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Abstract
We explore efficient estimation of statistical quantities, particularly rare event probabilities, for stochastic reaction networks.
Consequently, we propose an importance sampling (IS) approach to improve theMonte Carlo (MC) estimator efficiency based
on an approximate tau-leap scheme. The crucial step in the IS framework is choosing an appropriate change of probability
measure to achieve substantial variance reduction. This task is typically challenging and often requires insights into the
underlying problem. Therefore, we propose an automated approach to obtain a highly efficient path-dependent measure
change based on an original connection in the stochastic reaction network context between finding optimal IS parameters
within a class of probability measures and a stochastic optimal control formulation. Optimal IS parameters are obtained
by solving a variance minimization problem. First, we derive an associated dynamic programming equation. Analytically
solving this backward equation is challenging, hence we propose an approximate dynamic programming formulation to find
near-optimal control parameters. To mitigate the curse of dimensionality, we propose a learning-based method to approximate
the value function using a neural network, where the parameters are determined via a stochastic optimization algorithm. Our
analysis and numerical experiments verify that the proposed learning-based IS approach substantially reduces MC estimator
variance, resulting in a lower computational complexity in the rare event regime, compared with standard tau-leap MC
estimators.

Keywords Stochastic reaction networks · Tau-leap · Importance sampling · Stochastic optimal control · Dynamic
programming · Rare event
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1 Introduction

We propose an approach to efficiently estimate statistical
quantities, particularly rare event probabilities for a particular
class of continuous-time Markov chains known as stochas-
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tic reaction networks (SRNs). Consequently, we develop
a learning-based importance sampling (IS) algorithm to
improve the Monte Carlo (MC) estimator efficiency based
on an approximate tau-leap (TL) scheme. The automated
approach is based on an original connection between opti-
mal IS parameter determination within a class of probability
measures and stochastic optimal control (SOC) formulation.

SRNs (see Sect. 1.1 for a short introduction and [9] for
more details) describe the time evolution of biochemical
reactions, epidemic processes [5,13], and transcription and
translation in genomics and virus kinetics [32,48], among
other important applications. For the current study, let X be
an SRN that takes values in N

d and is defined in the time
interval [0, T ], where T > 0 is a user-selected final time.
We aim to provide accurate and computationally efficient
MC estimations for the expected value E[g(X(T ))], where
g : Nd → R is a scalar observable for X. In particular, we
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study estimating rare event probabilities with g(x) = 1{x∈B}
(i.e., the indicator function for a set B ⊂ R

d ).
The quantity of interest,E[g(X(T ))], can be computed by

solving the corresponding Kolmogorov backward equations
[8]. Formost SRNs, deriving a closed-form solution for these
ordinary differential equations is infeasible, and numerical
approximations based on discretized schemes are commonly
used. However, the computational cost scales exponentially
with the number of species d. Therefore, we are particularly
interested in estimating E[g(X(T ))] using MC methods, an
attractive alternative to avoid the curse of dimensionality.

Many schemes have been developed to simulate exact
sample paths for SRNs, such as the stochastic simulation
algorithm [25] and modified next reaction method [4]. Path-
wise exact SRN realizations can incur high computational
costs if any reaction channels have high reaction rates. Gille-
spie [26] andAparicio and Solari [6] independently proposed
the explicit TL method (see Sect. 1.2) to overcome this issue
by simulating approximate paths of X, evolving the pro-
cess with fixed time steps and keeping reaction rates fixed
within each time step. Various simulation schemes have been
subsequently proposed to deal with situations incorporating
well-separated fast and slow time scales [1,2,11,14,40,45].

Various variance reduction techniques have been proposed
in the SRN context to reduce the computational work to esti-
mate E[g(X(T ))]. Several multilevel Monte Carlo (MLMC)
[21,22] based methods have been proposed to address spe-
cific challenges in this context [3,10,11,38,40]. Furthermore,
as naive MC and MLMC estimators fail to efficiently and
accurately estimate rare event probabilities, different IS
approaches [15,16,23,24,36,46,47] have been proposed.

The current paper proposes a path-dependent IS approach
based on an approximate TL scheme to improve the MC
estimator efficiency, and hence efficiently estimate various
statistical quantities for SRNs (particularly rare event proba-
bilities). Our class of probability measure change is based on
modifying the Poisson random variable rates used to con-
struct the TL paths. In particular, optimal IS parameters
are obtained by minimizing the second moment of the IS
estimator (equivalently the variance) which represents the
cost function for the associated SOC problem. We show
that the corresponding value function solves a dynamic pro-
gramming relation that is challenging to solve analytically
(see Sect. 2.1). We approximate the dynamic programming
equation to derive a closed form solution and near-optimal
control parameters. The cost to solve the associated backward
equation numerically inmulti-dimensional settings increases
exponentially with respect to the dimension (i.e., the curse of
dimensionality). Thus, we propose approximating the result-
ing value function using a neural network to overcome this
issue. Utilizing the optimality criterion for the SOC prob-
lem, we obtain a relationship between optimal IS parameters
and the value function. Finally, we employ a stochastic opti-

mization algorithm to learn the corresponding neural network
parameters. Our analysis and numerical results for different
dimensions confirm that the proposed estimator considerably
reduces the variance compared with the standard TL-MC
method with a negligible additional cost. This allows rare
event probabilities to be efficiently computed in a regime
where standard TL-MC estimators commonly fail.

The proposed approach is more computationally effi-
cient than previously proposed IS schemes in this context (
[15,16,23,24,36,46,47]) because it is based on an approxi-
mate TL scheme rather than the exact scheme. In contrast
to previous approaches, the change of measure is systemati-
cally derived to ensure convergence to the optimal measure
within the chosen class of probability measures, minimizing
MC estimator variance. The novelty of this work is estab-
lishing a connection between IS and SOC in the context of
pure jump processes, particularly for SRNs, with an empha-
sis on related practical and numerical aspects. Note that some
previous studies [7,17,20,28–31,33,41,49] have established a
similar connection,mainly in the diffusion dynamics context,
with less focus on pure jump dynamics. In this work, the pro-
posed methodology is based on an approximate explicit TL
scheme, which could and be subsequently extended in future
work to continuous-time formulation (exact schemes), and
implicit TL schemes which are relevant for systems with fast
and slow time scales.

The remainder of this paper is organized as follows. Sec-
tions1.1, 1.2, 1.3 and 1.4 define relevant SRN, TL, MC and
IS concepts, respectively. Section2 establishes the connec-
tion between IS and SOC, formulating the SOC problem
and defining its main ingredients: controls, cost function,
and value function; then presents the dynamic program-
ming solved by the optimal controls. Section2.3 develops the
proposed IS learning-based approach appropriate for multi-
dimensional SRNs. Section3 provides selected numerical
experiments for different dimensions to illustrate the pro-
posed approach’s efficiency compared with standard MC
approaches. Finally, Sect. 4 summarizes and concludes the
work, and discusses possible future research directions.

1.1 Stochastic reaction networks (SRNs)

Weare interested in the time evolution for an homogeneously
mixed chemical reacting system described by theMarkovian
pure jump process, X : [0, T ] × � → N

d , where (�, F , P)
is a probability space. In this framework, we assume that d
different species interact through J reaction channels. The
i-th component, Xi (t), describes the abundance of the i-th
species present in the chemical system at time t . This work
studies the time evolution of the state vector,

X(t) = (X1(t), . . . , Xd(t)) ∈ N
d . (1.1)
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Each reaction channel R j is a pair (a j , ν j ) defined by its
propensity function a j : Rd → R+ and stoichiometric vec-
tor ν j = (ν j,1, ν j,2, . . . , ν j,d)

� satisfying

P
(
X(t+�t) = x+ν j | X(t) = x

) = a j (x)�t+o (�t) , j = 1, 2, . . . , J .

(1.2)

Thus, the probability of observing a jump in the process X
from state x to state x+ν j , a consequence of reactionR j fir-
ing during the small time interval (t, t +�t], is proportional
to the time interval length,�t , where a j (x) is the proportion-
ality constant. We set a j (x)=0 for x such that x+ν j /∈ N

d

(i.e., the non-negativity assumption: the system can never
produce negative population values).

Hence, from (1.2), process X is a continuous-time,
discrete-space Markov chain that can be characterized by
Kurtz’s random time change representation [19],

X(t) = x0 +
J∑

j=1

Y j

(∫ t

0
a j (X(s)) ds

)
ν j , (1.3)

where Y j : R+×� → N are independent unit-rate Pois-
son processes. Conditions on the reaction channels can be
imposed to ensure uniqueness [5] and avoid explosions in
finite time [18,27,44].

Applying the stochasticmass-action kinetics principle,we
can assume that the propensity function a j (·) for reaction
channel R j , represented as1

α j,1S1 + · · · + α j,d Sd
θ j→ β j,1S1 + · · · + β j,d Sd (1.4)

obeys

a j (x) := θ j

d∏

i=1

xi !
(xi − α j,i )!1{xi≥α j,i }, (1.5)

where {θ j }Jj=1 represents positive constant reaction rates, and
xi is the counting number for species Si .

1.2 Explicit tau-leap approximation

The explicit-TL scheme is a pathwise approximate method
[6,26] to overcome computational drawbacks for exact meth-
ods (i.e., when many reactions fire during a short time
interval). This scheme can be derived from the random
time change representation (1.3) by approximating the inte-
gral

∫ ti+1
ti

a j (X(s))ds as a j (X(ti )) (ti+1 − ti ), i.e., using the
forward-Euler method with time mesh {t0 = 0, t1, . . . , tN =
1 α j,i molecules for species Si are consumed and β j,i are produced.
Thus, (α j,i , β j,i ) ∈ N

2 but β j,i − α j,i can be a negative integer, con-
stituting the vector ν j = (β j,1 − α j,1, . . . , β j,d − α j,d

) ∈ Z
d .

T } and size �t = T
N . Thus, the explicit-TLapproximation

for X should satisfy for k ∈ {1, 2, . . . , N }

X̂�t
k = x0 +

J∑

j=1

Y j

(
k−1∑

i=0

a j (X̂�t
i )�t

)

ν j , (1.6)

and given X̂0 := x0, we iteratively simulate a path for X̂�t

as

X̂�t
k := X̂�t

k−1 +
J∑

j=1

Pk−1, j
(
a j (X̂�t

k−1)�t
)
ν j , 1 ≤ k ≤ N ,

(1.7)

where, conditioned on the current state X̂�t
k ,

{Pk, j (rk, j )}{1≤ j≤J } are independent Poisson random vari-
ables with respective rates rk, j := a j (X̂�t

k )�t .
The explicit-TL path X̂�t is defined only at time mesh

points, but can be naturally extended to [0, T ] as a piecewise
constant path. We apply the projection to zero to prevent
the process from exiting the lattice (i.e., producing negative
values), hence (1.7) becomes

X̂�t
k :=max

⎛

⎝0, X̂�t
k−1+

J∑

j=1

Pk−1, j

(
a j (X̂

�t
k−1)�t

)
ν j

⎞

⎠, 1≤k≤N , (1.8)

where the maximum is applied entry-wise. In this work, we
use uniform time steps with length �t , but the explicit-TL
scheme and the proposed IS scheme (see Sect. 2) can also be
applied to non-uniform time meshes.

1.3 BiasedMonte Carlo estimator

Let X be a stochastic process and g : R
d → R a scalar

observable. We want to approximate E [g(X(T ))], but rather

than sampling directly fromX(T ), we sample fromX
�t

(T ),
which are randomvariables generated by a numerical scheme

with step size �t . We assume that variates X
�t

(T ) are gen-
erated with an algorithm with weak order, O (�t), i.e., for
sufficiently small �t ,

∣
∣∣E
[
g(X(T )) − g(X

�t
(T ))

]∣∣∣ ≤ C�t (1.9)

where C > 0.2

LetμM be the standardMC estimator forE
[
g(X

�t
(T ))

]
,

μM := 1

M

M∑

m=1

g(X
�t
[m](T )), (1.10)

2 Refer to [39] for the underlying assumptions and proofs for this state-
ment in the TL scheme context.
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where {X�t
[m](T )}Mm=1 are independent and distributed as

X
�t

(T ).
The global error for the proposed MC estimator has error

decomposition
∣
∣E
[
g(X(T ))

]− μM
∣
∣

≤
∣∣
∣E[g(X(T ))] − E

[
g(X

�t
(T ))

]∣∣
∣

︸ ︷︷ ︸
Bias

+
∣∣
∣E
[
g(X

�t
(T ))

]− μM

∣∣
∣

︸ ︷︷ ︸
Statistical Error

. (1.11)

To achieve the desired accuracy, TOL, it is sufficient to bound
the bias and statistical error equally by T OL

2 . From (1.9),
choosing step size

�t(TOL) = TOL

2 · C (1.12)

ensures a bias of TOL
2 .

Thus, considering the central limit theorem, the statistical
error can be approximated as

∣∣
∣E
[
g(X

�t
(T ))

]− μM

∣∣
∣ ≈ Cα ·

√
Var[g(X�t

(T ))]
M

, (1.13)

where constant Cα is the (1 − α
2 )−quantile for the standard

normal distribution. We choose Cα = 1.96 for a 95% confi-
dence level corresponding to α = 0.05. Choosing

M∗(TOL) = C2
α

4 · Var[g(X�t
(T ))

]

TOL2 (1.14)

sample paths ensures the statistical error to be approximately
bounded by TOL

2 .
Given that the computational cost to simulate a sin-

gle path is O (�t−1
)
, the expected total computational

complexity is O (TOL−3
)
; and the complexity scales with

Var
[
g(X

�t
(T ))

]
(see (1.14)).

1.4 Importance sampling

Importance sampling (IS) techniques improve the computa-
tional costs for the crudeMC estimator by variance reduction
when used appropriately. To motivate the use of these tech-
niques, consider estimating rare event probabilities, where
the crude MC method is substantially expensive. In particu-
lar, consider estimating q = P(Y > γ ) = E[1{Y>γ }], where
Y is a random variable taking values in R with probabil-
ity density function ρY . Let γ be sufficiently large that q
becomes sufficiently small. We can approximate q using the
MC estimator

q̂ = 1

M

M∑

i=1

1{Y (i)>γ }, (1.15)

where {Y (i)}Mi=1 are independent and identically distributed
(i.i.d) realizations sampled according to ρY . TheMC estima-
tor variance is

Var
[
1{Y (i)>γ }

]
= q − q2. (1.16)

For a sufficiently small q, we can use (1.16) and the central
limit theorem to approximate the relative error as

|q − q̂|
q

≈ Cα

√
1

qM
, (1.17)

where Cα is chosen as in (1.13).
The number of required samples to attain a relative error

tolerance T OLrel is M ≈ C2
α

q·T OL2
rel
. Thus, for q of the order

of 10−8, the number of required samples such that T OLrel =
5% is approximately equal to 1.5 · 1011.

To demonstrate the IS concept, consider the general prob-
lem of estimating E[g(Y )], where g is a given observable. In
the previous example, g was chosen as g(y) = 1{y>γ }. Let
ρ̂Z be the probability density function for a new real random
variable Z , such that g · ρY is dominated by ρ̂Z , i.e.,

ρ̂Z (x) = 0 
⇒ g(x) · ρY (x) = 0 (1.18)

for all x ∈ R. This permits, the quantity of interest to be
expressed as

E[g(Y )] =
∫

R

g(x)ρY (x)dx =

=
∫

R

g(x)
ρY (x)

ρ̂Z (x)
︸ ︷︷ ︸
L(x)

·ρ̂Z (x)dx = E[L(Z) · g(Z)],

(1.19)

where L(·) is the likelihood ratio. Hence the expected value
under the new measure remains unchanged, but the vari-
ance could be reduced due to a different second moment
E
[
(g(Z) · L(Z))2

]
.

The MC estimator under the IS measure is

μI S
M = 1

M

M∑

j=1

L(Z[ j]) · g(Z[ j])= 1

M

M∑

j=1

ρY (Z[ j])
ρ̂Z (Z[ j])

· g(Z[ j]),

(1.20)

where Z[ j] are i.i.d samples from ρ̂Z for j = 1, . . . , M .
The main challenge when using IS is choosing a new

probability measure that substantially reduces the variance
compared with the original measure. This step strongly
depends on the structure of the problem under consideration.
Further, the new measure should be obtained with negligi-
ble computational cost to ensure a computational efficient
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IS scheme. This is particularly challenging in the present
problem, since we are considering path-dependent prob-
ability measures. In particular, the aim is to introduce a
path-dependent change of probability measure that corre-
sponds to changing the Poisson random variable rates used
to construct the TL paths. Section2.1 shows how the optimal
IS parameters can be obtained using a novel connection with
SOC.

2 Importance sampling (IS) via stochastic
optimal control (SOC)

2.1 Dynamic programming for the importance
sample parameters

This section, establishes the connection between optimal IS
measure determination within a class of probability mea-
sures, and SOC. Let X be a SRN as defined in Sect. 1.1 and
let X̂�t denote its TL approximation as given by (1.8). We
aim to find a near-optimal ISmeasure to improve theMCesti-
mator computational performance to estimate E [g(X(T ))].
Since finding the optimal path-dependent change of measure
within all measure classes presents a challenging problem,
we limit ourselves to a parameterized class obtained viamod-
ifying the Poisson random variable rates of the TL paths.
This class of measure change was previously used in [10] to
improve the MLMC estimator robustness and performance
in this context; we focus on a single-level MC setting, and
seek to automate the task to find a near-optimal IS measure
within this class.

We introduce the change ofmeasure resulting from chang-
ing the Poisson random variable rates in the TL scheme,

Pn, j = Pn, j

(
δ�t
n, j (X

�t
n )�t

)
,

n = 0, . . . , N − 1, j = 1, . . . , J ; (2.1)

where δ�t
n, j (x) ∈ Ax, j is the control parameter at time step

n, under reaction j , and in state x ∈ N
d ; and conditioned on

X
�t
n , Pn, j (rn, j ) are independent Poisson random variables

with respective rates rn, j := δ�t
n, j (X

�t
n )�t . The admissible

set,

Ax, j =
{

{0}, if a j (x) = 0

{y ∈ R : y > 0}, otherwise,
(2.2)

is chosen such that (1.18) is fulfilled and to avoid infinite vari-
ance for the IS estimator. The control δ�t

n, j (x) ∈ Ax, j depends
deterministically on the current time step n, reaction channel

j , and current state x = X
�t
n for the TL-IS approximation in

(2.3).

Therefore, the resulting scheme under the new measure is

X
�t
n+1 = max

⎛

⎝0,X
�t
n +

J∑

j=1

Pn, jν j

⎞

⎠ , n = 0, . . . , N − 1,

X
�t
0 = x0, ; (2.3)

and the likelihood ratio3 at step n associated with the new IS
measure is

Ln(Pn , δ
�t
n (X

�t
n )) =

J∏

j=1

exp
(
−(a j (X

�t
n ) − δ�t

n, j (X
�t
n ))�t

)
⎛

⎝ a j (X
�t
n )

δ�t
n, j (X

�t
n )

⎞

⎠

Pn, j

=exp

⎛

⎝−
⎛

⎝
J∑

j=1

a j (X
�t
n )− δ�t

n, j (X
�t
n )

⎞

⎠�t

⎞

⎠·
J∏

j=1

⎛

⎝ a j (X
�t
n )

δ�t
n, j (X

�t
n )

⎞

⎠

Pn, j

;

(2.4)

where δ�t
n (x) ∈ ×J

j=1Ax, j are the IS parameters with
(
δ�t
n (x)

)
j = δ�t

n, j (x) and the Poisson realizations are denoted

by Pn with
(
Pn
)
j := Pn, j for j = 1, . . . , J . Equation

(2.4) uses the convention that
a j (X

�t
n )

δ�t
n, j (X

�t
n )

= 1, whenever

a j (X
�t
n ) = 0 and δ�t

n, j (X
�t
n ) = 0. From (2.2), this results

in a factor of one in the likelihood ratio for reactions with
a j (X

�t
n ) = 0.

Therefore, the likelihood ratio for {X�t
n : n = 0, . . . , N }

across one path is

L
((
P0, . . . ,PN−1

)
,
(
δ�t
0

(
X

�t
0

)
, . . . , δ�t

N−1

(
X

�t
N−1

)))

=
N−1∏

n=0

Ln

(
Pn, δ

�t
n

(
X

�t
n

))
. (2.5)

This likelihood ratio completes the characterization for the
proposed IS approach, and allows the quantity of interest
with respect to the new measure to be expressed as

E[g(X̂�t
N )]

= E

[
L
((
P0, . . . ,PN−1

)
,
(
δ�t
0 (X

�t
0 ), . . . ,δ�t

N−1(X
�t
N−1)

))
· g(X�t

N )
]
, (2.6)

with the expectation in the right-hand side of (2.6) taken
with respect to the dynamics in (2.3).

Hereinafter, we aim to determine optimal parameters
{δ�t

n (x)}n=0,...,N−1;x∈Nd that minimize the second moment
(and hence the variance) for the IS estimator, given that

X
�t
0 = x0. To that end, we derive an associated SOC formu-

lation. First we introduce the cost function for the proposed
SOC problem in Definition 2.1, then derive a dynamic pro-
gramming equation in Theorem 2.4 that is satisfied by the

3 We refer to [10] (Sect. 4.1) for the likelihood factor derivation of a
similar IS scheme.
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value function u�t (·, ·) in Definition 2.3. The proof for The-
orem 2.4 is given in “Appendix A”.

Definition 2.1 (Second moment for the proposed importance

sampling estimator) Let 0 ≤ n ≤ N . Given that X
�t
n = x,

the second moment for the proposed IS estimator can be
expressed as

Cn,x
(
δ�t
n , . . . , δ�t

N−1

)

= E

[

g2(X
�t
N )

N−1∏

k=n

L2
k

(
Pk, δ

�t
k (X

�t
k )
)

|X�t
n = x

]

,

0 ≤ n ≤ N − 1, (2.7)

with terminal cost CN ,x = E

[
g2
(
X

�t
N

)
|X�t

N = x
]

=
g2(x), for any x ∈ N

d .

Compared with the classical SOC formulation, (2.7) can
be interpreted as the expected total cost; where the main
difference is that (2.7) uses a multiplicative cost structure
rather than the standard additive one. Therefore, we derive
a dynamic programming relation in Theorem 2.4 associated
with this cost structure that is fulfilled by the corresponding
value function (see Definition 2.3), in the SRN context.

Remark 2.2 (Structure of the cost function) One can derive
an optimal control formulation with additive structure (sim-
ilar to [30] in the stochastic differential equation setting) by
applying a logarithmic transformation together with Jensen’s
inequality to (2.7). This reduces the control problem to a
Kullback–Leibler minimization. In [41,42], this Kullback–
Leibler minimization problem leads to the same optimal
change of measure as the problem of finding the change of
measure using a variance minimization approach. However,
the previous conclusion needs more investigation in the set-
ting of SRNs, which we leave for future potential work.

Definition 2.3 (Value function) The value function u�t (·, ·)
is defined as the optimal (infimum) second moment for the
proposed IS estimator. For time step 0 ≤ n ≤ N and state
x ∈ N

d ,

u�t (n, x) := inf
{δ�t

k }k=n,...,N−1∈AN−n
Cn,x

(
δ�t
n , . . . , δ�t

N−1

)

= inf
{δ�t

k }k=n,...,N−1∈AN−n

E

[

g2
(
X

�t
N

) N−1∏

k=n

L2
k

(
Pk , δ

�t
k (X

�t
k )
)

|X�t
n = x

]

,

(2.8)

where A =×x∈Nd×J
j=1Ax, j ∈ R

N
d×J is the admissible

set for the IS parameters; and u�t (N , x) = g2(x), for any
x ∈ N

d .

Theorem 2.4 (Dynamic programming for importance sam-
pling parameters) For x ∈ N

d , the value function u�t (n, x)
fulfills the dynamic programming relation

u�t (N , x) = g2(x)

and for n = N − 1, . . . , 0, andAx :=
J×

j=1

Ax, j ,

u�t (n, x) = inf
δ�t
n (x)∈Ax

exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠

×
∑

p∈NJ

⎛

⎝
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j ! (
a j (x)

δ�t
n, j (x)

)2p j

⎞

⎠ ·

u�t (n + 1,max(0, x + νp)), (2.9)

where ν = (ν1, . . . , ν J ) ∈ Z
d×J .

Theorem 2.4 breaks down the minimization problem to a
simpler optimization that can be solved stepwise backward
in time starting from final time T . Solving the minimiza-
tion problem (2.9) analytically is difficult due to the infinite
sum. Section2.2 shows how to overcome this issue by
approximating (2.9) to derive near-optimal parameters for
{δ�t

n (x)}n=0,...,N−1;x∈Nd for the proposed IS approach.

2.2 Approximate dynamic programming

Theorem 2.4 gives an exact solution for optimal IS param-
eters resulting from modifying the Poisson random variable
rates in the TL paths. However, the infinite sum has to be
evaluated in closed form to solve (2.9) analytically, which
is generally difficult. Therefore, we propose approximating
the value function u�t (n, x) in (2.9) by u�t (n, x) for all time
steps n = 0, . . . , N , reaction channels j = 1, . . . , J and
states x ∈ N

d . First, both u�t (n, x) and u�t (n, x) satisfy the
same final condition,

u�t (N , x) = u�t (N , x) = g2(x). (2.10)

Next, to derive the approximate dynamic programming
relation for u�t (·, ·), we presume Assumption 2.5 to hold.
This assumption is motivated by the behavior of the origi-
nal propensities, which are of O (1) due to the mass-action
kinetics principle (refer to (1.5)).

Assumption 2.5 The controls {δ�t
n }n=0,...,N−1 are asymptot-

ically constant (i.e., δ�t
n, j (x) → cn, j,x, as �t → 0, where

cn, j,x are constants for 1 ≤ j ≤ J , 0 ≤ n ≤ N − 1, and
x ∈ N

d ).

GivenAssumption 2.5 and that {a j (·)}Jj=1 are ofO (1), we
apply a Taylor expansion around �t = 0 to the exponential
term in (2.9), then truncate the expressionwithin the infimum
such that the remaining terms areO (�t). This truncates the
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infinite sum and linearizes the exponential term. Thus, for
x ∈ N

d and n = N − 1, . . . , 0

u�t (n, x) = �t inf
(δ1,...,δJ )∈Ax

[ J∑

j=1

a2j (x)

δ j
u�t (n + 1,max(0, x + ν j ))

+ u�t (n + 1, x)
J∑

j=1

δ j
]

+ u�t (n + 1, x) − 2�t · u�t (n + 1, x) ·
J∑

j=1

a j (x)

= �t ·
J∑

j=1

inf
δ j∈Ax, j

[ a2j (x)

δ j
· u�t (n + 1,max(0, x + ν j )) + δ j · u�t (n + 1, x)

]

︸ ︷︷ ︸
=:Q�t (n, j,x)

+
⎛

⎝1 − 2�t
J∑

j=1

a j (x)

⎞

⎠ u�t (n + 1, x), (2.11)

where δ j ∈ Ax, j , j = 1, . . . , J , are the SOC parameters
at state x for reaction j . The admissible set Ax, j is defined
in (2.2). Assumption 2.5 ensures that (i) we can apply the
Taylor expansion to the exponential term as �t decreases,
and (ii) we have the exact approximation structure for (2.11)
with no further terms scaling with �t that have order less
than �t2.

The infimum in (2.11) is attained when

(i) u�t (n + 1, x) �= 0, and

(i i) u�t (n + 1,max(0, x + ν j )) �= 0, ∀ 1 ≤ j ≤ J .

(2.12)

In this case, the approximate optimal SOC parameter δ
�t
n, j (x)

can be analytically determined as

δ
�t
n, j (x) = a j (x)

√
u�t (n + 1,max(0, x + ν j ))√

u�t (n + 1, x)
, 1 ≤ j ≤ J .

(2.13)

Note (2.13) includes the particular case when a j (x) = 0

for some j ∈ {1, . . . , J }. In such a case, δ�t
n, j (x) = 0, which

agrees with (2.2).
An important advantage for this numerical approxima-

tion, u�t (·, ·), is that we reduce the complexity of the
original optimization problem at each step in (2.9) from a
simultaneous optimization over J variables to independent
one-dimensional optimization problems that can be solved
in parallel using (2.13).

Remark 2.6 (Assumption (2.12)) Whether the assumption in
(2.12) is generally fulfilled depends on the method employed
to solve the dynamic programming principle in (2.11). For
example, if we use a direct numerical implementation either
some special numerical treatment is required for the cases
where (2.12) is violated, or some regularization is required

to ensure well-posedness. The proposed approach from
Sect. 2.3 avoids that issue since we model u�t (·, ·) with a
strictly positive ansatz function, which guarantees condition
(2.12) to hold for any state x and all time steps n.

Remark 2.7 (Computational cost for dynamic programming)
To derive a practical numerical algorithm for a finite num-
ber of states, we truncate the infinite state space N

d to×d
i=1[0, Si ], where S1, . . . , Sd is a set of sufficiently large

upper bounds. The computational cost to numerically solve
the dynamic programming equation (2.11) for step size �t
and state space×d

i=1[0, Si ] can be expressed as

Wdp(S,�t) ≈
(
S

∗)d · T

�t
· J , (2.14)

where S
∗ = maxi=1,...,d Si .

The cost in (2.14) scales exponentially with dimension d.
Section2.3 proposes an alternative approach to address this
curse of dimensionality. However, in future work, we aim to
combine dimension reduction techniques for SRNs with a
direct numerical implementation of dynamic programming.

2.3 Learning-based approach

Using the SOC formulation derived in Sect. 2.2, we propose
approximating the value function u�t (·, ·) with a parameter-
ized ansatz function, û(t, x;β).

Remark 2.8 (Choosing the ansatz function) The parameter-
ized ansatz function û(t, x;β) should consider the final
condition of the value function (2.9), and its choice depends
on the given SRN and observable g(x). For linear observ-
ables, such as g(x) = xi , we can consider polynomial basis
functions as an ansatz. For more complex problems, the
ansatz function is a small neural network.

For rare event applications with observable g(x) = 1{xi>γ },
we consider a sigmoid with learning parameters β =(
βspace, β time

) ∈ R
d+1 as the ansatz function

û(t, x;β) = 1

1 + e−(1−t)·(〈βspace,x〉+β time)−b0−β0xi
, (2.15)

where 〈·, ·〉 denotes the inner product, and the time is scaled
to one using t ∈ [0, 1].

Parameters b0 and β0 are not learned through optimization
but determined by fitting the final condition for Theorem 2.4,
which imposes û(1, x;β) ≈ g2(x) = 1{xi>γ }. Therefore,
the discontinuous indicator function is approximated by a
sigmoid, and the fit is characterized by the position of the
sigmoid’s inflection point and the sharpness of the slope. The
position and value of local and global minima with respect

123



58 Page 8 of 17 Statistics and Computing (2023) 33 :58

to the learned parameters βspace and β time depend on the
choices for b0 and β0.

To derive IS parameters from the ansatz function, we use
the previous SOC result from (2.13), i.e.,

δ̂�t
j (n, x;β) =

a j (x)

√
û
(

(n+1)�t
T ,max(0, x + ν j );β

)

√
û(

(n+1)�t
T , x;β)

,

1 ≤ j ≤ J , 0 ≤ n ≤ N − 1, x ∈ N
d . (2.16)

We define û(t, ·; ·) in (2.15) as a time-continuous function for
t ∈ [0, 1]; whereas the IS controls from δ̂�t

j (n, ·; ·) are dis-
crete in time for n = 0, . . . , N − 1, and depend on time step
size �t . Therefore, û(·, ·;β) can be used to derive control
parameters for arbitrary �t in (2.16).

The parameters β for the ansatz function are then chosen
to minimize the second moment,

inf
β∈Rd+1

E

[

g2
(
X

�t,β
N

) N−1∏

k=0

L2
k

(
Pk, δ̂

�t
(k,X

�t,β
k ;β)

)]

︸ ︷︷ ︸
=:C0,x

(
δ̂
�t
0 ,...,̂δ

�t
N−1;β

)

,

(2.17)

where {X�t,β
n }n=1,...,N is the IS path generated using IS

parameters from (2.16) and
(
δ̂
�t

(n, x;β)
)

j
= δ̂�t

j (n, x;β)

for 1 ≤ j ≤ J .
We use a gradient based stochastic optimizer method to

solve (2.17), and derive Lemma 2.9 (proof in “Appendix B”)
for the gradient of the second moment with respect to param-
eters β.

Lemma 2.9 The partial derivatives for the second moment

C0,x

(
δ̂
�t
0 , . . . , δ̂

�t
N−1;β

)
in (2.17) with respect to βl , l =

1, . . . , (d + 1), are given by

∂

∂βl
E

⎡

⎢⎢⎢
⎢
⎣
g2
(
X

�t,β
N

) N−1∏

k=0

L2
k

(
Pk , δ̂

�t
(k,X

�t,β
k ;β)

)

︸ ︷︷ ︸
=:R(x0;β)

⎤

⎥⎥⎥
⎥
⎦

=E

⎡

⎣R(x0;β)

⎛

⎝
N−1∑

k=1

J∑

j=1

⎛

⎝�t − Pk, j

δ̂�t
j (k,X

�t,β
k ;β)

⎞

⎠ · ∂

∂βl
δ̂�t
j (k,X

�t,β
k ;β)

⎞

⎠

⎤

⎦ ,

(2.18)

where {X�t,β
n }n=1,...,N is the IS path generated using the IS

parameters from (2.16) and

∂

∂βl
δ̂�t
j (k, x; β)

= a2j (x)

2̂δ�t
j (k, x; β)

·
(

∂
∂βl

û(
(k+1)�t

T ,max(x + ν j , 0); β)

û(
(k+1)�t

T , x; β)

− û(
(k+1)�t

T ,max(x + ν j , 0); β) ∂
∂βl

û(
(k+1)�t

T , x; β)

û2( (k+1)�t
T , x; β)

)

. (2.19)

Thus, partial derivatives for û(t, x;β) for the ansatz (2.15)
are

∂

∂βl
û(t, x; β)

=
{

(1 − t)xi û(t, x;β)(1 − û(t, x;β)) , if βl = (βspace)
i

(1 − t )̂u(t, x; β)(1 − û(t, x;β)) , if βl = β t ime,

(2.20)

where
(
βspace)

i denotes the i-th entry for βspace.
For an ansatz function different from (2.15), the gradient is

still given by Lemma 2.9 only the derivation of ∂
∂βl

û(t, x;β)

in (2.20) changes accordingly.
By estimating the gradient in (2.18) using a MC estima-

tor, we iteratively optimize the parameters β to reduce the
variance. For this optimization, we use the Adam optimizer
with the same parameter values suggested in [34] with the
only difference that the step size is tuned to fit our problem
setting.

In Sect. 3, we illustrate the potential of our new IS method
based on the learning approach numerically in terms of vari-
ance reduction. Further theoretical and numerical analysis of
this approach is left for future work, particularly the initial-
ization for the learned parameters β time and βspace in (2.15)
and investigations of a stopping rule.

To derive an estimator forE[g(X(T ))] using the proposed
IS change ofmeasure, we first solve the related SOC problem
using the approach from this section; then we simulate M
paths under the new IS sampling measure. Thus, the MC
estimator using the proposed IS change of measure over M
paths becomes

μI S
M,�t = 1

M

M∑

i=1

Li · g(X�t,β
[i],N ), (2.21)

whereX
�t,β
[i],N is the i-th IS sample path and the corresponding

likelihood factor from (2.5) is

Li = L
((
P0, . . . ,PN−1

)
,
(
δ̂
�t

(0,X
�t,β
[i],0 ;β), . . . , δ̂

�t
(N − 1,X

�t,β
[i],N−1;β)

))
.

(2.22)

Remark 2.10 The explicit pathwise derivatives in Lemma 2.9
have the following advantages compared with the finite dif-
ference approach: (i) the explicit pathwise derivatives are
unbiased with respect to the TL scheme, resulting in only
the MC error for evaluating the expectation (i.e., without
additional finite difference error), and (ii) the gradient com-
putation in (2.18) requires the estimation of an expected value
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with a high relative error because of g being fitted to an indi-
cator function. Using the IS-TL paths we control better the
related statistical error.

2.4 Computational cost for the learning-based
approach

This section discusses the computational complexity for the
learning approach to achieve a prescribed tolerance TOL.
Recall that the proposed approach comprises two steps;
hence, two types of costs occur: (i) the offline learning cost
for the ansatz function parameters β, and (ii) the online cost
to obtaining the MC estimator (2.21) based on M simulated
paths using the derived IS measure (see (2.16)).

The offline cost for (i) can be expressed as

Wpl(I , M0,�tpl) ≈ I · M0 · T

�tpl
· J · (CPoi + Cgrad),

where I is the number of optimizer steps,M0 is the number of
paths needed to derive the estimator of the gradient per opti-
mizer step, CPoi is the cost to generate one Poisson random
variable, Cgrad is the cost for the update of the algebraic
evaluation of (2.18), and �tpl is the step size. In contrast
to (2.14), this offline cost does not scale exponentially with
dimension d.

The cost for one IS-TL path based on û(·, ·;β) is the same
as for a TL path with negligible additional factors Cδ̂ for
evaluating (2.16) andClik for deriving the likelihood update,
as given in (2.4),

W f orward(�t f ) ≈ T

�t f
· J · (CPoi + Clik + Cδ̂),

where �t f is the step size. Thus, total cost is

WIS−T L(M,�tpl ,�t f )

≈ Wpl(I , M0,�tpl) + M · W f orward(�t f ).

Following the same derivation as for (1.11)–(1.14), we
choose �t f = TOL

2·C , where C is the constant from (1.9), to
obtain total computational complexity to derive a prescribed
tolerance T OL

WI S−T L(TOL) = Wpl(I , M0,�tpl)

+ const ·
Var
[
g
(
X

�t,β
N

)
· L
]

TOL3 , (2.23)

where L is the likelihood factor corresponding to the IS path

X
�t,β

(refer to (2.22)).
Our numerical simulations suggest that the amount of vari-

ance reduction achieved with the proposed approach is not

related to �tpl (see Fig. 4). Therefore, we can achieve a low
offline parameter learning cost (Wpl(I , M0,�tpl)) by using
�tpl � �t f .

For comparison, Sect. 1.3 shows that the standard MC-TL
approach has total computational complexity

WMC−T L(T OL) = constT L · Var [g(X̂�t
N )]

T OL3 .

The proposed IS approach reduces this cost by variance

reduction
(
Var[g(X�t

N ) · L] � Var [g(X̂�t
N )]
)
(refer toFigs. 1,

2, 3). The TL variance becomes increasingly large in
the asymptotic regime for very rare event probabilities,
such that the additional cost Wpl(I , M0,�tpl) for learn-
ing β in (2.23) becomes negligible. Therefore, we obtain
WIS−T L(T OL) � WMC−T L(T OL) in the rare event
regime.

3 Numerical experiments and results

Through Examples 3.1, 3.2, and 3.3, we demonstrate the
advantages for the proposed IS approach compared with
the standard MC approach. We numerically show that the
proposed approach achieves substantial variance reduction
compared with standard MC estimators when applied to
SRNs with different dimensions.

Example 3.1 (Pure decay) This example considers one
species and a single reaction,

X
θ1→ ∅,

where θ1 = 1, and the final time T = 1. Thus, the propensity
is a(x) = θ1x , the stoichiometric vector is ν = −1, and the
observable is g(x) = 1{x>50} with X0 = 100.

Example 3.2 (Michaelis–Menten enzyme kinetics) The
Michaelis-Menten enzyme kinetics [43] describe the cat-
alytic conversion of substrate S into a product P through
three reactions,

E + S
θ1→ C, C

θ2→ E + S, C
θ3→ E + P,

where E denotes the enzyme and θ = (0.001, 0.005, 0.01)�.
We consider the initial state X0 = (E(0), S(0),C(0),
P(0))� = (100, 100, 0, 0)� and the final time T = 1. The
corresponding propensity and the change of the state matrix
are

a(x) =
⎛

⎝
θ1ES
θ2C
θ3C

⎞

⎠ , ν =

⎛

⎜⎜
⎝

−1 1 1
−1 1 0
1 −1 −1
0 0 1

⎞

⎟⎟
⎠ .
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Fig. 1 Example 3.1with step size�tpl = �t f = 1/24 for the proposed
IS-MC estimator: a sample mean; b squared coefficient of variation; c
parameters; d kurtosis for each optimizer step. Adam optimizer gra-
dient, sample variance, and kurtosis were estimated using M0 = 104

samples. The reference value for the standard MC-TL approach was
derived from a single run with M = 106 samples and with step size
�t = 1/24

The observable of interest is g(x) = 1{x3>22}.

Example 3.3 (Enzymatic futile cycle model) The enzymatic
futile cycle [36] describes two instances for the elemen-
tary single-substrate enzymatic reaction scheme and can be
described by six reactions,

R1 : S1 + S2
θ1−→ S3, R2 : S3 θ2−→ S1 + S2,

R3 : S3 θ3−→ S1 + S5,

R4 : S4 + S5
θ4−→ S6, R5 : S6 θ5−→ S4 + S5,

R6 : S6 θ6−→ S4 + S2.

Initial states are X(0) = (S1(0), . . . , S6(0)) = (1, 50, 0, 1,
50, 0), and we take the rates as θ1 = θ2 = θ4 = θ5 = 1, and
θ3 = θ6 = 0.1. The propensity a(x) follows the stochastic
mass-action kinetics in (1.5) and the final time is T = 2. We
consider g(x) = 1{x5>60} as the observable.

Since all three are rare event examples with observable
g(x) = 1{xi>γ }, we use the ansatz function (2.15) with initial
parameters βspace = 0, and β time = 0. The relative error
is more relevant for rare event occurrences than the absolute
error, hence we use a relative version of the variance, i.e., the
squared coefficient of variation [12,35], which, for a random
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Fig. 2 Example 3.2with step size�tpl = �t f = 1/24 for the proposed
IS-MC estimator: a sample mean; b squared coefficient of variation; c
parameters; d kurtosis for each optimizer step. The gradient for the

Adam optimization, the sample variance, and the kurtosis were esti-
mated using M0 = 105 samples. Standard MC-TL with step size
�t = 1/24 and M = 107 samples was used for comparison

variable X , is given by

Varrel [X ] = Var [X ]
E[X ]2 . (3.1)

To judge the robustness of our variance estimators, we esti-

mate the kurtosis, κ := E
[
(X−E[X ])4

]

(Var[X ])2
, because the standard

deviation of the sample variance [10] is given by

σS2(X) = Var [X ]√
M

√

(κ − 1) + 2

M − 1
,

where M is the number of samples.
We set the Adam optimizer step size α = 0.1 for the

simulations.
Figure 1 shows 100Adamoptimization steps for the decay

example (Example 3.1) for step size �tpl = �t f = 1/24.
The quantity of interest is a rare event probability with mag-
nitude 10−3. To estimate the gradient, we use M = 104

samples per Adam iteration. The squared coefficient of vari-
ation is reduced by a factor of 102 comparedwith the standard
MC-TLvariance after 13Adam iterations.After reaching this
minimum, the squared coefficient of variation increases for
the next iteration steps. This behavior might be avoided by
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Fig. 3 Example 3.3with step size�tpl = �t f = 1/24 for the proposed
IS-MC estimators: a sample mean; b squared coefficient of variation; c
parameters; d kurtosis for each optimizer step. The gradient for Adam

optimization, the sample variance, and the kurtosiswere estimated using
M0 = 105 samples. Standard MC-TL with M = 106 samples and step
size �t = 1/24 was used for comparison

employing a smaller step size in the Adam algorithm. Fig-
ure1d confirms that the kurtosis is bounded to a level below
the standard TL’s kurtosis, indicating a robust variance esti-
mator.

For the 4-dimensional stochastic reaction network (Exam-
ple 3.2), the rare event probability for the event {X3(T ) > 22}
is of magnitude 10−5. Figure2b confirms that the proposed
learning-based approach reduces the variance by a factor
4 × 103 compared with standard TL for step size �tpl =
�t f = 1/24. Although Fig. 2c seems to shows that parame-
ters β time and β

space
4 overlap, this is an artifact from the scale

of the y-axis; in fact, the final values areβtime = −3.2×10−4

and β
space
4 = −3.0× 10−3. The intrinsic structure of Exam-

ple 3.2 results in similar molecule counts for E(t) and S(t)

and hence similar values for β
space
1 and β

space
2 . Figure2d

confirms that the kurtosis for the proposed approach is sub-
stantially reduced comparedwith the kurtosis for the standard
TL approach.

The 6-dimensional example (Example 3.3) has a rare event
probability with magnitude 10−6. Figure3 shows the Adam
optimization results for step size �tpl = �t f = 1/24. The
TL mean differs from the mean for the proposed approach
(Fig. 3a) because the standard MC-TL estimator requires
more than 106 runs to accurately estimate a probability of
order 10−6. The proposed learning-based approach reduces
the variance by a factor of more than 50 after 43 iterations.
The kurtosis is bounded and lower than the kurtosis for the
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Fig. 4 Example 3.2, parameters βspace and β time learned with �tpl =
1/24 (see final optimizer step in Fig. 2) and applied to forward runs with
different�t f values. The squared coefficient of variation was estimated
with M = 106 sample paths. The standard MC-TL approach is used as
reference (dashed red line)

TL approach, confirming that the proposed approach results
in a robust variance estimator.

Examples 3.2 and 3.3 show that a good choice of the ansatz
function in combination with reasonable initial parameters
provides substantial variance reduction from the first opti-
mization step. However, we do not expect this behavior in
general, particularly for high dimensions, and therefore we
performed some optimization iterations.

The examples used step size �tpl = 1/24 and showed
the squared coefficient of variation with respect to the same
step size. To demonstrate that the learned parameters β

can be used for forward runs with smaller step sizes (i.e.,
�t f � �tpl ) as claimed in Sect. 2.4, we consider Example
3.2 and the final parameters from Fig. 4 for forward runs with
different�t f . The results show that the variance reduction is
constant with respect to �t f , suggesting that a coarse �tpl
is sufficient for parameter learning. The same behavior was
observed for other tested examples.

Remark 3.4 We used the ansatz (2.15) based on a single
sigmoid for the numerical experiments to demonstrate the
potential for the proposed learning-based IS. Further vari-
ance reduction may be achieved either by summing several
sigmoid functions as ansatz or selecting adifferent basis func-
tion shape. Relevant analyses will be pursued in future work.

4 Conclusions and future work

This work developed an efficient path-dependent IS scheme
to estimate statistical quantities for SRN processes, partic-
ularly rare event probabilities. Optimal IS parameters were

obtained within a pre-selected class of change of measure
using the proposed connection to an associated SOC prob-
lem, which could be solved via dynamic programming. To
mitigate the curse of dimensionality encountered by the
dynamic programming relation, we proposed a method for
multi-dimensional SRNs based on approximating the value
function via an ansatz function (i.e. a neural network), where
the parameters were learned using a stochastic optimiza-
tion algorithm.Numerical examples and subsequent analyses
verified that the proposed estimator achieved substantial vari-
ance reduction compared with the standard MC method,
providing lowered computational complexity in the rare
event regime.

Future work will further analyze the proposed learning-
based approach and expand it to derive a multilevel MC
estimator. We also plan to combine an implementation of
the dynamic programming principle as derived in Sect. 2.2
with dimension reduction methods for SRNs.
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Appendix A: Proof for Theorem 2.4

Proof for Theorem 2.4 To show (2.9), we first reformulate
Cn,x (δ

�t
n , . . . , δ�t

N−1) using the definition for the likelihood
and the notion of conditional expectation,

Cn,x (δ�t
n , . . . , δ�t

N−1)

= E

⎡

⎣g2(X�t
N )

N−1∏

k=n

L2k (Pk , δ
�t
k (X

�t
k )) | X�t

n = x

⎤

⎦

= E

⎡

⎣g2(X�t
N ) · L2n (Pn , δ�t

n (X
�t
n )) ·

N−1∏

k=n+1

L2k (Pk , δ
�t
k (X

�t
k )) | X�t

n = x

⎤

⎦

= E

⎡

⎣g2(X�t
N ) · exp

⎛

⎝−2

⎛

⎝
J∑

j=1

a j (X
�t
n ) − δ�t

n, j (X
�t
n )

⎞

⎠�t

⎞

⎠
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×
⎛

⎝
J∏

j=1

a j (X
�t
n )

δ�t
n, j (X

�t
n )

⎞

⎠

2Pn, j

·
N−1∏

k=n+1

L2k (Pk , δ
�t
k (X

�t
k )) | X�t

n = x

⎤

⎦ . (A.1)

Setting

B(Pn) := g2(X
�t
N ) exp

⎛

⎝−2

⎛

⎝
J∑

j=1

a j (X
�t
n ) − δ�t

n, j (X
�t
n )

⎞

⎠�t

⎞

⎠

⎛

⎝
J∏

j=1

a j (X
�t
n )

δ�t
n, j (X

�t
n )

⎞

⎠

2Pn, j N−1∏

k=n+1

L2k (Pk , δ
�t
k (X

�t
k )),

we can reformulate (A.1) and derive

Cn,x (δ
�t
n , . . . , δ�t

N−1)

=
∑

p∈NJ

P

(
Pn = p | X�t

n = x
)

· E
[
B(Pn) | X�t

n = x,Pn = p
]

=
∑

p∈NJ

⎡

⎣
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j ! exp(−�t ·
J∑

j=0

δ�t
n, j (x))

⎤

⎦

· exp
⎛

⎝−2

⎛

⎝
J∑

j=1

a j (x) − δ�t
n, j (x)

⎞

⎠�t

⎞

⎠ ·
⎛

⎝
J∏

j=1

a j (x)

δ�t
n, j (x)

⎞

⎠

2p j

· E
[

g2(X
�t
N )

N−1∏

k=n+1

L2
k

(
Pk , δ

�t
k (X

�t
k )
)

| X�t
n = x,Pn = p

]

= exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠

·
∑

p∈NJ

⎛

⎝
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j ! (
a j (x)

δ�t
n, j (x)

)2p j

⎞

⎠

· E
[

g2(X
�t
N )

N−1∏

k=n+1

L2
k

(
Pk , δ

�t
k (X

�t
k )
)

| X�t
n+1 = max(0, x + pT ν)

]

.

We can prove Theorem 2.4 using the above results. We
split the proof into two parts, where the first inequality is
obtained by

u�t (n, x) = inf
{δ�t
i }i=n,...,N−1∈AN−n

[
exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠

∑

p∈NJ

⎛

⎝

⎛

⎝
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j !
(
a j (x)

δ�t
n, j (x)

)
2p j

⎞

⎠

×E

⎡

⎣g2(X�t
N )

N−1∏

k=n+1

L2k (Pk , δ
�t
k (X

�t
k )) | X�t

n+1 = max(0, x + pT ν)

⎤

⎦

⎞

⎠
]

≥ inf
{δ�t
i }i=n,...,N−1∈AN−n

[
exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠

∑

p∈NJ

⎛

⎝

⎛

⎝
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j !
(
a j (x)

δ�t
n, j (x)

)
2p j

⎞

⎠

× inf
{δ�t
k }k=n+1,...,N−1∈AN−n−1

E

⎡

⎣g2(X�t
N )

N−1∏

k=n+1

L2k (Pk , δ
�t
k (X

�t
k )) | X�t

n+1 = max(0, x + pT ν)

⎤

⎦

⎞

⎠
]

= inf
δ�t
n (x)∈Ax

[
exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠

×
∑

p∈NJ

⎛

⎜
⎝

⎛

⎜
⎝

J∏

j=1

(�t · δ�t
n, j (x))

p j

p j !

⎛

⎝
a j (x)

δ�t
n, j (x)

⎞

⎠

2p j
⎞

⎟
⎠

·u�t (n + 1,max(0, x + pT ν))
) ]

To prove the second inequality, we choose the control at the
n-th time step to be an arbitrary δ�t,+

n > 0, and for the
remaining controls, we choose the elements of a minimizing
sequence of controls such that

lim
m→∞ E

[
g2(X

�t
N )

N−1∏

k=n+1

L2
k (Pk , δ

�t,(m)
k (X

�t
k )) | X�t

n+1 = max(0, x + pT ν)

]

= inf
{δ�t

k }k=n+1,...,N−1∈AN−n−1

E

[
g2(X

�t
N )

N−1∏

k=n+1

L2
k(Pk , δ

�t
k (X

�t
k )) | X�t

n+1 = max(0, x + pT ν)

]
.

Therefore,

u�t (n, x)

= inf
{δ�t

i }i=n,...,N−1∈AN−n

[
exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠

∑

p∈NJ

⎛

⎝

⎛

⎝
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j ! (
a j (x)

δ�t
n, j (x)

)2p j

⎞

⎠

×E

[

g2(X
�t
N )

N−1∏

k=n+1

L2
k (Pk , δ

�t
k (X

�t
k )) | X�t

n+1 = max(0, x + pT ν)

])]

≤ exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ
�t,+
n, j (x)

⎞

⎠�t

⎞

⎠

∑

p∈NJ

⎛

⎝

⎛

⎝
J∏

j=1

(�t · δ
�t,+
n, j (x))p j

p j !

(
a j (x)

δ
�t,+
n, j (x)

)2p j
⎞

⎠

× inf
{δ�t

k }k=n+1,...,N−1∈AN−n−1

E

[

g2(X
�t
N )

N−1∏

k=n+1

L2
k (Pk , δ

�t
k (X

�t
k )) | X�t

n+1 = max(0, x + pT ν)

])

= exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ
�t,+
n, j (x)

⎞

⎠�t

⎞

⎠

×
∑

p∈NJ

⎛

⎝
J∏

j=1

(�t · δ
�t,+
n, j (x))p j

p j !

(
a j (x)

δ
�t,+
n, j (x)

)2p j
⎞

⎠

· u�t (n + 1,max(0, x + pT ν)).

This inequality holds for any arbitrary δ�t,+
n > 0, and

hence

u�t (n, x) ≤ inf
δ�t
n (x)∈Ax

[
exp

⎛

⎝

⎛

⎝−2
J∑

j=1

a j (x) +
J∑

j=1

δ�t
n, j (x)

⎞

⎠�t

⎞

⎠
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∑

p∈NJ

⎛

⎝
J∏

j=1

(�t · δ�t
n, j (x))

p j

p j !

(
a j (x)

δ�t
n, j (x)

)2p j
⎞

⎠

· u�t (n + 1,max(0, x + pT ν))

]
.

This completes the proof. ��

Appendix B: Proof for Lemma 2.9

The partial derivatives of the second moment
C0,x

(
δ�t
n , . . . , δ�t

N−1;β
)
in (2.7) with respect to βl , l =

1, . . . , (d + 1) can be expressed as

∂

∂βl
E

[

g2
(
X

�t,β
N

) N−1∏

k=0

L2
k

(
Pk , δ̂

�t
(k,X

�t,β
k ; β)

)
]

= ∂

∂βl
E

[

g2
(
X̂�t

N

) N−1∏

k=0

Lk

(
Pk , δ̂

�t
(k, X̂�t

k ; β)
)
]

(1)= E

[
∂

∂βl

(

g2
(
X̂�t

N

) N−1∏

k=0

Lk

(
Pk , δ̂

�t
(k, X̂�t

k ; β)
))]

(2)= E

[

g2
(
X̂�t

N

) ∂

∂βl

(
N−1∏

k=0

Lk

(
Pk , δ̂

�t
(k, X̂�t

k ; β)
))]

, (B.1)

where the Poisson incrementswith respect to the TLmeasure
are given in Pn with (Pn) j := Pn, j = Pn, j

(
a j (X̂�t

k )�t
)
for

j = 1, . . . , J . In
(1)= , we assume that the expected value

and the derivative commute (see [37] Assumption A1(1) for

sufficient conditions). In
(2)= , we consider that g2

(
X̂�t

N

)
is

based on the original TLmeasure and hence is not dependent
on βl .

In (B.1), the term

∂

∂βl

(
N−1∏

k=0

Lk

(
Pk, δ̂

�t
(k, X̂�t

k ;β)
))

is only deterministically dependent on β, since X̂�t
k is inde-

pendent of β, and Pk, j ∼ Poi(a j (X̂�t
k )�t). Thus, the

derivative can be computed in a closed form using the iden-
tity

∂

∂x
ln( f (x)) = 1

f (x)

∂

∂x
f (x) ⇐⇒ ∂

∂x
f (x) = f (x)

∂

∂x
ln( f (x)).

(B.2)

We compute the derivative from (B.2) using the following
steps.

1. Apply (B.2),

∂

∂βl

(
N−1∏

k=0

Lk

(
Pk, δ̂

�t
(k, X̂

�t
k ;β)

))

=
(
N−1∏

k=0

Lk

(
Pk, δ̂

�t
(k, X̂

�t
k ;β)

))

∂

∂βl
ln

(
N−1∏

k=0

Lk

(
Pk, δ̂

�t
(k, X̂

�t
k ;β)

))

=
(
N−1∏

k=0

Lk

(
Pk, δ̂

�t
(k, X̂

�t
k ;β)

)
)

N−1∑

k=0

∂

∂βl
ln
(
Lk

(
Pk, δ̂

�t
(k, X̂

�t
k ;β)

))
.

2. The remaining derivative can be derived by chain rule,

∂

∂βl
ln
(
Lk
(
Pk , δ̂

�t
(k, X̂�t

k ; β)
))

= 1

Lk
(
Pk , δ̂

�t
(k, X̂�t

k ; β)
)

∂

∂βl
Lk
(
Pk , δ̂

�t
(k, X̂�t

k ; β)
)

.

3. Apply a second chain rule,

∂

∂βl
Lk

(
Pk, δ̂

�t
(k, X̂�t

k ;β)
)

= ∂

∂βl
δ̂
�t

(k, X̂�t
k ;β) · ∇δLk(Pk, δ). (B.3)

4. In (B.3), we have from (2.4),

Lk (Pk, δ) = exp

⎛

⎝−
⎛

⎝
J∑

j=1

a j (X̂
�t
k ) − δ j

⎞

⎠�t

⎞

⎠

·
J∏

j=1

(
a j (X̂

�t
k )

δ j

)Pk, j

, (B.4)

hence
∂

∂δi
Lk (Pk , δ)

= �t exp

⎛

⎝−
⎛

⎝
J∑

j=1

a j (X̂
�t
k ) − δ j

⎞

⎠�t

⎞

⎠ ·
J∏

j=1

(
a j (X̂

�t
k )

δ j

)Pk, j

+ exp

⎛

⎝−
⎛

⎝
J∑

j=1

a j (X̂
�t
k ) − δ j

⎞

⎠�t

⎞

⎠

· (−Pk,i )
a
Pk,i
i

δ
Pk,i+1
i

J∏

j=1, j �=i

(
a j (X̂

�t
k )

δ j

)Pk, j

= exp

⎛

⎝−
⎛

⎝
J∑

j=1

a j (X̂
�t
k ) − δ j

⎞

⎠�t

⎞

⎠

J∏

j=1

(
a j (X̂

�t
k )

δ j

)Pk, j

·
(

�t − Pk,i
δi

)

= Lk (Pk , δ) ·
(

�t − Pk,i
δi

)
.
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5. In (B.3), from (2.16), we obtain

∂

∂βl
δ̂�t
j (k, x; β) = a j (x)

1

2

√√√
√ û(

(k+1)�t
T , x; β)

û(
(k+1)�t

T ,max(x + ν j , 0)

·
⎛

⎝
∂

∂βl
û(

(k+1)�t
T ,max(x + ν j , 0); β)

û(
(k+1)�t

T , x; β)

−
û(

(k+1)�t
T ,max(x + ν j , 0); β) ∂

∂βl
û(

(k+1)�t
T , x; β)

û(
(k+1)�t

T , x; β)2

⎞

⎠

= a j (x)2

2̂δ�t
j (k, x; β)

·
⎛

⎝
∂

∂βl
û(

(k+1)�t
T ,max(x + ν j , 0); β)

û(
(k+1)�t

T , x; β)

−
û(

(k+1)�t
T ,max(x + ν j , 0); β) ∂

∂βl
û(

(k+1)�t
T , x; β)

û(
(k+1)�t

T , x; β)2

⎞

⎠ (B.5)

where ∂
∂βl

û�t (t, x;β) depends on the chosen ansatz.

Combining theprevious steps, the gradient canbe expressed
as

∂

∂βl

⎛

⎝
N−1∏

k=0

Lk
(
Pk , δ̂

�t
(k, X̂�t

k ; β)
)
⎞

⎠

=
⎛

⎝
N−1∏

k=0

Lk
(
Pk , δ̂

�t
(k, X̂�t

k ;β)
)
⎞

⎠

︸ ︷︷ ︸
:=L(X̂�t ;β)

⎛

⎝
N−1∑

k=1

J∑

j=1

(

�t − Pk, j

δ̂�t
j (k, X̂�t

k ;β)

)

· ∂

∂βl
δ̂�t
j (k, X̂�t

k ; β)

⎞

⎠

︸ ︷︷ ︸
:=S(X̂�t ;β)

, (B.6)

where the gradient of δ̂�t
j is dependent on the ansatz used

and given by (B.5).
Since the MC estimator (B.1) may have a large variance,

we again apply IS,

∂

∂βl
E

[
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