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Introduction 

Breast cancer and breast cancer imaging 

Breast cancer is the most frequent malignancy in female population (1) and 

primary cause of death among women worldwide (2). Proper management of 

breast diseases is therefore very important.   

 

The most commonly used imaging modality for breast without doubt is 

mammography, while its advantage of high sensitivity is attenuated in women 

with a large relative fraction of fibroglandular tissue (FGT), i.e., dense breasts 

(3). Ultrasound is typically used to characterize the screen-detected breast lesions, 

or to identify and biopsy axillary lymph nodes in women who are suspected of 

having breast cancer (4). It is auxiliary to mammography, whereas it is highly 

dependent on the operator’s experience and tuning of ultrasound parameters (5).  

 

In contrast, MRI has higher sensitivity than mammography and ultrasound for 

detection of invasive breast cancer (6,7). Dynamic contrast enhanced MRI 

(DCE-MRI) has been regarded as the most powerful tool for breast cancer 

detection, but DCE-MRI is more expensive and more time-consuming, it is 

therefore only recommended for women who meet the indications.  

 

Indications of breast MRI 

 

TABLE 1. Indications for breast MRI  

1 Screening of women at high risk of breast cancer 

2 Preoperative staging of newly diagnosed breast cancer (ipsilateral and 

contralateral) 

3 Evaluation of the effect of neoadjuvant chemotherapy 

4 Evaluation of women with breast implants 

5 Occult primary breast carcinoma (search for breast cancer in patients with 

metastases and negative mammography and ultrasound) 

6 Suspected local recurrence* 

7 Problem solving (equivocal findings at mammography/ultrasound) * 

*When needle biopsy cannot be performed 

Other new indications were recently proposed, such as nipple discharge and 

evaluation of lesions with uncertain malignant potential (so-called high-risk or B3 

lesions) detected at mammography or ultrasound, and needle-biopsied under their 

guidance. 
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According to the recommendations issued by the European Society of Breast 

Imaging (EUSOBI), the main indications of breast MRI are listed in Table 1(8). 

The indications may vary in different countries due to differences in local 

guideline, insurance policy, health care system, etc. 

 

Toward triaging of women for Breast MRI screening  

Many models have been developed to evaluate the risk of developing breast 

cancer and to further determine whether the woman is eligible for receiving 

screening breast MRI. These models include IBIS also called Tyrer-Cuzick, 

BRCAPRO (based on internet, free for research and counseling use), and the 

Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation 

Algorithm (BOADICEA), etc. (9–11).  Evidence has shown that the Tyrer-

Cuzick model is the most comprehensive one for predicting breast cancer risk 

(12). However, background parenchymal enhancement (BPE), a known risk 

factors of breast cancer, has not been taken into account and it is not well 

validated in any of these commonly used models.  Therefore, incorporating novel 

and verified risk factors into the future models is indispensable, making efforts 

toward triaging of patients to breast MRI screening and realizing tailored 

screening plans such that a subgroup of women can really benefit from breast 

MRI screening. 

 

Towards triaging for diagnostic workflow of breast cancer  

After a breast cancer is detected, preoperative MRI is sometimes used to assess 

the tumor extent. Due to its superior sensitivity, MRI usually detects additional 

lesions undetected by mammography and ultrasound, around half of which are 

malignant (13).  In this case, MRI-guided biopsy may be indicated to obtain 

pathological proof. Different from diagnostic MRI, MRI-guided biopsy requires 

dedicated equipment and trained personnel, and is relatively time and resource 

intensive. In addition, some cases are not eligible for MRI-guided biopsy due to 

difficulty in targeting lesions near the thorax. Management of these additional 

lesions would be greatly facilitated if an approach exists to identify malignancy 

with high specificity without MRI-guided biopsy. 

 

Towards triaging for breast cancer treatment  

When an additional breast cancer is detected simultaneously with an index breast 

cancer, but physically separated from the index breast cancer, we call them 

synchronous breast cancers (14) (Figure 1). It has been observed that 

discrepancies in prognostic markers between the index cancers and their 

synchronous counterparts may result in worse long-term survival and have 
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impact on systemic treatment of patients (15–18). Such women are usually 

evaluated by MRI, it is of great interest to know whether such discrepancy also 

exists in appearance of breast cancer on MRI (i.e., phenotype), and is also 

associated with prognosis. If so, the imaging phenotypes of breast cancer and the 

synchronous breast cancers on MRI can offer opportunity to triaging of women 

to breast cancer treatment. 

 

FIGURE 1. Images show the maximum intensity projections of the index breast cancer 

(thick arrow) and the corresponding synchronous cancer (thin arrow) in the ipsilateral 

and contralateral breast. 

 

 
 

 

FIGURE 2: Diagram representing 

blood vessels in A: normal tissue, B: 

tumor tissue, and C: tumor tissue after 

treatment with anti-angiogenic drugs. 

Tumor vessels have active angiogenesis 

and the blood flow is chaotic and slow. 

After anti-angiogenic therapy, tumor 

blood vessels recover their normal 

functions. (Source: DOI: 

10.18632/oncotarget.16482) 

 

Mechanism of Breast MRI 

As the most accurate imaging modality for breast cancer in all risk groups (19), 

the underlying mechanism of DCE-MRI to detect invasive breast cancer with 

high sensitivity is based on the fact that breast cancer cannot grow beyond 2 mm 

in size without creating new blood vessels to provide nutrients for the tumor (20). 

These newly created vessels resulting from angiogenesis are leaky. While the 

gadolinium-based contrast agents used in DCE-MRI are relatively large 

molecules, they can easily extravasate from such new leaky vessels, and thus 

rapidly accumulate in the breast cancer stroma (21). Therefore, DCE-MRI is 
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sensitive to changes in blood volume and vascular permeability, and is associated 

with angiogenesis (22) (Figure 2). Breast cancers are heterogenous in nature, the 

imaging phenotype of breast cancer on DCE-MRI reflecting the heterogeneous 

nature of angiogenesis can therefore serve as useful imaging biomarker. 

 

Machine learning and computer-aided triaging  

In daily clinical practice, the main undertaking of radiologists is medical image 

interpretation. The evaluation of breast lesions is largely qualitative and 

subjective in assessment of lesion shape, enhancement type, etc, resulting in 

inter- and intra-observer variations (23–25), this is a notable limitation. To 

overcome this shortcoming, a more reproducible evaluation method conducive 

for objective decision-making is necessary. Artificial intelligence (AI) provides 

the radiologists with opportunity to convert medical images to quantitative data 

(26,27). AI-aided systems such as Computer-Aided Detection (CADe) and 

Computer-Aided Diagnosis (CADx) have been under development for decades, 

and various machine learning models based on computer-extracted features have 

been developed for risk assessment, detection, diagnosis, prognosis, treatment 

response monitoring, etc. Although there is no one-size-fit-all when it comes to 

complicated clinical scenarios, machine learning provides an opportunity to 

improve the clinical decision-making in medical image interpretation (Figure 3). 

 

 

 

 

 

 

 

FIGURE 3. Schematic diagram of computer-aided triaging pipeline for breast cancers 

on DCE-MRI. 

 

 

DCE MR images 

Segmentation and feature extraction 

Morphological and kinetic features 

Computer-aided triaging in clinical scenario 
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Thesis outline 

The aim of this thesis is to investigate whether the imaging phenotype of healthy 

breast tissue and breast lesions on DCE-MRI have potential to improve the 

decision making in screening, diagnostic workflow and treatment.  

 

In Chapter 2, we automatically assess the category of a known breast cancer 

risk factor - background parenchymal enhancement (BPE) in breast DCE-MRI 

without compromising the association between BPE and breast cancer 

occurrence. 

 

In Chapter 3, we automatically identify quantitative properties of the breast 

parenchyma on baseline DCE-MRI scans and assess their association with breast 

cancer occurrence, so as to triage a subgroup of women with extremely dense 

breasts to ultimately receive a more tailored screening plan. 

 

In Chapter 4, we identify malignant disease extension with near-perfect 

specificity in a consecutively series of preoperative patients originally indicated 

for a breast biopsy, as a means to realize computer-assisted triaging of women 

for MRI–guided breast biopsy of additional lesions in preoperative setting. 

 

In Chapter 5, we investigate whether the MRI phenotype of breast cancer is 

different from that of additional breast cancer (i.e., synchronous cancer), and 

whether such a difference, if it exists, is associated with prognosis, so as to triage 

women to receive more tailored treatment. 

 

In Chapter 6, we discuss the research findings, and prospects of our future 

research directions. 
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Abstract 

Background and Objective: Background parenchymal enhancement (BPE) on 

dynamic contrast-enhanced MRI (DCE-MRI) as rated by radiologists is subject 

to inter- and intrareader variability. We aim to automate BPE category from 

DCE-MRI.   

 

Materials and Methods: This study represents a secondary analysis of the 

Dense Tissue and Early Breast Neoplasm Screening trial. 4553 women with 

extremely dense breasts who received supplemental breast MRI screening in 

eight hospitals were included. Minimal, mild, moderate and marked BPE rated 

by radiologists were used as reference. Fifteen quantitative MRI features of the 

fibroglandular tissue were extracted to predict BPE using Random Forest, Naïve 

Bayes, and KNN classifiers. Majority voting was used to combine the predictions. 

Internal-external validation was used for training and validation. The inverse-

variance weighted mean accuracy was used to express mean performance across 

the eight hospitals. Cox regression was used to verify non inferiority of the 

association between automated rating and breast cancer occurrence compared to 

the association for manual rating.  

 

Results: The accuracy of majority voting ranged between 0.56 and 0.84 across 

the eight hospitals. The weighted mean prediction accuracy for the four BPE 

categories was 0.76. The hazard ratio (HR) of BPE for breast cancer occurrence 

was comparable between automated rating and manual rating (HR=2.12 versus 

HR=1.97, P=0.65 for mild/moderate/marked BPE relative to minimal BPE). 

 

Conclusion: It is feasible to rate BPE automatically in DCE-MRI of women with 

extremely dense breasts without compromising the underlying association 

between BPE and breast cancer occurrence. The accuracy for minimal BPE is 

superior to that for other BPE categories.  



17 
 

Introduction  

Women aged between 50 and 75 years in the Netherlands are screened for breast 

cancer every two years using mammography (1). Mammography is, however, 

less sensitive to detect breast cancer in women with extremely dense breasts (i.e., 

women in category d of the Breast Imaging Reporting and Data System 

(BIRADS) lexicon) (2). Women with extremely dense breast have three to six 

times higher risk of developing breast cancer compared to women with almost 

entirely fatty breasts (i.e., women in category a of the BIRADS lexicon) (3,4). A 

recent randomized controlled trial-- Dense Tissue and Early Breast Neoplasm 

Screening (DENSE) investigated whether MRI has complementary value for the 

detection of breast cancer in a mammography-screening population of women 

aged 50–75 years with extremely dense breasts. Based on the results of this 

national multi-institutional study, it would be helpful to identify other risk factors 

in addition to breast density that could be used to personalize breast cancer 

screening and reduce the workload of radiologists and costs for the community. 

 

Evaluation of background parenchymal enhancement (BPE) has recently gained 

more attention due to its association with breast-cancer risk. The amount of BPE 

in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was 

shown to be an independent risk factor for breast cancer development (5–7). In 

a group of women at high risk of breast cancer but without a history of the disease, 

researchers found that those with mild, moderate or marked BPE had a nine times 

higher risk of developing breast cancer compared with those with minimal BPE 

(8). Moreover, BPE was found to be associated with treatment response (9–12) 

and prognosis (13–15). These findings suggest that BPE can potentially serve as 

an important biomarker of risk and prognosis.  However, radiologists currently 

lack objective tools for assessing the category of BPE. 

 

In clinical practice, BPE is evaluated qualitatively by radiologists using the 

BIRADS categories of minimal, mild, moderate, or marked. This assessment is, 

however, subject to intra- and inter- reader variability. Kappa values ranged from 

moderate to almost perfect for intra-reader agreement, and from fair to almost 

perfect for inter-reader agreement (6,16,17). 

 

The aim of this study is to investigate whether automated rating of BPE category 

on DCE- MRI is feasible in women with extremely dense breasts using machine 

learning without compromising underlying associations between BPE and breast 

cancer occurrence. 
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Materials and Methods  

Study population 

This is a secondary analysis of data from the DENSE trial(1,18,19). The DENSE 

trial has been approved by the Dutch Minister of Health, Welfare and Sport 

(2011/19 WBO, The Hague, the Netherlands). The study including primary and 

secondary objectives was waived from ethical review by the local institutional 

review board based on the Dutch law on population studies. The DENSE trial 

was designed to compare the effectiveness of breast cancer screening with 

mammography alone versus mammography and MRI in women aged 50-75 

years with extremely dense breasts (i.e., breast density category d at 

mammography) (20). The participants of this study were recruited from eight 

Dutch hospitals without abnormality on mammography at the time of inclusion. 

The MRI screenings were performed in three consecutive rounds starting in 2011 

and concluding with the third-round screening in 2021. Written informed consent 

was obtained from all women who underwent MRI. In the current study, the first-

round screening images only were analyzed. Women were excluded if they had 

bilateral cancer or had unilateral cancer and had previously undergone 

contralateral mastectomy.  

 

 

 

TABLE 1. Imaging Parameters of the DCE-MRI Used in the DENSE Trial 

Hospital 

ID 

No. of 

women 

MRI Device Reconstructed 

Voxel size(mm3) 

Dimensions 

(Voxels) 

FS 

1 1579 Philips Achieva/ 

Ingenia 

0.89*0.89*0.9 384*384*200 Yes 

2 386 Siemens 

Magnetom Trio/ 

Skyra/ Prisma 

0.80*0.80*1.0 448*448*176 No 

3 237 Philips Achieva 0.89*0.89*0.9 384*384*200 Yes 

4 490 Philips Ingenia 0.89*0.89*0.9 384*384*200 Yes 

5 304 Philips Achieva/ 

Ingenia  

0.89*0.89*0.9 384*384*200 Yes 

6 517 Siemens Verio 0.85*0.85*1.0 448*448*176 No 

7 402 Philips Ingenia 0.89*0.89*0.9 384*384*200 Yes 

8 638 Siemens Skyra 0.80*0.80*1.0 448*448*160 No 

DCE-MRI= Dynamic contrast-enhanced magnetic resonance imaging 

DENSE=Dense Tissue and Early Breast Neoplasm Screening. 

FS= fat suppression 
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MRI acquisition 

The study participants underwent MRI screening using either a Philips 3.0T 

scanner (Achieva or Ingenia) or a Siemens 3.0T scanner (Trio, Verio, or Skyra). 

The MRI screening was conducted in the prone position and included a dynamic 

series with a precontrast image and 4 or 5 postcontrast images after using a 

gadolinium-based contrast medium (gadobutrol, Gadovist; Bayer Healthcare, 

Germany). Contrast agent was injected at a rate of 1 mL/s to a total dose of 0.1 

mmol per kilogram of body weight. Fat suppression was optional during DCE-

MRI acquisition. The imaging parameters have been described in detail 

elsewhere (21) and are summarized in Table 1. 

 

Image analysis 

The image analysis included deformable image registration (22), breast 

segmentation (23), FGT segmentation, and feature extraction. The FGT was 

automatically segmented from the precontrast images using an nnU-Net (24) 

convolutional neural network in an iterative learning approach (7). The image 

analysis was conducted using Python (version 2.7; Python Software Foundation, 

Beaverton, OR) and PyTorch (version 1.5). 

 

Feature extraction 

Fifteen quantitative features describing the spatiotemporal characteristics of 

FGT were extracted, including volumetric density, volumetric morphology (i.e., 

the three-dimensional shape of the FGT), and enhancement characteristics. 

These features have been described in great detail in a previous study (7) and are 

summarized in Table 2.  

 

Manual rating of BPE category 

In the DENSE trial, BPE category was evaluated by experienced breast 

radiologists with experience ranging between 5 and 23 years among 8 hospitals 

using the BIRADS MRI lexicon (25). The radiologists rated the BPE category in 

four categories: minimal, mild, moderate, and marked BPE.  When BPE 

assessment between breasts of the same participant were inconsistent, the breast 

with the greater amount of BPE was used for the overall assessment. The 

experience of these radiologists in reading breast MRI ranged between 5 and 23 

years at the start of the trial. 
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TABLE 2. Description of the Parenchyma Features 

 Circularity Ratio between the intersection of the FGT with a sphere of 

equivalent volume as the FGT and the volume of the FGT 

itself 

Irregularity Ratio between the surface of a sphere with the same volume 

as the FGT and the surface of the FGT 

Density Ratio between the volume of FGT and the volume of the 

whole breast  

 Top 10% 

/50%/90% 

intensity of early 

contrast uptake 

Top 10%/ 50%/ 90% early enhancing intensity of the 

contralateral healthy breast (women with cancer) or mean 

value of top 10%/ 50%/ 90% of both breasts (women without 

cancer) 

Top 10%/ 50%/ 

90% volume of 

early enhancing 

voxels 

Volume of the top 10%/ 50%/ 90% early enhancing voxels of 

the contralateral healthy breast (women with cancer) or mean 

value of top 10%/ 50%/ 90%of both breasts (women without 

cancer) 

Top 10% /50%/ 

90% intensity of 

late contrast 

uptake 

Top 10% /50%/90% late enhancing intensity of the 

contralateral healthy breast (women with cancer) or mean 

value of top 10%/ 50%/ 90% of both breasts (women without 

cancer) 

Top 10% /50%/ 

90% volume of 

late enhancing 

voxels 

Volume of the top 10% /50%/ 90% late enhancing voxels of 

the contralateral healthy breast (women with cancer) or mean 

value of top 10% /50%/ 90% of both breasts (women without 

cancer) 

FGT= fibroglandular tissue 

 

Statistical analysis 

Multiple imputation was used to impute missing values. Ten imputation sets 

were merged based on the mean imputed values (26–28). Outliers were defined 

based on Tukey’s method, i.e., 1.5 interquartile range below the 25th percentile 

or 1.5 interquartile range above the 75th percentile. Outliers were winsorized to 

the nearest whisker after which the feature values were normalized between 0 

and 1.  

 

Internal-external validation was used for training and validation. In short, seven 

of eight hospitals were used to train the machine-learning method using 5-fold 

cross validation, and the remaining hospital was then used to perform external 

validation. This process was repeated eight times, with each hospital serving as 

the external validation hospital once. The results were merged. In each internal 

validation round, bootstrapping was performed with 100 bootstrap cycles to 

assess the uncertainty. In each bootstrap cycle, three classifiers (i.e., Random 

Forest, Naïve Bayes, and KNN) were constructed separately to predict BPE 

category. Majority voting (29–31) was used to combine the prediction outcome 
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of these three classifiers.  

 

The accuracy of the majority voting on the external validation set was used as 

metric to evaluate prediction performance in each bootstrap cycle. Inverse-

variance weighted mean accuracy was used to merge the external validation 

performance of these eight hospitals (32). 

 

Cox regression was used to verify if the association between automatically rated 

BPE and breast cancer occurrence – expressed as Hazard Ratio - was comparable 

to that observed between manual rating of BPE and breast cancer occurrence. 

 

The statistical analyses were performed in R (version 4.1.2; R Foundation for 

Statistical Computing, Vienna, Austria), the classifier construction process was 

performed using the Caret package (version 6.0-92). 

 

Results 

Study population 

In total, the data from 4783 women in the first round of the DENSE trial were 

available from the eight hospitals. Women with incomplete digital MRI data or 

who met the exclusion criteria were excluded (Figure 1). The mean age of the 

remaining 4553 study participants with extremely dense breasts was 56 years. 

 

FIGURE 1: Flowchart of included women. BPE=Background parenchymal 

enhancement (BPE was assessed by radiologists) 

 

Feature extraction 

For 120 of the 4553 women, BPE category (assessed by radiologists) was not 
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available in the current study. For these 120 women, the scores were imputed. 

BPE categories minimal (75%) and mild (15%) were scored most often (Table 

3).  In hospital 6, women less often received BPE category ‘minimal’ (55%) 

compared to women from the other seven hospitals (67% to 80%). A higher 

fraction of women in hospital 6 had a BPE category of 'mild' (30%) compared to 

the fraction in other seven hospitals (10% to 17%) (Figure 2). 

  
FIGURE 2. Percentage distribution of BPE categories in the eight hospitals 

participating in the DENSE trial 

 

TABLE 3. Distribution of clinical characteristics of the 4553 women from 

the DENSE trial  

Age(mean ± SD)，years 55.7 ± 6 

BPE category 

Minimal 3436(75%) 

Mild 663(15%) 

Moderate 273(6%) 

Marked 181(4%) 

Numbers represent frequency unless stated otherwise; SD = standard 

deviation; BPE= background parenchymal enhancement 

 

Prediction of BPE category 

The accuracy of the random forest, Naïve bayes, and k-NN classifiers to predict 

the BPE score in the eight hospitals ranged between 0.30 and 0.84 (Table 4). The 

accuracy of the majority voting ranged between 0.56 and 0.84 (Table 4). No 

obvious difference in accuracy was observed between centers, despite the use of 

scanners from different manufactures. The cross-validated prediction accuracy 
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of BPE based on majority voting was, however, somewhat lower in hospital 6 

(0.56) compared to that in the other hospitals (0.68 to 0.84). The sensitivity of 

the majority voting method was highest for predicting the presence of 'minimal' 

BPE  (0.95) compared to other BPE categories (0.13 to 0.36) (Table 5). This 

suggests that machine learning was most effective at accurately identifying 

minimal BPE among study participants. Conversely, the specificity of the 

majority voting was lowest for 'minimal' BPE (0.46) compared to the other BPE 

categories (0.95 to 0.97) (Table 5). The overall weighted mean accuracy 

established from the eight hospitals was 0.76.  

 

T
A

B
L

E
 4

. 
E

x
te

rn
al

 v
al

id
at

io
n
 a

cc
u
ra

cy
 o

f 
1
0
0
 t

im
es

 b
o
o
ts

tr
ap

p
in

g
 p

er
 h

o
sp

it
al

 p
er

 c
la

ss
if

ie
r 

H
o
sp

it
al

  

ID
  

E
x
te

rn
al

 

v
al

id
at

io
n

 

si
ze

 

T
ra

in
in

g
 

si
ze

 

R
an

d
o
m

 

fo
re

st
 

 

N
aï

v
e 

b
ay

es
 

 

K
N

N
 

 

M
aj

o
ri

ty
  

V
o
ti

n
g

 

 

W
ei

g
h
te

d
  

ac
cu

ra
cy

 

1
 

1
5
7
9
 

2
9
7
4
 

0
.8

2
 

[0
.8

1
,0

.8
2
] 

0
.7

9
 

[0
.7

9
,0

.7
9
] 

0
.8

1
 

[0
.8

1
,0

.8
1
] 

0
.8

2
 

[0
.8

1
,0

.8
2
] 

0
.7

6
 

2
 

3
8
6
 

4
1
6
7
 

0
.8

2
 

[0
.8

1
,0

.8
2
] 

0
.5

7
 

[0
.5

7
,0

.5
7
] 

0
.8

0
 

[0
.8

0
,0

.8
0
] 

0
.8

0
 

[0
.8

0
,0

.8
1
] 

3
 

2
3
7
 

4
3
1
6
 

0
.7

1
 

[0
.7

0
,0

.7
3
] 

0
.7

2
 

[0
.7

2
,0

.7
2
] 

0
.7

2
 

[0
.7

2
,0

.7
2
] 

0
.7

1
 

[0
.7

1
,0

.7
3
] 

4
 

4
9
0
 

4
0
6
3
 

0
.8

0
 

[0
.7

9
,0

.8
1
] 

0
.7

6
 

[0
.7

6
,0

.7
6
] 

0
.8

2
 

[0
.8

2
,0

.8
2
] 

0
.8

 

[0
.8

,0
.8

1
] 

5
 

3
0
4
 

4
2
4
9
 

0
.8

0
 

[0
.7

9
,0

.8
1
] 

0
.7

5
 

[0
.7

5
,0

.7
5
] 

0
.7

9
 

[0
.7

9
,0

.7
9
] 

0
.7

9
 

[0
.7

8
,0

.7
9
] 

6
 

5
1
7
 

4
0
3
6
 

0
.5

6
 

[0
.5

6
,0

.5
6
] 

0
.5

7
 

[0
.5

7
,0

.5
7
] 

0
.5

7
 

[0
.5

7
,0

.5
7
] 

0
.5

6
 

[0
.5

6
,0

.5
7
] 

7
 

4
0
2
 

4
1
5
1
 

0
.8

3
 

[0
.8

2
,0

.8
4
] 

0
.8

3
 

[0
.8

3
,0

.8
3
] 

0
.8

4
 

[0
.8

4
,0

.8
4
] 

0
.8

4
 

[0
.8

3
,0

.8
5
] 

8
 

6
3
8
 

3
9
1
5
 

0
.7

1
 

[0
.7

0
,0

.7
2
] 

0
.3

0
 

[0
.3

0
,0

.3
0
] 

0
.6

9
 

[0
.6

9
,0

.6
9
] 

0
.6

8
 

[0
.6

7
,0

.6
9
] 

N
u
m

b
er

s 
in

 c
o
lu

m
n

 4
 t

o
 7

 r
ep

re
se

n
t 

m
ea

n
 a

cc
u
ra

cy
 [

9
5
%

 c
o
n
fi

d
en

ce
 i

n
te

rv
al

] 
 

 



24 
 

 

 

Association with breast cancer occurrence   

Among the included women, 122 of 4553 (3%) were diagnosed with breast 

cancer, and the mean time to cancer detection was 12.4 months. Regardless 

whether BPE was rated manually (HR=1.97, P<0.001) or automatically 

(HR=2.12, P<0.001), categories higher than minimal (i.e., mild/ 

moderate/marked) were associated with higher breast cancer occurrence than 

category minimal (Table 6). 

Additionally, the hazard ratio of BPE for breast cancer occurrence was 

comparable between automated rating and manual rating (HR=2.12 versus 

HR=1.97, P=0.65 for mild/moderate/marked BPE relative to minimal BPE). 

 

TABLE 6. Association between BPE category and occurrence of breast cancer for 

manual scoring and scoring by machine learning 

Characteristics Hazard  

Ratio (HR) 

95%CI P value 

of HR 

P value of 

comparing HRs 

BPE rated by radiologist 

0.65 

Minimal Reference - - 

Mild/Moderate/Marked 1.97 [1.37, 2.84] <0.001 

BPE predicted by machine learning 

Minimal Reference - - 

Mild/Moderate/Marked 2.12 [1.43, 3.16] <0.001 

BPE= Background parenchymal enhancement, CI= confidence interval 

 

Discussion 

This study aimed to determine whether it is feasible to use machine learning to 

automatically evaluate BPE category on dynamic contrast-enhanced MRI (DCE-

MRI) of women with extremely dense breasts without compromising 

associations with breast cancer occurrence. A combination of Random Forests, 

TABLE 5. Prediction performance in the four BPE categories 

BPE category Minimal Mild Moderate Marked 

Sensitivity 0.95  

[0.95, 0.95] 

0.16  

[0.16, 0.17] 

0.13  

[0.12, 0.14] 

0.36 

 [0.34,0.37] 

Specificity 0.46  

[ 0.45, .47] 

0.95  

[0.94, 0.95] 

0.96  

[0.96, 0.97] 

0.97  

[0.97, 0.97] 

Numbers in column 2~5 represent median [95% confidence interval]  
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Naïve Bayes, and KNN classifiers with majority voting was used to develop a 

machine-learning model that could predict BPE category with a cross-validated 

prediction accuracy of 0.76. The results indicate that it is feasible to automate 

the evaluation of BPE category in women with extremely dense breasts, although 

the accuracy for minimal BPE is superior to that for other BPE categories. The 

underlying association between BPE and breast cancer occurrence – expressed 

as hazard ratio – was not affected and was comparable with that of BPE derived 

from manual rating by radiologists in the DENSE trial.  

 

The cross-validated prediction accuracy ranged between 0.56 and 0.84 across the 

eight hospitals. The lowest accuracy was observed in hospital 6 (0.56). This may 

be attributable to the fact that radiologists in hospital 6 typically assigned higher 

scores to BPE. Consequently, hospital 6 had the lowest percentage of women in 

the minimal BPE category (55%), while the sensitivity of the machine-learning 

model for this category was the highest. The percentage of women in the minimal 

BPE category ranged between 67% and 80% in the other hospitals.  

 

In clinical practice, BPE is rated by radiologists according to the BIRADS 

lexicon, and is subject to inter- and intrareader variation (16), which may have 

hindered its role as predictive imaging biomarker of breast cancer. Quantitative 

evaluation of BPE can overcome this disadvantage. A previous study assessed 

quantitative parenchymal features at baseline DCE MRI and their association 

with breast cancer occurrence (7), using manual rating of BPE to confirm that 

such quantitative analysis is independently associated with breast cancer 

occurrence. The current study focuses explicitly on automated rating of BPE to 

help further reduce inter- and intra-observer variability. 

 

Several other studies reported on automated prediction of BPE category from 

DCE MRI, but the study populations and methodology vary considerably.  

A recent study from Nam et al. investigated 794 patients with breast cancer who 

underwent preoperative breast MRI from 2014 to 2017. Deep learning was 

applied to automatically assess BPE category. The overall classification accuracy 

among the four BPE categories was 0.67 (33). In contrast, the current study 

focuses only on an unselected series of asymptomatic women with extremely 

dense breasts.  

 

Borkowski et al. trained a deep convolutional neural network for the 

classification of BPE in 149 patients who underwent breast MRI from September 
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2013 to October 2015, yielding mean accuracy of 0.75 in external validation (34). 

Neither the study by Borkowski et al. nor the study by Nam et al. specifically 

focus on women with extremely dense breasts.  Hence, it is difficult to assess the 

potential of these findings in a risk stratification tool for this specific screening 

population.  

 

Sarah et al. recently reported on 3705 high-risk women ((i.e., women with >20% 

lifetime risk of breast cancer) using 5224 breast MRI examinations (35). Two 

deep learning models were constructed to distinguish between low (i.e., mild or 

minimal) and high (i.e., marked or moderate) BPE. Although the study uses a 

relatively large sample size, it also does not focus explicitly on women with 

extremely dense breasts.  

 

The current study has some limitations. First, although the model was validated 

in different hospitals using internal-external validation, the results have not yet 

been validated in other external datasets, e.g., those from other countries. Wider 

validation of the model is recommended prior to clinical application. Secondly, 

the number of women in each BPE category was not balanced. Although this 

reflects the natural distribution of BPE in the population of Dutch women with 

extremely dense breasts, it may have impact on the machine learning classifier, 

especially in women with moderate and marked BPE. In the future, the model 

could be investigated for its efficacy in other populations of women at risk. 

 

To conclude, it is feasible to rate BPE category automatically in contrast-

enhanced MRI of women with extremely dense breasts without compromising 

the association between BPE and breast cancer occurrence, although the 

accuracy for minimal BPE is superior to that of other BPE categories. 
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Abstract 

Background and Objective: Automated identification of quantitative breast 

parenchymal enhancement features on dynamic-contrast enhanced MRI (DCE-

MRI) could provide added value for assessing breast cancer risk in women with 

extremely dense breasts. Aim of this study is to automatically identify 

quantitative properties of the breast parenchyma on baseline DCE-MRI and 

assess their association with breast cancer occurrence in women with extremely 

dense breasts.  

 

Materials and Methods: This study represents a secondary analysis of the 

Dense Tissue and Early Breast Neoplasm Screening (DENSE) trial. MRIs were 

performed in eight hospitals between December 2011 and January 2016. 

Following segmentation of fibroglandular tissue, quantitative features (including 

volumetric density, volumetric morphology, and enhancement characteristics) of 

the parenchyma were extracted from baseline MRIs. Principal component 

analysis was applied to identify parenchymal measures with the greatest variance. 

Multivariable Cox proportional hazards regression was applied to assess the 

association between breast cancer occurrence and quantitative parenchymal 

features, followed by stratification of significant features into tertiles. 

 

Results: A total of 4553 women (mean age, 55.7 years ± 6 [SD]) with extremely 

dense breasts were included, of which 122 (2.7%) were diagnosed with breast 

cancer. Five principal components representing 96% of the variance were 

identified, and the component explaining the greatest independent variance (42%) 

consisted of MRI features relating to volume of enhancing parenchyma. 

Multivariable analysis showed that volume of enhancing parenchyma was 

associated with breast cancer occurrence (hazard ratio [HR], 1.09 [95% CI: 1.01, 

1.18]; P = .02). Additionally, women in the high tertile of volume of enhancing 
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parenchyma showed a breast cancer occurrence two times that of women in the 

low tertile (HR, 2.09 [95% CI: 1.25, 3.61]; P = .005).  

 

Conclusion: In women with extremely dense breasts, a high volume of 

enhancing parenchyma on baseline DCE-MRI was associated with increased 

occurrence of breast cancer as compared to a low volume. 
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Introduction 

High breast density on mammography, expressed by the ratio of fibroglandular 

tissue (FGT) to fatty breast tissue, is a known risk factor for developing breast 

cancer (1,2). Women in the highest breast-density category (Breast Imaging 

Reporting and Data System category d, extremely dense breast) have three to six 

times higher risk than women with almost entirely fatty breasts (2,3).  

 

Although mammography is effective to screen for early-stage breast cancer 

reducing overall mortality (4), the sensitivity is lower in women with extremely 

dense breasts than in women in the lower density category (1). As the most 

sensitive breast imaging modality, dynamic-contrast enhanced MRI (DCE-MRI) 

has been proposed to screen women with high risk of developing breast cancer 

(5,6).  

 

The multi-institutional Netherlands-based Dense Tissue and Early Breast 

Neoplasm Screening (DENSE) randomized controlled trial demonstrated that 

supplemental MRI screening in women aged 50 – 75 years with extremely dense 

breasts resulted in fewer interval cancers than using mammography alone (7). If 

implemented in the Dutch national screening program—which offers biennial 

mammograms to women between 50 and 75 years of age (8)—nearly 82000 

women could be eligible to receive supplemental MRI, which would 

considerably increase the workload of breast MRI radiologists. 

 

Several studies aimed to reduce the workload of radiologists using computer-

aided triaging (9) and computer-aided diagnosis (10). Another approach is to 

tailor the screening of individual women based on additional risk factors.  

 

Breast-cancer risk models incorporate characteristics such as age and body mass 

index (BMI)(11). More recently, the mammography-derived percentage of 

breast-FGT (2,3,12) was used to triage women to MRI. Additionally, background 

parenchymal enhancement (BPE) was found an independent risk factor for breast 

cancer (13,14), but it is subject to intra- and interobserver variability (13). 

Therefore, it is of interest to know whether other properties of breast 

parenchymal enhancement can be automatically derived and used to help predict 

risk of breast cancer in women with extremely dense breasts. Image feature 

extraction via radiomics has shown promise for computer-aided diagnosis and 

prognosis of breast cancer (15,16), but whether features extracted from MRIs of 
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women with extremely dense breasts can be used to predict breast cancer in 

parallel with common clinical risk factors is not well established. 

The aim of this study was to evaluate quantitative properties of the breast 

parenchyma on baseline DCE-MRI and assess the association between these 

features and breast cancer occurrence in women with extremely dense breasts 

who participated in the DENSE trial. 

 

Materials and Methods  

Study Design and Patients  

The current study is a secondary analysis of data from the prospective DENSE 

trial (ClinicalTrials.gov: NCT01315015) (7,8,17), which was approved by the 

Dutch Minister of Health, Welfare and Sport (2011/19 WBO [Wet 

Bevolkingsonderzoek], The Hague, the Netherlands). According to the Dutch 

law on population studies, the study including primary and secondary objectives 

was waived from ethical review by the local institutional review board. 

 

The DENSE trial included consecutive patients who underwent MRI at eight 

hospitals in the Netherlands between December 2011 and January 2016. Women 

aged 50–75 years with extremely dense breasts (i.e., Breast Imaging Reporting 

and Data System category d at mammography without abnormality on 

mammography at the time of inclusion) (18) were eligible for inclusion. Women 

in the DENSE study were excluded in cases of standard contraindications to MR 

imaging (8). 

 

Screening was conducted every 2 years and was performed in three consecutive 

rounds starting in December 2011 and concluding with the third-round screening 

in November 2021. Patients were excluded from the current study if they 1) had 

bilateral cancer, or 2) had unilateral cancer but had previously received 

contralateral mastectomy. Participant characteristics including age and BMI 

were acquired from electronic case report forms of the DENSE trial. Data 

generated or analyzed during the study are available from the corresponding 

author by request. 

 

Previously (9), MRIs from 4581 participants of the DENSE trial were used to 

develop a deep learning model to differentiate between breasts with lesions and 

breasts without lesions. The current study included 4553 of these participants. 

 

MRI acquisition 



36 
 

All women received MRI in prone position using a Philips 3.0T scanner 

(Achieva or Ingenia) or a Siemens 3.0T scanner (Trio, Verio, or Skyra) with a 

dedicated phased-array bilateral breast coil. The MRI included a dynamic series 

consisting of a precontrast image and four or five postcontrast images. Image 

acquisition was done according to fixed protocol which has been described in 

detail by Emaus et al. (1). The imaging parameters have been summarized in 

Table 1. In short, flip angle ranged between 10° and 20°, echo times ranged 

between 1.7 msec and 2.4 msec, and repetition times ranged between 3.3 msec 

and 5.5 msec. The macrocyclic gadolinium-based contrast agent gadobutrol 

(Gadovist; Bayer AG) was injected at a rate of 1 mL/s to a total dose of 0.1 mmol 

per kilogram of body weight. The use of fat suppression was optional.  

 

TABLE 1. Imaging Parameters of the Dynamic Contrast-Enhanced MRI Used in 

the Dense Tissue and Early Breast Neoplasm Screening Trial 

Medical Center 

and MRI Device 

No. of 

women 

Reconstructed 

Voxel 

Size(mm3) 

Dimensions 

(Voxels) 

Fat 

Suppression 

1  1579    

 Philips Achieva  0.89* 0.89* 0.9 384* 384* 200 Yes 

 Philips Ingenia  0.89* 0.89* 0.9 384* 384* 200 Yes 

2  386    

 Siemens 

Magnetom Trio 

 0.80* 0.80*1.0 448* 448* 176 No 

 Siemens Skyra  0.80* 0.80*1.0 448* 448* 176 No 

 Siemens Prisma  0.80* 0.80*1.0 448* 448* 176 No 

3 Philips Achieva 237 0.89* 0.89* 0.9 384* 384* 200 Yes 

4 Philips Ingenia 490 0.89* 0.89* 0.9 384* 384* 200 Yes 

5  304    

 Philips Achieva  0.89* 0.89* 0.9 384* 384* 200 Yes 

 Philips Ingenia 

CX 

 0.89* 0.89* 0.9 384* 384* 200 Yes 

6 Siemens Verio 517 0.85* 0.85* 1.0 448* 448* 176 No 

7 Philips Ingenia 402 0.89* 0.89* 0.9 384* 384* 200 Yes 

8 Siemens Skyra 638 0.80* 0.80* 1.0 448* 448* 160 No 

 

Image analysis 

Image analysis consisted of deformable image registration (19), breast 

segmentation (20), FGT segmentation, and feature extraction using baseline 

dynamic contrast-enhanced MRI. The FGT was segmented from the precontrast 

image using nnU-Net (21). After five cycles of iterative learning, all FGT 

segmentations were deemed acceptable. The workflow used for image analysis 

was adopted from a prior study (22). The nnU-Net was retrained on 427 

randomly selected MRIs from the current dataset and the results were visually 
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inspected. The quality of the segmentations was assessed by H.W. (medical 

doctor with more than 6 years of experience in breast MRI) and B.V. (biomedical 

engineer with more than 11 years of experience) under supervision of W.V. 

(dedicated breast radiologist with more than 12 years of experience). 

 

Spatio-temporal characteristics of the FGT were described using 15 quantitative 

features and extracted from the MRIs using Python (version 2.7; Python 

Software Foundation). These included volumetric density, volumetric 

morphology (the three-dimensional shape of the FGT), and enhancement 

characteristics (Table 2). These features were previously associated with patient 

characteristics and outcome in the symptomatic patient populations (20,22,23). 

We used features of the contralateral healthy breast in women who had breast 

cancer on one side, and the average features from left and right breasts in women 

who did not have breast cancer.  

 

MRIs from the first screening round of the DENSE trial were evaluated by breast 

radiologists with experience ranging between 5 and 23 years among 8 hospitals 

(including W.V. with more than 12 years of experience in breast MRI). A 

maximum of two breast radiologists were involved in each participating hospital. 

The MRI images were assessed according to the Breast Imaging Reporting and 

Data System MRI lexicon. When confronted with uncertainty, independent 

double reading was performed by a second radiologist who was affiliated with 

another participating hospital. Potential discrepancies were resolved by 

consensus (8). BPE category was classified as minimal, mild, moderate and 

marked BPE (24). BPE assessment of the two breasts are typically consistent. In 

instances where discrepancies were observed, the greatest BPE category was 

used. Additional details about the DENSE trial can be found in the publication 

of Emaus et al. (8) 

 

Code and trained neural network weights are at https://github.com/Lab-

Translational-Cancer-Imaging/FGT_segmentation and https://github.com/Lab-

Translational-Cancer-Imaging/Harmonize_DCE/blob/main/harmonize_cpe.py 

 

Statistical analysis 

The event of interest in this study was detection of breast cancer. Time-to-event 

was defined as the period between the first round of screening and the detection 

of breast cancer.  

 

https://github.com/Lab-Translational-Cancer-Imaging/Harmonize_DCE/blob/main/harmonize_cpe.py
https://github.com/Lab-Translational-Cancer-Imaging/Harmonize_DCE/blob/main/harmonize_cpe.py
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TABLE 2. Description of the 15 Quantitative Parenchyma Features Evaluated on 

Baseline MRI 

Feature Description 

Circularity Ratio between the intersection of the FGT with a sphere of 

equivalent volume as the FGT and the volume of the FGT itself 

Irregularity Ratio between the surface of a sphere with the same volume as 

the FGT and the surface of the FGT 

Density Ratio between the volume of FGT and the volume of the whole 

breast 

Top 10% intensity 

of early contrast 

uptake 

Top 10% early enhancing intensity of the contralateral healthy 

breast (women with cancer) or mean value of top 10% of both 

breasts (women without cancer) 

Top 10% volume 

of early enhancing 

voxels 

Volume of the top 10% early enhancing voxels of the 

contralateral healthy breast (women with cancer) or mean value 

of top 10% of both breasts (women without cancer) 

Top 50% intensity 

of early contrast 

uptake 

Top 50% early enhancing intensity of the contralateral healthy 

breast (women with cancer) or mean value of top 10% of both 

breasts (women without cancer) 

Top 50% volume 

of early enhancing 

voxels 

Volume of the top 50% early enhancing voxels of the 

contralateral healthy breast (women with cancer) or mean value 

of top 10% of both breasts (women without cancer) 

Top 90% intensity 

of early contrast 

uptake 

Top 90% early enhancing intensity of the contralateral healthy 

breast (women with cancer) or mean value of top 10% of both 

breasts (women without cancer) 

Top 90% volume 

of early enhancing 

voxels 

Volume of the top 90% early enhancing voxels of the 

contralateral healthy breast (women with cancer) or mean value 

of top 10% of both breasts (women without cancer) 

Top 10% intensity 

of late contrast 

uptake 

Top 10% late enhancing intensity of the contralateral healthy 

breast (women with cancer) or mean value of top 10% of both 

breasts (women without cancer) 

Top 10% volume 

of late enhancing 

voxels 

Volume of the top 10% late enhancing voxels of the 

contralateral healthy breast (women with cancer) or mean value 

of top 10% of both breasts (women without cancer) 

Top 50% intensity 

of late contrast 

uptake 

Top 50% late enhancing intensity of the contralateral healthy 

breast (women with cancer) or mean value of top 10% of both 

breasts (women without cancer) 

Top 50% volume 

of late enhancing 

voxels 

Volume of the top 50% late enhancing voxels of the 

contralateral healthy breast (women with cancer) or mean value 

of top 10% of both breasts (women without cancer) 

Top 90% intensity 

of late contrast 

uptake 

Top 90% late enhancing intensity of the contralateral healthy 

breast (women with cancer) or mean value of top 10% of both 

breasts (women without cancer) 

Top 90% volume 

of late enhancing 

voxels 

Volume of the top 90% late enhancing voxels of the 

contralateral healthy breast (women with cancer) or mean value 

of top 10% of both breasts (women without cancer) 

 

 
FGT= fibroglandular tissue. 
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Multiple imputation was used to account for missing BMI data in 6 women 

diagnosed with cancer. Ten imputation data sets were generated and the mean 

value was used as the imputed value (2,3). Outliers were identified using Tukey’s 

method (i.e., the lower limit is 1.5 interquartile range [IQR] below the 25th 

percentile, and the upper limit is 1.5 IQR above the 75th percentile). All values 

greater than the upper limit were replaced with the upper limit and all values 

smaller than the lower limit with the lower limit, after which the feature values 

were normalized between 0 and 1.  

 

FIGURE 1．Flowchart of selection of women included.  

 

Principal component analysis of the 15 quantitative parenchymal features was 

used to reduce the number of variables in the dataset while maximizing the 

variance of the components retained. Varimax rotation of initial estimates of 

principal components was then used to simplify the structure and increase the 

interpretability of factors (4,5). In this study, the components that together 

accounted for 96% of the cumulative variance were retained. 

TABLE 3. Characteristics of Participants from the Dense Tissue and Early Breast 

Neoplasm Screening Trial included in the current study 

  Total 

(N = 4553) 

Women without cancer  

(N = 4431) 

Women with cancer 

(N = 122) 

Age (years) 55.7 ± 6 55.7 ± 6 55.9 ± 6.3 

BMI (kg/m2) 22.2 ± 2.5 22.2 ± 2.6 23.2 ± 2.9 

BPE category 

Minimal 3436 (75%) 3362 (76%) 74 (61%) 

Mild 663 (15%) 630 (14%) 33 (27%) 

Moderate 273 (6%) 268 (6%) 5 (4%) 

Marked 181 (4%) 171 (4%) 10 (8%) 
Continuous variables are presented as mean ± standard deviation and categorical variables 

are presented as number participants with percentages in parentheses. BMI = body mass 

index, BPE = background parenchymal enhancement. 
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Multivariable Cox proportional hazards regression was used to assess the association 

between quantitative parenchymal features in screening round one with breast-cancer 

occurrence. For patients who had already developed breast cancer at the time of the first 

screening, data were left-censored in the Cox regression (6). 

 

TABLE 4. Principal Component Analysis Identification of Five Components 

Explaining 96% Variance 

 PC1 PC2 PC4 PC3 PC5 

MRI  

Features 

Volume of 

enhancing 

parenchyma 

Early 

contrast 

uptake 

Late 

contrast 

uptake 

Shape FGT density  

on MRI 

Variance 42% 20% 19% 11% 5% 

Cumulative variance 42% 62% 80% 91% 96% 
Variance represents separate variance explained by each principal component while 

cumulative variance represents the total variance explained by the current principal 

component and all prior components. FGT = fibroglandular tissue, PC = principal component. 

 

The principal component scores (which are a linear combination of the 

quantitative parenchymal features) that were found to be associated with breast-

cancer occurrence after multivariable analysis were divided into tertiles 

(representing low, intermediate and high subgroups) and the cumulative hazard 

was calculated for each tertile, adjusting for clinical characteristics using inverse 

probability weighting (7). The differences in cumulative hazard between the 

inverse probability weighting-adjusted tertiles were evaluated via Kaplan-Meier 

survival curve analysis. Comparisons between the intermediate tertile survival 

curve and the low tertile survival curve as well as the high tertile survival curve 

and the low tertile survival curve were carried out using log-rank tests. The 

statistical analyses were performed by H.W. (6 years of experience conducting 

statistical analyses) under the supervision of B.V. (11 years of experience 

conducting statistical analyses) and K.G. (32 years of experience conducting 

statistical analyses) using R-Studio (version 4.1.2, R Foundation for Statistical 

Computing, Vienna, Austria). A P value of < .05 was considered to indicate 

statistical significance. 

 

Results 

Participant Characteristics  

Of the 4783 MRI examinations included in the DENSE trial, three were excluded 

due to bilateral cancer or unilateral cancer with contralateral mastectomy history 

and 227 were excluded due to incomplete MRI data sets (Figure 1). A total of 

4553 women (mean age, 55.7 years ± 6 [SD]) with extremely dense breasts were 
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ultimately included in the study, 122 (2.7%) of whom were diagnosed with breast 

cancer detected on MRI, mammography, or as interval cancers (Table 3). Among 

the women diagnosed with breast cancer, 77/122 (63.1%) had breast cancer 

detected in the first round of screening and the remaining 45/122 (36.9%) women 

had a median time to cancer detection of 24 months ([IQR: 24- 47 months]; range: 

17- 53 months).  

 

TABLE 5. Univariable and Multivariable Cox Regression Analysis of Variables 

Associated with Occurrence of Breast Cancer 

Features Univariable analysis Multivariable analysis 

 HR 95% CI  P value  HR 95% CI  P value 

BPE category 

Minimal Reference  Reference  

Mild 2.36 1.56, 3.55 <.001* 1.95 1.24, 3.07 .004*  

Moderate 0.84 0.34, 2.08 .705 0.58 0.22, 1.52 .267  

Marked 2.56 1.32, 4.95 .005* 1.39 0.62, 3.14 .425 

Age (years) 1.01 0.98, 1.04 .377 1.05 1.02, 1.09 .003*  

BMI (kg/m2) 1.17 1.09, 1.25 < .001* 1.08 0.98, 1.18 .134  

Principal Component†    

PC 1 1.06 1.03, 1.08 < .001* 1.09 1.01, 1.18 .023*  

PC 2 1.07 1.02, 1.13 .006* 1.07 0.98, 1.18 .144  

PC 3 1.04 0.95, 1.15 .396 1.02 0.89, 1.17 .781  

PC 4 1.04 0.99, 1.10 .131 1.03 0.94, 1.13 .559  

PC 5 1.18 1.05, 1.34 .007* 0.83 0.58, 1.21 .337  

BPE = background parenchymal enhancement, BMI = body mass index, CI = 

confidence interval, HR = hazard ratio, PC = principal component. * P value < .05 

† MRI features comprising PC1 were related to volume of enhancing parenchyma, 

PC2 were related to early contrast uptake of parenchyma, PC3 were related to the 

shape of parenchyma, PC4 were related to late contrast uptake of parenchyma, and 

PC5 were related to breast density. 

 

 

  

TABLE 6. Cancer Detection in Participants Stratified by Tertiles of Volume of 

Enhancing Parenchyma 

  Without cancer detected  

(n = 4431) 

With cancer 

detected (n = 122) 

Total 

Low PC1 1494 (98.4%) 24 (1.6%) 1518 

Intermediate 

PC1 

1472 (97.0%) 45 (3.0%) 1517 

High PC1 1465 (96.5%) 53 (3.5%) 1518 

PC = principal component. MRI features comprising PC1 were related to volume of 

enhancing parenchyma and PC1 was stratified into tertiles: low PC1 [IQR: -7.3, -4.9], 

intermediate PC1 [IQR: -2.7, -0.1], high PC1 [IQR: 3.7, 10.6].  
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FIGURE 2. Heatmap showing the correlation between the 15 quantitative 

parenchyma features evaluated on baseline MRI and the principal components 

identified as accounting for 96% of the variance. The scale bar represents the 

principal component analysis (PCA) factor loading value where the darkest red color 

(value 1) represents a strong positive relationship and the darkest blue color (value -

1) represents a strong negative relationship.  

 

Quantitative FGT Features that Explain the Greatest Variance and 

Association with Breast Cancer Occurrence  

Of the 15 quantitative FGT features, PCA identified five principal components 

which explained 96% of the cumulative variance. Individually, principal 
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component 1 explained 42% of the variance and was composed of MRI features 

relating to volume of enhancing parenchyma (Figure 2, Table 4). Principal 

component 2, 4, 3, and 5 explained 20%, 19%, 11% and 5% of the variance and 

were composed of MRI features relating to early contrast uptake of parenchyma, 

late contrast uptake of parenchyma, the shape of parenchyma, and breast density 

on MRI, respectively.  

 

  

 
FIGURE 3. Kaplan-Meier curves for occurrence of breast cancer stratified by tertiles 

of volume of enhancing parenchyma. Women in the high tertile (red line) and the 

intermediate tertile (yellow line) of volume of enhancing parenchyma had a higher 

cumulative hazard for breast cancer occurrence than those in the low tertile (green 

line) (log-rank test P = .001 and .014, respectively). This analysis was adjusted for 

the clinical characteristics age, body mass index, and background parenchymal 

enhancement category using inverse probability weighting.  
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Multivariable analysis showed that principal component 1 (PC1, reflecting 

volume of enhancing parenchyma) was associated with occurrence of breast 

cancer (Hazard ratio [HR], 1.09 [95% CI: 1.01, 1.18]; P = .02) as was patient 

age (HR, 1.05 [95% CI: 1.02, 1.09]; P = .003) and the mild BPE category (HR, 

1.95 [95% CI: 1.24, 3.07]; P = .004) (Table 5). 

 

 

Assessment of Breast Cancer Risk in Patients Stratified by PC1 

When the principal component score reflecting volume of enhancing 

parenchyma was stratified into tertiles--representing low, intermediate, and high 

subgroups [IQR of the three tertiles of PC1 were provided in Table 6]–cancer 

was detected in 24/1518 (1.6%) women in the low PC1 tertile, 45/1517 (3.0%) 

women in the intermediate PC1 tertile, and 53/1518 (3.5%) of women in the high 

PC1 tertile (Table 6). In a multivariable model adjusted for age, BMI, and BPE 

category, women in the high PC1 tertile were found to have a higher occurrence 

of breast cancer than those in the lowest tertile (HR, 2.09 [95% CI: 1.25, 3.61], 

P = .005). Women with an intermediate PC1 also showed a greater occurrence 

of breast cancer compared with women in the lowest tertile (HR, 2.15 [95% CI: 

1.30, 3.84], P = .003) (Table 7). Furthermore, women with a high and 

intermediate PC1 both showed an increasing risk for developing breast cancer 

over time compared to women with low PC1 (log-rank test, P = .001 and P = .014) 

(Figure 3).  Representative MRIs in patients with a high and low PC1 are shown 

in Figure 4.  

 

TABLE 7. Unadjusted and Adjusted Cox Regression Analysis of Tertiles of Volume 

of Enhancing Parenchyma for Association with Occurrence of Breast Cancer. 

Tertile Unadjusted Adjusted† 

HR 95% CI P value HR 95% CI P value 

Low Reference Reference 

Intermediate 1.84 1.12, 3.03 .02* 2.15 1.30, 3.84 .003* 

High 2.19 1.35, 3.55 .001* 2.09 1.25, 3.61 .005* 

CI = confidence interval, HR = hazard ratio, PC = principal component. PC1 reflects 

volume of enhancing parenchyma and was stratified into tertiles: low PC1 [IQR: -

7.3, -4.9], intermediate PC1 [IQR: -2.7, -0.1], high PC1 [IQR: 3.7, 10.6].   

†Inverse probability weighting was used to adjust for age, body mass index, and 

background parenchymal enhancement. * P value < .05 
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FIGURE 4.  Representative dynamic contrast-enhanced MRIs (transverse plane) in 

patients in the low and high tertiles of volume of enhancing parenchyma. Left: Baseline 

MRI in a 50-year-old female with a body mass index (BMI) of 23 and ‘marked’ 

background parenchymal enhancement (BPE) who was stratified into the high tertile of 

volume of enhancing parenchyma. Cancer was detected on MRI in the second screening 

round. Right: A 51-year-old female with a BMI of 24 and ‘marked’ BPE who was 

stratified into the low tertile of volume enhancing parenchyma. No cancer was detected 

during 6 years of follow-up. Note, differences in high and low volumes of enhancing 

parenchyma are not visible to the naked eye on MRI. 

 

Discussion 

Automated identification of quantitative breast parenchymal enhancement 

features on dynamic-contrast enhanced MRI could provide added value for 

assessing breast cancer risk in women with extremely dense breasts. This 

secondary analysis of the Dense Tissue and Early Breast Neoplasm Screening 

(DENSE) trial investigated whether quantitative parenchymal features on 

dynamic contrast-enhanced MRI were associated with breast cancer occurrence, 

independent of conventional clinical characteristics. Following adjustment for 

age, body mass index (BMI), and background parenchymal enhancement (BPE), 

multivariable analysis showed that breast cancer occurrence was greater in 

women with higher volumes of enhancing parenchyma compared to women with 

low volumes of enhancing parenchyma (Hazard ratio, 2.09 [95% CI: 1.25, 3.61]; 

P = .005). The range in age of included women (50-75 years) was relatively 

narrow. This may partly explain why statistical significance for age could not be 

demonstrated in univariable analysis, but significance was observed after 

correcting for BMI and BPE in multivariable analysis. 

 

Several previous studies have investigated the association of BPE and 

fibroglandular tissue (FGT) on MRI with breast cancer risk. The meta-analysis 

conducted by Thompson et al. (31) showed that a higher level of BPE measured 

at breast MRI is associated with the presence of breast cancer in women with 

high risk, but not in women with average risk. The results of this meta-analysis 
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are difficult to compare to our study because women included in the DENSE trial 

all had negative screening mammography results. Consistent with our results, 

Acciavatti et al. (32) observed in a review study that higher BPE of the FGT on 

breast MRI is associated with a higher risk for breast cancer. In a retrospective 

study of women at high risk for breast cancer, Dontchos et al. (13) found that the 

23 patients who developed cancer had greater qualitatively-measured BPE on 

MRI compared to case matched controls who did not develop cancer. However, 

they did not find an association between breast cancer development and pattern 

of BPE, amount of FGT on MRI, or mammographic density. In another 

retrospective study of 1533 women (41 of whom developed cancer) with an 

increased lifetime risk of breast cancer (≥20–25%), Vreemann et al. (33) found 

no evidence of an association between quantitative measures of BPE and FGT 

on baseline MRI and overall breast cancer development, but indicated that high 

amounts of FGT and BPE on these MRIs lead to more false-positive findings. 

Niell et al. (34) and Saha et al. (35) also investigated the association between 

quantitative features and future breast cancer risk, and found that quantitative 

measures of BPE are predictive of breast cancer, but their research population is 

limited to women at high lifetime risk of breast cancer. 

 

Unlike these other studies which focused on women at high-risk for breast cancer, 

the current study focused on women with extremely dense breasts in whom 

baseline MRI typically shows more false-positive findings. We found that 

volume of enhancing parenchyma on baseline MRI was independently 

associated with breast cancer occurrence. This finding may differ from those of 

other studies as in our study we adjusted for conventional characteristics known 

to be associated with breast cancer risk such as age, BMI, and BPE. 

 

Our study has limitations. First, the follow up time was 6 years, consequently, 

only short-term associations between parenchymal features and occurrence of 

future breast cancer could be investigated. Second, information on race and 

ethnicity were not available for participants in the DENSE trial and thus the 

findings of this study may lack generalizability. 

 

To conclude, our study demonstrated that quantitative parenchymal features on 

baseline dynamic contrast-enhanced MRI are independent predictors of breast 

cancer occurrence in women with extremely dense breasts. Additionally, women 

with the highest volumes of enhancing parenchyma had approximately two times 

the occurrence rate of breast cancer than those with the lowest volumes of 
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enhancing parenchyma. In order to develop personalized screening strategies for 

breast imaging, more focus is needed on construction and validation of 

generalizable risk prediction models on the basis of imaging markers.  
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Abstract 

Background and Objective: Incidental MR-detected breast lesions (i.e., 

additional lesions to the index cancer) pose challenges in the preoperative 
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workup of patients with early breast cancer. We pursue computer-assisted 

triaging of MRI-guided breast biopsy of additional lesions at high specificity. 

 

Materials and Methods: We investigated 316 consecutive female patients (aged 

26 to 76 years, mean 54 years) with early breast cancer who received 

preoperative multiparametric breast MRI between 2013 and 2016. In total 

82/316 patients (26%) had additional breast lesions on MRI. These 82 patients 

had 101 additional lesions in total, 51 were benign and 50 were malignant. We 

collected 4 clinical features, and 46 MRI radiomic features from T1-weighted 

dynamic-enhanced (DCE) imaging, high-temporal-resolution DCE imaging 

(fast-DCE), T2-weighted imaging, and diffusion-weighted imaging (DWI). A 

multiparametric computer-aided diagnosis (CAD) model using 10-fold cross 

validated ridge regression was constructed. The sensitivities were calculated at 

operating points corresponding to 98%, 95%, and 90% specificity. The model 

calibration performance was evaluated by calibration-plot analysis and 

goodness-of-fit tests. The model was tested in an independent testing cohort of 

187 consecutive patients from 2017 and 2018 (aged 35 to 76 years, mean 59 

years). In this testing cohort, 45/187 patients (24%) had 55 additional breast 

lesions in total, 23 were benign and 32 were malignant. 

 

Results: The multiparametric CAD model correctly identified 48% of the 

malignant additional lesions with a specificity of 98%. At specificity 95% and 

90%, the sensitivity was 62% and 72%, respectively. Calibration-plot analysis 

and goodness-of-fit tests indicated that the model was well fitted. In the 

independent testing cohort, the specificity was 96% and the sensitivity 44% at 

the 98%-specificity operating point of the training set. At operating points 95% 

and 90%, the specificity was 83% at 69% sensitivity, and the specificity was 78% 

at 81% sensitivity, respectively. 

 

Conclusions: The multiparametric CAD model showed potential to identify 

malignant disease extension with near-perfect specificity in approximately half 

the population of preoperative patients originally indicated for a breast biopsy. 

In the other half, patients would still proceed to MRI-guided biopsy to confirm 

absence of malignant disease. These findings demonstrate the potential to triage 

MRI-guided breast biopsy. 

Introduction 

Magnetic resonance imaging (MRI) of the breast is used for preoperative staging 

of breast cancer and various other indications (1–8). Preoperative MRI is 
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typically associated with an increased detection rate of additional lesions, caused 

by the high sensitivity of MRI, while the specificity is limited (9). It detects 

additional lesions in 5.5% to 37% of the patients (10–13). 

 

Targeted ultrasound examination and subsequent biopsy of the MRI-detected 

lesions is usually attempted first (14), but ultrasound does not always visualize 

these lesions to allow biopsy (15). It has been reported that between 11% and 77% 

of additional lesions detected on MRI are not visible on ultrasound (15–17), 

while the rate of malignancy can be as high as 54% (14). 

 

If the lesion fails to visualize on ultrasound, MRI-guided biopsy is usually 

performed next (18). Although this procedure often leads to pathology proof, 

technical limitations exist, e.g., the difficulty to target lesions near the thorax or 

the nipple (19). In addition, the procedure is relatively time-consuming and 

resource-intensive (20). Management of additional lesions detected on 

preoperative MRI would be greatly facilitated if an approach exists to identify 

malignant disease with near-perfect accuracy without MRI guided biopsy, so that 

this subgroup of patients may be triaged directly to surgery.  

 

Methods based on computer-aided diagnosis (CAD) can be pursued to achieve 

this goal. Several CAD models based on conventional MRI and multiparametric 

MRI have been reported to discriminate between benign and malignant lesions 

in the breast (21–29). However, the investigated populations vary. While some 

studies focused on multiparametric MRI of primary breast cancer, others focused 

on additional breast lesions using conventional dynamic contrast-enhanced 

(DCE) MRI only (30,31). To the best of our knowledge, it is currently unknown 

whether the additional information from multiparametric MRI can be used by 

CAD to triage preoperative breast biopsy at high specificity.  

 

The aim of our study is to assess the sensitivity of computer-assisted triaging of 

MRI-guided breast biopsy at high specificity in patients with additional breast 

lesions on preoperative breast MRI.         

 

Materials and Methods  

Study population 

The patients in this study were retrospectively collected from the University 

Medical Center Utrecht, the Netherlands. The Medical Research Ethics 

Committee of the UMC Utrecht waived ethical review. Analyses were performed 
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according to the Standards for Reporting of Diagnostic Accuracy Studies) (32). 

FIGURE 1.1 Flowchart of patient selection in the training cohort (BPE: Background 

Parenchymal Enhancement) 

 

 

FIGURE 1.2 Flowchart of patient selection in an independent testing cohort (BPE: 

Background Parenchymal Enhancement) 

 

We performed the study on consecutive patients who received a breast MRI 

(3.0T) examination between 2013 and 2016 (Figure 1.1).  Patients were included 

if they satisfied the following conditions: 1) They were diagnosed with breast 

cancer and had at least one additional lesion in the ipsilateral or contralateral 

breast detected on preoperative MRI; 2) The additional lesion was assessed as 

malignant or benign by pathology; 3) The index cancer was smaller than 5cm if 

the additional lesion was in the ipsilateral breast (33,34). 

We tested the CAD model, which will be described below, on an independent 

hold-out testing cohort of consecutive patients who received breast MRI (3T) in 

2017 or 2018. The same inclusion criteria as those in the training set were used 

(Figure 1.2). The testing cohort was not available during model development, 
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and was hence not used for training. 

 

TABLE 1. Description of the features 

DCE (39) 

1 Circularity Ratio between the volume of a sphere with the same 

diameter as the lesion and the volume of the lesion 

 2 Irregularity Ratio between the surface of a sphere with the same volume 

as the lesion and the surface of the lesion 

3 Largest diameter Largest diameter of the lesion 

4 Volume Volume of the lesion 

5 Uptake Average of top 50% enhancing voxel values [(I1-I0)/I0] in 

the lesion; I0 and I1 are the pre-contrast and the first post-

contrast signal intensities 

6 Washout Average of top 50% washing-out voxel values [(I4-I1)/I1] in 

the lesion; I1 and I4 are the first and last post-contrast signal 

intensities 

7 Signal enhancing 

ratio 

Average of top 50% Signal-enhancing Ratio values [(I1-

I0)/(I4-I0)] in the lesion; I0, I1 and I4 are the, pre-contrast 

and first and last post-contrast signal intensities 

8 Top uptake Average uptake of the top 10% enhancing lesion voxels 

9 Top washout Average washout of the top 10% washing-out lesion voxels 

10 Largest diameter 

high uptake  

Largest diameter of the lesion with more than 100% washin  

11 Volume high 

uptake  

Volume of lesion with more than 100% washin 

12 Largest diameter 

washout 

Largest diameter of lesion in washout image 

13 Volume washout Volume of lesion in washout image 

14 Smoothness1  Radial gradient index in 3D at the first subtraction series 

15 Smoothness2 Variation of the radial gradient histogram values at the first 

subtraction series 

16 Smoothness3 Mean of the radial gradient histogram values at the 

subtraction series where it takes its maximum value 

17 Smoothness4 Variation of the radial gradient histogram values at the 

subtraction series where it takes its maximum value 

18 Sharpness1 Mean of the sharpness of the lesion margin at the first 

subtraction series 

19 Sharpness2 Variation in the sharpness of the lesion margin at the first 

subtraction series 

20 Sharpness3 

 

Mean of the sharpness of the lesion margin at the subtraction 

series where it takes its maximum value 

21 Sharpness4 Variation of the sharpness of the lesion margin at the 

subtraction series where it takes its maximum value 

22 Sharpness5 Variance of sharpness of the lesion margin at the subtraction 

series with maximum mean sharpness 

T2 (27) 
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23 T2 

minimum/pec* 

Minimum intensity in lesion volume 

24 T2 Q05/pec 5th Percentile of the intensities present in the lesion volume 

25 T2 Q10/pec 10th Percentile of the intensities present in the lesion volume 

26 T2 Q25/pec 25th Percentile of the intensities present in the lesion volume 

27 T2 Q50/pec 50th Percentile of the intensities present in the lesion volume 

28 T2 Q75/pec 75th Percentile of the intensities present in the lesion volume 

29 T2 Q90/pec 90th Percentile of the intensities present in the lesion volume 

30 T2 Q95/pec  95th Percentile of the intensities present in the lesion volume 

31 T2 maximum/pec Maximum of the intensities present in the lesion volume 

Fast-DCE (24) 

32 Maximum slope Maximum slope of uptake contrast agent in lesion volume 

33 Maximum 

enhancement 

Maximal normalized intensity in lesion volume 

34 Time maximum 

slope 

Time between maximum slope of contrast uptake in 

descending aorta and lesion volume 

35 Final slope 

(washout) 

Intensity gradient at last time point of Fast-DCE 

36 General slope 

(uptake) 

Maximal slope of contrast uptake in lesion between time 

point aorta and any other time point during contrast uptake. 

37 Time to 

enhancement 

Time between maximum contrast uptake in descending aorta 

and start contrast uptake in lesion volume 

ADC (27) 

38 Minimum ADC Minimum intensity in lesion volume 

39 Q05 ADC 5th Percentile of the intensities present in the lesion volume 

40 Q10 ADC 10th Percentile of the intensities present in the lesion volume 

41 Q25 ADC 25th Percentile of the intensities present in the lesion volume 

42 Q50 ADC 50th Percentile of the intensities present in the lesion volume 

43 Q75 ADC 75th Percentile of the intensities present in the lesion volume 

44 Q90 ADC 90th Percentile of the intensities present in the lesion volume 

45 Q95 ADC 95th Percentile of the intensities present in the lesion volume 

46 Maximum ADC Maximum of the intensities present in the lesion volume 

*pec = pectoral muscle, T2 intensities were normalized to the intensity of the pectoral muscle 

 

MRI acquisition 

Patients underwent MRI in prone position using a Philips 3T MR scanner 

(Achieva or Ingenia) with a dedicated phased-array bilateral breast coil. The 

MRI protocols included T1-weighted high-spatial resolution DCE-MRI, high-

temporal-resolution DCE imaging (fast-DCE), T2-weighted imaging, and 

diffusion-weighted imaging (DWI). DCE-MRI consisted of a high-spatial-

resolution pre-contrast series, followed by a high-temporal-resolution series after 

contrast agent injection, followed by 4 or 5 high-spatial-resolution images. 
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Imaging parameters of the high-spatial DCE-MRI were: repetition time ranging 

between 3.3 and 5.1 ms, flip angle 10° or 8°, and echo time 2 ms. Parameters of 

the high-temporal DCE-MRI were: repetition time 2.2 ms, flip angle 10° or 8°, 

and echo time 1.1 ms. Parameters of the T2-weighted imaging were: repetition 

time ranging between 5431 and 5959 ms, flip angle 90°, and echo time 60 or 100 

ms. The DWI was performed using three b-values (0, 150, and 800 s/mm2). 

Contrast agent was injected at a rate of 1 ml/sec to a total dose of 0.1 mmol of 

macrocyclic GBCA gadobutrol (Gadovist ®, Bayer AG, Leverkusen, Germany) 

per kilogram of body weight (35).   

 

Image analysis 

Image analysis mainly consisted of registration, semi-automatic lesion 

segmentation, and multiparametric MRI feature extraction, which has been 

described in detail before (27). In short, intensity-based image registration of 

DCE series was performed using Elastix (36). The additional lesions were semi-

automatically segmented in 4-D by placing a seed point for constrained volume 

growing in the target lesion (37). Lesions were segmented by medical doctors 

HW and MAAR on the basis of lesion location, shape and size using radiological 

reports, followed by consensus reading by a breast MRI radiologist (WBV.) in 

case of ambiguity.  

 

Image analysis was performed using MeVisLab (version 3.0, MeVis Medical 

Solution AG, Bremen, Germany), Python (version 2.7, Python Software 

Foundation, Beaverton, OR, USA), and MATLAB (version R2017a; Mathworks, 

Natick, MA, USA). 

 

MRI features 

Each lesion was described using 46 radiomic CAD features extracted from MRI: 

22 DCE features representing morphology and enhancement kinetics (38,39), six 

fast-DCE features describing contrast uptake (24) nine T2 intensity features, and 

nine ADC features (Table1). Missing feature values in the training cohort were 

imputed by multiple imputation. Ten imputation sets were merged based on the 

mean imputed values (40–42). Features in the testing cohort were complete 

without missing values. 

 

TABLE 2.1 Distribution of clinical features in the training cohort 

Number of additional lesions Total 

N=101 

Benign  

N=51 

Malignant 

 N=50 

Patients Age (years, mean±SD) 54.5±11.6 53.1±11.7 55.9±11.4 
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Additional 

 lesions 

BIRADS category 

BIRADS 2/3 18(18) 17(33) 1(2) 

BIRADS 4 57(56) 29(57) 28(56) 

BIRADS 5/6 26(26) 5(10) 21(42) 

Laterality (ipsilateral/contralateral) 

Ipsilateral 55(54) 21(41) 34(68) 

Contralateral  46(46) 30(59) 16(32) 

Visibility on Ultrasound 

Visible  50(50) 18(35) 32(64) 

Invisible 51(50) 33(65) 18(36) 

SD= standard deviation. Numbers represent frequency (percentage) unless stated otherwise.  

 

TABLE 2.2 Distribution of clinical features in the testing cohort 

Number of additional lesions Total 

N=55 

Benign  

N=23 

Malignant 

 N=32 

Patients Age (years, mean ± SD) 58.5±12 56.4±12.6 60±11.4 

Additional 

 lesions 

BIRADS category 

BIRADS 2/3 9(16) 9(39) 0(0) 

BIRADS 4 28(51) 13(57) 15(47) 

BIRADS 5/6 18(33) 1(4) 17(53) 

Laterality (ipsilateral/contralateral) 

Ipsilateral  33(60) 9(39) 24(75) 

Contralateral 22(40) 14(61) 8(25) 

Visibility on Ultrasound 

Visible  36(65) 12(52) 24(75) 

Invisible  19(35) 11(48) 8(25) 

SD=standard deviation. Numbers represent frequency (percentage) unless stated otherwise. 

 

Clinical features 

Clinical features were collected by reviewing the medical records, i.e., the 

ultrasound report, the MRI report, the biopsy report, and the surgical report. The 

clinical features were limited to those available preoperatively, including 1) age 

of the patient at diagnosis; 2) Breast Imaging Reporting and Data System 

(BIRADS) score of the additional lesion, grouped in three categories: 2-3, 4, 5-

6; 3) the laterality of the additional lesion with respect to the index tumor 

(ipsilateral or contralateral); and 4) whether the additional lesion was visible on 

ultrasound.  

 

CAD model training  

The CAD model consisted of 50 features in total (46 MRI features and 4 clinical 

features). The influence of outliers in regression models is high when the sample 
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size is small (43). Considering the limited sample size in our study, outliers were  

corrected. They were defined using Tukey’s method, i.e., 1.5 IQR (interquartile 

range) below the lower quartile (Q1) or 1.5 IQR above the upper quartile (Q3). 

Outliers in feature values in the training cohort were winsorized to the nearest 

whisker (44,45), after which the features values were normalized to values 

between 0 and 1.  

 

We used ridge regression with 10-fold cross validation (46) and partial area under 

curve (pAUC) as the loss function. We used pAUC as loss function to be able to 

optimize on high sensitivity at high specificity (i.e., 90% to 100% range) (47). 

We chose the regularization parameter lambda at the value where the pAUC is 

maximum between specificity 90% and 100% in the cross-validation. This 

lambda value was applied to the training set. 

 

TABLE 3.1 Training performance of the CAD model at three operating points 

Operating point Training Performance 

Specificity Sensitivity Median[95%CI] 

90% 72% [61%,86%] 

95% 62% [45%,81%] 

98% 48% [25%,73%] 

CI = Confidence Interval, CAD = Computer-Aided Diagnosis 

 

TABLE 3.2 Testing performance of the CAD model at three operating points  

Training Testing performance 

Specificity Sensitivity Specificity  

90% 81% 78% 

95% 69% 83% 

98% 44% 96% 

CAD = Computer-Aided Diagnosis 

 

Three operating points on the receiver operating characteristic (ROC) curve were 

examined: at 90%, 95%, and 98% specificity, respectively. The 95% confidence 

intervals (95%CI) of the corresponding sensitivities on the fitted ROC curve 

were calculated by bootstrapping (48). Agreement between the observed 

probability of malignancy and predicted probability of malignancy was 

evaluated by calibration-plot analysis and Hosmer-Lemeshow tests (49). A p-

value above 0.05 in the Hosmer-Lemeshow test indicated a good fit. 

CAD model testing  

The CAD model derived from model training was frozen and further tested in 

the independent testing cohort. Feature values in the testing cohort were 
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transformed to the range in the training cohort and normalized to values between 

0 and 1 based on the upper and lower limits in the training cohort. The sensitivity 

and specificity in the testing cohort were calculated by applying the thresholds 

corresponding to 90%, 95%, and 98% specificity in the training cohort. 

 

Differences in clinical variables between training and testing set were tested 

using Chi-squared tests for categorical features and Wilcoxon rank-sum tests for 

continuous features. All CAD model analyses and corresponding statistical 

analyses were performed in R (version 3.4.4, R Foundation for Statistical 

Computing, Vienna, Austria). 

 

FIGURE 2A. Receiver operating characteristic (ROC) curve of the ridge regression 

model. Bars represent 95% CI of sensitivities at specificity 90%, 95% and 98% in the 

fitted ROC curve. Sp = Specificity, Se = Sensitivity.  CI = Confidence Interval. B. 

Calibration plot of the training model. The diagonal gray reference line represents 

perfect calibration. The dashed curve represents the calibration of the model. The x-

axis represents the predicted probability of malignancy of additional lesions and the y-

axis represents the observed probability of malignancy. 

 

Results 

Patients and lesions 

From a total of 316 consecutive patients who received breast MRI between 2013 

and 2016, 87 patients (28%) met the initial inclusion criteria. Five patients were 

further excluded because the segmentation of the additional lesions did not result 

in satisfying demarcations owing to marked background parenchymal 

enhancement (BPE) or marker artifacts. Inaccurate segmentations caused by 

severe masking of the lesion margins by BPE could not be corrected by manual 
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segmentation; The margins were also not sufficiently clear to allow manual 

correction. Finally, 82/87 patients (94%) who met the inclusion criteria were 

included in the training cohort (Figure 1.1). These 82 patients had 101 additional 

lesions; 51 were benign and 50 were malignant (Table 2.1). 

 

The independent hold-out testing cohort was collected separately after training: 

From a total of 187 consecutive patients who received breast MRI in 2017 or 

2018, 49 patients (26%) met the initial inclusion criteria. Two patients were 

further excluded because of prostheses in the breast with the additional lesion, 

and two because the segmentation of the additional lesion was not accurate 

owing to marked BPE. Finally, 45/49 patients (92%) who met the inclusion 

criteria were included in the testing cohort (Figure 1.2). These 45 patients had 

55 additional lesions; 23 were benign and 32 were malignant (Table 2.2). 

 

No significant differences were found in clinical variables between training and 

testing set: age (P=0.054), BIRADS score (P=0.651), laterality (P=0.618), 

visibility on ultrasound (P=0.081) 

 

CAD model training 

The multiparametric CAD model identified 72% [61%, 86%] of the malignant 

lesions at 90% specificity, 62% [45%, 81%] of the malignant lesions at 95% 

specificity, and 48% [25%, 73%] of the malignant lesions at 98% specificity 

(Table 3.1, Figure 2A). The Hosmer-Lemeshow test indicated good fit of the 

model (P=0.29), which was demonstrated by the calibration plot (Figure 2B). 

The coefficients of the features are listed in Figure 3. 

 

CAD model testing 

We applied the training model to the independent testing cohort according to the 

thresholds from the training set at specificity of 90%, 95%, and 98%, resulting 

in sensitivity of 81%, 69%, 44% respectively, and specificity of 78%, 83%, 96% 

respectively (Table 3.2, Figure 4A). The sensitivities in the testing set fell within 

the 95%CI of the training performance. The Hosmer-Lemeshow test between 

predicted and actual probability indicated good fit on the testing set (P=0.36), 

which was demonstrated by the calibration plot (Figure 4B). A representative 

MRI case is shown in Figure 5. 

Discussion 

Incidental MR-detected breast lesions (i.e., additional lesions to the index cancer) 

pose challenges in the preoperative workup of patients with early breast cancer. 
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We constructed a multiparametric CAD model based on ridge regression to 

identify malignant additional breast lesions preoperatively with high specificity. 

The CAD model shows potential to spare patients an MRI-guided biopsy in 

approximately half the number of cases. In the other cases, patients would be 

referred to MRI-guided biopsy.  

 

Quantitative CAD features may contain complementary information to that 

perceived by radiologists. For example, CAD features are representative of tissue 

phenotypes at genetic and molecular level (50). In recent radiogenomics study 

(50) in 295 breast-cancer patients, the radiomic features Uptake, Smoothness, 

and Sharpness were linked with expression of ribosomal proteins in the tumor. 

In addition, Smoothness and Shape were associated with gene expressions 

involved in the extracellular matrix and collagen production, indirectly relating 

to cancer progression. Especially Sharpness shows relatively high absolute 

Ridge regression coefficients in the current study, suggesting that the CAD 

discriminates between benign and malignant lesions using MRI markers related 

to tumor progression at biomolecular tissue level. 

 

CAD is believed to have great potential to aid radiologists in better 

understanding the underlying tumor behavior (51,52). There have been several 

CAD models based on conventional MRI sequences or multiparametric MRI 

sequences for differential diagnosis of lesions detected in the breast. The 

diagnostic performance (AUC) ranged between 0.83 and 0.88 to distinguish 

between benign and malignant disease (21,31,53,54). 

 

To the best of our knowledge, no CAD models have been reported to attempt 

triaging patients in a preoperative setting for MRI-guided biopsy. For this 

purpose, we trained the CAD model to optimize the pAUC to favor high 

specificity models.  While AUC is a routine statistic to evaluate model 

performance, the pAUC statistic has gained increasing popularity because many 

clinical problems require high performance in the region of the ROC curve 

corresponding to high specificity (i.e., to minimize false-positive rate) (47). 

Hence, using the pAUC statistics over a limited range of high specificity (e.g., 

90%-100%) may be more appropriate to consider than AUC over the whole 

range. 
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FIGURE3. Coefficients of features in ridge regression  

The different levels of high 

specificity tested (90%, 

95%, 98%) represent 

different probabilities to 

which the CAD can be set to 

correctly triage patients to 

surgery without biopsy (i.e., 

triage patients without 

causing extended surgery for 

false-positive disease 

extension). The rationale for 

focusing on high specificity 

(i.e., establishing that a 

lesion is malignant with high 

certainty, instead of 

establishing that it is not 

malignant with high 

certainty) is because we 

envision the CAD to be used 

to triage patients to MRI-

guided biopsy or surgery: if 

the CAD shows that the 

lesion is malignant with 

certainty, the patient may 

triage directly to surgery 

(where receptor type can be 

determined). If, however, the 

CAD determines that the 

lesion is not malignant, the 

patient triages to MRI-

guided biopsy to confirm 

absence of cancer, avoiding 

extended surgery due to 

false-positive findings. 

Either way, the result is that 

a number of MRI- guided 

biopsies would be avoided 

without missing cancer. 
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Ridge regression (46) is sometimes used for classification for reasons outlined 

below. In our study, it estimates the posterior probability of a case belonging to 

a certain class. By thresholding this posterior probability, the regression result is 

converted to a hard classification. There are many different classification 

methods possible. Because the aim of our study was not to perform comparative 

analysis of different classification models due to the relatively limited sample 

size, we used the prior knowledge that ridge regression is well suited for 

relatively small datasets; It minimizes the risk of overfitting, and typically shows  

optimal discrimination performance with the lowest prediction error among 

regression shrinkage strategies (55). Ridge regression indicates feature 

importance by the absolute magnitude of the feature coefficients. To trade off 

bias and variance of the model, we used 10-fold cross-validation (56) and tested 

our model in an independent dataset. 

 

Features with high absolute coefficients included three features from the DCE 

series (Sharpness3, Circularity, Signal enhancing ratio), two features from fast-

DCE (Time to enhancement, Final slope), two features from DWI (25th 

percentile ADC, Maximum ADC), and two clinical features (age at diagnosis, 

BIRADS-score). Conversely, T2 features yielded relatively small coefficient 

values, which was consistent with previously published results (27). A recent 

publication concludes that mean ADC is sufficient to improve diagnostic 

performance of breast MRI (57). The results from our multivariable analysis 

show that the 25th percentile of ADC and maximum ADC are important for 

differential diagnosis of additional breast lesions. An underlying reason for these 

differences in observation (apart from the differences in analysis) might be the 

difference in study population and population size. Our population (127 patients, 

156 additional lesions) consists exclusively of preoperative breast-cancer 

patients with additional lesions, whereas the population of McDonald et al. (67 

patients, 81 lesions) also contains patients who underwent breast MRI for other 

indications such as screening. Other studies also suggest value of other measures 

from the ADC histogram (27,58). 

 

The false-positive lesion associated with the highest CAD probability for 

malignant disease in the testing cohort was Lobular Carcinoma in Situ (LCIS). 

LCIS is considered a non-malignant breast lesion, but it is associated with 

increased risk of developing invasive breast cancer (59,60). Although LCIS is 

classified as a benign lesion by histopathology, it is considered a direct precursor 

of invasive lobular carcinoma (61,62). The representation of LCIS on MRI is 
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subtle. LCIS typically shows focally distributed heterogeneous enhancement, or 

irregular mass with homogeneous enhancement (61). The reproducibility of the 

segmentation method was investigated in previous study (37) where two 

independent observers performed the semi-automated segmentation on 46 breast 

lesions, leading to negligible differences in segmentation results (adjusted R-

square value 0.99). In addition, the results in the current study were verified in 

an independent testing database. 

 

 

FIGURE 4A. Receiver operating characteristic (ROC) curve of the testing cohort. 

Black curve: ROC curve of the testing cohort. Gray curve: reference ROC curve of the 

training model, Sp = Specificity, Se = Sensitivity. 4B. Calibration plot of the testing 

cohort. The diagonal gray reference line represents perfect calibration. The dashed 

curve represents the calibration of the model. The x-axis represents the predicted 

probability of malignancy of additional lesions and the y-axis represents the observed 

probability of malignancy.  

 

 

FIGURE 5. Example of a patient with 

an index breast cancer (infiltrating 

ductal carcinoma, IDC) and an 

additional lesion detected on the 

preoperative MRI (arrow). The image 

shows a maximum intensity projection 

of the first postcontrast T1-weighted 

MRI minus the precontrast T1-weighted 

MRI. Computer-aided diagnosis (CAD) 

classified the additional lesion 

(BIRADS 4) as malignant with 

predicted probability of malignancy of 

88%. The lesion was confirmed on 

pathology as IDC. 
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There were some limitations in this study. First, the sample size was limited, 

which was mitigated in part by stringent regularization and by testing the 

performance in an independent cohort. In addition, although we tested our model 

in an independent cohort from our hospital, we have not yet tested it in other 

hospitals. Broader validation of the model is recommended to enable transition 

to clinical practice of CAD-based triaging of MRI-guided biopsy in preoperative 

breast-cancer patients.  

 

To conclude, we presented a multiparametric CAD model that showed potential 

to identify malignant disease extension with near-perfect specificity in 

approximately half the population of preoperative patients originally indicated 

for a breast biopsy. In the other half, patients would still proceed to MRI-guided 

biopsy to confirm absence of malignant disease. These findings demonstrate the 

potential to triage MRI-guided breast biopsy. 
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Abstract 

Background and Objective: Previous studies have shown discrepancies 

between index and synchronous breast cancer in histology and molecular 

phenotype.  It is yet unknown whether this observation also applies to the MR 

imaging phenotype. We aim to investigate whether the appearance of breast 

cancer on MRI (i.e. phenotype) is different from that of additional breast cancer 

(i.e. synchronous cancer), and whether such difference, if it exists, is associated 

with prognosis. 

 

Materials and Methods: 464 consecutive patients with early-stage ER+/HER2- 

breast cancer were included; 34/464 (7.3%) had 44 synchronous cancers in total 

(34 ipsilateral, 10 contralateral). We assessed imaging phenotype using 50 

quantitative features from each cancer and applied principal component analysis 

(PCA) to identify independent properties. The degree of phenotype difference 

was assessed. Association between phenotype differences and prognosis in terms 

of Nottingham prognostic index (NPI) and PREDICT score were analyzed. 

 

Results: PCA identified eight components in patients with ipsilateral 

synchronous cancer. Six out of eight were significantly different between index 

and synchronous cancer. These components represented features describing 

texture (Three Components, P<0.001, P<0.001, P=0.004), size (P<0.001), 

smoothness (P<0.001), and kinetics (P=0.004). Phenotype differences in terms 

of the six components were split in tertiles. Larger phenotype differences in size, 

kinetics and texture were associated with significantly worse prognosis in terms 

of NPI (P=0.019, P=0.045, P=0.014), but not for PREDICT score (P=0.109, 

P=0.479, P=0.109). PCA identified six components in patients with contralateral 

synchronous cancer. None were significantly different from the index cancer 

(P=0.178, P=0.178, P=0.178, P=0.326, P=0.739, P=0.423).  

 

Conclusion: The MRI phenotype of ER+/HER2- breast cancer was different 

from that of ipsilateral synchronous cancer and large phenotype difference was 

associated with worse prognosis. No significant difference was found for 

synchronous contralateral cancer.  
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Introduction 

Synchronous breast cancer refers to breast cancer detected simultaneously with 

an index breast cancer, but is physically separated (1). The incidence of 

synchronous breast cancer varies and is largely dependent on the criteria used in 

imaging and pathology (2,3). Synchronous breast cancer rate can reach as high 

as 38% (4–6). 

Discrepancies in prognostic markers between the index cancers and their 

synchronous counterparts may have impact on systemic treatment of patients (7). 

It has been observed that patients with discrepant prognostic markers between 

index and the corresponding synchronous cancer have worse long-term survival 

than patients with congruent markers (8–12). It is yet unknown, however, 

whether the imaging phenotype of the index cancer also differs from that of the 

synchronous cancer, and if so, whether such difference is related to patient’s 

prognosis.   

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been 

regarded as the most sensitive method for detection of breast cancer, ranging 

between 89% and 100% (13,14). Quantitative analysis of the phenotype of breast 

cancer on MRI may extract subtle but reproducible information that is 

imperceptible to radiologists’ eyes (15,16), thus providing more detail to 

compare phenotypes (17,18). The primary aim of this study was to determine 

whether the MRI phenotypes of index cancers and their synchronous 

counterparts differ in series of consecutive patients with early breast cancer.  The 

second aim was to explore whether this difference, if it exists, is associated with 

patient prognosis. 

Materials and Methods 

Patients and lesions 

This study was performed after approval of the institutional review board and 

with written informed consent of all patients. In total, 628 patients were 

collected. We retrospectively analyzed the prospectively collected data from the 

MARGINS study (Multi-modality Analysis and Radiological Guidance IN 

breast conServing therapy), which was conducted between 2000 and 2008, 

patients who were included after being diagnosed with early-stage breast cancer 

for which breast conserving therapy was indicated based on physical 

examination, mammography, and ultrasound, had an additional preoperative 

breast MRI. The index breast cancer was confirmed by fine-needle aspiration 
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cytology or core needle biopsy.  

 

We evaluated patients with pathology-proven synchronous breast cancer.  To 

eliminate the influence of intrinsic differences in terms of immunohistochemical 

(IHC) subtype of the index breast cancer, and due to limitation of sample size, 

we focused on patients with estrogen receptor positive and human epidermal 

growth factor receptor 2 negative (ER+/HER2-) primary cancer.  

 

Clinicohistopathological variables included age at diagnosis, location of 

synchronous cancer (ipsilateral or contralateral), largest diameter of index and 

synchronous breast cancer, number of positive axillary lymph nodes, histologic 

grade, and IHC subtype of index cancer. 

 

The number of positive lymph nodes was determined by sentinel node biopsy, 

and combined with axillary lymph node dissection where available. The cases 

were grouped into three categories: none, one to three, and four or more positive 

lymph nodes. 

 

Histologic grade was assessed according to the Bloom and Richardson 

classification (19). Tumors were classified as estrogen receptor positive if more 

than 10% of the cells were stained positive. Tumors were classified as HER2 

positive when scored at least 3 at IHC or when in situ hybridization demonstrated 

gene amplification, otherwise classified as HER2 negative.  

 

FIGURE 1. Flowchart of selection of patients included in this study 

 

Imaging phenotype identification 

Patients underwent MRI in prone position using a 1.5 T scanner (Magnetom;  
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TABLE 1. Feature list extracted from DCE-MRI 

ID Texture Feature list  ID Conventional Feature list 

1 washin_Angular_Second_Moment 29 circularity 

2 washin_Contrast 30 irregularity 

3 washin_Correlation 31 volume 

4 washin_Sum_of_Squares._Variance 32 largest_diameter 

5 washin_Inverse_Difference_Moment 33 uptake_speed 

6 washin_Sum_Average 34 washout 

7 washin_Sum_Variance 35 SER 

8 washin_Sum_Entropy 36 top_init_enhancment 

9 washin_Entropy 37 top_late_enhancment 

10 washin_Difference_Variance 38 vol_init_enhancment_GT100 

11 washin_Difference_Entropy 39 ld_init_enhancment_GT100 

12 washin_ Measure_of_Correlation_1 40 volume_late_LT0 

13 washin _Measure_of_Correlation_2 41 largest_ diameter_late_LT0 

14 washin_Maximal_Correlation_ 

Coefficient 

42 mean_sharpness 

15 washout_Angular_Second_Moment 43 variation _sharpness 

16 washout_Contrast 44 mean_sharpness_frame2 

17 washout_Correlation 45 variation _sharpness_frame2 

18 washout_Sum_of_Squares._Variance 46 variation_smoothness 

19 washout_Inverse_Difference_Moment 47 mean_smoothness 

20 washout_Sum_Average 48 std_rgh_val_frame2 

21 washout_Sum_Variance 49 rad_grad_ind_frame2 

22 washout_Sum_Entropy 50 lesion_to_nipple_relative_ 

distance 

23 washout_Entropy   

24 washout_Difference_Variance   

25 washout_Difference_Entropy   

26 washout_ Measure_of_Correlation_1   

27 washout_ Measure_of_Correlation_2   

28 washout_Maximal_Correlation_ 

Coefficient 

  

 

 

 

DCE-MRI = Dynamic Contrast-Enhanced Magnetic Resonance Imaging 

 

Siemens Medical Systems, Erlangen, Germany) with a double-breast array coil. 

Five consecutive scans at intervals of 90 s were performed: one prior to and four 

after contrast administration. Contrast-enhanced scans were made after 

intravenous injection with the gadolinium-based contrast agent Gadoteridol 

(Prohance; Bracco- Byk Gulden, Konstanz, Germany) at 0.1 mmol/ kg body 
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weight. The following parameters were used: 3-D coronal T1-weighted 

sequence; repetition time 8.1 ms; echo time 4.0 ms; isotropic voxels 1.35 x 1.35 

x 1.35 mm3, without fat suppression. 

 

The index breast cancer and the corresponding synchronous cancer were 

segmented using a semi-automatic method that was previously reported (20-21). 

A dedicated breast radiologist (CL) with more than 15 years of experience 

manually checked the segmentations. The imaging phenotype of each 

segmentation was described using 50 features: 21 features representing the size, 

sharpness, smoothness, and enhancement kinetics (22-23). 28 texture features of 

wash-in and washout (24), and 1 feature describing the relative distance of the 

cancer to the nipple in relation to breast size in the inferior-posterior direction. 

The position of the cancer was defined by the center of mass of the segmentation. 

These features were extracted using in-house developed software in C++ and 

Python3.7.3, texture features were extracted using the Mahotas package (25). 

These 50 features were listed in Table 1. 

 

Phenotype difference analysis 

Association between phenotype difference and prognosis in terms of Nottingham 

prognostic index (NPI) and PREDICT score were analyzed. NPI was defined as 

 

TABLE 2. Characteristics of patients and cancers 

 Features Total 

(N =44) 

Ipsilateral 

(N=34) 

Contralatera

l 

(N=10) Patient Age 

(years, mean ±SD) 

53.5±7.5 52.5±7.8 57.1±5.4 

Synchronous 

breast cancer 

Largest Diameter 

(mm, mean ±SD) 

11.9±3.7 11.3±3.4 13.9±3.8 

Index cancer 

Largest Diameter 

(mm, mean ±SD)  

 

21.7±9.1 21.7±8.3 21.6±11.8 

Histological grade    

Grade I 19(43) 14(41) 5(50) 

Grade II 23(52) 18(53) 5(50) 

Grade III 2(5) 2(6) 0(0) 

Lymph nodes positive    

0 25 (57) 17(50) 8(80) 

1 to 3 13(30) 12(35) 1(10) 

4 or more 6(13) 5(15) 1(10) 

SD = Standard deviation. Numbers represent frequency (percentage) unless 

stated otherwise. 
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(0.2*S) + N + G, where S represents the largest diameter of the index cancer in 

centimeter; N is 1 for no positive lymph node, 2 for 1 to 3 positive lymph nodes, 

and 3 for more than 3 positive lymph nodes; and G is the histologic grade (26). 

The PREDICT score was calculated through the PREDICT version 2.1 model 

(27), which is a breast cancer prognostication and treatment benefit prediction 

model, and estimates 10-year survival probability on the basis of patient age, 

tumor size, tumor grade, number of positive nodes, ER status, HER2 status, KI67 

status, mode of detection, and adjuvant chemotherapy regimen. 

 

TABLE 3. Ipsilateral group, PCA identified 8 components explaining 92% variance 

 RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 

Eigenvalue 23.3  7.4  6.0  3.3  2.1  1.7  1.3  1.0  

Variance% 27% 25% 11% 9% 7% 7% 4% 2% 

Cumulative Variance% 27% 52% 63% 72% 79% 86% 90% 92% 

PCA = Principal Component Analysis; RC= Rotated Component    

RC1=Texture1; RC2= Texture2+Size; RC3=Sharpness+Kinetics1; RC4= Smoothness; 

RC5= Texture3; RC6= Kinetics2; RC7= Texture4; RC8=Location 
 
 

TABLE 4. Contralateral group, PCA identified 6 components explaining 92% variance 

 RC1 RC2 RC3 RC4 RC5 RC6 

Eigenvalue 24.7  7.2  5.8  4.2  2.4  1.6  

Variance% 28% 27% 15% 9% 9% 4% 

Cumulative Variance% 28% 55% 70% 79% 88% 92% 

PCA = Principal Component Analysis; RC = Rotated Component; LD = Largest Diameter 

RC1=Texture1+Volume; RC2= Texture2+LD; RC3=Smoothness; RC4= Kinetics+ Location; 

RC5= Texture3+ Sharpness; RC6= Texture4 

  

Statistical analysis 

Outliers in feature values were winsorized to the nearest whisker (28). Principal 

component analysis (PCA) with varimax-rotation was performed. Components 

describing at least 90% cumulative variance were analyzed (29). The PCA 

yielded a score per component per lesion. These scores were compared between 

the index and synchronous cancers using the Wilcoxon rank sum test. Analysis 

was conducted independently for ipsilateral and contralateral synchronous 

cancers. Since multiple tests were performed, the Benjamini-Hochberg method 

was used to control the false discovery rate (FDR) (30). FDR-adjusted-P values 

lower than 0.05 were considered to be significant. Association between the 
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differences in these PCA scores and NPI and PREDICT scores were analyzed 

using the Wilcoxon rank sum test. All statistical analysis was performed using R 

version 3.5.2.  

 

Results 

Patients and lesions 

Among a total of 628 patients, 464/628 (73.9%) patients had ER+/HER2- index 

cancer, 34/464 (7.3%) of whom had 44 synchronous breast cancers in total; 

83/628 (13.2%) patients had HER2+ index cancer, 4/83 (4.8%) of whom had 4 

synchronous breast cancers in total; 81/628 (12.9%) patients had triple negative 

index cancer, 6/81 (7.4%) of whom had 8 synchronous breast cancers in total 

(Figure 1). Finally, 34 patients with 44 synchronous breast cancers in total were 

included. Among the 44 synchronous cancers, 34 were in the ipsilateral breast 

and 10 were in the contralateral breast (Figure1). The average age of patients at 

diagnosis was 54 years. The average diameter of the index cancers and the 

synchronous cancers was 21.7mm and 11.9 mm, respectively (Table 2).  

 

FIGURE 2. MRI phenotype of breast cancer (expressed in quantitative component score) (y-

axis) for the index breast cancer and ipsilateral synchronous cancer (x-axis) (RC=Rotated 

Component, Syn=Synchronous breast cancer, Index=Index breast cancer). 
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FIGURE 3. MRI phenotype of breast cancer (expressed in quantitative component score) (y-

axis) for the index breast cancer and contralateral synchronous cancer (x-axis) (RC Rotated 

Component, Syn Synchronous breast cancer, Index Index breast cancer). 

 

Imaging phenotype  

Ipsilateral  

For the patients with ipsilateral synchronous breast cancer, PCA identified eight 

components explaining 92% cumulative variance (Table 3). Components 1, 5 

and 7 mainly represented texture, component 2 mainly represented texture and 

size of cancer, components 3 represented sharpness and uptake speed, 

component 4, 6, 8 represented smoothness, kinetics and relative distance of the 

cancer to the nipple, respectively. 

 

Six out of eight components were significantly different between index and the 

synchronous cancers after FDR-adjustment. These components represented 

features describing texture (Component 1 (P<0.001), component 5 (P<0.001), 

and component 7 (P=0.004)), size (Component 2, P<0.001), smoothness 
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(Component 4, P<0.001), and kinetics (Component 6, P=0.004). Components 3 

and 8 were not significantly different between index and the synchronous breast 

cancers (P=0.859, P=0.809) (Figure 2). 

 

Contralateral 

For the patients with contralateral synchronous cancer, PCA identified six 

components explaining 92% cumulative variance (Table 4). Components 1 

represented texture and  

cancer volume, component 2 represented texture and largest diameter of cancer, 

component 3 represented smoothness, component 4 represented kinetics and 

relative distance to the nipple, component 5 represented sharpness and texture, 

component 6 represented texture. None of these six components were found to 

be significantly different between index and the synchronous breast cancer 

(P=0.178, P=0.178, P=0.178, P=0.326, P=0.739, P=0.423). (Figure 3). 

 

TABLE 5. For patients with ipsilateral synchronous cancer, association between 

phenotype difference with prognosis. 

 NPI PREDICT 

1stTertile 3rdTertile P 1stTertile 3rdTertile P 

RC1 3.5(3.3,4.5) 4.5(3.3,4.7) 0.310  81% (67%, 83%) 66% (62%, 85%) 0.975 

RC2 3.3(3.2,3.3) 4.5(3.5,4.6) 0.019  83% (73%, 84%) 66% (62%, 79%) 0.109 

RC4 3.3(3.2,3.8) 4.5(4.1,4.6) 0.139  82% (71%, 84%) 63% (54%, 77%) 0.242 

RC5 3.3(3.2,3.7) 3.5(3.3,4.5) 0.096  82% (71%, 84%) 80% (66%, 85%) 0.853 

RC6 3.3(3.2,3.9) 4.5(3.4,4.7) 0.045  80% (69%, 85%) 73% (64%, 82%) 0.479 

RC7 3.3(3,3.6) 4.5(3.5,4.6) 0.014  82% (71%, 90%) 66% (54%, 80%) 0.109 

Numbers represent median (Q1, Q3) Q1, First quantile, Q3, Third quantile. 1stTertile 

and 3rdTertile means first and third tertile of phenotype difference. RC = Rotated 

Component; NPI = Nottingham Prognostic Index. 

 

Phenotype difference and prognosis 

For patients with ipsilateral synchronous cancer, the phenotype differences in the six 

components that were significantly different between index and the synchronous cancer 

were split in tertiles into small, medium and large differences.  Compared with small 

phenotype difference, large phenotype difference in terms of lesion size and texture 

(component 2), kinetics (component 6) and texture (components 7) were associated 

with significantly higher NPI （P=0.019，P=0.045, P=0.014 for component 2, 6, 7, 

respectively), while we did not find significantly different PREDICT score between 

small and large phenotype difference groups (P=0.109，P=0.479, P=0.109 for 

component 2, 6, 7, respectively) (Figure 4, Figure 5 and Table 5). 
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FIGURE 4. Association between Phenotype difference (Large and small group)with prognosis 

in terms of NPI and PREDICT score (NPI Nottingham Prognostic Index). P value indicates the 

significance of Wilcoxon rank sum test (RC Rotated Component, small 1st Tertile phenotype 

difference, large 3rd Tertile phenotype difference). 

 

Discussion 

In 34 patients with 44 synchronous breast cancers, we found that the imaging phenotype 

differed between index cancer and the corresponding synchronous cancers in the 

ipsilateral breast. Furthermore, patients with a large phenotype discrepancy between 

index and the ipsilateral synchronous cancer had relatively inferior prognosis in terms 

of NPI. In patients with contralateral synchronous breast cancer, no significant 

difference in imaging phenotype was observed. 

 

The proportion of synchronous tumor foci detected on MRI varies considerably. In our 

study, we found 34/464 (7.3%) patients with synchronous breast cancer, which is 
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consistent with prior studies showing a frequency of 6% to 34% (31). 

 

Our results indicated that the size of ER+/HER2- index breast cancers were larger than 

that of ipsilateral synchronous breast cancers. PCA identified eight components, 

component 2 was related to size and were indeed significantly different between index 

and synchronous cancer. In addition to size, texture, smoothness, and kinetics were also 

significantly different between index and ipsilateral synchronous cancer. 

 

Synchronous breast cancer could result from intramammary spreading of index breast 

cancer with a similar phenotype. It could also develop independently, originating from 

separate progenitor cells and having a different phenotype (32). The discrepancy 

between index breast cancer and synchronous cancer observed on the ipsilateral side in 

our study is in agreement with the reported discrepancies in histological tumor grade 

(10), tumor type (33), and molecular phenotype (12).  

 

FIGURE 5. The top row shows the maximum intensity projection, the middle row shows the 

index breast cancer and the third row shows the synchronous cancer. a-c Index breast cancer 

and ipsilateral synchronous breast cancer in DCE-MRI. Patient A, 52 years old, largest 

diameter of index cancer and ipsilateral synchronous cancer were 28 mm and 20 mm 

respectively. Nottingham Prognostic Index is 4.56, and PREDICT score is 73.2% (10 year 

survival probability), which indicated that patientA has relatively bad prognosis. d-f Index 

breast cancer and contralateral synchronous breast cancer in DCE-MRI. Patient B, 61 years 

old, largest diameter of index cancer and contralateral synchronous cancer were 14 mm and 12 

mm respectively. Nottingham Prognostic Index is 3.28, and PREDICT score is 87.6% (10 year 

survival probability), which indicated that patient B has relatively good prognosis. 
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In this study we used computer-extracted descriptions of the phenotype of the 

breast cancers. It has been increasingly accepted that quantitative features 

extracted from radiological images contain more detailed information than those 

perceived by radiologists in qualitative studies (34). These features represent 

phenotypes of the tissues that might reflect underlying information such as 

genetics. Since we have found significant phenotype differences between index 

and the synchronous breast cancers, the question arose whether such phenotype 

differences have the potential to serve as a non-invasive indicator of long-term 

prognosis before treatment, so as to provide insight into individualized treatment. 

For the six components that significantly differ between index and the 

synchronous breast cancers, the results indicated that larger differences of the 

phenotype in terms of size, kinetics and texture were indicative of worse 

prognosis in terms of NPI for ER+/HER2- breast cancer. Although the 

corresponding PREDICT score was not significantly different between small and 

large phenotype difference, to some extent, this could be attributed to the 

relatively small sample size. 

 

We did not find a statistically significant discrepancy between index breast 

cancer and the synchronous cancer on the contralateral side. On one hand, this 

may be ascribed to the small sample size in our study. On the other hand, this 

result is in line with the literature, describing an agreement between index cancer 

and synchronous cancer on the contralateral side in terms of tumor associated 

antigens: bilateral breast cancers have been subjected to similar hormonal, 

environmental, and genetic influences during tumorigenesis (6,35). Therefore, it 

is reasonable that tumor phenotype in synchronous bilateral breast cancer may 

display similar biological characteristics. It should be noted, however, that these 

results are based on a limited amount of data. 

 

The main limitation of this study is small sample size. Because of this, we only 

investigated patients with ER+/HER2- index breast cancer that form the majority 

(~70%) of the breast cancer population. For patients with HER2+ and triple 

negative index cancer, we lack statistical power. Nonetheless, it would be 

interesting to expand these analyses to HER2+ and triple negative breast cancer 

patients.  

 

In conclusion, the MRI phenotype of ER+/HER2- breast cancer was significantly 

different from that of ipsilateral synchronous breast cancer, and a large 

phenotype difference was associated with relatively worse prognosis in terms of 
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NPI. Significant phenotype differences were not found for contralateral 

synchronous cancers. 

  

References 

1.  Jain S, Rezo A, Shadbolt B, Dahlstrom JE. Synchronous multiple ipsilateral breast 

cancers: Implications for patient management. Pathology. 2009;41(1):57–67. 

2.  Newman LA, Sahin AA, Bondy ML, et al. A case-control study of unilateral and 

bilateral breast carcinoma patients. Cancer. 2001;91(10):1845–1853. 

3.  Pekar G, Gere M, Tarjan M, Hellberg D, Tot T. Molecular phenotype of the foci in 

multifocal invasive breast carcinomas: Intertumoral heterogeneity is related to shorter 

survival and may influence the choice of therapy. Cancer. 2014;120(1):26–34. 

4.  Tot T, Pekár G. Multifocality in “basal-like” breast carcinomas and its influence on 

lymph node status. Annals of Surgical Oncology. 2011;18(6):1671–1677. 

5.  Tot T, Gere M, Pekár G, et al. Breast cancer multifocality, disease extent, and 

survival. Human Pathology. Elsevier Inc.; 2011;42(11):1761–1769. 

6.  Kollias J, Pinder SE, Denley HE, et al. Phenotypic similarities in bilateral breast 

cancer. Breast Cancer Research and Treatment. 2004;85(3):255–261. 

7.  Srigley JR, Amin MB, Delahunt B, et al. Protocol for the examination of specimens 

from patients with invasive carcinoma of renal tubular origin. Archives of Pathology 

and Laboratory Medicine. 2010;134(4):1–32. 

8.  Garimella V, Long ED, O’Kane SL, Drew PJ, Cawkwell L. Oestrogen and 

progesterone receptor status of individual foci in multifocal invasive ductal breast 

cancer. Acta Oncologica. 2007;46(2):204–207. 

9.  Boros M, Marian C, Moldovan C, Stolnicu S. Morphological heterogeneity of the 

simultaneous ipsilateral invasive tumor foci in breast carcinoma: A retrospective study 

of 418 cases of carcinomas. Pathology Research and Practice. Elsevier GmbH.; 

2012;208(10):604–609. 

10.  Buggi F, Folli S, Curcio A, et al. Multicentric/multifocal breast cancer with a single 

histotype: Is the biological characterization of all individual FOCI justified? Annals of 

Oncology. 2012;23(8):2042–2046. 

11.  Desmedt C, Fumagalli D, Pietri E, et al. Uncovering the genomic heterogeneity of 

multifocal breast cancer. Journal of Pathology. 2015;236(4):457–466. 

12.  Navale P, Bleiweiss IJ, Jaffer S, Nayak A. Evaluation of biomarkers in multiple 

ipsilateral synchronous invasive breast carcinomas. Archives of Pathology and 

Laboratory Medicine. 2019;143(2):190–196. 

13.  Turnbull L, Brown S, Harvey I, et al. Comparative effectiveness of MRI in breast 

cancer (COMICE) trial: a randomised controlled trial. The Lancet. Elsevier Ltd; 

2010;375(9714):563–571. 

14.  Bedrosian I, Mick R, Orel SG, et al. Changes in the surgical management of 

patients with breast carcinoma based on preoperative magnetic resonance imaging. 

Cancer. 2003;98(3):468–473. 

15.  Li H, Zhu Y, Burnside ES, et al. MR imaging radiomics signatures for Predicting 



85 
 

the risk of Breast cancer recurrence as given by research Versions of MammaPrint, 

Oncotype DX, and PaM50 gene assays. Radiology. 2016;281(2):382–391. 

16.  Tobias H, Merkle EM, Reiner CS, et al. Reproducibility of dynamic contrast-

enhanced MR imaging: Part II. comparison of intra- and interobserver variability with 

manual region of interest placement versus semiautomatic lesion segmentation and 

histogram analysis. Radiology. 2013;266(3):812–821. 

17.  Grimm LJ. Breast MRI radiogenomics: Current status and research implications. 

Journal of Magnetic Resonance Imaging. 2016;43(6):1269–1278. 

18.  Mazurowski MA. Radiogenomics: What It Is and Why It Is Important. Journal of 

the American College of Radiology. American College of Radiology; 2015;12(8):862–

866. 

19.  Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer a 

study of 1409 cases of which 359 have been followed for 15 years. British Journal of 

Cancer. 1957;11(3):359–377. 

20.  Dmitriev ID, Loo CE, Vogel W V, Pengel KE, A Gilhuijs KG. Fully automated 

deformable registration of breast DCE-MRI and PET/CT. Phys Med Biol. 

2013;58(4):1221–1233. 

21.  Alderliesten T, Schlief A, Peterse J, et al. Validation of semiautomatic measurement 

of the extent of breast tumors using contrast-enhanced magnetic resonance imaging. 

Invest Radiol. 2007;42(1):42–49. 

22.  Gilhuijs KGA, Giger ML, Bick U. Computerized analysis of breast lesions in three 

dimensions using dynamic magnetic-resonance imaging. Medical Physics. 

1998;25(9):1647–1654. 

23.  Gilhuijs KGA, Deurloo EE, Muller SH, Peterse JL, Schultze Kool LJ. Breast MR 

imaging in women at increased lifetime risk of breast cancer: clinical system for 

computerized assessment of breast lesions initial results. Radiology. 2002;225(3):907–

916. 

24.  Manjunath BS, Ma W-Y. Texture Features for Image Retrieval. Image Databases. 

2003. bl 313–344. 

25.  Coelho LP. Mahotas : Open source software for scriptable computer vision. Journal 

of Open Research Software. 2013;1–13. 

26.  Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham prognostic index in 

primary breast cancer. Breast Cancer Research and Treatment. 1992;22(3):207–219. 

27.  Candido dos Reis FJ, Wishart GC, Dicks EM, et al. An updated PREDICT breast 

cancer prognostication and treatment benefit prediction model with independent 

validation. Breast Cancer Research. Breast Cancer Research; 2017;19(1):1–13. 

28.  Hellerstein JM. Quantitative Data Cleaning for Large Databases. United Nations 

Economic Commission for Europe. 2008;42. 

29.  Rose W. Principal component analysis: Principal component analysis. Wiley 

Interdisciplinary Reviews: Computational Statistics. 2010;2(4):433–459. 

30.  Chatelain F. A tutorial on multiple testing: False discovery control. EAS 

Publications Series. 2016;78–79:163–178. 

31.  Houssami N, Ciatto S, Macaskill P, et al. Accuracy and surgical impact of magnetic 

resonance imaging in breast cancer staging: Systematic review and meta-analysis in 



86 
 

detection of multifocal and multicentric cancer. Journal of Clinical Oncology. 

2008;26(19):3248–3258. 

32.  Middleton LP, Vlastos G, Mirza NQ, Evasingletary S, Sahin AA. Multicentric 

mammary carcinoma: Evidence of monoclonal proliferation. Cancer. 2002;94(7):1910–

1916. 

33.  Choi Y, Kim EJ, Seol H, et al. The hormone receptor, human epidermal growth 

factor receptor 2, and molecular subtype status of individual tumor foci in 

multifocal/multicentric invasive ductal carcinoma of breast. Human Pathology. Elsevier 

Inc.; 2012;43(1):48–55. 

34.  Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they 

are data. Radiology. 2016;278(2):563–577. 

35.  Lundy J, Mishriki Y, Varma AO, Kufe D, Schuss A. Tumor‐associated antigens in 

bilateral breast cancer. Journal of Surgical Oncology. 1987;35(1):24–29 

 

 

 

 

 

 

  



 
 

 

 

 

Chapter 6 
 

  Summary and Discussion 

 

 

 

 

 

 

  



88 
 

English Summary 
We aimed to investigate whether the imaging phenotype of healthy breast tissue 

and breast lesions on dynamic contrast-enhanced MRI (DCE-MRI) have 

potential to support the decision making in screening, diagnostic workflow and 

treatment.  

 

Traditional biomarkers, such as histological tumor grade, tumor type, and 

molecular subtype (receptor status) are dependent on the invasive sampling of 

the areas suspicious of breast cancer. In contrast, MRI not only investigates the 

whole tumor in vivo, therefore reducing the potential risk of sampling errors, but 

also evaluates the surrounding tissues (e.g., background parenchymal 

enhancement [BPE]). MRI has therefore been routinely used in many state-of-

the-art breast imaging units. 

 

In the past decade, there have been tremendous advances in medical imaging and 

revolutionary development in artificial intelligence, which have contributed to 

the progress in clinical decision-making. In the current thesis, we explored 

artificial intelligence applications that can be seamlessly integrated into the 

current clinical workflow, and explored the potential of imaging biomarkers 

derived from dynamic contrast-enhanced DCE-MRI to support the decision-

making in screening, diagnostic workflow and treatment. 

 

In Chapter 2, we automated BPE rating from DCE-MRI using machine learning 

without compromising the underlying association between manual rating of BPE 

and breast cancer occurrence. A combination of Random Forests, Naïve Bayes, 

and KNN classifiers with majority voting was used to predict BPE category with 

a cross-validated prediction accuracy of 0.76. The hazard ratio of BPE for breast 

cancer occurrence was comparable between automated rating and manual rating 

(Hazard Ratio =2.12 versus Hazard Ratio =1.97, P=0.65) for categories “mild, 

moderate, marked” relative to category “minimal”. 

 

In Chapter 3, we automatically identified quantitative properties of the breast 

parenchyma on baseline DCE MRI scans and assessed their association with 

breast cancer occurrence. After adjustment for age, body mass index, and BPE, 

multivariable analysis showed that breast cancer occurrence was greater in 

women with higher volumes of enhancing parenchyma compared to that in 

women with low volumes of enhancing parenchyma (Hazard Ratio=2.09, P 

=0.005). 
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In Chapter 4, we constructed a multiparametric computer-aided diagnosis (CAD) 

model based on ridge regression to preoperatively identify malignant additional 

breast lesions with high specificity. The CAD model showed potential to identify 

malignant disease extension with near-perfect specificity in approximately half 

the population of preoperative patients originally indicated for a breast biopsy. If 

implemented in clinical practice, these women could be triaged directly to 

surgery while patients in the other half would still need to proceed to MRI-guided 

biopsy to confirm absence of malignant disease. These findings demonstrate the 

potential to triage women to MRI-guided breast biopsy.  

 

In Chapter 5, we investigated the imaging phenotype of the index cancer and its 

synchronous cancers derived from DCE-MRI, and found that the MRI phenotype 

of ER+/HER2– breast cancer was different from that of ipsilateral synchronous 

cancer and a large phenotype difference was associated with worse prognosis. 

Such phenotype differences may have the potential to serve as a noninvasive 

indicator of long-term prognosis before treatment, so as to provide insight into 

individualized treatment.  

 

To conclude, MRI has been an indispensable imaging modality and the 

indication for breast MRI has been expanding. Appropriate use of breast MRI 

may facilitate the personalization of breast disease management. In the current 

thesis, we constructed practical machine learning models which may play a 

potential role in future clinical decision-making in order to save resources and to 

reduce the number of invasive interventions. However, these models need to be 

further validated prospectively on independent data from other hospitals. 
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Nederlandse samenvatting (Dutch Summary)  

 
We onderzochten of het beeldfenotype van gezond borstweefsel en borstlaesies 

op dynamische MRI met contrast (DCE-MRI)  potentie heeft om de 

besluitvorming over screening, diagnostische workflow en behandeling te 

verbeteren. 

 

Traditionele biomarkers, zoals histologische tumorgraad, tumortype en 

moleculair subtype (receptorstatus) zijn afhankelijk van de invasieve 

bemonstering van de gebieden die verdacht zijn voor borstkanker. MRI 

daarentegen onderzoekt niet alleen de gehele tumor in vivo, waardoor het 

potentiële risico van steekproeffouten wordt verkleind, maar evalueert ook de 

omliggende weefsels (bijv. achtergrond parenchymaankleuring [BPE]). MRI 

wordt daarom routinematig gebruikt in veel ziekenhuizen. 

 

In het afgelopen decennium is er enorme vooruitgang geboekt op het gebied van 

medische beeldvorming en zijn er revolutionaire ontwikkelingen geweest op het 

gebied van kunstmatige intelligentie, wat heeft bijgedragen aan de vooruitgang 

in klinische besluitvorming. In dit proefschrift streven we naar een effectieve 

integratie van kunstmatige intelligentie in de klinische praktijk en onderzoeken 

we het potentieel van biomarkers voor beeldvorming afgeleid van DCE-MRI om 

de besluitvorming op het gebied van screening, diagnostische workflow en 

behandeling te ondersteunen. 

 

In Hoofdstuk 2 hebben we de BPE-classificatie van DCE-MRI geautomatiseerd 

met behulp van machine learning zonder afbreuk te doen aan de onderliggende 

associatie tussen handmatige classificatie van BPE en het optreden van 

borstkanker. Een combinatie van Random Forests, Naïve Bayes en KNN-

classifiers met consensusstemming werd gebruikt om de BPE-categorie te 

voorspellen met een gecrossvalideerde voorspellingsnauwkeurigheid van 0,76. 

De hazard ratio van BPE voor het optreden van borstkanker was vergelijkbaar 

tussen geautomatiseerde classificatie en handmatige classificatie (Hazard Ratio 

=2.12 versus Hazard Ratio =1.97, P=0.65) voor categorieën "mild, matig, 

gemarkeerd" ten opzichte van categorie "minimaal". 

 

In Hoofdstuk 3 identificeerden we automatisch kwantitatieve eigenschappen 

van het borstparenchym op baseline DCE MRI-scans en beoordeelden we hun 
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verband met het optreden van borstkanker. Na correctie voor leeftijd, body mass 

index en BPE toonde multivariabele analyse aan dat borstkanker vaker 

voorkwam bij vrouwen met grotere volumes aankleurend parenchym in 

vergelijking met vrouwen met kleine volumes aankleurend parenchym (Hazard 

Ratio=2,09, P =0.005). 

In Hoofdstuk 4 hebben we een multiparametrisch computerondersteund 

diagnosemodel (CAD-model) geconstrueerd op basis van ridgeregressie om 

preoperatief kwaadaardige additionele borstlaesies te identificeren met een hoge 

specificiteit. Het CAD-model toonde potentieel om kwaadaardige uitbreiding 

van de ziekte te identificeren met een bijna perfecte specificiteit in ongeveer de 

helft van de populatie van preoperatieve patiënten die oorspronkelijk waren 

geïndiceerd voor een borstbiopsie. Deze patiënten zouden in de toekomst na 

validatie rechtstreeks naar chirurgie kunnen worden verwezen terwijl patiënten 

in de andere helft van de populatie nog steeds zouden worden doorverwezen naar 

MRI-geleide biopsie om de afwezigheid van kwaadaardige ziekte te bevestigen. 

Deze bevindingen tonen het potentieel aan om patiënten te triageren naar MRI-

geleide borstbiopsie door middel van AI.  

 

In Hoofdstuk 5 onderzochten we het beeldfenotype van de indexkanker en van 

de synchrone kankers afgeleid uit DCE-MRI, en vonden we dat het MRI-

fenotype van ER+/HER2- borstkanker verschilde van dat van ipsilaterale 

synchrone kanker en dat een groot verschil in fenotype geassocieerd was met een 

slechtere prognose. dergelijke fenotypeverschillen kunnen mogelijk dienen als 

een niet-invasieve indicator van de lange-termijn prognose vóór behandeling, om 

zo keuzes te ondersteunen voor geïndividualiseerde behandeling. 

 

Concluderend kan worden gesteld dat MRI een onmisbare 

beeldvormingsmodaliteit is en dat de indicatie voor borst-MRI steeds verder is 

uitgebreid. Adequaat gebruik van MRI voor de borst kan de personalisatie van 

borstziekten vergemakkelijken. In dit proefschrift hebben we enkele praktische 

modellen geconstrueerd gebaseerd op machine-learning die kunnen bijdragen 

aan klinische besluitvorming om zorgcapaciteit effectiever te benutten en het 

aantal invasieve interventies te reduceren. Deze modellen moeten echter 

prospectief verder extern gevalideerd worden in andere ziekenhuizen. 

 

 

 



92 
 

General discussion 
The aim of this thesis was to use machine learning to support triaging decisions 

in screening, diagnostic workflow and treatment by extracting imaging 

biomarkers from healthy breast tissue and breast lesions on dynamic contrast-

enhanced MRI (DCE-MRI). 

 

Biomarkers from enhancement of healthy breast parenchyma 

The enhancement of normal breast tissue on breast MRI is called background 

parenchymal enhancement (BPE). BPE varies between individuals and changes 

with time even in the same individual as BPE is sensitive to endogenous 

hormonal changes as well as exogenous factors (1–3).  In clinical practice, the 

radiologists qualitatively classify BPE as minimal, mild, moderate, or marked, 

according to the Breast Imaging Reporting and Data System (BI-RADS) (4), 

which is subject to inter- and intrareader variation, and is not efficient in terms 

of improving the working efficiency of the radiologists. These limitations have 

highlighted the importance of objective evaluation and interpretation of BPE. 

Hence, in Chapter 2, we automated the rating of BPE in women with extremely 

dense breasts implementing objective evaluation of BPE. Some other studies 

have used deep learning to automate prediction of BPE category from DCE-MRI 

(5–7), but their research populations and methodology are quite different from 

ours. Hence, it is difficult to assess the potential of these findings in a risk 

stratification tool for this specific screening population. As far as we know, our 

study is the first one focusing only on an unselected series of asymptomatic 

women with extremely dense breasts, and to predict BPE category with sufficient 

accuracy to not compromise the underlying association between BPE and breast 

cancer occurrence. Therefore, our model has the potential to autopopulate the 

BPE categories in breast MRI reports, which can greatly alleviate radiologists’ 

workload and improve the interpretation accuracy by avoiding inter and 

intrareader variability. 

 

From biological perspective, BPE may be associated with vascular permeability 

regulated by endogenous hormones (8–11) and may represent tissue at risk for 

neoplasia (12–15). Several studies have reported associations between BPE and 

breast cancer occurrence with conflicting conclusions (12,16–19). A systematic 

review and meta-analysis of 18 studies conducted by Thompson et al. indicated 

that a higher level of BPE measured at breast MRI is associated with the presence 

of breast cancer in women with high risk (20). A population-wide cohort of 

women undergoing breast MRI were collected from 46 radiology facilities in the 
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United States by Arasu et al. (21). They found that BPE is associated with future 

invasive breast cancer independent of breast density, and suggested that BPE 

should be incorporated into risk prediction models for women receiving breast 

MRI. Then in Chapter 3, we further identified quantitative properties of BPE on 

baseline DCE-MRI, assessed their association with breast cancer occurrence, 

and found that a high volume of enhancing parenchyma on baseline DCE-MRI 

was associated with increased occurrence of breast cancer as compared with a 

low volume of enhancing parenchyma, which could help more easily interpret 

the quantitative properties of BPE. The results of chapter 2 and 3 in this thesis 

have demonstrated the feasibility of objective evaluation and interpretation of 

BPE.  

 

Biomarkers from enhancement of breast lesion 

Breast cancer is a heterogenous disease, which can present inter-tumor and intra-

tumor heterogeneity (22). Intra-tumor heterogeneity can further manifest 

spatially and temporally (23,24). Typically, key clinical decisions are made based 

on established histopathological markers obtained from biopsy, e.g., tumor grade, 

nodal status, expression of estrogen receptor (ER), progesterone receptor (PR), 

and HER2 status, etc., but the limited tissue samples may undersample the breast 

lesions (spatial heterogeneity), and the breast lesion itself may progress over time 

and be affected by systematic treatment (temporal heterogeneity), so there is an 

urgent need to explore useful markers of intra-tumor heterogeneity that can be 

used to augment established markers for personalized management of breast 

disease.  

 

Evolution of medical imaging and artificial intelligence (AI) has provided a 

noninvasive method for whole-tumor assessment by quantifying the appearance 

(phenotype) of breast lesions on DCE-MRI (25,26). Identifying the imaging 

phenotype of breast cancer on DCE-MRI and investigating its association with 

patient outcome can provide added value for established diagnostic and 

prognostic biomarkers. 

 

Triaging for diagnosis of breast cancer  

Incidental MR-detected breast lesions (i.e., additional lesions to the index cancer) 

pose challenges in preoperative patients with early breast cancer. We constructed 

a multiparametric computer-aided diagnosis (CAD) model based on ridge 

regression to identify malignant additional breast lesions preoperatively with 

high specificity in Chapter 4. Features with high absolute coefficients included 
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those from the DCE series (Sharpness, Circularity, Signal enhancing ratio), fast-

DCE (Time to enhancement, Final slope), DWI (25th percentile ADC, Maximum 

ADC), and clinical features (age at diagnosis, BIRADS-score). Conversely, T2 

features yielded small coefficient values, which was consistent with previously 

published results (27). The CAD model shows potential to spare patients an 

MRI-guided biopsy in approximately half the number of cases. In the other cases, 

patients would be referred to MRI-guided biopsy to confirm absence of 

malignant disease. These findings demonstrate the potential to triage MRI-

guided breast biopsy. To the best of our knowledge, no CAD models have been 

reported to attempt triaging patients in a preoperative setting for MRI-guided 

biopsy. 

 

Triaging for prognosis of breast cancer 

For patients with synchronous breast cancer, we found significant phenotype 

differences between index breast cancer and the ipsilateral synchronous 

counterpart in Chapter 5. The potential reason is that synchronous breast cancers 

in the same breast may originate from separate progenitor cells and thus have 

different phenotypes (28). The discrepancy observed in our study is in agreement 

with the reported discrepancies in histological tumor grade (29), tumor type (30), 

and molecular phenotype (31). The question arose whether such phenotype 

differences have the potential to serve as a noninvasive biomarker of long-term 

prognosis prior to treatment, so as to provide insight into individualized 

treatment. We further found that larger differences of the phenotype in terms of 

size, kinetics, and texture were indicative of worse prognosis in terms of the 

Nottingham Prognostic Index (NPI). However, that these results are based on a 

limited amount of data. 

 

Limitations and future prospectives 

 

Among the modalities for evaluating breast cancer, DCE-MRI achieves the 

highest sensitivity, but its specificity is not superior. Standard MRI protocols 

mainly provide morphological and part of functional information of breast tissue. 

In contrast, multiparametric MRI quantifies and visualizes the functional 

properties at cellular and molecular levels and further clarifies the progression 

of breast cancer, providing information which cannot be obtained from DCE-

MRI alone, and therefore improving the diagnostic accuracy (32,33). In addition, 

utilization of ultrahigh field strength (7.0 T) provides an increased signal-to-

noise-ratio, thus allows for a higher spatial and temporal resolution, and has 
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showed improvement in the sensitivity and specificity to 100% and 90% 

respectively (33). 

 

Although the specificity can be improved through adoption of multiparametric 

MRI and higher field strength, MRI has been only indicated as a supplemental 

screening modality to mammography for women at high risk (greater than 20% 

lifetime risk) due to its disadvantages of being more time-consuming and higher 

cost. Advances in MRI acquisition technique has made it possible to shorten the 

breast MRI protocols, decrease the image acquisition time and shorten image 

interpretation time (34) (Figure 1), resulting in application of abbreviated and 

ultrafast MRI protocols, which bring lower cost and higher efficiency, and make 

MRI more available and accessible to women with intermediate risk of breast 

cancer, including women with dense breasts. 

 

 

FIGURE 1: Diagram describing 

three MRI protocols including a 

full DCE-MRI, an abbreviated 

MRI, and an ultrafast MRI 

protocol. The full DCE-MRI is the 

default protocol with one 

precontrast and multiple 

postcontrast sequences. The 

abbreviated MRI protocol 

includes one precontrast and one 

postcontrast sequence. The 

ultrafast MRI protocol includes 

several high temporal resolution 

sequences during the pre- and 

postcontrast phase. (Source: DOI: 

10.1002/jmri.26878) 

 

 

Manual assessment of breast lesions on MRI by radiologists is limited by many 

factors, such as clinical experience, image quality, large amounts of image data 

and the consequent fatigue, complexity of the disease, etc. Therefore, several AI 

models have been constructed to assist radiologists in interpretation of breast 

MRI. AI-aided systems not only can be implemented for MRI, but also for 

mammography. The first commercial CAD system in mammograph was FDA 

approved in 1998 with the aim to provide the radiologists with a second opinion 

to enhance radiologists’ diagnostic accuracy. In addition, mammography is the 

only modality with a proven mortality benefit, leading to the adoption of 

mammography-based worldwide screening programs. The biggest disadvantage 

of mammography is the occurrence of false positives due to the overlap of 

normal fibroglandular breast tissue. Contrast enhanced spectral mammography 
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(CESM) or contrast enhanced dual-energy mammography (CEDM)is a new 

technology, in which the iodine-based contrast agent is intravenously injected 

two minutes before the acquisition of the mammographic images, resulting in 

the acquisition of a low-energy and high-energy image. Previous studies have 

proved that CESM shows a better diagnosis of suspected lesions compared with 

conventional mammograph, ultrasound, and breast MRI. However, the detection 

of hypervascular breast lesions using CESM is poorer than breast MRI (35). 

 

Machine learning is a subfield of AI, it typically uses human-engineered features 

as the basis of learning. Deep learning is a class of machine learning methods 

that learns features directly from data and characterized by the use of neural 

networks with many layers (36). The development in AI has contributed 

tremendous performance augmentation in medical imaging analysis. AI can be 

used to help solve various tasks such as cancer detection, risk assessment, 

diagnostic workflow and triage, response to neoadjuvant chemotherapy, etc. 

However, there are many obstacles to overcome before the AI models can be 

smoothly implemented to clinical scenarios. For example, generalizability of the 

AI algorithms in breast imaging is a big issue to be confronted with, which 

requires careful assessment of the application scenario and keeping a close eye 

on the performance. Another concern is the understanding of radiologists and the 

trust from patients. The radiologists need to fully understand the underlying 

mechanisms of the AI and know how to integrate it into clinical scenario but not 

totally rely on the predictions alone, and the patients need to trust and support 

the applications. In high-risk decision-makings, there has been a call for better 

understanding of AI, such approaches are called explainable artificial 

intelligence (XAI) (37). Researchers and physicians have been increasingly 

using XAI to explain the results of the algorithms and the AI models. Large 

amounts of work remain to be done to explain to the patients on how AI works 

and make sure that they are aware of the pros and con, so that the clinical options 

can be communicated effectively and efficiently. 

 

References 

1.  Taron J, Fleischer S, Preibsch H, Nikolaou K, Gruber I, Bahrs S. Background 

parenchymal enhancement in pregnancy-associated breast cancer: a hindrance to 

diagnosis? European Radiology. European Radiology; 2019;29(3):1187–1193. 

2.  Brooks JD, Sung JS, Pike MC, et al. MRI background parenchymal enhancement, 

breast density and serum hormones in postmenopausal women. International Journal of 

Cancer. 2018;143(4):823–830. 

3.  Su MYL. Effects of tamoxifen and aromatase inhibitors on breast tissue 

enhancement in dynamic contrast-enhanced breast MR imaging: A longitudinal 

intraindividual cohort study. Breast Diseases. 2014;25(4):317–319. 



97 
 

4.  Morris EA. ACR Bi-Rads® Atlas — Breast MRI. American College of Radiology. 

2013; 

5.  Nam Y, Park GE, Kang J, Kim SH. Fully Automatic Assessment of Background 

Parenchymal Enhancement on Breast MRI Using Machine-Learning Models. Journal 

of Magnetic Resonance Imaging. 2021;53:818–826. 

6.  Borkowski K, Rossi C, Ciritsis A, Marcon M. Fully automatic classification of 

breast MRI background parenchymal enhancement using a transfer learning approach. 

Medicine. 2020;99(29):1–7. 

7.  Eskreis-Winkler S, Sutton EJ, D’Alessio D, et al. Breast MRI Background 

Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the 

Radiologist. Journal of Magnetic Resonance Imaging. 2022;56:1068–1076. 

8.  Giess CS, Yeh ED, Raza S, Birdwell RL. Background parenchymal enhancement 

at breast MR imaging: Normal patterns, diagnostic challenges, and potential for false-

positive and false-negative interpretation. Radiographics. 2014;34(1):234–247. 

9.  Tice JA, Miglioretti DL, Li CS, Vachon CM, Gard CC, Kerlikowske K. Breast 

density and benign breast disease: Risk assessment to identify women at high risk of 

breast cancer. Journal of Clinical Oncology. 2015;33(28):3137–3143. 

10.  Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske 

K. Using clinical factors and mammographic breast density to estimate breast cancer 

risk: Development and validation of a new predictive model. Annals of Internal 

Medicine. 2008;148(5):337–347. 

11.  Kuhl C. The current status of breast MR imaging. Part I. Choice of technique, 

image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 

2007;244(2):356–378. 

12.  Dontchos BN, Rahbar H, Partridge SC, et al. Are Qualitative Assessments of 

Background Parenchymal Enhancement, Amount of Fibroglandular Tissue on MR 

Images, and Mammographic Density Associated with Breast Cancer Risk? Radiology. 

2015;276(2):371–380. 

13.  van der Velden BHM, Dmitriev I, Loo CE, Pijnappel RM, Gilhuijs KGA. 

Association between Parenchymal Enhancement of the Contralateral Breast in 

Dynamic Contrast-enhanced MR Imaging and Outcome of Patients with Unilateral 

Invasive Breast Cancer. Radiology. 2015;276(3):675–685. 

14.  Kumar AS, Chen DF, Au A, et al. Biologic significance of false-positive magnetic 

resonance imaging enhancement in the setting of ductal carcinoma in situ. American 

Journal of Surgery. 2006;192(4):520–524. 

15.  King V, Brooks JD, Bernstein JL, Reiner AS, Pike MC, Morris EA. Background 

Parenchymal Enhancement at Breast MR Imaging and Breast Cancer Risk. Radiology. 

2011;260(1):50–60. 



98 
 

16.  Telegrafo M, Rella L, Stabile Ianora AA, Angelelli G, Moschetta M. Breast MRI 

background parenchymal enhancement (BPE) correlates with the risk of breast cancer. 

Magnetic Resonance Imaging. Elsevier Inc.; 2016;34(2):173–176. 

17.  Melsaether A, Pujara AC, Elias K, et al. Background parenchymal enhancement 

over exam time in patients with and without breast cancer. Journal of Magnetic 

Resonance Imaging. 2017;45(1):74–83. 

18.  DeLeo MJ, Domchek SM, Kontos D, Conant E, Chen J, Weinstein S. Breast MRI 

fibroglandular volume and parenchymal enhancement in BRCA1 and BRCA2 mutation 

carriers before and immediately after risk-reducing salpingo-oophorectomy. American 

Journal of Roentgenology. 2015;204(3):669–673. 

19.  Watt GP, Sung J, Morris EA, et al. Association of breast cancer with MRI 

background parenchymal enhancement: the IMAGINE case-control study. Breast 

Cancer Research. Breast Cancer Research; 2020;22(1):1–12. 

20.  Thompson CM, Mallawaarachchi I, Dwivedi DK, et al. The association of 

background parenchymal enhancement at breast mri with breast cancer: A systematic 

review and meta-analysis. Radiology. 2019;292(3):552–561. 

21.  Arasu VA, Miglioretti DL, Sprague BL, et al. Population-based assessment of the 

association between magnetic resonance imaging background parenchymal 

enhancement and future primary breast cancer risk. Journal of Clinical Oncology. 

2019;37(12):954–963. 

22.  Chitalia RD, Rowland J, McDonald ES, et al. Imaging Phenotypes of Breast Cancer 

Heterogeneity in Preoperative Breast Dynamic Contrast Enhanced Magnetic 

Resonance Imaging (DCE-MRI) Scans Predict 10-Year Recurrence. Clinical Cancer 

Research. 2019;862–870. 

23.  McGranahan N, Swanton C. Biological and therapeutic impact of intratumor 

heterogeneity in cancer evolution. Cancer Cell. Elsevier Inc.; 2015;27(1):15–26. 

24.  Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. 

Nature Reviews Clinical Oncology. 2018;15(2):81–94. 

25.  Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and 

tumor biology using advanced machine learning and multiparametric MRI. npj Breast 

Cancer. Springer US; 2017;3(1):1–8. 

26.  Li H, Zhu Y, Burnside ES, et al. MR imaging radiomics signatures for Predicting 

the risk of Breast cancer recurrence as given by research Versions of MammaPrint, 

Oncotype DX, and PaM50 gene assays. Radiology. 2016;281(2):382–391. 

27.  Verburg E, van Gils CH, Bakker MF, et al. Computer-Aided Diagnosis in 

Multiparametric Magnetic Resonance Imaging Screening of Women With Extremely 

Dense Breasts to Reduce False-Positive Diagnoses. Investigative radiology. 

2020;55(7):438–444. 



99 
 

28.  Middleton LP, Vlastos G, Mirza NQ, Evasingletary S, Sahin AA. Multicentric 

mammary carcinoma: Evidence of monoclonal proliferation. Cancer. 2002;94(7):1910–

1916. 

29.  Buggi F, Folli S, Curcio A, et al. Multicentric/multifocal breast cancer with a single 

histotype: Is the biological characterization of all individual FOCI justified? Annals of 

Oncology. 2012;23(8):2042–2046. 

30.  Choi Y, Kim EJ, Seol H, et al. The hormone receptor, human epidermal growth 

factor receptor 2, and molecular subtype status of individual tumor foci in 

multifocal/multicentric invasive ductal carcinoma of breast. Human Pathology. Elsevier 

Inc.; 2012;43(1):48–55. 

31.  Navale P, Bleiweiss IJ, Jaffer S, Nayak A. Evaluation of biomarkers in multiple 

ipsilateral synchronous invasive breast carcinomas. Archives of Pathology and 

Laboratory Medicine. 2019;143(2):190–196. 

32.  Pinker K, Bickel H, Helbich TH, et al. Combined contrast-enhanced magnetic 

resonance and diffusion-weighted imaging reading adapted to the “breast Imaging 

Reporting and Data System” for multiparametric 3-T imaging of breast lesions. 

European Radiology. 2013;23(7):1791–1802. 

33.  Pinker K, Bogner W, Baltzer P, et al. Clinical application of bilateral high temporal 

and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the 

breast at 7 T. European Radiology. 2014;24(4):913–920. 

34.  Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on 

MRI. Journal of Magnetic Resonance Imaging. 2019;1–15. 

35.  Blum KS, Antoch G, Mohrmann S, Obenauer S. Use of low-energy contrast-

enhanced spectral mammography (CESM) as diagnostic mammography-proof of 

concept. Radiography. Elsevier Ltd; 2015;21(4):352–358. 

36.  Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: A primer for 

radiologists. Radiographics. 2017;37(7):2113–2131. 

37. van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable 

artificial intelligence (XAI) in deep learning-based medical image analysis. Medical 

Image Analysis. Elsevier B.V.; 2022;79:102470. 

 

 

 

  



100 
 

List of publications 

Wang H, Van Der Velden BHM, Chan HSM, Loo CE, Viergever MA, Gilhuijs 

KGA. Synchronous Breast Cancer: Phenotypic Similarities on MRI. Journal of 

Magnetic Resonance Imaging. 51(6):1858–1867(2020) 

 

Wang H, Van Der Velden BHM, Ragusi MAA, Veldhuis WB, Viergever MA, 

Gilhuijs KGA. Toward Computer-Assisted Triaging of Magnetic Resonance 

Imaging-Guided Biopsy in Preoperative Breast Cancer Patients. Investigative 

Radiology. 256(7):442–449 (2021) 

 

Wang H, Van Der Velden BHM, Verburg E, Bakker MF, Pijnappel RM, 

Veldhuis WB, Gils CH van, Gilhuijs, KGA. Assessing Quantitative Parenchymal 

Features at Baseline Dynamic Contrast-enhanced MRI and Cancer Occurrence 

in Women with Extremely Dense Breasts. Radiology. 308(2):e222841 (2023) 

 

Wang H, Van Der Velden BHM, Verburg E, Bakker MF, Pijnappel RM, 

Veldhuis WB, Gils CH van, Gilhuijs, KGA.Automated Rating of Background 

Parenchymal Enhancement in Breast MRI from 4553 Women in the DENSE 

Trial Using Machine Learning. Submitted 

 

Wang H, Van Der Velden BHM, Chan HSM, Loo CE, Viergever MA, Gilhuijs 

KGA. Interpretation of phenotype of synchronous breast cancer in relation to the 

index cancer. European Congress of Radiology  2020 (Poster presentation) 

 

Wang H, Van Der Velden BHM, Ragusi MAA, Veldhuis WB, Viergever MA, 

Gilhuijs KGA. Feasibility of computer-assisted triaging of MRI-guided biopsy 

in preoperative breast-cancer patients. European Congress of Radiology  

2021(Oral presentation) 

  



101 
 

 

  



102 
 

 

  



103 
 

Curriculum Vitae  

Hui Wang was born on 3rd July 1990 in China. She majored in clinical 

medicine and obtained her M.D. from Soochow University. She then 

moved to the Netherlands and started her PhD journey at the Image 

Sciences Institute under the supervision of dr. Kenneth Gilhuijs, dr. ir. Bas 

van der Velden and prof. dr. ir. Max Viergever. Her research aims to support 

triaging decisions in screening, diagnostic workflow, and treatment by 

extracting imaging biomarkers from fibroglandular tissue and breast 

lesions on breast MRI. The relevant results are presented in the current 

thesis.  

 

 

 

 

 

 

 

 

 

 


