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Abstract—In many signal processing problems arising in prac-
tical applications, we wish to reconstruct an unknown signal
from its phaseless measurements with respect to a frame. This
inverse problem is known as the phase retrieval problem. For
each particular application, the set of relevant measurement
frames is determined by the problem at hand, which motivates
the study of phase retrieval for structured, application-relevant
frames. In this paper, we focus on one class of such frames that
appear naturally in diffraction imaging, ptychography, and audio
processing, namely, multi-window Gabor frames. We study the
question of injectivity of the phase retrieval problem with these
measurement frames in the finite-dimensional setup and propose
an explicit construction of an infinite family of phase retrievable
multi-window Gabor frames. We show that phase retrievability
for the constructed frames can be achieved with a much smaller
number of phaseless measurements compared to the previous
results for this type of measurement frames. Additionally, we
show that the sufficient for reconstruction number of phaseless
measurements depends on the dimension of the signal space, and
not on the ambient dimension of the problem.

I. INTRODUCTION

Phase retrieval is the non-convex problem of signal recon-
struction from the intensities of its (linear) measurements. It
is motivated by a number of real-world applications within
science and engineering. Among these applications are diffrac-
tion imaging [Mil90], [BDP+07] and ptychography [Rod08],
where the phases of the frame coefficients are lost in the
measurement process; as well as audio processing [RJ93],
[BCE06], where phases may be too noisy to use them for
reconstruction.

In the finite-dimensional case, the phase retrieval prob-
lem is formulated as follows. Let Φ = {φj}Nj=1 ⊂ CM

be a frame, that is, a (possibly over-complete) spanning
set of CM . We consider the phaseless measurement map
AΦ : CM → RN defined by AΦ(x) = {|⟨x, φj⟩|2}Nj=1. The
aim of the phase retrieval problem is to recover an unknown
vector x ∈ CM from its phaseless measurements b = AΦ(x).
Since AΦ(x) = AΦ(e

iθx) for any θ ∈ [0, 2π), the initial signal
x can be reconstructed up to a global phase factor at best. To
factor out this ambiguity, we identify each x ∈ CM with its up-
to-a-global-phase equivalence class [x] = {eiθx, θ ∈ [0, 2π)}
and consider the measurement map AΦ to be defined on the
set of equivalence classes CM/∼.

Not for every frame Φ it is possible to uniquely reconstruct
a signal x from AΦ(x). The frames with injective associated
phaseless measurement maps are called phase retrievable.
An important research directions in phase retrieval is to
identify and describe classes of phase retrievable frames,
see, e.g. [GKR20], [BCE06], [BCMN14], [CEHV15]. At the

same time, in practical applications, measurement frames
are often required to have a prescribed structure that is
determined by the (physical) model behind the problem. For
instance, measurement frames arising in diffraction imaging
[Mil90], [BDP+07], ptychography [Rod08], and audio pro-
cessing [RJ93], [BCE06] have a common structure of a (multi-
window) Gabor frame defined below. In this paper, we aim to
address the following questions.

How to construct phase retrievable multi-window Gabor
frames of small cardinality?

Our findings also provide a bound on the number of the
phaseleless measurements with respect to a multi-window
Gabor frame that is sufficient for reconstruction.

Definition I.1. Let G = {gr}Rr=1 ⊂ CM be a set of windows
and Λ ⊂ ZM ×ZM . We define the multi-window Gabor frame
as the set of vectors (G,Λ) = {π(λ)gr}λ∈Λ,r∈{1,...R}, where

• π(k, ℓ) = MℓTk is a time-frequency shift operator;
• Tkx = (x(m− k))m∈ZM

is a translation operator;
• Mℓx =

(
e2πiℓm/Mx(m)

)
m∈ZM

is a modulation operator.

In the particular case when there is only one window G = {g},
the frame (g,Λ) is called a Gabor frame.

For Gabor frames, injectivity and stability results have been
established only in the case when Λ = ZM × ZM [BF16],
[AW21], [Sal19]. In particular, [BF16] provides a condition on
the window g that is sufficient for phase retrievability of the
full Gabor frame (g,ZM×ZM ). Reducing the cardinality of Λ
below M2 is, however, a complicated task. Moreover, one can
show that the phaseless measurement map A(g,ZM×ZM ) lacks
injectivity in the case when the window g has short support or
x is allowed to have many consecutive zeros [AW19], [AW21].

A possible remedy for this problem is to simultaneously
use several windows and consider phase retrieval with multi-
window Gabor frames. In [HHLW22], Han et.al. establish
maximal span property for a full multi-window Gabor frame
(G,ZM×ZM ), under the condition that ambiguity functions of
the windows in G do not vanish simultaneously. As maximal
span property implies phase retrievability of a frame, their
result generalizes the condition obtained for (single-window)
full Gabor frames in [BF16]. In [LCH+17], Li et.al. consider
frames (G,T × ZM ) with |T | = M

L and R ≥ L, for a
separation parameter L. They prove necessary and sufficient
conditions for injectivity of A(G,Λ), depending on the support
size of the window g.
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Note that in both [HHLW22], [LCH+17], phase retrievabil-
ity of a multi-window Gabor frame (G,Λ) is established for
|(G,Λ)| = R|Λ| = O(M2).

A. Main contribution

In this paper, we manage to significantly reduce the number
of measurements required to achieve injectivity of A(G,Λ).

Main Theorem. Let C > 3 be a constant. Phase retrieval
can be done on CM from CM(1 + 3β(M,C)) multi-window
Gabor frame phaseless measurements, where β(M,C) is a
measure of pseudorandomness defined in (1) below.

It follows from [BCM14, Lemmas 6 and 7] that
β(M,C) ≲ log(M), and thus phase retrieval can be done on
CM from at most O(M log(M)) multi-window Gabor frame
phaseless measurements, which is a significant improvement
in comparison with O(M2). Furthermore, we show that, with
a similar construction of the window set, phase retrieval
can be done from Cd(1 + 3β(d,C)) multi-window Gabor
frame phaseless measurements on any d-dimensional subspace
of CM .

In contrast with [AW21] and [LCH+17], where the proof
of phase retrievability of (multi-window) Gabor frames relies
on the properties of the ambiguity function of the window(s),
we utilize the polarization idea of [ABFM14], [BCM14]. We
construct the set of windows so that the phaseless measure-
ments corresponding to the auxiliary windows can be used to
compute (relative) phases of the measurements corresponding
to the primary window.

B. Notation and definitions

The following notation is used throughout the paper.

• SM−1 = {x ∈ CM : ∥x∥2 = 1} is the unit sphere in CM ;
• x⊙ y(m) = x(m)y(m) denotes the coordinatewise product

of vectors x, y ∈ CM ;
• for a vector b ∈ Ck, circ(b) = (b|T1b| . . . |Tkb) denotes

the circulant matrix whose columns are obtained by shifting
vector b;

• for a subset A ⊂ {0, . . . , k − 1}, 1A denotes its character-
istic function and P(A) = |A|/k denotes the density of A.

Furthermore, the following definitions are used in the paper.

Definition I.2. We define the Fourier bias of a set
A ⊂ {0, . . . , k − 1} as

∥A∥u = max
m ̸=0

|F(1A)(m)|.

The Fourier bias of a set is a non-negative quantity which
is equal to zero only for A = {0, . . . , k−1} and A = ∅. It can
get as large as the set density but is usually smaller [TV06].
Essentially, the Fourier bias of a set measures the maximal
correlation of its indicator function with discrete harmonic
functions. As for random sets this correlation is low with high
probability, Fourier bias is used in additive combinatorics to
measure pseudorandomness [TV06].

In our construction, we are interested in small cardinality
sets that have small Fourier bias. In particular, the cardinal-
ity of the constructed phase retrievable multi-window Gabor
frame depends on the following quantity

β(M,C) = min
P⊂ZM

P ̸=∅

{
|P | : ∥P∥u ≤ C − 3

C − 1
P(P )

}
. (1)

To construct the set of windows G for a phase retrievable
frame (G,Λ), we employ some tools from algebraic graph
theory.

Definition I.3. For a d-regular graph G on n vertices, let
d = λ0 ≥ λ1 ≥ · · · ≥ λn denote the eigenvalues of its adja-
cency matrix. We define the spectral gap of G as

spg(G) = 1− 1

d
max
j ̸=0

|λj |.

Clearly, a graph is disconnected if and only if its spectral
gap is equal to 0. More generally, large spg(G) ensures good
connectivity properties of graph G [ABFM14], [HB].

The remaining part of this paper is organized as follows.
In Section II we describe the construction of the window set,
and prove phase retrievability of the respective multi-window
Gabor frame, under certain assumptions on the primary win-
dow. In Section III, we generalize the results of Section II to
show that the sufficient number of measurements with respect
to the constructed multi-window Gabor frame depends on the
dimension of the signal space rather than on the ambient
dimension of the problem. We conclude the paper with a brief
discussion of the future research directions in Section IV.

II. PHASE RETRIEVABLE MULTI-WINDOW GABOR FRAMES

In this paper, we propose a construction of the set of
windows G, such that the corresponding multi-window Gabor
frame has injective associated phaseless measurement map
A(G,Λ). Our construction is inspired by the idea of the
polarization algorithm [ABFM14], [BCM14], [PS19]. Let us
consider the set of windows G = {g} ∪ G′, where we
distinguish a primary window g and call the rest of the
windows in G′ auxiliary. We construct auxiliary windows so
that phaseless measurements of a signal with respect to (G′,Λ)
can be used to compute relative phases between (some of) the
phaseless measurements with respect to (g,Λ). More precisely,

G′ = {gqpt = g ⊙ sqpt}q∈Q, p∈P
t∈{0,1,2}

, where (2)

sqpt(m) = 1 + e2πi(mp/M+t/3) g(m− q)

g(m)
.

Lemma II.1. Let (G,Λ) be a multi-window Gabor frame with
the set of windows G = {g}∪G′, where G′ is defined as in (2).



Then, for any (k, ℓ) ∈ Λ, q ∈ Q, and p ∈ P ,

⟨x, π(k, ℓ)g⟩⟨x, π(k + q, ℓ+ p)g⟩ =

e2πikp/M

3

2∑
t=0

e2πit/3|⟨x, π(k, ℓ)gqpt⟩|2

Proof. First, let us observe that by definition of gqpt,

⟨x, π(k, ℓ)gqpt⟩ =
∑

m∈ZM

x(m)e
−2πiℓm

M g(m− k)sqpt(m− k)

=
∑

m∈ZM

x(m)e−2πiℓm/Mg(m− k)

+
∑

m∈ZM

x(m)e−2πi( ℓ(m+p)
M + t

3 )e
2πikp

M g(m− (k + q)

= ⟨x, π(k, ℓ)g⟩+ e
−2πit

3 e
2πikp

M ⟨x, π(k + q, ℓ+ p)g⟩.

By applying the polarization identity

ab =
1

3

2∑
t=0

e
2πit
3 |a+ e

−2πit
3 b|2, a, b ∈ C

with a = ⟨x, π(k, ℓ)g⟩ and b = e
2πikp

M ⟨x, π(k + q, ℓ + p)g⟩,
we obtain the desired equality.

To show that the multi-window Gabor frame (G,Λ) con-
structed above is phase retrievable, we need additional assump-
tions on the primary window g and index sets P and Q.

Assumption 1. Window g ∈ CM is nowhere vanishing, such
that the corresponding Gabor frame (g,Λ) is full-spark, that
is, any M vectors in (g,Λ) are linearly independent.

Note that the set of g ∈ SM−1 for which Assumption 1 is
satisfied is a full measure set in SM−1 [LPW06], [Mal15]. In
particular, if g ∼ Unif.

(
SM−1

)
, then Assumption 1 is satisfied

with probability 1.

Assumption 2. A subset Q ⊂ ZM satisfies ∥Q∥u ≤ cP(Q),
for some constant c ∈ (0, 1).

Note that for any subset Q ⊂ ZM we have ∥Q∥u ≤ P(Q),
and equality holds only for sets Q with very specific structure
(namely, for cosets of a proper subgroup of ZM ) [TV06].
Subsets that satisfy Assumption 2 should have small Fourier
bias. Such subsets are called linearly uniform or pseudo-
random. In particular, if we generate a subset Q at random, by
uniformly and independently selecting elements of ZM with
probability c2 log(M)

9M , then Assumption 2 is satisfied with high
probability [TV06], [BCM14].

We formulate our result as follows.

Theorem II.2. Let g ∈ CM satisfy Assumption 1 and
Λ = T × F ⊂ ZM × ZM with |Λ| > CM , for some C > 3.
Suppose further that sets Q ⊂ T − T and P ⊂ F − F satisfy
Assumption 2 with c = C−3

C−1 . Then (G,Λ) with G = {g}∪G′

defined as in (2) is a phase retrievable frame.

Proof. Let us consider a graph (Λ, E) with the set of vertices
Λ and the set of edges

E = {((k, ℓ), (k′, ℓ′)) : k′−k ∈ Q, ℓ′−ℓ ∈ P} ⊂ Λ×Λ. (3)

Then, for any edge e = ((k, ℓ), (k′, ℓ′)) ∈ E, such that
|⟨x, π(k, ℓ)g⟩| ≠ 0 and |⟨x, π(k′, ℓ′)g⟩| ≠ 0, using Lemma II.1
we obtain that the relative phase

ωe =
⟨x, π(k, ℓ)g⟩
|⟨x, π(k, ℓ)g⟩|

(
⟨x, π(k′, ℓ′)g⟩
|⟨x, π(k′, ℓ′)g⟩|

)−1

can be computed from phaseless measurements A(G′,Λ) as

e
2πikp

M

3|⟨x, π(k, ℓ)g⟩||⟨x, π(k′, ℓ′)g⟩|

2∑
t=0

e
2πit
3 |⟨x, π(k, ℓ)gqpt⟩|2,

where p = ℓ′ − ℓ and q = k′ − k.
We are going to use the obtained graph (Λ, E) with

weighted edges to reconstruct (up to a global phase shift) the
phases of (a subset of) the frame coefficients of x with respect
to the Gabor frame (g,Λ). Note that for any (k, ℓ) ∈ Λ, such
that |⟨x, π(k, ℓ)g⟩| = 0, the relative phase ωe is not defined
for any e = ((k, ℓ), (k′, ℓ′)) ∈ E, thus we delete these edges
from the graph to obtain a modified graphs (Λ, E′) with the
weighted edges, where

E′ = E \ {(π, π′) : |⟨x, π(π)g⟩| = 0 or |⟨x, π(π′)g⟩| = 0}.

Claim 1. The graph (Λ, E′) constructed above has a con-
nected component of size at lest M .

Proof of Claim 1. Let A be the adjacency matrix of the graph
(Λ, E). By construction of E, A = circ (1Q) ⊗ circ (1P ),
where ⊗ denotes the Kronecker product. Then, the eigenvalues
of A are given by

λjj′(A) = λj (circ (1Q))λj′ (circ (1P ))

=
∑

m∈ZM

1Q(m)e
−2πijm

M

∑
m′∈ZM

1P (m
′)e

−2πij′m′
M ,

as the eigenvalues of a circulant matrix circ (1Q) are given by
the entries of the Fourier transform MF (1Q). Since

|λj(circ (1Q))| ≤
∑

m∈ZM

∣∣∣1Q(m)e
−2πijm

M

∣∣∣ = |Q|,

with equality when j = 0, it follows that

λmax(circ (1Q)) = λ0(circ (1Q)) = |Q|.

Similarly, λmax(circ (1P )) = λ0(circ (1P )) = |P |, and
λmax(A) = λ00(A) = |Q||P |. Using this and the definition of
the Fourier bias ∥ · ∥u of a set, we get

spg(Λ, E) = 1− 1

|Q||P |
max

(j,j′) ̸=(0,0)
|λjj′(A)|

= 1− 1

|Q||P |
max

(j,j′ )̸=(0,0)
|λj(circ (1Q))||λj′(circ (1P ))|

= 1−max

{
M

|Q|
∥Q∥u,

M

|P |
∥P∥u

}
,



that is, as both P and Q satisfy Assumption 2 and |Λ| > CM ,

spg(Λ, E) = 1−max

{
∥Q∥u
P(Q)

,
∥P∥u
P(P )

}
≥ 2

C − 1
≥ 2M

|Λ| −M
.

The graph (Λ, E′) is obtained from (Λ, E) by removing

k = |{(λ, λ′) : |⟨x, π(λ)g⟩| = 0 or |⟨x, π(λ′)g⟩| = 0}|

edges. By Assumption 1, (g,Λ) is a full spark frame, thus
|{π ∈ Λ: |⟨x, π(λ)g⟩| = 0}| ≤ M − 1 for any x ̸= 0, and
k ≤ |P ||Q|(M − 1). Applying [HB, Lemma 5.2], we obtain
that (Λ, E′) has a connected component of size at least(
1− 2M

|Λ| spg(Λ,E)

)
|Λ| = M .

Using Claim 1, let us fix (Λ′, E′′) to be a connected
component of (Λ, E′) with |Λ′| ≥ M and E′′ = E′∩Λ′×Λ′.
By Assumption 1, (g,Λ) is a full spark frame, thus any signal
x ∈ CM can be reconstructed from the set of its frame co-
efficients

{
⟨x, π(λ)g⟩ = ⟨x,π(λ)g⟩

|⟨x,π(λ)g⟩|

√
|⟨x, π(λ)g⟩|2

}
λ∈Λ′

. For
this reason, to uniquely recover x, it is enough to determine
(up to a global phase shift) the phases of the frame coef-
ficients ⟨x,π(λ)g⟩

|⟨x,π(λ)g⟩| , for all λ ∈ Λ′. To do so, we iteratively
propagate relative phases ωe, e ∈ E′′ inside the connected
component (Λ′, E′′) or apply angular synchronization algo-
rithm [Sin11].

The Main Theorem from Section I can be deduced from
Theorem II.2 by choosing g ∼ Unif.

(
SM−1

)
, Λ = T × ZM

with |T | = C, Q = T − T , and P being a minimizer in (1).

Remark II.3. Note that the proof of Theorem II.2 does
not only show that under Assumptions 1 and 2 the multi-
window Gabor frame is phase retrievable, but also suggests a
reconstruction algorithm that is similar to [BCM14], [PS19].

The number of vectors in ({g}∪G′,Λ) is |Λ|(1+3|Q||P |) =
O(|Q||P |M). To reduce the cardinality the frame we con-
structed, we would like to be able to construct small subsets
P,Q ⊂ ZM with small Fourier bias. In particular, for random
subset P ⊂ ZM of cardinality |P | = O(logM) it has been
shown in [BCM14, Lemmas 6 and 7] that ∥P∥u < cP(P ) for
some c ∈ (0, 1) with high probability. Using this observation,
we deduce the following corollary also proven in [PS19].

Corollary II.4 (Theorem 3.4, [PS19]). Let g ∼ Unif.
(
SM−1

)
and Λ = T × ZM with |T | = C. Suppose further that
Q = T − T and P is a random subset of ZM , such that
1P (m) ∼ i.i.d. Bernoulli

(
α log(M)

M

)
. Then, with high proba-

bility, (G,Λ) with G = {g} ∪G′ defined as in (2) is a phase
retrievable frame.

III. MULTI-WINDOW GABOR PHASE RETRIEVAL UNDER
LOWER-DIMENSIONAL PRIORS

In this section, we generalize findings of Theorem II.2 to
the case when there is some prior knowledge available on the
signal of interest x. More precisely, we study how the number
of phaseless multi-window Gabor measurements sufficient for

reconstruction of x changes in the case when x is an element
of an (unknown) lower-dimensional subspace of CM .

Theorem III.1. Let g ∈ CM satisfy Assumption 1 and
Λ = T × F ⊂ ZM × ZM with |Λ| > Cd, for some C > 3.
Suppose further that sets Q ⊂ T − T and P ⊂ F − F
satisfy Assumption 2 with c = C−3

C−1 . Then, for any W ∈ Cd×M

with d ≤ M and rank (W ) = d, the phaseless map
A(G,Λ) with G = {g} ∪ G′ defined as in (2) is injective on
{x ∈ CM : x = Wh, h ∈ Cd}.

Proof. First, note that for x = Wh, we have

A(G,Λ)(x) = AΨ(h),

where Ψ = {W ∗φ : φ ∈ (G,Λ)}. As x is uniquely determined
by h, it is enough to show that h can be uniquely (up to
a global phase factor) recovered from its phaseless measure-
ments AΨ(h).

Let us write Ψ = Ψg ∪ΨG′ , where Ψg = {W ∗π(λ)g}λ∈Λ

and ΨG′ = {W ∗π(λ)gqpt}λ∈Λ,gqpt∈G′ . Similar to the proof
of Theorem II.2, we are going to use ΨG′ to compute relative
phases between the frame coefficients of h with respect to Ψg .
Indeed, following the proof of Lemma II.1, we observe that
for λ = (k, ℓ) and λ′ = (k + q, ℓ+ p)

W ∗π(λ)gqpt = W ∗
(
π(λ)g + e

−2πit
3 e

2πikp
M π(λ′)g

)
= W ∗π(λ)g + e

−2πit
3 e

2πikp
M W ∗π(λ′)g.

Thus, Lemma II.1 can be used to show that phaseless measure-
ments of h with respect to ΨG′ allow us to compute relative
phases ωe for all e = (λ, λ′) ∈ E with |⟨h,W ∗π(λ)g⟩| ̸= 0
and |⟨h,W ∗π(λ′)g⟩| ≠ 0, where E is defined as in (3).

Claim 2. Ψg = {W ∗π(λ)g}λ∈Λ ⊂ Cd is a full spark frame.

Proof of Claim 2. By Assumption 1, (g,Λ) is a full spark
frame, that is, for any distinct λ1, . . . , λk ∈ Λ,

rank
(
π(λ1)g, . . . , π(λk)g

)
= min{k,M}.

Since rank (W ) = d, it follows that

rank
(
W ∗π(λ1)g, . . . ,W

∗π(λk)g
)
= min{d, k,M}.

Thus, vectors W ∗π(λ1)g, . . . ,W
∗π(λk)g are linearly inde-

pendent if k ≤ d.

Let us consider the graph (Λ, E). From Claim 2, it follows
that |{λ ∈ Λ: |⟨h,W ∗π(λ)g⟩| = 0}| ≤ d−1, thus the number
of edges e ∈ E, for which ωe is not defined is at most
|P ||Q|(d − 1). Applying Claim 1 with d in place of M and
[HB, Lemma 5.2], we derive that deleting these edges from
the graph leads to a connected component (Λ′, E′′) of size
|λ′| ≥ d. From Claim 2 it follows that h can be recovered
from its frame coefficients with respect to {W ∗π(λ)g}λ∈Λ′ .
The proof is then concluded by computing the phases of
the frame coefficients {⟨h,W ∗π(λ)g⟩}λ∈Λ′ from the relative
phases ωe, e ∈ E′′ using phase propagation or angular
synchronization.



Note that, similarly to Corollary II.4, by selecting
the window g and the sets P and Q at random, one
can derive that for any W ∈ Cd×M the phaseless
map A(G,Λ) with |(G,Λ)| = O(d log(d)) is injective on
{x ∈ CM : x = Wh, h ∈ Cd} with high probability. That is,
in the case when x is known to be an element of a lowed-
dimensional subspace, the ambient dimension M can be
replaced in the sufficient number of phaseless measurements
with the subspace dimension d.

IV. DISCUSSION

In this paper, we showed how polarization idea [ABFM14]
can be used to construct phase retrievable multi-window Gabor
frames of small cardinality. As the construction of such frames
relies on the small subsets of ZM with small Fourier bias,
explicit construction of such subsets for every M can further
reduce the number of the phaseless measurements required for
the signal reconstruction.

In Section III, we discussed multi-window Gabor phase
retrieval under the assumption that the set of signals we aim to
recover lies in a lower-dimensional subspace of CM . Surely,
this kind of priors is not general enough to be used in practice.
A more interesting, both from mathematical and practical
points of view, class of priors are generative priors studied
in [HLV18]. There we assume that x = W (h), h ∈ Cd, for
some non-linear generative map W given, for instance, by
a neural network. Studying phase retrievability of the multi-
window Gabor frames and determining how the sufficient
number of the phaseless measurements changes under such
generative priors is an important direction for further research.
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