycles in the 2-colored superpixels, the
visited 1-colored superpixels are separate connected components of c× c pixels in the
middle, and the covered 1-colored superpixels cannot create cycles either. We create
a single red component by making a spanning tree of the red components. To achieve
this, we only need to use pixels in the outer ring of the visited 1-colored superpixels.
Then we do the same with blue. Since we add pixels of the same color to 1-colored
superpixels, we will never try to color a pixel in both colors or create crossings. We
then obtain the following result:
Theorem 2.11. IfR consists of two disjoint, simply connected regions, a valid assignment
exists such that for each region Ri ∈ R with corresponding Pi, we have d′H(Ri, Pi) = Θ(1).

2.5.2 Three or More Regions
In the following we argue that the Hausdorff distance between an input of at least
three general regions and any corresponding grid polygons is unbounded. Formally,
for a given integer h > 0, we show a construction of regionsR = {R,B,G} for which
there are no corresponding grid polygons with Hausdorff distance smaller than h.

We construct regionsR = {R,B,G} that form nested spirals with a long bottle-
neck of height 1. The bottleneck is traversed from left to right h times by each of R,
B, and G. If we remove the parts of R, B, and G inside the bottleneck, we get 3h+ 3
connected components in total. This is illustrated in Figure 2.13 for h = 2. Outside
the horizontal strip of height 1 containing the bottleneck, the three regions are more
than 2h apart. We define the part of the plane within distance h of at least one of the
bottom horizontal segments of the regionsR as I . All region components are connec-
ted inside I . Inside I , it is possible that the grid polygons make different connections
than those in R. However, we argue that no matter how these connections are made,
the grid polygons PR, PB , and PG, together have to pass through I from left to right
at least h + 2 times, thus requiring I to have height at least 2h + 3. However, the
available vertical space is only 2h+ 1 if the Hausdorff distance is below h, allowing
h+ 1 connections of pixel polygons. Hence, we obtain a contradiction.
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Figure 2.13: The regions for h = 2; I is highlighted. The dashed line subdivides the
boundary of I into its left and right part. The height of I and the distance between
two vertical segments is 2h+ 1. The figure is not to scale.

The construction. Refer to Figure 2.13. Formally, the red region R is a polyline
starting at (−1.5, 0). From then on it consists of a downward segment αR

1 , a rightward
segment βR

1 , an upward segment γR
1 , a leftward segment δR1 , a downward segment αR

2

and so on, until the final segment is the leftward segment δRh .
Similarly the blue (green) regionB (G) is a polyline starting at (−2.5, 1) ((−3.5, 2))

and with segments of the same orientations αB
i , βB

i , γB
i and δ2i (αG

i , βG
i , γG

i and δGi )
for i ∈ {1, . . . , h}. Let A ∈ {R,B,G}, jR = 1, jB = 2, and jG = 3, then the lengths of
the line segments are:

• |αA
i | = (6i+ 2jA − 1)(2h+ 1)− (3i+ jA − 4)(2h+ 1− 1

3h )

• |βA
i | = (6i+ 2jA + 1)(2h+ 1)

• |γA
i | = (6i+ 2jA + 2)(2h+ 1)− (3i+ jA − 4)(2h+ 1− 1

3h )

• |δAi | = (6i+ 2jA + 4)(2h+ 1).
Observe that the distance between any two vertical segments of the spirals (the

segments α and γ) is at least 2h+ 1. This also holds for the horizontal segments on
the top of the spiral (the segments δ). The horizontal segments (the segments β) at
the bottom, however, are only 1

3h apart. Hence, any point that is within distance h of
at least two regions, say A and A′, must be within distance h of two of the bottom
segments (that is, some βA

i and βA′

j ).
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The region I . Let I be the region of all pixels that contain a point that is within
distance h of at least two regions inR, and observe that this region has height at most
2h + 1. See Figure 2.13. We say a point on the boundary ∂I of I is part of the left
(right) boundary of I if its x-coordinate is negative (positive).

Now note that each region A in R passes through I exactly h times, and thus
A \ I consists of h+1 connected components. Moreover, note that h of the connected
components of A \ I touch the left part of the boundary of I, and h connected
components touch the right part of the boundary of I (so h− 1 components touch
both). In particular, let r1, . . . , rh be the h points, ordered from left to right, at which
region R intersects the right part of the boundary of I. Each such a point uniquely
corresponds to a connected component ofR\I . We analogously define the intersection
points b1, . . . , bh of B and the intersection points g1, . . . , gh of G. Observe that when
traversing the boundary of I from left to right, these points form an alternating
sequence VR = (r1, b1, g1, . . . , rh, bh, gh) of length 3h:
Observation 2.12. There is a sequence V = (r1, b1, g1, . . . , rh, bh, gh) of 3h points along
the right part of the boundary of I , such that each point in V corresponds to a unique connected
component of a region in {R \ I, B \ I, G \ I}.

Similarly, there is such an alternating sequence V ′ of length 3h on the left part of
the boundary of I so that each point uniquely corresponds to a connected component
of a region in {R \ I, B \ I, G \ I}.

The grid polygons. Assume by contradiction that there is a valid assignment of
grid polygons P = {PR, PB , PG} that have Hausdorff distance at most h to R.

For each region A ∈ R, let QA = PA ∩ I be the part of the grid polygon inside I
and let UA = PA \ I be the part of the grid polygons outside I. As each connected
component of QA and UA is a grid polygon, we consider QA and UA as sets of grid
polygons. LetQ = QR∪QB∪QG denote the set of all connected components inside I .
We now first argue that outside I the grid polygons more or less follow the same
structure as the regions inR.
Lemma 2.13. For each region A ∈ R, the part of the grid polygon UA outside of I consists
of at least h + 1 connected components. Moreover, each point a ∈ V ∩ A corresponds to
a unique connected component of UA that touches the right part of the boundary of I only
within distance h of a.

Proof. Outside of I, the regions inR, so in particular the connected components of
A \ I, are far apart (that is, at distance more than 2h), so no connected component
in UA can be close to two such connected components. This proves the first part
of the statement. For the second part: for each point a ∈ V ∩ A consider the point
a′ = (ax, ay + h + ε), for some arbitrarily small ε > 0. There must be a connected
component U of UA that is within distance h of this point, as it is too far away from
any point in I. As argued above, no connected component of UA can cover two such



2.5 Input Regions Are General Regions 43

points as they are too far apart. Hence, each such point a′ corresponds to a unique
connected component U ∈ UA. Since a′ is uniquely associated point a, the same holds
for a. Finally, the connected component of A \ I corresponding to U intersects the
right part of ∂I only in point a, and thus any points in U on the right part of ∂I lie
within distance h of a.

By Lemma 2.13 the total number of connected components in UR, UB , and UG is
at least 3h+ 3. Moreover, we can represent (3h+ 3 of) these components by the two
sequences V and V ′ on the boundary of I : each such component is represented by at
most one point in V and at most one point in V ′.

For each region A ∈ R, QA consists of an unknown number of connected com-
ponents (grid polygons), which connect the connected components of UA into a
single grid polygon PA. A grid polygon Q of QA can “connect” to some connected
component U of UA by covering either the point representing U in V or the point
representing U in V ′. Polygon Q covers a ∈ V if and only if Q and U have a point in
common (which must be on the boundary of I) within distance h of a.

We now argue that in total, over QR, QB , and QG, there are at least h + 2 such
grid polygons Q that connect to grid polygons in UA both on the left and on the
right boundary of I. Such a grid polygon must occupy a pixel at x = 0. Moreover,
since these grid polygons form different connected components, there is at least one
empty pixel in between them at x = 0. It follows that at x = 0, I must have height at
least 2(h+ 2)− 1 = 2h+ 3. This contradicts with the fact that I has height less than
2(h+ 1) = 2h+ 2.

The polygons of Q induce a partition VQ of the points in V through this covering
relation: two points u, v ∈ V are in the same set of VQ if and only if they are covered by
a connected componentQ ∈ Q. Let |VQ|denote the number of sets in the partition, and
let CQ = |V | − |VQ| denote the number of connections realized by Q. Intuitively, CQ
corresponds to the decrease in the number of connected components in UR, UB ,
and UG on the right part of ∂I. Similarly, Q realizes a number of connections on the
left part of ∂I.

Since the set Q connects all regions in UR, UB , and UG into just three regions (PR,
PB and BG), the partitions VQ and V ′

Q realize a total of 3h connections. However,
we now argue that any valid partition on V , that is, a partition that can be realized
by pairwise disjoint non-intersecting grid polygons inside I, can realize only h− 1
connections. This means that by connecting points in V to each other, we can reduce
the number of connected components by only h− 1. The same holds for the number
of connections on the left part of the boundary of I. It therefore follows that the
remaining 3h− 2(h− 1) = h+ 2 connections need to be realized by polygons in Q
that cover points both on the left and on the right boundary of I.

Lemma 2.14. Given an alternating sequence V = (r1, b1, g1, . . . , rk, bk, gk) of 3k 3-colored
points on a line, any planar drawing below the line connecting points of the same color induces
a partition of the points into at least 2k + 1 components.



44 Chapter 2 Mapping Regions to the Grid with Bounded Hausdorff Distance

ri ri+ℓ

Q
✗

Q′

Figure 2.14: A set Q that includes two red points ri and ri+ℓ splits V into two disjoint
subsequences V1 and V2, that have at most one set, namely Q, in common. If there
was a second such a set Q′, the grid polygons corresponding to Q and Q′ would
intersect.

Proof. We prove this by induction on k. For the base case k = 1, the sequence V
consists of only one group of three differently colored points. Since the points all
have different colors, no drawing can connect two points. Hence, there are at least
(exactly) 3 connected components as claimed.

For the induction step, consider an alternating sequence V of length 3k, with k > 1.
In any drawing that connects no two points of V all points form singletons, and thus
we trivially get a partition with 3k > 2k + 1 sets as in the base case. Otherwise,
consider a planar drawing in which two points u and v of V are connected. Refer to
Figure 2.14. Moreover, letQ be the set of all points connected to u and v in the drawing.
Since u and v are connected, they must be of the same color. Assume without loss of
generality that u = ri and v = ri+ℓ, for some i and ℓ > 0. Observe thatQ partitions the
sequence V into two alternating sequences V1 = (ri, bi, gi, . . . , ri+ℓ−1, bi+ℓ−1, gi+ℓ−1)
and V2 = (r1, . . . , gi−1, ri+ℓ, . . . , gk) of lengths 3ℓ and 3(k − ℓ). We now use the
induction hypothesis on both V1 and V2, which gives us that any drawing of V1, so in
particular the current drawing restricted to V1, induces a partition of V1 into at least
2ℓ+1 sets. Similarly, any drawing of V2 partitions V2 into at least 2(k−ℓ)+1 sets. Since
the drawing is planar, it follows that if there are points u′ ∈ V1 and v′ ∈ V2 that are
connected, these points must both be in Q; if they were in any other connected set Q′

the drawings of Q and Q′ would intersect (see Figure 2.14). Hence, Q is the union
of two sets, one from the partition of V1 and one from the partition of V2. It follows
that the drawing induces a partition of size at least 2ℓ+ 1+ 2(k− ℓ) + 1− 1 = 2k+ 1.
This completes the proof.

Lemma 2.15. The partition VQ induces at most h− 1 connections.

Proof. By Observation 2.12 the sequence V consists of h groups of three consecutive
points ri, bi, gi that all have a difference color. Furthermore, the pixel polygons in Q
correspond to a drawing of V in which only points of the same color are connec-
ted. Since the pixel polygons in Q are pairwise disjoint, this drawing is planar, and
since Q ⊂ I the points can be drawn on a line with the drawing of the connections
(representing the sets Q themselves) below the line containing V . So, it now follows
from Lemma 2.14 that the partition VQ induced by (the drawing corresponding to)Q
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contains at least 2h+1 connected components. Since V consists of 3h elements, there
are at most 3h− (2h+ 1) = h− 1 connections as desired.

As argued above, Lemma 2.15 (and its symmetrical counterpart for V ′
Q) imply

that there are at least h+2 grid polygons inQR,QB , andQG that connect polygons in
UR, UB , and UG on both the left and the right part of the boundary of I . Therefore, I
must have height more than 2h+ 1. By definition of I, its height is less than 2h+ 1
so we obtain a contradiction. We therefore obtain the following result:

Theorem 2.16. For all integer h > 0 there exist three regions R = {R1, R2, R3}, for which
there is no valid assignment to grid polygons P1, P2, P3 so that all regions Ri ∈ R have
d′H(Ri, Pi) < h.

2.6 Conclusion
In this chapter we have shown what Hausdorff distance bounds can be attained when
mapping disjoint simply connected regions to the unit grid. We expressed our bounds
in terms of the number of regions and obtained different results depending on the
shape and size characteristics of the regions, and showed that they are worst-case
optimal. The result in Subsection 2.5.1 generalizes a result of Bouts et al. [26] and the
result in Subsection 2.5.2 shows that a result by van Goethem et al. [64] cannot be
generalized from two to three colors. Our results are slightly more general than we
expressed them: for example, the bound for point regions in fact holds for any set of
regions that each have constant diameter.

We assumed that our regions all had the same shape and size characteristics.
In some cases it is interesting to see what happens in combinations. In particular,
suppose we have one general region R0 andm point regions R1, . . . , Rm; what Haus-
dorff bounds can be attained? It turns out that we get a trade-off: we can realize a
Hausdorff distance ofO(

√
m) for the point regions and forR0, but we can also realize

a Hausdorff distance of O(1) for R0 but then some point region will have a Hausdorff
distance of Θ(m). Figure 2.15 illustrates this. We may map the points to the grid first
using the O(

√
m) bound, and then map R0, or we can map the points to the grid in a

constant width strip close to the boundary of R0. Note that in the former case, we
could have left a spacing of three pixels between the mappings of the point regions.
Then the point regions still attain the O(

√
m) bound, while dH(R0, P0) = O(1) by us-

ing the extra space to allow P0 to reach every necessary place. However, dH(∂R0, ∂P0)
will still be Θ(

√
m), so we do not improve d′H(R0, P0).

While we concentrated on worst-case optimal bounds, our constructive proofs
of the upper bounds will often give visually unfortunate output. Also, for a given
instance we may not achieve O(1) Hausdorff distance for m point, β-fat convex, or
convex regions even when constant would be possible for that instance. This leads to
the following two open problems. Firstly, can we realize visually reasonable output
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O(
√
m)

O(
√
m)

O(m)

O(1)

Figure 2.15: Left, an instance with one general region (light blue) andm point regions.
Middle and right, two possible realizations for different Hausdorff bounds.

when this is possible for an instance (and how do we define this)? Secondly, can
we realize a Hausdorff distance that is at most a constant factor worse than the best
possible for each instance, in polynomial time? For point regions, we answer this
question in the next chapter.



Chapter 3

Mapping Points to the Grid with
Bounded Hausdorff Distance

We consider the problem of representing a set of m points using disjoint pixels on a
unit grid with bounded Hausdorff distance. We prove that deciding if an appropriate
set exists is NP-complete. Additionally, we present a constant-factor approximation
algorithm with running time O(m2 log δ∗/ logm), where δ∗ is the Hausdorff distance
in an optimal solution, as well as an approximation algorithmwith a constant additive
error and running time O(m2δ∗4/ logm). This chapter is based on the following
publication:

M. Löffler and J. Urhausen. Mapping Points to the Grid with Bounded
Hausdorff Distance. 33rd Canadian Conference on Computational Geometry
(CCCG), pages 47–55, 2021.

3.1 Introduction
Similar to Chapter 2, we study a problem in the field of digital geometry. Recall that
digital geometry concerns itself with the representation of geometric objects using
pixels on a gridwhile preserving geometric properties. Examples aremapping convex
regions to a similar-looking orthoconvex set of pixels or mapping lines to chains of
pixels that still only intersect at most once. Digital geometry has application in image
processing and storage. For related work concerning digital geometry in general
and error bounds under the Hausdorff distance in the field of digital geometry in
particular, see the introduction of Chapter 2.

This chapter is inspired by two papers: Mapping Polygons to the Grid with Small
Hausdorff and Fréchet Distance, by Bouts et al. [26] and Mapping Multiple Regions to the
Grid with Bounded Hausdorff Distance by van der Hoog et al. [80]; the latter is treated
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Figure 3.1: An example of a valid mapping of regions to grid polygons.

in Chapter 2. Intuitively the problem discussed in these papers is: for a given set
of regions, find a set of pixels from the unit grid that best represents the input (see
Figure 3.1). We use the Hausdorff distance to measure similarity. Thus, for each
point, we determine a single pixel to represent that point as using multiple pixels to
represent a single point would in no case reduce the minimal attainable Hausdorff
distance.

In the following we use the notation d′H(R,P ) for the maximum of the Hausdorff
distance between the sets R and P and the Hausdorff distance between their bound-
aries ∂R and ∂P . Amongst others, Bouts et al. [26] show that for a given connected
region R, one can find a simply connected grid polygon P in the unit grid such that
the Hausdorff distance d′H(R,P ) is at most a constant. Note that this result holds, no
matter the resolution ofR. On the other hand they show that, given a single regionR,
it is NP-hard to find a grid polygon P that minimizes the Hausdorff distance d′H(R,P ).
Here, we extend their results to the problem of mapping multiple point regions to
the grid.

3.1.1 Computation
When considering the question of efficiency, we are faced with some additional
modeling questions. The two main ones are:

1. How do we locate input features (vertices or edges) on the grid?
2. Howdowe compactly represent sets of pixels that correspond to output regions?
Regarding question (1), we note that traditionally, geometric algorithms are ana-

lysed in the real RAM computation model. In this model, one maywork with arbitrary
real numbers, but certain natural operations are not available; in particular the floor
operation is known to be problematic [13]. In the context of digital geometry, where
we have a natural underlying grid, and the whole objective is to map objects to a grid,
the restriction on the floor operation has to be reevaluated. In this chapter, we will
slightly deviate from the real RAM model and assume that the input coordinates are
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all polynomial in the input size and that the floor function is available. Note that
under this size restriction, if desired, the floor function on the input coordinates can
also be implemented in logarithmic time on a real RAM using binary search.

Regarding question (2), we note that when mapping large regions (in size, not
in description complexity) to a grid, an explicit representation of the output listing
precisely which pixels are part of a set would necessarily be large as well, and may be
unrelated to the input complexity. Alternatively, one could compactly represent out-
put regions by providing only the coordinates of vertices and interpolating boundary
edges onto the grid. Given the complexity of mapping lines to the grid, however, it
is not clear how to do this in a consistent way. In this chapter, we make a first step
towards understanding the computational aspect of the question by focusing on point
regions. For a single point region and constant Hausdorff distance, the output is
necessarily a set of only a constant number of pixels, and thus we avoid the issue.

To summarize, in this chapter, we make the following assumptions:
• There is a polynomial upper bound on the coordinate sizes of the input points,

that is, there is a polynomial function f : R → R, such that, if the input is a set
R ofm points in R2, for every point R ∈ Rwe have −f(m) < xR < f(m) and
−f(m) < yR < f(m).

• We have access to a floor operation, which can provide us with the integer part
of any real number in the range [−f(m), f(m)].

3.1.2 Related Work
For each point on the grid, placing unit squares in that grid within Hausdorff distance
at most

√
2 equals placing those squares in the grid such that they intersect the points.

Furthermore, the problem of placing unit squares such that they intersect points is
dual to the problem of placing points in unit squares. The problem of placing points
in squares such that the points are not too close to each other has been introduced
under the name of distant representatives [60] and was later also studied in the context
of data imprecision [94]. Fiala et al. [60] prove that the problem is NP-hard (both for
disk and square regions), and Cabello [40] proposes a constant-factor approximation
algorithm.

We note that our problem is essentially different, since for us, valid placements
are restricted to a discrete set of points (the unit grid). Neither the hardness proof nor
the algorithmic result carry over directly to this discrete setting.

3.1.3 Contribution
In this chapter, we study the computational question of mapping point sets to disjoint
pixels on a unit grid with small Hausdorff distance, as visualized in Figure 3.2. In
Chapter 2 we observed that in general the solution constructed with our algorithms
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Figure 3.2: An example of a valid mapping of points to pixels on the grid.

might yield a “visually unfortunate” output. Formally, the algorithm might yield a
solution with high Hausdorff distance, even in the case where the optimal solution
has constant Hausdorff distance. In Section 3.2, we show that finding the solu-
tion with minimum Hausdorff distance to a given set of regions is NP-complete,
even if the regions are just points. Then, in Section 3.3, we present an approxima-
tion algorithm for points that produces a solution with Hausdorff distance at most
2
√
2(⌈δ∗⌉ + 1) ≤ 6

√
2δ∗ and has a running time of O(m2 log δ∗/ logm), where δ∗

is the Hausdorff distance in an optimal solution. Finally, we present a second al-
gorithm which produces a solution with Hausdorff distance at most ⌈δ∗⌉ +

√
2 in

O(δ∗4m2/ logm) time.

3.1.4 Notation and Definitions

We denote by Γ the (infinite) unit grid in two dimensions, whose unit squares are
referred to as pixels.

Let R = {R1, R2, . . . Rm} be a set of m points in the plane. In this chapter, we
treat the problem of how to assign a pixel Pi ∈ Γ to each point Ri ∈ R such that
different pixels do not meet in any edge or vertex of the grid. We call the set P =
{P1, P2, . . . , Pm} of such pixels a valid mapping for R. Our goal is to find a valid
mapping P that minimizes maxi∈{1,...,m}{dH(Ri, Pi)}. See Figure 3.2 for an example.

Note that in contrast to [26] and Chapter 2, we disregard the Hausdorff distance
between the boundaries dH(∂Ri, ∂Pi) because we have dH(∂Ri, ∂Pi) = dH(Ri, Pi),
for convex Ri and Pi.

3.2 NP-Completeness

Bouts et al. [26] proved that for a single simply connected region R it is NP-complete
to test if there is a grid-polygon within Hausdorff distance 1/2. We extend this
result to multiple point-regions. Formally, we show that for a set of points R it is
NP-complete to test if there is a valid mapping within Hausdorff distance

√
2. Our
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proof is inspired both by the construction of Bouts et al. [26] and the proof by Fiala et
al. [60] for a similar problem in a continuous setting.

We first prove containment in NP. For each point there are at most four options to
place the corresponding pixel. An oracle can guess the correct placement and then
just has to test that no two pixels share a common grid vertex.

We now show that the problem is NP-hard. We reduce from the NP-complete
problem monotone rectilinear planar 3-Sat [20].

RectilinearMonotone Planar 3-SAT. Input: a 3-Sat formulawith only all positive or
all negated variables per clause, embedded as a graph with rectilinear, non-crossing
edges. The set of vertices consists of variable-, split- and clause-vertices; variable-
vertices are drawn on a horizontal line that no edge crosses; clause-vertices for positive
(negative) clauses are drawn above (below) this line; clauses are connected with the
variables they contain with an edge or a path of edges and split-vertices. Output:
“Yes” if there exists an assignment for the variables that satisfies the formula, “No”
otherwise.

v2 ∨ v3 ∨ v4

v1 ∨ v2 ∨ v4

v1 v2 v3 v4 v5

v1 ∨ v4 ∨ v5

¬v2 ∨ ¬v4 ∨ ¬v5

Figure 3.3: An example of the embedded formula (v2 ∨ v3 ∨ v4)∧ (v1 ∨ v2 ∨ v4)∧ (v1 ∨
v4 ∨ v5) ∧ (¬v2 ∨ ¬v4 ∨ ¬v5). The split vertices are highlighted in red.

Such a 3-Sat formula as an embedding of a graph is illustrated in Figure 3.3.
Without loss of generality we can assume that the embedded graph has the following
additional properties: each variable-vertex v has degree at most two and the incident
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edges are vertical at v, split-vertices w have degree three and only one incident edge
is horizontal at w, and for each variable a, all split-vertices corresponding to a are
vertically aligned with the variable-vertex va of a. It is easy to realize these additional
properties.

For a given monotone rectilinear planar 3-Sat instance that is embedded as de-
scribed above, let G be a drawing of the embedding. Without loss of generality we
assume that G is drawn on the unit grid and that the horizontal line containing all
variables is the x-axis. We scale G such that each vertex is on an even grid vertex
(2x, 2y) and such that the distance between any two vertices, between any vertex and
any bend, and between any two non-incident edges is at least 10.

Construction. We create a set of points R. We only place points on grid vertices.
In the end, we ask the question whether one can place pixels within Hausdorff
distance

√
2 from the points ofR, that is, we ask the question if for each point inR,

we can choose one of the four adjacent pixels so that no two chosen pixels of different
points share a common vertex. We say a point Ri has a top-left (top, top-right, . . . ) pixel
if Pi is to the top-left (top, top-right, . . . ) of Ri.

These following two observations are the main tools for the construction of the
gadgets, depicted in Figure 3.4. When two horizontally aligned points are at distance 1,
the leftmost point has a left pixel and the rightmost point has a right pixel. For two
horizontally aligned points at distance 2, if the leftmost point has a right pixel, the
rightmost point has a right pixel, too. Symetrically, if the rightmost point has a left
pixel, the leftmost point has a left pixel. This is symmetric for vertically aligned points.

RL

B B

Q

T

R

B

QL R

Figure 3.4: The bend, split and clause gadgets. The point R is highlighted in each
gadget.

Variable. We first place a point R ∈ R on each even grid vertex that is intersected
by the drawing. For each variable a in the 3-Sat instance, there is a point Ra = (2x, 0)
inRwhere the variable-vertex va is drawn. We call that point Ra the indicator of a.
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Intuitively, if Ra has a bottom (top) pixel, a is true (false). If the point (2x, 2) has
a bottom (top) pixel we say it has a pixel toward the variable (away from the variable).
Symmetrically, if the point (2x,−2) has a top (bottom) pixel we say it has a pixel
toward the variable (away from the variable). This concept propagates throughout the
points corresponding to a.

Bend. Let R = (2x, 2y) ∈ R be a point at the corner of a bend of an edge e. We
assume e connects a vertex to the left of R with a vertex below R. The other cases are
symmetric. Thus, the points L = (2x− 2, 2y) and B = (2x, 2y − 2) are in R. We add
another point (2x+ 1, 2y + 1) to R. Now, if L has a right pixel, B has a bottom pixel
and if B has a top pixel, L has a left pixel.

Split. Let R = (2x, 2y) ∈ R be a point at a split-vertex. We assume that the
horizontal edge incident to R is to its right and that the split vertex is above the x-axis
and therefore its corresponding variable-vertex. Thus, the points T = (2x, 2y + 2),
Q = (2x+ 2, 2y) and B = (2x, 2y − 2) are inR. The other cases are symmetric. We
add the points (2x+ 2, 2y + 1) and (2x− 1, 2y − 2) to R. If T has a bottom pixel or
if Q has a left pixel, B has a bottom pixel. That is, if a point on the top or right edges
has a pixel toward the variable, the points on the bottom edge also have pixels toward
the variable. Inversely, if the bottom edge has pixels away from the variable, both top
and right edges also have pixels away from the variable.

Clause. LetR = (2x, 2y) ∈ R be a point at a clause-vertex. We callR the clause-point.
We assume the three edges connect to the left, right and bottom of R respectively,
otherwise the situation is symmetric. As the distance between two gadgets is least 8,
the points (2x − 2, 2y), L = (2x − 4, 2y), (2x + 2, 2y), Q = (2x + 4, 2y) and B =
(2x, 2y−2) are inR. Wemove the points (2x−2, 2y) and (2x+2, 2y) to (2x−2, 2y+1)
and (2x+ 2, 2y + 1) and add two points (2x− 3, 2y + 2) and (2x+ 3, 2y + 2) to R. It
follows that if the clause-point R has a top-left pixel then L has a left pixel, if R has
a top-right pixel then Q has a right pixel, and if R has a bottom pixel then B has a
bottom pixel. That means that the points on at least one of the incident edges have
pixels toward the variable.

Starting from the embedded 3-Sat formula shown in Figure 3.3, we show the
pointsR and a valid mapping P in Figure 3.5.

Proof of Correctness. Let A be an assignment of variables to {true, false} such
that the 3-Sat formula is satisfied. For each variable a, if a is true, first, we give the
indicator Ra a bottom pixel. Second, we give each point R ∈ R that is on an edge
corresponding to a a pixel toward (away from) the variable, if p is above (below)
the x-axis. For each variable assigned the value false we do the inverse. As in
each positive (negative) clause there is a variable that is assigned to true (false),
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v1
false

v2
true

v3
true

v4
true

v5
false

¬v2 ∨ ¬v4 ∨ ¬v5

v1 ∨ v4 ∨ v5

v1 ∨ v2 ∨ v4

v2 ∨ v3 ∨ v4

Figure 3.5: The complete construction of the NP-hardness reduction. The pixels
corresponding to indicators or to clause-points are highlighted.
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each clause-point can place its pixel in one of the four adjacent spots. So overall
there is a valid mapping such that the Hausdorff distance between a point and its
corresponding pixel is at most

√
2.

Inversely, let there be a set of pixels such that the Hausdorff distance between any
point and its corresponding pixel is at most

√
2. For each variable a, if the indicatorRa

has a bottom (top) pixel, we set a to true (false). We now prove that in each positive
(negative) clause there is a variable that is assigned to true (false). Let c be a positive
clause such that the incident edges are on the left, right and bottom of the clause
point R of c. The other cases are symmetric. If R has a top-left (top-right, bottom)
pixel, we know that the points on the left (right, bottom) edge have pixels toward
the variable. Let e be an edge incident to R whose points have pixels toward the
variable. If e connects to a split-vertex w, the points on the vertical edge e′ incident at
the bottom at w also have pixels toward the variable. We then set e = e′. This repeats
until we have an edge e that connects to the variable-vertex of a. It follows that the
indicator Ra has a bottom pixel and a has been assigned the value true. The theorem
follows.

Theorem 3.1. If R is a set of m points, it is NP-complete to decide whether there exists
a valid mapping such that for each point Ri ∈ R with corresponding pixel Pi, we have
dH(Ri, Pi) ≤

√
2.

3.3 Approximation Algorithms
We now turn our attention to approximation. We start by making some observations.
Clearly, the optimal Hausdorff distance δ∗ for any instance is at least 1

2

√
2, since

the distance is taken between a point and (at least one) unit square. Therefore, a
constant additive approximation in this case automatically translates to a constant
multiplicative approximation. We also note that, due to the discrete nature of the
output, we cannot hope to achieve a polynomial-time approximation scheme, that is,
a (1 + ε)-approximation.

To illustrate the complexity of the problem, in Section 3.3.1 we first discuss some
natural ideas which do not lead to a working approximation. In Section 3.3.2, we then
present an algorithm that achieves a Hausdorff distance of at most 2

√
2⌈δ∗⌉+ 2

√
2.

In Section 3.3.3 we show how to improve the approximation to ⌈δ∗⌉+
√
2, at the cost

of a slower runtime.

3.3.1 A First Attempt

As discussed in the introduction, Cabello [40] presents a constant-factor approxima-
tion algorithm for placing n points into respective discs or squares. A first approach
could be to dualize our problem and directly run their algorithm to place a set of
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points—however, we would have no guarantee the points are placed at integer co-
ordinates. We would have to snap the points to the grid before translating them back
to squares. The Hausdorff distance itself would only increase by at most 1

2

√
2 in this

way, which would still result in a constant-factor approximation, albeit with a slightly
higher constant. However, the snapping procedure could also result in touching or
even overlapping pixels, so the solution would not necessarily be valid.

Another approach would be to find a subdivision of the grid into cells such that
for each cell all the points contained in it can be assigned separate pixels in that cell.
Formally, let Γk be a coarsening of the grid Γwhose cells have k × k pixels. We call
these cells superpixels. The idea is to find a coarsening Γk where each superpixel
contains at most ⌊k/2⌋2 points. Then, by assigning to each point a pixel within their
superpixel, the Hausdorff distance between the points and their pixels would be at
most k

√
2. Therefore, if the minimal size of the cells depends only on the Hausdorff

distance between the points and an optimal valid mapping, this approach could lead
to an approximation algorithm. The following lemma proves that this approach does
not work. The minimal size of such a superpixel can be arbitrary large, even if the
Hausdorff distance is a small constant for an optimal valid mapping.

Lemma 3.2. There is a set of points R and a point R ∈ R, such that (1) there is a valid
mapping P within Hausdorff distance at most 3; (2) for any superpixel with side length s

that contains R and at most
⌊
s
2

⌋2 points from R, we have s ≥
√
m− 1 + 2.

Proof. A pixel is a set [i, i+ 1]× [j, j + 1], for integers i, j. As shown in Figure 3.6, for
an integer n ≤ 1, we define R =

(
1
4 ,

1
4

) and the set of points

R =
{
R
}
∪

{(
h

(
2i+

1

2

)
, g

(
2j +

1

2

)) ∣∣∣i, j ∈ {0, . . . , n}; g, h ∈ {−1, 1}

}
.

We first prove that there is a valid mapping P within Hausdorff distance at
most 3. This valid mapping is also depicted in Figure 3.6. The point R is mapped
to the pixel centered at ( 12 , 1

2

). Each point (2i+ 1
2 ,

1
2

) for i ∈ {0, . . . , n} is mapped
to the pixel centered at (2i+ 1

2 + 2, 1
2

). Each other point (h (2i+ 1
2

)
, g
(
2j + 1

2

)) for
i, j ∈ {0, . . . , n} and g, h ∈ {−1, 1}, is mapped to (h (2i+ 1

2 + 1
)
, g
(
2j + 1

2 + 1
)).

The Hausdorff distance between the points and their respective pixels ismax{
√
26/2,

3
√
2/2} ≃ 2, 55 < 3.
We move on to the second part of the proof. The set R contains m = 4n2 + 1

points. Let S be a superpixel containing R and let (a, b), (−c, b), (−c,−d), and (a,−d)
be the coordinates for the four vertices of S, for a, b ≥ 1 and c, d ≥ 0. The side length
of the superpixel S is s = a + c = b + d. If s ≤ 2n + 1, S contains 1 + ⌈a/2⌉⌈b/2⌉ +
⌈c/2⌉⌈b/2⌉ + ⌈c/2⌉⌈d/2⌉ + ⌈a/2⌉⌈d/2⌉ > ⌊s/2⌋2 points. Thus, a superpixel with
side length s containing at most ⌊s/2⌋2 points has at least side length 2n + 2 =√
m− 1 + 2.
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Figure 3.6: Any superpixel with side length s containing the red point R contains
more than ⌊s/2⌋2 points. For example, the orange superpixel has side length 10 and
contains 26 points. A valid mapping with Hausdorff distance

√
26/2 is indicated.

3.3.2 A Constant-Factor Approximation Algorithm
We present an algorithm that, for a given set of m points R in R2 determines a valid
mapping P , such that the Hausdorff distance between a point and its corresponding
pixel is at most 2

√
2(⌈δ∗⌉+ 1), for δ∗ being the minimal possible Hausdorff distance

between R and any valid mapping P .
For a coarsening Γk of the grid Γ, let Sk be the set of superpixels that either contain

a point inR or are adjacent to a superpixel that does.
Observation 3.3. Let k ≥ δ∗ and k ∈ N even. Then, in an optimal solution, for each point
Ri ∈ R in a superpixel S ∈ Sk, the pixel Pi is in S or in one of the eight superpixels adjacent
to S. Additionally, each superpixel contains at most (k/2)2 pixels that are disjoint.

Building on that idea, we create the following test f(·). For an even number i ∈ N,
we want f(i) = true if and only if for each coarsening Γi, there exists an assignment
g : R → Si of points to superpixels such that:

1. ∀R ∈ R, g(R) is the superpixel containing R or one of the eight adjacent ones;
2. ∀S ∈ Si, there are at most (i/2)2 points R with g(R) = S.

We call such an assignment g a correct assignment. Otherwise, if for each coarsening Γi

no correct assignment can be found, we want f(i) = false. Note that for some



58 Chapter 3 Mapping Points to the Grid with Bounded Hausdorff Distance

Figure 3.7: Depending on the coarsening the test f(1) can be either true or false
here, as indicated by the circles of radius 1. The right figure shows the valid mapping
with minimal Hausdorff distance. Since δ∗ ≃ 1, 68, the test f(2) returns true.

values i, it depends on the “origin” of the coarsening if a correct assignment exists,
as depicted in Figure 3.7. In that case, f(i) can either be true or false. We define
f(0) = false.

Binary Search. We use exponential and binary search to find an even number i ∈ N
with f(i) = true and f(i−2) = false. We start at i = 2. We iterate calculating f(i): if
f(i) = false, we double i and continue, elsewe stop. Thenwe binary search normally
between the last i and i/2. Note that from Observation 3.3 we get f(i) = true, for
i ≥ δ∗. Therefore, this binary search algorithm results in a number i′ ≤ ⌈δ∗⌉+ 1 and
has a running time of O(F × log δ∗), where F the the time to run the test f(·).

Test. The calculation of f(i) proceeds as follows. We use a flow algorithm [73] to de-
termine if a correct assignment g exists. We choose a coarsening Γi and create a direc-
ted acyclic graphG = (V,E) as illustrated in Figure 3.8. We set V = {s, t}∪{Sin, Sout |
S ∈ Si} as the set of vertices. We define (a, b, c) ∈ E as the edge between the vertices
a ∈ V and b ∈ V with capacity c ∈ N∪{∞}. We set E = {(s, Sin, |S ∩R|) | S ∈ Si}∪
{(Sin, S

′
out,∞) | S, S′ ∈ Si ∧ (S = S′ ∨ S adjacent to S′)}∪{(Sout, t, (i/2)

2) | S ∈ Si}
as the set of edges. Intuitively, the capacity of the edge (s, Sin) from s to the super-
pixel S equals the number of points in S, and the capacity of the edge (Sout, t) from
the superpixel S to t is the number of disjoint pixels that can be placed in S.

We then calculate a maximal flow from s to t. We can assume that the flow in
each edge is a natural number. As |E| ∈ O(|V |) and |V | ∈ O(m), the flow algorithm
runs in O(m2/ logm) time [103]. If G admits a flow from s to t with flow rate m, the
flow induces a correct assignment g as follows: we repeat the following for every
superpixel S ∈ Si. Let {S1, . . . , S9} = {S′ | S′ ∈ Si ∧ (S = S′ ∨ S adjacent to S′)}
be the set containing S and the superpixels adjacent to S. Let U1 ∪ · · · ∪ U9 = S ∩R
be any partition of the points in S, where, for j, k ∈ {1, . . . , 9}, we have j ̸= k =⇒
Uj ∩ Uk = ∅ and |Uj | is the flow from Sin to (Sj)out. For each j ∈ {1, . . . , 9} and each
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Figure 3.8: A set R of 8 points and the corresponding graph G produced by the
algorithm in Section 3.3.2. The edges are annotated with their respective capacities.
Edges with capacity 0 are omitted; edges starting at (Si)in are grayed out if Si is
empty.

point R ∈ Uj , we set g(R) = Sj . This results in a correct assignment g.
Thus, ifG admits a flow from s to twith flow ratem, we set f(i) = true. Otherwise

f(i) = false. This test performs as requested and has a running time ofO(m2/ logm).

Placing the Pixels. Let i′ be the even number that is the result from the binary
search, that is, f(i′) = true and f(i′ − 2) = false. Let now Γi′ be a coarsening
and let g be a correct assignment, calculated by the test f(i′). We place the pixels P
as shown in Figure 3.9: for each superpixel S ∈ Si′ , let {RS

1 , R
S
2 , . . . } = {R ∈ R |

g(R) = S} be the points assigned to S. We set the pixel corresponding to RS
j as

S
[(

(j − 1) mod i′

2

)
+ 1,

⌈
2j
i′

⌉], where S[x, y] is the pixel that is the (2x)th from the
left and (2y)th from the bottom within S. That way no two pixels in P touch and for
each point R its corresponding pixel is in the superpixel assigned to R. It follows that
the Hausdorff distance between a point and its corresponding pixel is at most 2

√
2i′.

Since i′ ≤ ⌈δ∗⌉ + 1 from the binary search, and since i′ is an even number and
δ∗ ≥ 1

2

√
2, we get:

Theorem 3.4. Given a set of m points R, we can determine a valid mapping P such that for
each point Ri with corresponding pixel Pi, we have dH(Ri, Pi) ≤ min{2

√
2(⌈δ∗⌉+1), 8δ∗},

in O(m2 log δ∗/ logm) time.
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Figure 3.9: A setR of eight points and the graph Gwith a maximal s-t-flow where
edges with flow 0 are omitted, produced by the algorithm in Section 3.3.2. The
superpixels and their respective vertices inG are color matched. The pixelsP induced
by the flow are show in gray.

The approximation factor of 8 is determined as follows: for large δ∗, the additive
constant of 2

√
2 is negligible. Inversely, the ratio dH(Ri, Pi)/δ

∗ is largest for small δ∗.
The two extreme cases to consider are: δ∗ = 1

2

√
2 and i′ = 2, and δ∗ = 2+ ε and i′ = 4

for 0 < ε ≪ 1. In the first case, we have dH(Ri, Pi) ≤ 4
√
2 = 8δ∗. In the second case,

we have dH(Ri, Pi) ≤ 8
√
2 ≤ 4

√
2δ∗.

3.3.3 An Algorithm with Constant Additive Error
Contrary to the constant-factor algorithm presented in the previous section, we now
present an approximation algorithm with only a constant additive error: that is, for a
given setR, we determine a validmappingP , with dH(Ri, Pi) ≤ δ∗+c for eachRi ∈ R,
where c is a constant and δ∗ is the minimal possible Hausdorff distance betweenR
and any valid mapping P . The algorithm uses similar ideas to the algorithm in
Section 3.3.2. Let Γ2 be a coarsening, that is, each superpixel only contains four pixels
forming a square. It follows that when placing a pixel in each superpixel in the same
position, the pixels are disjoint. We define d∗H(R,S) = minpixelP∈S dH(R,P ) as the
Hausdorff distance between the point R ∈ R and its closest pixel in the superpixel S.
For i ∈ N, let Si be the set of superpixels S, such that there is a point R ∈ R with
d∗H(R,S) ≤ i. Note that here, the size of the set Si is in Θ(i2m) instead of just Θ(m)
like in Section 3.3.2.

Observation 3.5. Let k ≥ δ∗ and k ∈ N. For a given valid mapping P that minimizes the
Hausdorff distance, for each point Ri ∈ R, the pixel Pi ∈ P is in a superpixel S ∈ Sk, with
d∗H(Ri, S) ≤ k. Additionally, each superpixel contains at most one pixel that is mapped to a
point.
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Figure 3.10: A small set R of 3 points and the graph G = (V,E) produced by the
algorithm in Section 3.3.3 for i = 2. All edges have a capacity of 1. The points inR
and their respective vertices in G are color matched.

The observation leads us to create the following test f(·): we want f(i) = true, if
there exists an assignment g : R → Si of points to superpixels such that:

1. ∀R ∈ R, d∗H(R, g(R)) ≤ i;

2. ∀S ∈ Si, there is at most one R with g(R) = S.

We again call such an assignment g a correct assignment. Otherwise, we want f(i) =
false. Note that f(0) = false.

Binary Search. Similarly to Section 3.3.2, we use exponential and binary search
to find a number i ∈ N with f(i) = true and f(i − 1) = false. Note that unlike
in the previous section, i does not need to be even. We start at i = 1. We iterate
calculating f(i): if f(i) = false, we double i and continue, else we stop. Then we
binary search normally between the last i and i/2. Due to Observation 3.5, we have
f(i) = true, for i ≥ δ∗. This binary search algorithm results in a number i′ ≤ ⌈δ∗⌉
and has a running time of O(F × log δ∗), where F the the time to run the test f(·).

Test. The calculation of f(i) proceeds very similarly to Section 3.3.2. We use a flow
algorithm [73] to determine if a correct assignment g exists. We create a directed
acyclic graphG = (V,E), as illustrated in Figure 3.10. We set V = {s, t}∪R∪Si as the
set of vertices. We setE = {(s,R) | R ∈ R}∪{(R,S) | R ∈ R, S ∈ Si ∧ d∗H(R,S) ≤ i}
∪ {(S, t) | S ∈ Si} as the set of edges. We set the capacity of all those edges to 1.

We then calculate a maximal flow from s to t. We can assume that the flow
in each edge is either 0 or 1. As |V |, |E| ∈ O(i2m), the flow algorithm runs in
O(i4m2/(log i logm)) time [103]. If G admits a flow from s to t with flow rate m, the
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Figure 3.11: A set R of 11 points and the valid mapping P respecting a correct
assignment g produced by the algorithm in Section 3.3.3.

flow induces a correct assignment g as follows: for each point R ∈ R, there is exactly
one superpixel S ∈ Si where the edge (R,S) has flow 1. We set g(R) = S. This results
in a correct assignment g.

Thus, if G admits a flow from s to twith flow ratem, we set f(i) = true. Other-
wise f(i) = false. This test f(i) performs as requested and has a running time of
O(i4m2/(log i logm)).

Placing the Pixels. Let i′ be the number that is the result from the binary search,
that is, f(i′) = true and f(i′ − 1) = false. Let g be a correct assignment, calculated
by the test f(i′). We place the pixels P as shown in Figure 3.11: for each superpixel
S ∈ Si′ , if there is a point R assigned to S, we place the pixel corresponding to R in
the top-right pixel of S. That way no two pixels in P touch and for each point R its
corresponding pixel is in the superpixel assigned to R. It follows that the Hausdorff
distance between a point and its corresponding pixel is at most i′+

√
2. Since i′ ≤ ⌈δ∗⌉

from the binary search, we have:

Theorem 3.6. Given a set of m points R, we can determine a valid mapping P such
that for each point Ri with corresponding pixel Pi, we have dH(Ri, Pi) ≤ ⌈δ∗⌉ +

√
2,

in O(m2δ∗4/ logm) time.

The running time is calculated as follows: the algorithm runs a binary search
over i, where each step takes O(m2i4/(log i logm)) time. In the end we get a value
i′ ≤ ⌈δ∗⌉. Therefore, the running time is O(F × log δ∗), where F the the time to run
one step.

3.4 Conclusion
We extended the previously known results on mapping regions to the grid with
bounded Hausdorff distance. Where Bouts et al. [26] showed that, for a given set of
regions, it is NP-hard to find the set of grid polygons that minimizes the Hausdorff
distance d′H, even if for just one region, we show that this is hard, even if all regions are
points. On the other hand, wherewe focused on constructions that producemappings
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with Hausdorff distance asymptotically tight to the worst-case in Chapter 2, here we
present the first approximation algorithms for mapping regions to the grid.

An interesting open question is whether the concepts presented in this chapter
can be extended to an approximation algorithm that maps convex regions to the grid.
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Chapter 4

Querying the Hausdorff
Distance of a Line Segment

We consider the problem of preprocessing a set of points or segments R such that
we can quickly determine the Hausdorff distance between a query segment and R.
For |R| = n and parameters k ∈ [1 . . . n], δ ∈ (0, 1) and ε > 0, we can store R in a
data structure of size O(nk1+ε + n1+δ) in O(nk1+ε + n1+δ) expected time such that
given a query line segment b we can compute the Hausdorff distance dH(b, R) =

max
{−→
dH(b, R),

−→
dH(R, b)

}
in O((n/k) log k + log3 k + 21/δ log n) time. This chapter is

based on the following presentation:
F. Staals, J. L. Vermeulen and J. Urhausen. Querying the Hausdorff Distance
of a Line Segment. Abstracts of the 38th European Workshop on Computational
Geometry (EuroCG), pages 60:1–60:8, 2022.

4.1 Introduction
We are interested in computing the Hausdorff distance efficiently. Given a set R of
“red” points, and a set B of “blue” points in R2, of sizes n and m, respectively, it is
easy to compute the Hausdorff distance in O((n+m) log(n+m)) time. We simply
build the Voronoi diagram of one set, and query it with the other. In case R and B
are sets of disjoint line segments in R2 the problem can be solved in the same time [7].
When R and B are convex polygons, their Hausdorff distance can even be computed
in linear time [12].

The above algorithms are very good if B and R have similar sizes. However,
when we wish to compute the Hausdorff distance between a possibly large set, say R,
and multiple individual smaller sets B1, . . . , Bk one by one, we wish to avoid the
costly linear dependence on |R| when comparing R with each Bi. That is, we wish to

65
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build a data structure on R that can be efficiently queried for the Hausdorff distance
between R and some query object B. This setting appears naturally in a range of
applications, for example when querying a shape database (for instance, to recognize
a hand-written character by comparing it to block letters), trajectory clustering (in
which a cluster is represented by a single representative curve) [102], or polyline
simplification (test if some candidate shortcut segment is “good enough”) [28, 88].
Furthermore, efficiently computing theHausdorff distance between subsets of varying
sizes is one of the (many) challenging subproblems that arise if one is interested
in maintaining the Hausdorff distance between two sets of line segments subject to
updates.

Problem Statement and Results. Let R be a set of n points or line segments in R2,
and let b be a single query line segment in R2. We develop a data structure storing R
that can efficiently be queried for the Hausdorff distance between b and R. The hard
part when computing dH(b, R) is in determining −→

dH(b, R) = maxp∈b minr∈R d(p, r).
We first approach that part of the question assuming R is a set of points and later
extend our solution to line segments. Observe that −→dH(b, R) is the maximum of
two separate terms: (1) the distance from the endpoints of b to the corresponding
closest point in R and (2) the maximum distance from an intersection of b and the
Voronoi diagram of R to the corresponding closest point in R [7], see also Figure 4.1.
While the first part is easy to compute, the second part needs a more involved data
structure. We start in Section 4.2.1 by storing R using O(n2+ε) space and expected
preprocessing time in a way that allows computation of said intersection-distance for
a given query line inO(log n) time. Here, and throughout the rest of the chapter, ε > 0
is an arbitrarily small constant. Building on that idea, we extend the data structure in
Section 4.2.2 to allow line segment queries at the cost of increasing the query time to
O(log3 n).

In Section 4.3, we then generalize this solution to when R is a set of line segments
without increasing the space needed. The asymptotic running time does not change.
Then, in Section 4.4, we show how, for any parameter k ∈ [1 . . . n], we can decrease the
space usage to O(nk1+ε) at the cost of increasing the query time to roughly O(n/k).

Computing −→
dH(R, b) turns out to be relatively straightforward in comparison,

as the maximum distance from R to b is realized by an endpoint of a line segment
in R. Using known results, for example farthest-point Voronoi diagrams, this yields
an O(n1+δ) space O(21/δ log n) time solution, for some parameter δ ∈ (0, 1), see
Section 4.5. Overall, we can store a set R of line segments using O(nk1+ε + n1+δ)
space and expected preprocessing time, such that given a line segment b we can
determine the Hausdorff distance dH(b, R) in O((n/k) log k+ log3 k+21/δ log n) time.
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minq∈R d(p, q)

p ∈ b

e

ve

we

b

Figure 4.1: Left: the blue line segment b and the Voronoi diagram VorR of the red
points R. An edge e ∈ VorR and the corresponding points ve, we ∈ R are highlighted.
Right: for each point p ∈ bwe show the distance to the closest red point. The green
crosses mark the points of interest.

4.1.1 Preliminaries
For a set of points or line segments R in R2, let VorR be their Voronoi Diagram. We
consider VorR as a set of edges. When R is a point set, each edge is a line segment
(or a ray). When R is a set of line segments on the other hand, VorR contains line
segments and parabolic arcs. Each edge e ∈ VorR is equally close to two objects ve
and we of R that induce e. For a line segment b, the directed Hausdorff distance
−→
dH(b, R) is realized either by an endpoint of b, or a point on the intersection b ∩ e, for
an edge e ∈ VorR [7], see Figure 4.1. That is,

−→
dH(b, R) = max{dEnd(b, R), dInt(b, R)}

with the following definitions: for b = b1b2,

dEnd(b, R) = max
i∈{1,2}

−→
dH(bi, R) = max

i∈{1,2}
min
r∈R

d(bi, r)

is the endpoint-distance and
dInt(b, R) = max

e∈VorR
{d(u, ve) | u ∈ b ∩ e}

is the intersection-distance. We can easily compute the endpoint-distance using two
O(log n) time nearest neighbor queries on R. Hence, our main task is to develop a
data structure that allows us to efficiently compute dInt(b, R).

4.2 A Data Structure for Red Points
We first explore how to determine dInt(b, R), when R is a set of points. We start with
the case where b is a line, and then extend to the case where b is a line segment.
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Figure 4.2: The Voronoi edge e, its corresponding dual e∗ and its corresponding lifted
surface e#. The surface e# is colored orange on the side that is visible from the top
and purple on the side that is visible from the bottom. For a line ℓ intersecting e, the
squared distance between the intersection ℓ ∩ e and a corresponding red point ve
equals the height at which a vertical line through ℓ∗ punctures e#.

4.2.1 Querying with a Line

We want to store R so that we can efficiently compute dInt(b, R) for a query line b.
For each edge e in the Voronoi Diagram VorR, we lift the double wedge e∗ to the
surface e# such that a point ℓ∗ ∈ e∗ is lifted to a height equal to the squared distance
between the red Voronoi site ve and the intersection of ℓ and e, as shown in Figure 4.2.
We square to simplify the derivations. This surface is also shown in Figure 1.3 in
Chapter 1 (Introduction). Formally, e# = {(s, t, d2(ve, ℓ ∩ e)) | ℓ∗ := (s, t) ∈ e∗}. For
a set E, we set E# = {e# | e ∈ E}. As a result, for a double wedge e∗ and a line p∗
through the center of the double wedge, all points ℓ∗ on p∗ will be lifted to the same
height, meaning e# is a ruled surface, see Figure 4.3. As we want to determine the
directed Hausdorff distance, for each line ℓ, we are interested inmax{z | ∃e ∈ VorR :
(s, t) = ℓ∗ ∧ (s, t, z) ∈ e#}, that is, we care about the upper envelope of these surfaces.

Sharir [112] proves that the complexity of this upper envelope isO(n2+ε) and that
it can be constructed using a randomized algorithm in O(n2+ε) expected time. We
use their construction and project the upper envelope down to R2 along the z-axis.
We label each area in the arrangement induced by the projection with the surface e#
on the upper envelope above that area. As a line parallel to the z-axis intersects
each surface e# ∈ E# at most once, this labeled projection also has a complexity of
O(n2+ε). Finally, we use Chapter 6 of [18] to allow point location queries on this
projection in O(log n) time. Thus, for a query line b, we query the point location data
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Figure 4.3: The Voronoi edge e, its corresponding dual e∗ and its corresponding lifted
surface e#. The points dual to lines intersecting a Voronoi edge e in the same point
are aligned and are lifted to the same height in e#.

structure using b∗, resulting in the surface e# that is on the upper envelope of E#

above b∗. Thus we can calculate the height of e# above b∗. As previously stated, this
determines dInt(b, R).

Note that when b is a vertical line, b∗ is not defined. That is why we additionally
compute the same data structure over the set R rotated around the origin by π/2
radians. We get:
Lemma 4.1. Let R be a set of n points in R2. In O(n2+ε) expected time we can build an
O(n2+ε) size data structure that can compute dInt(b, R) for a query line b in O(log n) time.

Lemma 4.1 is illustrated in Figure 4.4. For a segment s, let ℓs be the supporting
line of s. We also state the following corollary:

Figure 4.4: The overview of Section 4.2.1. To query the intersection distance for a
line ℓ, we query the upper envelope above the point ℓ∗.
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Corollary 4.2. Let E ⊆ VorR be a set of k Voronoi edges. In O(k2+ε) expected time we
can build an O(k2+ε) size data structure that can compute max{z | ∃e ∈ E : (s, t) =
ℓ∗b ∧ (s, t, z) ∈ e#} for a query line segment b intersecting all edges E in O(log k) time.

4.2.2 Querying with a Line Segment

We now extend the data structure to support queries with a line segment, see Fig-
ure 4.5. For a set of n hyperplanes H in Rd and r ∈ [1 . . . n], a 1/r-cutting of H is a
partition of Rd into cells with disjoint interiors, each of which is intersected by at most
n/r hyperplanes from H [42]. Furthermore, each cell is a connected region bounded
by a simple curve, or in higher dimension, a not self-intersecting surface. The conflict
list of a cell ∇ is the set of the hyperplanes intersecting the interior of ∇.

Construction. We can cut R2 into O(r2) cells where each cell is intersected by at
most n/r boundaries of double wedges in Vor∗R in O(nr) time [42]. Figure 4.6 shows
an example of such a cutting. This algorithm from [42] also computes the conflict
list for each cell. Let Eint

∇ = {e ∈ VorR | ∅ ⊊ e∗ ∩ ∇ ⊊ ∇} be the edges whose dual
double wedges have boundaries in the conflict list of ∇.

For each cell ∇, we compute the following: let Eelem
∇ be the set of edges whose

dual double wedges contain ∇, that is, Eelem
∇ = {e ∈ VorR | ∇ ⊆ e∗}. We sort the

edges Eelem
∇ by the order in which a line ℓwith ℓ∗ ∈ ∇ intersects them. Lemma 4.3

ensures that a unique sorting exists. We then build a balanced binary search tree T∇
on Eelem

∇ , where each node has a set of edges associated with it. The set of a leaf
contains one edge and the set of an inner node contains the edges contained in
its children’s sets, as illustrated in Figure 4.7. For each node with set of edges E
we calculate the upper envelope of E#, as stated in Corollary 4.2. The tree with
the upper envelope at each node uses T (n) space and construction time, where

∇

Figure 4.5: The overview of the data structure of Section 4.2.2. Each cell of the cutting
stores a balanced binary search tree whose internal nodes store an upper envelope.
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Figure 4.6: A cutting of three wedges into six cells where each cell is intersected by at
most three boundaries.

T (n) = 2T (n/2) +O(n2+ε). This means

T (n) ∈ O

(
logn∑
i=0

2i
( n

2i

)2+ε
)

= O

(
n2+ε

logn∑
i=0

(
1

2i

)1+ε
)

= O
(
n2+ε

) .
Lemma 4.3. Let E be the edges of a planar subdivision. Let ∇ ⊆ R2 be a connected region
bounded by a simple curve and let Eelem

∇ be the edges in E dual to the double wedges that
contain ∇. Any two lines with duals within ∇ will intersect all edges of Eelem

∇ in the same
order.

Proof. This proof is similar to the proof of Lemma 4.2 of [2]. However, as that proof
is abbreviated, we will prove the statement here in its entirety. Let a be a line with
dual point inside ∇. For each edge e ∈ Eelem

∇ , we have a∗ ∈ e∗, thus a intersects all
edges Eelem

∇ . It remains to show that any two lines with duals inside∇ intersect those
edges in the same order.

Let a and c be two lines with dual points within the interior of ∇ and assume for
the sake of contradiction that a and c intersect the edges Eelem

∇ in a different order.
Let u : [0, 1] → R2 be a curve with u(0) = a∗ and u(1) = c∗ whose interior does not
touch the boundary of∇. Such a curve exists as∇ is a region bounded by a simple
curve. Each point u(i) on u corresponds to a line u(i)∗ in the primal that intersects
all edges Eelem

∇ . Increasing i from 0 to 1 corresponds to moving u(i) along u from a∗

to c∗ and it corresponds to continuously transforming the line u(i)∗ from a to c. Let
j = infi∈[0,1]{u(i)∗ intersects Eelem

∇ in a different order than a}. It follows that u(j)∗
intersects two edges ofEelem

∇ in the same point. AsE is a set of interior-disjoint edges,
u(j)∗ intersects the endpoint of at least one edge e ∈ Eelem

∇ . That means u(j) is on
the boundary of the double wedge e∗. As ∇ ⊆ e∗, u(j) is also on the boundary of∇,
a contradiction.
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Figure 4.7: Left: a query segment whose supporting line intersects four Voronoi
edges. Right: a binary search tree build on those four edges. A query determines the
two nodes containing the three edges intersected by the query segment.

We process each cell of the cutting recursively, as described by [42]. That is, for
each cell, if it is intersected by k > 0 boundaries of double wedges, we again cut it
into O(r2) cells where each cell is intersected by at most k/r boundaries of double
wedges. We again determine Eint

∇ for each cell∇ using the conflict list. Also, for each
cell ∇ with parent cell ∇′, we define Eelem

∇ = {e ∈ VorR | ∇ ⊆ e∗ ∧ ∇′ ⊊ e∗}, that
is, Eelem

∇ = {e ∈ Eint
∇′ | ∇ ⊆ e∗}. We compute the abovementioned balanced binary

search tree T∇ and upper envelope data structure on the edges Eelem
∇ . In the end, the

space needed is S(n) = cr2(n2+ε + S(n/r)), for some constant c. For a sufficiently
large constant r, we get S(n) ∈ O(n2+ε). The same holds for the construction time.

Query. When querying with a line segment b with supporting line ℓb, we proceed
as follows. We determine the cell ∇ containing ℓ∗b and recurse within ∇. This results
in the set C of nested cells all containing ℓ∗b . Note that for each edge e intersecting ℓb,
that is, ℓ∗b ∈ e∗, we have one cell∇ ∈ C, where e ∈ Eelem

∇ . Within each tree T∇ with
∇ ∈ C, we compute the consecutive range of edges intersecting the line segment b
and not just the supporting line ℓb. This gives us a set ofO(log2 n) nodes that together
represent all edges from VorR intersected by b. For each of those nodes we query the
height of the upper envelope at (s, t) = ℓ∗b . The result of the query is the maximum
over those heights. This query takes O(log3 n) time and returns the intersection
distance dInt(b, R). We finally perform two point location queries in the Voronoi
Diagram—one for each of the endpoints of b—to determine dEnd(b, R).

Theorem 4.4. Let R be a set of n points in R2. In O(n2+ε) expected time we can build
an O(n2+ε) size data structure that can compute −→dH(b, R) for a query line segment b in
O(log3 n) time.
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b

Figure 4.8: The directed Hausdorff distance −→dH(b, R) is realized either at an endpoint
of b, or at an intersection of bwith an edge of the Voronoi diagram of R, even when R
contains line segments and not just points.

4.3 A Data Structure for Red Line Segments
Now we consider the problem when R is a set of line segments instead of a set of
points and b is still a line segment. Themain difference is that the edges of the Voronoi
Diagram VorR may be parabolic arcs, as shown in Figure 4.8. Nonetheless, the results
from Section 4.2 directly translate here. Note that we consider each parabolic arc and
each line segment a separate edge. The main question in this section concerns the
shape of the dual e∗ of a parabolic arc e and the shape of the lifted surface e#. To
be precise, we define the pseudo-double wedge e∗ as the set of all points ℓ∗, where ℓ
intersects the edge e, and e# = {(s, t,maxa∈ℓ∩e d

2(a, ve)) | ℓ∗ = (s, t) ∈ e∗}. We
use the maximum, as ℓ might intersect e twice. See Figure 4.9 for an example. The
following two lemmata describe the shape of e∗. A conic is a curve described by an
equation of the form ax2 + bxy + cy2 + dx+ ey + f = 0, for some a, b, c, d, e, f ∈ R.
A conic is nondegenerate if it is a circle, ellipse, parabola, or hyperbola, that is, if it
contains at least two points and no three collinear points.
Lemma 4.5. The points dual to the tangents of a parabola form a nondegenerate conic.

Proof. We make use of projective geometry [104]. This proof goes through the fol-
lowing steps:

1. We define points and (parameters of) lines in homogeneous coordinates. They
are three-dimensional vectors.

2. We define projective transformations on those points and lines. They correspond
to multiplying all vectors with a matrix.

3. For any conic C, we define a matrix AC corresponding to that conic.
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y = −x

(−1, 0)

(9, 5)

y = 9x− 5

dualprimal

pq

ℓ
ℓ′

ℓ∗

ℓ′∗e

e∗

Figure 4.9: A Voronoi edge e and the corresponding dual pseudo-double wedge e∗. A
line ℓ intersecting e once also intersects the line segment pq between the endpoints of
the parabolic arc and thus ℓ∗ ∈ pq∗. A line ℓ′ intersecting e twice has its dual point ℓ′∗
between the double wedge and a conic.

4. We prove that a conic is nondegenerate if and only if its matrix is invertible.

5. We observe that generating the parameters of the line tangent to a conic C in a
point corresponds to a matrix multiplication using AC .

6. We observe that the dual transformation is a projective transformation involving
an invertible matrixD where, after the transformation, points are now regarded
as if they were lines and vice versa.

7. We finish by stating that, for a parabola C, the matrix AC′ = D−1T ·A−1
C

T ·D−1

corresponds to the conic C′ describing the points dual to the tangents of C.
As AC′ is invertible C′ is a nondegenerate conic.

To start, we present homogeneous coordinates. Each point p = (x, y) ∈ R2

corresponds to the equivalence class

[p̂] =


λx
λy
λ

∣∣∣∣∣λ ∈ R \ {0}

with representative p̂ =

x
y
1

 .
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We use the notation p̂ to describe a point in homogeneous coordinates; p̂ is a column-
vector. A line ℓ ≡ ax + by + c = 0 corresponds to the line ℓ̂ ≡ ax + by + cz = 0 in
projective geometry. The parameters of ℓ̂ are described by the equivalence class

[
ℓ̂para

]
=


λa
λb
λc

∣∣∣∣∣λ ∈ R \ {0}

with representative ℓ̂para =

a
b
c

 .

To test if a point p is on a line ℓ, we verify if p̂T ℓ̂para = 0. Thus, ℓ̂ =
{
p̂ ∈ R3\{(0,0,0)}

R\{0} |

p̂T ℓ̂para = 0
}
. Observe that in projective geometry points and lines are similar.

We can apply a projective transformation to the equivalence classes. A projective
transformation is described by an invertible 3× 3matrixM . Applying a projective
transformation corresponds to multiplying each point withM and the parameters
of each line withM−1T . Recall that a conic is described by an equation of the form
ax2 + bxy + cy2 + dx+ ey + f = 0, for some a, b, c, d, e, f ∈ R, which is equivalent to
p̂T ·AC · p̂ = 0, where AC =

(
a b/2 d/2

b/2 c e/2
d/2 e/2 f

)
is the matrix corresponding to conic C. A

projective transformation M transforms C to the conic with matrix M−1T ·AC ·M−1,
implying that whether the matrix of a conic is invertible is invariant under projective
transformations.

Now, in step 4, we prove that a conic is nondegenerate if and only if its correspond-
ing matrix is invertible, that is, if the matrix has nonzero determinant. Richter-Gebert
[104] states in Theorem 9.3 that “Every planar conic is projectively equivalent to a
conic of the form σ1x

2 + σ2y
2 + σ3z

2 = 0with σi ∈ {+1,−1, 0} for i ∈ {1, 2, 3}.” This
means that each conic can be transformed into a conic of the above form using a
projective transformation. We now analyze the different types of shape which the
conic C described by the homogeneous equation σ1x

2 + σ2y
2 + σ3z

2 = 0 can have:
• σ1 = σ2 = σ3 = 0: the conic is the entire space R3\{(0,0,0)}

R\{0} .
• exactly one sigma is nonzero: the conic is a line.; for example for σ2 ̸= 0, the

conic equals the line y = 0 in the Euclidean plane.
• one sigma is zero and the other two have the same sign: the conic is a point, as

two coordinates are set to 0.
• one sigma is zero and the other two have different signs: the conic consists of

two lines; for example for σ3 = 0, the conic equals the lines y = x and y = −x
in R2.

• σ1 = σ2 = σ3 ̸= 0: no point satisfies this equation, as (0, 0, 0) /∈ R3\{(0,0,0)}
R\{0} .

• otherwise, no sigma is zero and not all sigma have the same sign: C is the unit
hyperbola, its conjugate, or the unit circle in R2, meaning C is nondegenerate.



76 Chapter 4 Querying the Hausdorff Distance of a Line Segment

The determinant of the matrix AC is zero if and only if there is a σi that is zero,
meaning AC is invertible only in the last case. Richter-Gebert [104] states in The-
orem 3.2 “A projective transformation maps collinear points to collinear points.” Note
that only the conics in the last case have multiple points and no three collinear points.
Therefore, any nondegenerate conic is projectively equivalent to a conic that is in the
last case and is thus described by an invertible matrix. Conversely, if the matrix of a
conic is invertible, it is again projectively equivalent to conic that is in the last case
and thus it is nondegenerate.

Moving on to step 5 of the proof, Richter-Gebert [104] says in Theorem 9.1 that
for p ∈ C, ℓ̂para = AC p̂ are the parameters of the tangent at p̂ to C in the projective
plane. For step 6, observe that for a line ℓ̂ =

(−s
1
−t

)
≡ y = sx + t, its dual point is

ℓ̂∗ =
(

s
−t
1

)
= D · ℓ̂para, where D =

(−1 0 0
0 0 1
0 1 0

)
.

Finally, let C be a parabola. We have C = {p | p̂T ·AC · p̂ = 0} in projective geometry
(step 3). The matrix AC is invertible (step 4). The parameters of the tangents to C are
described by ℓ̂Tpara ·A−1

C
T · ℓ̂para = 0 (step 5). Thus, the points ℓ̂∗ dual to the tangents

to C satisfy ℓ̂∗
T
·D−1T ·A−1

C
T ·D−1 · ℓ̂∗ = 0 (step 6). The matrix D−1T ·A−1

C
T ·D−1

is invertible meaning the points form a nondegenerate conic.

Lemma 4.6. For an edge e, the pseudo-double wedge e∗ is an area bounded by three algebraic
curves each of degree at most two.

Proof. We show that the curves bounding e∗ are roots of bivariate polynomials of
degree at most two. Let es be the supporting parabola of e and let p and q be the
endpoints of e. Let ℓ ≡ y = sx+ t be a line intersecting e.

Let ℓmin (ℓmax) be the bottommost (topmost) line parallel to ℓ intersecting e. Every
line parallel to ℓ between ℓmin and ℓmax intersects e. Then, ℓmin (ℓmax) contains p or q,
or is tangent to e. Similarly, let sinf = infs′∈R{s′ | e intersects y = s′x + t}. We
symmetrically define ssup. For sinf < s′ < ssup, the line y = s′x+ t intersects e. Again,
if sinf ̸= −∞ (ssup ̸= ∞), the line y = sinfx+ t (y = ssupx+ t) contains p or q, or is
tangent to e.

Thus, when ℓ∗ is a point on the boundary of e∗, ℓ intersects p or q, or is tangent
to e. As the points dual to the lines tangent to es form a nondegenerate conic C
(Lemma 4.5), e∗ is an area bounded by the conic C and the lines p∗ and q∗.

From Lemma 4.6 we deduce that the arrangement of pseudo-double wedges E∗
R

has complexity O(n2). Thus, we can extend the line query data structure from
Section 4.2.1. Furthermore, the (vertical decomposition of the) arrangement of a
random sample of Ω(r2 log2 r) such pseudo-double wedges is expected to be a 1/r-
cutting of E∗

R [72]. It then follows we can compute a 1/r-cutting of E∗
R of size O(r2)

in O(nr) expected time [22]. This enables to extend the line segment query data
structure in Section 4.2.2.
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Next, we are interested in the shape of the surface e#, so that we can prove an
upper bound on its complexity. A surface in R3 is a terrain if any line parallel to the
z-axis intersects the surface at most once. The definition of when a surface is algebraic
of constant degree is beyond the scope of this thesis; we use here that, for a surface to
be algebraic of constant degree, it is sufficient if the surface is the zero set of a polynomial
whose degree is bounded by a constant. We prove that each e# is an algebraic terrain
of constant degree, which means their upper envelope can be stored for O(log n) time
point location queries using O(n2+ε) space [112].
Lemma 4.7. The surface e# is an algebraic terrain of degree at most eight or the maximum
over two algebraic terrains each of degree at most eight.

Proof. Recall that e# is defined as {(s, t,maxa∈ℓ∩e d
2(a, ve)) | ℓ∗ = (s, t) ∈ e∗}.

We start by expressing the intersection ℓ ∩ e depending on the parameters s and t
of the line ℓ. Let ℓ ≡ y = sx− t and let fe(·) be the polynomial of degree at most two
that describes the supporting line or parabola of the edge e. Let a ∈ ℓ ∩ e, implying
ay = sax − t∧ fe(a) = 0 =⇒ fe((ax, sax − t)) = 0. We solve that last equation for ax
resulting in at most two solutions x1(s, t) and x2(s, t) that are functions of s and t.

If e is a line segment, there is only one solution x1(s, t). Then e# = {(s, t, z) | z =
d2((x1(s, t), sx1(s, t)− t), ve))}. Then, the equation z = d2((x1(s, t), sx1(s, t)− t) can
be rewritten as z = f1(s,t)

f2(s)
, where f1 and f2 are polynomials of degree two. This is

equivalent with f1(s, t)− zf2(s) = 0, proving e# is an algebraic terrain of degree at
most three in this case.

Otherwise, e is a parabolic arc, so we get two solutions x1(s, t) and x2(s, t). So, e#
is the maximum over the two surfaces {(s, t, z) | z = d2((xi(s, t), sxi(s, t)− t), ve))}
for i ∈ {1, 2}. For each i ∈ {1, 2}, the equation z = d2((xi(s, t), sxi(s, t) − t), ve))

can be rewritten as z =
f1(s,t)+f2(s,t)

√
f3(s,t)

f4(s)
, where f1, f2, f3 and f4 are polynomials

of degree at most four. This in turn can be rewritten as f(s, t, z) = 0, where f is a
polynomial of degree at most eight. So, e# is the maximum of two algebraic terrains
of constant degree.

Thus, we can compute arrangements of pseudo-double wedges, compute cuttings
of these arrangements and finally we can lift pseudo-double wedges to 3D and
compute their upper envelope. Hence, we can extend the approach from Section 4.2
to line segments. Below we restate Lemma 4.1 and Theorem 4.4. The asymptotic
running time remains unchanged.
Lemma 4.8. Let R be a set of n disjoint line segments in R2. In O(n2+ε) expected time we
can build an O(n2+ε) size data structure that can compute dInt(b, R) for a query line b in
O(log n) time.

Theorem 4.9. Let R be a set of n disjoint line segments in R2. In O(n2+ε) expected time we
can store R in a data structure of size O(n2+ε) such that given a query line segment b we can
compute −→dH(b, R) in O(log3 n) time.
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4.4 A Space-Time Tradeoff
We describe how to adapt our data structure to reduce the space used, at the cost
of increasing the query time. Let again R be a set of n red line segments. Using a
parameter k ∈ [1 . . . n], we reduce the space used to O(nk1+ε + npolylog n), while
increasing the query time to O((n/k) polylog k). For k = n the results in this section
match the results stated in Theorem 4.9. The main idea is to partition R2 into O(n/k)
cells, such that in each cell∇, there are onlyO(k) line segments fromR that contribute
to VorR. We then build our data structure from Theorem 4.9 on each such set. A
query line segment b may now intersect all O(n/k) cells, which ultimately yields a
query time of O((n/k) log k + log3 k).

Points. Again, we first describe our data structure for a set of points R and extend
it later to line segments. We lift a point r ∈ R to a plane in R3 using the standard
lifting transformation (Chapter 8 in [18]). Formally this lifts a point r = (rx, ry) to
r∖ = {(x, y, z) | z = 2xrx + 2yry − (r2x + r2y)}. Note that the projection of the lower
envelope of theses surfaces corresponds to the Voronoi diagram of R. Let R∖ denote
the resulting set of planes, and let Λ be a vertical k-shallow cutting on R∖ [41]. Such
a cutting Λ consists of O(n/k) vertical constant complexity prisms that together cover
the ≤ k-levels of the arrangement of R∖. Moreover, each prism is intersected by only
O(k) planes. Computing Λ takes O(n log(n/k)) time [41].

For each cell (prism) ∇ ∈ Λ, we consider the points R∇ corresponding to the
O(k) planes in the conflict list of ∇. We build the Voronoi diagram Vor∇ of R∇ and
clip it to the downward projection∇ of∇. Observe that due to the relation between
the Voronoi diagram of R and the lower envelope of R∖, for any point q ∈ ∇ the
site among R∇ closest to q is actually the closest site overall. So if we were to glue
together all (clipped) Voronoi diagrams Vor∇ over all cells we obtain the Voronoi
diagram of R.
Observation 4.10. Let p ∈ ∇. Then −→

dH(p,R) =
−→
dH(p,R∇). Also, for a segment b

intersecting∇, we have dInt(b ∩∇, R) = dInt(b ∩∇, R∇).
For each cell∇ ∈ Λwe now store the edges of its clipped Voronoi diagram once

in the line data structure of Lemma 4.1 and once in the data structure of Theorem 4.4.
Since each such a data structure requires O(k2+ε) space and there are O(n/k) cells,
the total size of our data structure is O(nk1+ε).

To answer a query with a line segment b = b1b2 we naively compute the subset of
cells from Λ that intersect b. For the at most two cells ∇1,∇2 of Λ whose downward
projections contain the endpoints b1, b2 of b, we query the data structure belonging
to ∇i described in Theorem 4.4 to compute the directed Hausdorff distance from the
part of b that lies inside the cell∇i to R∇i . Formally, using Observation 4.10, this part
of the query returns

max{dEnd(b, R), max
i∈{1,2}

{dInt(b ∩∇i, R)}}.
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For the other intersected cells we use the data structure from Lemma 4.1 to make
queries inO(log k) time per cell. Again, for an intersected cell∇, this calculates dInt(b∩
∇, R). By taking the maximum over these queries we get −→dH(b, R) = max{dEnd(b, R),
dInt(b, R)}. Since q intersects at most O(n/k) cells the query time is O((n/k) log k +
log3 k). Hence, we obtain:

Theorem 4.11. Let R be a set of n points in R2, and let k ∈ [1 . . . n] be a parameter. In
O(nk1+ε + n log(n/k)) time we can store R in a data structure of size O(nk1+ε) such that
given a query line segment b we can compute −→dH(b, R) in O((n/k) log k + log3 k) time.

Line segments. When R is a set of line segments we use a similar approach. How-
ever, we do not use the standard lifting, since an extension of this lifting operation
to line segments does not result in flat surfaces. Instead, for each line segment
r ∈ R we consider the (graph of the) function that expresses the distance from
a point q ∈ R2 to r. Formally, for a line segment, r ∈ R, we define the surface
r∨ = {(x, y, z) | z = d((x, y), r)}. We build a vertical k-shallow cutting Λ of those
surfaces (in this case cells of Λ are constant complexity pseudo-prisms). Observe
that, as the line segments R do not intersect, the Voronoi diagram has linear com-
plexity, and thus such a cutting exists. The resulting cutting has size O(n/k) and
can be constructed in O(n log3(n)λs+2(log n)) ∈ O(n log5 n) expected time [93]. The
term λs(n) is the maximum length of a Davenport-Schinzel sequence of n symbols
of order s, and s is a constant. For each cell∇we then proceed in the same way as
before: we compute the Voronoi diagram of the segments in the conflict list of∇, and
preprocess its edges for directed Hausdorff distance queries for lines (Lemma 4.8)
and line segments (Theorem 4.9).

This yields the following result:

Theorem 4.12. Let R be a set of n disjoint line segments in R2 and let k ∈ [1 . . . n] be a
parameter. In O(n log3(n)λs+2(log n) + nk1+ε) expected time we can store R in a data
structure of size O(nk1+ε) such that given a query line segment b we can compute −→dH(b, R)
in O((n/k) log k + log3 k) time, where s is a constant.

4.5 The Directed Hausdorff Distance from Red to Blue
We compute the directed Hausdorff distance from a set of n red line segments to
a blue query line segment b. First observe that the maximum distance from the
red line segments to b is realized by an endpoint of a red line segment. Hence, we
can immediately reduce the problem to computing the directed Hausdorff distance
−→
dH(R, b) from a set of O(n) red points R to b.

We use the method by Buchin et al. [37], which improved and extended the result
from de Berg et al. [21]. Assume for ease of description that b = b1b2 is horizontal
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with b1 left of b2. The directed Hausdorff distance −→
dH(R, b) is then the maximum

of: (i) the Euclidean distance between b1 and the farthest point from R left of b1,
(ii) the Euclidean distance between b2 and the farthest point from R right of b2, or
(iii) the maximum difference in y-coordinates between b and the points in R in the
vertical slab between b1 and b2 (that is,max{|ry − by| | r ∈ R ∧ (b1)x ≤ rx ≤ (b2)x})
To determine −→

dH(R, b) for a general segment b we therefore perform three queries:
two queries search for the farthest point in R from a point bi within a halfplane and
one query searches for the farthest point to the supporting line of b within a slab
perpendicular to b. Aronov et al. [11] present a data structure that uses O(n1+δ)
space and preprocessing time, and can be queried for the point in a halfplane farthest
from bi in O(21/δ log n) time, where δ ∈ (0, 1) is an arbitrary constant. By storing the
convex hull of R we can compute the point realizing the third query in O(log n) time
as well. Hence, we conclude:
Lemma 4.13. Let R be a set of n line segments in R2, and let δ be an arbitrary constant in
the range (0, 1). Using O(n1+δ) time we can build a data structure of size O(n1+δ) so that
given a query line segment b we can compute −→dH(R, b) in O(21/δ log n) time.

Together with Theorem 4.12, as O(n log3(n)λs+2(log n)) ∈ O(n log5 n) ∈ O(n1+δ)
for any parameter δ ∈ (0, 1) and constant s, we can can formulate the main theorem
of this chapter:
Theorem 4.14. Let R be a set of n disjoint line segments in R2, and let k ∈ [1 . . . n] and
δ ∈ (0, 1) be parameters. In O(nk1+ε + n1+δ) expected time we can store R in a data
structure of size O(nk1+ε + n1+δ) such that given a query line segment b we can compute
dH(b, R) in O((n/k) log k + log3 k + 21/δ log n) time.

4.6 Conclusion
We presented a data structure on a set of segments that allows queries of the following
type: for a given segment, we can quickly determine the Hausdorff distance between
the query segment and the set of segments the data structure is built on. We provided
a mechanism to balance between space usage and preprocessing time for that data
structure.

Note that Aronov et al. [11] also prove the existence of a data structure on n
points with O(n log3 n) space that can be computed in polynomial time and answers
halfplane proximity queries in O(log n) time. This result could improve the size
of the data structure in Theorem 4.14 to O(nk1+ε + n log3 n) and the query time to
O((n/k) log k + log3 k). However, there is no polynomial time algorithm known that
constructs that data structure.

The next step is to work this data structure into a way to determine the Hausdorff
distance between two sets of segments and update this distance while the sets change.
As a first step, one goal is to make the query data structure dynamic.



Chapter 5

The k-Fréchet Distance

We describe the k-Fréchet distance, a similarity measure that bridges between the
Fréchet distance and the Hausdorff distance, by testing similarity between curves
that resemble each other only piecewise. The parameter k denotes the number of
subcurves into which we divide the input curves. The k-Fréchet distance allows two
variants: the cover and the cut distance. We show that computing the cover variant of
k-Fréchet is NP-hard, which is interesting since both (weak) Fréchet and Hausdorff
distance are computable in polynomial time. We then show two algorithms for the
cover variant: a polynomial time 2-factor approximation and an exact algorithm with
exponential running time. The cut variant is not just NP-hard, but also APX-hard [38].
We present a polynomial time algorithm for the case k = 2 in the cut variant. This
chapter is based on two articles:

H. A. Akitaya, M. Buchin, L. Ryvkin and J. Urhausen. The k-Fréchet Distance:
How to Walk Your Dog While Teleporting. 30th International Symposium on
Algorithms and Computation (ISAAC), pages 50:1–50:15, 2019.

M. Buchin, L. Ryvkin and J. Urhausen. Computing the Cut Distance of Two
Curves. Abstracts of the 36th European Workshop on Computational Geometry
(EuroCG), 2020.

Note that the dissertation of Leonie Ryvkin [106] is also in part based on that paper
from Akitaya et al. [6].

5.1 Introduction
The Fréchet distance and the Hausdorff distance are two well-studied distance meas-
ures. As demonstrated in the introduction in Chapter 1, both are helpful in several
applications. The Hausdorff distance can be computed more efficiently. However,

81
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compared to the Fréchet distance, the Hausdorff distance provides us with less in-
formation by taking only the overall positioning of curves into consideration, not
how they are traversed. We introduce the k-Fréchet distance as a distance measure
in-between Hausdorff and (weak) Fréchet distance. As the name implies, it is closely
related to the Fréchet distance but detects similarities between curves that resemble
each other only piecewise. That is, we subdivide both curves into subcurves and
compare the subcurves pairwise. There are two variants depending on whether
the subcurves are allowed to overlap (cover distance) or not (cut distance). The
parameter k in k-Fréchet denotes the number of subcurves into which we divide the
input curves.

The new measure allows us to find similarities between curves that need to be cut
and reordered to be similar under the Fréchet distance. For instance, this could be
objects of rearranged pieces such as a set of curves of tourists visiting several sights
in a city. If the k-Fréchet distance of two curves is small, the respective tourists used
similar routes to get to the same sights. For k smaller than the number of sights,
we can also conclude that the tourists visited some sights in the same order. Other
examples would be chemical structures or handwritten characters and symbols. An
example is displayed in Figure 5.1, where we compare two variants of writing the
letter k by hand. Note that we deal with disconnected curves by concatenating the
respective subcurves. Of course, we can easily identify that both of them are ks by
using the Hausdorff distance to compare them to a “generic” k, but the k-Fréchet
distance provides us with more information: the 2-Fréchet distance between the ks is
large because the strokes are set differently. Those ks are unlikely to be written by the
same person. The 3-Fréchet distance, however, is small, because the letter consists of
at most three strokes in general.

Figure 5.1: Two ks written in a different way. Their 2-Fréchet distance is large and
their 3-Fréchet distance is small.

Characterizing the mentioned variants of the Fréchet distance next to the Haus-
dorff distance intuitively shows that the new distance measure bridges between weak
Fréchet and Hausdorff distance. As is common for the Fréchet distance, we use the
following analogy: we interpret our input curves as two paths, which have to be
traversed by a man and a dog, each of them walking on one of the paths. For the
(weak) Fréchet distance we ask for the length of the shortest leash so that man and
dog can traverse their respective curves. Theymay choose their speeds independently.
For the weak Fréchet distance, man and dog are allowed to backtrack.
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The Hausdorff distance finds for each point on either curve the closest point on
the other curve and takes the largest of the obtained distances. In terms of man and
dog we do not ask for a traversal as such, we simply need that for any fixed position
on either path there is a position on the other one such that man and dog can stand
on their respective positions using a leash of fixed length. One could say they may
teleport on their curves any number of times as long as bothman and dog can reach all
positions on their respective curves without exceeding the given maximum distance,
that is, the leash length. The k-Fréchet distance limits this number of teleports by a
constant, that is, we allow k − 1 simultaneous teleports. In short, we want man and
dog to traverse their paths continuously on k pieces and reach every position. Note
that we use the weak Fréchet distance as the underlying distance measure. Recall
that for the weak Fréchet distance we do not require the endpoints of the respective
(sub)curves to be matched. For the cover distance, we allow that subcurves are
traversed multiple times, for the cut variant we require that after a teleport, neither
man nor dog come back to a position that was visited before that teleport.

Related work. Efficient algorithms were presented for computing the Fréchet dis-
tance and the weak Fréchet distance by Alt and Godau in 1995. They first introduced
the concept of the free-space diagram, which is key to computing this distance meas-
ure and its variants [8]. Following their work, numerous variants and extensions have
been considered. Here wemention only a few results related to our work. Alt, Knauer
and Wenk compared Hausdorff to Fréchet distance and discussed κ-bounded curves
as a special input instance [9]. In particular, they showed that for convex closed
curves Hausdorff distance equals Fréchet distance. For curves in one dimension
Buchin et al. [30] proved the equality of Hausdorff and weak Fréchet distance using
the Mountain climbing theorem [65]. For computing the Hausdorff distance, Alt
et al. [7] gave a thorough overview. Buchin [35] gave the characterization of these
measures in free space, which motivated our study of k-Fréchet distance. Inspired
by our research [6], Akitaya et al. [4] investigated a variant in which both agents
traverse their respective curves moving alternately.

For c-packed curves, Driemel, Har-Peled andWenk presented a (1+ε)-approxima-
tion algorithm, which determines the Fréchet distance inO(cn/ε+ cn log n) time [53].
For the Fréchet distance between general polygonal curves, Colombe and Fox [47]
recently presented a strongly subquadratic time algorithm with subexponential ap-
proximation ratio. Buchin et al. [31] slightly improved the original algorithm of Alt
and Godau, while Bringmann [27] showed that unless SETH fails no strongly sub-
quadratic algorithm for the Fréchet distance exists. An interesting variant bridging
between the Fréchet distance and the weak Fréchet distance was presented by Gheibi
et al.: they studied minimizing the length of the subcurves on which backtracking
is necessary [63]. Buchin, Buchin and Wang studied partial curve matching, where
they presented a polynomial-time algorithm to compute the “partial Fréchet similar-
ity” [32], and a variation of this similarity was presented by Scheffer in [108]. Also,
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Driemel and Har-Peled defined a Fréchet distance with shortcuts [52], which was
proven to be the first NP-hard variant of the Fréchet distance by Buchin, Driemel and
Speckmann [36].

Overview. Both Hausdorff and (weak) Fréchet distance are computable in poly-
nomial time. Interestingly, computing both variants of the k-Fréchet distance, as
distance measures that bridge between the two of them, proves to be NP-hard for
general values of k. Note that the cut variant is even APX-hard. Nevertheless, we
give several possibilities to deal with the hardness of the k-Fréchet distance. We start
by formally defining the cover and cut distance. We then prove NP-hardness of a
simpler auxiliary problem to gain some intuition in Section 5.2, followed by the main
proof of this chapter showing that deciding the cover distance is NP-complete in
Section 5.3. Then, we give a simple exponential-time algorithm in Section 5.4, and
a factor 2 approximation in Section 5.4.1, both for the cover distance. For the cut
distance, we present a polynomial-time decision algorithm for k = 2 in Section 5.5.

5.1.1 Preliminaries
For the computation of the Fréchet distance, the concept of the free-space diagram
was introduced by Alt and Godau [8]. For curves P,Q : [0, 1] → R and a value ε > 0,
we define

Fε(P,Q) = {(s, t) ∈ [0, 1]2 | d(P (s), Q(t)) ≤ ε} .
So, the free space is the set of all pairs of positions, one on each curve, that are at
distance at most ε from each other. For piecewise-linear curves P and Q, the free-
space diagram puts this information into an (n × m)-grid where n and m are the
numbers of segments in P and Q respectively. The free space is oriented as follows
(see Figure 5.2): the point corresponding to the starting positions of both curves is in
the bottom left, and moving horizontally (vertically) in the diagram corresponds to

ε

P

Q

Figure 5.2: Two curves and the corresponding free-space diagram. Each point in the
free-space diagram corresponds to a pair of positions, one on each curve.
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moving along the curve P (Q). For the rest of this chapter we assume that m ∈ Θ(n)
to simplify runtime expressions.

The Fréchet distance of two curves P and Q is at most a given value ε if and only
if there exists a monotone path through the free space Fε(P,Q) in the free-space
diagram connecting the bottom left to the top right corner. For the weak Fréchet
distance, this path need not be monotone and it may also start and end somewhere
other than the corners of the diagram, as long as it touches all four boundaries.

We now define further terms: First, when we want to distinguish between the
parameter spaces of P and Q, we use the notation [0, 1]P , respectively [0, 1]Q, instead
of just [0, 1]. A component of a free space is a connected subset c ⊆ Fε(P,Q). We
call a component maximal if it is inclusion maximal. A set S of components covers
a set I ⊆ [0, 1]P of the parameter space (corresponding to the curve P) if I is a
subset of the projection of S onto that parameter space, that is, if ∀x ∈ I : ∃c ∈ S, y ∈
[0, 1]Q : (x, y) ∈ c. Covering on the second parameter space is defined analogously.
This means the weak Fréchet distance is smaller than ε if there is one component in
Fε(P,Q) that covers both parameter spaces. Similarly, the Hausdorff distance can be
tested by checking whether the set of all components covers both parameter spaces.
In this chapter we extend this concept to also account for the number of components
needed to cover the parameter spaces with the k-Fréchet distance.

Definition. We define two variants of the k-Fréchet distance: the cover distance and
the cut distance. The cover distance dcover(k, P,Q) is the minimum ε such that there
is a set of at most k components of Fε(P,Q) covering both parameter spaces. The
intervals covered by the components are allowed to overlap, thus the cover distance
between P andQ can also be defined as theminimum εwith a set of at most k maximal
components of Fε(P,Q) covering both parameter spaces. In contrast, the cut distance
dcut(k, P,Q) is the minimum ε such that there is a set of at most k components of
Fε(P,Q) that uniquely cover both parameter spaces, that is, each point in [0, 1]P or
[0, 1]Q is covered by exactly one of the components in the selection.

By definition, the k-Fréchet distance lies in-between the Hausdorff and the (weak)
Fréchet distances. As the cut variant is more restrictive than the cover variant, we
have the following:

dH(P,Q) ≤ dcover(k, P,Q) ≤ dcut(k, P,Q) ≤ dwF(P,Q) ≤ dF(P,Q).

Figure 5.3 shows a comparison. Also, the k-Fréchet distances decrease as k increases:
for k = 1 they equal the weak Fréchet distance, whereas for k sufficiently large they
equal the Hausdorff distance.

Recall that in the introduction in Chapter 1, we defined both the (weak) Fréchet
distance and the Hausdorff distance without using the definition of the free space.
We can do the same for the variants of the k-Fréchet distance. We display definitions
for all five distance measures below in a similar style to facilitate their comparison.
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P

Q

ε1 = δH(P,Q) ε2 = δcover(2, P,Q)

ε3 = δcut(2, P,Q) ε4 = δwF(P,Q)

P2

Q2

P1

Q1

Q2

P2

Q1

P1

(a) (b)

(c) (d)

Figure 5.3: Comparison of distance measures. (a) The curves P and Q and their
free-space diagram for the Hausdorff distance. Both parameter spaces can be covered
by a component. (b) The subcurves P1 and P2 cover P ; Q1 and Q2 cover Q. We
have dwF(P1, Q1) ≤ ε2 and dwF(P2, Q2) ≤ ε2. Two components are sufficient to cover
the parameter spaces, but cutting does not work, because by choosing the bottom
left and top right cell the red section on the bottom parameter space would not
be covered. (c) The subcurves P1 and P2 partition P ; Q1 and Q2 partition Q. We
have dwF(P1, Q1) ≤ ε3 and dwF(P2, Q2) ≤ ε3. Two components cover the parameter
spaces without overlap. (d) A man and a dog can walk along P and Q while staying
within distance ε4 by first following the green arrow and then the red arrow. Their
movements correspond to a walk in the free space.
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For curves P,Q and integer k > 0:

• Fréchet distance: dF(P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t)

), where
σ, τ : [0, 1] → [0, 1] are orientation-preserving, bijective, and continuous func-
tions.

• weak Fréchet distance: dwF(P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t))

), where
σ, τ : [0, 1] → [0, 1] are surjective and continuous functions.

• Hausdorff distance: dH(P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t))

), where
σ, τ : [0, 1] → [0, 1] are surjective functions.

• Cover distance: dcover(k, P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t))

), where
σ, τ : [0, 1] → [0, 1] are surjective functions that are continuous everywhere
except at the k − 1 values 1

k ,
2
k , . . . ,

k−1
k .

• Cut distance: dcut(k, P,Q) = inf
σ,τ

max
t∈[0,1]

d
(
P (σ(t)), Q(τ(t))

), where
σ, τ : [0, 1] → [0, 1] are surjective functions that are continuous everywhere
except at the k − 1 values 1

k ,
2
k , . . . ,

k−1
k and where we have

σ(s) = σ(t) ∨ τ(s) = τ(t) =⇒ ∃i ∈ {1, . . . , k − 1} : s, t ∈
[
i
k ,

i+1
k

].
5.2 Gaining Intuition: The Box Problem

To give some intuition for the later proof that the cover variant of k-Fréchet is NP-
complete, we first present a reduction from the well-known 3-Sat problem to the prob-
lem of covering two sides of a rectangle by selecting a number of smaller rectangles,
or boxes, that are situated inside. This problem—we call it the box problem—mimics
selecting the maximal components in the free space to cover the parameter spaces.
However, in this section, we do not ask to find curves that realize this specific free
space. Also, even though the intuition translates over to next section, this section and
Section 5.3 are self-contained.

Wewant to reduce from the following classical NP-hard satisfiability problem [62]:

3-Sat. Input: a Boolean formula with n variables written as a conjunction of m
clauses, where a clause is a disjunction of at most three literals. A literal is a or ¬a,
where a is a variable. Output: “Yes” if there exists an assignment for the variables
that satisfies the formula, “No” otherwise.
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Box problem. Input: a setA of aligned, interior-disjoint rectangles bi, their bounding
box B, and k ∈ N. Output: “Yes” if there exists a selection of at most k rectangles
from A such that their union surjectively projects onto the bottom and left boundary
of B, “No” otherwise.

Given any instance of a 3-Sat formula, we build a bounding box B containing a
number of boxes bi such that we can find a covering selection of size k if and only if
there is an assignment that satisfies the formula. A covering selection of boxes is a subset
of the boxes bi that projects surjectively onto the bottom and left boundaries of B.
For this we build boxes bi that correspond to the variables such that any satisfying
assignment of the variables implies a covering selection of the bi.

First, note that we assume that no clause contains duplicates, that is, no clause is
of the form v ∨ v ∨ w. The duplicates can be deleted without changing the boolean
function induced by the formula. Additionally, we require that throughout the
formula each literal appears at least once, that is, each variable appears at least once in
its positive and in its negated form. Otherwise, we could simply define the occurring
literal to be true (or false, respectively) and omit the clauses the literal appears in.

Now we give the detailed construction of our box problem instance derived
from some 3-Sat formula: Let V = {v1, . . . , vn} be the set of variables and let C =
{c1, . . . , cm} be the set of clauses. For each variable vi, let a+i (respectively a−i ) be
the number of clauses in which vi appears positive (respectively negative), and let
{c+i,1, c

+
i,2, . . . , c

+

i,a+
i

} (respectively {c−i,1, . . . , c
−
i,a−

i

}) be the set of clauses in which vi

appears positive (respectively negative). Additionally we define the sums s+i =∑i
j=1 a

+
j and s−i =

∑i
j=1 a

−
j .

In the followingwe describe the placement of boxes, which is depicted in Figure 5.4.
The number of rows and columns needed for the different gadgets is indicated in the
figure. A box (x, y, w, ℓ) designates the axis-aligned rectangle with unit height and
width w whose bottom left corner has coordinates (x, y) ∈ R2 with label ℓ. The labels
are literals and are later used in the proof of correctness.

Variable gadget. For each variable vi, we place two boxes (i, i, 1,¬vi) and (i, i +
n+ s+n , 1, vi), and no other boxes are placed over the interval (i, i+ 1) of the bottom
boundary. That way, in order to cover that interval, at least one of those two boxes
has to be chosen.

Split gadget. The split gadget ensures that we can propagate the assignment of
a variable onto all clauses the variable takes part in. We build the splits used for
the positive occurrences of the variables first. For each variable vi, we place the box
(1+n+s+i−1, i, a

+
i , vi) and the boxes (n+s+i−1+j, n+s+i−1+j, 1,¬vi), for j ∈ {1, . . . , a+i }.

For negated occurrences of vi ∈ V weplace the box (1+n+s+n+s−i−1, n+s+n+i, a−i ,¬vi)
and the boxes (n+ s+n + s−i−1 + j, 2n+ s+n + s−i−1 + j, 1, vi), for j ∈ {1, . . . , a−i }.
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variables positive split neg.split clauses

1

1

n s+n s−n m

n

s+n

s−n

n

a ∨ b ∨ ¬c
a ∨ c ∨ ¬d

¬b ∨ c ∨ d

¬a ∨ a

¬d

¬d

¬d

d

d

d

d

¬c

¬c

¬c

¬c

¬c
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¬b

¬b

¬b
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a

a

a

¬d

c

c

Figure 5.4: Construction of the box problem instance and propagation of assignment.
All boxes labeled with c or ¬c are highlighted to show the staircase structure.
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Clause gadget. We assign to each clause ci the unit interval on the bottom boundary
of B starting at I(ci) = n+ s+n + s−n + i. For each literal of a clause ci we place a box
labeledwith the respective literal above the unit interval [I(ci), I(ci)+1]. To be precise,
for each vi ∈ V we place the boxes (I(c+i,j), n+ s+i−1+ j, 1, vi), for j ∈ {1, . . . , a+i }, and
(I(c−i,j), 2n+ s+n + s−i−1 + j, 1,¬vi), for j ∈ {1, . . . , a−i }.

Overall, we have 4n + 2(m1 + 2m2 + 3m3) boxes, where mi is the number of
clauses with i variables (and therefore m1 + m2 + m3 = m). Each unit interval
(i, i + 1) with i ∈ {1, . . . , 2n + s+n + s−n } on the left boundary of B can be covered
by exactly two different boxes. The same holds for every unit interval (i, i+ 1) with
i ∈ {1, . . . , n+s+n +s−n } on the bottom boundary. Note that for all these unit intervals,
one of the boxes is labeled with a variable and the other one is labeled with the
negated version of that variable, that is, one box is labeled v and the other one ¬v.
Each interval [I(c), I(c) + 1] on the bottom boundary can be covered by as many
boxes as the clause c contains literals. The labels of these boxes correspond to the
variables contained within this clause. We set the bounding box B as the axis-aligned
rectangle spanned by the points (1, 1) and (1 + n+ s+n + s−n +m, 1 + 2n+ s+n + s−n )
and we set k = 2n + m1 + 2m2 + 3m3 so only half the boxes can be chosen. For a
given boolean formula in conjunctive normal form, the set of boxes defined above
can be determined in polynomial time.
Theorem 5.1. The box problem is NP-complete.

Proof. The box problem is in NP since for a given subset S of boxes one can test if the
bounding box B is covered by simply marking the covered intervals, which can be
done in polynomial time. To show NP-hardness, we prove that the box problem as
constructed above has a solution if and only if the input 3-Sat formula has a variable
assignment such that it evaluates to true.

’⇐’. Let f : V → {true, false} be an assignment of the variables that satisfies
the 3-Sat formula. We set S = {box (x, y, w, v) | f(v) = true} ∪ {box (x, y, w,¬v) |
f(v) = false}. The set S projects surjectively onto the bottom and left boundary of
the bounding box B because each unit interval on the left boundary is covered by
exactly one box. For most of the bottom boundary we also have that each interval is
uniquely covered, but for the clauses columns we allow that more than one box per
unit interval is chosen.

’⇒’. Let S be a minimal set of boxes that covers the boundaries of the bounding
box B with |S| = k. Because all boxes in the construction have height 1, this means
that each unit interval on the left boundary of B is covered by exactly one box. For
each variable vi, look at the interval (i, i+ 1) on the bottom boundary. If it is covered
by a box labeled vi, we set vi to true, else it is covered by a box labeled ¬vi and we
set vi to false. Now, let c be a clause. Its interval [I(c), I(c) + 1] is covered by at
least one box b. We assume without loss of generality that b is labeled with a positive
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literal vi, as the other case is symmetric. Recall that each unit interval on the left
boundary of B is uniquely covered by one box. Thus, the box b′ labeled ¬vi that
is horizontally aligned with b is not part of the set S. Propagating further in the
positive split gadget, the interval on the bottom boundary below b′ is then covered by
the box labeled vi below it. Again, this implies that in the variables gadget, the box
labeled ¬vi is not in S, and the box labeled vi is in S. It follows that vi was assigned
true, as desired.

We can interpret the box problem as the problem of finding a selection of compon-
ents in the free space that cover the parameter spaces. The small boxes can be seen as
bounding boxes of maximal components (for the projection there is no difference)
and the bottom and left boundaries of the large box B correspond to the respective
parameter spaces. The above hardness proof, especially the construction of the boxes,
provides us with the key ideas to prove hardness of the cover variant of k-Fréchet
distance. Next, we construct actual curves where certain intervals on the parameter
spaces of the free-space diagram each have two maximal components that could
cover them. As with the box problem, the choice we make for one of those intervals
determines the choices for other intervals as we still need to ensure that the selection
size is minimal in the end. The propagation of choices works in the same manner for
the box problem as for the cover distance problem.

5.3 NP-Completeness for the Cover Distance
Buchin and Ryvkin [38] proved that deciding the cut variant of k-Fréchet is NP-
hard. In this section, we prove that deciding the cover variant for fixed ε is NP-hard.
Like in Chapter 3, Section 3.2, we reduce from the NP-complete problem monotone
rectilinear planar 3-Sat [20], albeit with different requirements for the shape of the
drawing of the formula. Since for the cover distance, we can restrict our view to
maximal components, in this section, we will omit the term “maximal” and just say
“component”.

Rectilinear Monotone Planar 3-Sat. Input: a 3-Sat formula with only all positive or
all negated variables per clause, embedded as a graph with rectilinear, non-crossing
edges. Note that the requirements on the 3-Sat formula are different is this section
compared to the formula needed to reduce from for the box problem in Section 5.2.
The set of vertices consists of variable-, split- and clause-vertices; variable-vertices are
drawn on a horizontal line that no edge crosses; clause-vertices for positive (negative)
clauses are drawn above (below) this line; clauses are connected with the variables
they contain with an edge or a path of edges and split-vertices. Output: “Yes” if there
exists an assignment for the variables that satisfies the formula, “No” otherwise.

We can draw a graph corresponding to such a 3-Sat formula on a grid, see, for
example, Figure 5.5. We assume that each variable appears in at least one positive and
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v1 v2 v3 v4 v5 v6

¬v3 ∨ ¬v4 ∨ ¬v5

v1 ∨ v4 ∨ v5

v2 ∨ v3 ∨ v4

v1 ∨ v5 ∨ v6

¬v1 ∨ ¬v2 ∨ ¬v3 ¬v3 ∨ ¬v5 ∨ ¬v6

Figure 5.5: Instance of rectilinear monotone planar 3-Sat.

one negative clause. Otherwise, we could define the occurring literal to be true (or
false, respectively) and omit the clauses the literal appears in. Also, we assume that
each clause has exactly three literals. If there are clauses with less literals, we change
them by repeating literals, for example the clause a ∨ b can be changed into a ∨ b ∨ b
without changing the satisfiability of the formula. This change can be made while
preserving the fact that the formula is monotone, rectilinear and planar. Without loss
of generality we can assume that the embedded graph has the following additional
properties: each variable-vertex v has degree two and the incident edges are vertical
at v. Also, split-vertices have degree three and the one edge perpendicular to both
others connects to the variable vertex (possibly via other split vertices), while the
other two edges connect to clauses.

For a given monotone rectilinear planar 3-Sat instance that is embedded as de-
scribed above, let G be a drawing of the embedding. Without loss of generality we
assume that G is drawn on the unit grid. We scale G such that vertices and bends are
on grid vertices of the type (16x, 16y) and such that the distance between any two
vertices, between any vertex and any bend, and between any two non-incident edges
is at least 160. We translate G such that the variable vertices have y-coordinate 0.
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Cover Distance Problem. Input: Two polygonal curves P and Q, a distance ε and a
natural number k. Output: “Yes” if there exists a selection of at most k components
in the free-space diagram Fε such that their union projects surjectively onto both
parameter spaces, “No” otherwise.

Our goal is to construct two curves P (red) and Q (blue) that mimic any input
instance of a rectilinear monotone planar 3-Sat graph and show that in the free space
resulting from these curves we can find a covering selection of size k if and only if
there exists a satisfying assignment for the formula. The intuition of the construction
is given first.

5.3.1 Intuition

Overall we create wire and clause gadgets to represent variables and clauses, where
wires correspond to the edges of the input graph. Wire gadgets allow a boolean choice
that is propagated consistently throughout the wire. Clause gadgets test whether at
least one incoming wire carries an appropriate choice. An example can be seen in
Figure 5.6.

We construct a wire alongside an edge of the 3-Sat formula as follows: The
curves P and Q run parallel to the edge on both sides with some distance and have
protrusions towards the edge. We construct P and Q as polylines with vertices
embedded on a unit grid. We call the line segments of the curves on the outside of
and parallel to the wire the base parts. We call the line segments protruding into the
wire spikes. The base parts are not particularly relevant for the analysis because the
segments forming them can only be covered by larger components (called compulsory)
that are always part of any covering selection. The value ε = 10 is chosen such that it
is a bit larger than the distance between two adjacent spikes. It follows that the spikes
induce components that are similar to the boxes of Subsection 5.2. compulsory We
say that a spike s is covered by an adjacent spike t of the other curve if the component
of the free-space diagram that covers the two intervals induced by these spikes is
chosen for the covering selection. Each spike is covered by a single spike of the other
curve (Lemma 5.2 below). In the end, we choose k equal the number of compulsory
components plus the number of blue spikes. Since no components covers multiple
spikes of the same color, each blue spike in any gadget can only be covered once
(Lemma 5.3 below). The choice for blue spikes must be consistent along the wire
to preserve minimality of k, and it encodes the assignment of the corresponding
variable.

As displayed in Figure 5.6, the clause gadget features one yellow spike that can be
covered by either one of the three blue spikes within its ε-neighborhood. Which one
of their neighboring yellow spikes the blue ones cover is determined by the variable
assignment and propagated throughout the wire, so if at least one of the variables is
set to the correct value, the yellow spike at the center of the clause is covered.

Next, we need a number of other gadgets, too. Asmentioned, thewires correspond
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ε

P

Q

Figure 5.6: Three wires that connect to a clause gadget. The bottom wire has a bend.
Each spike can be covered by one of the two adjacent spikes, with the exception of
the clause spike (red) which can be covered by any of the three adjacent spikes.

to edges in the rectilinear monotone planar 3-Sat instance. To draw them coherently
we need to make sure we can make 90 degree turns (so-called bends) and do T-
crossings, that is, split a wire into two.

We need to treat remaining difficulties: First, we may need to change which of
the curves has spikes on a specific side to draw the other gadgets consistently, so
we also build a color gadget to switch the color pattern of the spikes. Second, there
is a connection gadget that enables us to connect the opposite base parts of P and Q,
respectively. The resulting two curves are closed, which we solve by using the end
gadget. Finally, it remains to prove that our construction works in the sense that
the curves have k-Fréchet distance ε if and only if the specific 3-Sat instance can be
satisfied.

5.3.2 Gadgets
In this subsection we first describe the basic gadgets we need for our reduction. The
gadgets are intricate, which is why we also need some other gadgets to be able to
draw the entire construction using only two curves. The gadgets are build in a way
such that no component covers more than one blue spike.

Assigning a variable to be true or false corresponds to choosing between one
of two options in the free-space diagram, just as choosing between two boxes per
row for the box problem. Therefore, we do not build specific variable gadgets but
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encode the variables in the wires, which work as edges, that is, connections between
other gadgets. Wires produce similar staircase structures as in Figure 5.4 in order to
provide a choice between two components per uncovered interval of either parameter
space.

ε

PQ

16

Figure 5.7: (Left) A perturbed part of the wire gadget with (long) spikes. (Middle)
Wire gadget drawn on a grid where only each fourth line of the grid is drawn. The
edge of the 3-Sat formula corresponding to the wire is dashed and purple. (Right)
The resulting free-space diagram. It includes a staircase structure.

Wire Gadget. Figure 5.7 displays a wire gadget: we build the parallel base parts
(shown in gray on the left side) that are studded with spikes of different lengths:
each curve consists of two parallel base parts (in this figure they are drawn vertically)
with shorter spikes on one and longer spikes on the other side (horizontal segments
that are pointing inwards). Short spikes of one curve lie on top of the longer spikes of
the other one. In the following the term spike refers to long spikes. Recall that vertices
are embedded on a unit grid and that we set ε = 10. The distance between two spike
tips of the same color is 16. We also show an underlying grid on which we draw our
gadget, but note that we only drew every fourth line to improve readability. Two
tips of spikes that are at distance at most ε are called adjacent. The spikes generate
the small components forming a staircase, as each spike can be covered by one of
two components induced by the two adjacent spikes of the opposite color. When
we choose a component that covers the interval induced by a spike we say that the
spike is covered by this component, respectively by the adjacent spike inducing this
component.
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Note that the segments of the base parts generate components that we definitely
have to take. These larger components that are the only ones covering a certain interval
on either parameter space are called compulsory components throughout the rest of
this chapter. Sometimes smaller components are generated that are never part of an
optimal selection of components, so called unnecessary components. An component
is unnecessary, if for example it covers intervals that are covered by compulsory
components.

At the end of the construction the value k is chosen to be equal to the number of
compulsory components plus the number of blue spikes. If follows that that each
blue spike (on curve Q) can only be covered by one single yellow spike (on curve P ).
The spikes of Q determine the variable assignment: we define the central spike in each
wire that encodes a variable: the central spike is the blue spike with y-coordinate 8,
just above the corresponding variable vertex. If the central spike is covered by its
upper yellow neighbor, the variable corresponding to this wire is set to true; if the
central spike is covered by its lower neighbor, the variable is set to false. The choice
made for the central spike is propagated throughout the rest of its wire. The fact
that blue spikes have two choices, and that this choice can be propagated if each blue
spike is uniquely covered, also holds for the other gadgets.

(Left) A perturbed part of the wire gadget with (long) spikes. (Middle) Wire
gadget drawn on a grid where only each fourth line of the grid is drawn. The edge
of the 3-Sat formula corresponding to the wire is purple. (Right) The resulting
free-space diagram. It includes a staircase structure.

ε

P

Q

Figure 5.8: Bend gadget drawn on a (coarse) gridwith its resulting free-space diagram.
The two unnecessary components are purple.
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PQ

ε

Figure 5.9: Split gadget drawn on a grid with its resulting free-space diagram dis-
playing the three staircases corresponding to the two exit wires (green) and the entry
wire (yellow). The red interval corresponding to the split spike can be covered by
the orange or by both green components. The unnecessary components are purple.
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Bend Gadget. Next we want to build 90 degree turns in order to ensure that we can
form curves to represent the rectilinear edges of the input graph. We simply bend
a wire to a right angle and insert a long diagonal spike at the outer corner as well
as a “fork” with two spikes at the inner one, as displayed in Figure 5.8. The bend
gadget ensures that the choice how to cover the spikes made for the wire on one side
propagates to the other side of the bend.

Split Gadget. Now we focus on how to split a wire into two. Figure 5.9 shows the
gadget, as well as its free-space diagram. The split is the most intricate gadget to draw,
which is why we drew the underlying grid in its actual density for specific parts of
the gadget and used the coarser grid, that is, only every fourth line, for the rest of
the gadget. The T -shaped yellow spike in the middle of the split is called the split
spike. Note that splits are directed in the sense that one wire, the entry wire, points
toward the central spike while the other two, called exit wires, point toward clauses.
In Figure 5.9 the entry wire is the bottom one.

The split spike can be covered by the adjacent blue spike from the entry wire or
from both adjacent blue spikes from the exit wires at the same time. Thus, when the
blue spike directly left of the split spike covers the yellow spike to its left, the split
spike must be covered by the blue spike below it. The same holds for the blue spike
directly right of the split spike. This observation is needed for the proof of Lemma 5.4
below.

Clause Gadget. The clause gadget in Figure 5.10 looks similar to the split gadget,
the T -shaped spike is simply replaced by a regular spike, which we call clause spike.
As a result, the clause spike can be covered by any of the three adjacent blue spikes.
The three staircases in the free-space diagram correspond to the same wire parts of
the curves as for the split gadget. As a result of omitting the T -shape we get one
interval, corresponding to the clause spike, that can be covered by three components.

Color Gadget. Note that throughout all gadgets, the tips of yellow spikes are all on
points of the type (16x, 16y), for integers x and y. Thus, the bend, clause and split
gadgets drawn on the corresponding places of the drawing G of the input graph can
be connected with wires while alternating blue and yellow spikes. However, it is
possible that when connecting a wire to a gadget, the yellow spikes are on different
sides of the base curves. The color gadget flips the sides on which the yellow and
blue spikes occur.

As displayed in Figure 5.11, the x-shaped component, which corresponds to the
slightly tilted spike being within ε-distance of blue spike above it, connects the two
staircases that stem from the wires to the sides of it. So, concerning coverage, the
tilted spike has the same properties as a normal spike.
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PQ

ε

Figure 5.10: Clause gadget drawn on a grid with its resulting free-space diagram
displaying the three staircases corresponding to the three connected wires. The red
interval corresponding to the clause spike can be covered by any of the three green
components. The unnecessary components are purple.
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ε

PQ

Figure 5.11: Color gadget drawn on a (coarse) grid with its resulting free-space
diagram.

ε

P

Q

Figure 5.12: Connection gadget drawn on a (coarse) grid with its resulting free-space
diagram.
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Connection Gadget. Note that in all gadgets described above, the base curves for
both sides are not connected. The connection gadget enables us to connect the base
parts along a wire without interrupting the alternating spikes, that is, the staircase
structures in the free-space diagram. Figure 5.12 shows the connection gadget: the
four diagonal segments are also called spikes as they display the same behavior, that
is, they need to be covered by one of the two adjacent spikes, and no component can
cover more than one blue spike.

End Gadget. When combining these gadgets, we obtain two closed curves. As we
set out to prove NP-hardness for non-closed curves, we need the end gadget. When
comparing the end gadget in Figure 5.13 with a normal wire in the free-space diagram,
the staircase is still intact and it has one compulsory component less.

ε

PQ

Figure 5.13: End gadget drawn on a (coarse) grid with its resulting free-space dia-
gram.

5.3.3 Reduction
Now, given a drawing G of a 3-Sat formula as specified in Subsection 5.3.2. We start
the construction of the Cover Distance Problem instance by placing a clause (split,
bend) gadget at each clause (split, bend) of G. We then connect these gadgets along
the edges using the wire gadgets. On edges where this is not possible because the
colors of the spikes on the sides of the wire do not match, we first place a color gadget
before connecting the gadgets. This results in multiple closed curves.

Now, let e be an edge such that the base curves along the wire drawn on e
are not connected. We add a connection gadget on e. Since the distance between
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clause/split/bend gadgets is at least 160, there is enough space on e to place one color
gadget and one connection gadget without interfering with the gadgets at both ends
of the edge. We repeat this step until we just have two closed curves, one yellow and
one blue. Lastly, we replace a piece of wire with the end gadget resulting in our two
curves P and Q. We observe that the following holds:
Lemma 5.2. A spike can only be covered by an adjacent spike of the other curve and no
component covers two spikes of the same curve.

We set k = kb + kc, where kb is the number of blue spikes and kc is the number
of compulsory components. Thus, together with Lemma 5.2, we can make an even
stronger statement for blue spikes:
Lemma 5.3. In a selection of k components covering both parameter spaces, each blue spike
is covered by exactly one component.

5.3.4 Proof of Correctness
We prove that dcover(k, P,Q) ≤ ε if and only if the input 3-Sat instance can be satisfied.

’⇒’. Let g : V → {true, false} be an assignment of the variables v ∈ V that
satisfies the 3-Sat formula. Nowwe explain how to cover the parameter spaces with k
components. First, for each interval of the parameter spaces that can only be covered
by a single component, we choose that component. After this step, by definition, we
have chosen all the compulsory components. It follows that only spikes remain to
be covered. Then, for each variable v, if g(v) is true, we cover the central spike of
the corresponding wire by the adjacent yellow spike y above it. We then propagate
this choice: the blue spike b above that yellow spike y is covered by the yellow spike
above b and so on. For each variable set to false we do the inverse, that is, we cover
the central spike by the yellow spike below it and then propagate.

Per assignment, each blue spike is covered once. As we propagate the choices
made at the central spikes, all yellow spikes not in clauses are covered. Lastly, each
clause spike is covered as for each clause, one of the variables is set to the correct value.
This means that both parameter spaces are completely covered by our selection.

’⇐’. In the following, we assume that we have a selection of components S with
|S| = k that covers the parameter spaces. By Lemma 5.3, each central spike is covered
once. We now define an assignment of the variables g : V → {true, false} as follows:
for each variable v, if the (blue) central spike b(v) of v is covered by the yellow spike
above it, we set g(v) to true, else b(v) is covered by the yellow spike below it and we
set g(v) to false. This assignment satisfies the 3-Sat formula, as proven below.

Let c be a clause. The (yellow) clause spike y(c) of c is covered by at least one of
the three adjacent blue spikes, by Lemma 5.2. Let b(c) be one of those blue spikes
that covers y(c), and let v be the variable that corresponds to the wire of b(c).
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We define the staircase distance of two spikes a, b of a variable v to be the number
of spikes corresponding to that variable in-between them plus one. We define that a
spike has distance zero to itself. Two adjacent spikes have staircase distance 1, two
spikes of the same color have an even staircase distance. A spike a is closer to a spike b
(within the same variable) than a third spike c if the staircase distance of a and b is
smaller than the staircase distance of b and c. Intuitively, the staircase distance counts
the number of “steps” between two spikes on the staircase corresponding to a wire
in the free space.

Lemma 5.4. The central spike b(v) is covered in such a way that the induced assignment
value g(v) of v fulfills c.

Proof. We prove by induction that the central spike b(v) is covered by the adjacent
yellow spike that is closer to the clause spike y(c). Let 2j be the distance between b(c)
and b(v). For i ∈ {0, . . . , j}, let bi be the (blue) spike between b(c) and b(v) whose
distance to b(c) is 2i. The induction hypothesis is that bi is covered by the adjacent
yellow spike that is closer to the clause spike y(c). For i = 0 this is true, because
b0 = b(c) is covered by y(c).

Now assume that the hypothesis holds for any i ∈ {0, . . . , j}. Let y be the yellow
spike between bi and bi+1. Together with Lemma 5.3 the induction hypothesis implies
that bi does not cover y. If y is simply part of a wire, it can only be covered by bi
or bi+1, meaning y is covered by bi+1. If y is a split spike, we know that it can either be
covered by the spike within the entry wire, which is bi+1, or y can be covered by both
other adjacent spikes simultaneously, that is, by bi and another blue spike. Again, it
follows that bi+1 covers y, finishing the proof by induction. Since bj = b(v), due to
the monotonicity of the formula, the central spike is covered in such a way that the
induced assignment value g(v) of v fulfills c.

Theorem 5.5. It is NP-hard to decide whether dcover(k, P,Q) ≤ ε for given polygonal curves
P and Q, integer k, and ε > 0.

We can test in polynomial time whether the union of a selection of maximal
components covers the parameter spaces. Thus the problem of deciding the cover
variant of the k-Fréchet distance lies in NP.

5.4 Algorithms for the Cover Variant
We present two algorithms. For given curves P and Q, integer k and ε > 0, the
first algorithm tests whether dcover(k, P,Q) ≤ ε in exponential time. If the inequality
holds, the algorithm returns a covering selection of at most size k. Note that this
algorithm can be extended to an optimization algorithm that minimizes k for a fixed ε,
for example using binary search.
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For given curves P and Q, and ε > 0, the second algorithm is a 2-approximation
algorithm which runs in O(n2 log n) time. It calculates a covering selection of size k′,
where k′ is at most 2mink{dcover(k, P,Q) ≤ ε}.

Both algorithms start by computing the free-space diagram Fε(P,Q) in O(n2)
time [8]. Such a free-space diagram has n2 cells and therefore at most n2 components.

The brute force approach simply checks for all selections of k components of the
free space whether their joint projections cover both parameter spaces surjectively.
That means we have to check at most (n2

k

) possible combinations of components
resulting in a runtime of O(k · n2k) for fixed k, which is of course only feasible for
small k. Therefore, we can compute the answer to the decision problem for the cover
distance with k = 2 in O(n4). Since (mk ) ≤ 2m holds for any m > k, our runtime is
upper-bounded by O(n · 2n2

) for general k.

Lemma 5.6. For given polygonal curves P and Q, integer k, and ε > 0, we can test in
O(k · n2k) time whether dcover(k, P,Q) ≤ ε holds.

5.4.1 Approximation Algorithm

We can also approximate the size of an optimal solution. The main idea of our
algorithm is to greedily find minimal covering selections for each parameter space
individually and combine those selections into an overall solution in the end. Given
the free-space diagram, we first project all components onto the parameter spaces.
This results in two set of intervals, the set IP covering the first parameter space and
the set IQ for the second parameter space, see Figure 5.14.

P

Q

ε

IP,1

IP,2

IP,3

2

3

1

Figure 5.14: The projection onto the first parameter space and the resulting elements
of IP .
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Now we determine a minimal subset SP of IP that covers [0, 1]P and do the same
for Q, if such subsets exist, that is, if dH(P,Q) ≤ ε. This can be done in O(n2 log n)
time using a simple greedy algorithm [49]. As output we have two selections of
intervals, SP and SQ. The intervals correspond to components. We build the union
of both lists and output the selection of components S that contributed at least one of
the chosen intervals.

As both SP and SQ are minimal in order to cover both parameter spaces indi-
vidually, we know that for the minimal solution Sopt covering both interval spaces
at the same time, we have |SP | ≤ |Sopt| and |SQ| ≤ |Sopt|. Thus |S| ≤ 2|Sopt|. Schäfer
proves that the approximation factor 2 is indeed tight [107] for our algorithm, that is,
Schäfer shows that there is a class of instances for which this algorithm does produce
a solution with twice the number of components needed.
Lemma 5.7. For given polygonal curves P and Q, and ε > 0, we can approximate the
minimum k with dcover(k, P,Q) ≤ ε up to a factor 2 in O(n2 log n) time, if such a k exists.

5.5 Computing the Cut Variant
Deciding the cut distance problem is NP-hard and optimizing k is APX-hard [38].
Here, we give a polynomial-time algorithm for k = 2.

5.5.1 Cut Placements
The first difficulty is that there are infinitely many possibilities of placing a cut. For
k = 2, we can reduce this amount to a finite set of discrete positions. We define
interesting points to be local extrema of a maximal component’s boundary. We call a
horizontal or vertical cut line through an interesting point an interesting line. Also, for
a fixed horizontal (vertical) line ℓ, we define artificial points as any point of intersection
between ℓ and the boundary of the free space. We want cut lines ℓ and h such that
there are two components c1 and c2 contained in two opposing quadrants formed by ℓ
and h, such that c1 and c2 together cover both parameter spaces. Such a placement of
cut lines is called valid.
Lemma 5.8. If there exists a valid placement of cut lines in Fε(P,Q) for k = 2, there exists
another valid placement of cut lines where at least one line is an interesting line.

Proof. For a vertical line ℓ (a point a), we define ℓP (aP ) as the point on [0, 1]P covered
by ℓ (a). Assume we are given a valid placement of cut lines and assume none of
them features an interesting point. The cut lines subdivide the free-space diagram
into four quadrants of which two opposing ones are covered by components c1 and c2.

We fix the horizontal cut line h. It intersects c1 and c2 at artificial points a1, . . . ak
sorted from left to right. Note that moving the vertical cut line to the right from ℓ to a
line ℓ′ can change the coverage in general, see Figure 5.15.
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Case 3Case 2Case 1

h

ℓ′ℓ

p1 p2

h

ℓ′

p2
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ℓ′

p1 p2 p1

ℓℓ

Figure 5.15: Given valid cut lines, moving one cut line beyond interesting or artificial
points may alter coverage of a quadrant. Interesting points are blue, artificial points
for h are orange.

1. The left component may not cover a subinterval of [ℓP , ℓ′P ] on the curve P .
2. The right component may no longer cover an interval on the curve Q.
3. The right component may become disconnected.

These cases can only occur when there is an interesting or artificial point between ℓ
and ℓ′. Symmetrically, this holds for moving ℓ to the left, or moving the horizontal
line h. Thus, as long as we do not move cut lines past interesting or artificial points,
the cut lines stay valid.

Let I = [(ai)P , (ai+1)P ] ⊆ [0, 1]P be the interval induced by adjacent artificial
points containing ℓP . If there is an interesting point that covers a point in I , we move ℓ
to the closest interesting point in I . This can be done without crossing an artificial or
interesting point. Else we move ℓ to ai. The intersection z of ℓ and h now lies on the
boundary of a maximal component. Next, we can move ℓ and h simultaneously such
that z moves along the component’s boundary until one of the cut lines reaches an
interesting point. As both lines move simultaneously they do not cross any artificial
points while moving.

Note that for k > 2, this approach does not work. We know that moving one line
without crossing interesting or artificial points could necessitate moving another line,
but for k > 2 this may cascade further, causing multiple other lines to move as well.
As shown in Figure 5.16, this may create loops, meaning one is unable to move any
lines, even though no line is interesting.

5.5.2 Algorithm
We present an algorithm that decides if dcut(2, P,Q) ≤ ε for a given ε > 0. We first test
if there exists a valid placement of cut lines in Fε(P,Q) for k = 2where the vertical
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ℓ1

ℓ2

ℓ3

ℓ4

Figure 5.16: (Left) Given these four components, we can apply valid cut lines (green).
(Right) We try to move the cut lines to interesting points by moving line ℓ1 up. This
forces ℓ2 to move left, which in return moves ℓ3 down, which moves ℓ4 to the right.
Line ℓ4 now intersects the left component in such a way that the resulting component
no longer covers the red area.

line is an interesting line and where one of the components covering the parameter
spaces is contained in the bottom left quadrant and the other one in the top right
quadrant. The other cases can be tested in a symmetrical way.

The algorithm scans all interesting lines from left to right. For each interesting
line ℓi, it determines if there is a component that intersects ℓi as well as the bottom
and left boundaries of the free-space diagram. Per interesting line ℓi, there is at most
one such component, called a candidate component. Furthermore, we determine for
each candidate component ci for which horizontal lines h, there is a subcomponent
of ci below h that still covers that bottom left quadrant. We call such horizontal lines
candidate lines. As components are connected sets, the y-coordinates of the candidate
lines for a candidate component of an interesting vertical line ℓi lie in an interval.
Thus, we determine the interval I↙i = [ymin

i , ymax
i ] such that each line h ≡ y = y′,

with y′ ∈ I↙i , is a candidate line.
We then repeat this step to determine the candidate components covering the

top right quadrant and the respective candidate lines, described by the intervals I↗i .
Finally, we once again iterate over all vertical lines where there are both a bottom left
candidate component and a top right candidate component. We then test if there is a
horizontal line that is a candidate line for both candidate components, that is, we test
I↙i ∩ I↗i ̸= ∅. Such a line leads to a valid cut.

First we determine the candidate components and the maximum height of their
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candidate lines. We use the union-find data structure for this purpose, see Chapter 22
in [49]. By means of this data structure, one can merge two groups of elements
and one can determine if two elements are in the same group, both in O(α(n)) time,
where n is the number of elements in this data structure and α(·) is the inverse
Ackermann function. Note that α(n) ∈ o(log n) holds.

Precomputation. Recall that interesting lines stem from the local extrema of max-
imal components. So, we can compute all interesting vertical lines and sort them from
left to right in O(n2 log n) time. This gives us the lines ℓ0, ℓ1, . . . , where ℓi ≡ x = xi

and x0 = 0. We also determine how the components of adjacent cells are connected.
For each pair of adjacent cells {C1, C2} containing components, if those components
intersect, we determine the x-coordinate x′ of a leftmost point of intersection. We
then also determine i such that xi ≤ x′ < xi+1. We store this pair of cells {C1, C2} in
a list Ai.

Initialization. Each element in our union-find data structure represents a compon-
ent. For each component c, we store the following properties:

• if c intersects the left boundary,
• if c intersects the bottom boundary,
• the x-coordinate of a rightmost point in c and the column o of cells containing

this point,
• information to determine the y-coordinate of a topmost point in c left of a line ℓi

in O(1) time; namely:
– the y-coordinate of a topmost point in c that is not in column o,
– the topmost cell in column o containing part of c.

At the start we create an element within our union-find data structure for each
component within a cell and we set i = 0. In each step we aim to find candidate
components for the line ℓi.

Step i → i+ 1. See Figure 5.17. We go through all pairs of adjacent cells {C1, C2}
in the set Ai and combine the components within those cells, if the corresponding
components are not already merged in the union-find data structure. We update
the properties of the newly formed component in O(1) time. If, during a merge,
we get a component that intersects ℓi+1 and both bottom and left boundaries, we
have identified a candidate component. Recall that for each vertical line, there is at
most one candidate component. If during the merge step no candidate component is
identified, we check if the candidate component ci for ℓi is still a candidate component
for ℓi+1 by checking if ℓi+1 intersects ci using the x-coordinate of a rightmost point
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ℓ

p

Figure 5.17: A free-space diagram. The starting elements are represented by blue
disks. Elements left of the line ℓ are connected, meaning their respective components
are merged. When ℓ moves over the point marked in red, the orange and yellow
components are merged; this creates a component that touches the left and bottom
boundaries and has p as topmost point.

of ci. If a candidate component is identified, the y-coordinate of a topmost point
of ci+1 is recorded as ymax

i+1 .
We repeat this step until we have iterated through all interesting vertical lines. It

takes O(n2α(n)) time as there are O(n2) interesting lines and we merge two compon-
ents O(n2) times. This identifies all candidate components for the interesting vertical
lines and identifies the maximum height of those components.

Computing ymin. For each maximal component c that contains candidate compon-
ents, we walk along its bottom boundary to determine ymin

i for the corresponding
lines ℓi, that is, for the ℓi for which a subcomponent of c is a candidate component,
see Figure 5.18. Let Lc be the set of all those lines ℓi.

We start at the bottommost point pc of c that is on the left boundary. We walk
counterclockwise along the boundary of c and record the maximal y-coordinate
encountered as ŷ. When we encounter a line ℓi ∈ Lc, we set ymin

i as the current value
of ŷ. A horizontal line h with height at least ymin

i and at most ymax
i is a candidate

line for ℓi, as the subcomponent of c containing pc left of ℓi and below h intersects
ℓi, h, and the left and bottom boundaries. Any horizontal line h with height less
than ymin

i intersects the boundary of c that we walked along and thus, the part of c
below h does not contain a component that intersects ℓi and the left boundary. The
computation of the values ymin

i for all i takes O(n2) time as O(n2) is the complexity
of the components in the free space and as there are at mostO(n2) interesting vertical
lines.
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ℓ ℓ′

p

p′

Figure 5.18: A free-space diagram. We walk along the bottom boundary of a compon-
ent until encountering an interesting vertical line while recording the topmost point.
For line ℓ, p is the topmost encountered point. For ℓ′, p′ is the topmost encountered
point.

Putting it all together. For each interesting vertical line ℓi, we have determined
if there is a candidate component and if there is, we have identified the interval
I↙i = [ymin

i , ymax
i ]. We now call these components bottom left candidate components. We

repeat the computation to determine for each interesting vertical line ℓi, if there is
a top right candidate component and if there is, we identify the interval I↗i . As a final
step, we iterate over all interesting vertical lines ℓi and check if there is both a bottom
left and a top right candidate component. If that is the case we check if I↙i ∩ I↗i ̸= ∅.
In that case any horizontal line h ≡ y = y′ with y′ ∈ I↙i ∩ I↗i leads to a valid cut
together with ℓi. Hence we conclude:

Theorem 5.9. For a value ε and two polygonal curves P and Q of complexity n, we can
decide whether the cut distance dcut(2, P,Q) is at most ε in O(n2 log n) time.

5.6 Conclusion
We presented two novel variants of the Fréchet distance for polygonal chains that
allows to compare objects of rearranged pieces. We ask for k (possibly overlapping)
subcurves per input curve that have pairwise small weak Fréchet distance. Thus,
the k-Fréchet distance provides a transition between weak Fréchet and Hausdorff
distance.

Computing any variant of the k-Fréchet distance of two polygonal curves is NP-
hard. However, we were able to tackle the computational challenge from different
angles: we give an XP-algorithm depending on k and approximate k by factor 2
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for the cover distance. We also present a polynomial time algorithm for k = 2 that
decides whether the cut distance between two curves is below a certain value. For
general k, computing the cut distance is NP-hard, and approximating the number
of cuts k is APX-hard. For k ≥ 3, we conjecture that cuts may have to be placed at
non-interesting points, which is an indication of hardness, see Figure 5.16.
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Chapter 6

Diverse Partitions of Colored
Points

Imagine that a set of objects is represented by points in space and that different types
or classes of objects are represented by colors. We study the algorithmic problem of
creating convex or Voronoi partitions of space with maximally diverse cells, using
two classic diversity measures: the richness (number of different colors) and the
Shannon index. The diversity of a partition is the sum of the diversity scores of its cells.
Hence, we wish to compute either a diverse convex partition (DCP) or a diverse Voronoi
partition (DVP), which maximises the diversity score of the partition. Surprisingly,
computing a DVP is NP-hard already in 1D and for only four colors, while DCP can
easily be computed with dynamic programming. We show that DVP can be solved in
polynomial time in 1D if a discrete set of candidate positions for the Voronoi sites is
part of the input. These results apply to both the richness and the Shannon index. For
richness, we also present a polynomial-time algorithm to compute a Voronoi partition
whose diversity is at least 1− ε times the optimal diversity. In 2D, we show that both
DCP and DVP are NP-hard, for richness as diversity measure. The reductions use
constantly many colors for DVP and polynomially many colors for DCP. This chapter
is based on the following publication:

M. van Kreveld, B. Speckmann and J. Urhausen. Diverse Partitions of Colored
Points. 17th Algorithms and Data Structures Symposium (WADS), pages 641–
654, 2021.

6.1 Introduction
Imagine that a data set consists of objects that have different types, or classes, like
genre of a book or species of a tree. As an abstraction, we represent such different

113
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types by different colors, and we are interested in diverse subsets. There are many
different ways to partition objects, and alsomany different ways to define the diversity
of a partition. In this chapter we study a fundamental geometric variant, namely the
diversity of groups of colored points that are induced by general convex partitions of
space, or those induced by a Voronoi diagram.

Two common ways to define the diversity of a set are the (species) richness and
the Shannon index. The richness is the number of different colors in the set, while the
Shannon index is defined as −∑h

i=1 ρi log2 ρi, where h is the number of colors and ρi
is the proportion of objects of color i in the set. For example, the Shannon index of the
set {red,green, blue} is −( 13 log2

1
3 + 1

3 log2
1
3 + 1

3 log2
1
3 ) = log2 3 ≈ 1.585, whereas

the Shannon index of {red,green, blue, blue} is−( 14 log2
1
4+

1
4 log2

1
4+

1
2 log2

1
2 ) = 1.5.

Hence the first set is more diverse. When we have a partition of space and the objects
are points, we can view the points in each cell as a set, and hence we can define the
diversity score of a cell. The diversity score of the partition is the sum of the diversity
scores of its cells.

Besides general convex partitions, a meaningful subclass of convex partitions in
this context are Voronoi partitions, that is, partitions of space which are induced by
the Voronoi diagram of a set of sites. The Voronoi site can serve as the representative
of the points contained in its cell. Conversely, each point is represented by the site
closest to it. Using richness, a diverse site represents many colors; using the Shannon
index, a diverse site also represents many colors, which are additionally present in
roughly equal proportions. Intuitively the Shannon index of a region increases if we
add a point with a new color or if we equalize the proportions of the existing colors.

Formal problem statement. Our input is a set P of n points in h different colors
and a number k ∈ N. For any partition into k cells, the diversity di in a cell is
the score of that cell, and∑ di is the score of the partition. Our goal is to compute
either a diverse convex partition (DCP) or a diverse Voronoi partition (DVP) with k cells
which maximises the overall diversity score according to the richness measure or the
Shannon index. Since k is given, maximising the total diversity and average diversity
is equivalent. In the case of diverse Voronoi partitions, the problem is to find a set
S = {s1, . . . , sk} of k sites such that the sum of the diversity scores over all Voronoi
cells is maximised. See Figure 6.1 for an example of a convex partition (left) and a
Voronoi partition (right, white disks represent Voronoi sites).

Results and organization. We study diverse convex partitions (DCP) and diverse
Voronoi partitions (DVP) both on the line (1D) and in the plane (2D). We begin by
surveying related research on diversity and on partitioning problems for colored
points. In Section 6.2 we illustrate how convex and Voronoi partitions differ in 1D
and also show how to test if a given convex partition can be realized by a Voronoi
partition. It is straightforward to compute a DCP in 1D using dynamic programming.
Surprisingly, Section 6.3 shows that computing a DVP is NP-hard already in 1D
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1.5 1.6

1.6 1.5
1.0

0.9

0.91.0

Figure 6.1: A colored point set with a convex partition (left, diversity score 11 for
richness, 5.7 for Shannon index) and a Voronoi partition (right, diversity score 9 for
richness, 4.3 for Shannon index; white disks denote sites). Each cell is annotated with
its (rounded) Shannon index.

and for only four colors. This result holds for both the richness and the Shannon
index. For richness, the NP-hardness can be extended to 2D using 12 colors. We also
show that a DVP can be computed in polynomial time in 1D if a discrete set of m
candidate positions for the Voronoi sites is part of the input. In Section 6.5 we show
how to compute—in polynomial time for any constant ε > 0—a 1D Voronoi partition
whose richness diversity is at least 1 − ε times the richness of the DVP. Finally, in
Section 6.6 we show that computing a DCP is NP-hard in 2D for richness. We reduce
from Maximum Independent Set in Orthogonal Line Segments using a colored grid
structure which allows us to limit the possible shapes of convex sets.

6.1.1 Related Work
Diversity as a scientific concept is used to characterize sets; it is related to entropy,
variety and representation [54]. Diversity plays an important role, for example, in
ecology ([99, 117]; diversity of species), information retrieval ([25, 118]; diversifica-
tion of query results), evolutionary algorithms ([91]; diversity in the population),
and machine learning ([114]; diversity of classifiers). There are many measures of
diversity, including species richness, the Shannon index, the Simpson index, and
Rényi entropy. All these measures relate to sets of objects in classes, and have no
spatial aspect. In a seminal paper, Whittaker [117] argued the need for differentiation
in local (small-scale) diversity and regional (larger-scale) diversity. This requires a
partition of a larger region into several smaller regions, and subsequently the analysis
of diversity in the larger region and all of the smaller regions. The combined di-
versity measure is referred to as β-diversity; there are multiple different definitions in
use [115]. The partitions we compute maximize the average or sum of local diversities
over arguably reasonable geometric partitions.

The measure richness leads to algorithmic problems with a classic combinatorial
and geometric structure. The Shannon index, however, gives rise to new challenges,
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which can be observed in the NP-hardness proof for DVP in 1D, and the fact that
the approximation algorithm does not easily generalize. For richness, a DCP has at
most n different summed diversity scores; for the Shannon index this is exponential.
Furthermore, the richness of a cell cannot decrease if we grow the cell and collect
more points; the Shannon index can decrease when extra points make the distribution
of colors less balanced.

Partitioning problems for sets of points are extensively studied in computational
geometry and related areas. There is a variety of specific problem formulations and,
correspondingly, a multitude of related work. Here we highlight some results on
bi-colored and multi-colored point sets and convex partitions.

Kaneko and Kano [83] present a survey of results for red and blue points in the
plane. This includes computing convex partitions of the plane, such that each cell
contains a red and b blue points, or, alternatively, a specific ratio. Bespamyatnikh et
al. [23] study equitable partitions of red-blue point sets using convex sets. This line
of inquiry has been further extended by Bereg et al. [15, 17], Chierichetti et al. [43],
and Holmsen et al. [78]. Bereg et al. [16] define coarseness of bicolored point sets
as a measure of how mixed the two colors are. They give efficient algorithms for
2-partitions in the plane, and for point sets in convex position. Dumitrescu and
Pach [55] partition multi-colored point sets into uni-colored subsets, whose convex
hulls are disjoint; this minimizes diversity. Majumder et al. [100] consider the same
problem, however, they partition the multi-colored input with axis-parallel lines.
In d dimensions, Blagojević et al. [24] show that dn d-colored points can always be
partitioned into n sets with disjoint convex hulls and evenly distributed colors, thus
maximizing diversity.

Diverse Voronoi Partition is in some sense a clustering problem reminiscent of k-
means clustering, which aims to represent multiple points by a single point, following
a nearest neighbor rule. While k-means clustering minimizes the sum of squared
distances to nearest representatives, DVP aims to maximize the diversity of colors for
each representative. DVP also bears resemblance to multi-criteria facility location,
where sites need to be placed to optimize two or more often conflicting criteria (see
the extensive survey by Farahani et al. [58]). In the case of DVP these criteria are
distance and diversity.

6.2 Convex versus Voronoi Partitions in 1D
In this section we explore the difference between convex and Voronoi partitions in 1D.
Consider the example in Figure 6.2 of 15 colored points, 5 in each of h = 3 colors. It
is easy to see that there is a convex partition with a perfect richness score of 15 using
k = 5 cells (intervals). To achieve the same score with a Voronoi partition, we need
to place 5 sites such that the induced boundaries between Voronoi cells lie between
the same input points as the corresponding boundaries of the convex partition. We
capture this restriction on theVoronoi partition using so-called b-intervals. A b-interval



6.3 NP-Hardness Proofs for the Voronoi Partition 117

is the open interval between two consecutive input points. A Voronoi partition that
realizes a richness score of 15 must place 5 sites in such a way that each boundary
between Voronoi cells lies in the corresponding b-interval. A careful inspection shows
that this cannot be done. The middle site s3 must be sufficiently far to the left to
ensure that the second boundary is correctly placed (between the second green and
the third red point), and at the same time sufficiently far to the right to ensure that
the third boundary is correctly placed (between the third green and the fourth red
point). It it impossible to move the other sites s1, s2, s4, and s5 to realize this.

s1 s2 s4 s5s3

Figure 6.2: Points that admit a perfect convex partition but not a perfect Voronoi
partition.

Testing realizability for Voronoi partitions. Using b-intervals it is straightforward
to test—using linear programming—if a given convex partition can be realized as a
Voronoi partition (see also [74]). The convex partition directly induces the b-intervals.
Let bi be the midpoint of the interval between the sites si and si+1, for 1 ≤ i < k.
Then it must hold that s1 ≤ s2 ≤ · · · ≤ sk, and bi = (si + si+1)/2. To ensure that
the Voronoi cell boundaries bi lie inside their respective b-intervals, we use another
2k − 2 linear inequalities. Altogether, we have a system of 5k − 5 linear inequalities
whose solution—if it exists—gives a Voronoi partition.

Perfect partitions. If the input S consists of exactly n/h points per color, we can ask
if there is a perfect partition using k = n/h sites that together have a richness score
of n. The unique perfect convex partition, if it exists, can be found in O(n) time if the
points are given in sorted order. Constructing the corresponding system of linear
inequalities also takes O(n) time. Solving this linear program, and hence testing for a
perfect Voronoi partition, takes polynomial time in k = n/h.

6.3 NP-Hardness Proofs for the Voronoi Partition

6.3.1 Richness as the Diversity Measure in 1D
We prove that the decision version of DVP (D-DVP) is NP-complete, even in 1D.
D-DVP has an extra parameter z and asks if a diversity score of at least z can be
realized with a Voronoi partition using k points. We first argue containment in NP.
For a given instance of D-DVP, there are only exponentially many partitions into
subsets, each defined by k − 1 b-intervals. We can test for each of these partitions
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if they can be realised as a Voronoi partition with k sites in polynomial time using
linear programming (see Section 6.2).

For hardness we reduce from Subset Sum: for a set A = {a1, . . . , ar} of r integers
and an integer b, is there a subset A′ ⊆ A such that∑aj∈A′ aj = b? We first define a
few terms. A point p ∈ P is represented by a site s ∈ S if s is the site closest to p. For
each color i ∈ {1, . . . , h}, Pi is the subset of points of color i, and a point p ∈ Pi is
scored if each other point p′ ∈ Pi that is represented by the same site is to the right of p.
That is, for each site only the leftmost point of each color that it represents is scored.
A point is unscored if it is not scored. Hence, an optimal set S of sites maximises the
number of scored points. Our reduction uses only four colors, so we define point sets
P1, P2, P3, and P4 from an instance of Subset Sum with total size n = 8r + 14.

The construction. Let 0 < δ ≪ 1 be a small real and let 0 < ε ≪ δ be an even smaller
real. We can take δ = 1/r2 and ε = 1/r4. Later we can multiply the coordinates of the
constructed points by r4 and thus obtain a set of integer positions with polynomial
size. Let a =

∑r
i=1 ai be the total sum of the integers of the Subset Sum instance.

We construct the set P using the values ai and b. The goal is that the new D-DVP
instance has a solution if and only if the Subset Sum instance has a solution. We
describe P from left to right. First, there is a starting gadget H of six points. Then
we have a gadget Dj for each aj , consisting of eight points (these gadgets can be in
any order). Next, we have a subset sum gadget E of two points to represent b, and
finally we have an ending gadget G of six points. P = H ∪D1 ∪ · · · ∪Dr ∪ E ∪ G.
Figure 6.3 shows an example for A = {1, 2} and b = 2, so P = H ∪D1 ∪D2 ∪ E ∪G.
Intuitively, each cell in a solution of the D-DVP instance contains exactly one (blue)
point from P1 and one (green) point from P2. In each gadget Dj there is a choice to
either separate two (red) points from P3 or two (yellow) points from P4. This choice
corresponds to not choosing or choosing aj in the subset sum so far.

To start the construction we define a set H of six points in two colors. We set
H1 = {−2δ,−δ, 0} ⊂ P1 andH2 = {−2δ − ε,−δ − ε,−ε} ⊂ P2. The setH thus forms
three groups of two points of different colors. We can only score all points in H with
three sites s−2, s−1, s0 if we have−δ < s0 < 2δ−2ε. So, in order to score all six points
with three sites, the rightmost of those sites, s0, needs to be close to zero.

δ δ

H

2δ 2δ 2δ 2δ 2δ δδ

GD1 D2 E

2δ 2δ

a1/2

Figure 6.3: Reducing Subset Sum to D-DVP for a1 = 1, a2 = 2 and b = 2 using P1

(blue), P2 (green), P3 (red), and P4 (yellow). Touching points are at ε distance, δ is
not drawn to scale.
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For each aj ∈ Awe create a setDj of eight points that encodeswhether aj is chosen
in the subsetA′ or not. LetDj = Dj

1∪D
j
2∪D

j
3∪D

j
4, withDj

i ⊂ Pi (the points inDj
i have

color i). LetDj
1 = {(4j−1)a−δ, (4j−1)a+δ},Dj

2 = {(4j−1)a−δ+ε, (4j−1)a+δ−ε},
Dj

3 = {(4j−3)a−δ, (4j−3)a+δ} andDj
4 = {(4j−3)a+aj/2−δ, (4j−3)a+aj/2+δ}.

The distances between Dj
3 and Dj

4 are roughly aj/2.
We define a set E ⊂ P that encodes that we want the subset sum to be b. We

define E ⊂ P3 with E = {4ra+ (a− b)/2− δ, 4ra+ (a− b)/2 + δ}.
Finally, we define a set G of six points, similar to H . It can only be scored fully

by three sites if the leftmost of the sites is close to (4r + 1)a. We set G1 = {(4r + 1)a,
(4r + 1)a + δ, (4r + 1)a + 2δ} ⊂ P1 and G2 = {(4r + 1)a + ε, (4r + 1)a + δ + ε,
(4r + 1)a+ 2δ + ε} ⊂ P2.

The instance of D-DVP has n = 8r+14 points and asks to place k = 2r+6 sites to
realize a score of z = 7r + 14, which can be achieved if and only if the corresponding
Subset Sum instance has a solution.

Equivalence. We lead with the intuition of the proof. We want to use the sites to
create boundaries that separate the first three pairs of points, the last three pairs of
points, either Dj

3 or Dj
4, and also E. Separating Dj

3 corresponds to not choosing aj in
a subset and separating Dj

4 corresponds to choosing aj . If we choose the correct aj ,
the boundary between the last site chosen for Dr and the first site chosen for G
“magically” separates the points in E. Then, only one point of each Dj is not scored.
See Figure 6.4 for an example. The proof of correctness argues that essentially there
are no other options: the Subset Sum instance has a solution if and only if the D-DVP
instance can score 7r + 14.

10 205 150 25

Figure 6.4: D-DVP instance: a1 = 1, a2 = 2 and b = 2. Sites and boundaries for a
score of 7r + 14.

Let A′ be the subset with∑aj∈A′ aj = b. We define bj =
∑

ai∈A′, i≤j ai as the
subset sum up until j. We set S = SH ∪SG∪

⋃r
j=1 Sj , where SH = H1 = {−2δ,−δ, 0},

SG = G1 = {(4r + 1)a, (4r + 1)a + δ, (4r + 1)a + 2δ} and for j ∈ {1, . . . , r}, Sj =
{(4j − 2)a+ bj , 4ja− bj}. Only one point per Dj is not scored: if aj ∈ A′, the right
point inDj

3 is not scored, else, the right point inDj
4 is not scored. Both points in E are

scored because the boundary between the last site from Sr and the first site from SG

lands precisely between the points of E, because br =
∑

ai∈A′, i≤r ai = b. This brings
the total score to 7r + 14 as shown in Figure 6.4.

Conversely, we want to prove that if there is a set S with |S| = k and score
7r + 14, then the original Subset Sum instance has a solution. Let us now assume that
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we have a set of 2r + 5 boundaries B subdividing P into a set of cells such that it
maximizes the number of points of P scored. As above p ∈ P is considered scored
if it is the leftmost point of that color within its cell. Let I be the set of b-intervals{
(−2δ,−δ−ε), (−δ,−ε),

(
(4r+1)a+ε, (4r+1)a+δ

)
,
(
(4r+1)a+δ+ε, (4r+1)a+2δ

)}
∪
{(

minDj
2,maxDj

2

)
| j ∈ {1, . . . , r}

}. For j ∈ {1, . . . , r}, let further Jj and Lj be
the b-intervals (minDj

3,maxDj
3

) and (minDj
4,maxDj

4

). We have:
Lemma 6.1. For boundaries B with score 7r + 14, there is exactly one boundary in each
b-interval of I and, for each j ∈ {1, . . . , r}, there is exactly one boundary in Jj or Lj .

Proof. We define intervals relating to the gadgets: let the segment I1 be (maxH,

maxD1
] and for j ∈ {2, . . . , r} let the segment Ij be (maxDj−1,maxDj

]. Fur-
thermore we define the start segment Is =

(
minH,maxH

] and the end segment
Ie =

(
maxDr,maxG

]. The segments partition the interval (minP,maxP
] and

each segment ends with a point of P1, with the exception of the last segment Ie.
We count the unscored points, that is, points that are not scored. For a total score

of 7r + 14 only r points can be unscored.
We have the following cases for the start segment Is: without boundaries at most

two points are scored (because they are the leftmost of their color), so at least four
points are not scored. For one boundary, at least two points are not scored and for
two boundaries one can score all points.

The end segment Ie contains the gadgets E and G. Without boundaries within Ie
at most the leftmost point in E and the leftmost point of color two can be scored,
leaving six points. For one boundary at least four points are not scored and for two
boundaries at least two points are unscored. Only for three boundaries all can be
scored.

For j ∈ {1, . . . , r}, we have the following case distinction depending on the
boundaries within the segment Ij : without boundaries at least five points are not
scored. For one boundary three points remain unscored, with two boundaries at least
one remains unscored and only for three boundaries all can be scored.

We know that by placing two boundaries in Is, three boundaries in Ie and two
boundaries in each segment Ij , there are at least r points that are not scored. Only the
segments Ij can score more. However if we remove one boundary from a segment
Is, Ie or Ii (i ̸= j) to add to Ij , then at least two more points are unscored for each
boundary removed and at most one point more is scored for each boundary added.
So moving boundaries to different segments only reduces the overall score. This
means that the above assignment of boundaries to segments is optimal.

Note that the proof of Lemma 6.1 also implies that 7r+14 is themaximumpossible
score. So overall if the answer of the D-DVP instance is “Yes”, we know that there
is set of sites with a score of 7r + 14 for this instance. By Lemma 6.1, we know the
position of the boundaries. To be precise we knowwhich b-intervals these boundaries
lie in. We define the set A′ as the set of all ai for which there is a boundary in the
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b-interval Li. We define bj =
∑

ai∈A′, i≤j ai. For x, y ∈ R, let x± y be the interval of
width 2y centered around x.

We know that the first three sites s−2, s−1 and s0 are roughly at positions −2δ,
−δ and 0. To be more exact, we have −δ < s0 < 2δ − 2ε and thus s0 ∈ 0± 2δ. Each
b-interval Ji, Li and each b-interval in I has width at most 2δ. Thus, knowing the
positions of the boundaries, we get s2i−1 ∈ (4i− 2)a+ bi ± 4iδ and s2i ∈ 4ia− bi ±
(4i+ 2)δ. As G is symmetric to H , we have s2r+1 ∈ (4r + 1)a± 2δ. Using that value,
we can calculate the position of the boundary b2r:

b2r = (s2r + s2r+1)/2

∈ (2ra− br/2) + ((2r + 1/2)a)± (2r + 2)δ = 4ra+ (a− br)/2± (2r + 2)δ .

As we have δ ≪ 1/r and 4ra + (a − b)/2 − δ = minE < b2r < maxE = 4ra +
(a− b)/2+ δ, we get: 4ra+(a− br)/2 = 4ra+(a− b)/2 and thus br = b, which shows
that the Subset Sum instance has a solution.

Theorem 6.2. Deciding if a diverse Voronoi partition of n colored points in four colors in 1D
of richness diversity at least z exists, using k cells, is NP-complete.

6.3.2 Richness as the Diversity Measure in 2D

The NP-hardness of DVP in 1D does not immediately extend to 2D by embedding
the 1D construction in 2D on a line, as it is know that a line can be subdivided into
arbitrary convex cells using a 2D Voronoi diagram. Hence, the construction of points
in P must use 2D as well. The main idea of the proof is to use the 1D construction
on three parallel lines, each with a different set of four colors. The construction can
be seen in Figure 6.5. Intuitively, we ensure that (nearly) all sites are horizontally
(nearly) aligned, so that all relevant bisectors are (nearly) vertical Voronoi edges.
However, additional care is needed to ensure that the sites do not stray too far away
from the constructed instance.

Construction. We reduce again from Subset Sum. LetA = {a1, . . . , ar}, b be a Subset
Sum instance with positive integers, and let P =

⋃4
i=1 Pi = H ∪ E ∪ G ∪

⋃r
i=1 D

i

be the 1D DVP instance constructed in Section 6.3.1. Let 0 < ε ≪ δ ≪ 1, for
example δ = 1/(n2a2) and ε = δ2 with a =

∑
ai. For this proof we extend the

start gadget with more points to become H1 = {−4δ,−3δ,−2δ,−δ, 0} ⊂ P1 and
H2 = {−4δ − ε,−3δ − ε,−2δ − ε,−δ − ε,−ε} ⊂ P2. We make three copies P 0, P 1

and P 2 of this new set. We give each set its own four colors, so we use twelve colors
overall. We place P 0 on the line y = 0, P 1 on the line y = 1 and P 2 on the line y = 2.
As a last step, we move the five leftmost points of P i left by i, see Figure 6.5.
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Figure 6.5: The set of points of twelve colors constructed for a1 = 1, a2 = 2 and b = 2.
The start gadget (on the left) ensures that there is a site at roughly (0, 0).

Equivalence. We prove that using 2r + 8 cells, the maximum score for DVP on the
n = 24r+54points is 21r+54 if and only if the Subset Sum instance has a solution. First,
assume that the Subset Sum instance has a solution, that is, there exists A′ ⊆ A with∑

ai∈A′ ai = b. As before, we define bj =
∑

ai∈A′, i≤j ai as the sum up until j. We set
S = SH ∪ SG ∪

⋃r
j=1 Sj as the set of sites, where SH =

{
(−3δ,−δ), (−5δ/2,−δ/2)

}
∪{

(−iδ, 0) | i ∈ {0, 1, 2}
}, SG =

{
(4r + 1)a + iδ, 0) | i ∈ {0, 1, 2}

}. In P 0, only one
point per Dj is not scored: if aj ∈ A′, the right point in Dj

3 is not scored, else, the
right point in Dj

4 is not scored. Both points in E are scored because the boundary
between the last site from Sr and the first site from SG lands precisely between the
points of E, because br =

∑
ai∈A′, i≤r ai = b. The same is true for P 1 and P 2. This

brings the score to 7r + 18 for each of P 0, P 1 and P 2, for a total of 21r + 54.
Conversely, assume there is a set of 2r + 8 cells C with a score of at least 21r + 54.

The line y = 0 is subdivided by C into at most 2r + 8 convex cells. The result of
Lemma 6.1 still holds here, as the additional four points at the start of the instance
do not influence the proof. As a result, using 2r + 8 cells, there are at least r points
of P 0 that are not scored. The same holds for P 1 and P 2. As a score of 21r + 54
means that exactly 3r points are not scored, and as the sets P i use different colors,
C subdivides each of the three sets into 2r + 8 convex cells. As a consequence, the
intersection of the Voronoi diagram and the strip between the lines y = 0 and y = 2
is a set of 2r + 7 segments with one endpoint at y = 0 and one at y = 2. We call
those segments boundary segments. Lemma 6.1 further dictates the location of the
boundaries. There is a boundary between adjacent pairs of blue and green points and
for each gadget Dj there is a boundary either between the two red or the two yellow
points. Concerning the latter, if a boundary segment separates two yellow points
of P 0, that segment must also intersect the yellow points of P 1 and P 2 as otherwise
the boundary segment must be curved (for example, it is not possible that a straight
boundary separates corresponding pairs yellow points in P 0 and P 1, and a pair of
red points in P 2). The analogous statement holds if a boundary segment separates
two red points of P 0. Thus each boundary segment, with the exception of the two
leftmost ones, is almost vertical: the difference between the x-coordinates of their
endpoints on the strip boundary is at most δ. The two leftmost boundary segments
have a slope of close to −1, that is, the difference between the x-coordinates of their
endpoints is between 2− δ and 2 + δ.

In the followingwe ignore any termswith ε and δ2 in larger expressions as they are
negligible compared to terms with δ and constant terms. From left to right, we name
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Figure 6.6: We consider the five leftmost sites s−4, s−3 s−2, s−1 and s0. Left: the
middle site s−2 can not be above y = 2. Middle: when s−2 is between y = 0 and
y = 2, it is in a small area close to (2δ, 0). Right: When s−2 is below y = 0, it is in a
small triangle close to (2δ, 0).

the sites s−4, . . . , s2r+3. We consider the position of site s−2, see Figure 6.6. We first
assume for the sake of contradiction that s−2 is above the line y = 2. Then, as s−1 is
located between two close, nearly vertical lines, the site s−2 is right of the line through
(−δ, 0)with slope−2/(3δ). As s−3 is located between two close almost diagonal lines,
the site s−2 is left of the line through (−6d/(2− d), 0)with slope −(2 + d)/(2− 2d).
The intersection of the halfplanes induced by those lines does not contain points
above y = 2; thus s−2 is below that line. If s−2 is between the lines y = 0 and y = 2, it
must be right of the line x = −4δ+ ε and left of the line through (−2ε)with slope−1.
Their intersection is the point (−4δ + ε, 4δ + 3ε). If s−2 is below the line y = 0, it is
left of the line through (−δ− ε, 0)with slope −2/(δ− ε) and right of the line through
(−3δ, 0)with slope −2/(2− δ+ ε). They intersect in (−δ/(1− δ),−2δ/(1− δ)). It can
thus be concluded that s−2 ∈ (−2δ, 0)±4δ, where (x, y)±zδ = {(x′, y′) | |x−x′| ≤ zδ
∧ |y − y′| ≤ zδ}. This implies s0 ∈ [−5δ,+5δ]× [−5δ,+5δ], that is, close to (0, 0).

The almost vertical lines have a slope of at least 2/δ or at most −2/δ, and hence
the difference in the y-coordinate between adjacent sites si and si+1, with i ≥ 0 is at
most aδ. We define the set A′ ⊆ A as the set of all aj for which there is a boundary
segment separating two adjacent yellow vertices in the gadgetDj and we define bj =∑

ai∈A′, i≤j ai for j ∈ {1, . . . , r}. Knowing the position of the boundary segments,
we get s2i−1 ∈ ((4i− 2)a+ bi, 0)± (2i− 1)aδ + 5δ and s2i ∈ (4ia− bi, 0)± 2iaδ + 5δ
for i ∈ {1, . . . , r}. Finally, we have s2r+1 ∈ ((4r + 1)a + br − b, 0) ± (2r + 1)aδ + 5δ.
The site s2r+1 lies in the strip between y = −1 and y = 1. This implies that s2r+2

and s2r+3 do so too. This in return implies s2r+1 ∈ ((4r + 1)a, 0)± (2r + 1)aδ + 5δ.
As δ ≪ 1/an, we have br = b, which shows that the Subset Sum instance has a solution.

Theorem 6.3. Deciding if a diverse Voronoi partition of n colored points in twelve colors in
2D of richness diversity at least z exists, using k cells, is NP-complete.
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6.3.3 Shannon Index as the Diversity Measure in 1D
We prove that deciding DVP is NP-complete in 1D, also when using the Shannon
index as diversity measure. For ease of argument, we allow points of different colors
to share locations. For containment in NP, we note that we need logarithms of 1..n
only, and we can still guess the partition and approximate its total Shannon index
sufficiently precisely. For NP-hardness, we reduce from Subset Sum as before: for a
set A = {a1, . . . , ar} of integers and an integer b, is there a subset A′ ⊆ A such that∑

aj∈A′ aj = b? The set of points we construct is similar to the one using richness, but
the proof arguments are more complex. We place all yellow, red, and blue points at
exactly the same positions as before, and set ε = 0 so that each green point coincides
with the nearest blue point. We use two more red points in the start gadget and two
more in the end gadget, to coincide with the first two blue points and the last two
blue points, as shown in Figure 6.7.

The decision question corresponding to Subset Sum is: using k = 2r + 6 sites,
can we get a score of at least z = (ℓ3 + ℓ5)r + 6ℓ3 in their Voronoi cells, where
ℓ3 = log2(3) ≈ 1, 58 is the score of a cell with three points of different colors and
ℓ5 = log2(5)− 2/5 ≈ 1, 92 is the score of a cell with two points of one color and three
other points of different colors?

10 205 150 25

Figure 6.7: The set of points constructed for a1 = 1, a2 = 2 and b = 2 to prove
NP-completeness when using the Shannon index for diversity, corresponding to
Figure 6.4.

Equivalence. First, given a solution to the Subset Sum instance, we construct a
solution to the DVP problem in the samemanner as for the richness in Subsection 6.3.1.
Second, we assume we have a Voronoi subdivision of 1D with score (ℓ3 + ℓ5)r + 6ℓ3
and prove that the corresponding Subset Sum instance has a solution in the following.

Table 6.1 gives the Shannon index for all possible cells in this instance with up to
eight points, where [x1, . . . , xm] denotes a cell withm different colors and xi points
per color. Note that any cell, even with more points, has a score of at most 2, the
maximum with four colors.

Similar to the proof for richness in Subsection 6.3.1, we first prove that with convex
cells, the solution follows a certain pattern.

Lemma 6.4. Using 2r + 6 convex cells, the maximum possible score for the constructed
instance is (ℓ3 + ℓ5)r+6ℓ3, and this can only be achieved with r+6 cells of the form [1, 1, 1]
and r cells of the form [2, 1, 1, 1].
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Table 6.1: The (rounded) Shannon index for distributions of up to eight points that
occur in the construction.

cell score cell score cell score
[∅] 0 [1, 1, 1] 1.585 [2, 1, 1, 1] 1.922
[1] 0 [2, 1, 1] 1.5 [2, 2, 1, 1] 1.918
[2] 0 [2, 2, 1] 1.522 [2, 2, 2, 1] 1.950

[1, 1] 1 [2, 2, 2] 1.585 [2, 2, 2, 2] 2
[2, 1] 0.918 [3, 3, 2] 1.561 [3, 2, 2, 1] 1.906
[2, 2] 1 [3, 3, 3] 1.585

Proof. LetA be the subdivision of the DVP instance into 2r+6 convex cells that yields
the maximum total Shannon index score. Let us count the number of cells of this
optimal assignment using classes. Class C0 contains the cells that contain at most 1
color, and C1 (Cℓ3) contain the cells with points of precisely two (respectively, three)
colors. The cells with precisely four colors appear in two classes: Cℓ5 and C2 contain
the cells with four colors that contain exactly one, respectively two or more blue
point(s). Let ci = |Ci|. Note that a cell in a class Ci has Shannon index at most i.
Each cell with three or more colors contains at least one blue point, since blue and
green points coincide. As there are 2r + 6 cells and 2r + 6 blue points, the following
inequalities hold:

2r + 6 = c0 + c1 + cℓ3 + cℓ5 + c2 (count the cells)
=⇒ 2r + 6 ≥ c1 + cℓ3 + cℓ5 + c2 (1)

2r + 6 ≥ c1 + cℓ3 + cℓ5 + 2c2 (count blue points per cell)
=⇒ 2r + 6 ≥ cℓ3 + cℓ5 + 2c2 (2)

Max Score ≤ 0 · c0 + 1 · c1 + ℓ3 · cℓ3 + ℓ5 · cℓ5 + 2 · c2
≤ c1 + ℓ3cℓ3 + ℓ5cℓ5 + 2c2
(1)

≤ (2r + 6− cℓ3 − cℓ5 − c2) + ℓ3cℓ3 + ℓ5cℓ5 + 2c2

= 2r + 6 + (ℓ3 − 1)cℓ3 + (ℓ5 − 1)cℓ5 + c2
(2)

≤ 2r + 6 + (ℓ3 − 1)cℓ3 + (ℓ5 − 1)cℓ5 + (2r + 6− cℓ3 − cℓ5)/2

= 3r + 9 + (ℓ3 − 3/2)cℓ3 + (ℓ5 − 3/2)cℓ5 (3)

Since we have ℓ5 > ℓ3 > 3/2 and cℓ3 + cℓ5 ≤ 2r + 6, in order to upper-bound
expression (3) we maximise cℓ5 first and cℓ3 second. Each cell in class Cℓ5 has points
of four colors and exactly one blue point. No cell in Cℓ5 can contain a yellow point p
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and a red point q with p < q, otherwise the cell would contain two blue points. The
yellow points appear in adjacent pairs and there are r such pairs. Thus cℓ5 ≤ r holds,
and equality is attainable. Given cℓ5 = r, we get cℓ3 ≤ r + 6, and also here equality is
attainable in the construction. We have:

Max Score ≤ 3r + 9 + (ℓ3 − 3/2)cℓ3 + (ℓ5 − 3/2)cℓ5

≤ 3r + 9 + (ℓ3 − 3/2)(r + 6) + (ℓ5 − 3/2)r

= (ℓ3 + ℓ5)r + 6ℓ3

This concludes the proof.

This lemma implies that the Voronoi subdivision for the constructed DVP instance
follows the exact same pattern as in Subsection 6.3.1. Using the same arguments we
can conclude that then the initial Subset Sum instance has a solution. This concludes
the proof and shows:

Theorem 6.5. Deciding if a diverse Voronoi partition of n colored points in four colors in 1D
of Shannon index at least z exists, using k cells, is NP-complete.

6.4 Polynomial-Time Solution for Discrete Candidate
Sites

If we assume that there is a fixed set of candidate positions for the sites, then optimal
diverse Voronoi partitions can be computed in 1D by dynamic programming both for
richness and for the Shannon index. We now assume that the k sites can be placed
only at a finite setM of pre-specified positions. We work our way from left to right,
using the fact that in a placement of the first i sites, we use an optimal placement of
the first i− 1 sites. However, the Voronoi boundaries between sites are determined
by the last two sites, so our recurrence for an optimal solution has parameters for
the last two sites. Furthermore, since we do not know the score for the i-th site (its
right boundary is not yet fixed) we define the maximum total score (by richness
or Shannon index) for the first i− 1 sites for all possible candidate positions of the
(i− 1)-th and i-th sites.

Consider f : {2, . . . , k} × M × M → N. For i ∈ {2, . . . , k} and u, v ∈ M , with
u < v, let

f(i, u, v) = max
s1,...,si−2∈M


i−1∑
j=1

dj

∣∣∣∣∣ s1 < · · · < si, si−1 = u, si = v


be the best possible score of the first i − 1 cells while fixing si−1 = u and si = v,
where dj is the diversity score of the cell represented by site sj , by richness or Shannon
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index. We further define the function g : (M ∪ {−∞}) × M × (M ∪ {+∞}) → N,
where g(a, b, c) is the diversity score of the cell of site b, where a and c are its left and
right neighboring sites. For a, b ∈ M , we have f(2, a, b) = g(−∞, a, b). Additionally
we have:

∀i ∈ {3, . . . , k},∀b, c ∈ M , with b < c : f(i, b, c) = max
a∈M,a<b

{
f(i− 1, a, b)+ g(a, b, c)

}.
To find the best sites overall we determinemaxa,b∈M,a<b{f(k, a, b) + g(a, b,+∞)},

which includes the diversity score of the k-th cell in the second term. The dynamic
program uses a table of size O(km2), where m = |M |. Filling an entry requires
optimizing overm choices. To evaluate the function g(a, b, c) one must first determine
howmany points of each color are present in the cell of site b and then evaluate either
the richness or the Shannon index. Since one can trivially determine the colors in a
cell in O(n) time, we immediately get an O(km3n) time algorithm. The positions of
the sites can then be obtained by backtracking.

We can avoid spending O(n) time for each of the O(km3) evaluations of g by
preprocessing: First for all a, b ∈ M , compute (a + b)/2 and sort these values in
O(m2 logm) time. Then we can scan through all those boundaries and all points in P
simultaneously from left to right and record for each boundary how many points
of each color are to the left of the boundary in O(hm2 + n) time. Lastly for each
triplet a, b, c ∈ M with a < b < c, we can determine how many points of each color
are between the boundaries (a+ b)/2 and (b+ c)/2 by just computing the difference
between the points left of the boundaries calculated in the previous step. This last
step allows us to compute all g(a, b, c) in O(hm3) time which leads to an overall time
of O(hm3 + n) for the precomputation.

To calculate the richness measure of a cell, we only need to know which colors
are present and do not care about the number of points of that color. Therefore, for
the richness measure, we can also preprocess as follows. Again we determine and
sort all boundaries (a + b)/2 in O(m2 logm) time. We scan this sequence this time
from right to left, together with the points in P . We maintain the leftmost point
of each color. When we encounter a potential Voronoi cell boundary (a+ b)/2, we
construct the sorted list of at most h differently colored points that are leftmost (but
right of (a + b)/2), and store it with this potential cell boundary. This scan takes
O(m2h log h + n) time. Then, for each a, b ∈ M with a < b, we scan the at most h
differently colored points in its list from left to right, and simultaneously scan the
potential boundaries (b + c)/2 with b < c. Keep a count of the number of colored
points encountered (with different colors by construction), and fill in the richness
count in g(a, b, c) when (b + c)/2 is encountered in O(1) time. These O(m2) scans
take O(h+m) time each. In total, preprocessing takes O(m3 +m2h log h+ n) time in
this case.
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Theorem 6.6. A diverse Voronoi partition of n points in h colors in sorted order in 1D into k
cells using m discrete candidate positions can be computed in O(km3 + hm3 + n) time, for
richness or Shannon index, or in O(km3 +m2h log h+ n) time for richness.

6.5 Approximation for Diverse Voronoi Partition in 1D
In this sectionwe show that for any constant ε > 0, we can compute aVoronoi partition
whose diversity (richness) is at least 1− ε times the optimal diversity in polynomial
time. We first use more sites than allowed in order to separate subproblems, which
we solve optimally using linear programming. We combine the subsolutions us-
ing dynamic programming, and then remove sites to the desired number without
deteriorating the solution too much.

Let P = {p1, . . . , pn}, k, and 0 < ε < 1 be given. Let e = ⌈2/ε⌉, and let δ be a
small number, for examplemini=1,..,n−1{(pi+1−pi)/4}. For i = 1, . . . , n−1we define
qi = (pi + pi+1)/2 as the middle between pi and its right neighbor pi+1.

Our goal is to subdivide P into g = ⌈k/e⌉ subsets and then place e sites optimally
within each subset. For each of the (n+1

2

) non-empty convex subsets of points, we
calculate a specific score s(i, j) that is specified for a convex subset pi, . . . , pj , where
2 ≤ i < j ≤ n− 1, as follows: place two sites, one at qi−1 + δ and one at qj − δ; these
are fixed. Then we place another e sites in between these two sites in an optimal
way, maximizing the score. We do this by placing the e+ 1 boundaries between the
e+ 2 sites, and then checking whether these boundaries are realizable by a Voronoi
partition, using linear programming. There areO((j− i)e+1) = O(ne+1) choices to be
checked. We store the maximum in a table for s(i, j). For the convex subsets p1, . . . , pj
or pi, . . . , pn we compute the score slightly differently, because they do not need the
leftmost or rightmost extra site, and because the last convex subset may have fewer
than e sites remaining. For the last convex subset, we have k mod e = k − e(g − 1)
sites, to be precise, so we compute s(i, n) for all i and k mod e sites, plus one extra at
mi−1 + δ.

We then find the optimal subdivision of P into g convex subsets, such that the sum
of the scores of all the subsets is maximal. We do this using dynamic programming
to compute a function f(h, j), representing the optimal score for the points p1, . . . , pj
by using h convex subsets that partition p1, . . . , pj , and each convex subset is scored
with the s(·, ·) function. Since the application of dynamic programming is standard,
we simply state:

f(h, j) = max
ℓ<j

{f(h− 1, ℓ) + s(ℓ+ 1, j)} .

The value f(g, n) then gives the maximum sum of scores when subdividing P into g
subsets; a set S′ of k+ 2(g − 1) sites attains this. We prove in the next lemma that the
score of the Voronoi partition S′ obtained by the approximation algorithm is at least
the score of an optimal solution S∗. Since S′ uses more sites than S∗, we continue to
show that we can reduce the number of sites in S′ and not lose much in the score.
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Lemma 6.7. The score of the calculated sitesS′ is at least the score δ∗ of an optimal solutionS∗

with k sites.

Proof. Assume that the optimal solution S∗ with k sites uses e sites whose cells contain
pi, . . . , pj . We denote these sites by s∗1, . . . , s

∗
e . We can assume that s∗1 scores at least

one point (namely pi), otherwise we just remove s∗1 and let s∗2 be the leftmost point.
The extra point can be inserted anywhere between s∗2 and s∗e , and this does not reduce
the score of the solution. Similarly, we can assume that the cell of s∗e contains at
least pj . Consequently, we can assume that there exists an optimal solution where
the e− 1 boundaries between s∗1, . . . , s

∗
e lie between pi and pj .

Our approximation algorithm calculated a score s(i, j) for pi, . . . , pj that uses e+2
sites, where the leftmost one is fixed at qi+δ and the rightmost one is fixed at qj−1−δ.
Let us call the sites in our approximation a0, . . . , ae+1. We show that the placement of
a1, . . . , ae between a0 and ae+1 allows us to get exactly the same boundaries between
Voronoi cells as s∗1, . . . , s∗e , and two more boundaries. Since a refinement of a set of
boundaries can never score lower with the richness measure, the result then follows.

pi pj

a0 a6

s∗1 s∗4s∗2 s∗3 s∗5

a3a2 a4a1 a5

qi + δ qj−1 − δ

Figure 6.8: Top: a set pi, . . . , pj of points, scored (middle) by sites s∗1 to s∗5 in a possible
optimal solution. Bottom: Seven sites a0, . . . , a6 that score at least as high as the five
sites s∗1, . . . , s∗5 from S∗. On the left, the first case, and on the right, the second case of
the argument.

To show that s(i, j) is at least the summed score of s∗1, . . . , s∗e , we observe that
if we let ah = s∗h for 2 ≤ h ≤ e − 1, all boundaries between s∗2, . . . , s

∗
e−1 coincide

with all boundaries between a2, . . . , ae−1. Now there are two cases for the left side of
the solutions: s∗1 is left of a0 or not, see Figure 6.8. If s∗1 is to the left of a0, then we
can place a1 so that the boundary between s∗1 and s∗2 is the same as the boundary
between a0 and a1. The cell of s∗2 is now subdivided and scored by a1 and a2, which
cannot be worse. If s∗1 is to the right of a0, then we place a1 at s∗1, and now the cell
of s∗1 is subdivided into two cells for a0 and a1.

On the right side, we can show in the same way that either the cell of s∗e−1 is
subdivided in two cells, or the cell of s∗e is. Since this part of the approximation
algorithm is brute force, this set of boundaries is examined and found.

This argument applies to all groups of e sites in the optimal solution, with any
convex subset pi, . . . , pj in their cells. Since the dynamic program optimizes over all
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combinations of groups of e sites with two extra sites, the score of S′ is at least δ∗.

The remainder of the algorithm is simple: we determine the score of each site,
choose the site with the lowest score, and remove it. After 2(g − 1) iterations, we
have a set of k sites, which we show to be a (1− ε)-approximation of the best possible
with k sites.

Lemma 6.8. Reducing the set S′ of sites to a set with k sites costs no more than ε times the
score of S′

Proof. When removing a site the overall score drops by at most the score of the cell
of the site that was removed. So one by one, we choose the site whose associated
cell has the lowest score and remove it. Let Y0 be the score of the set of sites S′. For
w = |S′| = k+2g−2, the score drops by at most Y0/w for removing the first cell, thus
the score after removing that cell is larger than Y1 = Y0

w−1
w . Iteratively, we define

Yi = Yi−1
w−i

w−(i−1) . Using a telescope sum we get Yi = Y0
w−i
w . Thus the score after

removing 2g−2 sites is at least Y2g−2 = Y0
w−2g+2

w . So the score Y ′ of the remaining k

sites is at least Y2g−2 ≥ δ∗ (k+2g−2)−2g+2
k+2g−2 = δ∗ k

k+2⌈k/e⌉−2 ≥ δ∗ k
k+2(k/e+1)−2 = δ∗ 1

1+2/e .
Thus Y ′(1 + 2/e) ≥ δ∗ ⇐⇒ Y ′(1 + ε) ≥ δ∗ =⇒ Y ′ ≥ δ∗(1− ε).

Theorem 6.9 directly follows.

Theorem 6.9. Let P be a set of n points in 1D, let k be a positive integer, and let ε > 0 be
a constant. There is a polynomial-time (1 − ε)-approximation algorithm for computing a
diverse Voronoi partition on P with k sites based on richness diversity.

6.6 Diverse Convex Partition is NP-Hard in 2D

We show that the following diverse convex partition problem is NP-hard: given a
set of colored points in the plane, partition the plane into the minimum number of
convex regions so that the total diversity score according to richness is the same as
the number of points (full score). Note that no subset in the partition has two points
of the same color if it has full score. It is a special case of the original diverse convex
partition problem, and easier to show NP-hard due to the property just given.

The main part of the proof shows that a slightly more general problem is NP-hard:
the convex sets need not partition the plane, but must still be disjoint. These convex
sets can now be the convex hulls of the points they contain. At the end of the section
we show that our proof also applies to the stated diverse convex partition problem of
full score.
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6.6.1 Construction
Before we start with the proof, we study a special colored grid structure that is
essential in the reduction presented later. It provides a scaffold (or padding) to limit
the possibilities in the actual reduction.

w

h

4-group

2-group
1−2δ

Figure 6.9: The set G of 4wh colored points, a 4-group, and a 2-group.

Definitions. Consider the integer grid; we let the 4-fold colored grid point set be the
point set with all points (i± δ, j ± δ) with colors: green if i and j are even; yellow if i
is odd and j is even; blue if i is even and j is odd; red if i and j are odd. We choose a
rectangular portion [0 : w]× [0 : h] of the 4-fold colored grid point set and call it G;
see Figure 6.9. It has 4wh colored points. We let n = max(w, h) and δ = 1/n2.

The four equal-colored points near a grid point are called a 4-group. They form a
tiny square. The choice of δ ensures that any line segment that connects a point in a
4-group at (i, j) to a point in a 4-group at (i′, j′) does not touch any (tiny) 4-group
square if |i′ − i| and |j′ − j| are relative prime. In an n × n unit grid, it is known
that the shortest strictly positive distance from a line segment between grid points to
another grid point is Ω(1/n), and the 4-group points are just

√
2/n2 away from their

closest grid point.
A square-set is a set of four different-colored points of G that form a square of

side length 1 − 2δ. These squares are shown in gray in the figures. A 4-set is a set
of four different-colored points of Gwhose convex hull does not contain any other
points of G. We observe that G has a diverse convex partition into wh convex sets
with diversity score 4wh, the best possible, by choosing the wh square-sets. A 3-set is
a set of three different-colored points of Gwhose convex hull does not contain any
other points of G. A 2-set is a pair of points such that the connecting line segment
does not contain other points of G, a 1-set is a single point of G, and a 0-set is the
empty set.

Reduction. We are now ready to reduce from Maximum Independent Set (MIS) in
Orthogonal Line Segments, which is NP-hard, if we allow two horizontal or two
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Figure 6.10: Reduction from an instance ofMaximum Independent Set in Orthogonal
Line Segments to an instance of 2D Diverse Convex Partition.

vertical line segments to intersect in a joint endpoint. For completeness, we provide
the proof by reduction from Planar Max 2-Sat in Subsection 6.6.3 below. We can
assume that all endpoints of the line segments have different x- and y-coordinates,
with the exception of: (i) the two endpoints of one line segment, and (ii) pairs of
parallel line segments that share an endpoint.

Figure 6.10 illustrates the reduction. Assume an instance of MIS in Orthogonal
Line Segments is given. We can normalize or scale the input any way we like, since
this does not change the intersection graph. We choose a version with the following
properties:

• All segment endpoints are integers.
• All endpoints of different line segments have different x-coordinates
(y-coordinates), with the exception of a pair of vertical (horizontal) line seg-
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ments that share an endpoint. Different x-coordinates (y-coordinates) are at
least 2 apart.

• All line segments have odd length.

We can choose the x-coordinates of the endpoints easily from left to right. We
choose the next x-coordinate 2 larger than the previous one, unless it is the right
endpoint of a horizontal line segment. In that casewe choose it 2 or 3 larger, whichever
gives the line segment odd length. The y-coordinates are assigned analogously.

We now choose a 4-fold colored grid point set G large enough so that every
segment endpoint is in the middle of a 4-group. We color the segment endpoint the
same as the surrounding 4-group. The extra point is the fifth point, and together they
are a 5-group. The total number of fifth points is noted as f . Since segments have odd
length, the fifth points corresponding to the endpoints of one segment have different
colors. G has size O(n)×O(n).

We will now use many more colors to make sure that most of the 2, 3, and 4-sets
cannot occur in a maximum score, minimum disjoint convex partition. We call the
original four colors the primary colors and the extra colors for disqualifying shapes the
secondary colors. It is important to realize that the “4” in “4-set” refers to the primary
colors only. The same holds for 0, 1, 2, and 3-sets. We first define two concepts and
then place the points of secondary color. Let the extended square of a square-set be
the axis-aligned square of side length 1− δ that has the same center of gravity as the
square-set. For two points (x, y) and (x′, y′), we say they are horizontally (vertically)
near-aligned if |y − y′| ≤ 2δ (respectively |x− x′| ≤ 2δ). Two points are near-aligned if
they are vertically or horizontally near-aligned, otherwise we say they are unaligned.

On an n × n 4-fold colored grid point set, there are polynomially many 2-sets
between two points belonging to different square-sets. For each such 2-set {a, b}, let
Sa (Sb) be the square-set of a (b). Let Ia (Ib) be the intersection of the line segment ab
and the extended square of Sa (Sb). Then, let pa (pb) be a point in the intersection
Ia (Ib) that is not yet a colored point. We take a new color and place two points of
that color on pa and pb, as seen in Figure 6.11. We wish proceed the same for 2-sets
between a fifth point and an unaligned point and therefore need the following lemma:
Lemma 6.10. Let {a, b} be a 2-set where a and b are unaligned, and a is a fifth point. The
segment ab intersects two extended squares.

Proof. Weprove |ax−bx| > 1−δ or |ay−by| > 1−δ holds. Since a and b are unaligned,
this statement implies the correctness of the lemma.

Assume without loss of generality that b is below a and to the right of a. We
assume for the sake of contradiction that |ax−bx| ≤ 1−δ and |ay−by| ≤ 1−δ. Then b
is not a fifth point, since different x-coordinates (y-coordinates) of fifth points are at
least 2 apart. The point b is an element of the square-set S directly to the bottom-right
of a. Only the bottom right point of S is unaligned with a, implying b is that point.
Then, the segment ab intersects the top-left point of S, a contradiction.
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s1

s2
s3

Figure 6.11: The procedure for adding secondary colors using extended squares
(dashed). The figure shows three 2-sets: one between two near-aligned points of
different square-sets (s1), one between two unaligned points of different square-
sets (s2), one between a fifth point and an unaligned point in a square-sets (s3).

There are also polynomially many 2-sets with two unaligned fifth points and
polynomially many 2-sets with a fifth point and an unaligned point in a square-set.
Let {a, b} be such a 2-set. By Lemma 6.10, the line segment ab intersects at least two
extended squares. Let S and S′ be two of those extended squares and let I (I ′) be
the intersection of S (S′) and ab. Again, let p (p′) be a point in the intersection I (I ′)
that is not yet a colored point. We take a new color and place two points of that color
on p and p′.

Now, the convex hull of any 3-set or 4-set with points from different square-sets
contains two points of the same secondary color. Additionally, each 3-set and 4-set
that contains a fifth point, also contains a point that is unaligned with that fifth point
and thus its convex hull also contains two points of the same secondary color. Overall,
we have that each 3-set and 4-set whose convex hull does not contain two points of
the same color contains points from just a single square-set.

It remains to be proven that the MIS in Orthogonal Line Segments instance I has
a maximum independent set of size z if and only if the constructed DVP instance D
can be subdivided into wh+ f − z convex sets of full diversity score.

6.6.2 Equivalence
First, assume we are given a maximum independent set of I of size z. We construct
a set of wh + f − z convex sets covering D as follows: each square-set forms its
own convex set, together with all points of secondary color in the extended square
of that square-set; for each segment in the independent set, the two fifth points
corresponding to that segment form a convex set; all remaining fifth points are alone
in their convex set. That construction has full score and no two convex sets intersect,
since the segments were part of an independent set.
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Inversely, assume we are given a set Q of wh+ f − z convex sets of full diversity
score. Recall that due to the added secondary colors, we can state:

Lemma 6.11. Each set in Q is of one following types, classified using the points of primary
color:

• a 1, 2, 3, or 4-set with only point(s) from a single square-set;

• a 2-set with a fifth point and a near-aligned point of a square-set;

• a 2-set with two near-aligned fifth points;

• a 1-set with only one fifth point;

• a 0-set with no points of primary colors.

In the following arguments, we focus on points with primary colors. We start by
removing all points of secondary color from the sets in S. From Lemma 6.11 we can
deduce that if two unaligned points are in one set, they are in the same square-set.
We can thus state the following:

Lemma 6.12. Let R ∈ Q be a set and let S be a square-set. If R contains no points of S, the
convex hull of R does not intersect the square induced by S.

We call a set of Q a standard set if it is one of the following:

• a 4-set that is a square-set,

• a 2-set with two near-aligned fifth points,

• a 1-set with a single fifth point.

All other sets are called non-standard sets. We now transform Qwithout increasing
the number of sets in Q such that it only contains standard sets and such that it still
covers all points of primary color.

Let S be a square-set that is not a 4-set. Since different x and y-coordinates of fifth
points differ by at least 2, there is at least one point a in S that is not near-aligned with
any fifth point. By Lemma 6.11, a is in a 1, 2, or 3-set R with only point(s) from S.
We remove all other points in S from their respective sets in Q and add them to R.
This makes R a 4-set. Also, by Lemma 6.12, this does not create any intersections. We
repeat this step for all square sets. Last, we remove all 0-sets.

After these transformations, all square-set are 4-sets, and there are no 0-sets in Q.
This implies that all sets in Q are standart. The set Q still contains at most wh+ f − z
pairwise non-intersecting convex sets covering all points of primary color. We obtain
an independent set of size z for the problem instance I by taking the segments
corresponding to the 2-sets in S.
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Figure 6.12: Converting a solution to partition by disjoint convex sets to a solution that
partitions the plane into convex regions. We embed square-sets with their extended
squares, 1-sets of fifth points, and 2-sets of near-aligned fifth points.

Theorem 6.13. Computing a minimum-size convex partition of full richness diversity score
is NP-hard.

Proof. By the given reduction fromMIS in Orthogonal Line Segments. The reduction
is polynomial because the grid G has O(n2) points with primary colors, there are
O(n) fifth points, and there are no more than O(n4) points with secondary colors.
An instance of MIS in Orthogonal Line Segments can be solved using the reduction,
as proven above.

We show that a solution to partition by disjoint convex sets can be transformed to
a convex partition of the plane with the same number of regions and the same points
in the regions as in the sets. In general this is not true [56], but for the subsets in our
partition it is, and we need to show it only for one solution, since convex partition
of the plane is more restricted. Figure 6.12 shows the easy conversion for the case
where we have square-sets together with the corresponding extended squares, 1-sets
with fifth points, and 2-sets with two fifth points only.

6.6.3 NP-Hardness of Maximum Independent Set in Orthogonal
Segments

It was claimed in [3] that the problem of computing a maximum independent set
in the intersection graph of a set of orthogonal line segments is NP-hard. Tracing
the references given in [3], this is not so obvious, although there exists a standard
reduction. Since we need a restricted form of orthogonal line segments, we give the
proof here that has this form, for completeness. The reduction is from Planar Max
2-Sat, which is shown NP-hard in [67].

We use variable gadgets that consist of bundles of n horizontal line segments
intersecting bundles of n vertical line segments, and this in a cycle structure (see
Figure 6.13). The variable is set to True if we take all vertical line segments and to
False of we take all horizontal ones. Choosing a mix will always cost us at least n line
segments in the independent set.
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variable x variable y

(¬x ∨ y)(x ∨ z)
to z

Figure 6.13: Reduction of PlanarMax 2-Sat to a specific form of maximum independ-
ent set in orthogonal line segments. Clause segments are thick, channel segments are
thin and have endpoints shown, and variable segments are thin without endpoint
markers.

When a literal x is used positively in a 2-Sat clause, it uses a vertical line segment
that intersects a horizontal bundle, and when it is used in negated form, it uses
a horizontal line segment that intersects a vertical bundle. In both cases, an even
number of line segments is used to connect the variablewith the clause, which is called
a channel gadget. We may use two co-linear line segments that have a joint endpoint,
to get the odd-even count right and arrive at a clause in the correct orientation.

A clause consists of two horizontal line segments that share one endpoint, and
hence they are co-linear. The two channels of literals arrive vertically and each
intersect a different line segment of the clause.

When a positive literal of a variable in True setting arrives, it need not take the
line segment that intersects the clause gadget, and the same is true for a negative
literal of a variable in False setting. This is due to the fact that channels have even
length, and we can take half without intersecting the clause segment. Otherwise, we
either cannot take half of the line segments in a channel, or we must take the line
segment that intersects the clause gadget.

We can never take both line segments in a clause because they intersect, but we
can take exactly one if at least one of the literals is satisfied. We can always take half
the number of line segments in variables and channels in the independent set, and
never more. We can take one more line segment for every clause that is satisfied.
Hence, the number of satisfied clauses in a planar 2-Sat formula corresponds exactly
to the size of the maximum independent set, minus half the line segments in variables
and channels.
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6.7 Conclusion
We have cast the non-spatial concept of diversity into a geometric setting and in-
troduced the computational problem of computing geometric partitions with high
diversity. We used two versions of diversity: richness and the Shannon index. While
richness leads to computational problems common in computational geometry, the
Shannon index needs new proof ingredients. The main open problems are finding a
(1− ε)-approximation scheme for 1D DVP for the Shannon index and an NP-hardness
proof for 2D DCP for richness using constantly many colors. NP-hardness of 2D DCP
for the Shannon index is also unresolved.

As an alternative to high within-cell diversity, a partition could aim for a high
diversity between different cells. Then statistics like the Jaccard index could be used
to measure differences between cells. We leave this extension to future work.
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Conclusion

7.1 Summary
In this thesis, we explore geometric measures and how to compute them. First, we
use similarity measures to determine the quality of the output of a transformation.
Second, we explore new algorithms and data structures that allow us to calculate
these distancemeasures. Third, we present a new distancemeasure and investigate its
computation. Last, we deal with diversity measures by researching how to subdivide
a set into diverse subsets.

To be more precise, in Chapters 2 and 3, we transform a vector graphic into a
raster image and measure the quality of the output using the Hausdorff distance. In
Chapter 2, the vector graphic we want to transform is a set of regions. We investigate
restrictions on the regions, like convexity or fatness, and prove worst case lower
bounds of the Hausdorff distance between the regions and their corresponding grid
polygons under these conditions. We finish by describing algorithms that match
these bounds.

In Chapter 3, the regions we want to transform into a raster image are points. Even
for this simple shape we were able to prove that determining pixels with the smallest
possible Hausdorff distance to the input points is NP-hard. Nonetheless, we are able
to find two polynomial-time algorithms that determine a set of pixels corresponding
to the input points: first, we show an algorithmwhere theHausdorff distance between
the points and the pixels is at most a small constant factor larger than the optimal
solution. Second, we show an algorithm where the Hausdorff distance between the
points and the pixels is at most a small additive constant larger than the optimal
solution.

In Chapter 4, we consider the computation of the Hausdorff distance. We present
a data structure on a set of segments that allows queries of the following type: for
a given segment, we can quickly determine the Hausdorff distance between the
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query segment and the set of segments the data structure is built on. We provided
a mechanism to balance between space usage and preprocessing time for that data
structure.

In Chapter 5, we explore a new similarity measure, the k-Fréchet distance. We
define the two variants: the cover distance and the cut distance. Both bridge between
the Hausdorff and the Fréchet distance and measure the similarity between two
curves. Even though both the Fréchet distance and the Hausdorff distance are easy to
compute, the k-Fréchet distances are NP-hard to compute. Still, we present efficient
algorithms that compute the cover or cut distance with specific restrictions.

In Chapter 6, we focus on diversity measures instead of similarity measures like in
the previous chapters. For sets of colored points we use the species richness measure
or the Shannon index to determine its diversity. We investigate the problem of how
to subdivide a set of colored points into subsets such that the subsets are diverse.
We present results for multiple variants: we subdivide either into convex subsets or
using a Voronoi diagram, and investigate the problem both in 1D and in 2D.

7.2 Open Problems
We assume in Chapter 2 that our regions all had the same shape and size characterist-
ics. In some cases it is interesting to see what happens in combinations. For example,
what Hausdorff distance can we achieve, if only one set is of arbitrary shape and all
others are point regions? Another avenue is to improve the output our construction
algorithms produce. We concentrated on worst-case optimal bounds and as a result
our constructive proofs of the upper bounds will often give visually unfortunate
output. Additionally, we do not consider improving the Hausdorff distance between
the input regions and the constructed grid polygons, even when doing do is possible.
So, multiple avenues for new research open up: similar to Chapter 3, investigating
approximation algorithms is an interesting open problem. On the other hand, after
constructing a grid polygon using one of the algorithms in Chapter 2, one could
perform a series of small steps such that each step decreases the Hausdorff distance or
the area of symmetric difference between a convex region and the corresponding grid
polygon, similar to the heuristic improvements proposed by Bouts et al. [26]. This
would increase the similarity between the regions and the grid polygons. It would
be interesting to investigate how much such heuristics could improve the output
and how far from an optimal solution the final result is, depending on a variety of
parameters and measures.

The approximation algorithms presented in Chapter 3 for mapping points to
the grid can be extended in multiple ways. Similar to Chapter 2, one can aim to
produce approximation algorithms for more complex regions: the concepts presented
in Chapter 3 may lead to an approximation algorithm that maps convex regions to
the grid. The results can also be extended in a different way: the NP-hardness proof
in Section 3.2, implies that it is NP-hard to approximate the optimal solution by factor
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√
5/2 ≈ 1.58, or to approximate an optimal solution within an additive constant of√
5−

√
2 ≈ 0.82. In Section 3.3, we prove that, in polynomial time, we can achieve a

Hausdorff distance between the points and the pixels of at most 8δ∗, where δ∗ is the
Hausdorff distance of an optimal solution. Alternatively, we can achieve a Hausdorff
distance between the points and the pixels of at most 2

√
2(⌈δ∗⌉+ 1) ≈ 2.83(⌈δ∗⌉+ 1)

or at most δ∗ +
√
2 ≈ δ∗ + 1.41. It would be interesting to close those gaps.

In Chapter 4, we show that we can answer queries on the Hausdorff distance
between a set of segments and a query segment. The next step here is to work this
data structure into a way to determine the Hausdorff distance between two sets of
segments and update this distance while the sets change. As a first step, one goal is
to make the query data structure dynamic.

In Chapter 5, we define a new distance that bridges between the Hausdorff and
weak Fréchet distance. In a similar vein, one can explore a measure bridging between
the weak Fréchet distance and the Fréchet distance, that is, limit howmuch backtrack-
ing is allowed. Gheibi et al. [63] already considered the variant where the amount of
backtracking is limited by the union of the portions of backward movements. Altern-
atively, one can limit the number of times a single point can be visited, or limit the
number of times a traversal of the curves can switch directions. Coming back to the
k-Fréchet distance, the cut variant has proven to be harder than the cover distance.
The NP-hardness proof for the cut distance uses a value for k that depends on the
number of line segments that form the curves [38]. The only known algorithm for the
cut distance, presented in Section 5.5, works only for k = 2. It would be interesting to
know the bounds on the computability of this problem. Is there a polynomial time
algorithm to decide if two curves are within cut distance ε for every fixed value k? Is
deciding that question even a problem within NP, or does this problem lie within a
different complexity class?

Last, in Chapter 6, we introduced the concept of partitioning space into diverse
convex sets. We considered many variations, and presented algorithms and NP-
hardness proofs. The main open problems are finding a (1 − ε)-approximation
scheme for 1D DVP for the Shannon index and an NP-hardness proof for 2D DCP
for richness using constantly many colors. NP-hardness of 2D DCP for the Shannon
index is also unresolved. As an alternative to high within-cell diversity, a partition
could aim for a high diversity between different cells. Then statistics like the Jaccard
index could be used to measure differences between cells. It would also be highly
interesting to see the concept of diverse geometric partition applied to ecological
studies and to see if the partitions match the ones present in nature. Furthermore,
we are interested in the cells produced by diverse partitions of random sets. For both
cases, it would be beneficial to have an approximation or FPT algorithm for diverse
partition in 2D.

On that note, a general idea is to apply the concepts developed in the thesis to the
field. For example, we are interested in which circumstances the k-Fréchet distance
will find application, even though its computation time is worse than the Hausdorff
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distance or (weak) Fréchet distance.
Another concept to approach is the interplay between multiple measures. If two

sets are dissimilar, does that give an indication on how diverse the union of those
sets is? We investigated subdividing a set into subsets that themselves are diverse.
Now, does subdividing a set into subsets that are similar between each other yield
comparable results to subdividing that set into diverse subsets? And under which
conditions is that not the case?

Finally, measures can be a boon to procedural generation in terms of measuring
the quality of the output. If procedural generation is used to generate maps for
games for example, measures can be used to determine if the map is balanced for all
players. A measure for how balanced a map is could simply be a similarity measure.
But, if the game offers asymmetric gameplay, how do does one adapt that measure?
Diversity measures on the other hand will help classify how varied the output of the
procedural generation can be. New measures are needed, specifically designed for
these applications.
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Nederlandse Samenvatting

In dit proefschrift onderzoeken we geometrische maten en hoe we deze kunnen
berekenen. Ten eerste gebruiken we gelijkheidsmaten om de kwaliteit van de uitvoer
van een transformatie te bepalen. Ten tweede ontwikkelen we nieuwe algoritmes
en datastructuren waarmee we deze afstandsmaten kunnen berekenen. Ten derde
presenteren we een nieuwe gelijkheidsmaten en onderzoekenwe de berekening ervan.
Ten slotte behandelen we diversiteitsmaten door te onderzoeken hoe een verzameling
in diverse deelverzamelingen onderverdeeld kan worden.

Om preciezer te zijn, transformeren we in Hoofdstukken 2 en 3 een vectorafbeeld-
ing naar een rasterafbeelding en meten we de kwaliteit van de uitvoer met behulp
van de Hausdorff-afstand. In Hoofdstuk 2 is de vectorafbeelding die we willen trans-
formeren een verzameling gebieden. We onderzoeken beperkingen op de gebieden,
zoals convexiteit of dikheid, en bewijzen onder deze voorwaarden ondergrenzen voor
de Hausdorff-afstand tussen de gebieden en hun overeenkomstige rasterafbeelding.
We eindigen met het beschrijven van algoritmes die aan deze grenzen voldoen.

In Hoofdstuk 3 zijn de gebieden die we naar een rasterafbeelding willen trans-
formeren punten. Zelfs voor deze eenvoudige vorm kunnen we bewijzen dat het
bepalen van pixels met de kleinst mogelijke Hausdorff-afstand tot de invoerpunten
NP-moeilijk is. Desondanks zijn we in staat om twee algoritmes met polynomiale
tijdscomplexiteit te vinden die een verzameling pixels bepalen die overeenkomen
met de invoerpunten: ten eerste presenteren we een algoritme waarbij de Hausdorff-
afstand tussen de punten en de pixels hoogstens een kleine constante factor groter
is dan de optimale oplossing. Ten tweede presenteren we een algoritme waarbij
de Hausdorff-afstand tussen de punten en de pixels hoogstens een kleine additieve
constante groter is dan de optimale oplossing.

In Hoofdstuk 4 beschouwen we de berekening van de Hausdorff-afstand. We
presenteren een data structuur die een verzameling segmenten op slaat waarmee we
snel kunnen bepalen wat de Hausdorff-afstand is tussen een query segment en de
opgeslagen segmenten. We ontwikkelen een mechanisme om een balans te vinden
tussen ruimtegebruik en voorbewerkingstijd voor die datastructuur.
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In Hoofdstuk 5 introduceren we een nieuwe gelijkheidsmaten, de k-Fréchet-
afstand. We definiëren twee varianten: de dekkingsafstand en de snijafstand. Beide
overbruggen de kloof tussen de Hausdorff-afstand en de Fréchet-afstand en meten de
gelijkenis tussen twee krommen. Hoewel zowel de Fréchet-afstand als de Hausdorff-
afstand eenvoudig te berekenen zijn, zijn de k-Fréchet-afstanden NP-moeilijk om te
berekenen. Toch presenteren we efficiënte algoritmes die de dekkings- of snijafstand
berekenen onder specifieke voorwaarden.

In Hoofdstuk 6 richten we ons op diversiteitsmaten in plaats van gelijkheids-
maten zoals in de voorgaande hoofdstukken. Om de diversiteit van een verzameling
gekleurde punten te bepalen gebruiken we de Shannon-index of de biodiversiteit ge-
meten in het aantal verschillende kleuren. Elk punt hierin representeerd een individu,
waarvan de kleur indicatief is voor de soort. We onderzoeken het probleem van hoe
een verzameling gekleurde punten onderverdeeld kan worden in deelverzamelingen
zodat de deelverzamelingen divers zijn. We presenteren resultaten voor meerdere
varianten: we verdelen de punten in convexe deelverzamelingen, of we gebruiken een
Voronoi-diagram, en we onderzoeken het probleem zowel in één als twee dimensie.

Met deze resultaten hebben we bijgedragen aan het verder begrip van de algorit-
mische complexiteit van verschillende geometrische maten.
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